]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
e4934d5adc9e956232d7424b15a5f770dc97769d
[linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143                                     i915_reg_t reg)
144 {
145         u32 val = I915_READ(reg);
146
147         if (val == 0)
148                 return;
149
150         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151              i915_mmio_reg_offset(reg), val);
152         I915_WRITE(reg, 0xffffffff);
153         POSTING_READ(reg);
154         I915_WRITE(reg, 0xffffffff);
155         POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162         POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167         I915_WRITE(type##IER, (ier_val)); \
168         I915_WRITE(type##IMR, (imr_val)); \
169         POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178                                      uint32_t mask,
179                                      uint32_t bits)
180 {
181         uint32_t val;
182
183         lockdep_assert_held(&dev_priv->irq_lock);
184         WARN_ON(bits & ~mask);
185
186         val = I915_READ(PORT_HOTPLUG_EN);
187         val &= ~mask;
188         val |= bits;
189         I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191
192 /**
193  * i915_hotplug_interrupt_update - update hotplug interrupt enable
194  * @dev_priv: driver private
195  * @mask: bits to update
196  * @bits: bits to enable
197  * NOTE: the HPD enable bits are modified both inside and outside
198  * of an interrupt context. To avoid that read-modify-write cycles
199  * interfer, these bits are protected by a spinlock. Since this
200  * function is usually not called from a context where the lock is
201  * held already, this function acquires the lock itself. A non-locking
202  * version is also available.
203  */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205                                    uint32_t mask,
206                                    uint32_t bits)
207 {
208         spin_lock_irq(&dev_priv->irq_lock);
209         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210         spin_unlock_irq(&dev_priv->irq_lock);
211 }
212
213 /**
214  * ilk_update_display_irq - update DEIMR
215  * @dev_priv: driver private
216  * @interrupt_mask: mask of interrupt bits to update
217  * @enabled_irq_mask: mask of interrupt bits to enable
218  */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220                             uint32_t interrupt_mask,
221                             uint32_t enabled_irq_mask)
222 {
223         uint32_t new_val;
224
225         lockdep_assert_held(&dev_priv->irq_lock);
226
227         WARN_ON(enabled_irq_mask & ~interrupt_mask);
228
229         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230                 return;
231
232         new_val = dev_priv->irq_mask;
233         new_val &= ~interrupt_mask;
234         new_val |= (~enabled_irq_mask & interrupt_mask);
235
236         if (new_val != dev_priv->irq_mask) {
237                 dev_priv->irq_mask = new_val;
238                 I915_WRITE(DEIMR, dev_priv->irq_mask);
239                 POSTING_READ(DEIMR);
240         }
241 }
242
243 /**
244  * ilk_update_gt_irq - update GTIMR
245  * @dev_priv: driver private
246  * @interrupt_mask: mask of interrupt bits to update
247  * @enabled_irq_mask: mask of interrupt bits to enable
248  */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250                               uint32_t interrupt_mask,
251                               uint32_t enabled_irq_mask)
252 {
253         lockdep_assert_held(&dev_priv->irq_lock);
254
255         WARN_ON(enabled_irq_mask & ~interrupt_mask);
256
257         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258                 return;
259
260         dev_priv->gt_irq_mask &= ~interrupt_mask;
261         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267         ilk_update_gt_irq(dev_priv, mask, mask);
268         POSTING_READ_FW(GTIMR);
269 }
270
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273         ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290
291 /**
292  * snb_update_pm_irq - update GEN6_PMIMR
293  * @dev_priv: driver private
294  * @interrupt_mask: mask of interrupt bits to update
295  * @enabled_irq_mask: mask of interrupt bits to enable
296  */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298                               uint32_t interrupt_mask,
299                               uint32_t enabled_irq_mask)
300 {
301         uint32_t new_val;
302
303         WARN_ON(enabled_irq_mask & ~interrupt_mask);
304
305         lockdep_assert_held(&dev_priv->irq_lock);
306
307         new_val = dev_priv->pm_imr;
308         new_val &= ~interrupt_mask;
309         new_val |= (~enabled_irq_mask & interrupt_mask);
310
311         if (new_val != dev_priv->pm_imr) {
312                 dev_priv->pm_imr = new_val;
