]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/i915_gem_execbuffer.c
drm/i915/tracepoints: Adjust i915_gem_ring_dispatch
[linux.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2  * Copyright © 2008,2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uk>
26  *
27  */
28
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/sync_file.h>
32 #include <linux/uaccess.h>
33
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36
37 #include "i915_drv.h"
38 #include "i915_trace.h"
39 #include "intel_drv.h"
40 #include "intel_frontbuffer.h"
41
42 #define DBG_USE_CPU_RELOC 0 /* -1 force GTT relocs; 1 force CPU relocs */
43
44 #define  __EXEC_OBJECT_HAS_PIN          (1<<31)
45 #define  __EXEC_OBJECT_HAS_FENCE        (1<<30)
46 #define  __EXEC_OBJECT_NEEDS_MAP        (1<<29)
47 #define  __EXEC_OBJECT_NEEDS_BIAS       (1<<28)
48 #define  __EXEC_OBJECT_INTERNAL_FLAGS (0xf<<28) /* all of the above */
49
50 #define BATCH_OFFSET_BIAS (256*1024)
51
52 struct i915_execbuffer_params {
53         struct drm_device               *dev;
54         struct drm_file                 *file;
55         struct i915_vma                 *batch;
56         u32                             dispatch_flags;
57         u32                             args_batch_start_offset;
58         struct intel_engine_cs          *engine;
59         struct i915_gem_context         *ctx;
60         struct drm_i915_gem_request     *request;
61 };
62
63 struct eb_vmas {
64         struct drm_i915_private *i915;
65         struct list_head vmas;
66         int and;
67         union {
68                 struct i915_vma *lut[0];
69                 struct hlist_head buckets[0];
70         };
71 };
72
73 static struct eb_vmas *
74 eb_create(struct drm_i915_private *i915,
75           struct drm_i915_gem_execbuffer2 *args)
76 {
77         struct eb_vmas *eb = NULL;
78
79         if (args->flags & I915_EXEC_HANDLE_LUT) {
80                 unsigned size = args->buffer_count;
81                 size *= sizeof(struct i915_vma *);
82                 size += sizeof(struct eb_vmas);
83                 eb = kmalloc(size, GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
84         }
85
86         if (eb == NULL) {
87                 unsigned size = args->buffer_count;
88                 unsigned count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
89                 BUILD_BUG_ON_NOT_POWER_OF_2(PAGE_SIZE / sizeof(struct hlist_head));
90                 while (count > 2*size)
91                         count >>= 1;
92                 eb = kzalloc(count*sizeof(struct hlist_head) +
93                              sizeof(struct eb_vmas),
94                              GFP_TEMPORARY);
95                 if (eb == NULL)
96                         return eb;
97
98                 eb->and = count - 1;
99         } else
100                 eb->and = -args->buffer_count;
101
102         eb->i915 = i915;
103         INIT_LIST_HEAD(&eb->vmas);
104         return eb;
105 }
106
107 static void
108 eb_reset(struct eb_vmas *eb)
109 {
110         if (eb->and >= 0)
111                 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
112 }
113
114 static struct i915_vma *
115 eb_get_batch(struct eb_vmas *eb)
116 {
117         struct i915_vma *vma = list_entry(eb->vmas.prev, typeof(*vma), exec_list);
118
119         /*
120          * SNA is doing fancy tricks with compressing batch buffers, which leads
121          * to negative relocation deltas. Usually that works out ok since the
122          * relocate address is still positive, except when the batch is placed
123          * very low in the GTT. Ensure this doesn't happen.
124          *
125          * Note that actual hangs have only been observed on gen7, but for
126          * paranoia do it everywhere.
127          */
128         if ((vma->exec_entry->flags & EXEC_OBJECT_PINNED) == 0)
129                 vma->exec_entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
130
131         return vma;
132 }
133
134 static int
135 eb_lookup_vmas(struct eb_vmas *eb,
136                struct drm_i915_gem_exec_object2 *exec,
137                const struct drm_i915_gem_execbuffer2 *args,
138                struct i915_address_space *vm,
139                struct drm_file *file)
140 {
141         struct drm_i915_gem_object *obj;
142         struct list_head objects;
143         int i, ret;
144
145         INIT_LIST_HEAD(&objects);
146         spin_lock(&file->table_lock);
147         /* Grab a reference to the object and release the lock so we can lookup
148          * or create the VMA without using GFP_ATOMIC */
149         for (i = 0; i < args->buffer_count; i++) {
150                 obj = to_intel_bo(idr_find(&file->object_idr, exec[i].handle));
151                 if (obj == NULL) {
152                         spin_unlock(&file->table_lock);
153                         DRM_DEBUG("Invalid object handle %d at index %d\n",
154                                    exec[i].handle, i);
155                         ret = -ENOENT;
156                         goto err;
157                 }
158
159                 if (!list_empty(&obj->obj_exec_link)) {
160                         spin_unlock(&file->table_lock);
161                         DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
162                                    obj, exec[i].handle, i);
163                         ret = -EINVAL;
164                         goto err;
165                 }
166
167                 i915_gem_object_get(obj);
168                 list_add_tail(&obj->obj_exec_link, &objects);
169         }
170         spin_unlock(&file->table_lock);
171
172         i = 0;
173         while (!list_empty(&objects)) {
174                 struct i915_vma *vma;
175
176                 obj = list_first_entry(&objects,
177                                        struct drm_i915_gem_object,
178                                        obj_exec_link);
179
180                 /*
181                  * NOTE: We can leak any vmas created here when something fails
182                  * later on. But that's no issue since vma_unbind can deal with
183                  * vmas which are not actually bound. And since only
184                  * lookup_or_create exists as an interface to get at the vma
185                  * from the (obj, vm) we don't run the risk of creating
186                  * duplicated vmas for the same vm.
187                  */
188                 vma = i915_vma_instance(obj, vm, NULL);
189                 if (unlikely(IS_ERR(vma))) {
190                         DRM_DEBUG("Failed to lookup VMA\n");
191                         ret = PTR_ERR(vma);
192                         goto err;
193                 }
194
195                 /* Transfer ownership from the objects list to the vmas list. */
196                 list_add_tail(&vma->exec_list, &eb->vmas);
197                 list_del_init(&obj->obj_exec_link);
198
199                 vma->exec_entry = &exec[i];
200                 if (eb->and < 0) {
201                         eb->lut[i] = vma;
202                 } else {
203                         uint32_t handle = args->flags & I915_EXEC_HANDLE_LUT ? i : exec[i].handle;
204                         vma->exec_handle = handle;
205                         hlist_add_head(&vma->exec_node,
206                                        &eb->buckets[handle & eb->and]);
207                 }
208                 ++i;
209         }
210
211         return 0;
212
213
214 err:
215         while (!list_empty(&objects)) {
216                 obj = list_first_entry(&objects,
217                                        struct drm_i915_gem_object,
218                                        obj_exec_link);
219                 list_del_init(&obj->obj_exec_link);
220                 i915_gem_object_put(obj);
221         }
222         /*
223          * Objects already transfered to the vmas list will be unreferenced by
224          * eb_destroy.
225          */
226
227         return ret;
228 }
229
230 static struct i915_vma *eb_get_vma(struct eb_vmas *eb, unsigned long handle)
231 {
232         if (eb->and < 0) {
233                 if (handle >= -eb->and)
234                         return NULL;
235                 return eb->lut[handle];
236         } else {
237                 struct hlist_head *head;
238                 struct i915_vma *vma;
239
240                 head = &eb->buckets[handle & eb->and];
241                 hlist_for_each_entry(vma, head, exec_node) {
242                         if (vma->exec_handle == handle)
243                                 return vma;
244                 }
245                 return NULL;
246         }
247 }
248
249 static void
250 i915_gem_execbuffer_unreserve_vma(struct i915_vma *vma)
251 {
252         struct drm_i915_gem_exec_object2 *entry;
253
254         if (!drm_mm_node_allocated(&vma->node))
255                 return;
256
257         entry = vma->exec_entry;
258
259         if (entry->flags & __EXEC_OBJECT_HAS_FENCE)
260                 i915_vma_unpin_fence(vma);
261
262         if (entry->flags & __EXEC_OBJECT_HAS_PIN)
263                 __i915_vma_unpin(vma);
264
265         entry->flags &= ~(__EXEC_OBJECT_HAS_FENCE | __EXEC_OBJECT_HAS_PIN);
266 }
267
268 static void eb_destroy(struct eb_vmas *eb)
269 {
270         while (!list_empty(&eb->vmas)) {
271                 struct i915_vma *vma;
272
273                 vma = list_first_entry(&eb->vmas,
274                                        struct i915_vma,
275                                        exec_list);
276                 list_del_init(&vma->exec_list);
277                 i915_gem_execbuffer_unreserve_vma(vma);
278                 vma->exec_entry = NULL;
279                 i915_vma_put(vma);
280         }
281         kfree(eb);
282 }
283
284 static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
285 {
286         if (!i915_gem_object_has_struct_page(obj))
287                 return false;
288
289         if (DBG_USE_CPU_RELOC)
290                 return DBG_USE_CPU_RELOC > 0;
291
292         return (HAS_LLC(to_i915(obj->base.dev)) ||
293                 obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
294                 obj->cache_level != I915_CACHE_NONE);
295 }
296
297 /* Used to convert any address to canonical form.
