]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/i915_gem_request.c
drm/i915: Rename i915_gem_timeline.next_seqno to .seqno
[linux.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27
28 #include "i915_drv.h"
29
30 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
31 {
32         return "i915";
33 }
34
35 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
36 {
37         return to_request(fence)->timeline->common->name;
38 }
39
40 static bool i915_fence_signaled(struct dma_fence *fence)
41 {
42         return i915_gem_request_completed(to_request(fence));
43 }
44
45 static bool i915_fence_enable_signaling(struct dma_fence *fence)
46 {
47         if (i915_fence_signaled(fence))
48                 return false;
49
50         intel_engine_enable_signaling(to_request(fence));
51         return true;
52 }
53
54 static signed long i915_fence_wait(struct dma_fence *fence,
55                                    bool interruptible,
56                                    signed long timeout)
57 {
58         return i915_wait_request(to_request(fence), interruptible, timeout);
59 }
60
61 static void i915_fence_release(struct dma_fence *fence)
62 {
63         struct drm_i915_gem_request *req = to_request(fence);
64
65         kmem_cache_free(req->i915->requests, req);
66 }
67
68 const struct dma_fence_ops i915_fence_ops = {
69         .get_driver_name = i915_fence_get_driver_name,
70         .get_timeline_name = i915_fence_get_timeline_name,
71         .enable_signaling = i915_fence_enable_signaling,
72         .signaled = i915_fence_signaled,
73         .wait = i915_fence_wait,
74         .release = i915_fence_release,
75 };
76
77 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
78                                    struct drm_file *file)
79 {
80         struct drm_i915_private *dev_private;
81         struct drm_i915_file_private *file_priv;
82
83         WARN_ON(!req || !file || req->file_priv);
84
85         if (!req || !file)
86                 return -EINVAL;
87
88         if (req->file_priv)
89                 return -EINVAL;
90
91         dev_private = req->i915;
92         file_priv = file->driver_priv;
93
94         spin_lock(&file_priv->mm.lock);
95         req->file_priv = file_priv;
96         list_add_tail(&req->client_list, &file_priv->mm.request_list);
97         spin_unlock(&file_priv->mm.lock);
98
99         return 0;
100 }
101
102 static inline void
103 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
104 {
105         struct drm_i915_file_private *file_priv = request->file_priv;
106
107         if (!file_priv)
108                 return;
109
110         spin_lock(&file_priv->mm.lock);
111         list_del(&request->client_list);
112         request->file_priv = NULL;
113         spin_unlock(&file_priv->mm.lock);
114 }
115
116 static struct i915_dependency *
117 i915_dependency_alloc(struct drm_i915_private *i915)
118 {
119         return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
120 }
121
122 static void
123 i915_dependency_free(struct drm_i915_private *i915,
124                      struct i915_dependency *dep)
125 {
126         kmem_cache_free(i915->dependencies, dep);
127 }
128
129 static void
130 __i915_priotree_add_dependency(struct i915_priotree *pt,
131                                struct i915_priotree *signal,
132                                struct i915_dependency *dep,
133                                unsigned long flags)
134 {
135         INIT_LIST_HEAD(&dep->dfs_link);
136         list_add(&dep->wait_link, &signal->waiters_list);
137         list_add(&dep->signal_link, &pt->signalers_list);
138         dep->signaler = signal;
139         dep->flags = flags;
140 }
141
142 static int
143 i915_priotree_add_dependency(struct drm_i915_private *i915,
144                              struct i915_priotree *pt,
145                              struct i915_priotree *signal)
146 {
147         struct i915_dependency *dep;
148
149         dep = i915_dependency_alloc(i915);
150         if (!dep)
151                 return -ENOMEM;
152
153         __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
154         return 0;
155 }
156
157 static void
158 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
159 {
160         struct i915_dependency *dep, *next;
161
162         GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));
163
164         /* Everyone we depended upon (the fences we wait to be signaled)
165          * should retire before us and remove themselves from our list.
166          * However, retirement is run independently on each timeline and
167          * so we may be called out-of-order.