313                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314                 POSTING_READ(gen6_pm_imr(dev_priv));
315         }
316 }
317
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321                 return;
322
323         snb_update_pm_irq(dev_priv, mask, mask);
324 }
325
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328         snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         __gen6_mask_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341         i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343         lockdep_assert_held(&dev_priv->irq_lock);
344
345         I915_WRITE(reg, reset_mask);
346         I915_WRITE(reg, reset_mask);
347         POSTING_READ(reg);
348 }
349
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352         lockdep_assert_held(&dev_priv->irq_lock);
353
354         dev_priv->pm_ier |= enable_mask;
355         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356         gen6_unmask_pm_irq(dev_priv, enable_mask);
357         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362         lockdep_assert_held(&dev_priv->irq_lock);
363
364         dev_priv->pm_ier &= ~disable_mask;
365         __gen6_mask_pm_irq(dev_priv, disable_mask);
366         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367         /* though a barrier is missing here, but don't really need a one */
368 }
369
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372         spin_lock_irq(&dev_priv->irq_lock);
373         gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374         dev_priv->rps.pm_iir = 0;
375         spin_unlock_irq(&dev_priv->irq_lock);
376 }
377
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380         if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381                 return;
382
383         spin_lock_irq(&dev_priv->irq_lock);
384         WARN_ON_ONCE(dev_priv->rps.pm_iir);
385         WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386         dev_priv->rps.interrupts_enabled = true;
387         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388
389         spin_unlock_irq(&dev_priv->irq_lock);
390 }
391
392 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
393 {
394         if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
395                 return;
396
397         spin_lock_irq(&dev_priv->irq_lock);
398         dev_priv->rps.interrupts_enabled = false;
399
400         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
401
402         gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
403
404         spin_unlock_irq(&dev_priv->irq_lock);
405         synchronize_irq(dev_priv->drm.irq);
406
407         /* Now that we will not be generating any more work, flush any
408          * outsanding tasks. As we are called on the RPS idle path,
409          * we will reset the GPU to minimum frequencies, so the current
410          * state of the worker can be discarded.
411          */
412         cancel_work_sync(&dev_priv->rps.work);
413         gen6_reset_rps_interrupts(dev_priv);
414 }
415
416 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
417 {
418         spin_lock_irq(&dev_priv->irq_lock);
419         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
420         spin_unlock_irq(&dev_priv->irq_lock);
421 }
422
423 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
424 {
425         spin_lock_irq(&dev_priv->irq_lock);
426         if (!dev_priv->guc.interrupts_enabled) {
427                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
428                                        dev_priv->pm_guc_events);
429                 dev_priv->guc.interrupts_enabled = true;
430                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
431         }
432         spin_unlock_irq(&dev_priv->irq_lock);
433 }
434
435 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
436 {
437         spin_lock_irq(&dev_priv->irq_lock);
438         dev_priv->guc.interrupts_enabled = false;
439
440         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
441
442         spin_unlock_irq(&dev_priv->irq_lock);
443         synchronize_irq(dev_priv->drm.irq);
444
445         gen9_reset_guc_interrupts(dev_priv);
446 }
447
448 /**
449  * bdw_update_port_irq - update DE port interrupt
450  * @dev_priv: driver private
451  * @interrupt_mask: mask of interrupt bits to update
452  * @enabled_irq_mask: mask of interrupt bits to enable
453  */
454 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
455                                 uint32_t interrupt_mask,
456                                 uint32_t enabled_irq_mask)
457 {
458         uint32_t new_val;
459         uint32_t old_val;
460
461         lockdep_assert_held(&dev_priv->irq_lock);
462
463         WARN_ON(enabled_irq_mask & ~interrupt_mask);
464
465         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
466                 return;
467
