]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/i915_gem_request.c
drm/i915: Defer transfer onto execution timeline to actual hw submission
[linux.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27
28 #include "i915_drv.h"
29
30 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
31 {
32         return "i915";
33 }
34
35 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
36 {
37         return to_request(fence)->timeline->common->name;
38 }
39
40 static bool i915_fence_signaled(struct dma_fence *fence)
41 {
42         return i915_gem_request_completed(to_request(fence));
43 }
44
45 static bool i915_fence_enable_signaling(struct dma_fence *fence)
46 {
47         if (i915_fence_signaled(fence))
48                 return false;
49
50         intel_engine_enable_signaling(to_request(fence));
51         return true;
52 }
53
54 static signed long i915_fence_wait(struct dma_fence *fence,
55                                    bool interruptible,
56                                    signed long timeout)
57 {
58         return i915_wait_request(to_request(fence), interruptible, timeout);
59 }
60
61 static void i915_fence_release(struct dma_fence *fence)
62 {
63         struct drm_i915_gem_request *req = to_request(fence);
64
65         kmem_cache_free(req->i915->requests, req);
66 }
67
68 const struct dma_fence_ops i915_fence_ops = {
69         .get_driver_name = i915_fence_get_driver_name,
70         .get_timeline_name = i915_fence_get_timeline_name,
71         .enable_signaling = i915_fence_enable_signaling,
72         .signaled = i915_fence_signaled,
73         .wait = i915_fence_wait,
74         .release = i915_fence_release,
75 };
76
77 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
78                                    struct drm_file *file)
79 {
80         struct drm_i915_private *dev_private;
81         struct drm_i915_file_private *file_priv;
82
83         WARN_ON(!req || !file || req->file_priv);
84
85         if (!req || !file)
86                 return -EINVAL;
87
88         if (req->file_priv)
89                 return -EINVAL;
90
91         dev_private = req->i915;
92         file_priv = file->driver_priv;
93
94         spin_lock(&file_priv->mm.lock);
95         req->file_priv = file_priv;
96         list_add_tail(&req->client_list, &file_priv->mm.request_list);
97         spin_unlock(&file_priv->mm.lock);
98
99         return 0;
100 }
101
102 static inline void
103 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
104 {
105         struct drm_i915_file_private *file_priv = request->file_priv;
106
107         if (!file_priv)
108                 return;
109
110         spin_lock(&file_priv->mm.lock);
111         list_del(&request->client_list);
112         request->file_priv = NULL;
113         spin_unlock(&file_priv->mm.lock);
114 }
115
116 void i915_gem_retire_noop(struct i915_gem_active *active,
117                           struct drm_i915_gem_request *request)
118 {
119         /* Space left intentionally blank */
120 }
121
122 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
123 {
124         struct i915_gem_active *active, *next;
125
126         lockdep_assert_held(&request->i915->drm.struct_mutex);
127         GEM_BUG_ON(!i915_gem_request_completed(request));
128
129         trace_i915_gem_request_retire(request);
130
131         spin_lock_irq(&request->engine->timeline->lock);
132         list_del_init(&request->link);
133         spin_unlock_irq(&request->engine->timeline->lock);
134
135         /* We know the GPU must have read the request to have
136          * sent us the seqno + interrupt, so use the position
137          * of tail of the request to update the last known position
138          * of the GPU head.
139          *
140          * Note this requires that we are always called in request
141          * completion order.
142          */
143         list_del(&request->ring_link);
144         request->ring->last_retired_head = request->postfix;
145         request->i915->gt.active_requests--;
146
147         /* Walk through the active list, calling retire on each. This allows
148          * objects to track their GPU activity and mark themselves as idle
149          * when their *last* active request is completed (updating state
150          * tracking lists for eviction, active references for GEM, etc).
151          *
152          * As the ->retire() may free the node, we decouple it first and
153          * pass along the auxiliary information (to avoid dereferencing
154          * the node after the callback).
155          */
156         list_for_each_entry_safe(active, next, &request->active_list, link) {
157                 /* In microbenchmarks or focusing upon time inside the kernel,
158                  * we may spend an inordinate amount of time simply handling
159                  * the retirement of requests and processing their callbacks.
