]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
drm/i915: Avoid compiler warning for maybe unused gu_misc_iir
[linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 static const u32 hpd_gen11[HPD_NUM_PINS] = {
119         [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
120         [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
121         [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
122         [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
123 };
124
125 static const u32 hpd_icp[HPD_NUM_PINS] = {
126         [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
127         [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
128         [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
129         [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
130         [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
131         [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
132 };
133
134 /* IIR can theoretically queue up two events. Be paranoid. */
135 #define GEN8_IRQ_RESET_NDX(type, which) do { \
136         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
137         POSTING_READ(GEN8_##type##_IMR(which)); \
138         I915_WRITE(GEN8_##type##_IER(which), 0); \
139         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
140         POSTING_READ(GEN8_##type##_IIR(which)); \
141         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
142         POSTING_READ(GEN8_##type##_IIR(which)); \
143 } while (0)
144
145 #define GEN3_IRQ_RESET(type) do { \
146         I915_WRITE(type##IMR, 0xffffffff); \
147         POSTING_READ(type##IMR); \
148         I915_WRITE(type##IER, 0); \
149         I915_WRITE(type##IIR, 0xffffffff); \
150         POSTING_READ(type##IIR); \
151         I915_WRITE(type##IIR, 0xffffffff); \
152         POSTING_READ(type##IIR); \
153 } while (0)
154
155 #define GEN2_IRQ_RESET(type) do { \
156         I915_WRITE16(type##IMR, 0xffff); \
157         POSTING_READ16(type##IMR); \
158         I915_WRITE16(type##IER, 0); \
159         I915_WRITE16(type##IIR, 0xffff); \
160         POSTING_READ16(type##IIR); \
161         I915_WRITE16(type##IIR, 0xffff); \
162         POSTING_READ16(type##IIR); \
163 } while (0)
164
165 /*
166  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
167  */
168 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
169                                     i915_reg_t reg)
170 {
171         u32 val = I915_READ(reg);
172
173         if (val == 0)
174                 return;
175
176         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177              i915_mmio_reg_offset(reg), val);
178         I915_WRITE(reg, 0xffffffff);
179         POSTING_READ(reg);
180         I915_WRITE(reg, 0xffffffff);
181         POSTING_READ(reg);
182 }
183
184 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
185                                     i915_reg_t reg)
186 {
187         u16 val = I915_READ16(reg);
188
189         if (val == 0)
190                 return;
191
192         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
193              i915_mmio_reg_offset(reg), val);
194         I915_WRITE16(reg, 0xffff);
195         POSTING_READ16(reg);
196         I915_WRITE16(reg, 0xffff);
197         POSTING_READ16(reg);
198 }
199
200 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
201         gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
202         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
203         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
204         POSTING_READ(GEN8_##type##_IMR(which)); \
205 } while (0)
206
207 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
208         gen3_assert_iir_is_zero(dev_priv, type##IIR); \
209         I915_WRITE(type##IER, (ier_val)); \
210         I915_WRITE(type##IMR, (imr_val)); \
211         POSTING_READ(type##IMR); \
212 } while (0)
213
214 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
215         gen2_assert_iir_is_zero(dev_priv, type##IIR); \
216         I915_WRITE16(type##IER, (ier_val)); \
217         I915_WRITE16(type##IMR, (imr_val)); \
218         POSTING_READ16(type##IMR); \
219 } while (0)
220
221 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
222 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
223
224 /* For display hotplug interrupt */
225 static inline void
226 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
227                                      uint32_t mask,
228                                      uint32_t bits)
229 {
230         uint32_t val;
231
232         lockdep_assert_held(&dev_priv->irq_lock);
233         WARN_ON(bits & ~mask);
234
235         val = I915_READ(PORT_HOTPLUG_EN);
236         val &= ~mask;
237         val |= bits;
238         I915_WRITE(PORT_HOTPLUG_EN, val);
239 }
240
241 /**
242  * i915_hotplug_interrupt_update - update hotplug interrupt enable
243  * @dev_priv: driver private
244  * @mask: bits to update
245  * @bits: bits to enable
246  * NOTE: the HPD enable bits are modified both inside and outside
247  * of an interrupt context. To avoid that read-modify-write cycles
248  * interfer, these bits are protected by a spinlock. Since this
249  * function is usually not called from a context where the lock is
250  * held already, this function acquires the lock itself. A non-locking
251  * version is also available.
252  */
253 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
254                                    uint32_t mask,
255                                    uint32_t bits)
256 {
257         spin_lock_irq(&dev_priv->irq_lock);
258         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
259         spin_unlock_irq(&dev_priv->irq_lock);
260 }
261
262 static u32
263 gen11_gt_engine_identity(struct drm_i915_private * const i915,
264                          const unsigned int bank, const unsigned int bit);
265
266 static bool gen11_reset_one_iir(struct drm_i915_private * const i915,
267                                 const unsigned int bank,
268                                 const unsigned int bit)
269 {
270         void __iomem * const regs = i915->regs;
271         u32 dw;
272
273         lockdep_assert_held(&i915->irq_lock);
274
275         dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
276         if (dw & BIT(bit)) {
277                 /*
278                  * According to the BSpec, DW_IIR bits cannot be cleared without
279                  * first servicing the Selector & Shared IIR registers.
280                  */
281                 gen11_gt_engine_identity(i915, bank, bit);
282
283                 /*
284                  * We locked GT INT DW by reading it. If we want to (try
285                  * to) recover from this succesfully, we need to clear
286                  * our bit, otherwise we are locking the register for
287                  * everybody.
288                  */
289                 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
290
291                 return true;
292         }
293
294         return false;
295 }
296
297 /**
298  * ilk_update_display_irq - update DEIMR
299  * @dev_priv: driver private
300  * @interrupt_mask: mask of interrupt bits to update
301  * @enabled_irq_mask: mask of interrupt bits to enable
302  */
303 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
304                             uint32_t interrupt_mask,
305                             uint32_t enabled_irq_mask)
306 {
307         uint32_t new_val;
308
309         lockdep_assert_held(&dev_priv->irq_lock);
310
311         WARN_ON(enabled_irq_mask & ~interrupt_mask);
312
313         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
314                 return;
315
316         new_val = dev_priv->irq_mask;
317         new_val &= ~interrupt_mask;
318         new_val |= (~enabled_irq_mask & interrupt_mask);
319
320         if (new_val != dev_priv->irq_mask) {
321                 dev_priv->irq_mask = new_val;
322                 I915_WRITE(DEIMR, dev_priv->irq_mask);
323                 POSTING_READ(DEIMR);
324         }
325 }
326
327 /**
328  * ilk_update_gt_irq - update GTIMR
329  * @dev_priv: driver private
330  * @interrupt_mask: mask of interrupt bits to update
331  * @enabled_irq_mask: mask of interrupt bits to enable
332  */
333 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
334                               uint32_t interrupt_mask,
335                               uint32_t enabled_irq_mask)
336 {
337         lockdep_assert_held(&dev_priv->irq_lock);
338
339         WARN_ON(enabled_irq_mask & ~interrupt_mask);
340
341         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
342                 return;
343
344         dev_priv->gt_irq_mask &= ~interrupt_mask;
345         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
346         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
347 }
348
349 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
350 {
351         ilk_update_gt_irq(dev_priv, mask, mask);
352         POSTING_READ_FW(GTIMR);
353 }
354
355 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
356 {
357         ilk_update_gt_irq(dev_priv, mask, 0);
358 }
359
360 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
361 {
362         WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
363
364         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
365 }
366
367 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
368 {
369         if (INTEL_GEN(dev_priv) >= 11)
370                 return GEN11_GPM_WGBOXPERF_INTR_MASK;
371         else if (INTEL_GEN(dev_priv) >= 8)
372                 return GEN8_GT_IMR(2);
373         else
374                 return GEN6_PMIMR;
375 }
376
377 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
378 {
379         if (INTEL_GEN(dev_priv) >= 11)
380                 return GEN11_GPM_WGBOXPERF_INTR_ENABLE;
381         else if (INTEL_GEN(dev_priv) >= 8)
382                 return GEN8_GT_IER(2);
383         else
384                 return GEN6_PMIER;
385 }
386
387 /**
388  * snb_update_pm_irq - update GEN6_PMIMR
389  * @dev_priv: driver private
390  * @interrupt_mask: mask of interrupt bits to update
391  * @enabled_irq_mask: mask of interrupt bits to enable
392  */
393 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
394                               uint32_t interrupt_mask,
395                               uint32_t enabled_irq_mask)
396 {
397         uint32_t new_val;
398
399         WARN_ON(enabled_irq_mask & ~interrupt_mask);
400
401         lockdep_assert_held(&dev_priv->irq_lock);
402
403         new_val = dev_priv->pm_imr;
404         new_val &= ~interrupt_mask;
405         new_val |= (~enabled_irq_mask & interrupt_mask);
406
407         if (new_val != dev_priv->pm_imr) {
408                 dev_priv->pm_imr = new_val;
409                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
410                 POSTING_READ(gen6_pm_imr(dev_priv));
411         }
412 }
413
414 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
415 {
416         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
417                 return;
418
419         snb_update_pm_irq(dev_priv, mask, mask);
420 }
421
422 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
423 {
424         snb_update_pm_irq(dev_priv, mask, 0);
425 }
426
427 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
428 {
429         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
430                 return;
431
432         __gen6_mask_pm_irq(dev_priv, mask);
433 }
434
435 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
436 {
437         i915_reg_t reg = gen6_pm_iir(dev_priv);
438
439         lockdep_assert_held(&dev_priv->irq_lock);
440
441         I915_WRITE(reg, reset_mask);
442         I915_WRITE(reg, reset_mask);
443         POSTING_READ(reg);
444 }
445
446 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
447 {
448         lockdep_assert_held(&dev_priv->irq_lock);
449
450         dev_priv->pm_ier |= enable_mask;
451         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
452         gen6_unmask_pm_irq(dev_priv, enable_mask);
453         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
454 }
455
456 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
457 {
458         lockdep_assert_held(&dev_priv->irq_lock);
459
460         dev_priv->pm_ier &= ~disable_mask;
461         __gen6_mask_pm_irq(dev_priv, disable_mask);
462         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
463         /* though a barrier is missing here, but don't really need a one */
464 }
465
466 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
467 {
468         spin_lock_irq(&dev_priv->irq_lock);
469
470         while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
471                 ;
472
473         dev_priv->gt_pm.rps.pm_iir = 0;
474
475         spin_unlock_irq(&dev_priv->irq_lock);
476 }
477
478 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
479 {
480         spin_lock_irq(&dev_priv->irq_lock);
481         gen6_reset_pm_iir(dev_priv, GEN6_PM_RPS_EVENTS);
482         dev_priv->gt_pm.rps.pm_iir = 0;
483         spin_unlock_irq(&dev_priv->irq_lock);
484 }
485
486 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
487 {
488         struct intel_rps *rps = &dev_priv->gt_pm.rps;
489
490         if (READ_ONCE(rps->interrupts_enabled))
491                 return;
492
493         spin_lock_irq(&dev_priv->irq_lock);
494         WARN_ON_ONCE(rps->pm_iir);
495
496         if (INTEL_GEN(dev_priv) >= 11)
497                 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
498         else
499                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
500
501         rps->interrupts_enabled = true;
502         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
503
504         spin_unlock_irq(&dev_priv->irq_lock);
505 }
506
507 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
508 {
509         struct intel_rps *rps = &dev_priv->gt_pm.rps;
510
511         if (!READ_ONCE(rps->interrupts_enabled))
512                 return;
513
514         spin_lock_irq(&dev_priv->irq_lock);
515         rps->interrupts_enabled = false;
516
517         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
518
519         gen6_disable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
520
521         spin_unlock_irq(&dev_priv->irq_lock);
522         synchronize_irq(dev_priv->drm.irq);
523
524         /* Now that we will not be generating any more work, flush any
525          * outstanding tasks. As we are called on the RPS idle path,
526          * we will reset the GPU to minimum frequencies, so the current
527          * state of the worker can be discarded.
528          */
529         cancel_work_sync(&rps->work);
530         if (INTEL_GEN(dev_priv) >= 11)
531                 gen11_reset_rps_interrupts(dev_priv);
532         else
533                 gen6_reset_rps_interrupts(dev_priv);
534 }
535
536 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
537 {
538         assert_rpm_wakelock_held(dev_priv);
539
540         spin_lock_irq(&dev_priv->irq_lock);
541         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
542         spin_unlock_irq(&dev_priv->irq_lock);
543 }
544
545 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
546 {
547         assert_rpm_wakelock_held(dev_priv);
548
549         spin_lock_irq(&dev_priv->irq_lock);
550         if (!dev_priv->guc.interrupts_enabled) {
551                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
552                                        dev_priv->pm_guc_events);
553                 dev_priv->guc.interrupts_enabled = true;
554                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
555         }
556         spin_unlock_irq(&dev_priv->irq_lock);
557 }
558
559 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
560 {
561         assert_rpm_wakelock_held(dev_priv);
562
563         spin_lock_irq(&dev_priv->irq_lock);
564         dev_priv->guc.interrupts_enabled = false;
565
566         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
567
568         spin_unlock_irq(&dev_priv->irq_lock);
569         synchronize_irq(dev_priv->drm.irq);
570
571         gen9_reset_guc_interrupts(dev_priv);
572 }
573
574 /**
575  * bdw_update_port_irq - update DE port interrupt
576  * @dev_priv: driver private
577  * @interrupt_mask: mask of interrupt bits to update
578  * @enabled_irq_mask: mask of interrupt bits to enable
579  */
580 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
581                                 uint32_t interrupt_mask,
582                                 uint32_t enabled_irq_mask)
583 {
584         uint32_t new_val;
585         uint32_t old_val;
586
587         lockdep_assert_held(&dev_priv->irq_lock);
588
589         WARN_ON(enabled_irq_mask & ~interrupt_mask);
590
591         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
592                 return;
593
594         old_val = I915_READ(GEN8_DE_PORT_IMR);
595
596         new_val = old_val;
597         new_val &= ~interrupt_mask;
598         new_val |= (~enabled_irq_mask & interrupt_mask);
599
600         if (new_val != old_val) {
601                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
602                 POSTING_READ(GEN8_DE_PORT_IMR);
603         }
604 }
605
606 /**
607  * bdw_update_pipe_irq - update DE pipe interrupt
608  * @dev_priv: driver private
609  * @pipe: pipe whose interrupt to update
610  * @interrupt_mask: mask of interrupt bits to update
611  * @enabled_irq_mask: mask of interrupt bits to enable
612  */
613 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
614                          enum pipe pipe,
615                          uint32_t interrupt_mask,
616                          uint32_t enabled_irq_mask)
617 {
618         uint32_t new_val;
619
620         lockdep_assert_held(&dev_priv->irq_lock);
621
622         WARN_ON(enabled_irq_mask & ~interrupt_mask);
623
624         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
625                 return;
626
627         new_val = dev_priv->de_irq_mask[pipe];
628         new_val &= ~interrupt_mask;
629         new_val |= (~enabled_irq_mask & interrupt_mask);
630
631         if (new_val != dev_priv->de_irq_mask[pipe]) {
632                 dev_priv->de_irq_mask[pipe] = new_val;
633                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
634                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
635         }
636 }
637
638 /**
639  * ibx_display_interrupt_update - update SDEIMR
640  * @dev_priv: driver private
641  * @interrupt_mask: mask of interrupt bits to update
642  * @enabled_irq_mask: mask of interrupt bits to enable
643  */
644 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
645                                   uint32_t interrupt_mask,
646                                   uint32_t enabled_irq_mask)
647 {
648         uint32_t sdeimr = I915_READ(SDEIMR);
649         sdeimr &= ~interrupt_mask;
650         sdeimr |= (~enabled_irq_mask & interrupt_mask);
651
652         WARN_ON(enabled_irq_mask & ~interrupt_mask);
653
654         lockdep_assert_held(&dev_priv->irq_lock);
655
656         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
657                 return;
658
659         I915_WRITE(SDEIMR, sdeimr);
660         POSTING_READ(SDEIMR);
661 }
662
663 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
664                               enum pipe pipe)
665 {
666         u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
667         u32 enable_mask = status_mask << 16;
668
669         lockdep_assert_held(&dev_priv->irq_lock);
670
671         if (INTEL_GEN(dev_priv) < 5)
672                 goto out;
673
674         /*
675          * On pipe A we don't support the PSR interrupt yet,
676          * on pipe B and C the same bit MBZ.
677          */
678         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
679                 return 0;
680         /*
681          * On pipe B and C we don't support the PSR interrupt yet, on pipe
682          * A the same bit is for perf counters which we don't use either.
683          */
684         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
685                 return 0;
686
687         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
688                          SPRITE0_FLIP_DONE_INT_EN_VLV |
689                          SPRITE1_FLIP_DONE_INT_EN_VLV);
690         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
691                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
692         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
693                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
694
695 out:
696         WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
697                   status_mask & ~PIPESTAT_INT_STATUS_MASK,
698                   "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
699                   pipe_name(pipe), enable_mask, status_mask);
700
701         return enable_mask;
702 }
703
704 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
705                           enum pipe pipe, u32 status_mask)
706 {
707         i915_reg_t reg = PIPESTAT(pipe);
708         u32 enable_mask;
709
710         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
711                   "pipe %c: status_mask=0x%x\n",
712                   pipe_name(pipe), status_mask);
713
714         lockdep_assert_held(&dev_priv->irq_lock);
715         WARN_ON(!intel_irqs_enabled(dev_priv));
716
717         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
718                 return;
719
720         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
721         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
722
723         I915_WRITE(reg, enable_mask | status_mask);
724         POSTING_READ(reg);
725 }
726
727 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
728                            enum pipe pipe, u32 status_mask)
729 {
730         i915_reg_t reg = PIPESTAT(pipe);
731         u32 enable_mask;
732
733         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
734                   "pipe %c: status_mask=0x%x\n",
735                   pipe_name(pipe), status_mask);
736
737         lockdep_assert_held(&dev_priv->irq_lock);
738         WARN_ON(!intel_irqs_enabled(dev_priv));
739
740         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
741                 return;
742
743         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
744         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
745
746         I915_WRITE(reg, enable_mask | status_mask);
747         POSTING_READ(reg);
748 }
749
750 /**
751  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
752  * @dev_priv: i915 device private
753  */
754 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
755 {
756         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
757                 return;
758
759         spin_lock_irq(&dev_priv->irq_lock);
760
761         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
762         if (INTEL_GEN(dev_priv) >= 4)
763                 i915_enable_pipestat(dev_priv, PIPE_A,
764                                      PIPE_LEGACY_BLC_EVENT_STATUS);
765
766         spin_unlock_irq(&dev_priv->irq_lock);
767 }
768
769 /*
770  * This timing diagram depicts the video signal in and
771  * around the vertical blanking period.
