]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/i915_gem_fence_reg.c
Merge tag 'for-5.5-rc8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
[linux.git] / drivers / gpu / drm / i915 / i915_gem_fence_reg.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <drm/i915_drm.h>
25
26 #include "i915_drv.h"
27 #include "i915_scatterlist.h"
28 #include "i915_vgpu.h"
29
30 /**
31  * DOC: fence register handling
32  *
33  * Important to avoid confusions: "fences" in the i915 driver are not execution
34  * fences used to track command completion but hardware detiler objects which
35  * wrap a given range of the global GTT. Each platform has only a fairly limited
36  * set of these objects.
37  *
38  * Fences are used to detile GTT memory mappings. They're also connected to the
39  * hardware frontbuffer render tracking and hence interact with frontbuffer
40  * compression. Furthermore on older platforms fences are required for tiled
41  * objects used by the display engine. They can also be used by the render
42  * engine - they're required for blitter commands and are optional for render
43  * commands. But on gen4+ both display (with the exception of fbc) and rendering
44  * have their own tiling state bits and don't need fences.
45  *
46  * Also note that fences only support X and Y tiling and hence can't be used for
47  * the fancier new tiling formats like W, Ys and Yf.
48  *
49  * Finally note that because fences are such a restricted resource they're
50  * dynamically associated with objects. Furthermore fence state is committed to
51  * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
52  * explicitly call i915_gem_object_get_fence() to synchronize fencing status
53  * for cpu access. Also note that some code wants an unfenced view, for those
54  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
55  *
56  * Internally these functions will synchronize with userspace access by removing
57  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
58  */
59
60 #define pipelined 0
61
62 static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence)
63 {
64         return fence->ggtt->vm.i915;
65 }
66
67 static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence)
68 {
69         return fence->ggtt->vm.gt->uncore;
70 }
71
72 static void i965_write_fence_reg(struct i915_fence_reg *fence,
73                                  struct i915_vma *vma)
74 {
75         i915_reg_t fence_reg_lo, fence_reg_hi;
76         int fence_pitch_shift;
77         u64 val;
78
79         if (INTEL_GEN(fence_to_i915(fence)) >= 6) {
80                 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
81                 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
82                 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
83
84         } else {
85                 fence_reg_lo = FENCE_REG_965_LO(fence->id);
86                 fence_reg_hi = FENCE_REG_965_HI(fence->id);
87                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
88         }
89
90         val = 0;
91         if (vma) {
92                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
93
94                 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
95                 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, I965_FENCE_PAGE));
96                 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I965_FENCE_PAGE));
97                 GEM_BUG_ON(!IS_ALIGNED(stride, 128));
98
99                 val = (vma->node.start + vma->fence_size - I965_FENCE_PAGE) << 32;
100                 val |= vma->node.start;
101                 val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
102                 if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
103                         val |= BIT(I965_FENCE_TILING_Y_SHIFT);
104                 val |= I965_FENCE_REG_VALID;
105         }
106
107         if (!pipelined) {
108                 struct intel_uncore *uncore = fence_to_uncore(fence);
109
110                 /*
111                  * To w/a incoherency with non-atomic 64-bit register updates,
112                  * we split the 64-bit update into two 32-bit writes. In order
113                  * for a partial fence not to be evaluated between writes, we
114                  * precede the update with write to turn off the fence register,
115                  * and only enable the fence as the last step.
116                  *
117                  * For extra levels of paranoia, we make sure each step lands
118                  * before applying the next step.