160                  * Of which, this loop itself is particularly hot due to the
161                  * cache misses when jumping around the list of i915_gem_active.
162                  * So we try to keep this loop as streamlined as possible and
163                  * also prefetch the next i915_gem_active to try and hide
164                  * the likely cache miss.
165                  */
166                 prefetchw(next);
167
168                 INIT_LIST_HEAD(&active->link);
169                 RCU_INIT_POINTER(active->request, NULL);
170
171                 active->retire(active, request);
172         }
173
174         i915_gem_request_remove_from_client(request);
175
176         if (request->previous_context) {
177                 if (i915.enable_execlists)
178                         intel_lr_context_unpin(request->previous_context,
179                                                request->engine);
180         }
181
182         i915_gem_context_put(request->ctx);
183
184         dma_fence_signal(&request->fence);
185         i915_gem_request_put(request);
186 }
187
188 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
189 {
190         struct intel_engine_cs *engine = req->engine;
191         struct drm_i915_gem_request *tmp;
192
193         lockdep_assert_held(&req->i915->drm.struct_mutex);
194         if (list_empty(&req->link))
195                 return;
196
197         do {
198                 tmp = list_first_entry(&engine->timeline->requests,
199                                        typeof(*tmp), link);
200
201                 i915_gem_request_retire(tmp);
202         } while (tmp != req);
203 }
204
205 static int i915_gem_check_wedge(struct drm_i915_private *dev_priv)
206 {
207         struct i915_gpu_error *error = &dev_priv->gpu_error;
208
209         if (i915_terminally_wedged(error))
210                 return -EIO;
211
212         if (i915_reset_in_progress(error)) {
213                 /* Non-interruptible callers can't handle -EAGAIN, hence return
214                  * -EIO unconditionally for these.
215                  */
216                 if (!dev_priv->mm.interruptible)
217                         return -EIO;
218
219                 return -EAGAIN;
220         }
221
222         return 0;
223 }
224
225 static int i915_gem_init_global_seqno(struct drm_i915_private *i915, u32 seqno)
226 {
227         struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
228         struct intel_engine_cs *engine;
229         enum intel_engine_id id;
230         int ret;
231
232         /* Carefully retire all requests without writing to the rings */
233         ret = i915_gem_wait_for_idle(i915,
234                                      I915_WAIT_INTERRUPTIBLE |
235                                      I915_WAIT_LOCKED);
236         if (ret)
237                 return ret;
238
239         i915_gem_retire_requests(i915);
240         GEM_BUG_ON(i915->gt.active_requests > 1);
241
242         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
243         if (!i915_seqno_passed(seqno, atomic_read(&timeline->next_seqno))) {
244                 while (intel_breadcrumbs_busy(i915))
245                         cond_resched(); /* spin until threads are complete */
246         }
247         atomic_set(&timeline->next_seqno, seqno);
248
249         /* Finally reset hw state */
250         for_each_engine(engine, i915, id)
251                 intel_engine_init_global_seqno(engine, seqno);
252
253         list_for_each_entry(timeline, &i915->gt.timelines, link) {
254                 for_each_engine(engine, i915, id) {
255                         struct intel_timeline *tl = &timeline->engine[id];
256
257                         memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
258                 }
259         }
260
261         return 0;
262 }
263
264 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
265 {
266         struct drm_i915_private *dev_priv = to_i915(dev);
267
268         lockdep_assert_held(&dev_priv->drm.struct_mutex);
269
270         if (seqno == 0)
271                 return -EINVAL;
272
273         /* HWS page needs to be set less than what we
274          * will inject to ring
275          */
276         return i915_gem_init_global_seqno(dev_priv, seqno - 1);
277 }
278
279 static int reserve_global_seqno(struct drm_i915_private *i915)
280 {
281         u32 active_requests = ++i915->gt.active_requests;
282         u32 next_seqno = atomic_read(&i915->gt.global_timeline.next_seqno);
283         int ret;
284
285         /* Reservation is fine until we need to wrap around */
286         if (likely(next_seqno + active_requests > next_seqno))
287                 return 0;
288
289         ret = i915_gem_init_global_seqno(i915, 0);
290         if (ret) {
291                 i915->gt.active_requests--;