772  *
773  * Assumptions about the fictitious mode used in this example:
774  *  vblank_start >= 3
775  *  vsync_start = vblank_start + 1
776  *  vsync_end = vblank_start + 2
777  *  vtotal = vblank_start + 3
778  *
779  *           start of vblank:
780  *           latch double buffered registers
781  *           increment frame counter (ctg+)
782  *           generate start of vblank interrupt (gen4+)
783  *           |
784  *           |          frame start:
785  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
786  *           |          may be shifted forward 1-3 extra lines via PIPECONF
787  *           |          |
788  *           |          |  start of vsync:
789  *           |          |  generate vsync interrupt
790  *           |          |  |
791  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
792  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
793  * ----va---> <-----------------vb--------------------> <--------va-------------
794  *       |          |       <----vs----->                     |
795  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
796  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
797  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
798  *       |          |                                         |
799  *       last visible pixel                                   first visible pixel
800  *                  |                                         increment frame counter (gen3/4)
801  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
802  *
803  * x  = horizontal active
804  * _  = horizontal blanking
805  * hs = horizontal sync
806  * va = vertical active
807  * vb = vertical blanking
808  * vs = vertical sync
809  * vbs = vblank_start (number)
810  *
811  * Summary:
812  * - most events happen at the start of horizontal sync
813  * - frame start happens at the start of horizontal blank, 1-4 lines
814  *   (depending on PIPECONF settings) after the start of vblank
815  * - gen3/4 pixel and frame counter are synchronized with the start
816  *   of horizontal active on the first line of vertical active
817  */
818
819 /* Called from drm generic code, passed a 'crtc', which
820  * we use as a pipe index
821  */
822 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
823 {
824         struct drm_i915_private *dev_priv = to_i915(dev);
825         i915_reg_t high_frame, low_frame;
826         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
827         const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
828         unsigned long irqflags;
829
830         htotal = mode->crtc_htotal;
831         hsync_start = mode->crtc_hsync_start;
832         vbl_start = mode->crtc_vblank_start;
833         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
834                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
835
836         /* Convert to pixel count */
837         vbl_start *= htotal;
838
839         /* Start of vblank event occurs at start of hsync */
840         vbl_start -= htotal - hsync_start;
841
842         high_frame = PIPEFRAME(pipe);
843         low_frame = PIPEFRAMEPIXEL(pipe);
844
845         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
846
847         /*
848          * High & low register fields aren't synchronized, so make sure
849          * we get a low value that's stable across two reads of the high
850          * register.
851          */
852         do {
853                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
854                 low   = I915_READ_FW(low_frame);
855                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
856         } while (high1 != high2);
857
858         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
859
860         high1 >>= PIPE_FRAME_HIGH_SHIFT;
861         pixel = low & PIPE_PIXEL_MASK;
862         low >>= PIPE_FRAME_LOW_SHIFT;
863
864         /*
865          * The frame counter increments at beginning of active.
866          * Cook up a vblank counter by also checking the pixel
867          * counter against vblank start.
868          */
869         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
870 }
871
872 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
873 {
874         struct drm_i915_private *dev_priv = to_i915(dev);
875
876         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
877 }
878
879 /*
880  * On certain encoders on certain platforms, pipe
881  * scanline register will not work to get the scanline,
882  * since the timings are driven from the PORT or issues
883  * with scanline register updates.
884  * This function will use Framestamp and current
885  * timestamp registers to calculate the scanline.
886  */
887 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
888 {
889         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
890         struct drm_vblank_crtc *vblank =
891                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
892         const struct drm_display_mode *mode = &vblank->hwmode;
893         u32 vblank_start = mode->crtc_vblank_start;
894         u32 vtotal = mode->crtc_vtotal;
895         u32 htotal = mode->crtc_htotal;
896         u32 clock = mode->crtc_clock;
897         u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
898
899         /*
900          * To avoid the race condition where we might cross into the
901          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
902          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
903          * during the same frame.
904          */
905         do {
906                 /*
907                  * This field provides read back of the display
908                  * pipe frame time stamp. The time stamp value
909                  * is sampled at every start of vertical blank.
910                  */
911                 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
912
913                 /*
914                  * The TIMESTAMP_CTR register has the current
915                  * time stamp value.
916                  */
917                 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
918
919                 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
920         } while (scan_post_time != scan_prev_time);
921
922         scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
923                                         clock), 1000 * htotal);
924         scanline = min(scanline, vtotal - 1);
925         scanline = (scanline + vblank_start) % vtotal;
926
927         return scanline;
928 }
929
930 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
931 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
932 {
933         struct drm_device *dev = crtc->base.dev;
934         struct drm_i915_private *dev_priv = to_i915(dev);
935         const struct drm_display_mode *mode;
936         struct drm_vblank_crtc *vblank;
937         enum pipe pipe = crtc->pipe;
938         int position, vtotal;
939
940         if (!crtc->active)
941                 return -1;
942
943         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
944         mode = &vblank->hwmode;
945
946         if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
947                 return __intel_get_crtc_scanline_from_timestamp(crtc);
948
949         vtotal = mode->crtc_vtotal;
950         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
951                 vtotal /= 2;
952
953         if (IS_GEN2(dev_priv))
954                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
955         else
956                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
957
958         /*
959          * On HSW, the DSL reg (0x70000) appears to return 0 if we
960          * read it just before the start of vblank.  So try it again
961          * so we don't accidentally end up spanning a vblank frame
962          * increment, causing the pipe_update_end() code to squak at us.
963          *
964          * The nature of this problem means we can't simply check the ISR
965          * bit and return the vblank start value; nor can we use the scanline
966          * debug register in the transcoder as it appears to have the same
967          * problem.  We may need to extend this to include other platforms,
968          * but so far testing only shows the problem on HSW.
969          */
970         if (HAS_DDI(dev_priv) && !position) {
971                 int i, temp;
972
973                 for (i = 0; i < 100; i++) {
974                         udelay(1);
975                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
976                         if (temp != position) {
977                                 position = temp;
978                                 break;
979                         }
980                 }
981         }
982
983         /*
984          * See update_scanline_offset() for the details on the
985          * scanline_offset adjustment.
986          */
987         return (position + crtc->scanline_offset) % vtotal;
988 }
989
990 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
991                                      bool in_vblank_irq, int *vpos, int *hpos,
992                                      ktime_t *stime, ktime_t *etime,
993                                      const struct drm_display_mode *mode)
994 {
995         struct drm_i915_private *dev_priv = to_i915(dev);
996         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
997                                                                 pipe);
998         int position;
999         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
1000         unsigned long irqflags;
1001
1002         if (WARN_ON(!mode->crtc_clock)) {
1003                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
1004                                  "pipe %c\n", pipe_name(pipe));
1005                 return false;
1006         }
1007
1008         htotal = mode->crtc_htotal;
1009         hsync_start = mode->crtc_hsync_start;
1010         vtotal = mode->crtc_vtotal;
1011         vbl_start = mode->crtc_vblank_start;
1012         vbl_end = mode->crtc_vblank_end;
1013
1014         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1015                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
1016                 vbl_end /= 2;
1017                 vtotal /= 2;
1018         }
1019
1020         /*
1021          * Lock uncore.lock, as we will do multiple timing critical raw
1022          * register reads, potentially with preemption disabled, so the
1023          * following code must not block on uncore.lock.
1024          */
1025         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1026
1027         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1028
1029         /* Get optional system timestamp before query. */
1030         if (stime)
1031                 *stime = ktime_get();
1032
1033         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1034                 /* No obvious pixelcount register. Only query vertical
1035                  * scanout position from Display scan line register.
1036                  */
1037                 position = __intel_get_crtc_scanline(intel_crtc);
1038         } else {
1039                 /* Have access to pixelcount since start of frame.
1040                  * We can split this into vertical and horizontal
1041                  * scanout position.
1042                  */
1043                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1044
1045                 /* convert to pixel counts */
1046                 vbl_start *= htotal;
1047                 vbl_end *= htotal;
1048                 vtotal *= htotal;
1049
1050                 /*
1051                  * In interlaced modes, the pixel counter counts all pixels,
1052                  * so one field will have htotal more pixels. In order to avoid
1053                  * the reported position from jumping backwards when the pixel
1054                  * counter is beyond the length of the shorter field, just
1055                  * clamp the position the length of the shorter field. This
1056                  * matches how the scanline counter based position works since
1057                  * the scanline counter doesn't count the two half lines.
1058                  */
1059                 if (position >= vtotal)
1060                         position = vtotal - 1;
1061
1062                 /*
1063                  * Start of vblank interrupt is triggered at start of hsync,
1064                  * just prior to the first active line of vblank. However we
1065                  * consider lines to start at the leading edge of horizontal
1066                  * active. So, should we get here before we've crossed into
1067                  * the horizontal active of the first line in vblank, we would
1068                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1069                  * always add htotal-hsync_start to the current pixel position.
1070                  */
1071                 position = (position + htotal - hsync_start) % vtotal;
1072         }
1073
1074         /* Get optional system timestamp after query. */
1075         if (etime)
1076                 *etime = ktime_get();
1077
1078         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1079
1080         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1081
1082         /*
1083          * While in vblank, position will be negative
1084          * counting up towards 0 at vbl_end. And outside
1085          * vblank, position will be positive counting
1086          * up since vbl_end.
1087          */
1088         if (position >= vbl_start)
1089                 position -= vbl_end;
1090         else
1091                 position += vtotal - vbl_end;
1092
1093         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1094                 *vpos = position;
1095                 *hpos = 0;
1096         } else {
1097                 *vpos = position / htotal;
1098                 *hpos = position - (*vpos * htotal);
1099         }
1100
1101         return true;
1102 }
1103
1104 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1105 {
1106         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1107         unsigned long irqflags;
1108         int position;
1109
1110         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1111         position = __intel_get_crtc_scanline(crtc);
1112         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1113
1114         return position;
1115 }
1116
1117 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1118 {
1119         u32 busy_up, busy_down, max_avg, min_avg;
1120         u8 new_delay;
1121
1122         spin_lock(&mchdev_lock);
1123
1124         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1125
1126         new_delay = dev_priv->ips.cur_delay;
1127
1128         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1129         busy_up = I915_READ(RCPREVBSYTUPAVG);
1130         busy_down = I915_READ(RCPREVBSYTDNAVG);
1131         max_avg = I915_READ(RCBMAXAVG);
1132         min_avg = I915_READ(RCBMINAVG);
1133
1134         /* Handle RCS change request from hw */
1135         if (busy_up > max_avg) {
1136                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1137                         new_delay = dev_priv->ips.cur_delay - 1;
1138                 if (new_delay < dev_priv->ips.max_delay)
1139                         new_delay = dev_priv->ips.max_delay;
1140         } else if (busy_down < min_avg) {
1141                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1142                         new_delay = dev_priv->ips.cur_delay + 1;
1143                 if (new_delay > dev_priv->ips.min_delay)
1144                         new_delay = dev_priv->ips.min_delay;
1145         }
1146
1147         if (ironlake_set_drps(dev_priv, new_delay))
1148                 dev_priv->ips.cur_delay = new_delay;
1149
1150         spin_unlock(&mchdev_lock);
1151
1152         return;
1153 }
1154
1155 static void notify_ring(struct intel_engine_cs *engine)
1156 {
1157         const u32 seqno = intel_engine_get_seqno(engine);
1158         struct i915_request *rq = NULL;
1159         struct task_struct *tsk = NULL;
1160         struct intel_wait *wait;
1161
1162         if (unlikely(!engine->breadcrumbs.irq_armed))
1163                 return;
1164
1165         rcu_read_lock();
1166
1167         spin_lock(&engine->breadcrumbs.irq_lock);
1168         wait = engine->breadcrumbs.irq_wait;
1169         if (wait) {
1170                 /*
1171                  * We use a callback from the dma-fence to submit
1172                  * requests after waiting on our own requests. To
1173                  * ensure minimum delay in queuing the next request to
1174                  * hardware, signal the fence now rather than wait for
1175                  * the signaler to be woken up. We still wake up the
1176                  * waiter in order to handle the irq-seqno coherency
1177                  * issues (we may receive the interrupt before the
1178                  * seqno is written, see __i915_request_irq_complete())
1179                  * and to handle coalescing of multiple seqno updates
1180                  * and many waiters.
1181                  */
1182                 if (i915_seqno_passed(seqno, wait->seqno)) {
1183                         struct i915_request *waiter = wait->request;
1184
1185                         if (waiter &&
1186                             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1187                                       &waiter->fence.flags) &&
1188                             intel_wait_check_request(wait, waiter))
1189                                 rq = i915_request_get(waiter);
1190
1191                         tsk = wait->tsk;
1192                 } else {
1193                         if (engine->irq_seqno_barrier &&
1194                             i915_seqno_passed(seqno, wait->seqno - 1)) {
1195                                 set_bit(ENGINE_IRQ_BREADCRUMB,
1196                                         &engine->irq_posted);
1197                                 tsk = wait->tsk;
1198                         }
1199                 }
1200
1201                 engine->breadcrumbs.irq_count++;
1202         } else {
1203                 if (engine->breadcrumbs.irq_armed)
1204                         __intel_engine_disarm_breadcrumbs(engine);
1205         }
1206         spin_unlock(&engine->breadcrumbs.irq_lock);
1207
1208         if (rq) {
1209                 spin_lock(&rq->lock);
1210                 dma_fence_signal_locked(&rq->fence);
1211                 GEM_BUG_ON(!i915_request_completed(rq));
1212                 spin_unlock(&rq->lock);
1213
1214                 i915_request_put(rq);
1215         }
1216
1217         if (tsk && tsk->state & TASK_NORMAL)
1218                 wake_up_process(tsk);
1219
1220         rcu_read_unlock();
1221
1222         trace_intel_engine_notify(engine, wait);
1223 }
1224
1225 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1226                         struct intel_rps_ei *ei)
1227 {
1228         ei->ktime = ktime_get_raw();
1229         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1230         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1231 }
1232
1233 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1234 {
1235         memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1236 }
1237
1238 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1239 {
1240         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1241         const struct intel_rps_ei *prev = &rps->ei;
1242         struct intel_rps_ei now;
1243         u32 events = 0;
1244
1245         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1246                 return 0;
1247
1248         vlv_c0_read(dev_priv, &now);
1249
1250         if (prev->ktime) {
1251                 u64 time, c0;
1252                 u32 render, media;
1253
1254                 time = ktime_us_delta(now.ktime, prev->ktime);
1255
1256                 time *= dev_priv->czclk_freq;
1257
1258                 /* Workload can be split between render + media,
1259                  * e.g. SwapBuffers being blitted in X after being rendered in
1260                  * mesa. To account for this we need to combine both engines
1261                  * into our activity counter.
1262                  */
1263                 render = now.render_c0 - prev->render_c0;
1264                 media = now.media_c0 - prev->media_c0;
1265                 c0 = max(render, media);
1266                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1267
1268                 if (c0 > time * rps->power.up_threshold)
1269                         events = GEN6_PM_RP_UP_THRESHOLD;
1270                 else if (c0 < time * rps->power.down_threshold)
1271                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1272         }
1273
1274         rps->ei = now;
1275         return events;
1276 }
1277
1278 static void gen6_pm_rps_work(struct work_struct *work)
1279 {
1280         struct drm_i915_private *dev_priv =
1281                 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1282         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1283         bool client_boost = false;
1284         int new_delay, adj, min, max;
1285         u32 pm_iir = 0;
1286
1287         spin_lock_irq(&dev_priv->irq_lock);
1288         if (rps->interrupts_enabled) {
1289                 pm_iir = fetch_and_zero(&rps->pm_iir);
1290                 client_boost = atomic_read(&rps->num_waiters);
1291         }
1292         spin_unlock_irq(&dev_priv->irq_lock);
1293
1294         /* Make sure we didn't queue anything we're not going to process. */
1295         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1296         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1297                 goto out;
1298
1299         mutex_lock(&dev_priv->pcu_lock);
1300
1301         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1302
1303         adj = rps->last_adj;
1304         new_delay = rps->cur_freq;
1305         min = rps->min_freq_softlimit;
1306         max = rps->max_freq_softlimit;
1307         if (client_boost)
1308                 max = rps->max_freq;
1309         if (client_boost && new_delay < rps->boost_freq) {
1310                 new_delay = rps->boost_freq;
1311                 adj = 0;
1312         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1313                 if (adj > 0)
1314                         adj *= 2;
1315                 else /* CHV needs even encode values */
1316                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1317
1318                 if (new_delay >= rps->max_freq_softlimit)
1319                         adj = 0;
1320         } else if (client_boost) {
1321                 adj = 0;
1322         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1323                 if (rps->cur_freq > rps->efficient_freq)
1324                         new_delay = rps->efficient_freq;
1325                 else if (rps->cur_freq > rps->min_freq_softlimit)
1326                         new_delay = rps->min_freq_softlimit;
1327                 adj = 0;
1328         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1329                 if (adj < 0)
1330                         adj *= 2;
1331                 else /* CHV needs even encode values */
1332                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1333
1334                 if (new_delay <= rps->min_freq_softlimit)
1335                         adj = 0;
1336         } else { /* unknown event */
1337                 adj = 0;
1338         }
1339
1340         rps->last_adj = adj;
1341
1342         /* sysfs frequency interfaces may have snuck in while servicing the
1343          * interrupt
1344          */
1345         new_delay += adj;
1346         new_delay = clamp_t(int, new_delay, min, max);
1347
1348         if (intel_set_rps(dev_priv, new_delay)) {
1349                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1350                 rps->last_adj = 0;
1351         }
1352
1353         mutex_unlock(&dev_priv->pcu_lock);
1354
1355 out:
1356         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1357         spin_lock_irq(&dev_priv->irq_lock);
1358         if (rps->interrupts_enabled)
1359                 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1360         spin_unlock_irq(&dev_priv->irq_lock);
1361 }
1362
1363
1364 /**
1365  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1366  * occurred.