468         old_val = I915_READ(GEN8_DE_PORT_IMR);
469
470         new_val = old_val;
471         new_val &= ~interrupt_mask;
472         new_val |= (~enabled_irq_mask & interrupt_mask);
473
474         if (new_val != old_val) {
475                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
476                 POSTING_READ(GEN8_DE_PORT_IMR);
477         }
478 }
479
480 /**
481  * bdw_update_pipe_irq - update DE pipe interrupt
482  * @dev_priv: driver private
483  * @pipe: pipe whose interrupt to update
484  * @interrupt_mask: mask of interrupt bits to update
485  * @enabled_irq_mask: mask of interrupt bits to enable
486  */
487 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
488                          enum pipe pipe,
489                          uint32_t interrupt_mask,
490                          uint32_t enabled_irq_mask)
491 {
492         uint32_t new_val;
493
494         lockdep_assert_held(&dev_priv->irq_lock);
495
496         WARN_ON(enabled_irq_mask & ~interrupt_mask);
497
498         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
499                 return;
500
501         new_val = dev_priv->de_irq_mask[pipe];
502         new_val &= ~interrupt_mask;
503         new_val |= (~enabled_irq_mask & interrupt_mask);
504
505         if (new_val != dev_priv->de_irq_mask[pipe]) {
506                 dev_priv->de_irq_mask[pipe] = new_val;
507                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
508                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
509         }
510 }
511
512 /**
513  * ibx_display_interrupt_update - update SDEIMR
514  * @dev_priv: driver private
515  * @interrupt_mask: mask of interrupt bits to update
516  * @enabled_irq_mask: mask of interrupt bits to enable
517  */
518 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
519                                   uint32_t interrupt_mask,
520                                   uint32_t enabled_irq_mask)
521 {
522         uint32_t sdeimr = I915_READ(SDEIMR);
523         sdeimr &= ~interrupt_mask;
524         sdeimr |= (~enabled_irq_mask & interrupt_mask);
525
526         WARN_ON(enabled_irq_mask & ~interrupt_mask);
527
528         lockdep_assert_held(&dev_priv->irq_lock);
529
530         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
531                 return;
532
533         I915_WRITE(SDEIMR, sdeimr);
534         POSTING_READ(SDEIMR);
535 }
536
537 static void
538 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
539                        u32 enable_mask, u32 status_mask)
540 {
541         i915_reg_t reg = PIPESTAT(pipe);
542         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
543
544         lockdep_assert_held(&dev_priv->irq_lock);
545         WARN_ON(!intel_irqs_enabled(dev_priv));
546
547         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
548                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
549                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
550                       pipe_name(pipe), enable_mask, status_mask))
551                 return;
552
553         if ((pipestat & enable_mask) == enable_mask)
554                 return;
555
556         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
557
558         /* Enable the interrupt, clear any pending status */
559         pipestat |= enable_mask | status_mask;
560         I915_WRITE(reg, pipestat);
561         POSTING_READ(reg);
562 }
563
564 static void
565 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
566                         u32 enable_mask, u32 status_mask)
567 {
568         i915_reg_t reg = PIPESTAT(pipe);
569         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
570
571         lockdep_assert_held(&dev_priv->irq_lock);
572         WARN_ON(!intel_irqs_enabled(dev_priv));
573
574         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
575                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
576                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
577                       pipe_name(pipe), enable_mask, status_mask))
578                 return;
579
580         if ((pipestat & enable_mask) == 0)
581                 return;
582
583         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
584
585         pipestat &= ~enable_mask;
586         I915_WRITE(reg, pipestat);
587         POSTING_READ(reg);
588 }
589
590 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
591 {
592         u32 enable_mask = status_mask << 16;
593
594         /*
595          * On pipe A we don't support the PSR interrupt yet,
596          * on pipe B and C the same bit MBZ.
597          */
598         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
599                 return 0;
600         /*
601          * On pipe B and C we don't support the PSR interrupt yet, on pipe
602          * A the same bit is for perf counters which we don't use either.