298  * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
299  * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
300  * addresses to be in a canonical form:
301  * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
302  * canonical form [63:48] == [47]."
303  */
304 #define GEN8_HIGH_ADDRESS_BIT 47
305 static inline uint64_t gen8_canonical_addr(uint64_t address)
306 {
307         return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
308 }
309
310 static inline uint64_t gen8_noncanonical_addr(uint64_t address)
311 {
312         return address & ((1ULL << (GEN8_HIGH_ADDRESS_BIT + 1)) - 1);
313 }
314
315 static inline uint64_t
316 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
317                   uint64_t target_offset)
318 {
319         return gen8_canonical_addr((int)reloc->delta + target_offset);
320 }
321
322 struct reloc_cache {
323         struct drm_i915_private *i915;
324         struct drm_mm_node node;
325         unsigned long vaddr;
326         unsigned int page;
327         bool use_64bit_reloc;
328 };
329
330 static void reloc_cache_init(struct reloc_cache *cache,
331                              struct drm_i915_private *i915)
332 {
333         cache->page = -1;
334         cache->vaddr = 0;
335         cache->i915 = i915;
336         /* Must be a variable in the struct to allow GCC to unroll. */
337         cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
338         cache->node.allocated = false;
339 }
340
341 static inline void *unmask_page(unsigned long p)
342 {
343         return (void *)(uintptr_t)(p & PAGE_MASK);
344 }
345
346 static inline unsigned int unmask_flags(unsigned long p)
347 {
348         return p & ~PAGE_MASK;
349 }
350
351 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
352
353 static void reloc_cache_fini(struct reloc_cache *cache)
354 {
355         void *vaddr;
356
357         if (!cache->vaddr)
358                 return;
359
360         vaddr = unmask_page(cache->vaddr);
361         if (cache->vaddr & KMAP) {
362                 if (cache->vaddr & CLFLUSH_AFTER)
363                         mb();
364
365                 kunmap_atomic(vaddr);
366                 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
367         } else {
368                 wmb();
369                 io_mapping_unmap_atomic((void __iomem *)vaddr);
370                 if (cache->node.allocated) {
371                         struct i915_ggtt *ggtt = &cache->i915->ggtt;
372
373                         ggtt->base.clear_range(&ggtt->base,
374                                                cache->node.start,
375                                                cache->node.size);
376                         drm_mm_remove_node(&cache->node);
377                 } else {
378                         i915_vma_unpin((struct i915_vma *)cache->node.mm);
379                 }
380         }
381 }
382
383 static void *reloc_kmap(struct drm_i915_gem_object *obj,
384                         struct reloc_cache *cache,
385                         int page)
386 {
387         void *vaddr;
388
389         if (cache->vaddr) {
390                 kunmap_atomic(unmask_page(cache->vaddr));
391         } else {
392                 unsigned int flushes;
393                 int ret;
394
395                 ret = i915_gem_obj_prepare_shmem_write(obj, &flushes);
396                 if (ret)
397                         return ERR_PTR(ret);
398
399                 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
400                 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
401
402                 cache->vaddr = flushes | KMAP;
403                 cache->node.mm = (void *)obj;
404                 if (flushes)
405                         mb();
406         }
407
408         vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
409         cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
410         cache->page = page;
411
412         return vaddr;
413 }
414
415 static void *reloc_iomap(struct drm_i915_gem_object *obj,
416                          struct reloc_cache *cache,
417                          int page)
418 {
419         struct i915_ggtt *ggtt = &cache->i915->ggtt;
420         unsigned long offset;
421         void *vaddr;
422
423         if (cache->vaddr) {
424                 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
425         } else {
426                 struct i915_vma *vma;
427                 int ret;
428
429                 if (use_cpu_reloc(obj))
430                         return NULL;
431
432                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
433                 if (ret)
434                         return ERR_PTR(ret);
435
436                 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
437                                                PIN_MAPPABLE | PIN_NONBLOCK);
438                 if (IS_ERR(vma)) {
439                         memset(&cache->node, 0, sizeof(cache->node));
440                         ret = drm_mm_insert_node_in_range
441                                 (&ggtt->base.mm, &cache->node,
442                                  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
443                                  0, ggtt->mappable_end,
444                                  DRM_MM_INSERT_LOW);
445                         if (ret) /* no inactive aperture space, use cpu reloc */
446                                 return NULL;
447                 } else {
448                         ret = i915_vma_put_fence(vma);
449                         if (ret) {
450                                 i915_vma_unpin(vma);
451                                 return ERR_PTR(ret);
452                         }
453
454                         cache->node.start = vma->node.start;
455                         cache->node.mm = (void *)vma;
456                 }
457         }
458
459         offset = cache->node.start;
460         if (cache->node.allocated) {
461                 wmb();
462                 ggtt->base.insert_page(&ggtt->base,
463                                        i915_gem_object_get_dma_address(obj, page),
464                                        offset, I915_CACHE_NONE, 0);
465         } else {
466                 offset += page << PAGE_SHIFT;
467         }
468
469         vaddr = (void __force *) io_mapping_map_atomic_wc(&cache->i915->ggtt.mappable, offset);
470         cache->page = page;
471         cache->vaddr = (unsigned long)vaddr;
472
473         return vaddr;
474 }
475
476 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
477                          struct reloc_cache *cache,
478                          int page)
479 {
480         void *vaddr;
481
482         if (cache->page == page) {
483                 vaddr = unmask_page(cache->vaddr);
484         } else {
485                 vaddr = NULL;
486                 if ((cache->vaddr & KMAP) == 0)
487                         vaddr = reloc_iomap(obj, cache, page);
488                 if (!vaddr)
489                         vaddr = reloc_kmap(obj, cache, page);
490         }
491
492         return vaddr;
493 }
494
495 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
496 {
497         if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
498                 if (flushes & CLFLUSH_BEFORE) {
499                         clflushopt(addr);
500                         mb();
501                 }
502
503                 *addr = value;
504
505                 /* Writes to the same cacheline are serialised by the CPU
506                  * (including clflush). On the write path, we only require
507                  * that it hits memory in an orderly fashion and place
508                  * mb barriers at the start and end of the relocation phase
509                  * to ensure ordering of clflush wrt to the system.
510                  */
511                 if (flushes & CLFLUSH_AFTER)
512                         clflushopt(addr);
513         } else
514                 *addr = value;
515 }
516
517 static int
518 relocate_entry(struct drm_i915_gem_object *obj,
519                const struct drm_i915_gem_relocation_entry *reloc,
520                struct reloc_cache *cache,
521                u64 target_offset)
522 {
523         u64 offset = reloc->offset;
524         bool wide = cache->use_64bit_reloc;
525         void *vaddr;
526
527         target_offset = relocation_target(reloc, target_offset);
528 repeat:
529         vaddr = reloc_vaddr(obj, cache, offset >> PAGE_SHIFT);
530         if (IS_ERR(vaddr))
531                 return PTR_ERR(vaddr);
532
533         clflush_write32(vaddr + offset_in_page(offset),
534                         lower_32_bits(target_offset),
535                         cache->vaddr);
536
537         if (wide) {
538                 offset += sizeof(u32);
539                 target_offset >>= 32;
540                 wide = false;
541                 goto repeat;
542         }
543
544         return 0;
545 }
546
547 static int
548 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
549                                    struct eb_vmas *eb,
550                                    struct drm_i915_gem_relocation_entry *reloc,
551                                    struct reloc_cache *cache)
552 {
553         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
554         struct drm_gem_object *target_obj;
555         struct drm_i915_gem_object *target_i915_obj;
556         struct i915_vma *target_vma;
557         uint64_t target_offset;
558         int ret;
559
560         /* we've already hold a reference to all valid objects */
561         target_vma = eb_get_vma(eb, reloc->target_handle);
562         if (unlikely(target_vma == NULL))
563                 return -ENOENT;
564         target_i915_obj = target_vma->obj;
565         target_obj = &target_vma->obj->base;
566
567         target_offset = gen8_canonical_addr(target_vma->node.start);
568
569         /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
570          * pipe_control writes because the gpu doesn't properly redirect them
571          * through the ppgtt for non_secure batchbuffers. */
572         if (unlikely(IS_GEN6(dev_priv) &&
573             reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION)) {
574                 ret = i915_vma_bind(target_vma, target_i915_obj->cache_level,
575                                     PIN_GLOBAL);
576                 if (WARN_ONCE(ret, "Unexpected failure to bind target VMA!"))