119                  */
120                 intel_uncore_write_fw(uncore, fence_reg_lo, 0);
121                 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
122
123                 intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val));
124                 intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val));
125                 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
126         }
127 }
128
129 static void i915_write_fence_reg(struct i915_fence_reg *fence,
130                                  struct i915_vma *vma)
131 {
132         u32 val;
133
134         val = 0;
135         if (vma) {
136                 unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
137                 bool is_y_tiled = tiling == I915_TILING_Y;
138                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
139
140                 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
141                 GEM_BUG_ON(vma->node.start & ~I915_FENCE_START_MASK);
142                 GEM_BUG_ON(!is_power_of_2(vma->fence_size));
143                 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
144
145                 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence)))
146                         stride /= 128;
147                 else
148                         stride /= 512;
149                 GEM_BUG_ON(!is_power_of_2(stride));
150
151                 val = vma->node.start;
152                 if (is_y_tiled)
153                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
154                 val |= I915_FENCE_SIZE_BITS(vma->fence_size);
155                 val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
156
157                 val |= I830_FENCE_REG_VALID;
158         }
159
160         if (!pipelined) {
161                 struct intel_uncore *uncore = fence_to_uncore(fence);
162                 i915_reg_t reg = FENCE_REG(fence->id);
163
164                 intel_uncore_write_fw(uncore, reg, val);
165                 intel_uncore_posting_read_fw(uncore, reg);
166         }
167 }
168
169 static void i830_write_fence_reg(struct i915_fence_reg *fence,
170                                  struct i915_vma *vma)
171 {
172         u32 val;
173
174         val = 0;
175         if (vma) {
176                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
177
178                 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
179                 GEM_BUG_ON(vma->node.start & ~I830_FENCE_START_MASK);
180                 GEM_BUG_ON(!is_power_of_2(vma->fence_size));
181                 GEM_BUG_ON(!is_power_of_2(stride / 128));
182                 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
183
184                 val = vma->node.start;
185                 if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
186                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
187                 val |= I830_FENCE_SIZE_BITS(vma->fence_size);
188                 val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
189                 val |= I830_FENCE_REG_VALID;
190         }
191
192         if (!pipelined) {
193                 struct intel_uncore *uncore = fence_to_uncore(fence);
194                 i915_reg_t reg = FENCE_REG(fence->id);
195
196                 intel_uncore_write_fw(uncore, reg, val);
197                 intel_uncore_posting_read_fw(uncore, reg);
198         }
199 }
200
201 static void fence_write(struct i915_fence_reg *fence,
202                         struct i915_vma *vma)
203 {
204         struct drm_i915_private *i915 = fence_to_i915(fence);
205
206         /*
207          * Previous access through the fence register is marshalled by
208          * the mb() inside the fault handlers (i915_gem_release_mmaps)
209          * and explicitly managed for internal users.
210          */
211
212         if (IS_GEN(i915, 2))
213                 i830_write_fence_reg(fence, vma);
214         else if (IS_GEN(i915, 3))
215                 i915_write_fence_reg(fence, vma);
216         else
217                 i965_write_fence_reg(fence, vma);
218
219         /*
220          * Access through the fenced region afterwards is
221          * ordered by the posting reads whilst writing the registers.
222          */
223
224         fence->dirty = false;
225 }
226
227 static int fence_update(struct i915_fence_reg *fence,
228                         struct i915_vma *vma)
229 {
230         struct i915_ggtt *ggtt = fence->ggtt;
231         struct intel_uncore *uncore = fence_to_uncore(fence);
232         intel_wakeref_t wakeref;
233         struct i915_vma *old;
234         int ret;
235
236         if (vma) {
237                 if (!i915_vma_is_map_and_fenceable(vma))
238                         return -EINVAL;
239
240                 if (WARN(!i915_gem_object_get_stride(vma->obj) ||
241                          !i915_gem_object_get_tiling(vma->obj),
242                          "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
243                          i915_gem_object_get_stride(vma->obj),
244                          i915_gem_object_get_tiling(vma->obj)))
245                         return -EINVAL;
246
247                 ret = i915_vma_sync(vma);
248                 if (ret)
249                         return ret;
250         }
251
252         old = xchg(&fence->vma, NULL);
253         if (old) {
254                 /* XXX Ideally we would move the waiting to outside the mutex */
255                 ret = i915_vma_sync(old);
256                 if (ret) {
257                         fence->vma = old;
258                         return ret;
259                 }
260
261                 i915_vma_flush_writes(old);
262
263                 /*
264                  * Ensure that all userspace CPU access is completed before
265                  * stealing the fence.