292                 return ret;
293         }
294
295         return 0;
296 }
297
298 static u32 __timeline_get_seqno(struct i915_gem_timeline *tl)
299 {
300         /* next_seqno only incremented under a mutex */
301         return ++tl->next_seqno.counter;
302 }
303
304 static u32 timeline_get_seqno(struct i915_gem_timeline *tl)
305 {
306         return atomic_inc_return(&tl->next_seqno);
307 }
308
309 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
310 {
311         struct intel_engine_cs *engine = request->engine;
312         struct intel_timeline *timeline;
313         u32 seqno;
314
315         /* Transfer from per-context onto the global per-engine timeline */
316         timeline = engine->timeline;
317         GEM_BUG_ON(timeline == request->timeline);
318         assert_spin_locked(&timeline->lock);
319
320         seqno = timeline_get_seqno(timeline->common);
321         GEM_BUG_ON(!seqno);
322         GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
323
324         GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno, seqno));
325         request->previous_seqno = timeline->last_submitted_seqno;
326         timeline->last_submitted_seqno = seqno;
327
328         /* We may be recursing from the signal callback of another i915 fence */
329         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
330         request->global_seqno = seqno;
331         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
332                 intel_engine_enable_signaling(request);
333         spin_unlock(&request->lock);
334
335         GEM_BUG_ON(!request->global_seqno);
336         engine->emit_breadcrumb(request,
337                                 request->ring->vaddr + request->postfix);
338
339         spin_lock(&request->timeline->lock);
340         list_move_tail(&request->link, &timeline->requests);
341         spin_unlock(&request->timeline->lock);
342
343         i915_sw_fence_commit(&request->execute);
344 }
345
346 void i915_gem_request_submit(struct drm_i915_gem_request *request)
347 {
348         struct intel_engine_cs *engine = request->engine;
349         unsigned long flags;
350
351         /* Will be called from irq-context when using foreign fences. */
352         spin_lock_irqsave(&engine->timeline->lock, flags);
353
354         __i915_gem_request_submit(request);
355
356         spin_unlock_irqrestore(&engine->timeline->lock, flags);
357 }
358
359 static int __i915_sw_fence_call
360 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
361 {
362         if (state == FENCE_COMPLETE) {
363                 struct drm_i915_gem_request *request =
364                         container_of(fence, typeof(*request), submit);
365
366                 request->engine->submit_request(request);
367         }
368
369         return NOTIFY_DONE;
370 }
371
372 static int __i915_sw_fence_call
373 execute_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
374 {
375         return NOTIFY_DONE;
376 }
377
378 /**
379  * i915_gem_request_alloc - allocate a request structure
380  *
381  * @engine: engine that we wish to issue the request on.
382  * @ctx: context that the request will be associated with.
383  *       This can be NULL if the request is not directly related to
384  *       any specific user context, in which case this function will
385  *       choose an appropriate context to use.
386  *
387  * Returns a pointer to the allocated request if successful,
388  * or an error code if not.
389  */
390 struct drm_i915_gem_request *
391 i915_gem_request_alloc(struct intel_engine_cs *engine,
392                        struct i915_gem_context *ctx)
393 {
394         struct drm_i915_private *dev_priv = engine->i915;
395         struct drm_i915_gem_request *req;
396         int ret;
397
398         lockdep_assert_held(&dev_priv->drm.struct_mutex);
399
400         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
401          * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
402          * and restart.
403          */
404         ret = i915_gem_check_wedge(dev_priv);
405         if (ret)
406                 return ERR_PTR(ret);
407
408         ret = reserve_global_seqno(dev_priv);
409         if (ret)
410                 return ERR_PTR(ret);
411
412         /* Move the oldest request to the slab-cache (if not in use!) */
413         req = list_first_entry_or_null(&engine->timeline->requests,
414                                        typeof(*req), link);
415         if (req && __i915_gem_request_completed(req))
416                 i915_gem_request_retire(req);
417
418         /* Beware: Dragons be flying overhead.
419          *
420          * We use RCU to look up requests in flight. The lookups may
421          * race with the request being allocated from the slab freelist.