168          */
169         list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
170                 list_del(&dep->wait_link);
171                 if (dep->flags & I915_DEPENDENCY_ALLOC)
172                         i915_dependency_free(i915, dep);
173         }
174
175         /* Remove ourselves from everyone who depends upon us */
176         list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
177                 list_del(&dep->signal_link);
178                 if (dep->flags & I915_DEPENDENCY_ALLOC)
179                         i915_dependency_free(i915, dep);
180         }
181 }
182
183 static void
184 i915_priotree_init(struct i915_priotree *pt)
185 {
186         INIT_LIST_HEAD(&pt->signalers_list);
187         INIT_LIST_HEAD(&pt->waiters_list);
188         RB_CLEAR_NODE(&pt->node);
189         pt->priority = INT_MIN;
190 }
191
192 void i915_gem_retire_noop(struct i915_gem_active *active,
193                           struct drm_i915_gem_request *request)
194 {
195         /* Space left intentionally blank */
196 }
197
198 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
199 {
200         struct i915_gem_active *active, *next;
201
202         lockdep_assert_held(&request->i915->drm.struct_mutex);
203         GEM_BUG_ON(!i915_sw_fence_done(&request->submit));
204         GEM_BUG_ON(!i915_sw_fence_done(&request->execute));
205         GEM_BUG_ON(!i915_gem_request_completed(request));
206         GEM_BUG_ON(!request->i915->gt.active_requests);
207
208         trace_i915_gem_request_retire(request);
209
210         spin_lock_irq(&request->engine->timeline->lock);
211         list_del_init(&request->link);
212         spin_unlock_irq(&request->engine->timeline->lock);
213
214         /* We know the GPU must have read the request to have
215          * sent us the seqno + interrupt, so use the position
216          * of tail of the request to update the last known position
217          * of the GPU head.
218          *
219          * Note this requires that we are always called in request
220          * completion order.
221          */
222         list_del(&request->ring_link);
223         request->ring->last_retired_head = request->postfix;
224         if (!--request->i915->gt.active_requests) {
225                 GEM_BUG_ON(!request->i915->gt.awake);
226                 mod_delayed_work(request->i915->wq,
227                                  &request->i915->gt.idle_work,
228                                  msecs_to_jiffies(100));
229         }
230
231         /* Walk through the active list, calling retire on each. This allows
232          * objects to track their GPU activity and mark themselves as idle
233          * when their *last* active request is completed (updating state
234          * tracking lists for eviction, active references for GEM, etc).
235          *
236          * As the ->retire() may free the node, we decouple it first and
237          * pass along the auxiliary information (to avoid dereferencing
238          * the node after the callback).
239          */
240         list_for_each_entry_safe(active, next, &request->active_list, link) {
241                 /* In microbenchmarks or focusing upon time inside the kernel,
242                  * we may spend an inordinate amount of time simply handling
243                  * the retirement of requests and processing their callbacks.
244                  * Of which, this loop itself is particularly hot due to the
245                  * cache misses when jumping around the list of i915_gem_active.
246                  * So we try to keep this loop as streamlined as possible and
247                  * also prefetch the next i915_gem_active to try and hide
248                  * the likely cache miss.
249                  */
250                 prefetchw(next);
251
252                 INIT_LIST_HEAD(&active->link);
253                 RCU_INIT_POINTER(active->request, NULL);
254
255                 active->retire(active, request);
256         }
257
258         i915_gem_request_remove_from_client(request);
259
260         if (request->previous_context) {
261                 if (i915.enable_execlists)
262                         intel_lr_context_unpin(request->previous_context,
263                                                request->engine);
264         }
265
266         /* Retirement decays the ban score as it is a sign of ctx progress */
267         if (request->ctx->ban_score > 0)
268                 request->ctx->ban_score--;
269
270         i915_gem_context_put(request->ctx);
271
272         dma_fence_signal(&request->fence);
273
274         i915_priotree_fini(request->i915, &request->priotree);
275         i915_gem_request_put(request);
276 }
277
278 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
279 {
280         struct intel_engine_cs *engine = req->engine;
281         struct drm_i915_gem_request *tmp;
282
283         lockdep_assert_held(&req->i915->drm.struct_mutex);
284         if (list_empty(&req->link))
285                 return;
286
287         do {
288                 tmp = list_first_entry(&engine->timeline->requests,
289                                        typeof(*tmp), link);
290
291                 i915_gem_request_retire(tmp);
292         } while (tmp != req);
293 }
294
295 static int i915_gem_check_wedge(struct drm_i915_private *dev_priv)
296 {
297         struct i915_gpu_error *error = &dev_priv->gpu_error;
298
299         if (i915_terminally_wedged(error))
300                 return -EIO;
301
302         if (i915_reset_in_progress(error)) {
303                 /* Non-interruptible callers can't handle -EAGAIN, hence return
304                  * -EIO unconditionally for these.