1367  * @work: workqueue struct
1368  *
1369  * Doesn't actually do anything except notify userspace. As a consequence of
1370  * this event, userspace should try to remap the bad rows since statistically
1371  * it is likely the same row is more likely to go bad again.
1372  */
1373 static void ivybridge_parity_work(struct work_struct *work)
1374 {
1375         struct drm_i915_private *dev_priv =
1376                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1377         u32 error_status, row, bank, subbank;
1378         char *parity_event[6];
1379         uint32_t misccpctl;
1380         uint8_t slice = 0;
1381
1382         /* We must turn off DOP level clock gating to access the L3 registers.
1383          * In order to prevent a get/put style interface, acquire struct mutex
1384          * any time we access those registers.
1385          */
1386         mutex_lock(&dev_priv->drm.struct_mutex);
1387
1388         /* If we've screwed up tracking, just let the interrupt fire again */
1389         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1390                 goto out;
1391
1392         misccpctl = I915_READ(GEN7_MISCCPCTL);
1393         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1394         POSTING_READ(GEN7_MISCCPCTL);
1395
1396         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1397                 i915_reg_t reg;
1398
1399                 slice--;
1400                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1401                         break;
1402
1403                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1404
1405                 reg = GEN7_L3CDERRST1(slice);
1406
1407                 error_status = I915_READ(reg);
1408                 row = GEN7_PARITY_ERROR_ROW(error_status);
1409                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1410                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1411
1412                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1413                 POSTING_READ(reg);
1414
1415                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1416                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1417                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1418                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1419                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1420                 parity_event[5] = NULL;
1421
1422                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1423                                    KOBJ_CHANGE, parity_event);
1424
1425                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1426                           slice, row, bank, subbank);
1427
1428                 kfree(parity_event[4]);
1429                 kfree(parity_event[3]);
1430                 kfree(parity_event[2]);
1431                 kfree(parity_event[1]);
1432         }
1433
1434         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1435
1436 out:
1437         WARN_ON(dev_priv->l3_parity.which_slice);
1438         spin_lock_irq(&dev_priv->irq_lock);
1439         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1440         spin_unlock_irq(&dev_priv->irq_lock);
1441
1442         mutex_unlock(&dev_priv->drm.struct_mutex);
1443 }
1444
1445 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1446                                                u32 iir)
1447 {
1448         if (!HAS_L3_DPF(dev_priv))
1449                 return;
1450
1451         spin_lock(&dev_priv->irq_lock);
1452         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1453         spin_unlock(&dev_priv->irq_lock);
1454
1455         iir &= GT_PARITY_ERROR(dev_priv);
1456         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1457                 dev_priv->l3_parity.which_slice |= 1 << 1;
1458
1459         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1460                 dev_priv->l3_parity.which_slice |= 1 << 0;
1461
1462         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1463 }
1464
1465 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1466                                u32 gt_iir)
1467 {
1468         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1469                 notify_ring(dev_priv->engine[RCS]);
1470         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1471                 notify_ring(dev_priv->engine[VCS]);
1472 }
1473
1474 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1475                                u32 gt_iir)
1476 {
1477         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1478                 notify_ring(dev_priv->engine[RCS]);
1479         if (gt_iir & GT_BSD_USER_INTERRUPT)
1480                 notify_ring(dev_priv->engine[VCS]);
1481         if (gt_iir & GT_BLT_USER_INTERRUPT)
1482                 notify_ring(dev_priv->engine[BCS]);
1483
1484         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1485                       GT_BSD_CS_ERROR_INTERRUPT |
1486                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1487                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1488
1489         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1490                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1491 }
1492
1493 static void
1494 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1495 {
1496         bool tasklet = false;
1497
1498         if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
1499                 tasklet = true;
1500
1501         if (iir & GT_RENDER_USER_INTERRUPT) {
1502                 notify_ring(engine);
1503                 tasklet |= USES_GUC_SUBMISSION(engine->i915);
1504         }
1505
1506         if (tasklet)
1507                 tasklet_hi_schedule(&engine->execlists.tasklet);
1508 }
1509
1510 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1511                             u32 master_ctl, u32 gt_iir[4])
1512 {
1513         void __iomem * const regs = i915->regs;
1514
1515 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1516                       GEN8_GT_BCS_IRQ | \
1517                       GEN8_GT_VCS1_IRQ | \
1518                       GEN8_GT_VCS2_IRQ | \
1519                       GEN8_GT_VECS_IRQ | \
1520                       GEN8_GT_PM_IRQ | \
1521                       GEN8_GT_GUC_IRQ)
1522
1523         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1524                 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1525                 if (likely(gt_iir[0]))
1526                         raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1527         }
1528
1529         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1530                 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1531                 if (likely(gt_iir[1]))
1532                         raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1533         }
1534
1535         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1536                 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1537                 if (likely(gt_iir[2]))
1538                         raw_reg_write(regs, GEN8_GT_IIR(2), gt_iir[2]);
1539         }
1540
1541         if (master_ctl & GEN8_GT_VECS_IRQ) {
1542                 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1543                 if (likely(gt_iir[3]))
1544                         raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1545         }
1546 }
1547
1548 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1549                                 u32 master_ctl, u32 gt_iir[4])
1550 {
1551         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1552                 gen8_cs_irq_handler(i915->engine[RCS],
1553                                     gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1554                 gen8_cs_irq_handler(i915->engine[BCS],
1555                                     gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1556         }
1557
1558         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1559                 gen8_cs_irq_handler(i915->engine[VCS],
1560                                     gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1561                 gen8_cs_irq_handler(i915->engine[VCS2],
1562                                     gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT);
1563         }
1564
1565         if (master_ctl & GEN8_GT_VECS_IRQ) {
1566                 gen8_cs_irq_handler(i915->engine[VECS],
1567                                     gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1568         }
1569
1570         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1571                 gen6_rps_irq_handler(i915, gt_iir[2]);
1572                 gen9_guc_irq_handler(i915, gt_iir[2]);
1573         }
1574 }
1575
1576 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1577 {
1578         switch (pin) {
1579         case HPD_PORT_C:
1580                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1581         case HPD_PORT_D:
1582                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1583         case HPD_PORT_E:
1584                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1585         case HPD_PORT_F:
1586                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1587         default:
1588                 return false;
1589         }
1590 }
1591
1592 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1593 {
1594         switch (pin) {
1595         case HPD_PORT_A:
1596                 return val & PORTA_HOTPLUG_LONG_DETECT;
1597         case HPD_PORT_B:
1598                 return val & PORTB_HOTPLUG_LONG_DETECT;
1599         case HPD_PORT_C:
1600                 return val & PORTC_HOTPLUG_LONG_DETECT;
1601         default:
1602                 return false;
1603         }
1604 }
1605
1606 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1607 {
1608         switch (pin) {
1609         case HPD_PORT_A:
1610                 return val & ICP_DDIA_HPD_LONG_DETECT;
1611         case HPD_PORT_B:
1612                 return val & ICP_DDIB_HPD_LONG_DETECT;
1613         default:
1614                 return false;
1615         }
1616 }
1617
1618 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1619 {
1620         switch (pin) {
1621         case HPD_PORT_C:
1622                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1623         case HPD_PORT_D:
1624                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1625         case HPD_PORT_E:
1626                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1627         case HPD_PORT_F:
1628                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1629         default:
1630                 return false;
1631         }
1632 }
1633
1634 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1635 {
1636         switch (pin) {
1637         case HPD_PORT_E:
1638                 return val & PORTE_HOTPLUG_LONG_DETECT;
1639         default:
1640                 return false;
1641         }
1642 }
1643
1644 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1645 {
1646         switch (pin) {
1647         case HPD_PORT_A:
1648                 return val & PORTA_HOTPLUG_LONG_DETECT;
1649         case HPD_PORT_B:
1650                 return val & PORTB_HOTPLUG_LONG_DETECT;
1651         case HPD_PORT_C:
1652                 return val & PORTC_HOTPLUG_LONG_DETECT;
1653         case HPD_PORT_D:
1654                 return val & PORTD_HOTPLUG_LONG_DETECT;
1655         default:
1656                 return false;
1657         }
1658 }
1659
1660 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1661 {
1662         switch (pin) {
1663         case HPD_PORT_A:
1664                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1665         default:
1666                 return false;
1667         }
1668 }
1669
1670 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1671 {
1672         switch (pin) {
1673         case HPD_PORT_B:
1674                 return val & PORTB_HOTPLUG_LONG_DETECT;
1675         case HPD_PORT_C:
1676                 return val & PORTC_HOTPLUG_LONG_DETECT;
1677         case HPD_PORT_D:
1678                 return val & PORTD_HOTPLUG_LONG_DETECT;
1679         default:
1680                 return false;
1681         }
1682 }
1683
1684 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1685 {
1686         switch (pin) {
1687         case HPD_PORT_B:
1688                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1689         case HPD_PORT_C:
1690                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1691         case HPD_PORT_D:
1692                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1693         default:
1694                 return false;
1695         }
1696 }
1697
1698 /*
1699  * Get a bit mask of pins that have triggered, and which ones may be long.
1700  * This can be called multiple times with the same masks to accumulate
1701  * hotplug detection results from several registers.
1702  *
1703  * Note that the caller is expected to zero out the masks initially.
1704  */
1705 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1706                                u32 *pin_mask, u32 *long_mask,
1707                                u32 hotplug_trigger, u32 dig_hotplug_reg,
1708                                const u32 hpd[HPD_NUM_PINS],
1709                                bool long_pulse_detect(enum hpd_pin pin, u32 val))
1710 {
1711         enum hpd_pin pin;
1712
1713         for_each_hpd_pin(pin) {
1714                 if ((hpd[pin] & hotplug_trigger) == 0)
1715                         continue;
1716
1717                 *pin_mask |= BIT(pin);
1718
1719                 if (long_pulse_detect(pin, dig_hotplug_reg))
1720                         *long_mask |= BIT(pin);
1721         }
1722
1723         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1724                          hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1725
1726 }
1727
1728 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1729 {
1730         wake_up_all(&dev_priv->gmbus_wait_queue);
1731 }
1732
1733 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1734 {
1735         wake_up_all(&dev_priv->gmbus_wait_queue);
1736 }
1737
1738 #if defined(CONFIG_DEBUG_FS)
1739 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1740                                          enum pipe pipe,
1741                                          uint32_t crc0, uint32_t crc1,
1742                                          uint32_t crc2, uint32_t crc3,
1743                                          uint32_t crc4)
1744 {
1745         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1746         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1747         uint32_t crcs[5];
1748
1749         spin_lock(&pipe_crc->lock);
1750         /*
1751          * For some not yet identified reason, the first CRC is
1752          * bonkers. So let's just wait for the next vblank and read
1753          * out the buggy result.
1754          *
1755          * On GEN8+ sometimes the second CRC is bonkers as well, so
1756          * don't trust that one either.
1757          */
1758         if (pipe_crc->skipped <= 0 ||
1759             (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1760                 pipe_crc->skipped++;
1761                 spin_unlock(&pipe_crc->lock);
1762                 return;
1763         }
1764         spin_unlock(&pipe_crc->lock);
1765
1766         crcs[0] = crc0;
1767         crcs[1] = crc1;
1768         crcs[2] = crc2;
1769         crcs[3] = crc3;
1770         crcs[4] = crc4;
1771         drm_crtc_add_crc_entry(&crtc->base, true,
1772                                 drm_crtc_accurate_vblank_count(&crtc->base),
1773                                 crcs);
1774 }
1775 #else
1776 static inline void
1777 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1778                              enum pipe pipe,
1779                              uint32_t crc0, uint32_t crc1,
1780                              uint32_t crc2, uint32_t crc3,
1781                              uint32_t crc4) {}
1782 #endif
1783
1784
1785 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1786                                      enum pipe pipe)
1787 {
1788         display_pipe_crc_irq_handler(dev_priv, pipe,
1789                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1790                                      0, 0, 0, 0);
1791 }
1792
1793 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1794                                      enum pipe pipe)
1795 {
1796         display_pipe_crc_irq_handler(dev_priv, pipe,
1797                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1798                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1799                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1800                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1801                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1802 }
1803
1804 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1805                                       enum pipe pipe)
1806 {
1807         uint32_t res1, res2;
1808
1809         if (INTEL_GEN(dev_priv) >= 3)
1810                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1811         else
1812                 res1 = 0;
1813
1814         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1815                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1816         else
1817                 res2 = 0;
1818
1819         display_pipe_crc_irq_handler(dev_priv, pipe,
1820                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1821                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1822                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1823                                      res1, res2);
1824 }
1825
1826 /* The RPS events need forcewake, so we add them to a work queue and mask their
1827  * IMR bits until the work is done. Other interrupts can be processed without
1828  * the work queue. */
1829 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1830 {
1831         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1832
1833         if (pm_iir & dev_priv->pm_rps_events) {
1834                 spin_lock(&dev_priv->irq_lock);
1835                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1836                 if (rps->interrupts_enabled) {
1837                         rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1838                         schedule_work(&rps->work);
1839                 }
1840                 spin_unlock(&dev_priv->irq_lock);
1841         }
1842
1843         if (INTEL_GEN(dev_priv) >= 8)
1844                 return;
1845
1846         if (HAS_VEBOX(dev_priv)) {
1847                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1848                         notify_ring(dev_priv->engine[VECS]);
1849
1850                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1851                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1852         }
1853 }
1854
1855 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1856 {
1857         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1858                 intel_guc_to_host_event_handler(&dev_priv->guc);
1859 }
1860
1861 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1862 {
1863         enum pipe pipe;
1864
1865         for_each_pipe(dev_priv, pipe) {
1866                 I915_WRITE(PIPESTAT(pipe),
1867                            PIPESTAT_INT_STATUS_MASK |
1868                            PIPE_FIFO_UNDERRUN_STATUS);
1869
1870                 dev_priv->pipestat_irq_mask[pipe] = 0;
1871         }
1872 }
1873
1874 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1875                                   u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1876 {
1877         int pipe;
1878
1879         spin_lock(&dev_priv->irq_lock);
1880
1881         if (!dev_priv->display_irqs_enabled) {
1882                 spin_unlock(&dev_priv->irq_lock);
1883                 return;
1884         }
1885
1886         for_each_pipe(dev_priv, pipe) {
1887                 i915_reg_t reg;
1888                 u32 status_mask, enable_mask, iir_bit = 0;
1889
1890                 /*
1891                  * PIPESTAT bits get signalled even when the interrupt is
1892                  * disabled with the mask bits, and some of the status bits do
1893                  * not generate interrupts at all (like the underrun bit). Hence
1894                  * we need to be careful that we only handle what we want to
1895                  * handle.
1896                  */
1897
1898                 /* fifo underruns are filterered in the underrun handler. */
1899                 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1900
1901                 switch (pipe) {
1902                 case PIPE_A:
1903                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1904                         break;
1905                 case PIPE_B:
1906                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1907                         break;
1908                 case PIPE_C:
1909                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1910                         break;
1911                 }
1912                 if (iir & iir_bit)
1913                         status_mask |= dev_priv->pipestat_irq_mask[pipe];
1914
1915                 if (!status_mask)
1916                         continue;
1917
1918                 reg = PIPESTAT(pipe);
1919                 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1920                 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1921
1922                 /*
1923                  * Clear the PIPE*STAT regs before the IIR
1924                  *
1925                  * Toggle the enable bits to make sure we get an
1926                  * edge in the ISR pipe event bit if we don't clear
1927                  * all the enabled status bits. Otherwise the edge
1928                  * triggered IIR on i965/g4x wouldn't notice that
1929                  * an interrupt is still pending.