422          * That is the request we are writing to here, may be in the process
423          * of being read by __i915_gem_active_get_rcu(). As such,
424          * we have to be very careful when overwriting the contents. During
425          * the RCU lookup, we change chase the request->engine pointer,
426          * read the request->global_seqno and increment the reference count.
427          *
428          * The reference count is incremented atomically. If it is zero,
429          * the lookup knows the request is unallocated and complete. Otherwise,
430          * it is either still in use, or has been reallocated and reset
431          * with dma_fence_init(). This increment is safe for release as we
432          * check that the request we have a reference to and matches the active
433          * request.
434          *
435          * Before we increment the refcount, we chase the request->engine
436          * pointer. We must not call kmem_cache_zalloc() or else we set
437          * that pointer to NULL and cause a crash during the lookup. If
438          * we see the request is completed (based on the value of the
439          * old engine and seqno), the lookup is complete and reports NULL.
440          * If we decide the request is not completed (new engine or seqno),
441          * then we grab a reference and double check that it is still the
442          * active request - which it won't be and restart the lookup.
443          *
444          * Do not use kmem_cache_zalloc() here!
445          */
446         req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
447         if (!req) {
448                 ret = -ENOMEM;
449                 goto err_unreserve;
450         }
451
452         req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
453         GEM_BUG_ON(req->timeline == engine->timeline);
454
455         spin_lock_init(&req->lock);
456         dma_fence_init(&req->fence,
457                        &i915_fence_ops,
458                        &req->lock,
459                        req->timeline->fence_context,
460                        __timeline_get_seqno(req->timeline->common));
461
462         i915_sw_fence_init(&req->submit, submit_notify);
463         i915_sw_fence_init(&req->execute, execute_notify);
464         /* Ensure that the execute fence completes after the submit fence -
465          * as we complete the execute fence from within the submit fence
466          * callback, its completion would otherwise be visible first.
467          */
468         i915_sw_fence_await_sw_fence(&req->execute, &req->submit, &req->execq);
469
470         INIT_LIST_HEAD(&req->active_list);
471         req->i915 = dev_priv;
472         req->engine = engine;
473         req->ctx = i915_gem_context_get(ctx);
474
475         /* No zalloc, must clear what we need by hand */
476         req->global_seqno = 0;
477         req->previous_context = NULL;
478         req->file_priv = NULL;
479         req->batch = NULL;
480
481         /*
482          * Reserve space in the ring buffer for all the commands required to
483          * eventually emit this request. This is to guarantee that the
484          * i915_add_request() call can't fail. Note that the reserve may need
485          * to be redone if the request is not actually submitted straight
486          * away, e.g. because a GPU scheduler has deferred it.
487          */
488         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
489         GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
490
491         if (i915.enable_execlists)
492                 ret = intel_logical_ring_alloc_request_extras(req);
493         else
494                 ret = intel_ring_alloc_request_extras(req);
495         if (ret)
496                 goto err_ctx;
497
498         /* Record the position of the start of the request so that
499          * should we detect the updated seqno part-way through the
500          * GPU processing the request, we never over-estimate the
501          * position of the head.