577                         return ret;
578         }
579
580         /* Validate that the target is in a valid r/w GPU domain */
581         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
582                 DRM_DEBUG("reloc with multiple write domains: "
583                           "obj %p target %d offset %d "
584                           "read %08x write %08x",
585                           obj, reloc->target_handle,
586                           (int) reloc->offset,
587                           reloc->read_domains,
588                           reloc->write_domain);
589                 return -EINVAL;
590         }
591         if (unlikely((reloc->write_domain | reloc->read_domains)
592                      & ~I915_GEM_GPU_DOMAINS)) {
593                 DRM_DEBUG("reloc with read/write non-GPU domains: "
594                           "obj %p target %d offset %d "
595                           "read %08x write %08x",
596                           obj, reloc->target_handle,
597                           (int) reloc->offset,
598                           reloc->read_domains,
599                           reloc->write_domain);
600                 return -EINVAL;
601         }
602
603         target_obj->pending_read_domains |= reloc->read_domains;
604         target_obj->pending_write_domain |= reloc->write_domain;
605
606         /* If the relocation already has the right value in it, no
607          * more work needs to be done.
608          */
609         if (target_offset == reloc->presumed_offset)
610                 return 0;
611
612         /* Check that the relocation address is valid... */
613         if (unlikely(reloc->offset >
614                      obj->base.size - (cache->use_64bit_reloc ? 8 : 4))) {
615                 DRM_DEBUG("Relocation beyond object bounds: "
616                           "obj %p target %d offset %d size %d.\n",
617                           obj, reloc->target_handle,
618                           (int) reloc->offset,
619                           (int) obj->base.size);
620                 return -EINVAL;
621         }
622         if (unlikely(reloc->offset & 3)) {
623                 DRM_DEBUG("Relocation not 4-byte aligned: "
624                           "obj %p target %d offset %d.\n",
625                           obj, reloc->target_handle,
626                           (int) reloc->offset);
627                 return -EINVAL;
628         }
629
630         ret = relocate_entry(obj, reloc, cache, target_offset);
631         if (ret)
632                 return ret;
633
634         /* and update the user's relocation entry */
635         reloc->presumed_offset = target_offset;
636         return 0;
637 }
638
639 static int
640 i915_gem_execbuffer_relocate_vma(struct i915_vma *vma,
641                                  struct eb_vmas *eb)
642 {
643 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
644         struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
645         struct drm_i915_gem_relocation_entry __user *user_relocs;
646         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
647         struct reloc_cache cache;
648         int remain, ret = 0;
649
650         user_relocs = u64_to_user_ptr(entry->relocs_ptr);
651         reloc_cache_init(&cache, eb->i915);
652
653         remain = entry->relocation_count;
654         while (remain) {
655                 struct drm_i915_gem_relocation_entry *r = stack_reloc;
656                 unsigned long unwritten;
657                 unsigned int count;
658
659                 count = min_t(unsigned int, remain, ARRAY_SIZE(stack_reloc));
660                 remain -= count;
661
662                 /* This is the fast path and we cannot handle a pagefault
663                  * whilst holding the struct mutex lest the user pass in the
664                  * relocations contained within a mmaped bo. For in such a case
665                  * we, the page fault handler would call i915_gem_fault() and
666                  * we would try to acquire the struct mutex again. Obviously
667                  * this is bad and so lockdep complains vehemently.
668                  */
669                 pagefault_disable();
670                 unwritten = __copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0]));
671                 pagefault_enable();
672                 if (unlikely(unwritten)) {
673                         ret = -EFAULT;
674                         goto out;
675                 }
676
677                 do {
678                         u64 offset = r->presumed_offset;
679
680                         ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, r, &cache);
681                         if (ret)
682                                 goto out;
683
684                         if (r->presumed_offset != offset) {
685                                 pagefault_disable();
686                                 unwritten = __put_user(r->presumed_offset,
687                                                        &user_relocs->presumed_offset);
688                                 pagefault_enable();
689                                 if (unlikely(unwritten)) {
690                                         /* Note that reporting an error now
691                                          * leaves everything in an inconsistent
692                                          * state as we have *already* changed
693                                          * the relocation value inside the
694                                          * object. As we have not changed the
695                                          * reloc.presumed_offset or will not
696                                          * change the execobject.offset, on the
697                                          * call we may not rewrite the value
698                                          * inside the object, leaving it
699                                          * dangling and causing a GPU hang.
700                                          */
701                                         ret = -EFAULT;
702                                         goto out;
703                                 }
704                         }
705
706                         user_relocs++;
707                         r++;
708                 } while (--count);
709         }
710
711 out:
712         reloc_cache_fini(&cache);
713         return ret;
714 #undef N_RELOC
715 }
716
717 static int
718 i915_gem_execbuffer_relocate_vma_slow(struct i915_vma *vma,
719                                       struct eb_vmas *eb,
720                                       struct drm_i915_gem_relocation_entry *relocs)
721 {
722         const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
723         struct reloc_cache cache;
724         int i, ret = 0;
725
726         reloc_cache_init(&cache, eb->i915);
727         for (i = 0; i < entry->relocation_count; i++) {
728                 ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, &relocs[i], &cache);
729                 if (ret)
730                         break;
731         }
732         reloc_cache_fini(&cache);
733
734         return ret;
735 }
736
737 static int
738 i915_gem_execbuffer_relocate(struct eb_vmas *eb)
739 {
740         struct i915_vma *vma;
741         int ret = 0;
742
743         list_for_each_entry(vma, &eb->vmas, exec_list) {
744                 ret = i915_gem_execbuffer_relocate_vma(vma, eb);
745                 if (ret)
746                         break;
747         }
748
749         return ret;
750 }
751
752 static bool only_mappable_for_reloc(unsigned int flags)
753 {
754         return (flags & (EXEC_OBJECT_NEEDS_FENCE | __EXEC_OBJECT_NEEDS_MAP)) ==
755                 __EXEC_OBJECT_NEEDS_MAP;
756 }
757
758 static int
759 i915_gem_execbuffer_reserve_vma(struct i915_vma *vma,
760                                 struct intel_engine_cs *engine,
761                                 bool *need_reloc)
762 {
763         struct drm_i915_gem_object *obj = vma->obj;
764         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
765         uint64_t flags;
766         int ret;
767
768         flags = PIN_USER;
769         if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
770                 flags |= PIN_GLOBAL;
771
772         if (!drm_mm_node_allocated(&vma->node)) {
773                 /* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
774                  * limit address to the first 4GBs for unflagged objects.