266                  */
267                 if (old != vma) {
268                         GEM_BUG_ON(old->fence != fence);
269                         i915_vma_revoke_mmap(old);
270                         old->fence = NULL;
271                 }
272
273                 list_move(&fence->link, &ggtt->fence_list);
274         }
275
276         /*
277          * We only need to update the register itself if the device is awake.
278          * If the device is currently powered down, we will defer the write
279          * to the runtime resume, see i915_gem_restore_fences().
280          *
281          * This only works for removing the fence register, on acquisition
282          * the caller must hold the rpm wakeref. The fence register must
283          * be cleared before we can use any other fences to ensure that
284          * the new fences do not overlap the elided clears, confusing HW.
285          */
286         wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm);
287         if (!wakeref) {
288                 GEM_BUG_ON(vma);
289                 return 0;
290         }
291
292         WRITE_ONCE(fence->vma, vma);
293         fence_write(fence, vma);
294
295         if (vma) {
296                 vma->fence = fence;
297                 list_move_tail(&fence->link, &ggtt->fence_list);
298         }
299
300         intel_runtime_pm_put(uncore->rpm, wakeref);
301         return 0;
302 }
303
304 /**
305  * i915_vma_revoke_fence - force-remove fence for a VMA
306  * @vma: vma to map linearly (not through a fence reg)
307  *
308  * This function force-removes any fence from the given object, which is useful
309  * if the kernel wants to do untiled GTT access.
310  *
311  * Returns:
312  *
313  * 0 on success, negative error code on failure.
314  */
315 int i915_vma_revoke_fence(struct i915_vma *vma)
316 {
317         struct i915_fence_reg *fence = vma->fence;
318
319         lockdep_assert_held(&vma->vm->mutex);
320         if (!fence)
321                 return 0;
322
323         if (atomic_read(&fence->pin_count))
324                 return -EBUSY;
325
326         return fence_update(fence, NULL);
327 }
328
329 static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt)
330 {
331         struct i915_fence_reg *fence;
332
333         list_for_each_entry(fence, &ggtt->fence_list, link) {
334                 GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
335
336                 if (atomic_read(&fence->pin_count))
337                         continue;
338
339                 return fence;
340         }
341
342         /* Wait for completion of pending flips which consume fences */
343         if (intel_has_pending_fb_unpin(ggtt->vm.i915))
344                 return ERR_PTR(-EAGAIN);
345
346         return ERR_PTR(-EDEADLK);
347 }
348
349 int __i915_vma_pin_fence(struct i915_vma *vma)
350 {
351         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
352         struct i915_fence_reg *fence;
353         struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
354         int err;
355
356         lockdep_assert_held(&vma->vm->mutex);
357
358         /* Just update our place in the LRU if our fence is getting reused. */
359         if (vma->fence) {
360                 fence = vma->fence;
361                 GEM_BUG_ON(fence->vma != vma);
362                 atomic_inc(&fence->pin_count);
363                 if (!fence->dirty) {
364                         list_move_tail(&fence->link, &ggtt->fence_list);
365                         return 0;
366                 }
367         } else if (set) {
368                 fence = fence_find(ggtt);
369                 if (IS_ERR(fence))
370                         return PTR_ERR(fence);
371
372                 GEM_BUG_ON(atomic_read(&fence->pin_count));
373                 atomic_inc(&fence->pin_count);
374         } else {
375                 return 0;
376         }
377
378         err = fence_update(fence, set);
379         if (err)
380                 goto out_unpin;
381
382         GEM_BUG_ON(fence->vma != set);
383         GEM_BUG_ON(vma->fence != (set ? fence : NULL));
384
385         if (set)
386                 return 0;
387
388 out_unpin:
389         atomic_dec(&fence->pin_count);
390         return err;
391 }
392
393 /**
394  * i915_vma_pin_fence - set up fencing for a vma
395  * @vma: vma to map through a fence reg
396  *
397  * When mapping objects through the GTT, userspace wants to be able to write
398  * to them without having to worry about swizzling if the object is tiled.
399  * This function walks the fence regs looking for a free one for @obj,
400  * stealing one if it can't find any.
401  *
402  * It then sets up the reg based on the object's properties: address, pitch
403  * and tiling format.