502          */
503         req->head = req->ring->tail;
504
505         return req;
506
507 err_ctx:
508         i915_gem_context_put(ctx);
509         kmem_cache_free(dev_priv->requests, req);
510 err_unreserve:
511         dev_priv->gt.active_requests--;
512         return ERR_PTR(ret);
513 }
514
515 static int
516 i915_gem_request_await_request(struct drm_i915_gem_request *to,
517                                struct drm_i915_gem_request *from)
518 {
519         int ret;
520
521         GEM_BUG_ON(to == from);
522
523         if (to->timeline == from->timeline)
524                 return 0;
525
526         if (to->engine == from->engine) {
527                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
528                                                        &from->submit,
529                                                        GFP_KERNEL);
530                 return ret < 0 ? ret : 0;
531         }
532
533         if (!from->global_seqno) {
534                 ret = i915_sw_fence_await_dma_fence(&to->submit,
535                                                     &from->fence, 0,
536                                                     GFP_KERNEL);
537                 return ret < 0 ? ret : 0;
538         }
539
540         if (from->global_seqno <= to->timeline->sync_seqno[from->engine->id])
541                 return 0;
542
543         trace_i915_gem_ring_sync_to(to, from);
544         if (!i915.semaphores) {
545                 if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
546                         ret = i915_sw_fence_await_dma_fence(&to->submit,
547                                                             &from->fence, 0,
548                                                             GFP_KERNEL);
549                         if (ret < 0)
550                                 return ret;
551                 }
552         } else {
553                 ret = to->engine->semaphore.sync_to(to, from);
554                 if (ret)
555                         return ret;
556         }
557
558         to->timeline->sync_seqno[from->engine->id] = from->global_seqno;
559         return 0;
560 }
561
562 int
563 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
564                                  struct dma_fence *fence)
565 {
566         struct dma_fence_array *array;
567         int ret;
568         int i;
569
570         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
571                 return 0;
572
573         if (dma_fence_is_i915(fence))
574                 return i915_gem_request_await_request(req, to_request(fence));
575
576         if (!dma_fence_is_array(fence)) {
577                 ret = i915_sw_fence_await_dma_fence(&req->submit,
578                                                     fence, I915_FENCE_TIMEOUT,
579                                                     GFP_KERNEL);
580                 return ret < 0 ? ret : 0;
581         }
582
583         /* Note that if the fence-array was created in signal-on-any mode,
584          * we should *not* decompose it into its individual fences. However,
585          * we don't currently store which mode the fence-array is operating
586          * in. Fortunately, the only user of signal-on-any is private to
587          * amdgpu and we should not see any incoming fence-array from
588          * sync-file being in signal-on-any mode.
589          */
590
591         array = to_dma_fence_array(fence);
592         for (i = 0; i < array->num_fences; i++) {
593                 struct dma_fence *child = array->fences[i];
594
595                 if (dma_fence_is_i915(child))
596                         ret = i915_gem_request_await_request(req,
597                                                              to_request(child));
598                 else
599                         ret = i915_sw_fence_await_dma_fence(&req->submit,
600                                                             child, I915_FENCE_TIMEOUT,
601                                                             GFP_KERNEL);
602                 if (ret < 0)
603                         return ret;
604         }
605
606         return 0;
607 }
608
609 /**
610  * i915_gem_request_await_object - set this request to (async) wait upon a bo
611  *
612  * @to: request we are wishing to use
613  * @obj: object which may be in use on another ring.
614  *
615  * This code is meant to abstract object synchronization with the GPU.
616  * Conceptually we serialise writes between engines inside the GPU.
617  * We only allow one engine to write into a buffer at any time, but
618  * multiple readers. To ensure each has a coherent view of memory, we must:
619  *
620  * - If there is an outstanding write request to the object, the new
621  *   request must wait for it to complete (either CPU or in hw, requests
622  *   on the same ring will be naturally ordered).
623  *
624  * - If we are a write request (pending_write_domain is set), the new
625  *   request must wait for outstanding read requests to complete.
626  *
627  * Returns 0 if successful, else propagates up the lower layer error.
628  */
629 int
630 i915_gem_request_await_object(struct drm_i915_gem_request *to,
631                               struct drm_i915_gem_object *obj,
632                               bool write)
633 {
634         struct dma_fence *excl;
635         int ret = 0;
636
637         if (write) {
638                 struct dma_fence **shared;
639                 unsigned int count, i;
640
641                 ret = reservation_object_get_fences_rcu(obj->resv,
642                                                         &excl, &count, &shared);
643                 if (ret)
644                         return ret;
645
646                 for (i = 0; i < count; i++) {
647                         ret = i915_gem_request_await_dma_fence(to, shared[i]);
648                         if (ret)
649                                 break;
650
651                         dma_fence_put(shared[i]);
652                 }
653
654                 for (; i < count; i++)
655                         dma_fence_put(shared[i]);
656                 kfree(shared);
657         } else {
658                 excl = reservation_object_get_excl_rcu(obj->resv);
659         }
660
661         if (excl) {
662                 if (ret == 0)
663                         ret = i915_gem_request_await_dma_fence(to, excl);
664
665                 dma_fence_put(excl);
666         }
667
668         return ret;
669 }
670
671 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
672 {
673         struct drm_i915_private *dev_priv = engine->i915;
674
675         if (dev_priv->gt.awake)
676                 return;
677
678         intel_runtime_pm_get_noresume(dev_priv);
679         dev_priv->gt.awake = true;
680
681         intel_enable_gt_powersave(dev_priv);
682         i915_update_gfx_val(dev_priv);
683         if (INTEL_GEN(dev_priv) >= 6)
684                 gen6_rps_busy(dev_priv);
685
686         queue_delayed_work(dev_priv->wq,
687                            &dev_priv->gt.retire_work,
688                            round_jiffies_up_relative(HZ));
689 }
690
691 /*
692  * NB: This function is not allowed to fail. Doing so would mean the the
693  * request is not being tracked for completion but the work itself is
694  * going to happen on the hardware. This would be a Bad Thing(tm).