1930                  */
1931                 if (pipe_stats[pipe]) {
1932                         I915_WRITE(reg, pipe_stats[pipe]);
1933                         I915_WRITE(reg, enable_mask);
1934                 }
1935         }
1936         spin_unlock(&dev_priv->irq_lock);
1937 }
1938
1939 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1940                                       u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1941 {
1942         enum pipe pipe;
1943
1944         for_each_pipe(dev_priv, pipe) {
1945                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1946                         drm_handle_vblank(&dev_priv->drm, pipe);
1947
1948                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1949                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1950
1951                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1952                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1953         }
1954 }
1955
1956 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1957                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1958 {
1959         bool blc_event = false;
1960         enum pipe pipe;
1961
1962         for_each_pipe(dev_priv, pipe) {
1963                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1964                         drm_handle_vblank(&dev_priv->drm, pipe);
1965
1966                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1967                         blc_event = true;
1968
1969                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1970                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1971
1972                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1973                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1974         }
1975
1976         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1977                 intel_opregion_asle_intr(dev_priv);
1978 }
1979
1980 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1981                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1982 {
1983         bool blc_event = false;
1984         enum pipe pipe;
1985
1986         for_each_pipe(dev_priv, pipe) {
1987                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1988                         drm_handle_vblank(&dev_priv->drm, pipe);
1989
1990                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1991                         blc_event = true;
1992
1993                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1994                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1995
1996                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1997                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1998         }
1999
2000         if (blc_event || (iir & I915_ASLE_INTERRUPT))
2001                 intel_opregion_asle_intr(dev_priv);
2002
2003         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2004                 gmbus_irq_handler(dev_priv);
2005 }
2006
2007 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2008                                             u32 pipe_stats[I915_MAX_PIPES])
2009 {
2010         enum pipe pipe;
2011
2012         for_each_pipe(dev_priv, pipe) {
2013                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2014                         drm_handle_vblank(&dev_priv->drm, pipe);
2015
2016                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2017                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2018
2019                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2020                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2021         }
2022
2023         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2024                 gmbus_irq_handler(dev_priv);
2025 }
2026
2027 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
2028 {
2029         u32 hotplug_status = 0, hotplug_status_mask;
2030         int i;
2031
2032         if (IS_G4X(dev_priv) ||
2033             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2034                 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
2035                         DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
2036         else
2037                 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
2038
2039         /*
2040          * We absolutely have to clear all the pending interrupt
2041          * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
2042          * interrupt bit won't have an edge, and the i965/g4x
2043          * edge triggered IIR will not notice that an interrupt
2044          * is still pending. We can't use PORT_HOTPLUG_EN to
2045          * guarantee the edge as the act of toggling the enable
2046          * bits can itself generate a new hotplug interrupt :(
2047          */
2048         for (i = 0; i < 10; i++) {
2049                 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
2050
2051                 if (tmp == 0)
2052                         return hotplug_status;
2053
2054                 hotplug_status |= tmp;
2055                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2056         }
2057
2058         WARN_ONCE(1,
2059                   "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2060                   I915_READ(PORT_HOTPLUG_STAT));
2061
2062         return hotplug_status;
2063 }
2064
2065 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2066                                  u32 hotplug_status)
2067 {
2068         u32 pin_mask = 0, long_mask = 0;
2069
2070         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2071             IS_CHERRYVIEW(dev_priv)) {
2072                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2073
2074                 if (hotplug_trigger) {
2075                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2076                                            hotplug_trigger, hotplug_trigger,
2077                                            hpd_status_g4x,
2078                                            i9xx_port_hotplug_long_detect);
2079
2080                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2081                 }
2082
2083                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2084                         dp_aux_irq_handler(dev_priv);
2085         } else {
2086                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2087
2088                 if (hotplug_trigger) {
2089                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2090                                            hotplug_trigger, hotplug_trigger,
2091                                            hpd_status_i915,
2092                                            i9xx_port_hotplug_long_detect);
2093                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2094                 }
2095         }
2096 }
2097
2098 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2099 {
2100         struct drm_device *dev = arg;
2101         struct drm_i915_private *dev_priv = to_i915(dev);
2102         irqreturn_t ret = IRQ_NONE;
2103
2104         if (!intel_irqs_enabled(dev_priv))
2105                 return IRQ_NONE;
2106
2107         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2108         disable_rpm_wakeref_asserts(dev_priv);
2109
2110         do {
2111                 u32 iir, gt_iir, pm_iir;
2112                 u32 pipe_stats[I915_MAX_PIPES] = {};
2113                 u32 hotplug_status = 0;
2114                 u32 ier = 0;
2115
2116                 gt_iir = I915_READ(GTIIR);
2117                 pm_iir = I915_READ(GEN6_PMIIR);
2118                 iir = I915_READ(VLV_IIR);
2119
2120                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2121                         break;
2122
2123                 ret = IRQ_HANDLED;
2124
2125                 /*
2126                  * Theory on interrupt generation, based on empirical evidence:
2127                  *
2128                  * x = ((VLV_IIR & VLV_IER) ||
2129                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2130                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2131                  *
2132                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2133                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2134                  * guarantee the CPU interrupt will be raised again even if we
2135                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2136                  * bits this time around.
2137                  */
2138                 I915_WRITE(VLV_MASTER_IER, 0);
2139                 ier = I915_READ(VLV_IER);
2140                 I915_WRITE(VLV_IER, 0);
2141
2142                 if (gt_iir)
2143                         I915_WRITE(GTIIR, gt_iir);
2144                 if (pm_iir)
2145                         I915_WRITE(GEN6_PMIIR, pm_iir);
2146
2147                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2148                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2149
2150                 /* Call regardless, as some status bits might not be
2151                  * signalled in iir */
2152                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2153
2154                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2155                            I915_LPE_PIPE_B_INTERRUPT))
2156                         intel_lpe_audio_irq_handler(dev_priv);
2157
2158                 /*
2159                  * VLV_IIR is single buffered, and reflects the level
2160                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2161                  */
2162                 if (iir)
2163                         I915_WRITE(VLV_IIR, iir);
2164
2165                 I915_WRITE(VLV_IER, ier);
2166                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2167
2168                 if (gt_iir)
2169                         snb_gt_irq_handler(dev_priv, gt_iir);
2170                 if (pm_iir)
2171                         gen6_rps_irq_handler(dev_priv, pm_iir);
2172
2173                 if (hotplug_status)
2174                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2175
2176                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2177         } while (0);
2178
2179         enable_rpm_wakeref_asserts(dev_priv);
2180
2181         return ret;
2182 }
2183
2184 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2185 {
2186         struct drm_device *dev = arg;
2187         struct drm_i915_private *dev_priv = to_i915(dev);
2188         irqreturn_t ret = IRQ_NONE;
2189
2190         if (!intel_irqs_enabled(dev_priv))
2191                 return IRQ_NONE;
2192
2193         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2194         disable_rpm_wakeref_asserts(dev_priv);
2195
2196         do {
2197                 u32 master_ctl, iir;
2198                 u32 pipe_stats[I915_MAX_PIPES] = {};
2199                 u32 hotplug_status = 0;
2200                 u32 gt_iir[4];
2201                 u32 ier = 0;
2202
2203                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2204                 iir = I915_READ(VLV_IIR);
2205
2206                 if (master_ctl == 0 && iir == 0)
2207                         break;
2208
2209                 ret = IRQ_HANDLED;
2210
2211                 /*
2212                  * Theory on interrupt generation, based on empirical evidence:
2213                  *
2214                  * x = ((VLV_IIR & VLV_IER) ||
2215                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2216                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2217                  *
2218                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2219                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2220                  * guarantee the CPU interrupt will be raised again even if we
2221                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2222                  * bits this time around.
2223                  */
2224                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2225                 ier = I915_READ(VLV_IER);
2226                 I915_WRITE(VLV_IER, 0);
2227
2228                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2229
2230                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2231                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2232
2233                 /* Call regardless, as some status bits might not be
2234                  * signalled in iir */
2235                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2236
2237                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2238                            I915_LPE_PIPE_B_INTERRUPT |
2239                            I915_LPE_PIPE_C_INTERRUPT))
2240                         intel_lpe_audio_irq_handler(dev_priv);
2241
2242                 /*
2243                  * VLV_IIR is single buffered, and reflects the level
2244                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2245                  */
2246                 if (iir)
2247                         I915_WRITE(VLV_IIR, iir);
2248
2249                 I915_WRITE(VLV_IER, ier);
2250                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2251
2252                 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2253
2254                 if (hotplug_status)
2255                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2256
2257                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2258         } while (0);
2259
2260         enable_rpm_wakeref_asserts(dev_priv);
2261
2262         return ret;
2263 }
2264
2265 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2266                                 u32 hotplug_trigger,
2267                                 const u32 hpd[HPD_NUM_PINS])
2268 {
2269         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2270
2271         /*
2272          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2273          * unless we touch the hotplug register, even if hotplug_trigger is
2274          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2275          * errors.
2276          */
2277         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2278         if (!hotplug_trigger) {
2279                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2280                         PORTD_HOTPLUG_STATUS_MASK |
2281                         PORTC_HOTPLUG_STATUS_MASK |
2282                         PORTB_HOTPLUG_STATUS_MASK;
2283                 dig_hotplug_reg &= ~mask;
2284         }
2285
2286         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2287         if (!hotplug_trigger)
2288                 return;
2289
2290         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2291                            dig_hotplug_reg, hpd,
2292                            pch_port_hotplug_long_detect);
2293
2294         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2295 }
2296
2297 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2298 {
2299         int pipe;
2300         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2301
2302         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2303
2304         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2305                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2306                                SDE_AUDIO_POWER_SHIFT);
2307                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2308                                  port_name(port));
2309         }
2310
2311         if (pch_iir & SDE_AUX_MASK)
2312                 dp_aux_irq_handler(dev_priv);
2313
2314         if (pch_iir & SDE_GMBUS)
2315                 gmbus_irq_handler(dev_priv);
2316
2317         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2318                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2319
2320         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2321                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2322
2323         if (pch_iir & SDE_POISON)
2324                 DRM_ERROR("PCH poison interrupt\n");
2325
2326         if (pch_iir & SDE_FDI_MASK)
2327                 for_each_pipe(dev_priv, pipe)
2328                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2329                                          pipe_name(pipe),
2330                                          I915_READ(FDI_RX_IIR(pipe)));
2331
2332         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2333                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2334
2335         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2336                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2337
2338         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2339                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2340
2341         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2342                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2343 }
2344
2345 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2346 {
2347         u32 err_int = I915_READ(GEN7_ERR_INT);
2348         enum pipe pipe;
2349
2350         if (err_int & ERR_INT_POISON)
2351                 DRM_ERROR("Poison interrupt\n");
2352
2353         for_each_pipe(dev_priv, pipe) {
2354                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2355                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2356
2357                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2358                         if (IS_IVYBRIDGE(dev_priv))
2359                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2360                         else
2361                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2362                 }
2363         }
2364
2365         I915_WRITE(GEN7_ERR_INT, err_int);
2366 }
2367
2368 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2369 {
2370         u32 serr_int = I915_READ(SERR_INT);
2371         enum pipe pipe;
2372
2373         if (serr_int & SERR_INT_POISON)
2374                 DRM_ERROR("PCH poison interrupt\n");
2375
2376         for_each_pipe(dev_priv, pipe)
2377                 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2378                         intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2379
2380         I915_WRITE(SERR_INT, serr_int);
2381 }
2382
2383 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2384 {
2385         int pipe;
2386         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2387
2388         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2389
2390         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2391                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2392                                SDE_AUDIO_POWER_SHIFT_CPT);
2393                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2394                                  port_name(port));
2395         }
2396
2397         if (pch_iir & SDE_AUX_MASK_CPT)
2398                 dp_aux_irq_handler(dev_priv);
2399
2400         if (pch_iir & SDE_GMBUS_CPT)
2401                 gmbus_irq_handler(dev_priv);
2402
2403         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2404                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2405
2406         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2407                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2408
2409         if (pch_iir & SDE_FDI_MASK_CPT)
2410                 for_each_pipe(dev_priv, pipe)
2411                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2412                                          pipe_name(pipe),
2413                                          I915_READ(FDI_RX_IIR(pipe)));
2414
2415         if (pch_iir & SDE_ERROR_CPT)
2416                 cpt_serr_int_handler(dev_priv);
2417 }
2418
2419 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2420 {
2421         u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2422         u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2423         u32 pin_mask = 0, long_mask = 0;
2424
2425         if (ddi_hotplug_trigger) {
2426                 u32 dig_hotplug_reg;
2427
2428                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2429                 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2430
2431                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2432                                    ddi_hotplug_trigger,
2433                                    dig_hotplug_reg, hpd_icp,
2434                                    icp_ddi_port_hotplug_long_detect);
2435         }
2436
2437         if (tc_hotplug_trigger) {
2438                 u32 dig_hotplug_reg;
2439
2440                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2441                 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2442
2443                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2444                                    tc_hotplug_trigger,
2445                                    dig_hotplug_reg, hpd_icp,
2446                                    icp_tc_port_hotplug_long_detect);
2447         }
2448
2449         if (pin_mask)
2450                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2451
2452         if (pch_iir & SDE_GMBUS_ICP)
2453                 gmbus_irq_handler(dev_priv);
2454 }
2455
2456 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2457 {
2458         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2459                 ~SDE_PORTE_HOTPLUG_SPT;
2460         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2461         u32 pin_mask = 0, long_mask = 0;
2462
2463         if (hotplug_trigger) {
2464                 u32 dig_hotplug_reg;
2465
2466                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2467                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2468
2469                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2470                                    hotplug_trigger, dig_hotplug_reg, hpd_spt,
2471                                    spt_port_hotplug_long_detect);
2472         }
2473
2474         if (hotplug2_trigger) {
2475                 u32 dig_hotplug_reg;
2476
2477                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2478                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2479
2480                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2481                                    hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2482                                    spt_port_hotplug2_long_detect);
2483         }
2484
2485         if (pin_mask)
2486                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2487
2488         if (pch_iir & SDE_GMBUS_CPT)
2489                 gmbus_irq_handler(dev_priv);
2490 }
2491
2492 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2493                                 u32 hotplug_trigger,
2494                                 const u32 hpd[HPD_NUM_PINS])
2495 {
2496         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2497
2498         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2499         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2500
2501         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2502                            dig_hotplug_reg, hpd,
2503                            ilk_port_hotplug_long_detect);
2504
2505         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2506 }
2507
2508 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2509                                     u32 de_iir)
2510 {
2511         enum pipe pipe;
2512         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2513
2514         if (hotplug_trigger)
2515                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2516
2517         if (de_iir & DE_AUX_CHANNEL_A)
2518                 dp_aux_irq_handler(dev_priv);
2519
2520         if (de_iir & DE_GSE)
2521                 intel_opregion_asle_intr(dev_priv);
2522
2523         if (de_iir & DE_POISON)
2524                 DRM_ERROR("Poison interrupt\n");
2525
2526         for_each_pipe(dev_priv, pipe) {
2527                 if (de_iir & DE_PIPE_VBLANK(pipe))
2528                         drm_handle_vblank(&dev_priv->drm, pipe);
2529
2530                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2531                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2532
2533                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2534                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2535         }
2536
2537         /* check event from PCH */
2538         if (de_iir & DE_PCH_EVENT) {
2539                 u32 pch_iir = I915_READ(SDEIIR);
2540
2541                 if (HAS_PCH_CPT(dev_priv))
2542                         cpt_irq_handler(dev_priv, pch_iir);
2543                 else
2544                         ibx_irq_handler(dev_priv, pch_iir);
2545
2546                 /* should clear PCH hotplug event before clear CPU irq */
2547                 I915_WRITE(SDEIIR, pch_iir);
2548         }
2549
2550         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2551                 ironlake_rps_change_irq_handler(dev_priv);
2552 }
2553
2554 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2555                                     u32 de_iir)
2556 {
2557         enum pipe pipe;
2558         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2559
2560         if (hotplug_trigger)
2561                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2562
2563         if (de_iir & DE_ERR_INT_IVB)
2564                 ivb_err_int_handler(dev_priv);
2565
2566         if (de_iir & DE_EDP_PSR_INT_HSW) {
2567                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2568
2569                 intel_psr_irq_handler(dev_priv, psr_iir);
2570                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2571         }
2572
2573         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2574                 dp_aux_irq_handler(dev_priv);
2575
2576         if (de_iir & DE_GSE_IVB)
2577                 intel_opregion_asle_intr(dev_priv);
2578
2579         for_each_pipe(dev_priv, pipe) {
2580                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2581                         drm_handle_vblank(&dev_priv->drm, pipe);
2582         }
2583
2584         /* check event from PCH */
2585         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2586                 u32 pch_iir = I915_READ(SDEIIR);
2587
2588                 cpt_irq_handler(dev_priv, pch_iir);
2589
2590                 /* clear PCH hotplug event before clear CPU irq */
2591                 I915_WRITE(SDEIIR, pch_iir);
2592         }
2593 }
2594
2595 /*
2596  * To handle irqs with the minimum potential races with fresh interrupts, we:
2597  * 1 - Disable Master Interrupt Control.
2598  * 2 - Find the source(s) of the interrupt.
2599  * 3 - Clear the Interrupt Identity bits (IIR).
2600  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2601  * 5 - Re-enable Master Interrupt Control.