775                  */
776                 if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0)
777                         flags |= PIN_ZONE_4G;
778                 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
779                         flags |= PIN_GLOBAL | PIN_MAPPABLE;
780                 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS)
781                         flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
782                 if (entry->flags & EXEC_OBJECT_PINNED)
783                         flags |= entry->offset | PIN_OFFSET_FIXED;
784                 if ((flags & PIN_MAPPABLE) == 0)
785                         flags |= PIN_HIGH;
786         }
787
788         ret = i915_vma_pin(vma,
789                            entry->pad_to_size,
790                            entry->alignment,
791                            flags);
792         if ((ret == -ENOSPC || ret == -E2BIG) &&
793             only_mappable_for_reloc(entry->flags))
794                 ret = i915_vma_pin(vma,
795                                    entry->pad_to_size,
796                                    entry->alignment,
797                                    flags & ~PIN_MAPPABLE);
798         if (ret)
799                 return ret;
800
801         entry->flags |= __EXEC_OBJECT_HAS_PIN;
802
803         if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
804                 ret = i915_vma_get_fence(vma);
805                 if (ret)
806                         return ret;
807
808                 if (i915_vma_pin_fence(vma))
809                         entry->flags |= __EXEC_OBJECT_HAS_FENCE;
810         }
811
812         if (entry->offset != vma->node.start) {
813                 entry->offset = vma->node.start;
814                 *need_reloc = true;
815         }
816
817         if (entry->flags & EXEC_OBJECT_WRITE) {
818                 obj->base.pending_read_domains = I915_GEM_DOMAIN_RENDER;
819                 obj->base.pending_write_domain = I915_GEM_DOMAIN_RENDER;
820         }
821
822         return 0;
823 }
824
825 static bool
826 need_reloc_mappable(struct i915_vma *vma)
827 {
828         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
829
830         if (entry->relocation_count == 0)
831                 return false;
832
833         if (!i915_vma_is_ggtt(vma))
834                 return false;
835
836         /* See also use_cpu_reloc() */
837         if (HAS_LLC(to_i915(vma->obj->base.dev)))
838                 return false;
839
840         if (vma->obj->base.write_domain == I915_GEM_DOMAIN_CPU)
841                 return false;
842
843         return true;
844 }
845
846 static bool
847 eb_vma_misplaced(struct i915_vma *vma)
848 {
849         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
850
851         WARN_ON(entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
852                 !i915_vma_is_ggtt(vma));
853
854         if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
855                 return true;
856
857         if (vma->node.size < entry->pad_to_size)
858                 return true;
859
860         if (entry->flags & EXEC_OBJECT_PINNED &&
861             vma->node.start != entry->offset)
862                 return true;
863
864         if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
865             vma->node.start < BATCH_OFFSET_BIAS)
866                 return true;
867
868         /* avoid costly ping-pong once a batch bo ended up non-mappable */
869         if (entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
870             !i915_vma_is_map_and_fenceable(vma))
871                 return !only_mappable_for_reloc(entry->flags);
872
873         if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0 &&
874             (vma->node.start + vma->node.size - 1) >> 32)
875                 return true;
876
877         return false;
878 }
879
880 static int
881 i915_gem_execbuffer_reserve(struct intel_engine_cs *engine,
882                             struct list_head *vmas,
883                             struct i915_gem_context *ctx,
884                             bool *need_relocs)
885 {
886         struct drm_i915_gem_object *obj;
887         struct i915_vma *vma;
888         struct i915_address_space *vm;
889         struct list_head ordered_vmas;
890         struct list_head pinned_vmas;
891         bool has_fenced_gpu_access = INTEL_GEN(engine->i915) < 4;
892         int retry;
893
894         vm = list_first_entry(vmas, struct i915_vma, exec_list)->vm;
895
896         INIT_LIST_HEAD(&ordered_vmas);
897         INIT_LIST_HEAD(&pinned_vmas);
898         while (!list_empty(vmas)) {
899                 struct drm_i915_gem_exec_object2 *entry;
900                 bool need_fence, need_mappable;
901
902                 vma = list_first_entry(vmas, struct i915_vma, exec_list);
903                 obj = vma->obj;
904                 entry = vma->exec_entry;
905
906                 if (ctx->flags & CONTEXT_NO_ZEROMAP)
907                         entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
908
909                 if (!has_fenced_gpu_access)
910                         entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
911                 need_fence =
912                         entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
913                         i915_gem_object_is_tiled(obj);
914                 need_mappable = need_fence || need_reloc_mappable(vma);
915
916                 if (entry->flags & EXEC_OBJECT_PINNED)
917                         list_move_tail(&vma->exec_list, &pinned_vmas);
918                 else if (need_mappable) {
919                         entry->flags |= __EXEC_OBJECT_NEEDS_MAP;
920                         list_move(&vma->exec_list, &ordered_vmas);
921                 } else
922                         list_move_tail(&vma->exec_list, &ordered_vmas);
923
924                 obj->base.pending_read_domains = I915_GEM_GPU_DOMAINS & ~I915_GEM_DOMAIN_COMMAND;
925                 obj->base.pending_write_domain = 0;
926         }
927         list_splice(&ordered_vmas, vmas);
928         list_splice(&pinned_vmas, vmas);
929
930         /* Attempt to pin all of the buffers into the GTT.
931          * This is done in 3 phases:
932          *
933          * 1a. Unbind all objects that do not match the GTT constraints for
934          *     the execbuffer (fenceable, mappable, alignment etc).
935          * 1b. Increment pin count for already bound objects.
936          * 2.  Bind new objects.
937          * 3.  Decrement pin count.
938          *
939          * This avoid unnecessary unbinding of later objects in order to make
940          * room for the earlier objects *unless* we need to defragment.
941          */
942         retry = 0;
943         do {
944                 int ret = 0;
945
946                 /* Unbind any ill-fitting objects or pin. */
947                 list_for_each_entry(vma, vmas, exec_list) {
948                         if (!drm_mm_node_allocated(&vma->node))
949                                 continue;
950
951                         if (eb_vma_misplaced(vma))
952                                 ret = i915_vma_unbind(vma);
953                         else
954                                 ret = i915_gem_execbuffer_reserve_vma(vma,
955                                                                       engine,
956                                                                       need_relocs);
957                         if (ret)
958                                 goto err;
959                 }
960
961                 /* Bind fresh objects */
962                 list_for_each_entry(vma, vmas, exec_list) {
963                         if (drm_mm_node_allocated(&vma->node))
964                                 continue;
965
966                         ret = i915_gem_execbuffer_reserve_vma(vma, engine,
967                                                               need_relocs);
968                         if (ret)
969                                 goto err;
970                 }
971
972 err:
973                 if (ret != -ENOSPC || retry++)
974                         return ret;
975
976                 /* Decrement pin count for bound objects */
977                 list_for_each_entry(vma, vmas, exec_list)
978                         i915_gem_execbuffer_unreserve_vma(vma);
979
980                 ret = i915_gem_evict_vm(vm, true);
981                 if (ret)
982                         return ret;
983         } while (1);
984 }
985
986 static int
987 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
988                                   struct drm_i915_gem_execbuffer2 *args,
989                                   struct drm_file *file,
990                                   struct intel_engine_cs *engine,
991                                   struct eb_vmas *eb,
992                                   struct drm_i915_gem_exec_object2 *exec,
993                                   struct i915_gem_context *ctx)
994 {
995         struct drm_i915_gem_relocation_entry *reloc;
996         struct i915_address_space *vm;
997         struct i915_vma *vma;
998         bool need_relocs;
999         int *reloc_offset;
1000         int i, total, ret;
1001         unsigned count = args->buffer_count;
1002
1003         vm = list_first_entry(&eb->vmas, struct i915_vma, exec_list)->vm;
1004
1005         /* We may process another execbuffer during the unlock... */
1006         while (!list_empty(&eb->vmas)) {
1007                 vma = list_first_entry(&eb->vmas, struct i915_vma, exec_list);
1008                 list_del_init(&vma->exec_list);
1009                 i915_gem_execbuffer_unreserve_vma(vma);
1010                 i915_vma_put(vma);
1011         }
1012
1013         mutex_unlock(&dev->struct_mutex);
1014
1015         total = 0;
1016         for (i = 0; i < count; i++)
1017                 total += exec[i].relocation_count;
1018
1019         reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
1020         reloc = drm_malloc_ab(total, sizeof(*reloc));
1021         if (reloc == NULL || reloc_offset == NULL) {
1022                 drm_free_large(reloc);
1023                 drm_free_large(reloc_offset);
1024                 mutex_lock(&dev->struct_mutex);
1025                 return -ENOMEM;
1026         }
1027
1028         total = 0;
1029         for (i = 0; i < count; i++) {
1030                 struct drm_i915_gem_relocation_entry __user *user_relocs;
1031                 u64 invalid_offset = (u64)-1;
1032                 int j;
1033
1034                 user_relocs = u64_to_user_ptr(exec[i].relocs_ptr);
1035
1036                 if (copy_from_user(reloc+total, user_relocs,
1037                                    exec[i].relocation_count * sizeof(*reloc))) {
1038                         ret = -EFAULT;
1039                         mutex_lock(&dev->struct_mutex);
1040                         goto err;
1041                 }
1042
1043                 /* As we do not update the known relocation offsets after
1044                  * relocating (due to the complexities in lock handling),
1045                  * we need to mark them as invalid now so that we force the
1046                  * relocation processing next time. Just in case the target
1047                  * object is evicted and then rebound into its old
1048                  * presumed_offset before the next execbuffer - if that
1049                  * happened we would make the mistake of assuming that the
1050                  * relocations were valid.