603          */
604         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
605                 return 0;
606
607         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
608                          SPRITE0_FLIP_DONE_INT_EN_VLV |
609                          SPRITE1_FLIP_DONE_INT_EN_VLV);
610         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
611                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
612         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
613                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
614
615         return enable_mask;
616 }
617
618 void
619 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
620                      u32 status_mask)
621 {
622         u32 enable_mask;
623
624         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
625                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
626                                                            status_mask);
627         else
628                 enable_mask = status_mask << 16;
629         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
630 }
631
632 void
633 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
634                       u32 status_mask)
635 {
636         u32 enable_mask;
637
638         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
639                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
640                                                            status_mask);
641         else
642                 enable_mask = status_mask << 16;
643         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
644 }
645
646 /**
647  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
648  * @dev_priv: i915 device private
649  */
650 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
651 {
652         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
653                 return;
654
655         spin_lock_irq(&dev_priv->irq_lock);
656
657         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
658         if (INTEL_GEN(dev_priv) >= 4)
659                 i915_enable_pipestat(dev_priv, PIPE_A,
660                                      PIPE_LEGACY_BLC_EVENT_STATUS);
661
662         spin_unlock_irq(&dev_priv->irq_lock);
663 }
664
665 /*
666  * This timing diagram depicts the video signal in and
667  * around the vertical blanking period.
668  *
669  * Assumptions about the fictitious mode used in this example:
670  *  vblank_start >= 3
671  *  vsync_start = vblank_start + 1
672  *  vsync_end = vblank_start + 2
673  *  vtotal = vblank_start + 3
674  *
675  *           start of vblank:
676  *           latch double buffered registers
677  *           increment frame counter (ctg+)
678  *           generate start of vblank interrupt (gen4+)
679  *           |
680  *           |          frame start:
681  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
682  *           |          may be shifted forward 1-3 extra lines via PIPECONF
683  *           |          |
684  *           |          |  start of vsync:
685  *           |          |  generate vsync interrupt
686  *           |          |  |
687  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
688  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
689  * ----va---> <-----------------vb--------------------> <--------va-------------
690  *       |          |       <----vs----->                     |
691  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
692  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
693  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
694  *       |          |                                         |
695  *       last visible pixel                                   first visible pixel
696  *                  |                                         increment frame counter (gen3/4)
697  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
698  *
699  * x  = horizontal active
700  * _  = horizontal blanking
701  * hs = horizontal sync
702  * va = vertical active
703  * vb = vertical blanking
704  * vs = vertical sync
705  * vbs = vblank_start (number)
706  *
707  * Summary:
708  * - most events happen at the start of horizontal sync
709  * - frame start happens at the start of horizontal blank, 1-4 lines
710  *   (depending on PIPECONF settings) after the start of vblank
711  * - gen3/4 pixel and frame counter are synchronized with the start
712  *   of horizontal active on the first line of vertical active
713  */
714
715 /* Called from drm generic code, passed a 'crtc', which
716  * we use as a pipe index
717  */
718 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
719 {
720         struct drm_i915_private *dev_priv = to_i915(dev);
721         i915_reg_t high_frame, low_frame;
722         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
723         const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
724         unsigned long irqflags;
725
726         htotal = mode->crtc_htotal;
727         hsync_start = mode->crtc_hsync_start;
728         vbl_start = mode->crtc_vblank_start;
729         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
730                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
731
732         /* Convert to pixel count */
733         vbl_start *= htotal;
734
735         /* Start of vblank event occurs at start of hsync */
736         vbl_start -= htotal - hsync_start;
737
738         high_frame = PIPEFRAME(pipe);
739         low_frame = PIPEFRAMEPIXEL(pipe);
740
741         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
742
743         /*
744          * High & low register fields aren't synchronized, so make sure
745          * we get a low value that's stable across two reads of the high
746          * register.
747          */
748         do {
749                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
750                 low   = I915_READ_FW(low_frame);
751                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
752         } while (high1 != high2);
753
754         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
755
756         high1 >>= PIPE_FRAME_HIGH_SHIFT;
757         pixel = low & PIPE_PIXEL_MASK;
758         low >>= PIPE_FRAME_LOW_SHIFT;
759
760         /*
761          * The frame counter increments at beginning of active.
762          * Cook up a vblank counter by also checking the pixel
763          * counter against vblank start.