2602  */
2603 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2604 {
2605         struct drm_device *dev = arg;
2606         struct drm_i915_private *dev_priv = to_i915(dev);
2607         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2608         irqreturn_t ret = IRQ_NONE;
2609
2610         if (!intel_irqs_enabled(dev_priv))
2611                 return IRQ_NONE;
2612
2613         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2614         disable_rpm_wakeref_asserts(dev_priv);
2615
2616         /* disable master interrupt before clearing iir  */
2617         de_ier = I915_READ(DEIER);
2618         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2619
2620         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2621          * interrupts will will be stored on its back queue, and then we'll be
2622          * able to process them after we restore SDEIER (as soon as we restore
2623          * it, we'll get an interrupt if SDEIIR still has something to process
2624          * due to its back queue). */
2625         if (!HAS_PCH_NOP(dev_priv)) {
2626                 sde_ier = I915_READ(SDEIER);
2627                 I915_WRITE(SDEIER, 0);
2628         }
2629
2630         /* Find, clear, then process each source of interrupt */
2631
2632         gt_iir = I915_READ(GTIIR);
2633         if (gt_iir) {
2634                 I915_WRITE(GTIIR, gt_iir);
2635                 ret = IRQ_HANDLED;
2636                 if (INTEL_GEN(dev_priv) >= 6)
2637                         snb_gt_irq_handler(dev_priv, gt_iir);
2638                 else
2639                         ilk_gt_irq_handler(dev_priv, gt_iir);
2640         }
2641
2642         de_iir = I915_READ(DEIIR);
2643         if (de_iir) {
2644                 I915_WRITE(DEIIR, de_iir);
2645                 ret = IRQ_HANDLED;
2646                 if (INTEL_GEN(dev_priv) >= 7)
2647                         ivb_display_irq_handler(dev_priv, de_iir);
2648                 else
2649                         ilk_display_irq_handler(dev_priv, de_iir);
2650         }
2651
2652         if (INTEL_GEN(dev_priv) >= 6) {
2653                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2654                 if (pm_iir) {
2655                         I915_WRITE(GEN6_PMIIR, pm_iir);
2656                         ret = IRQ_HANDLED;
2657                         gen6_rps_irq_handler(dev_priv, pm_iir);
2658                 }
2659         }
2660
2661         I915_WRITE(DEIER, de_ier);
2662         if (!HAS_PCH_NOP(dev_priv))
2663                 I915_WRITE(SDEIER, sde_ier);
2664
2665         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2666         enable_rpm_wakeref_asserts(dev_priv);
2667
2668         return ret;
2669 }
2670
2671 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2672                                 u32 hotplug_trigger,
2673                                 const u32 hpd[HPD_NUM_PINS])
2674 {
2675         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2676
2677         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2678         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2679
2680         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2681                            dig_hotplug_reg, hpd,
2682                            bxt_port_hotplug_long_detect);
2683
2684         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2685 }
2686
2687 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2688 {
2689         u32 pin_mask = 0, long_mask = 0;
2690         u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2691         u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2692
2693         if (trigger_tc) {
2694                 u32 dig_hotplug_reg;
2695
2696                 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2697                 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2698
2699                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2700                                    dig_hotplug_reg, hpd_gen11,
2701                                    gen11_port_hotplug_long_detect);
2702         }
2703
2704         if (trigger_tbt) {
2705                 u32 dig_hotplug_reg;
2706
2707                 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2708                 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2709
2710                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2711                                    dig_hotplug_reg, hpd_gen11,
2712                                    gen11_port_hotplug_long_detect);
2713         }
2714
2715         if (pin_mask)
2716                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2717         else
2718                 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2719 }
2720
2721 static irqreturn_t
2722 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2723 {
2724         irqreturn_t ret = IRQ_NONE;
2725         u32 iir;
2726         enum pipe pipe;
2727
2728         if (master_ctl & GEN8_DE_MISC_IRQ) {
2729                 iir = I915_READ(GEN8_DE_MISC_IIR);
2730                 if (iir) {
2731                         bool found = false;
2732
2733                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2734                         ret = IRQ_HANDLED;
2735
2736                         if (iir & GEN8_DE_MISC_GSE) {
2737                                 intel_opregion_asle_intr(dev_priv);
2738                                 found = true;
2739                         }
2740
2741                         if (iir & GEN8_DE_EDP_PSR) {
2742                                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2743
2744                                 intel_psr_irq_handler(dev_priv, psr_iir);
2745                                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2746                                 found = true;
2747                         }
2748
2749                         if (!found)
2750                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2751                 }
2752                 else
2753                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2754         }
2755
2756         if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2757                 iir = I915_READ(GEN11_DE_HPD_IIR);
2758                 if (iir) {
2759                         I915_WRITE(GEN11_DE_HPD_IIR, iir);
2760                         ret = IRQ_HANDLED;
2761                         gen11_hpd_irq_handler(dev_priv, iir);
2762                 } else {
2763                         DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2764                 }
2765         }
2766
2767         if (master_ctl & GEN8_DE_PORT_IRQ) {
2768                 iir = I915_READ(GEN8_DE_PORT_IIR);
2769                 if (iir) {
2770                         u32 tmp_mask;
2771                         bool found = false;
2772
2773                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2774                         ret = IRQ_HANDLED;
2775
2776                         tmp_mask = GEN8_AUX_CHANNEL_A;
2777                         if (INTEL_GEN(dev_priv) >= 9)
2778                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2779                                             GEN9_AUX_CHANNEL_C |
2780                                             GEN9_AUX_CHANNEL_D;
2781
2782                         if (INTEL_GEN(dev_priv) >= 11)
2783                                 tmp_mask |= ICL_AUX_CHANNEL_E;
2784
2785                         if (IS_CNL_WITH_PORT_F(dev_priv) ||
2786                             INTEL_GEN(dev_priv) >= 11)
2787                                 tmp_mask |= CNL_AUX_CHANNEL_F;
2788
2789                         if (iir & tmp_mask) {
2790                                 dp_aux_irq_handler(dev_priv);
2791                                 found = true;
2792                         }
2793
2794                         if (IS_GEN9_LP(dev_priv)) {
2795                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2796                                 if (tmp_mask) {
2797                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2798                                                             hpd_bxt);
2799                                         found = true;
2800                                 }
2801                         } else if (IS_BROADWELL(dev_priv)) {
2802                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2803                                 if (tmp_mask) {
2804                                         ilk_hpd_irq_handler(dev_priv,
2805                                                             tmp_mask, hpd_bdw);
2806                                         found = true;
2807                                 }
2808                         }
2809
2810                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2811                                 gmbus_irq_handler(dev_priv);
2812                                 found = true;
2813                         }
2814
2815                         if (!found)
2816                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2817                 }
2818                 else
2819                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2820         }
2821
2822         for_each_pipe(dev_priv, pipe) {
2823                 u32 fault_errors;
2824
2825                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2826                         continue;
2827
2828                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2829                 if (!iir) {
2830                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2831                         continue;
2832                 }
2833
2834                 ret = IRQ_HANDLED;
2835                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2836
2837                 if (iir & GEN8_PIPE_VBLANK)
2838                         drm_handle_vblank(&dev_priv->drm, pipe);
2839
2840                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2841                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2842
2843                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2844                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2845
2846                 fault_errors = iir;
2847                 if (INTEL_GEN(dev_priv) >= 9)
2848                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2849                 else
2850                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2851
2852                 if (fault_errors)
2853                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2854                                   pipe_name(pipe),
2855                                   fault_errors);
2856         }
2857
2858         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2859             master_ctl & GEN8_DE_PCH_IRQ) {
2860                 /*
2861                  * FIXME(BDW): Assume for now that the new interrupt handling
2862                  * scheme also closed the SDE interrupt handling race we've seen
2863                  * on older pch-split platforms. But this needs testing.
2864                  */
2865                 iir = I915_READ(SDEIIR);
2866                 if (iir) {
2867                         I915_WRITE(SDEIIR, iir);
2868                         ret = IRQ_HANDLED;
2869
2870                         if (HAS_PCH_ICP(dev_priv))
2871                                 icp_irq_handler(dev_priv, iir);
2872                         else if (HAS_PCH_SPT(dev_priv) ||
2873                                  HAS_PCH_KBP(dev_priv) ||
2874                                  HAS_PCH_CNP(dev_priv))
2875                                 spt_irq_handler(dev_priv, iir);
2876                         else
2877                                 cpt_irq_handler(dev_priv, iir);
2878                 } else {
2879                         /*
2880                          * Like on previous PCH there seems to be something
2881                          * fishy going on with forwarding PCH interrupts.
2882                          */
2883                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2884                 }
2885         }
2886
2887         return ret;
2888 }
2889
2890 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2891 {
2892         struct drm_i915_private *dev_priv = to_i915(arg);
2893         u32 master_ctl;
2894         u32 gt_iir[4];
2895
2896         if (!intel_irqs_enabled(dev_priv))
2897                 return IRQ_NONE;
2898
2899         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2900         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2901         if (!master_ctl)
2902                 return IRQ_NONE;
2903
2904         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2905
2906         /* Find, clear, then process each source of interrupt */
2907         gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2908
2909         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2910         if (master_ctl & ~GEN8_GT_IRQS) {
2911                 disable_rpm_wakeref_asserts(dev_priv);
2912                 gen8_de_irq_handler(dev_priv, master_ctl);
2913                 enable_rpm_wakeref_asserts(dev_priv);
2914         }
2915
2916         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2917
2918         gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2919
2920         return IRQ_HANDLED;
2921 }
2922
2923 struct wedge_me {
2924         struct delayed_work work;
2925         struct drm_i915_private *i915;
2926         const char *name;
2927 };
2928
2929 static void wedge_me(struct work_struct *work)
2930 {
2931         struct wedge_me *w = container_of(work, typeof(*w), work.work);
2932
2933         dev_err(w->i915->drm.dev,
2934                 "%s timed out, cancelling all in-flight rendering.\n",
2935                 w->name);
2936         i915_gem_set_wedged(w->i915);
2937 }
2938
2939 static void __init_wedge(struct wedge_me *w,
2940                          struct drm_i915_private *i915,
2941                          long timeout,
2942                          const char *name)
2943 {
2944         w->i915 = i915;
2945         w->name = name;
2946
2947         INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2948         schedule_delayed_work(&w->work, timeout);
2949 }
2950
2951 static void __fini_wedge(struct wedge_me *w)
2952 {
2953         cancel_delayed_work_sync(&w->work);
2954         destroy_delayed_work_on_stack(&w->work);
2955         w->i915 = NULL;
2956 }
2957
2958 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)                          \
2959         for (__init_wedge((W), (DEV), (TIMEOUT), __func__);             \
2960              (W)->i915;                                                 \
2961              __fini_wedge((W)))
2962
2963 static u32
2964 gen11_gt_engine_identity(struct drm_i915_private * const i915,
2965                          const unsigned int bank, const unsigned int bit)
2966 {
2967         void __iomem * const regs = i915->regs;
2968         u32 timeout_ts;
2969         u32 ident;
2970
2971         lockdep_assert_held(&i915->irq_lock);
2972
2973         raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2974
2975         /*
2976          * NB: Specs do not specify how long to spin wait,
2977          * so we do ~100us as an educated guess.
2978          */
2979         timeout_ts = (local_clock() >> 10) + 100;
2980         do {
2981                 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
2982         } while (!(ident & GEN11_INTR_DATA_VALID) &&
2983                  !time_after32(local_clock() >> 10, timeout_ts));
2984
2985         if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
2986                 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
2987                           bank, bit, ident);
2988                 return 0;
2989         }
2990
2991         raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
2992                       GEN11_INTR_DATA_VALID);
2993
2994         return ident;
2995 }
2996
2997 static void
2998 gen11_other_irq_handler(struct drm_i915_private * const i915,
2999                         const u8 instance, const u16 iir)
3000 {
3001         if (instance == OTHER_GTPM_INSTANCE)
3002                 return gen6_rps_irq_handler(i915, iir);
3003
3004         WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
3005                   instance, iir);
3006 }
3007
3008 static void
3009 gen11_engine_irq_handler(struct drm_i915_private * const i915,
3010                          const u8 class, const u8 instance, const u16 iir)
3011 {
3012         struct intel_engine_cs *engine;
3013
3014         if (instance <= MAX_ENGINE_INSTANCE)
3015                 engine = i915->engine_class[class][instance];
3016         else
3017                 engine = NULL;
3018
3019         if (likely(engine))
3020                 return gen8_cs_irq_handler(engine, iir);
3021
3022         WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
3023                   class, instance);
3024 }
3025
3026 static void
3027 gen11_gt_identity_handler(struct drm_i915_private * const i915,
3028                           const u32 identity)
3029 {
3030         const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
3031         const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
3032         const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
3033
3034         if (unlikely(!intr))
3035                 return;
3036
3037         if (class <= COPY_ENGINE_CLASS)
3038                 return gen11_engine_irq_handler(i915, class, instance, intr);
3039
3040         if (class == OTHER_CLASS)
3041                 return gen11_other_irq_handler(i915, instance, intr);
3042
3043         WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
3044                   class, instance, intr);
3045 }
3046
3047 static void
3048 gen11_gt_bank_handler(struct drm_i915_private * const i915,
3049                       const unsigned int bank)
3050 {
3051         void __iomem * const regs = i915->regs;
3052         unsigned long intr_dw;
3053         unsigned int bit;
3054
3055         lockdep_assert_held(&i915->irq_lock);
3056
3057         intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
3058
3059         if (unlikely(!intr_dw)) {
3060                 DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
3061                 return;
3062         }
3063
3064         for_each_set_bit(bit, &intr_dw, 32) {
3065                 const u32 ident = gen11_gt_engine_identity(i915,
3066                                                            bank, bit);
3067
3068                 gen11_gt_identity_handler(i915, ident);
3069         }
3070
3071         /* Clear must be after shared has been served for engine */
3072         raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
3073 }
3074
3075 static void
3076 gen11_gt_irq_handler(struct drm_i915_private * const i915,
3077                      const u32 master_ctl)
3078 {
3079         unsigned int bank;
3080
3081         spin_lock(&i915->irq_lock);
3082
3083         for (bank = 0; bank < 2; bank++) {
3084                 if (master_ctl & GEN11_GT_DW_IRQ(bank))
3085                         gen11_gt_bank_handler(i915, bank);
3086         }
3087
3088         spin_unlock(&i915->irq_lock);
3089 }
3090
3091 static u32
3092 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl)
3093 {
3094         void __iomem * const regs = dev_priv->regs;
3095         u32 iir;
3096
3097         if (!(master_ctl & GEN11_GU_MISC_IRQ))
3098                 return 0;
3099
3100         iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
3101         if (likely(iir))
3102                 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
3103
3104         return iir;
3105 }
3106
3107 static void
3108 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv, const u32 iir)
3109 {
3110         if (iir & GEN11_GU_MISC_GSE)
3111                 intel_opregion_asle_intr(dev_priv);
3112 }
3113
3114 static irqreturn_t gen11_irq_handler(int irq, void *arg)
3115 {
3116         struct drm_i915_private * const i915 = to_i915(arg);
3117         void __iomem * const regs = i915->regs;
3118         u32 master_ctl;
3119         u32 gu_misc_iir;
3120
3121         if (!intel_irqs_enabled(i915))
3122                 return IRQ_NONE;
3123
3124         master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
3125         master_ctl &= ~GEN11_MASTER_IRQ;
3126         if (!master_ctl)
3127                 return IRQ_NONE;
3128
3129         /* Disable interrupts. */
3130         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
3131
3132         /* Find, clear, then process each source of interrupt. */
3133         gen11_gt_irq_handler(i915, master_ctl);
3134
3135         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3136         if (master_ctl & GEN11_DISPLAY_IRQ) {
3137                 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3138
3139                 disable_rpm_wakeref_asserts(i915);
3140                 /*
3141                  * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3142                  * for the display related bits.
3143                  */
3144                 gen8_de_irq_handler(i915, disp_ctl);
3145                 enable_rpm_wakeref_asserts(i915);
3146         }
3147
3148         gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
3149
3150         /* Acknowledge and enable interrupts. */
3151         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ | master_ctl);
3152
3153         gen11_gu_misc_irq_handler(i915, gu_misc_iir);
3154
3155         return IRQ_HANDLED;
3156 }
3157
3158 static void i915_reset_device(struct drm_i915_private *dev_priv,
3159                               u32 engine_mask,
3160                               const char *reason)
3161 {
3162         struct i915_gpu_error *error = &dev_priv->gpu_error;
3163         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
3164         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
3165         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
3166         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
3167         struct wedge_me w;
3168
3169         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
3170
3171         DRM_DEBUG_DRIVER("resetting chip\n");
3172         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
3173
3174         /* Use a watchdog to ensure that our reset completes */
3175         i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
3176                 intel_prepare_reset(dev_priv);
3177
3178                 error->reason = reason;
3179                 error->stalled_mask = engine_mask;
3180
3181                 /* Signal that locked waiters should reset the GPU */
3182                 smp_mb__before_atomic();
3183                 set_bit(I915_RESET_HANDOFF, &error->flags);
3184                 wake_up_all(&error->wait_queue);
3185
3186                 /* Wait for anyone holding the lock to wakeup, without
3187                  * blocking indefinitely on struct_mutex.
3188                  */
3189                 do {
3190                         if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
3191                                 i915_reset(dev_priv, engine_mask, reason);
3192                                 mutex_unlock(&dev_priv->drm.struct_mutex);
3193                         }
3194                 } while (wait_on_bit_timeout(&error->flags,
3195                                              I915_RESET_HANDOFF,
3196                                              TASK_UNINTERRUPTIBLE,
3197                                              1));
3198
3199                 error->stalled_mask = 0;
3200                 error->reason = NULL;
3201
3202                 intel_finish_reset(dev_priv);
3203         }
3204
3205         if (!test_bit(I915_WEDGED, &error->flags))
3206                 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
3207 }
3208
3209 void i915_clear_error_registers(struct drm_i915_private *dev_priv)
3210 {
3211         u32 eir;
3212
3213         if (!IS_GEN2(dev_priv))
3214                 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
3215
3216         if (INTEL_GEN(dev_priv) < 4)
3217                 I915_WRITE(IPEIR, I915_READ(IPEIR));
3218         else
3219                 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
3220
3221         I915_WRITE(EIR, I915_READ(EIR));
3222         eir = I915_READ(EIR);
3223         if (eir) {
3224                 /*
3225                  * some errors might have become stuck,
3226                  * mask them.
3227                  */
3228                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
3229                 I915_WRITE(EMR, I915_READ(EMR) | eir);
3230                 I915_WRITE(IIR, I915_MASTER_ERROR_INTERRUPT);
3231         }
3232
3233         if (INTEL_GEN(dev_priv) >= 8) {
3234                 I915_WRITE(GEN8_RING_FAULT_REG,
3235                            I915_READ(GEN8_RING_FAULT_REG) & ~RING_FAULT_VALID);
3236                 POSTING_READ(GEN8_RING_FAULT_REG);
3237         } else if (INTEL_GEN(dev_priv) >= 6) {
3238                 struct intel_engine_cs *engine;
3239                 enum intel_engine_id id;
3240
3241                 for_each_engine(engine, dev_priv, id) {
3242                         I915_WRITE(RING_FAULT_REG(engine),
3243                                    I915_READ(RING_FAULT_REG(engine)) &
3244                                    ~RING_FAULT_VALID);
3245                 }
3246                 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
3247         }
3248 }
3249
3250 /**
3251  * i915_handle_error - handle a gpu error
3252  * @dev_priv: i915 device private
3253  * @engine_mask: mask representing engines that are hung
3254  * @flags: control flags
3255  * @fmt: Error message format string
3256  *
3257  * Do some basic checking of register state at error time and
3258  * dump it to the syslog.  Also call i915_capture_error_state() to make
3259  * sure we get a record and make it available in debugfs.  Fire a uevent
3260  * so userspace knows something bad happened (should trigger collection
3261  * of a ring dump etc.).