305                  */
306                 if (!dev_priv->mm.interruptible)
307                         return -EIO;
308
309                 return -EAGAIN;
310         }
311
312         return 0;
313 }
314
315 static int i915_gem_init_global_seqno(struct drm_i915_private *i915, u32 seqno)
316 {
317         struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
318         struct intel_engine_cs *engine;
319         enum intel_engine_id id;
320         int ret;
321
322         /* Carefully retire all requests without writing to the rings */
323         ret = i915_gem_wait_for_idle(i915,
324                                      I915_WAIT_INTERRUPTIBLE |
325                                      I915_WAIT_LOCKED);
326         if (ret)
327                 return ret;
328
329         i915_gem_retire_requests(i915);
330         GEM_BUG_ON(i915->gt.active_requests > 1);
331
332         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
333         if (!i915_seqno_passed(seqno, atomic_read(&timeline->seqno))) {
334                 while (intel_breadcrumbs_busy(i915))
335                         cond_resched(); /* spin until threads are complete */
336         }
337         atomic_set(&timeline->seqno, seqno);
338
339         /* Finally reset hw state */
340         for_each_engine(engine, i915, id)
341                 intel_engine_init_global_seqno(engine, seqno);
342
343         list_for_each_entry(timeline, &i915->gt.timelines, link) {
344                 for_each_engine(engine, i915, id) {
345                         struct intel_timeline *tl = &timeline->engine[id];
346
347                         memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
348                 }
349         }
350
351         return 0;
352 }
353
354 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
355 {
356         struct drm_i915_private *dev_priv = to_i915(dev);
357
358         lockdep_assert_held(&dev_priv->drm.struct_mutex);
359
360         if (seqno == 0)
361                 return -EINVAL;
362
363         /* HWS page needs to be set less than what we
364          * will inject to ring
365          */
366         return i915_gem_init_global_seqno(dev_priv, seqno - 1);
367 }
368
369 static int reserve_global_seqno(struct drm_i915_private *i915)
370 {
371         u32 active_requests = ++i915->gt.active_requests;
372         u32 seqno = atomic_read(&i915->gt.global_timeline.seqno);
373         int ret;
374
375         /* Reservation is fine until we need to wrap around */
376         if (likely(seqno + active_requests > seqno))
377                 return 0;
378
379         ret = i915_gem_init_global_seqno(i915, 0);
380         if (ret) {
381                 i915->gt.active_requests--;
382                 return ret;
383         }
384
385         return 0;
386 }
387
388 static u32 __timeline_get_seqno(struct i915_gem_timeline *tl)
389 {
390         /* seqno only incremented under a mutex */
391         return ++tl->seqno.counter;
392 }
393
394 static u32 timeline_get_seqno(struct i915_gem_timeline *tl)
395 {
396         return atomic_inc_return(&tl->seqno);
397 }
398
399 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
400 {
401         struct intel_engine_cs *engine = request->engine;
402         struct intel_timeline *timeline;
403         u32 seqno;
404
405         /* Transfer from per-context onto the global per-engine timeline */
406         timeline = engine->timeline;
407         GEM_BUG_ON(timeline == request->timeline);
408         assert_spin_locked(&timeline->lock);
409
410         seqno = timeline_get_seqno(timeline->common);
411         GEM_BUG_ON(!seqno);
412         GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
413
414         GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno, seqno));
415         request->previous_seqno = timeline->last_submitted_seqno;
416         timeline->last_submitted_seqno = seqno;
417
418         /* We may be recursing from the signal callback of another i915 fence */
419         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
420         request->global_seqno = seqno;
421         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
422                 intel_engine_enable_signaling(request);
423         spin_unlock(&request->lock);
424
425         GEM_BUG_ON(!request->global_seqno);
426         engine->emit_breadcrumb(request,
427                                 request->ring->vaddr + request->postfix);
428
429         spin_lock(&request->timeline->lock);
430         list_move_tail(&request->link, &timeline->requests);
431         spin_unlock(&request->timeline->lock);
432
433         i915_sw_fence_commit(&request->execute);
434 }
435
436 void i915_gem_request_submit(struct drm_i915_gem_request *request)
437 {
438         struct intel_engine_cs *engine = request->engine;
439         unsigned long flags;
440
441         /* Will be called from irq-context when using foreign fences. */
442         spin_lock_irqsave(&engine->timeline->lock, flags);
443
444         __i915_gem_request_submit(request);
445
446         spin_unlock_irqrestore(&engine->timeline->lock, flags);
447 }
448
449 static int __i915_sw_fence_call
450 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
451 {
452         if (state == FENCE_COMPLETE) {
453                 struct drm_i915_gem_request *request =
454                         container_of(fence, typeof(*request), submit);
455
456                 request->engine->submit_request(request);
457         }
458
459         return NOTIFY_DONE;
460 }
461
462 static int __i915_sw_fence_call
463 execute_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
464 {
465         return NOTIFY_DONE;
466 }
467
468 /**
469  * i915_gem_request_alloc - allocate a request structure
470  *
471  * @engine: engine that we wish to issue the request on.