764          */
765         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
766 }
767
768 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
769 {
770         struct drm_i915_private *dev_priv = to_i915(dev);
771
772         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
773 }
774
775 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
776 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
777 {
778         struct drm_device *dev = crtc->base.dev;
779         struct drm_i915_private *dev_priv = to_i915(dev);
780         const struct drm_display_mode *mode;
781         struct drm_vblank_crtc *vblank;
782         enum pipe pipe = crtc->pipe;
783         int position, vtotal;
784
785         if (!crtc->active)
786                 return -1;
787
788         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
789         mode = &vblank->hwmode;
790
791         vtotal = mode->crtc_vtotal;
792         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
793                 vtotal /= 2;
794
795         if (IS_GEN2(dev_priv))
796                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
797         else
798                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
799
800         /*
801          * On HSW, the DSL reg (0x70000) appears to return 0 if we
802          * read it just before the start of vblank.  So try it again
803          * so we don't accidentally end up spanning a vblank frame
804          * increment, causing the pipe_update_end() code to squak at us.
805          *
806          * The nature of this problem means we can't simply check the ISR
807          * bit and return the vblank start value; nor can we use the scanline
808          * debug register in the transcoder as it appears to have the same
809          * problem.  We may need to extend this to include other platforms,
810          * but so far testing only shows the problem on HSW.
811          */
812         if (HAS_DDI(dev_priv) && !position) {
813                 int i, temp;
814
815                 for (i = 0; i < 100; i++) {
816                         udelay(1);
817                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
818                         if (temp != position) {
819                                 position = temp;
820                                 break;
821                         }
822                 }
823         }
824
825         /*
826          * See update_scanline_offset() for the details on the
827          * scanline_offset adjustment.
828          */
829         return (position + crtc->scanline_offset) % vtotal;
830 }
831
832 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
833                                      bool in_vblank_irq, int *vpos, int *hpos,
834                                      ktime_t *stime, ktime_t *etime,
835                                      const struct drm_display_mode *mode)
836 {
837         struct drm_i915_private *dev_priv = to_i915(dev);
838         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
839                                                                 pipe);
840         int position;
841         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
842         bool in_vbl = true;
843         unsigned long irqflags;
844
845         if (WARN_ON(!mode->crtc_clock)) {
846                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
847                                  "pipe %c\n", pipe_name(pipe));
848                 return false;
849         }
850
851         htotal = mode->crtc_htotal;
852         hsync_start = mode->crtc_hsync_start;
853         vtotal = mode->crtc_vtotal;
854         vbl_start = mode->crtc_vblank_start;
855         vbl_end = mode->crtc_vblank_end;
856
857         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
858                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
859                 vbl_end /= 2;
860                 vtotal /= 2;
861         }
862
863         /*
864          * Lock uncore.lock, as we will do multiple timing critical raw
865          * register reads, potentially with preemption disabled, so the
866          * following code must not block on uncore.lock.
867          */
868         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
869
870         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
871
872         /* Get optional system timestamp before query. */
873         if (stime)
874                 *stime = ktime_get();
875
876         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
877                 /* No obvious pixelcount register. Only query vertical
878                  * scanout position from Display scan line register.
879                  */
880                 position = __intel_get_crtc_scanline(intel_crtc);
881         } else {
882                 /* Have access to pixelcount since start of frame.
883                  * We can split this into vertical and horizontal
884                  * scanout position.
885                  */
886                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
887
888                 /* convert to pixel counts */
889                 vbl_start *= htotal;
890                 vbl_end *= htotal;
891                 vtotal *= htotal;
892
893                 /*
894                  * In interlaced modes, the pixel counter counts all pixels,
895                  * so one field will have htotal more pixels. In order to avoid
896                  * the reported position from jumping backwards when the pixel
897                  * counter is beyond the length of the shorter field, just
898                  * clamp the position the length of the shorter field. This
899                  * matches how the scanline counter based position works since
900                  * the scanline counter doesn't count the two half lines.
901                  */
902                 if (position >= vtotal)
903                         position = vtotal - 1;
904
905                 /*
906                  * Start of vblank interrupt is triggered at start of hsync,
907                  * just prior to the first active line of vblank. However we
908                  * consider lines to start at the leading edge of horizontal
909                  * active. So, should we get here before we've crossed into
910                  * the horizontal active of the first line in vblank, we would
911                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
912                  * always add htotal-hsync_start to the current pixel position.