404  *
405  * For an untiled surface, this removes any existing fence.
406  *
407  * Returns:
408  *
409  * 0 on success, negative error code on failure.
410  */
411 int i915_vma_pin_fence(struct i915_vma *vma)
412 {
413         int err;
414
415         /*
416          * Note that we revoke fences on runtime suspend. Therefore the user
417          * must keep the device awake whilst using the fence.
418          */
419         assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm);
420         GEM_BUG_ON(!i915_vma_is_pinned(vma));
421         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
422
423         err = mutex_lock_interruptible(&vma->vm->mutex);
424         if (err)
425                 return err;
426
427         err = __i915_vma_pin_fence(vma);
428         mutex_unlock(&vma->vm->mutex);
429
430         return err;
431 }
432
433 /**
434  * i915_reserve_fence - Reserve a fence for vGPU
435  * @ggtt: Global GTT
436  *
437  * This function walks the fence regs looking for a free one and remove
438  * it from the fence_list. It is used to reserve fence for vGPU to use.
439  */
440 struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt)
441 {
442         struct i915_fence_reg *fence;
443         int count;
444         int ret;
445
446         lockdep_assert_held(&ggtt->vm.mutex);
447
448         /* Keep at least one fence available for the display engine. */
449         count = 0;
450         list_for_each_entry(fence, &ggtt->fence_list, link)
451                 count += !atomic_read(&fence->pin_count);
452         if (count <= 1)
453                 return ERR_PTR(-ENOSPC);
454
455         fence = fence_find(ggtt);
456         if (IS_ERR(fence))
457                 return fence;
458
459         if (fence->vma) {
460                 /* Force-remove fence from VMA */
461                 ret = fence_update(fence, NULL);
462                 if (ret)
463                         return ERR_PTR(ret);
464         }
465
466         list_del(&fence->link);
467
468         return fence;
469 }
470
471 /**
472  * i915_unreserve_fence - Reclaim a reserved fence
473  * @fence: the fence reg
474  *
475  * This function add a reserved fence register from vGPU to the fence_list.
476  */
477 void i915_unreserve_fence(struct i915_fence_reg *fence)
478 {
479         struct i915_ggtt *ggtt = fence->ggtt;
480
481         lockdep_assert_held(&ggtt->vm.mutex);
482
483         list_add(&fence->link, &ggtt->fence_list);
484 }
485
486 /**
487  * i915_gem_restore_fences - restore fence state
488  * @ggtt: Global GTT
489  *
490  * Restore the hw fence state to match the software tracking again, to be called
491  * after a gpu reset and on resume. Note that on runtime suspend we only cancel
492  * the fences, to be reacquired by the user later.
493  */
494 void i915_gem_restore_fences(struct i915_ggtt *ggtt)
495 {
496         int i;
497
498         rcu_read_lock(); /* keep obj alive as we dereference */
499         for (i = 0; i < ggtt->num_fences; i++) {
500                 struct i915_fence_reg *reg = &ggtt->fence_regs[i];
501                 struct i915_vma *vma = READ_ONCE(reg->vma);
502
503                 GEM_BUG_ON(vma && vma->fence != reg);
504
505                 /*
506                  * Commit delayed tiling changes if we have an object still
507                  * attached to the fence, otherwise just clear the fence.
508                  */
509                 if (vma && !i915_gem_object_is_tiled(vma->obj))
510                         vma = NULL;
511
512                 fence_write(reg, vma);
513         }
514         rcu_read_unlock();
515 }
516
517 /**
518  * DOC: tiling swizzling details
519  *
520  * The idea behind tiling is to increase cache hit rates by rearranging
521  * pixel data so that a group of pixel accesses are in the same cacheline.
522  * Performance improvement from doing this on the back/depth buffer are on
523  * the order of 30%.
524  *
525  * Intel architectures make this somewhat more complicated, though, by
526  * adjustments made to addressing of data when the memory is in interleaved
527  * mode (matched pairs of DIMMS) to improve memory bandwidth.
528  * For interleaved memory, the CPU sends every sequential 64 bytes
529  * to an alternate memory channel so it can get the bandwidth from both.