1051                  */
1052                 for (j = 0; j < exec[i].relocation_count; j++) {
1053                         if (__copy_to_user(&user_relocs[j].presumed_offset,
1054                                            &invalid_offset,
1055                                            sizeof(invalid_offset))) {
1056                                 ret = -EFAULT;
1057                                 mutex_lock(&dev->struct_mutex);
1058                                 goto err;
1059                         }
1060                 }
1061
1062                 reloc_offset[i] = total;
1063                 total += exec[i].relocation_count;
1064         }
1065
1066         ret = i915_mutex_lock_interruptible(dev);
1067         if (ret) {
1068                 mutex_lock(&dev->struct_mutex);
1069                 goto err;
1070         }
1071
1072         /* reacquire the objects */
1073         eb_reset(eb);
1074         ret = eb_lookup_vmas(eb, exec, args, vm, file);
1075         if (ret)
1076                 goto err;
1077
1078         need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1079         ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1080                                           &need_relocs);
1081         if (ret)
1082                 goto err;
1083
1084         list_for_each_entry(vma, &eb->vmas, exec_list) {
1085                 int offset = vma->exec_entry - exec;
1086                 ret = i915_gem_execbuffer_relocate_vma_slow(vma, eb,
1087                                                             reloc + reloc_offset[offset]);
1088                 if (ret)
1089                         goto err;
1090         }
1091
1092         /* Leave the user relocations as are, this is the painfully slow path,
1093          * and we want to avoid the complication of dropping the lock whilst
1094          * having buffers reserved in the aperture and so causing spurious
1095          * ENOSPC for random operations.
1096          */
1097
1098 err:
1099         drm_free_large(reloc);
1100         drm_free_large(reloc_offset);
1101         return ret;
1102 }
1103
1104 static int
1105 i915_gem_execbuffer_move_to_gpu(struct drm_i915_gem_request *req,
1106                                 struct list_head *vmas)
1107 {
1108         struct i915_vma *vma;
1109         int ret;
1110
1111         list_for_each_entry(vma, vmas, exec_list) {
1112                 struct drm_i915_gem_object *obj = vma->obj;
1113
1114                 if (vma->exec_entry->flags & EXEC_OBJECT_ASYNC)
1115                         continue;
1116
1117                 ret = i915_gem_request_await_object
1118                         (req, obj, obj->base.pending_write_domain);
1119                 if (ret)
1120                         return ret;
1121
1122                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
1123                         i915_gem_clflush_object(obj, false);
1124         }
1125
1126         /* Unconditionally flush any chipset caches (for streaming writes). */
1127         i915_gem_chipset_flush(req->engine->i915);
1128
1129         /* Unconditionally invalidate GPU caches and TLBs. */
1130         return req->engine->emit_flush(req, EMIT_INVALIDATE);
1131 }
1132
1133 static bool
1134 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1135 {
1136         if (exec->flags & __I915_EXEC_UNKNOWN_FLAGS)
1137                 return false;
1138
1139         /* Kernel clipping was a DRI1 misfeature */
1140         if (exec->num_cliprects || exec->cliprects_ptr)
1141                 return false;
1142
1143         if (exec->DR4 == 0xffffffff) {
1144                 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1145                 exec->DR4 = 0;
1146         }
1147         if (exec->DR1 || exec->DR4)
1148                 return false;
1149
1150         if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1151                 return false;
1152
1153         return true;
1154 }
1155
1156 static int
1157 validate_exec_list(struct drm_device *dev,
1158                    struct drm_i915_gem_exec_object2 *exec,
1159                    int count)
1160 {
1161         unsigned relocs_total = 0;
1162         unsigned relocs_max = UINT_MAX / sizeof(struct drm_i915_gem_relocation_entry);
1163         unsigned invalid_flags;
1164         int i;
1165
1166         /* INTERNAL flags must not overlap with external ones */
1167         BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & ~__EXEC_OBJECT_UNKNOWN_FLAGS);
1168
1169         invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
1170         if (USES_FULL_PPGTT(dev))
1171                 invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
1172
1173         for (i = 0; i < count; i++) {
1174                 char __user *ptr = u64_to_user_ptr(exec[i].relocs_ptr);
1175                 int length; /* limited by fault_in_pages_readable() */
1176
1177                 if (exec[i].flags & invalid_flags)
1178                         return -EINVAL;
1179
1180                 /* Offset can be used as input (EXEC_OBJECT_PINNED), reject
1181                  * any non-page-aligned or non-canonical addresses.
1182                  */
1183                 if (exec[i].flags & EXEC_OBJECT_PINNED) {
1184                         if (exec[i].offset !=
1185                             gen8_canonical_addr(exec[i].offset & PAGE_MASK))
1186                                 return -EINVAL;
1187                 }
1188
1189                 /* From drm_mm perspective address space is continuous,
1190                  * so from this point we're always using non-canonical
1191                  * form internally.
1192                  */
1193                 exec[i].offset = gen8_noncanonical_addr(exec[i].offset);
1194
1195                 if (exec[i].alignment && !is_power_of_2(exec[i].alignment))
1196                         return -EINVAL;
1197
1198                 /* pad_to_size was once a reserved field, so sanitize it */
1199                 if (exec[i].flags & EXEC_OBJECT_PAD_TO_SIZE) {
1200                         if (offset_in_page(exec[i].pad_to_size))
1201                                 return -EINVAL;
1202                 } else {
1203                         exec[i].pad_to_size = 0;
1204                 }
1205
1206                 /* First check for malicious input causing overflow in
1207                  * the worst case where we need to allocate the entire
1208                  * relocation tree as a single array.
1209                  */
1210                 if (exec[i].relocation_count > relocs_max - relocs_total)
1211                         return -EINVAL;
1212                 relocs_total += exec[i].relocation_count;
1213
1214                 length = exec[i].relocation_count *
1215                         sizeof(struct drm_i915_gem_relocation_entry);
1216                 /*
1217                  * We must check that the entire relocation array is safe
1218                  * to read, but since we may need to update the presumed
1219                  * offsets during execution, check for full write access.
1220                  */
1221                 if (!access_ok(VERIFY_WRITE, ptr, length))
1222                         return -EFAULT;
1223
1224                 if (likely(!i915.prefault_disable)) {
1225                         if (fault_in_pages_readable(ptr, length))
1226                                 return -EFAULT;
1227                 }
1228         }
1229
1230         return 0;
1231 }
1232
1233 static struct i915_gem_context *
1234 i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
1235                           struct intel_engine_cs *engine, const u32 ctx_id)
1236 {
1237         struct i915_gem_context *ctx;
1238
1239         ctx = i915_gem_context_lookup(file->driver_priv, ctx_id);
1240         if (IS_ERR(ctx))
1241                 return ctx;
1242
1243         if (i915_gem_context_is_banned(ctx)) {
1244                 DRM_DEBUG("Context %u tried to submit while banned\n", ctx_id);
1245                 return ERR_PTR(-EIO);
1246         }
1247
1248         return ctx;
1249 }
1250
1251 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
1252 {
1253         return !(obj->cache_level == I915_CACHE_NONE ||
1254                  obj->cache_level == I915_CACHE_WT);
1255 }
1256
1257 void i915_vma_move_to_active(struct i915_vma *vma,
1258                              struct drm_i915_gem_request *req,
1259                              unsigned int flags)
1260 {
1261         struct drm_i915_gem_object *obj = vma->obj;
1262         const unsigned int idx = req->engine->id;
1263
1264         lockdep_assert_held(&req->i915->drm.struct_mutex);
1265         GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
1266
1267         /* Add a reference if we're newly entering the active list.
1268          * The order in which we add operations to the retirement queue is
1269          * vital here: mark_active adds to the start of the callback list,
1270          * such that subsequent callbacks are called first. Therefore we
1271          * add the active reference first and queue for it to be dropped
1272          * *last*.
1273          */
1274         if (!i915_vma_is_active(vma))
1275                 obj->active_count++;
1276         i915_vma_set_active(vma, idx);
1277         i915_gem_active_set(&vma->last_read[idx], req);
1278         list_move_tail(&vma->vm_link, &vma->vm->active_list);
1279
1280         if (flags & EXEC_OBJECT_WRITE) {
1281                 if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1282                         i915_gem_active_set(&obj->frontbuffer_write, req);
1283
1284                 /* update for the implicit flush after a batch */
1285                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1286                 if (!obj->cache_dirty && gpu_write_needs_clflush(obj))
1287                         obj->cache_dirty = true;
1288         }
1289
1290         if (flags & EXEC_OBJECT_NEEDS_FENCE)
1291                 i915_gem_active_set(&vma->last_fence, req);
1292 }
1293
1294 static void eb_export_fence(struct drm_i915_gem_object *obj,
1295                             struct drm_i915_gem_request *req,
1296                             unsigned int flags)
1297 {
1298         struct reservation_object *resv = obj->resv;
1299
1300         /* Ignore errors from failing to allocate the new fence, we can't
1301          * handle an error right now. Worst case should be missed
1302          * synchronisation leading to rendering corruption.