3262  */
3263 void i915_handle_error(struct drm_i915_private *dev_priv,
3264                        u32 engine_mask,
3265                        unsigned long flags,
3266                        const char *fmt, ...)
3267 {
3268         struct intel_engine_cs *engine;
3269         unsigned int tmp;
3270         char error_msg[80];
3271         char *msg = NULL;
3272
3273         if (fmt) {
3274                 va_list args;
3275
3276                 va_start(args, fmt);
3277                 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
3278                 va_end(args);
3279
3280                 msg = error_msg;
3281         }
3282
3283         /*
3284          * In most cases it's guaranteed that we get here with an RPM
3285          * reference held, for example because there is a pending GPU
3286          * request that won't finish until the reset is done. This
3287          * isn't the case at least when we get here by doing a
3288          * simulated reset via debugfs, so get an RPM reference.
3289          */
3290         intel_runtime_pm_get(dev_priv);
3291
3292         engine_mask &= INTEL_INFO(dev_priv)->ring_mask;
3293
3294         if (flags & I915_ERROR_CAPTURE) {
3295                 i915_capture_error_state(dev_priv, engine_mask, msg);
3296                 i915_clear_error_registers(dev_priv);
3297         }
3298
3299         /*
3300          * Try engine reset when available. We fall back to full reset if
3301          * single reset fails.
3302          */
3303         if (intel_has_reset_engine(dev_priv) &&
3304             !i915_terminally_wedged(&dev_priv->gpu_error)) {
3305                 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
3306                         BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
3307                         if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3308                                              &dev_priv->gpu_error.flags))
3309                                 continue;
3310
3311                         if (i915_reset_engine(engine, msg) == 0)
3312                                 engine_mask &= ~intel_engine_flag(engine);
3313
3314                         clear_bit(I915_RESET_ENGINE + engine->id,
3315                                   &dev_priv->gpu_error.flags);
3316                         wake_up_bit(&dev_priv->gpu_error.flags,
3317                                     I915_RESET_ENGINE + engine->id);
3318                 }
3319         }
3320
3321         if (!engine_mask)
3322                 goto out;
3323
3324         /* Full reset needs the mutex, stop any other user trying to do so. */
3325         if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
3326                 wait_event(dev_priv->gpu_error.reset_queue,
3327                            !test_bit(I915_RESET_BACKOFF,
3328                                      &dev_priv->gpu_error.flags));
3329                 goto out;
3330         }
3331
3332         /* Prevent any other reset-engine attempt. */
3333         for_each_engine(engine, dev_priv, tmp) {
3334                 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3335                                         &dev_priv->gpu_error.flags))
3336                         wait_on_bit(&dev_priv->gpu_error.flags,
3337                                     I915_RESET_ENGINE + engine->id,
3338                                     TASK_UNINTERRUPTIBLE);
3339         }
3340
3341         i915_reset_device(dev_priv, engine_mask, msg);
3342
3343         for_each_engine(engine, dev_priv, tmp) {
3344                 clear_bit(I915_RESET_ENGINE + engine->id,
3345                           &dev_priv->gpu_error.flags);
3346         }
3347
3348         clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
3349         wake_up_all(&dev_priv->gpu_error.reset_queue);
3350
3351 out:
3352         intel_runtime_pm_put(dev_priv);
3353 }
3354
3355 /* Called from drm generic code, passed 'crtc' which
3356  * we use as a pipe index
3357  */
3358 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3359 {
3360         struct drm_i915_private *dev_priv = to_i915(dev);
3361         unsigned long irqflags;
3362
3363         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3364         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3365         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3366
3367         return 0;
3368 }
3369
3370 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3371 {
3372         struct drm_i915_private *dev_priv = to_i915(dev);
3373         unsigned long irqflags;
3374
3375         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3376         i915_enable_pipestat(dev_priv, pipe,
3377                              PIPE_START_VBLANK_INTERRUPT_STATUS);
3378         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3379
3380         return 0;
3381 }
3382
3383 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3384 {
3385         struct drm_i915_private *dev_priv = to_i915(dev);
3386         unsigned long irqflags;
3387         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3388                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3389
3390         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3391         ilk_enable_display_irq(dev_priv, bit);
3392         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3393
3394         /* Even though there is no DMC, frame counter can get stuck when
3395          * PSR is active as no frames are generated.
3396          */
3397         if (HAS_PSR(dev_priv))
3398                 drm_vblank_restore(dev, pipe);
3399
3400         return 0;
3401 }
3402
3403 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3404 {
3405         struct drm_i915_private *dev_priv = to_i915(dev);
3406         unsigned long irqflags;
3407
3408         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3409         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3410         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3411
3412         /* Even if there is no DMC, frame counter can get stuck when
3413          * PSR is active as no frames are generated, so check only for PSR.
3414          */
3415         if (HAS_PSR(dev_priv))
3416                 drm_vblank_restore(dev, pipe);
3417
3418         return 0;
3419 }
3420
3421 /* Called from drm generic code, passed 'crtc' which
3422  * we use as a pipe index
3423  */
3424 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3425 {
3426         struct drm_i915_private *dev_priv = to_i915(dev);
3427         unsigned long irqflags;
3428
3429         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3430         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3431         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3432 }
3433
3434 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3435 {
3436         struct drm_i915_private *dev_priv = to_i915(dev);
3437         unsigned long irqflags;
3438
3439         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3440         i915_disable_pipestat(dev_priv, pipe,
3441                               PIPE_START_VBLANK_INTERRUPT_STATUS);
3442         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3443 }
3444
3445 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3446 {
3447         struct drm_i915_private *dev_priv = to_i915(dev);
3448         unsigned long irqflags;
3449         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3450                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3451
3452         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3453         ilk_disable_display_irq(dev_priv, bit);
3454         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3455 }
3456
3457 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3458 {
3459         struct drm_i915_private *dev_priv = to_i915(dev);
3460         unsigned long irqflags;
3461
3462         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3463         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3464         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3465 }
3466
3467 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3468 {
3469         if (HAS_PCH_NOP(dev_priv))
3470                 return;
3471
3472         GEN3_IRQ_RESET(SDE);
3473
3474         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3475                 I915_WRITE(SERR_INT, 0xffffffff);
3476 }
3477
3478 /*
3479  * SDEIER is also touched by the interrupt handler to work around missed PCH
3480  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3481  * instead we unconditionally enable all PCH interrupt sources here, but then
3482  * only unmask them as needed with SDEIMR.
3483  *
3484  * This function needs to be called before interrupts are enabled.
3485  */
3486 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3487 {
3488         struct drm_i915_private *dev_priv = to_i915(dev);
3489
3490         if (HAS_PCH_NOP(dev_priv))
3491                 return;
3492
3493         WARN_ON(I915_READ(SDEIER) != 0);
3494         I915_WRITE(SDEIER, 0xffffffff);
3495         POSTING_READ(SDEIER);
3496 }
3497
3498 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3499 {
3500         GEN3_IRQ_RESET(GT);
3501         if (INTEL_GEN(dev_priv) >= 6)
3502                 GEN3_IRQ_RESET(GEN6_PM);
3503 }
3504
3505 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3506 {
3507         if (IS_CHERRYVIEW(dev_priv))
3508                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3509         else
3510                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3511
3512         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3513         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3514
3515         i9xx_pipestat_irq_reset(dev_priv);
3516
3517         GEN3_IRQ_RESET(VLV_);
3518         dev_priv->irq_mask = ~0u;
3519 }
3520
3521 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3522 {
3523         u32 pipestat_mask;
3524         u32 enable_mask;
3525         enum pipe pipe;
3526
3527         pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3528
3529         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3530         for_each_pipe(dev_priv, pipe)
3531                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3532
3533         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3534                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3535                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3536                 I915_LPE_PIPE_A_INTERRUPT |
3537                 I915_LPE_PIPE_B_INTERRUPT;
3538
3539         if (IS_CHERRYVIEW(dev_priv))
3540                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3541                         I915_LPE_PIPE_C_INTERRUPT;
3542
3543         WARN_ON(dev_priv->irq_mask != ~0u);
3544
3545         dev_priv->irq_mask = ~enable_mask;
3546
3547         GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3548 }
3549
3550 /* drm_dma.h hooks
3551 */
3552 static void ironlake_irq_reset(struct drm_device *dev)
3553 {
3554         struct drm_i915_private *dev_priv = to_i915(dev);
3555
3556         if (IS_GEN5(dev_priv))
3557                 I915_WRITE(HWSTAM, 0xffffffff);
3558
3559         GEN3_IRQ_RESET(DE);
3560         if (IS_GEN7(dev_priv))
3561                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3562
3563         if (IS_HASWELL(dev_priv)) {
3564                 I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3565                 I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3566         }
3567
3568         gen5_gt_irq_reset(dev_priv);
3569
3570         ibx_irq_reset(dev_priv);
3571 }
3572
3573 static void valleyview_irq_reset(struct drm_device *dev)
3574 {
3575         struct drm_i915_private *dev_priv = to_i915(dev);
3576
3577         I915_WRITE(VLV_MASTER_IER, 0);
3578         POSTING_READ(VLV_MASTER_IER);
3579
3580         gen5_gt_irq_reset(dev_priv);
3581
3582         spin_lock_irq(&dev_priv->irq_lock);
3583         if (dev_priv->display_irqs_enabled)
3584                 vlv_display_irq_reset(dev_priv);
3585         spin_unlock_irq(&dev_priv->irq_lock);
3586 }
3587
3588 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3589 {
3590         GEN8_IRQ_RESET_NDX(GT, 0);
3591         GEN8_IRQ_RESET_NDX(GT, 1);
3592         GEN8_IRQ_RESET_NDX(GT, 2);
3593         GEN8_IRQ_RESET_NDX(GT, 3);
3594 }
3595
3596 static void gen8_irq_reset(struct drm_device *dev)
3597 {
3598         struct drm_i915_private *dev_priv = to_i915(dev);
3599         int pipe;
3600
3601         I915_WRITE(GEN8_MASTER_IRQ, 0);
3602         POSTING_READ(GEN8_MASTER_IRQ);
3603
3604         gen8_gt_irq_reset(dev_priv);
3605
3606         I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3607         I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3608
3609         for_each_pipe(dev_priv, pipe)
3610                 if (intel_display_power_is_enabled(dev_priv,
3611                                                    POWER_DOMAIN_PIPE(pipe)))
3612                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3613
3614         GEN3_IRQ_RESET(GEN8_DE_PORT_);
3615         GEN3_IRQ_RESET(GEN8_DE_MISC_);
3616         GEN3_IRQ_RESET(GEN8_PCU_);
3617
3618         if (HAS_PCH_SPLIT(dev_priv))
3619                 ibx_irq_reset(dev_priv);
3620 }
3621
3622 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3623 {
3624         /* Disable RCS, BCS, VCS and VECS class engines. */
3625         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3626         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    0);
3627
3628         /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3629         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~0);
3630         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~0);
3631         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~0);
3632         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~0);
3633         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0);
3634
3635         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
3636         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
3637 }
3638
3639 static void gen11_irq_reset(struct drm_device *dev)
3640 {
3641         struct drm_i915_private *dev_priv = dev->dev_private;
3642         int pipe;
3643
3644         I915_WRITE(GEN11_GFX_MSTR_IRQ, 0);
3645         POSTING_READ(GEN11_GFX_MSTR_IRQ);
3646
3647         gen11_gt_irq_reset(dev_priv);
3648
3649         I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3650
3651         for_each_pipe(dev_priv, pipe)
3652                 if (intel_display_power_is_enabled(dev_priv,
3653                                                    POWER_DOMAIN_PIPE(pipe)))
3654                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3655
3656         GEN3_IRQ_RESET(GEN8_DE_PORT_);
3657         GEN3_IRQ_RESET(GEN8_DE_MISC_);
3658         GEN3_IRQ_RESET(GEN11_DE_HPD_);
3659         GEN3_IRQ_RESET(GEN11_GU_MISC_);
3660         GEN3_IRQ_RESET(GEN8_PCU_);
3661
3662         if (HAS_PCH_ICP(dev_priv))
3663                 GEN3_IRQ_RESET(SDE);
3664 }
3665
3666 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3667                                      u8 pipe_mask)
3668 {
3669         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3670         enum pipe pipe;
3671
3672         spin_lock_irq(&dev_priv->irq_lock);
3673
3674         if (!intel_irqs_enabled(dev_priv)) {
3675                 spin_unlock_irq(&dev_priv->irq_lock);
3676                 return;
3677         }
3678
3679         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3680                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3681                                   dev_priv->de_irq_mask[pipe],
3682                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3683
3684         spin_unlock_irq(&dev_priv->irq_lock);
3685 }
3686
3687 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3688                                      u8 pipe_mask)
3689 {
3690         enum pipe pipe;
3691
3692         spin_lock_irq(&dev_priv->irq_lock);
3693
3694         if (!intel_irqs_enabled(dev_priv)) {
3695                 spin_unlock_irq(&dev_priv->irq_lock);
3696                 return;
3697         }
3698
3699         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3700                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3701
3702         spin_unlock_irq(&dev_priv->irq_lock);
3703
3704         /* make sure we're done processing display irqs */
3705         synchronize_irq(dev_priv->drm.irq);
3706 }
3707
3708 static void cherryview_irq_reset(struct drm_device *dev)
3709 {
3710         struct drm_i915_private *dev_priv = to_i915(dev);
3711
3712         I915_WRITE(GEN8_MASTER_IRQ, 0);
3713         POSTING_READ(GEN8_MASTER_IRQ);
3714
3715         gen8_gt_irq_reset(dev_priv);
3716
3717         GEN3_IRQ_RESET(GEN8_PCU_);
3718
3719         spin_lock_irq(&dev_priv->irq_lock);
3720         if (dev_priv->display_irqs_enabled)
3721                 vlv_display_irq_reset(dev_priv);
3722         spin_unlock_irq(&dev_priv->irq_lock);
3723 }
3724
3725 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3726                                   const u32 hpd[HPD_NUM_PINS])
3727 {
3728         struct intel_encoder *encoder;
3729         u32 enabled_irqs = 0;
3730
3731         for_each_intel_encoder(&dev_priv->drm, encoder)
3732                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3733                         enabled_irqs |= hpd[encoder->hpd_pin];
3734
3735         return enabled_irqs;
3736 }
3737
3738 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3739 {
3740         u32 hotplug;
3741
3742         /*
3743          * Enable digital hotplug on the PCH, and configure the DP short pulse
3744          * duration to 2ms (which is the minimum in the Display Port spec).
3745          * The pulse duration bits are reserved on LPT+.
3746          */
3747         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3748         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3749                      PORTC_PULSE_DURATION_MASK |
3750                      PORTD_PULSE_DURATION_MASK);
3751         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3752         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3753         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3754         /*
3755          * When CPU and PCH are on the same package, port A
3756          * HPD must be enabled in both north and south.
3757          */
3758         if (HAS_PCH_LPT_LP(dev_priv))
3759                 hotplug |= PORTA_HOTPLUG_ENABLE;
3760         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3761 }
3762
3763 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3764 {
3765         u32 hotplug_irqs, enabled_irqs;
3766
3767         if (HAS_PCH_IBX(dev_priv)) {
3768                 hotplug_irqs = SDE_HOTPLUG_MASK;
3769                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3770         } else {
3771                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3772                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3773         }
3774
3775         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3776
3777         ibx_hpd_detection_setup(dev_priv);
3778 }
3779
3780 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv)
3781 {
3782         u32 hotplug;
3783
3784         hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3785         hotplug |= ICP_DDIA_HPD_ENABLE |
3786                    ICP_DDIB_HPD_ENABLE;
3787         I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3788
3789         hotplug = I915_READ(SHOTPLUG_CTL_TC);
3790         hotplug |= ICP_TC_HPD_ENABLE(PORT_TC1) |
3791                    ICP_TC_HPD_ENABLE(PORT_TC2) |
3792                    ICP_TC_HPD_ENABLE(PORT_TC3) |
3793                    ICP_TC_HPD_ENABLE(PORT_TC4);
3794         I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3795 }
3796
3797 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3798 {
3799         u32 hotplug_irqs, enabled_irqs;
3800
3801         hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3802         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3803
3804         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3805
3806         icp_hpd_detection_setup(dev_priv);
3807 }
3808
3809 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3810 {
3811         u32 hotplug;
3812
3813         hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3814         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3815                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3816                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3817                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3818         I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3819
3820         hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3821         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3822                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3823                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3824                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3825         I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3826 }
3827
3828 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3829 {
3830         u32 hotplug_irqs, enabled_irqs;
3831         u32 val;
3832
3833         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_gen11);
3834         hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3835
3836         val = I915_READ(GEN11_DE_HPD_IMR);
3837         val &= ~hotplug_irqs;
3838         I915_WRITE(GEN11_DE_HPD_IMR, val);
3839         POSTING_READ(GEN11_DE_HPD_IMR);
3840
3841         gen11_hpd_detection_setup(dev_priv);
3842
3843         if (HAS_PCH_ICP(dev_priv))
3844                 icp_hpd_irq_setup(dev_priv);
3845 }
3846
3847 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3848 {
3849         u32 val, hotplug;
3850
3851         /* Display WA #1179 WaHardHangonHotPlug: cnp */
3852         if (HAS_PCH_CNP(dev_priv)) {
3853                 val = I915_READ(SOUTH_CHICKEN1);
3854                 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3855                 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3856                 I915_WRITE(SOUTH_CHICKEN1, val);
3857         }
3858
3859         /* Enable digital hotplug on the PCH */
3860         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3861         hotplug |= PORTA_HOTPLUG_ENABLE |
3862                    PORTB_HOTPLUG_ENABLE |
3863                    PORTC_HOTPLUG_ENABLE |
3864                    PORTD_HOTPLUG_ENABLE;
3865         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3866
3867         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3868         hotplug |= PORTE_HOTPLUG_ENABLE;
3869         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3870 }
3871
3872 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3873 {
3874         u32 hotplug_irqs, enabled_irqs;
3875
3876         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3877         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3878
3879         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3880
3881         spt_hpd_detection_setup(dev_priv);
3882 }
3883
3884 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3885 {
3886         u32 hotplug;
3887
3888         /*
3889          * Enable digital hotplug on the CPU, and configure the DP short pulse
3890          * duration to 2ms (which is the minimum in the Display Port spec)
3891          * The pulse duration bits are reserved on HSW+.