695  */
696 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
697 {
698         struct intel_engine_cs *engine = request->engine;
699         struct intel_ring *ring = request->ring;
700         struct intel_timeline *timeline = request->timeline;
701         struct drm_i915_gem_request *prev;
702         int err;
703
704         lockdep_assert_held(&request->i915->drm.struct_mutex);
705         trace_i915_gem_request_add(request);
706
707         /*
708          * To ensure that this call will not fail, space for its emissions
709          * should already have been reserved in the ring buffer. Let the ring
710          * know that it is time to use that space up.
711          */
712         request->reserved_space = 0;
713
714         /*
715          * Emit any outstanding flushes - execbuf can fail to emit the flush
716          * after having emitted the batchbuffer command. Hence we need to fix
717          * things up similar to emitting the lazy request. The difference here
718          * is that the flush _must_ happen before the next request, no matter
719          * what.
720          */
721         if (flush_caches) {
722                 err = engine->emit_flush(request, EMIT_FLUSH);
723
724                 /* Not allowed to fail! */
725                 WARN(err, "engine->emit_flush() failed: %d!\n", err);
726         }
727
728         /* Record the position of the start of the breadcrumb so that
729          * should we detect the updated seqno part-way through the
730          * GPU processing the request, we never over-estimate the
731          * position of the ring's HEAD.
732          */
733         err = intel_ring_begin(request, engine->emit_breadcrumb_sz);
734         GEM_BUG_ON(err);
735         request->postfix = ring->tail;
736         ring->tail += engine->emit_breadcrumb_sz * sizeof(u32);
737
738         /* Seal the request and mark it as pending execution. Note that
739          * we may inspect this state, without holding any locks, during
740          * hangcheck. Hence we apply the barrier to ensure that we do not
741          * see a more recent value in the hws than we are tracking.
742          */
743
744         prev = i915_gem_active_raw(&timeline->last_request,
745                                    &request->i915->drm.struct_mutex);
746         if (prev)
747                 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
748                                              &request->submitq);
749
750         spin_lock_irq(&timeline->lock);
751         list_add_tail(&request->link, &timeline->requests);
752         spin_unlock_irq(&timeline->lock);
753
754         GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
755                                      request->fence.seqno));
756
757         timeline->last_submitted_seqno = request->fence.seqno;
758         i915_gem_active_set(&timeline->last_request, request);
759
760         list_add_tail(&request->ring_link, &ring->request_list);
761         request->emitted_jiffies = jiffies;
762
763         i915_gem_mark_busy(engine);
764
765         local_bh_disable();
766         i915_sw_fence_commit(&request->submit);
767         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
768 }
769
770 static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
771 {
772         unsigned long flags;
773
774         spin_lock_irqsave(&q->lock, flags);
775         if (list_empty(&wait->task_list))
776                 __add_wait_queue(q, wait);
777         spin_unlock_irqrestore(&q->lock, flags);
778 }
779
780 static unsigned long local_clock_us(unsigned int *cpu)
781 {
782         unsigned long t;
783
784         /* Cheaply and approximately convert from nanoseconds to microseconds.
785          * The result and subsequent calculations are also defined in the same
786          * approximate microseconds units. The principal source of timing
787          * error here is from the simple truncation.