530  *
531  * The GPU also rearranges its accesses for increased bandwidth to interleaved
532  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
533  * it does it a little differently, since one walks addresses not just in the
534  * X direction but also Y.  So, along with alternating channels when bit
535  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
536  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
537  * are common to both the 915 and 965-class hardware.
538  *
539  * The CPU also sometimes XORs in higher bits as well, to improve
540  * bandwidth doing strided access like we do so frequently in graphics.  This
541  * is called "Channel XOR Randomization" in the MCH documentation.  The result
542  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
543  * decode.
544  *
545  * All of this bit 6 XORing has an effect on our memory management,
546  * as we need to make sure that the 3d driver can correctly address object
547  * contents.
548  *
549  * If we don't have interleaved memory, all tiling is safe and no swizzling is
550  * required.
551  *
552  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
553  * 17 is not just a page offset, so as we page an object out and back in,
554  * individual pages in it will have different bit 17 addresses, resulting in
555  * each 64 bytes being swapped with its neighbor!
556  *
557  * Otherwise, if interleaved, we have to tell the 3d driver what the address
558  * swizzling it needs to do is, since it's writing with the CPU to the pages
559  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
560  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
561  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
562  * to match what the GPU expects.
563  */
564
565 /**
566  * detect_bit_6_swizzle - detect bit 6 swizzling pattern
567  * @ggtt: Global GGTT
568  *
569  * Detects bit 6 swizzling of address lookup between IGD access and CPU
570  * access through main memory.
571  */
572 static void detect_bit_6_swizzle(struct i915_ggtt *ggtt)
573 {
574         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
575         struct drm_i915_private *i915 = ggtt->vm.i915;
576         u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
577         u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
578
579         if (INTEL_GEN(i915) >= 8 || IS_VALLEYVIEW(i915)) {
580                 /*
581                  * On BDW+, swizzling is not used. We leave the CPU memory
582                  * controller in charge of optimizing memory accesses without
583                  * the extra address manipulation GPU side.
584                  *
585                  * VLV and CHV don't have GPU swizzling.
586                  */
587                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
588                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
589         } else if (INTEL_GEN(i915) >= 6) {
590                 if (i915->preserve_bios_swizzle) {
591                         if (intel_uncore_read(uncore, DISP_ARB_CTL) &
592                             DISP_TILE_SURFACE_SWIZZLING) {
593                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
594                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
595                         } else {
596                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
597                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
598                         }
599                 } else {
600                         u32 dimm_c0, dimm_c1;
601                         dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0);
602                         dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1);
603                         dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
604                         dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
605                         /*
606                          * Enable swizzling when the channels are populated
607                          * with identically sized dimms. We don't need to check
608                          * the 3rd channel because no cpu with gpu attached
609                          * ships in that configuration. Also, swizzling only
610                          * makes sense for 2 channels anyway.
611                          */
612                         if (dimm_c0 == dimm_c1) {
613                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
614                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
615                         } else {
616                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
617                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
618                         }
619                 }
620         } else if (IS_GEN(i915, 5)) {
621                 /*
622                  * On Ironlake whatever DRAM config, GPU always do
623                  * same swizzling setup.
624                  */
625                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
626                 swizzle_y = I915_BIT_6_SWIZZLE_9;
627         } else if (IS_GEN(i915, 2)) {
628                 /*
629                  * As far as we know, the 865 doesn't have these bit 6
630                  * swizzling issues.
631                  */
632                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
633                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
634         } else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) {
635                 /*
636                  * The 965, G33, and newer, have a very flexible memory
637                  * configuration.  It will enable dual-channel mode
638                  * (interleaving) on as much memory as it can, and the GPU
639                  * will additionally sometimes enable different bit 6
640                  * swizzling for tiled objects from the CPU.
641                  *
642                  * Here's what I found on the G965:
643                  *    slot fill         memory size  swizzling
644                  * 0A   0B   1A   1B    1-ch   2-ch
645                  * 512  0    0    0     512    0     O
646                  * 512  0    512  0     16     1008  X
647                  * 512  0    0    512   16     1008  X
648                  * 0    512  0    512   16     1008  X
649                  * 1024 1024 1024 0     2048   1024  O
650                  *
651                  * We could probably detect this based on either the DRB
652                  * matching, which was the case for the swizzling required in
653                  * the table above, or from the 1-ch value being less than
654                  * the minimum size of a rank.