3892          */
3893         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3894         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3895         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3896                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3897         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3898 }
3899
3900 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3901 {
3902         u32 hotplug_irqs, enabled_irqs;
3903
3904         if (INTEL_GEN(dev_priv) >= 8) {
3905                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3906                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3907
3908                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3909         } else if (INTEL_GEN(dev_priv) >= 7) {
3910                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3911                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3912
3913                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3914         } else {
3915                 hotplug_irqs = DE_DP_A_HOTPLUG;
3916                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3917
3918                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3919         }
3920
3921         ilk_hpd_detection_setup(dev_priv);
3922
3923         ibx_hpd_irq_setup(dev_priv);
3924 }
3925
3926 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3927                                       u32 enabled_irqs)
3928 {
3929         u32 hotplug;
3930
3931         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3932         hotplug |= PORTA_HOTPLUG_ENABLE |
3933                    PORTB_HOTPLUG_ENABLE |
3934                    PORTC_HOTPLUG_ENABLE;
3935
3936         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3937                       hotplug, enabled_irqs);
3938         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3939
3940         /*
3941          * For BXT invert bit has to be set based on AOB design
3942          * for HPD detection logic, update it based on VBT fields.
3943          */
3944         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3945             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3946                 hotplug |= BXT_DDIA_HPD_INVERT;
3947         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3948             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3949                 hotplug |= BXT_DDIB_HPD_INVERT;
3950         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3951             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3952                 hotplug |= BXT_DDIC_HPD_INVERT;
3953
3954         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3955 }
3956
3957 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3958 {
3959         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3960 }
3961
3962 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3963 {
3964         u32 hotplug_irqs, enabled_irqs;
3965
3966         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3967         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3968
3969         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3970
3971         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3972 }
3973
3974 static void ibx_irq_postinstall(struct drm_device *dev)
3975 {
3976         struct drm_i915_private *dev_priv = to_i915(dev);
3977         u32 mask;
3978
3979         if (HAS_PCH_NOP(dev_priv))
3980                 return;
3981
3982         if (HAS_PCH_IBX(dev_priv))
3983                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3984         else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3985                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3986         else
3987                 mask = SDE_GMBUS_CPT;
3988
3989         gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3990         I915_WRITE(SDEIMR, ~mask);
3991
3992         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3993             HAS_PCH_LPT(dev_priv))
3994                 ibx_hpd_detection_setup(dev_priv);
3995         else
3996                 spt_hpd_detection_setup(dev_priv);
3997 }
3998
3999 static void gen5_gt_irq_postinstall(struct drm_device *dev)
4000 {
4001         struct drm_i915_private *dev_priv = to_i915(dev);
4002         u32 pm_irqs, gt_irqs;
4003
4004         pm_irqs = gt_irqs = 0;
4005
4006         dev_priv->gt_irq_mask = ~0;
4007         if (HAS_L3_DPF(dev_priv)) {
4008                 /* L3 parity interrupt is always unmasked. */
4009                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
4010                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
4011         }
4012
4013         gt_irqs |= GT_RENDER_USER_INTERRUPT;
4014         if (IS_GEN5(dev_priv)) {
4015                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
4016         } else {
4017                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
4018         }
4019
4020         GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
4021
4022         if (INTEL_GEN(dev_priv) >= 6) {
4023                 /*
4024                  * RPS interrupts will get enabled/disabled on demand when RPS
4025                  * itself is enabled/disabled.
4026                  */
4027                 if (HAS_VEBOX(dev_priv)) {
4028                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
4029                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
4030                 }
4031
4032                 dev_priv->pm_imr = 0xffffffff;
4033                 GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
4034         }
4035 }
4036
4037 static int ironlake_irq_postinstall(struct drm_device *dev)
4038 {
4039         struct drm_i915_private *dev_priv = to_i915(dev);
4040         u32 display_mask, extra_mask;
4041
4042         if (INTEL_GEN(dev_priv) >= 7) {
4043                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
4044                                 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
4045                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
4046                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
4047                               DE_DP_A_HOTPLUG_IVB);
4048         } else {
4049                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
4050                                 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
4051                                 DE_PIPEA_CRC_DONE | DE_POISON);
4052                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
4053                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
4054                               DE_DP_A_HOTPLUG);
4055         }
4056
4057         if (IS_HASWELL(dev_priv)) {
4058                 gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4059                 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4060                 display_mask |= DE_EDP_PSR_INT_HSW;
4061         }
4062
4063         dev_priv->irq_mask = ~display_mask;
4064
4065         ibx_irq_pre_postinstall(dev);
4066
4067         GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
4068
4069         gen5_gt_irq_postinstall(dev);
4070
4071         ilk_hpd_detection_setup(dev_priv);
4072
4073         ibx_irq_postinstall(dev);
4074
4075         if (IS_IRONLAKE_M(dev_priv)) {
4076                 /* Enable PCU event interrupts
4077                  *
4078                  * spinlocking not required here for correctness since interrupt
4079                  * setup is guaranteed to run in single-threaded context. But we
4080                  * need it to make the assert_spin_locked happy. */
4081                 spin_lock_irq(&dev_priv->irq_lock);
4082                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
4083                 spin_unlock_irq(&dev_priv->irq_lock);
4084         }
4085
4086         return 0;
4087 }
4088
4089 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
4090 {
4091         lockdep_assert_held(&dev_priv->irq_lock);
4092
4093         if (dev_priv->display_irqs_enabled)
4094                 return;
4095
4096         dev_priv->display_irqs_enabled = true;
4097
4098         if (intel_irqs_enabled(dev_priv)) {
4099                 vlv_display_irq_reset(dev_priv);
4100                 vlv_display_irq_postinstall(dev_priv);
4101         }
4102 }
4103
4104 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
4105 {
4106         lockdep_assert_held(&dev_priv->irq_lock);
4107
4108         if (!dev_priv->display_irqs_enabled)
4109                 return;
4110
4111         dev_priv->display_irqs_enabled = false;
4112
4113         if (intel_irqs_enabled(dev_priv))
4114                 vlv_display_irq_reset(dev_priv);
4115 }
4116
4117
4118 static int valleyview_irq_postinstall(struct drm_device *dev)
4119 {
4120         struct drm_i915_private *dev_priv = to_i915(dev);
4121
4122         gen5_gt_irq_postinstall(dev);
4123
4124         spin_lock_irq(&dev_priv->irq_lock);
4125         if (dev_priv->display_irqs_enabled)
4126                 vlv_display_irq_postinstall(dev_priv);
4127         spin_unlock_irq(&dev_priv->irq_lock);
4128
4129         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
4130         POSTING_READ(VLV_MASTER_IER);
4131
4132         return 0;
4133 }
4134
4135 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4136 {
4137         /* These are interrupts we'll toggle with the ring mask register */
4138         uint32_t gt_interrupts[] = {
4139                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4140                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4141                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
4142                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
4143                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4144                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4145                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
4146                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
4147                 0,
4148                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
4149                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
4150                 };
4151
4152         if (HAS_L3_DPF(dev_priv))
4153                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
4154
4155         dev_priv->pm_ier = 0x0;
4156         dev_priv->pm_imr = ~dev_priv->pm_ier;
4157         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
4158         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
4159         /*
4160          * RPS interrupts will get enabled/disabled on demand when RPS itself
4161          * is enabled/disabled. Same wil be the case for GuC interrupts.
4162          */
4163         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
4164         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
4165 }
4166
4167 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
4168 {
4169         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
4170         uint32_t de_pipe_enables;
4171         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
4172         u32 de_port_enables;
4173         u32 de_misc_masked = GEN8_DE_EDP_PSR;
4174         enum pipe pipe;
4175
4176         if (INTEL_GEN(dev_priv) <= 10)
4177                 de_misc_masked |= GEN8_DE_MISC_GSE;
4178
4179         if (INTEL_GEN(dev_priv) >= 9) {
4180                 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
4181                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
4182                                   GEN9_AUX_CHANNEL_D;
4183                 if (IS_GEN9_LP(dev_priv))
4184                         de_port_masked |= BXT_DE_PORT_GMBUS;
4185         } else {
4186                 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
4187         }
4188
4189         if (INTEL_GEN(dev_priv) >= 11)
4190                 de_port_masked |= ICL_AUX_CHANNEL_E;
4191
4192         if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
4193                 de_port_masked |= CNL_AUX_CHANNEL_F;
4194
4195         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
4196                                            GEN8_PIPE_FIFO_UNDERRUN;
4197
4198         de_port_enables = de_port_masked;
4199         if (IS_GEN9_LP(dev_priv))
4200                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
4201         else if (IS_BROADWELL(dev_priv))
4202                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
4203
4204         gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4205         intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4206
4207         for_each_pipe(dev_priv, pipe) {
4208                 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
4209
4210                 if (intel_display_power_is_enabled(dev_priv,
4211                                 POWER_DOMAIN_PIPE(pipe)))
4212                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
4213                                           dev_priv->de_irq_mask[pipe],
4214                                           de_pipe_enables);
4215         }
4216
4217         GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4218         GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
4219
4220         if (INTEL_GEN(dev_priv) >= 11) {
4221                 u32 de_hpd_masked = 0;
4222                 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
4223                                      GEN11_DE_TBT_HOTPLUG_MASK;
4224
4225                 GEN3_IRQ_INIT(GEN11_DE_HPD_, ~de_hpd_masked, de_hpd_enables);
4226                 gen11_hpd_detection_setup(dev_priv);
4227         } else if (IS_GEN9_LP(dev_priv)) {
4228                 bxt_hpd_detection_setup(dev_priv);
4229         } else if (IS_BROADWELL(dev_priv)) {
4230                 ilk_hpd_detection_setup(dev_priv);
4231         }
4232 }
4233
4234 static int gen8_irq_postinstall(struct drm_device *dev)
4235 {
4236         struct drm_i915_private *dev_priv = to_i915(dev);
4237
4238         if (HAS_PCH_SPLIT(dev_priv))
4239                 ibx_irq_pre_postinstall(dev);
4240
4241         gen8_gt_irq_postinstall(dev_priv);
4242         gen8_de_irq_postinstall(dev_priv);
4243
4244         if (HAS_PCH_SPLIT(dev_priv))
4245                 ibx_irq_postinstall(dev);
4246
4247         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4248         POSTING_READ(GEN8_MASTER_IRQ);
4249
4250         return 0;
4251 }
4252
4253 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4254 {
4255         const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
4256
4257         BUILD_BUG_ON(irqs & 0xffff0000);
4258
4259         /* Enable RCS, BCS, VCS and VECS class interrupts. */
4260         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
4261         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    irqs << 16 | irqs);
4262
4263         /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4264         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~(irqs << 16));
4265         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~(irqs << 16));
4266         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~(irqs | irqs << 16));
4267         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~(irqs | irqs << 16));
4268         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16));
4269
4270         /*
4271          * RPS interrupts will get enabled/disabled on demand when RPS itself
4272          * is enabled/disabled.
4273          */
4274         dev_priv->pm_ier = 0x0;
4275         dev_priv->pm_imr = ~dev_priv->pm_ier;
4276         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
4277         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
4278 }
4279
4280 static void icp_irq_postinstall(struct drm_device *dev)
4281 {
4282         struct drm_i915_private *dev_priv = to_i915(dev);
4283         u32 mask = SDE_GMBUS_ICP;
4284
4285         WARN_ON(I915_READ(SDEIER) != 0);
4286         I915_WRITE(SDEIER, 0xffffffff);
4287         POSTING_READ(SDEIER);
4288
4289         gen3_assert_iir_is_zero(dev_priv, SDEIIR);
4290         I915_WRITE(SDEIMR, ~mask);
4291
4292         icp_hpd_detection_setup(dev_priv);
4293 }
4294
4295 static int gen11_irq_postinstall(struct drm_device *dev)
4296 {
4297         struct drm_i915_private *dev_priv = dev->dev_private;
4298         u32 gu_misc_masked = GEN11_GU_MISC_GSE;
4299
4300         if (HAS_PCH_ICP(dev_priv))
4301                 icp_irq_postinstall(dev);
4302
4303         gen11_gt_irq_postinstall(dev_priv);
4304         gen8_de_irq_postinstall(dev_priv);
4305
4306         GEN3_IRQ_INIT(GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
4307
4308         I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
4309
4310         I915_WRITE(GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
4311         POSTING_READ(GEN11_GFX_MSTR_IRQ);
4312
4313         return 0;
4314 }
4315
4316 static int cherryview_irq_postinstall(struct drm_device *dev)
4317 {
4318         struct drm_i915_private *dev_priv = to_i915(dev);
4319
4320         gen8_gt_irq_postinstall(dev_priv);
4321
4322         spin_lock_irq(&dev_priv->irq_lock);
4323         if (dev_priv->display_irqs_enabled)
4324                 vlv_display_irq_postinstall(dev_priv);
4325         spin_unlock_irq(&dev_priv->irq_lock);
4326
4327         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4328         POSTING_READ(GEN8_MASTER_IRQ);
4329
4330         return 0;
4331 }
4332
4333 static void i8xx_irq_reset(struct drm_device *dev)
4334 {
4335         struct drm_i915_private *dev_priv = to_i915(dev);
4336
4337         i9xx_pipestat_irq_reset(dev_priv);
4338
4339         I915_WRITE16(HWSTAM, 0xffff);
4340
4341         GEN2_IRQ_RESET();
4342 }
4343
4344 static int i8xx_irq_postinstall(struct drm_device *dev)
4345 {
4346         struct drm_i915_private *dev_priv = to_i915(dev);
4347         u16 enable_mask;
4348
4349         I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
4350                             I915_ERROR_MEMORY_REFRESH));
4351
4352         /* Unmask the interrupts that we always want on. */
4353         dev_priv->irq_mask =
4354                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4355                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4356                   I915_MASTER_ERROR_INTERRUPT);
4357
4358         enable_mask =
4359                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4360                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4361                 I915_MASTER_ERROR_INTERRUPT |
4362                 I915_USER_INTERRUPT;
4363
4364         GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4365
4366         /* Interrupt setup is already guaranteed to be single-threaded, this is
4367          * just to make the assert_spin_locked check happy. */
4368         spin_lock_irq(&dev_priv->irq_lock);
4369         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4370         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4371         spin_unlock_irq(&dev_priv->irq_lock);
4372
4373         return 0;
4374 }
4375
4376 static void i8xx_error_irq_ack(struct drm_i915_private *dev_priv,
4377                                u16 *eir, u16 *eir_stuck)
4378 {
4379         u16 emr;
4380
4381         *eir = I915_READ16(EIR);
4382
4383         if (*eir)
4384                 I915_WRITE16(EIR, *eir);
4385
4386         *eir_stuck = I915_READ16(EIR);
4387         if (*eir_stuck == 0)
4388                 return;
4389
4390         /*
4391          * Toggle all EMR bits to make sure we get an edge
4392          * in the ISR master error bit if we don't clear
4393          * all the EIR bits. Otherwise the edge triggered
4394          * IIR on i965/g4x wouldn't notice that an interrupt
4395          * is still pending. Also some EIR bits can't be
4396          * cleared except by handling the underlying error
4397          * (or by a GPU reset) so we mask any bit that
4398          * remains set.
4399          */
4400         emr = I915_READ16(EMR);
4401         I915_WRITE16(EMR, 0xffff);
4402         I915_WRITE16(EMR, emr | *eir_stuck);
4403 }
4404
4405 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
4406                                    u16 eir, u16 eir_stuck)
4407 {
4408         DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
4409
4410         if (eir_stuck)
4411                 DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
4412 }
4413
4414 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
4415                                u32 *eir, u32 *eir_stuck)
4416 {
4417         u32 emr;
4418
4419         *eir = I915_READ(EIR);
4420
4421         I915_WRITE(EIR, *eir);
4422
4423         *eir_stuck = I915_READ(EIR);
4424         if (*eir_stuck == 0)
4425                 return;
4426
4427         /*
4428          * Toggle all EMR bits to make sure we get an edge
4429          * in the ISR master error bit if we don't clear
4430          * all the EIR bits. Otherwise the edge triggered
4431          * IIR on i965/g4x wouldn't notice that an interrupt
4432          * is still pending. Also some EIR bits can't be
4433          * cleared except by handling the underlying error
4434          * (or by a GPU reset) so we mask any bit that
4435          * remains set.