788          *
789          * Note that local_clock() is only defined wrt to the current CPU;
790          * the comparisons are no longer valid if we switch CPUs. Instead of
791          * blocking preemption for the entire busywait, we can detect the CPU
792          * switch and use that as indicator of system load and a reason to
793          * stop busywaiting, see busywait_stop().
794          */
795         *cpu = get_cpu();
796         t = local_clock() >> 10;
797         put_cpu();
798
799         return t;
800 }
801
802 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
803 {
804         unsigned int this_cpu;
805
806         if (time_after(local_clock_us(&this_cpu), timeout))
807                 return true;
808
809         return this_cpu != cpu;
810 }
811
812 bool __i915_spin_request(const struct drm_i915_gem_request *req,
813                          int state, unsigned long timeout_us)
814 {
815         unsigned int cpu;
816
817         /* When waiting for high frequency requests, e.g. during synchronous
818          * rendering split between the CPU and GPU, the finite amount of time
819          * required to set up the irq and wait upon it limits the response
820          * rate. By busywaiting on the request completion for a short while we
821          * can service the high frequency waits as quick as possible. However,
822          * if it is a slow request, we want to sleep as quickly as possible.
823          * The tradeoff between waiting and sleeping is roughly the time it
824          * takes to sleep on a request, on the order of a microsecond.
825          */
826
827         timeout_us += local_clock_us(&cpu);
828         do {
829                 if (__i915_gem_request_completed(req))
830                         return true;
831
832                 if (signal_pending_state(state, current))
833                         break;
834
835                 if (busywait_stop(timeout_us, cpu))
836                         break;
837
838                 cpu_relax_lowlatency();
839         } while (!need_resched());
840
841         return false;
842 }
843
844 static long
845 __i915_request_wait_for_execute(struct drm_i915_gem_request *request,
846                                 unsigned int flags,
847                                 long timeout)
848 {
849         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
850                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
851         wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
852         DEFINE_WAIT(reset);
853         DEFINE_WAIT(wait);
854
855         if (flags & I915_WAIT_LOCKED)
856                 add_wait_queue(q, &reset);
857
858         do {
859                 prepare_to_wait(&request->execute.wait, &wait, state);
860
861                 if (i915_sw_fence_done(&request->execute))
862                         break;
863
864                 if (flags & I915_WAIT_LOCKED &&
865                     i915_reset_in_progress(&request->i915->gpu_error)) {
866                         __set_current_state(TASK_RUNNING);
867                         i915_reset(request->i915);
868                         reset_wait_queue(q, &reset);
869                         continue;
870                 }
871
872                 if (signal_pending_state(state, current)) {
873                         timeout = -ERESTARTSYS;
874                         break;
875                 }
876
877                 timeout = io_schedule_timeout(timeout);
878         } while (timeout);
879         finish_wait(&request->execute.wait, &wait);
880
881         if (flags & I915_WAIT_LOCKED)
882                 remove_wait_queue(q, &reset);
883
884         return timeout;
885 }
886
887 /**
888  * i915_wait_request - wait until execution of request has finished
889  * @req: the request to wait upon
890  * @flags: how to wait
891  * @timeout: how long to wait in jiffies
892  *
893  * i915_wait_request() waits for the request to be completed, for a
894  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
895  * unbounded wait).
896  *
897  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
898  * in via the flags, and vice versa if the struct_mutex is not held, the caller
899  * must not specify that the wait is locked.
900  *
901  * Returns the remaining time (in jiffies) if the request completed, which may
902  * be zero or -ETIME if the request is unfinished after the timeout expires.
903  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
904  * pending before the request completes.