655                  *
656                  * Reports indicate that the swizzling actually
657                  * varies depending upon page placement inside the
658                  * channels, i.e. we see swizzled pages where the
659                  * banks of memory are paired and unswizzled on the
660                  * uneven portion, so leave that as unknown.
661                  */
662                 if (intel_uncore_read(uncore, C0DRB3) ==
663                     intel_uncore_read(uncore, C1DRB3)) {
664                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
665                         swizzle_y = I915_BIT_6_SWIZZLE_9;
666                 }
667         } else {
668                 u32 dcc = intel_uncore_read(uncore, DCC);
669
670                 /*
671                  * On 9xx chipsets, channel interleave by the CPU is
672                  * determined by DCC.  For single-channel, neither the CPU
673                  * nor the GPU do swizzling.  For dual channel interleaved,
674                  * the GPU's interleave is bit 9 and 10 for X tiled, and bit
675                  * 9 for Y tiled.  The CPU's interleave is independent, and
676                  * can be based on either bit 11 (haven't seen this yet) or
677                  * bit 17 (common).
678                  */
679                 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
680                 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
681                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
682                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
683                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
684                         break;
685                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
686                         if (dcc & DCC_CHANNEL_XOR_DISABLE) {
687                                 /*
688                                  * This is the base swizzling by the GPU for
689                                  * tiled buffers.
690                                  */
691                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
692                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
693                         } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
694                                 /* Bit 11 swizzling by the CPU in addition. */
695                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
696                                 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
697                         } else {
698                                 /* Bit 17 swizzling by the CPU in addition. */
699                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
700                                 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
701                         }
702                         break;
703                 }
704
705                 /* check for L-shaped memory aka modified enhanced addressing */
706                 if (IS_GEN(i915, 4) &&
707                     !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
708                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
709                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
710                 }
711
712                 if (dcc == 0xffffffff) {
713                         DRM_ERROR("Couldn't read from MCHBAR.  "
714                                   "Disabling tiling.\n");
715                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
716                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
717                 }
718         }
719
720         if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
721             swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
722                 /*
723                  * Userspace likes to explode if it sees unknown swizzling,
724                  * so lie. We will finish the lie when reporting through
725                  * the get-tiling-ioctl by reporting the physical swizzle
726                  * mode as unknown instead.
727                  *
728                  * As we don't strictly know what the swizzling is, it may be
729                  * bit17 dependent, and so we need to also prevent the pages
730                  * from being moved.
731                  */
732                 i915->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
733                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
734                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
735         }
736
737         i915->ggtt.bit_6_swizzle_x = swizzle_x;
738         i915->ggtt.bit_6_swizzle_y = swizzle_y;
739 }
740
741 /*
742  * Swap every 64 bytes of this page around, to account for it having a new
743  * bit 17 of its physical address and therefore being interpreted differently
744  * by the GPU.
745  */
746 static void i915_gem_swizzle_page(struct page *page)
747 {
748         char temp[64];
749         char *vaddr;
750         int i;
751
752         vaddr = kmap(page);
753
754         for (i = 0; i < PAGE_SIZE; i += 128) {
755                 memcpy(temp, &vaddr[i], 64);
756                 memcpy(&vaddr[i], &vaddr[i + 64], 64);
757                 memcpy(&vaddr[i + 64], temp, 64);
758         }
759
760         kunmap(page);
761 }
762
763 /**
764  * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
765  * @obj: i915 GEM buffer object
766  * @pages: the scattergather list of physical pages
767  *
768  * This function fixes up the swizzling in case any page frame number for this
769  * object has changed in bit 17 since that state has been saved with
770  * i915_gem_object_save_bit_17_swizzle().
771  *
772  * This is called when pinning backing storage again, since the kernel is free
773  * to move unpinned backing storage around (either by directly moving pages or
774  * by swapping them out and back in again).