1303          */
1304         reservation_object_lock(resv, NULL);
1305         if (flags & EXEC_OBJECT_WRITE)
1306                 reservation_object_add_excl_fence(resv, &req->fence);
1307         else if (reservation_object_reserve_shared(resv) == 0)
1308                 reservation_object_add_shared_fence(resv, &req->fence);
1309         reservation_object_unlock(resv);
1310 }
1311
1312 static void
1313 i915_gem_execbuffer_move_to_active(struct list_head *vmas,
1314                                    struct drm_i915_gem_request *req)
1315 {
1316         struct i915_vma *vma;
1317
1318         list_for_each_entry(vma, vmas, exec_list) {
1319                 struct drm_i915_gem_object *obj = vma->obj;
1320                 u32 old_read = obj->base.read_domains;
1321                 u32 old_write = obj->base.write_domain;
1322
1323                 obj->base.write_domain = obj->base.pending_write_domain;
1324                 if (obj->base.write_domain)
1325                         vma->exec_entry->flags |= EXEC_OBJECT_WRITE;
1326                 else
1327                         obj->base.pending_read_domains |= obj->base.read_domains;
1328                 obj->base.read_domains = obj->base.pending_read_domains;
1329
1330                 i915_vma_move_to_active(vma, req, vma->exec_entry->flags);
1331                 eb_export_fence(obj, req, vma->exec_entry->flags);
1332                 trace_i915_gem_object_change_domain(obj, old_read, old_write);
1333         }
1334 }
1335
1336 static int
1337 i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1338 {
1339         u32 *cs;
1340         int i;
1341
1342         if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1343                 DRM_DEBUG("sol reset is gen7/rcs only\n");
1344                 return -EINVAL;
1345         }
1346
1347         cs = intel_ring_begin(req, 4 * 3);
1348         if (IS_ERR(cs))
1349                 return PTR_ERR(cs);
1350
1351         for (i = 0; i < 4; i++) {
1352                 *cs++ = MI_LOAD_REGISTER_IMM(1);
1353                 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1354                 *cs++ = 0;
1355         }
1356
1357         intel_ring_advance(req, cs);
1358
1359         return 0;
1360 }
1361
1362 static struct i915_vma *
1363 i915_gem_execbuffer_parse(struct intel_engine_cs *engine,
1364                           struct drm_i915_gem_exec_object2 *shadow_exec_entry,
1365                           struct drm_i915_gem_object *batch_obj,
1366                           struct eb_vmas *eb,
1367                           u32 batch_start_offset,
1368                           u32 batch_len,
1369                           bool is_master)
1370 {
1371         struct drm_i915_gem_object *shadow_batch_obj;
1372         struct i915_vma *vma;
1373         int ret;
1374
1375         shadow_batch_obj = i915_gem_batch_pool_get(&engine->batch_pool,
1376                                                    PAGE_ALIGN(batch_len));
1377         if (IS_ERR(shadow_batch_obj))
1378                 return ERR_CAST(shadow_batch_obj);
1379
1380         ret = intel_engine_cmd_parser(engine,
1381                                       batch_obj,
1382                                       shadow_batch_obj,
1383                                       batch_start_offset,
1384                                       batch_len,
1385                                       is_master);
1386         if (ret) {
1387                 if (ret == -EACCES) /* unhandled chained batch */
1388                         vma = NULL;
1389                 else
1390                         vma = ERR_PTR(ret);
1391                 goto out;
1392         }
1393
1394         vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1395         if (IS_ERR(vma))
1396                 goto out;
1397
1398         memset(shadow_exec_entry, 0, sizeof(*shadow_exec_entry));
1399
1400         vma->exec_entry = shadow_exec_entry;
1401         vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN;
1402         i915_gem_object_get(shadow_batch_obj);
1403         list_add_tail(&vma->exec_list, &eb->vmas);
1404
1405 out:
1406         i915_gem_object_unpin_pages(shadow_batch_obj);
1407         return vma;
1408 }
1409
1410 static int
1411 execbuf_submit(struct i915_execbuffer_params *params,
1412                struct drm_i915_gem_execbuffer2 *args,
1413                struct list_head *vmas)
1414 {
1415         struct drm_i915_private *dev_priv = params->request->i915;
1416         u64 exec_start, exec_len;
1417         int instp_mode;
1418         u32 instp_mask, *cs;
1419         int ret;
1420
1421         ret = i915_gem_execbuffer_move_to_gpu(params->request, vmas);
1422         if (ret)
1423                 return ret;
1424
1425         ret = i915_switch_context(params->request);
1426         if (ret)
1427                 return ret;
1428
1429         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1430         instp_mask = I915_EXEC_CONSTANTS_MASK;
1431         switch (instp_mode) {
1432         case I915_EXEC_CONSTANTS_REL_GENERAL:
1433         case I915_EXEC_CONSTANTS_ABSOLUTE:
1434         case I915_EXEC_CONSTANTS_REL_SURFACE:
1435                 if (instp_mode != 0 && params->engine->id != RCS) {
1436                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
1437                         return -EINVAL;
1438                 }
1439
1440                 if (instp_mode != dev_priv->relative_constants_mode) {
1441                         if (INTEL_INFO(dev_priv)->gen < 4) {
1442                                 DRM_DEBUG("no rel constants on pre-gen4\n");
1443                                 return -EINVAL;
1444                         }
1445
1446                         if (INTEL_INFO(dev_priv)->gen > 5 &&
1447                             instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
1448                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
1449                                 return -EINVAL;
1450                         }
1451
1452                         /* The HW changed the meaning on this bit on gen6 */
1453                         if (INTEL_INFO(dev_priv)->gen >= 6)
1454                                 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1455                 }
1456                 break;
1457         default:
1458                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
1459                 return -EINVAL;
1460         }
1461
1462         if (params->engine->id == RCS &&
1463             instp_mode != dev_priv->relative_constants_mode) {
1464                 cs = intel_ring_begin(params->request, 4);
1465                 if (IS_ERR(cs))
1466                         return PTR_ERR(cs);
1467
1468                 *cs++ = MI_NOOP;
1469                 *cs++ = MI_LOAD_REGISTER_IMM(1);
1470                 *cs++ = i915_mmio_reg_offset(INSTPM);
1471                 *cs++ = instp_mask << 16 | instp_mode;
1472                 intel_ring_advance(params->request, cs);
1473
1474                 dev_priv->relative_constants_mode = instp_mode;
1475         }
1476
1477         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1478                 ret = i915_reset_gen7_sol_offsets(params->request);
1479                 if (ret)
1480                         return ret;
1481         }
1482
1483         exec_len   = args->batch_len;
1484         exec_start = params->batch->node.start +
1485                      params->args_batch_start_offset;
1486
1487         if (exec_len == 0)
1488                 exec_len = params->batch->size - params->args_batch_start_offset;
1489
1490         ret = params->engine->emit_bb_start(params->request,
1491                                             exec_start, exec_len,
1492                                             params->dispatch_flags);
1493         if (ret)
1494                 return ret;
1495
1496         i915_gem_execbuffer_move_to_active(vmas, params->request);
1497
1498         return 0;
1499 }
1500
1501 /**
1502  * Find one BSD ring to dispatch the corresponding BSD command.
1503  * The engine index is returned.