472  * @ctx: context that the request will be associated with.
473  *       This can be NULL if the request is not directly related to
474  *       any specific user context, in which case this function will
475  *       choose an appropriate context to use.
476  *
477  * Returns a pointer to the allocated request if successful,
478  * or an error code if not.
479  */
480 struct drm_i915_gem_request *
481 i915_gem_request_alloc(struct intel_engine_cs *engine,
482                        struct i915_gem_context *ctx)
483 {
484         struct drm_i915_private *dev_priv = engine->i915;
485         struct drm_i915_gem_request *req;
486         int ret;
487
488         lockdep_assert_held(&dev_priv->drm.struct_mutex);
489
490         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
491          * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
492          * and restart.
493          */
494         ret = i915_gem_check_wedge(dev_priv);
495         if (ret)
496                 return ERR_PTR(ret);
497
498         ret = reserve_global_seqno(dev_priv);
499         if (ret)
500                 return ERR_PTR(ret);
501
502         /* Move the oldest request to the slab-cache (if not in use!) */
503         req = list_first_entry_or_null(&engine->timeline->requests,
504                                        typeof(*req), link);
505         if (req && __i915_gem_request_completed(req))
506                 i915_gem_request_retire(req);
507
508         /* Beware: Dragons be flying overhead.
509          *
510          * We use RCU to look up requests in flight. The lookups may
511          * race with the request being allocated from the slab freelist.
512          * That is the request we are writing to here, may be in the process
513          * of being read by __i915_gem_active_get_rcu(). As such,
514          * we have to be very careful when overwriting the contents. During
515          * the RCU lookup, we change chase the request->engine pointer,
516          * read the request->global_seqno and increment the reference count.
517          *
518          * The reference count is incremented atomically. If it is zero,
519          * the lookup knows the request is unallocated and complete. Otherwise,
520          * it is either still in use, or has been reallocated and reset
521          * with dma_fence_init(). This increment is safe for release as we
522          * check that the request we have a reference to and matches the active
523          * request.
524          *
525          * Before we increment the refcount, we chase the request->engine
526          * pointer. We must not call kmem_cache_zalloc() or else we set
527          * that pointer to NULL and cause a crash during the lookup. If
528          * we see the request is completed (based on the value of the
529          * old engine and seqno), the lookup is complete and reports NULL.
530          * If we decide the request is not completed (new engine or seqno),
531          * then we grab a reference and double check that it is still the
532          * active request - which it won't be and restart the lookup.
533          *
534          * Do not use kmem_cache_zalloc() here!
535          */
536         req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
537         if (!req) {
538                 ret = -ENOMEM;
539                 goto err_unreserve;
540         }
541
542         req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
543         GEM_BUG_ON(req->timeline == engine->timeline);
544
545         spin_lock_init(&req->lock);
546         dma_fence_init(&req->fence,
547                        &i915_fence_ops,
548                        &req->lock,
549                        req->timeline->fence_context,
550                        __timeline_get_seqno(req->timeline->common));
551
552         i915_sw_fence_init(&req->submit, submit_notify);
553         i915_sw_fence_init(&req->execute, execute_notify);
554         /* Ensure that the execute fence completes after the submit fence -
555          * as we complete the execute fence from within the submit fence
556          * callback, its completion would otherwise be visible first.
557          */
558         i915_sw_fence_await_sw_fence(&req->execute, &req->submit, &req->execq);
559
560         i915_priotree_init(&req->priotree);
561
562         INIT_LIST_HEAD(&req->active_list);
563         req->i915 = dev_priv;
564         req->engine = engine;
565         req->ctx = i915_gem_context_get(ctx);
566
567         /* No zalloc, must clear what we need by hand */
568         req->global_seqno = 0;
569         req->previous_context = NULL;
570         req->file_priv = NULL;
571         req->batch = NULL;
572
573         /*
574          * Reserve space in the ring buffer for all the commands required to
575          * eventually emit this request. This is to guarantee that the
576          * i915_add_request() call can't fail. Note that the reserve may need
577          * to be redone if the request is not actually submitted straight
578          * away, e.g. because a GPU scheduler has deferred it.
579          */
580         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
581         GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
582
583         if (i915.enable_execlists)
584                 ret = intel_logical_ring_alloc_request_extras(req);
585         else
586                 ret = intel_ring_alloc_request_extras(req);
587         if (ret)
588                 goto err_ctx;
589
590         /* Record the position of the start of the request so that
591          * should we detect the updated seqno part-way through the
592          * GPU processing the request, we never over-estimate the
593          * position of the head.