775  */
776 void
777 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
778                                   struct sg_table *pages)
779 {
780         struct sgt_iter sgt_iter;
781         struct page *page;
782         int i;
783
784         if (obj->bit_17 == NULL)
785                 return;
786
787         i = 0;
788         for_each_sgt_page(page, sgt_iter, pages) {
789                 char new_bit_17 = page_to_phys(page) >> 17;
790                 if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
791                         i915_gem_swizzle_page(page);
792                         set_page_dirty(page);
793                 }
794                 i++;
795         }
796 }
797
798 /**
799  * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
800  * @obj: i915 GEM buffer object
801  * @pages: the scattergather list of physical pages
802  *
803  * This function saves the bit 17 of each page frame number so that swizzling
804  * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
805  * be called before the backing storage can be unpinned.
806  */
807 void
808 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
809                                     struct sg_table *pages)
810 {
811         const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
812         struct sgt_iter sgt_iter;
813         struct page *page;
814         int i;
815
816         if (obj->bit_17 == NULL) {
817                 obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
818                 if (obj->bit_17 == NULL) {
819                         DRM_ERROR("Failed to allocate memory for bit 17 "
820                                   "record\n");
821                         return;
822                 }
823         }
824
825         i = 0;
826
827         for_each_sgt_page(page, sgt_iter, pages) {
828                 if (page_to_phys(page) & (1 << 17))
829                         __set_bit(i, obj->bit_17);
830                 else
831                         __clear_bit(i, obj->bit_17);
832                 i++;
833         }
834 }
835
836 void i915_ggtt_init_fences(struct i915_ggtt *ggtt)
837 {
838         struct drm_i915_private *i915 = ggtt->vm.i915;
839         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
840         int num_fences;
841         int i;
842
843         INIT_LIST_HEAD(&ggtt->fence_list);
844         INIT_LIST_HEAD(&ggtt->userfault_list);
845         intel_wakeref_auto_init(&ggtt->userfault_wakeref, uncore->rpm);
846
847         detect_bit_6_swizzle(ggtt);
848
849         if (!i915_ggtt_has_aperture(ggtt))
850                 num_fences = 0;
851         else if (INTEL_GEN(i915) >= 7 &&
852                  !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)))
853                 num_fences = 32;
854         else if (INTEL_GEN(i915) >= 4 ||
855                  IS_I945G(i915) || IS_I945GM(i915) ||
856                  IS_G33(i915) || IS_PINEVIEW(i915))
857                 num_fences = 16;
858         else
859                 num_fences = 8;
860
861         if (intel_vgpu_active(i915))
862                 num_fences = intel_uncore_read(uncore,
863                                                vgtif_reg(avail_rs.fence_num));
864
865         /* Initialize fence registers to zero */
866         for (i = 0; i < num_fences; i++) {
867                 struct i915_fence_reg *fence = &ggtt->fence_regs[i];
868
869                 fence->ggtt = ggtt;
870                 fence->id = i;
871                 list_add_tail(&fence->link, &ggtt->fence_list);
872         }
873         ggtt->num_fences = num_fences;
874
875         i915_gem_restore_fences(ggtt);
876 }
877
878 void intel_gt_init_swizzling(struct intel_gt *gt)
879 {
880         struct drm_i915_private *i915 = gt->i915;
881         struct intel_uncore *uncore = gt->uncore;
882
883         if (INTEL_GEN(i915) < 5 ||
884             i915->ggtt.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
885                 return;
886
887         intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING);
888
889         if (IS_GEN(i915, 5))
890                 return;
891
892         intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL);
893
894         if (IS_GEN(i915, 6))
895                 intel_uncore_write(uncore,
896                                    ARB_MODE,
897                                    _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
898         else if (IS_GEN(i915, 7))
899                 intel_uncore_write(uncore,
900                                    ARB_MODE,
901                                    _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
902         else if (IS_GEN(i915, 8))
903                 intel_uncore_write(uncore,
904                                    GAMTARBMODE,
905                                    _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
906         else
907                 MISSING_CASE(INTEL_GEN(i915));
908 }