913                  */
914                 position = (position + htotal - hsync_start) % vtotal;
915         }
916
917         /* Get optional system timestamp after query. */
918         if (etime)
919                 *etime = ktime_get();
920
921         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
922
923         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925         in_vbl = position >= vbl_start && position < vbl_end;
926
927         /*
928          * While in vblank, position will be negative
929          * counting up towards 0 at vbl_end. And outside
930          * vblank, position will be positive counting
931          * up since vbl_end.
932          */
933         if (position >= vbl_start)
934                 position -= vbl_end;
935         else
936                 position += vtotal - vbl_end;
937
938         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
939                 *vpos = position;
940                 *hpos = 0;
941         } else {
942                 *vpos = position / htotal;
943                 *hpos = position - (*vpos * htotal);
944         }
945
946         return true;
947 }
948
949 int intel_get_crtc_scanline(struct intel_crtc *crtc)
950 {
951         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
952         unsigned long irqflags;
953         int position;
954
955         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
956         position = __intel_get_crtc_scanline(crtc);
957         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
958
959         return position;
960 }
961
962 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
963 {
964         u32 busy_up, busy_down, max_avg, min_avg;
965         u8 new_delay;
966
967         spin_lock(&mchdev_lock);
968
969         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
970
971         new_delay = dev_priv->ips.cur_delay;
972
973         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
974         busy_up = I915_READ(RCPREVBSYTUPAVG);
975         busy_down = I915_READ(RCPREVBSYTDNAVG);
976         max_avg = I915_READ(RCBMAXAVG);
977         min_avg = I915_READ(RCBMINAVG);
978
979         /* Handle RCS change request from hw */
980         if (busy_up > max_avg) {
981                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
982                         new_delay = dev_priv->ips.cur_delay - 1;
983                 if (new_delay < dev_priv->ips.max_delay)
984                         new_delay = dev_priv->ips.max_delay;
985         } else if (busy_down < min_avg) {
986                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
987                         new_delay = dev_priv->ips.cur_delay + 1;
988                 if (new_delay > dev_priv->ips.min_delay)
989                         new_delay = dev_priv->ips.min_delay;
990         }
991
992         if (ironlake_set_drps(dev_priv, new_delay))
993                 dev_priv->ips.cur_delay = new_delay;
994
995         spin_unlock(&mchdev_lock);
996
997         return;
998 }
999
1000 static void notify_ring(struct intel_engine_cs *engine)
1001 {
1002         struct drm_i915_gem_request *rq = NULL;
1003         struct intel_wait *wait;
1004
1005         atomic_inc(&engine->irq_count);
1006         set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1007
1008         spin_lock(&engine->breadcrumbs.irq_lock);
1009         wait = engine->breadcrumbs.irq_wait;
1010         if (wait) {
1011                 /* We use a callback from the dma-fence to submit
1012                  * requests after waiting on our own requests. To
1013                  * ensure minimum delay in queuing the next request to
1014                  * hardware, signal the fence now rather than wait for
1015                  * the signaler to be woken up. We still wake up the
1016                  * waiter in order to handle the irq-seqno coherency
1017                  * issues (we may receive the interrupt before the
1018                  * seqno is written, see __i915_request_irq_complete())
1019                  * and to handle coalescing of multiple seqno updates
1020                  * and many waiters.