594          */
595         req->head = req->ring->tail;
596
597         return req;
598
599 err_ctx:
600         i915_gem_context_put(ctx);
601         kmem_cache_free(dev_priv->requests, req);
602 err_unreserve:
603         dev_priv->gt.active_requests--;
604         return ERR_PTR(ret);
605 }
606
607 static int
608 i915_gem_request_await_request(struct drm_i915_gem_request *to,
609                                struct drm_i915_gem_request *from)
610 {
611         int ret;
612
613         GEM_BUG_ON(to == from);
614
615         if (to->engine->schedule) {
616                 ret = i915_priotree_add_dependency(to->i915,
617                                                    &to->priotree,
618                                                    &from->priotree);
619                 if (ret < 0)
620                         return ret;
621         }
622
623         if (to->timeline == from->timeline)
624                 return 0;
625
626         if (to->engine == from->engine) {
627                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
628                                                        &from->submit,
629                                                        GFP_KERNEL);
630                 return ret < 0 ? ret : 0;
631         }
632
633         if (!from->global_seqno) {
634                 ret = i915_sw_fence_await_dma_fence(&to->submit,
635                                                     &from->fence, 0,
636                                                     GFP_KERNEL);
637                 return ret < 0 ? ret : 0;
638         }
639
640         if (from->global_seqno <= to->timeline->sync_seqno[from->engine->id])
641                 return 0;
642
643         trace_i915_gem_ring_sync_to(to, from);
644         if (!i915.semaphores) {
645                 if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
646                         ret = i915_sw_fence_await_dma_fence(&to->submit,
647                                                             &from->fence, 0,
648                                                             GFP_KERNEL);
649                         if (ret < 0)
650                                 return ret;
651                 }
652         } else {
653                 ret = to->engine->semaphore.sync_to(to, from);
654                 if (ret)
655                         return ret;
656         }
657
658         to->timeline->sync_seqno[from->engine->id] = from->global_seqno;
659         return 0;
660 }
661
662 int
663 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
664                                  struct dma_fence *fence)
665 {
666         struct dma_fence_array *array;
667         int ret;
668         int i;
669
670         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
671                 return 0;
672
673         if (dma_fence_is_i915(fence))
674                 return i915_gem_request_await_request(req, to_request(fence));
675
676         if (!dma_fence_is_array(fence)) {
677                 ret = i915_sw_fence_await_dma_fence(&req->submit,
678                                                     fence, I915_FENCE_TIMEOUT,
679                                                     GFP_KERNEL);
680                 return ret < 0 ? ret : 0;
681         }
682
683         /* Note that if the fence-array was created in signal-on-any mode,
684          * we should *not* decompose it into its individual fences. However,
685          * we don't currently store which mode the fence-array is operating
686          * in. Fortunately, the only user of signal-on-any is private to
687          * amdgpu and we should not see any incoming fence-array from
688          * sync-file being in signal-on-any mode.
689          */
690
691         array = to_dma_fence_array(fence);
692         for (i = 0; i < array->num_fences; i++) {
693                 struct dma_fence *child = array->fences[i];
694
695                 if (dma_fence_is_i915(child))
696                         ret = i915_gem_request_await_request(req,
697                                                              to_request(child));
698                 else
699                         ret = i915_sw_fence_await_dma_fence(&req->submit,
700                                                             child, I915_FENCE_TIMEOUT,
701                                                             GFP_KERNEL);
702                 if (ret < 0)
703                         return ret;
704         }
705
706         return 0;
707 }
708
709 /**
710  * i915_gem_request_await_object - set this request to (async) wait upon a bo
711  *
712  * @to: request we are wishing to use
713  * @obj: object which may be in use on another ring.
714  *
715  * This code is meant to abstract object synchronization with the GPU.
716  * Conceptually we serialise writes between engines inside the GPU.
717  * We only allow one engine to write into a buffer at any time, but
718  * multiple readers. To ensure each has a coherent view of memory, we must:
719  *
720  * - If there is an outstanding write request to the object, the new
721  *   request must wait for it to complete (either CPU or in hw, requests
722  *   on the same ring will be naturally ordered).
723  *
724  * - If we are a write request (pending_write_domain is set), the new
725  *   request must wait for outstanding read requests to complete.
726  *
727  * Returns 0 if successful, else propagates up the lower layer error.