4436          */
4437         emr = I915_READ(EMR);
4438         I915_WRITE(EMR, 0xffffffff);
4439         I915_WRITE(EMR, emr | *eir_stuck);
4440 }
4441
4442 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4443                                    u32 eir, u32 eir_stuck)
4444 {
4445         DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4446
4447         if (eir_stuck)
4448                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4449 }
4450
4451 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4452 {
4453         struct drm_device *dev = arg;
4454         struct drm_i915_private *dev_priv = to_i915(dev);
4455         irqreturn_t ret = IRQ_NONE;
4456
4457         if (!intel_irqs_enabled(dev_priv))
4458                 return IRQ_NONE;
4459
4460         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4461         disable_rpm_wakeref_asserts(dev_priv);
4462
4463         do {
4464                 u32 pipe_stats[I915_MAX_PIPES] = {};
4465                 u16 eir = 0, eir_stuck = 0;
4466                 u16 iir;
4467
4468                 iir = I915_READ16(IIR);
4469                 if (iir == 0)
4470                         break;
4471
4472                 ret = IRQ_HANDLED;
4473
4474                 /* Call regardless, as some status bits might not be
4475                  * signalled in iir */
4476                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4477
4478                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4479                         i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4480
4481                 I915_WRITE16(IIR, iir);
4482
4483                 if (iir & I915_USER_INTERRUPT)
4484                         notify_ring(dev_priv->engine[RCS]);
4485
4486                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4487                         i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4488
4489                 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4490         } while (0);
4491
4492         enable_rpm_wakeref_asserts(dev_priv);
4493
4494         return ret;
4495 }
4496
4497 static void i915_irq_reset(struct drm_device *dev)
4498 {
4499         struct drm_i915_private *dev_priv = to_i915(dev);
4500
4501         if (I915_HAS_HOTPLUG(dev_priv)) {
4502                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4503                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4504         }
4505
4506         i9xx_pipestat_irq_reset(dev_priv);
4507
4508         I915_WRITE(HWSTAM, 0xffffffff);
4509
4510         GEN3_IRQ_RESET();
4511 }
4512
4513 static int i915_irq_postinstall(struct drm_device *dev)
4514 {
4515         struct drm_i915_private *dev_priv = to_i915(dev);
4516         u32 enable_mask;
4517
4518         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4519                           I915_ERROR_MEMORY_REFRESH));
4520
4521         /* Unmask the interrupts that we always want on. */
4522         dev_priv->irq_mask =
4523                 ~(I915_ASLE_INTERRUPT |
4524                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4525                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4526                   I915_MASTER_ERROR_INTERRUPT);
4527
4528         enable_mask =
4529                 I915_ASLE_INTERRUPT |
4530                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4531                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4532                 I915_MASTER_ERROR_INTERRUPT |
4533                 I915_USER_INTERRUPT;
4534
4535         if (I915_HAS_HOTPLUG(dev_priv)) {
4536                 /* Enable in IER... */
4537                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4538                 /* and unmask in IMR */
4539                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4540         }
4541
4542         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4543
4544         /* Interrupt setup is already guaranteed to be single-threaded, this is
4545          * just to make the assert_spin_locked check happy. */
4546         spin_lock_irq(&dev_priv->irq_lock);
4547         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4548         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4549         spin_unlock_irq(&dev_priv->irq_lock);
4550
4551         i915_enable_asle_pipestat(dev_priv);
4552
4553         return 0;
4554 }
4555
4556 static irqreturn_t i915_irq_handler(int irq, void *arg)
4557 {
4558         struct drm_device *dev = arg;
4559         struct drm_i915_private *dev_priv = to_i915(dev);
4560         irqreturn_t ret = IRQ_NONE;
4561
4562         if (!intel_irqs_enabled(dev_priv))
4563                 return IRQ_NONE;
4564
4565         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4566         disable_rpm_wakeref_asserts(dev_priv);
4567
4568         do {
4569                 u32 pipe_stats[I915_MAX_PIPES] = {};
4570                 u32 eir = 0, eir_stuck = 0;
4571                 u32 hotplug_status = 0;
4572                 u32 iir;
4573
4574                 iir = I915_READ(IIR);
4575                 if (iir == 0)
4576                         break;
4577
4578                 ret = IRQ_HANDLED;
4579
4580                 if (I915_HAS_HOTPLUG(dev_priv) &&
4581                     iir & I915_DISPLAY_PORT_INTERRUPT)
4582                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4583
4584                 /* Call regardless, as some status bits might not be
4585                  * signalled in iir */
4586                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4587
4588                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4589                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4590
4591                 I915_WRITE(IIR, iir);
4592
4593                 if (iir & I915_USER_INTERRUPT)
4594                         notify_ring(dev_priv->engine[RCS]);
4595
4596                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4597                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4598
4599                 if (hotplug_status)
4600                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4601
4602                 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4603         } while (0);
4604
4605         enable_rpm_wakeref_asserts(dev_priv);
4606
4607         return ret;
4608 }
4609
4610 static void i965_irq_reset(struct drm_device *dev)
4611 {
4612         struct drm_i915_private *dev_priv = to_i915(dev);
4613
4614         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4615         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4616
4617         i9xx_pipestat_irq_reset(dev_priv);
4618
4619         I915_WRITE(HWSTAM, 0xffffffff);
4620
4621         GEN3_IRQ_RESET();
4622 }
4623
4624 static int i965_irq_postinstall(struct drm_device *dev)
4625 {
4626         struct drm_i915_private *dev_priv = to_i915(dev);
4627         u32 enable_mask;
4628         u32 error_mask;
4629
4630         /*
4631          * Enable some error detection, note the instruction error mask
4632          * bit is reserved, so we leave it masked.
4633          */
4634         if (IS_G4X(dev_priv)) {
4635                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4636                                GM45_ERROR_MEM_PRIV |
4637                                GM45_ERROR_CP_PRIV |
4638                                I915_ERROR_MEMORY_REFRESH);
4639         } else {
4640                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4641                                I915_ERROR_MEMORY_REFRESH);
4642         }
4643         I915_WRITE(EMR, error_mask);
4644
4645         /* Unmask the interrupts that we always want on. */
4646         dev_priv->irq_mask =
4647                 ~(I915_ASLE_INTERRUPT |
4648                   I915_DISPLAY_PORT_INTERRUPT |
4649                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4650                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4651                   I915_MASTER_ERROR_INTERRUPT);
4652
4653         enable_mask =
4654                 I915_ASLE_INTERRUPT |
4655                 I915_DISPLAY_PORT_INTERRUPT |
4656                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4657                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4658                 I915_MASTER_ERROR_INTERRUPT |
4659                 I915_USER_INTERRUPT;
4660
4661         if (IS_G4X(dev_priv))
4662                 enable_mask |= I915_BSD_USER_INTERRUPT;
4663
4664         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4665
4666         /* Interrupt setup is already guaranteed to be single-threaded, this is
4667          * just to make the assert_spin_locked check happy. */
4668         spin_lock_irq(&dev_priv->irq_lock);
4669         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4670         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4671         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4672         spin_unlock_irq(&dev_priv->irq_lock);
4673
4674         i915_enable_asle_pipestat(dev_priv);
4675
4676         return 0;
4677 }
4678
4679 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4680 {
4681         u32 hotplug_en;
4682
4683         lockdep_assert_held(&dev_priv->irq_lock);
4684
4685         /* Note HDMI and DP share hotplug bits */
4686         /* enable bits are the same for all generations */
4687         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4688         /* Programming the CRT detection parameters tends
4689            to generate a spurious hotplug event about three
4690            seconds later.  So just do it once.
4691         */
4692         if (IS_G4X(dev_priv))
4693                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4694         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4695
4696         /* Ignore TV since it's buggy */
4697         i915_hotplug_interrupt_update_locked(dev_priv,
4698                                              HOTPLUG_INT_EN_MASK |
4699                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4700                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4701                                              hotplug_en);
4702 }
4703
4704 static irqreturn_t i965_irq_handler(int irq, void *arg)
4705 {
4706         struct drm_device *dev = arg;
4707         struct drm_i915_private *dev_priv = to_i915(dev);
4708         irqreturn_t ret = IRQ_NONE;
4709
4710         if (!intel_irqs_enabled(dev_priv))
4711                 return IRQ_NONE;
4712
4713         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4714         disable_rpm_wakeref_asserts(dev_priv);
4715
4716         do {
4717                 u32 pipe_stats[I915_MAX_PIPES] = {};
4718                 u32 eir = 0, eir_stuck = 0;
4719                 u32 hotplug_status = 0;
4720                 u32 iir;
4721
4722                 iir = I915_READ(IIR);
4723                 if (iir == 0)
4724                         break;
4725
4726                 ret = IRQ_HANDLED;
4727
4728                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4729                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4730
4731                 /* Call regardless, as some status bits might not be
4732                  * signalled in iir */
4733                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4734
4735                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4736                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4737
4738                 I915_WRITE(IIR, iir);
4739
4740                 if (iir & I915_USER_INTERRUPT)
4741                         notify_ring(dev_priv->engine[RCS]);
4742
4743                 if (iir & I915_BSD_USER_INTERRUPT)
4744                         notify_ring(dev_priv->engine[VCS]);
4745
4746                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4747                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4748
4749                 if (hotplug_status)
4750                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4751
4752                 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4753         } while (0);
4754
4755         enable_rpm_wakeref_asserts(dev_priv);
4756
4757         return ret;
4758 }
4759
4760 /**
4761  * intel_irq_init - initializes irq support
4762  * @dev_priv: i915 device instance
4763  *
4764  * This function initializes all the irq support including work items, timers
4765  * and all the vtables. It does not setup the interrupt itself though.
4766  */
4767 void intel_irq_init(struct drm_i915_private *dev_priv)
4768 {
4769         struct drm_device *dev = &dev_priv->drm;
4770         struct intel_rps *rps = &dev_priv->gt_pm.rps;
4771         int i;
4772
4773         intel_hpd_init_work(dev_priv);
4774
4775         INIT_WORK(&rps->work, gen6_pm_rps_work);
4776
4777         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4778         for (i = 0; i < MAX_L3_SLICES; ++i)
4779                 dev_priv->l3_parity.remap_info[i] = NULL;
4780
4781         if (HAS_GUC_SCHED(dev_priv))
4782                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4783
4784         /* Let's track the enabled rps events */
4785         if (IS_VALLEYVIEW(dev_priv))
4786                 /* WaGsvRC0ResidencyMethod:vlv */
4787                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4788         else
4789                 dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4790                                            GEN6_PM_RP_DOWN_THRESHOLD |
4791                                            GEN6_PM_RP_DOWN_TIMEOUT);
4792
4793         rps->pm_intrmsk_mbz = 0;
4794
4795         /*
4796          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4797          * if GEN6_PM_UP_EI_EXPIRED is masked.
4798          *
4799          * TODO: verify if this can be reproduced on VLV,CHV.
4800          */
4801         if (INTEL_GEN(dev_priv) <= 7)
4802                 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4803
4804         if (INTEL_GEN(dev_priv) >= 8)
4805                 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4806
4807         if (IS_GEN2(dev_priv)) {
4808                 /* Gen2 doesn't have a hardware frame counter */
4809                 dev->max_vblank_count = 0;
4810         } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4811                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4812                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4813         } else {
4814                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4815                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4816         }
4817
4818         /*
4819          * Opt out of the vblank disable timer on everything except gen2.
4820          * Gen2 doesn't have a hardware frame counter and so depends on
4821          * vblank interrupts to produce sane vblank seuquence numbers.
4822          */
4823         if (!IS_GEN2(dev_priv))
4824                 dev->vblank_disable_immediate = true;
4825
4826         /* Most platforms treat the display irq block as an always-on
4827          * power domain. vlv/chv can disable it at runtime and need
4828          * special care to avoid writing any of the display block registers
4829          * outside of the power domain. We defer setting up the display irqs
4830          * in this case to the runtime pm.
4831          */
4832         dev_priv->display_irqs_enabled = true;
4833         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4834                 dev_priv->display_irqs_enabled = false;
4835
4836         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4837
4838         dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4839         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4840
4841         if (IS_CHERRYVIEW(dev_priv)) {
4842                 dev->driver->irq_handler = cherryview_irq_handler;
4843                 dev->driver->irq_preinstall = cherryview_irq_reset;
4844                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4845                 dev->driver->irq_uninstall = cherryview_irq_reset;
4846                 dev->driver->enable_vblank = i965_enable_vblank;
4847                 dev->driver->disable_vblank = i965_disable_vblank;
4848                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4849         } else if (IS_VALLEYVIEW(dev_priv)) {
4850                 dev->driver->irq_handler = valleyview_irq_handler;
4851                 dev->driver->irq_preinstall = valleyview_irq_reset;
4852                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4853                 dev->driver->irq_uninstall = valleyview_irq_reset;
4854                 dev->driver->enable_vblank = i965_enable_vblank;
4855                 dev->driver->disable_vblank = i965_disable_vblank;
4856                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4857         } else if (INTEL_GEN(dev_priv) >= 11) {
4858                 dev->driver->irq_handler = gen11_irq_handler;
4859                 dev->driver->irq_preinstall = gen11_irq_reset;
4860                 dev->driver->irq_postinstall = gen11_irq_postinstall;
4861                 dev->driver->irq_uninstall = gen11_irq_reset;
4862                 dev->driver->enable_vblank = gen8_enable_vblank;
4863                 dev->driver->disable_vblank = gen8_disable_vblank;
4864                 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4865         } else if (INTEL_GEN(dev_priv) >= 8) {
4866                 dev->driver->irq_handler = gen8_irq_handler;
4867                 dev->driver->irq_preinstall = gen8_irq_reset;
4868                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4869                 dev->driver->irq_uninstall = gen8_irq_reset;
4870                 dev->driver->enable_vblank = gen8_enable_vblank;
4871                 dev->driver->disable_vblank = gen8_disable_vblank;
4872                 if (IS_GEN9_LP(dev_priv))
4873                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4874                 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4875                          HAS_PCH_CNP(dev_priv))
4876                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4877                 else
4878                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4879         } else if (HAS_PCH_SPLIT(dev_priv)) {
4880                 dev->driver->irq_handler = ironlake_irq_handler;
4881                 dev->driver->irq_preinstall = ironlake_irq_reset;
4882                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4883                 dev->driver->irq_uninstall = ironlake_irq_reset;
4884                 dev->driver->enable_vblank = ironlake_enable_vblank;
4885                 dev->driver->disable_vblank = ironlake_disable_vblank;
4886                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4887         } else {
4888                 if (IS_GEN2(dev_priv)) {
4889                         dev->driver->irq_preinstall = i8xx_irq_reset;
4890                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4891                         dev->driver->irq_handler = i8xx_irq_handler;
4892                         dev->driver->irq_uninstall = i8xx_irq_reset;
4893                         dev->driver->enable_vblank = i8xx_enable_vblank;
4894                         dev->driver->disable_vblank = i8xx_disable_vblank;
4895                 } else if (IS_GEN3(dev_priv)) {
4896                         dev->driver->irq_preinstall = i915_irq_reset;
4897                         dev->driver->irq_postinstall = i915_irq_postinstall;
4898                         dev->driver->irq_uninstall = i915_irq_reset;
4899                         dev->driver->irq_handler = i915_irq_handler;
4900                         dev->driver->enable_vblank = i8xx_enable_vblank;
4901                         dev->driver->disable_vblank = i8xx_disable_vblank;
4902                 } else {
4903                         dev->driver->irq_preinstall = i965_irq_reset;
4904                         dev->driver->irq_postinstall = i965_irq_postinstall;
4905                         dev->driver->irq_uninstall = i965_irq_reset;
4906                         dev->driver->irq_handler = i965_irq_handler;
4907                         dev->driver->enable_vblank = i965_enable_vblank;
4908                         dev->driver->disable_vblank = i965_disable_vblank;
4909                 }
4910                 if (I915_HAS_HOTPLUG(dev_priv))
4911                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4912         }
4913 }
4914
4915 /**
4916  * intel_irq_fini - deinitializes IRQ support
4917  * @i915: i915 device instance
4918  *
4919  * This function deinitializes all the IRQ support.
4920  */
4921 void intel_irq_fini(struct drm_i915_private *i915)
4922 {
4923         int i;
4924
4925         for (i = 0; i < MAX_L3_SLICES; ++i)
4926                 kfree(i915->l3_parity.remap_info[i]);
4927 }
4928
4929 /**
4930  * intel_irq_install - enables the hardware interrupt
4931  * @dev_priv: i915 device instance
4932  *
4933  * This function enables the hardware interrupt handling, but leaves the hotplug
4934  * handling still disabled. It is called after intel_irq_init().
4935  *
4936  * In the driver load and resume code we need working interrupts in a few places
4937  * but don't want to deal with the hassle of concurrent probe and hotplug
4938  * workers. Hence the split into this two-stage approach.
4939  */
4940 int intel_irq_install(struct drm_i915_private *dev_priv)
4941 {
4942         /*
4943          * We enable some interrupt sources in our postinstall hooks, so mark
4944          * interrupts as enabled _before_ actually enabling them to avoid
4945          * special cases in our ordering checks.
4946          */
4947         dev_priv->runtime_pm.irqs_enabled = true;
4948
4949         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4950 }
4951
4952 /**
4953  * intel_irq_uninstall - finilizes all irq handling
4954  * @dev_priv: i915 device instance
4955  *
4956  * This stops interrupt and hotplug handling and unregisters and frees all
4957  * resources acquired in the init functions.
4958  */
4959 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4960 {
4961         drm_irq_uninstall(&dev_priv->drm);
4962         intel_hpd_cancel_work(dev_priv);
4963         dev_priv->runtime_pm.irqs_enabled = false;
4964 }
4965
4966 /**
4967  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4968  * @dev_priv: i915 device instance
4969  *
4970  * This function is used to disable interrupts at runtime, both in the runtime
4971  * pm and the system suspend/resume code.
4972  */
4973 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4974 {
4975         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4976         dev_priv->runtime_pm.irqs_enabled = false;
4977         synchronize_irq(dev_priv->drm.irq);
4978 }
4979
4980 /**
4981  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4982  * @dev_priv: i915 device instance
4983  *
4984  * This function is used to enable interrupts at runtime, both in the runtime
4985  * pm and the system suspend/resume code.
4986  */
4987 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4988 {
4989         dev_priv->runtime_pm.irqs_enabled = true;
4990         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4991         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4992 }