1021                  */
1022                 if (i915_seqno_passed(intel_engine_get_seqno(engine),
1023                                       wait->seqno) &&
1024                     !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1025                               &wait->request->fence.flags))
1026                         rq = i915_gem_request_get(wait->request);
1027
1028                 wake_up_process(wait->tsk);
1029         } else {
1030                 __intel_engine_disarm_breadcrumbs(engine);
1031         }
1032         spin_unlock(&engine->breadcrumbs.irq_lock);
1033
1034         if (rq) {
1035                 dma_fence_signal(&rq->fence);
1036                 i915_gem_request_put(rq);
1037         }
1038
1039         trace_intel_engine_notify(engine, wait);
1040 }
1041
1042 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1043                         struct intel_rps_ei *ei)
1044 {
1045         ei->ktime = ktime_get_raw();
1046         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1047         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1048 }
1049
1050 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1051 {
1052         memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1053 }
1054
1055 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1056 {
1057         const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1058         struct intel_rps_ei now;
1059         u32 events = 0;
1060
1061         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1062                 return 0;
1063
1064         vlv_c0_read(dev_priv, &now);
1065
1066         if (prev->ktime) {
1067                 u64 time, c0;
1068                 u32 render, media;
1069
1070                 time = ktime_us_delta(now.ktime, prev->ktime);
1071
1072                 time *= dev_priv->czclk_freq;
1073
1074                 /* Workload can be split between render + media,
1075                  * e.g. SwapBuffers being blitted in X after being rendered in
1076                  * mesa. To account for this we need to combine both engines
1077                  * into our activity counter.
1078                  */
1079                 render = now.render_c0 - prev->render_c0;
1080                 media = now.media_c0 - prev->media_c0;
1081                 c0 = max(render, media);
1082                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1083
1084                 if (c0 > time * dev_priv->rps.up_threshold)
1085                         events = GEN6_PM_RP_UP_THRESHOLD;
1086                 else if (c0 < time * dev_priv->rps.down_threshold)
1087                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1088         }
1089
1090         dev_priv->rps.ei = now;
1091         return events;
1092 }
1093
1094 static bool any_waiters(struct drm_i915_private *dev_priv)
1095 {
1096         struct intel_engine_cs *engine;
1097         enum intel_engine_id id;
1098
1099         for_each_engine(engine, dev_priv, id)
1100                 if (intel_engine_has_waiter(engine))
1101                         return true;
1102
1103         return false;
1104 }
1105
1106 static void gen6_pm_rps_work(struct work_struct *work)
1107 {
1108         struct drm_i915_private *dev_priv =
1109                 container_of(work, struct drm_i915_private, rps.work);
1110         bool client_boost = false;
1111         int new_delay, adj, min, max;
1112         u32 pm_iir = 0;
1113
1114         spin_lock_irq(&dev_priv->irq_lock);
1115         if (dev_priv->rps.interrupts_enabled) {
1116                 pm_iir = fetch_and_zero(&dev_priv->rps.pm_iir);
1117                 client_boost = fetch_and_zero(&dev_priv->rps.client_boost);
1118         }
1119         spin_unlock_irq(&dev_priv->irq_lock);
1120
1121         /* Make sure we didn't queue anything we're not going to process. */
1122         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1123         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1124                 goto out;
1125
1126         mutex_lock(&dev_priv->rps.hw_lock);
1127
1128         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1129
1130         adj = dev_priv->rps.last_adj;
1131         new_delay = dev_priv->rps.cur_freq;
1132         min = dev_priv->rps.min_freq_softlimit;
1133         max = dev_priv->rps.max_freq_softlimit;
1134         if (client_boost || any_waiters(dev_priv))
1135                 max = dev_priv->rps.max_freq;
1136         if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1137                 new_delay = dev_priv->rps.boost_freq;
1138                 adj = 0;
1139         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1140                 if (adj > 0)
1141                         adj *= 2;
1142                 else /* CHV needs even encode values */
1143                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1144
1145                 if (new_delay >= dev_priv->rps.max_freq_softlimit)
1146                         adj = 0;
1147         } else if (client_boost || any_waiters(dev_priv)) {
1148                 adj = 0;
1149         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1150                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1151                         new_delay = dev_priv->rps.efficient_freq;
1152                 else if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1153                         new_delay = dev_priv->rps.min_freq_softlimit;
1154                 adj = 0;
1155         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1156                 if (adj < 0)
1157                         adj *= 2;
1158                 else /* CHV needs even encode values */
1159                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1160
1161                 if (new_delay <= dev_priv->rps.min_freq_softlimit)
1162                         adj = 0;
1163         } else { /* unknown event */
1164                 adj = 0;
1165         }
1166
1167         dev_priv->rps.last_adj = adj;
1168
1169         /* sysfs frequency interfaces may have snuck in while servicing the
1170          * interrupt
1171          */
1172         new_delay += adj;
1173         new_delay = clamp_t(int, new_delay, min, max);
1174
1175         if (intel_set_rps(dev_priv, new_delay)) {
1176                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1177                 dev_priv->rps.last_adj = 0;
1178         }
1179
1180         mutex_unlock(&dev_priv->rps.hw_lock);
1181
1182 out:
1183         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1184         spin_lock_irq(&dev_priv->irq_lock);
1185         if (dev_priv->rps.interrupts_enabled)
1186                 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1187         spin_unlock_irq(&dev_priv->irq_lock);
1188 }
1189
1190
1191 /**
1192  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1193  * occurred.