728  */
729 int
730 i915_gem_request_await_object(struct drm_i915_gem_request *to,
731                               struct drm_i915_gem_object *obj,
732                               bool write)
733 {
734         struct dma_fence *excl;
735         int ret = 0;
736
737         if (write) {
738                 struct dma_fence **shared;
739                 unsigned int count, i;
740
741                 ret = reservation_object_get_fences_rcu(obj->resv,
742                                                         &excl, &count, &shared);
743                 if (ret)
744                         return ret;
745
746                 for (i = 0; i < count; i++) {
747                         ret = i915_gem_request_await_dma_fence(to, shared[i]);
748                         if (ret)
749                                 break;
750
751                         dma_fence_put(shared[i]);
752                 }
753
754                 for (; i < count; i++)
755                         dma_fence_put(shared[i]);
756                 kfree(shared);
757         } else {
758                 excl = reservation_object_get_excl_rcu(obj->resv);
759         }
760
761         if (excl) {
762                 if (ret == 0)
763                         ret = i915_gem_request_await_dma_fence(to, excl);
764
765                 dma_fence_put(excl);
766         }
767
768         return ret;
769 }
770
771 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
772 {
773         struct drm_i915_private *dev_priv = engine->i915;
774
775         if (dev_priv->gt.awake)
776                 return;
777
778         GEM_BUG_ON(!dev_priv->gt.active_requests);
779
780         intel_runtime_pm_get_noresume(dev_priv);
781         dev_priv->gt.awake = true;
782
783         intel_enable_gt_powersave(dev_priv);
784         i915_update_gfx_val(dev_priv);
785         if (INTEL_GEN(dev_priv) >= 6)
786                 gen6_rps_busy(dev_priv);
787
788         queue_delayed_work(dev_priv->wq,
789                            &dev_priv->gt.retire_work,
790                            round_jiffies_up_relative(HZ));
791 }
792
793 /*
794  * NB: This function is not allowed to fail. Doing so would mean the the
795  * request is not being tracked for completion but the work itself is
796  * going to happen on the hardware. This would be a Bad Thing(tm).
797  */
798 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
799 {
800         struct intel_engine_cs *engine = request->engine;
801         struct intel_ring *ring = request->ring;
802         struct intel_timeline *timeline = request->timeline;
803         struct drm_i915_gem_request *prev;
804         int err;
805
806         lockdep_assert_held(&request->i915->drm.struct_mutex);
807         trace_i915_gem_request_add(request);
808
809         /*
810          * To ensure that this call will not fail, space for its emissions
811          * should already have been reserved in the ring buffer. Let the ring
812          * know that it is time to use that space up.
813          */
814         request->reserved_space = 0;
815
816         /*
817          * Emit any outstanding flushes - execbuf can fail to emit the flush
818          * after having emitted the batchbuffer command. Hence we need to fix
819          * things up similar to emitting the lazy request. The difference here
820          * is that the flush _must_ happen before the next request, no matter
821          * what.
822          */
823         if (flush_caches) {
824                 err = engine->emit_flush(request, EMIT_FLUSH);
825
826                 /* Not allowed to fail! */
827                 WARN(err, "engine->emit_flush() failed: %d!\n", err);
828         }
829
830         /* Record the position of the start of the breadcrumb so that
831          * should we detect the updated seqno part-way through the
832          * GPU processing the request, we never over-estimate the
833          * position of the ring's HEAD.
834          */
835         err = intel_ring_begin(request, engine->emit_breadcrumb_sz);
836         GEM_BUG_ON(err);
837         request->postfix = ring->tail;
838         ring->tail += engine->emit_breadcrumb_sz * sizeof(u32);
839
840         /* Seal the request and mark it as pending execution. Note that
841          * we may inspect this state, without holding any locks, during
842          * hangcheck. Hence we apply the barrier to ensure that we do not
843          * see a more recent value in the hws than we are tracking.
844          */
845
846         prev = i915_gem_active_raw(&timeline->last_request,
847                                    &request->i915->drm.struct_mutex);
848         if (prev) {
849                 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
850                                              &request->submitq);
851                 if (engine->schedule)
852                         __i915_priotree_add_dependency(&request->priotree,
853                                                        &prev->priotree,
854                                                        &request->dep,
855                                                        0);
856         }
857
858         spin_lock_irq(&timeline->lock);
859         list_add_tail(&request->link, &timeline->requests);
860         spin_unlock_irq(&timeline->lock);
861
862         GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
863                                      request->fence.seqno));
864
865         timeline->last_submitted_seqno = request->fence.seqno;
866         i915_gem_active_set(&timeline->last_request, request);
867
868         list_add_tail(&request->ring_link, &ring->request_list);
869         request->emitted_jiffies = jiffies;
870
871         i915_gem_mark_busy(engine);
872
873         /* Let the backend know a new request has arrived that may need
874          * to adjust the existing execution schedule due to a high priority
875          * request - i.e. we may want to preempt the current request in order
876          * to run a high priority dependency chain *before* we can execute this
877          * request.