1504  */
1505 static unsigned int
1506 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1507                          struct drm_file *file)
1508 {
1509         struct drm_i915_file_private *file_priv = file->driver_priv;
1510
1511         /* Check whether the file_priv has already selected one ring. */
1512         if ((int)file_priv->bsd_engine < 0)
1513                 file_priv->bsd_engine = atomic_fetch_xor(1,
1514                          &dev_priv->mm.bsd_engine_dispatch_index);
1515
1516         return file_priv->bsd_engine;
1517 }
1518
1519 #define I915_USER_RINGS (4)
1520
1521 static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1522         [I915_EXEC_DEFAULT]     = RCS,
1523         [I915_EXEC_RENDER]      = RCS,
1524         [I915_EXEC_BLT]         = BCS,
1525         [I915_EXEC_BSD]         = VCS,
1526         [I915_EXEC_VEBOX]       = VECS
1527 };
1528
1529 static struct intel_engine_cs *
1530 eb_select_engine(struct drm_i915_private *dev_priv,
1531                  struct drm_file *file,
1532                  struct drm_i915_gem_execbuffer2 *args)
1533 {
1534         unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
1535         struct intel_engine_cs *engine;
1536
1537         if (user_ring_id > I915_USER_RINGS) {
1538                 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
1539                 return NULL;
1540         }
1541
1542         if ((user_ring_id != I915_EXEC_BSD) &&
1543             ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
1544                 DRM_DEBUG("execbuf with non bsd ring but with invalid "
1545                           "bsd dispatch flags: %d\n", (int)(args->flags));
1546                 return NULL;
1547         }
1548
1549         if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
1550                 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
1551
1552                 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
1553                         bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
1554                 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
1555                            bsd_idx <= I915_EXEC_BSD_RING2) {
1556                         bsd_idx >>= I915_EXEC_BSD_SHIFT;
1557                         bsd_idx--;
1558                 } else {
1559                         DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
1560                                   bsd_idx);
1561                         return NULL;
1562                 }
1563
1564                 engine = dev_priv->engine[_VCS(bsd_idx)];
1565         } else {
1566                 engine = dev_priv->engine[user_ring_map[user_ring_id]];
1567         }
1568
1569         if (!engine) {
1570                 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
1571                 return NULL;
1572         }
1573
1574         return engine;
1575 }
1576
1577 static int
1578 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1579                        struct drm_file *file,
1580                        struct drm_i915_gem_execbuffer2 *args,
1581                        struct drm_i915_gem_exec_object2 *exec)
1582 {
1583         struct drm_i915_private *dev_priv = to_i915(dev);
1584         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1585         struct eb_vmas *eb;
1586         struct drm_i915_gem_exec_object2 shadow_exec_entry;
1587         struct intel_engine_cs *engine;
1588         struct i915_gem_context *ctx;
1589         struct i915_address_space *vm;
1590         struct i915_execbuffer_params params_master; /* XXX: will be removed later */
1591         struct i915_execbuffer_params *params = &params_master;
1592         const u32 ctx_id = i915_execbuffer2_get_context_id(*args);
1593         u32 dispatch_flags;
1594         struct dma_fence *in_fence = NULL;
1595         struct sync_file *out_fence = NULL;
1596         int out_fence_fd = -1;
1597         int ret;
1598         bool need_relocs;
1599
1600         if (!i915_gem_check_execbuffer(args))
1601                 return -EINVAL;
1602
1603         ret = validate_exec_list(dev, exec, args->buffer_count);
1604         if (ret)
1605                 return ret;
1606
1607         dispatch_flags = 0;
1608         if (args->flags & I915_EXEC_SECURE) {
1609                 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
1610                     return -EPERM;
1611
1612                 dispatch_flags |= I915_DISPATCH_SECURE;
1613         }
1614         if (args->flags & I915_EXEC_IS_PINNED)
1615                 dispatch_flags |= I915_DISPATCH_PINNED;
1616
1617         engine = eb_select_engine(dev_priv, file, args);
1618         if (!engine)
1619                 return -EINVAL;
1620
1621         if (args->buffer_count < 1) {
1622                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1623                 return -EINVAL;
1624         }
1625
1626         if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
1627                 if (!HAS_RESOURCE_STREAMER(dev_priv)) {
1628                         DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
1629                         return -EINVAL;
1630                 }
1631                 if (engine->id != RCS) {
1632                         DRM_DEBUG("RS is not available on %s\n",
1633                                  engine->name);
1634                         return -EINVAL;
1635                 }
1636
1637                 dispatch_flags |= I915_DISPATCH_RS;
1638         }
1639
1640         if (args->flags & I915_EXEC_FENCE_IN) {
1641                 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
1642                 if (!in_fence)
1643                         return -EINVAL;
1644         }
1645
1646         if (args->flags & I915_EXEC_FENCE_OUT) {
1647                 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
1648                 if (out_fence_fd < 0) {
1649                         ret = out_fence_fd;
1650                         goto err_in_fence;
1651                 }
1652         }
1653
1654         /* Take a local wakeref for preparing to dispatch the execbuf as
1655          * we expect to access the hardware fairly frequently in the
1656          * process. Upon first dispatch, we acquire another prolonged
1657          * wakeref that we hold until the GPU has been idle for at least
1658          * 100ms.
1659          */
1660         intel_runtime_pm_get(dev_priv);
1661
1662         ret = i915_mutex_lock_interruptible(dev);
1663         if (ret)
1664                 goto pre_mutex_err;
1665
1666         ctx = i915_gem_validate_context(dev, file, engine, ctx_id);
1667         if (IS_ERR(ctx)) {
1668                 mutex_unlock(&dev->struct_mutex);
1669                 ret = PTR_ERR(ctx);
1670                 goto pre_mutex_err;
1671         }
1672
1673         i915_gem_context_get(ctx);
1674
1675         if (ctx->ppgtt)
1676                 vm = &ctx->ppgtt->base;
1677         else
1678                 vm = &ggtt->base;
1679
1680         memset(&params_master, 0x00, sizeof(params_master));
1681
1682         eb = eb_create(dev_priv, args);
1683         if (eb == NULL) {
1684                 i915_gem_context_put(ctx);
1685                 mutex_unlock(&dev->struct_mutex);
1686                 ret = -ENOMEM;
1687                 goto pre_mutex_err;
1688         }
1689
1690         /* Look up object handles */
1691         ret = eb_lookup_vmas(eb, exec, args, vm, file);
1692         if (ret)
1693                 goto err;
1694
1695         /* take note of the batch buffer before we might reorder the lists */
1696         params->batch = eb_get_batch(eb);
1697
1698         /* Move the objects en-masse into the GTT, evicting if necessary. */
1699         need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1700         ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1701                                           &need_relocs);
1702         if (ret)
1703                 goto err;
1704
1705         /* The objects are in their final locations, apply the relocations. */
1706         if (need_relocs)
1707                 ret = i915_gem_execbuffer_relocate(eb);
1708         if (ret) {
1709                 if (ret == -EFAULT) {
1710                         ret = i915_gem_execbuffer_relocate_slow(dev, args, file,
1711                                                                 engine,
1712                                                                 eb, exec, ctx);
1713                         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1714                 }
1715                 if (ret)
1716                         goto err;
1717         }
1718
1719         /* Set the pending read domains for the batch buffer to COMMAND */
1720         if (params->batch->obj->base.pending_write_domain) {
1721                 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1722                 ret = -EINVAL;
1723                 goto err;
1724         }
1725         if (args->batch_start_offset > params->batch->size ||
1726             args->batch_len > params->batch->size - args->batch_start_offset) {
1727                 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
1728                 ret = -EINVAL;
1729                 goto err;
1730         }
1731
1732         params->args_batch_start_offset = args->batch_start_offset;
1733         if (engine->needs_cmd_parser && args->batch_len) {
1734                 struct i915_vma *vma;
1735
1736                 vma = i915_gem_execbuffer_parse(engine, &shadow_exec_entry,
1737                                                 params->batch->obj,
1738                                                 eb,
1739                                                 args->batch_start_offset,
1740                                                 args->batch_len,
1741                                                 drm_is_current_master(file));
1742                 if (IS_ERR(vma)) {
1743                         ret = PTR_ERR(vma);
1744                         goto err;
1745                 }
1746
1747                 if (vma) {
1748                         /*
1749                          * Batch parsed and accepted:
1750                          *
1751                          * Set the DISPATCH_SECURE bit to remove the NON_SECURE
1752                          * bit from MI_BATCH_BUFFER_START commands issued in
1753                          * the dispatch_execbuffer implementations. We
1754                          * specifically don't want that set on batches the
1755                          * command parser has accepted.
1756                          */
1757                         dispatch_flags |= I915_DISPATCH_SECURE;
1758                         params->args_batch_start_offset = 0;
1759                         params->batch = vma;
1760                 }
1761         }
1762
1763         params->batch->obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1764
1765         /* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
1766          * batch" bit. Hence we need to pin secure batches into the global gtt.
1767          * hsw should have this fixed, but bdw mucks it up again. */
1768         if (dispatch_flags & I915_DISPATCH_SECURE) {
1769                 struct drm_i915_gem_object *obj = params->batch->obj;
1770                 struct i915_vma *vma;
1771
1772                 /*
1773                  * So on first glance it looks freaky that we pin the batch here
1774                  * outside of the reservation loop. But:
1775                  * - The batch is already pinned into the relevant ppgtt, so we
1776                  *   already have the backing storage fully allocated.
1777                  * - No other BO uses the global gtt (well contexts, but meh),
1778                  *   so we don't really have issues with multiple objects not
1779                  *   fitting due to fragmentation.
1780                  * So this is actually safe.