905  */
906 long i915_wait_request(struct drm_i915_gem_request *req,
907                        unsigned int flags,
908                        long timeout)
909 {
910         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
911                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
912         DEFINE_WAIT(reset);
913         struct intel_wait wait;
914
915         might_sleep();
916 #if IS_ENABLED(CONFIG_LOCKDEP)
917         GEM_BUG_ON(debug_locks &&
918                    !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
919                    !!(flags & I915_WAIT_LOCKED));
920 #endif
921         GEM_BUG_ON(timeout < 0);
922
923         if (i915_gem_request_completed(req))
924                 return timeout;
925
926         if (!timeout)
927                 return -ETIME;
928
929         trace_i915_gem_request_wait_begin(req);
930
931         if (!i915_sw_fence_done(&req->execute)) {
932                 timeout = __i915_request_wait_for_execute(req, flags, timeout);
933                 if (timeout < 0)
934                         goto complete;
935
936                 GEM_BUG_ON(!i915_sw_fence_done(&req->execute));
937         }
938         GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
939         GEM_BUG_ON(!req->global_seqno);
940
941         /* Optimistic short spin before touching IRQs */
942         if (i915_spin_request(req, state, 5))
943                 goto complete;
944
945         set_current_state(state);
946         if (flags & I915_WAIT_LOCKED)
947                 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
948
949         intel_wait_init(&wait, req->global_seqno);
950         if (intel_engine_add_wait(req->engine, &wait))
951                 /* In order to check that we haven't missed the interrupt
952                  * as we enabled it, we need to kick ourselves to do a
953                  * coherent check on the seqno before we sleep.
954                  */
955                 goto wakeup;
956
957         for (;;) {
958                 if (signal_pending_state(state, current)) {
959                         timeout = -ERESTARTSYS;
960                         break;
961                 }
962
963                 if (!timeout) {
964                         timeout = -ETIME;
965                         break;
966                 }
967
968                 timeout = io_schedule_timeout(timeout);
969
970                 if (intel_wait_complete(&wait))
971                         break;
972
973                 set_current_state(state);
974
975 wakeup:
976                 /* Carefully check if the request is complete, giving time
977                  * for the seqno to be visible following the interrupt.
978                  * We also have to check in case we are kicked by the GPU
979                  * reset in order to drop the struct_mutex.
980                  */
981                 if (__i915_request_irq_complete(req))
982                         break;
983
984                 /* If the GPU is hung, and we hold the lock, reset the GPU
985                  * and then check for completion. On a full reset, the engine's
986                  * HW seqno will be advanced passed us and we are complete.
987                  * If we do a partial reset, we have to wait for the GPU to
988                  * resume and update the breadcrumb.
989                  *
990                  * If we don't hold the mutex, we can just wait for the worker
991                  * to come along and update the breadcrumb (either directly
992                  * itself, or indirectly by recovering the GPU).
993                  */
994                 if (flags & I915_WAIT_LOCKED &&
995                     i915_reset_in_progress(&req->i915->gpu_error)) {
996                         __set_current_state(TASK_RUNNING);
997                         i915_reset(req->i915);
998                         reset_wait_queue(&req->i915->gpu_error.wait_queue,
999                                          &reset);
1000                         continue;
1001                 }
1002
1003                 /* Only spin if we know the GPU is processing this request */
1004                 if (i915_spin_request(req, state, 2))
1005                         break;
1006         }
1007
1008         intel_engine_remove_wait(req->engine, &wait);
1009         if (flags & I915_WAIT_LOCKED)
1010                 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1011         __set_current_state(TASK_RUNNING);
1012
1013 complete:
1014         trace_i915_gem_request_wait_end(req);
1015
1016         return timeout;
1017 }
1018
1019 static void engine_retire_requests(struct intel_engine_cs *engine)
1020 {
1021         struct drm_i915_gem_request *request, *next;
1022
1023         list_for_each_entry_safe(request, next,
1024                                  &engine->timeline->requests, link) {
1025                 if (!__i915_gem_request_completed(request))
1026                         return;
1027
1028                 i915_gem_request_retire(request);
1029         }
1030 }
1031
1032 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1033 {
1034         struct intel_engine_cs *engine;
1035         enum intel_engine_id id;
1036
1037         lockdep_assert_held(&dev_priv->drm.struct_mutex);
1038
1039         if (!dev_priv->gt.active_requests)
1040                 return;
1041
1042         GEM_BUG_ON(!dev_priv->gt.awake);
1043
1044         for_each_engine(engine, dev_priv, id)
1045                 engine_retire_requests(engine);
1046
1047         if (!dev_priv->gt.active_requests)
1048                 mod_delayed_work(dev_priv->wq,
1049                                  &dev_priv->gt.idle_work,
1050                                  msecs_to_jiffies(100));
1051 }