878          *
879          * This is called before the request is ready to run so that we can
880          * decide whether to preempt the entire chain so that it is ready to
881          * run at the earliest possible convenience.
882          */
883         if (engine->schedule)
884                 engine->schedule(request, request->ctx->priority);
885
886         local_bh_disable();
887         i915_sw_fence_commit(&request->submit);
888         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
889 }
890
891 static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
892 {
893         unsigned long flags;
894
895         spin_lock_irqsave(&q->lock, flags);
896         if (list_empty(&wait->task_list))
897                 __add_wait_queue(q, wait);
898         spin_unlock_irqrestore(&q->lock, flags);
899 }
900
901 static unsigned long local_clock_us(unsigned int *cpu)
902 {
903         unsigned long t;
904
905         /* Cheaply and approximately convert from nanoseconds to microseconds.
906          * The result and subsequent calculations are also defined in the same
907          * approximate microseconds units. The principal source of timing
908          * error here is from the simple truncation.
909          *
910          * Note that local_clock() is only defined wrt to the current CPU;
911          * the comparisons are no longer valid if we switch CPUs. Instead of
912          * blocking preemption for the entire busywait, we can detect the CPU
913          * switch and use that as indicator of system load and a reason to
914          * stop busywaiting, see busywait_stop().
915          */
916         *cpu = get_cpu();
917         t = local_clock() >> 10;
918         put_cpu();
919
920         return t;
921 }
922
923 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
924 {
925         unsigned int this_cpu;
926
927         if (time_after(local_clock_us(&this_cpu), timeout))
928                 return true;
929
930         return this_cpu != cpu;
931 }
932
933 bool __i915_spin_request(const struct drm_i915_gem_request *req,
934                          int state, unsigned long timeout_us)
935 {
936         unsigned int cpu;
937
938         /* When waiting for high frequency requests, e.g. during synchronous
939          * rendering split between the CPU and GPU, the finite amount of time
940          * required to set up the irq and wait upon it limits the response
941          * rate. By busywaiting on the request completion for a short while we
942          * can service the high frequency waits as quick as possible. However,
943          * if it is a slow request, we want to sleep as quickly as possible.
944          * The tradeoff between waiting and sleeping is roughly the time it
945          * takes to sleep on a request, on the order of a microsecond.
946          */
947
948         timeout_us += local_clock_us(&cpu);
949         do {
950                 if (__i915_gem_request_completed(req))
951                         return true;
952
953                 if (signal_pending_state(state, current))
954                         break;
955
956                 if (busywait_stop(timeout_us, cpu))
957                         break;
958
959                 cpu_relax_lowlatency();
960         } while (!need_resched());
961
962         return false;
963 }
964
965 static long
966 __i915_request_wait_for_execute(struct drm_i915_gem_request *request,
967                                 unsigned int flags,
968                                 long timeout)
969 {
970         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
971                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
972         wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
973         DEFINE_WAIT(reset);
974         DEFINE_WAIT(wait);
975
976         if (flags & I915_WAIT_LOCKED)
977                 add_wait_queue(q, &reset);
978
979         do {
980                 prepare_to_wait(&request->execute.wait, &wait, state);
981
982                 if (i915_sw_fence_done(&request->execute))
983                         break;
984
985                 if (flags & I915_WAIT_LOCKED &&
986                     i915_reset_in_progress(&request->i915->gpu_error)) {
987                         __set_current_state(TASK_RUNNING);
988                         i915_reset(request->i915);
989                         reset_wait_queue(q, &reset);
990                         continue;
991                 }
992
993                 if (signal_pending_state(state, current)) {
994                         timeout = -ERESTARTSYS;
995                         break;
996                 }
997
998                 timeout = io_schedule_timeout(timeout);
999         } while (timeout);
1000         finish_wait(&request->execute.wait, &wait);
1001
1002         if (flags & I915_WAIT_LOCKED)
1003                 remove_wait_queue(q, &reset);
1004
1005         return timeout;
1006 }
1007
1008 /**
1009  * i915_wait_request - wait until execution of request has finished
1010  * @req: the request to wait upon
1011  * @flags: how to wait
1012  * @timeout: how long to wait in jiffies
1013  *
1014  * i915_wait_request() waits for the request to be completed, for a
1015  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1016  * unbounded wait).
1017  *
1018  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1019  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1020  * must not specify that the wait is locked.
1021  *
1022  * Returns the remaining time (in jiffies) if the request completed, which may
1023  * be zero or -ETIME if the request is unfinished after the timeout expires.
1024  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1025  * pending before the request completes.