1781                  */
1782                 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
1783                 if (IS_ERR(vma)) {
1784                         ret = PTR_ERR(vma);
1785                         goto err;
1786                 }
1787
1788                 params->batch = vma;
1789         }
1790
1791         /* Allocate a request for this batch buffer nice and early. */
1792         params->request = i915_gem_request_alloc(engine, ctx);
1793         if (IS_ERR(params->request)) {
1794                 ret = PTR_ERR(params->request);
1795                 goto err_batch_unpin;
1796         }
1797
1798         if (in_fence) {
1799                 ret = i915_gem_request_await_dma_fence(params->request,
1800                                                        in_fence);
1801                 if (ret < 0)
1802                         goto err_request;
1803         }
1804
1805         if (out_fence_fd != -1) {
1806                 out_fence = sync_file_create(&params->request->fence);
1807                 if (!out_fence) {
1808                         ret = -ENOMEM;
1809                         goto err_request;
1810                 }
1811         }
1812
1813         /* Whilst this request exists, batch_obj will be on the
1814          * active_list, and so will hold the active reference. Only when this
1815          * request is retired will the the batch_obj be moved onto the
1816          * inactive_list and lose its active reference. Hence we do not need
1817          * to explicitly hold another reference here.
1818          */
1819         params->request->batch = params->batch;
1820
1821         ret = i915_gem_request_add_to_client(params->request, file);
1822         if (ret)
1823                 goto err_request;
1824
1825         /*
1826          * Save assorted stuff away to pass through to *_submission().
1827          * NB: This data should be 'persistent' and not local as it will
1828          * kept around beyond the duration of the IOCTL once the GPU
1829          * scheduler arrives.
1830          */
1831         params->dev                     = dev;
1832         params->file                    = file;
1833         params->engine                    = engine;
1834         params->dispatch_flags          = dispatch_flags;
1835         params->ctx                     = ctx;
1836
1837         trace_i915_gem_request_queue(params->request, dispatch_flags);
1838
1839         ret = execbuf_submit(params, args, &eb->vmas);
1840 err_request:
1841         __i915_add_request(params->request, ret == 0);
1842         if (out_fence) {
1843                 if (ret == 0) {
1844                         fd_install(out_fence_fd, out_fence->file);
1845                         args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
1846                         args->rsvd2 |= (u64)out_fence_fd << 32;
1847                         out_fence_fd = -1;
1848                 } else {
1849                         fput(out_fence->file);
1850                 }
1851         }
1852
1853 err_batch_unpin:
1854         /*
1855          * FIXME: We crucially rely upon the active tracking for the (ppgtt)
1856          * batch vma for correctness. For less ugly and less fragility this
1857          * needs to be adjusted to also track the ggtt batch vma properly as
1858          * active.
1859          */
1860         if (dispatch_flags & I915_DISPATCH_SECURE)
1861                 i915_vma_unpin(params->batch);
1862 err:
1863         /* the request owns the ref now */
1864         i915_gem_context_put(ctx);
1865         eb_destroy(eb);
1866
1867         mutex_unlock(&dev->struct_mutex);
1868
1869 pre_mutex_err:
1870         /* intel_gpu_busy should also get a ref, so it will free when the device
1871          * is really idle. */
1872         intel_runtime_pm_put(dev_priv);
1873         if (out_fence_fd != -1)
1874                 put_unused_fd(out_fence_fd);
1875 err_in_fence:
1876         dma_fence_put(in_fence);
1877         return ret;
1878 }
1879
1880 /*
1881  * Legacy execbuffer just creates an exec2 list from the original exec object
1882  * list array and passes it to the real function.
1883  */
1884 int
1885 i915_gem_execbuffer(struct drm_device *dev, void *data,
1886                     struct drm_file *file)
1887 {
1888         struct drm_i915_gem_execbuffer *args = data;
1889         struct drm_i915_gem_execbuffer2 exec2;
1890         struct drm_i915_gem_exec_object *exec_list = NULL;
1891         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1892         int ret, i;
1893
1894         if (args->buffer_count < 1) {
1895                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1896                 return -EINVAL;
1897         }
1898
1899         /* Copy in the exec list from userland */
1900         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1901         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1902         if (exec_list == NULL || exec2_list == NULL) {
1903                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1904                           args->buffer_count);
1905                 drm_free_large(exec_list);
1906                 drm_free_large(exec2_list);
1907                 return -ENOMEM;
1908         }
1909         ret = copy_from_user(exec_list,
1910                              u64_to_user_ptr(args->buffers_ptr),
1911                              sizeof(*exec_list) * args->buffer_count);
1912         if (ret != 0) {
1913                 DRM_DEBUG("copy %d exec entries failed %d\n",
1914                           args->buffer_count, ret);
1915                 drm_free_large(exec_list);
1916                 drm_free_large(exec2_list);
1917                 return -EFAULT;
1918         }
1919
1920         for (i = 0; i < args->buffer_count; i++) {
1921                 exec2_list[i].handle = exec_list[i].handle;
1922                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1923                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1924                 exec2_list[i].alignment = exec_list[i].alignment;
1925                 exec2_list[i].offset = exec_list[i].offset;
1926                 if (INTEL_GEN(to_i915(dev)) < 4)
1927                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1928                 else
1929                         exec2_list[i].flags = 0;
1930         }
1931
1932         exec2.buffers_ptr = args->buffers_ptr;
1933         exec2.buffer_count = args->buffer_count;
1934         exec2.batch_start_offset = args->batch_start_offset;
1935         exec2.batch_len = args->batch_len;
1936         exec2.DR1 = args->DR1;
1937         exec2.DR4 = args->DR4;
1938         exec2.num_cliprects = args->num_cliprects;
1939         exec2.cliprects_ptr = args->cliprects_ptr;
1940         exec2.flags = I915_EXEC_RENDER;
1941         i915_execbuffer2_set_context_id(exec2, 0);
1942
1943         ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1944         if (!ret) {
1945                 struct drm_i915_gem_exec_object __user *user_exec_list =
1946                         u64_to_user_ptr(args->buffers_ptr);
1947
1948                 /* Copy the new buffer offsets back to the user's exec list. */
1949                 for (i = 0; i < args->buffer_count; i++) {
1950                         exec2_list[i].offset =
1951                                 gen8_canonical_addr(exec2_list[i].offset);
1952                         ret = __copy_to_user(&user_exec_list[i].offset,
1953                                              &exec2_list[i].offset,
1954                                              sizeof(user_exec_list[i].offset));
1955                         if (ret) {
1956                                 ret = -EFAULT;
1957                                 DRM_DEBUG("failed to copy %d exec entries "
1958                                           "back to user (%d)\n",
1959                                           args->buffer_count, ret);
1960                                 break;
1961                         }
1962                 }
1963         }
1964
1965         drm_free_large(exec_list);
1966         drm_free_large(exec2_list);
1967         return ret;
1968 }
1969
1970 int
1971 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1972                      struct drm_file *file)
1973 {
1974         struct drm_i915_gem_execbuffer2 *args = data;
1975         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1976         int ret;
1977
1978         if (args->buffer_count < 1 ||
1979             args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1980                 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1981                 return -EINVAL;
1982         }
1983
1984         exec2_list = drm_malloc_gfp(args->buffer_count,
1985                                     sizeof(*exec2_list),
1986                                     GFP_TEMPORARY);
1987         if (exec2_list == NULL) {
1988                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1989                           args->buffer_count);
1990                 return -ENOMEM;
1991         }
1992         ret = copy_from_user(exec2_list,
1993                              u64_to_user_ptr(args->buffers_ptr),
1994                              sizeof(*exec2_list) * args->buffer_count);
1995         if (ret != 0) {
1996                 DRM_DEBUG("copy %d exec entries failed %d\n",
1997                           args->buffer_count, ret);
1998                 drm_free_large(exec2_list);
1999                 return -EFAULT;
2000         }
2001
2002         ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
2003         if (!ret) {
2004                 /* Copy the new buffer offsets back to the user's exec list. */
2005                 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2006                                    u64_to_user_ptr(args->buffers_ptr);
2007                 int i;
2008
2009                 for (i = 0; i < args->buffer_count; i++) {
2010                         exec2_list[i].offset =
2011                                 gen8_canonical_addr(exec2_list[i].offset);
2012                         ret = __copy_to_user(&user_exec_list[i].offset,
2013                                              &exec2_list[i].offset,
2014                                              sizeof(user_exec_list[i].offset));
2015                         if (ret) {
2016                                 ret = -EFAULT;
2017                                 DRM_DEBUG("failed to copy %d exec entries "
2018                                           "back to user\n",
2019                                           args->buffer_count);
2020                                 break;
2021                         }
2022                 }
2023         }
2024
2025         drm_free_large(exec2_list);
2026         return ret;
2027 }