1026  */
1027 long i915_wait_request(struct drm_i915_gem_request *req,
1028                        unsigned int flags,
1029                        long timeout)
1030 {
1031         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1032                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1033         DEFINE_WAIT(reset);
1034         struct intel_wait wait;
1035
1036         might_sleep();
1037 #if IS_ENABLED(CONFIG_LOCKDEP)
1038         GEM_BUG_ON(debug_locks &&
1039                    !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1040                    !!(flags & I915_WAIT_LOCKED));
1041 #endif
1042         GEM_BUG_ON(timeout < 0);
1043
1044         if (i915_gem_request_completed(req))
1045                 return timeout;
1046
1047         if (!timeout)
1048                 return -ETIME;
1049
1050         trace_i915_gem_request_wait_begin(req);
1051
1052         if (!i915_sw_fence_done(&req->execute)) {
1053                 timeout = __i915_request_wait_for_execute(req, flags, timeout);
1054                 if (timeout < 0)
1055                         goto complete;
1056
1057                 GEM_BUG_ON(!i915_sw_fence_done(&req->execute));
1058         }
1059         GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
1060         GEM_BUG_ON(!req->global_seqno);
1061
1062         /* Optimistic short spin before touching IRQs */
1063         if (i915_spin_request(req, state, 5))
1064                 goto complete;
1065
1066         set_current_state(state);
1067         if (flags & I915_WAIT_LOCKED)
1068                 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1069
1070         intel_wait_init(&wait, req->global_seqno);
1071         if (intel_engine_add_wait(req->engine, &wait))
1072                 /* In order to check that we haven't missed the interrupt
1073                  * as we enabled it, we need to kick ourselves to do a
1074                  * coherent check on the seqno before we sleep.
1075                  */
1076                 goto wakeup;
1077
1078         for (;;) {
1079                 if (signal_pending_state(state, current)) {
1080                         timeout = -ERESTARTSYS;
1081                         break;
1082                 }
1083
1084                 if (!timeout) {
1085                         timeout = -ETIME;
1086                         break;
1087                 }
1088
1089                 timeout = io_schedule_timeout(timeout);
1090
1091                 if (intel_wait_complete(&wait))
1092                         break;
1093
1094                 set_current_state(state);
1095
1096 wakeup:
1097                 /* Carefully check if the request is complete, giving time
1098                  * for the seqno to be visible following the interrupt.
1099                  * We also have to check in case we are kicked by the GPU
1100                  * reset in order to drop the struct_mutex.
1101                  */
1102                 if (__i915_request_irq_complete(req))
1103                         break;
1104
1105                 /* If the GPU is hung, and we hold the lock, reset the GPU
1106                  * and then check for completion. On a full reset, the engine's
1107                  * HW seqno will be advanced passed us and we are complete.
1108                  * If we do a partial reset, we have to wait for the GPU to
1109                  * resume and update the breadcrumb.
1110                  *
1111                  * If we don't hold the mutex, we can just wait for the worker
1112                  * to come along and update the breadcrumb (either directly
1113                  * itself, or indirectly by recovering the GPU).
1114                  */
1115                 if (flags & I915_WAIT_LOCKED &&
1116                     i915_reset_in_progress(&req->i915->gpu_error)) {
1117                         __set_current_state(TASK_RUNNING);
1118                         i915_reset(req->i915);
1119                         reset_wait_queue(&req->i915->gpu_error.wait_queue,
1120                                          &reset);
1121                         continue;
1122                 }
1123
1124                 /* Only spin if we know the GPU is processing this request */
1125                 if (i915_spin_request(req, state, 2))
1126                         break;
1127         }
1128
1129         intel_engine_remove_wait(req->engine, &wait);
1130         if (flags & I915_WAIT_LOCKED)
1131                 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1132         __set_current_state(TASK_RUNNING);
1133
1134 complete:
1135         trace_i915_gem_request_wait_end(req);
1136
1137         return timeout;
1138 }
1139
1140 static void engine_retire_requests(struct intel_engine_cs *engine)
1141 {
1142         struct drm_i915_gem_request *request, *next;
1143
1144         list_for_each_entry_safe(request, next,
1145                                  &engine->timeline->requests, link) {
1146                 if (!__i915_gem_request_completed(request))
1147                         return;
1148
1149                 i915_gem_request_retire(request);
1150         }
1151 }
1152
1153 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1154 {
1155         struct intel_engine_cs *engine;
1156         enum intel_engine_id id;
1157
1158         lockdep_assert_held(&dev_priv->drm.struct_mutex);
1159
1160         if (!dev_priv->gt.active_requests)
1161                 return;
1162
1163         for_each_engine(engine, dev_priv, id)
1164                 engine_retire_requests(engine);
1165 }