1194  * @work: workqueue struct
1195  *
1196  * Doesn't actually do anything except notify userspace. As a consequence of
1197  * this event, userspace should try to remap the bad rows since statistically
1198  * it is likely the same row is more likely to go bad again.
1199  */
1200 static void ivybridge_parity_work(struct work_struct *work)
1201 {
1202         struct drm_i915_private *dev_priv =
1203                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1204         u32 error_status, row, bank, subbank;
1205         char *parity_event[6];
1206         uint32_t misccpctl;
1207         uint8_t slice = 0;
1208
1209         /* We must turn off DOP level clock gating to access the L3 registers.
1210          * In order to prevent a get/put style interface, acquire struct mutex
1211          * any time we access those registers.
1212          */
1213         mutex_lock(&dev_priv->drm.struct_mutex);
1214
1215         /* If we've screwed up tracking, just let the interrupt fire again */
1216         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1217                 goto out;
1218
1219         misccpctl = I915_READ(GEN7_MISCCPCTL);
1220         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1221         POSTING_READ(GEN7_MISCCPCTL);
1222
1223         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1224                 i915_reg_t reg;
1225
1226                 slice--;
1227                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1228                         break;
1229
1230                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1231
1232                 reg = GEN7_L3CDERRST1(slice);
1233
1234                 error_status = I915_READ(reg);
1235                 row = GEN7_PARITY_ERROR_ROW(error_status);
1236                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1237                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1238
1239                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1240                 POSTING_READ(reg);
1241
1242                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1243                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1244                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1245                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1246                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1247                 parity_event[5] = NULL;
1248
1249                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1250                                    KOBJ_CHANGE, parity_event);
1251
1252                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1253                           slice, row, bank, subbank);
1254
1255                 kfree(parity_event[4]);
1256                 kfree(parity_event[3]);
1257                 kfree(parity_event[2]);
1258                 kfree(parity_event[1]);
1259         }
1260
1261         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1262
1263 out:
1264         WARN_ON(dev_priv->l3_parity.which_slice);
1265         spin_lock_irq(&dev_priv->irq_lock);
1266         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1267         spin_unlock_irq(&dev_priv->irq_lock);
1268
1269         mutex_unlock(&dev_priv->drm.struct_mutex);
1270 }
1271
1272 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1273                                                u32 iir)
1274 {
1275         if (!HAS_L3_DPF(dev_priv))
1276                 return;
1277
1278         spin_lock(&dev_priv->irq_lock);
1279         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1280         spin_unlock(&dev_priv->irq_lock);
1281
1282         iir &= GT_PARITY_ERROR(dev_priv);
1283         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1284                 dev_priv->l3_parity.which_slice |= 1 << 1;
1285
1286         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1287                 dev_priv->l3_parity.which_slice |= 1 << 0;
1288
1289         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1290 }
1291
1292 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1293                                u32 gt_iir)
1294 {
1295         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1296                 notify_ring(dev_priv->engine[RCS]);
1297         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1298                 notify_ring(dev_priv->engine[VCS]);
1299 }
1300
1301 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1302                                u32 gt_iir)
1303 {
1304         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1305                 notify_ring(dev_priv->engine[RCS]);
1306         if (gt_iir & GT_BSD_USER_INTERRUPT)
1307                 notify_ring(dev_priv->engine[VCS]);
1308         if (gt_iir & GT_BLT_USER_INTERRUPT)
1309                 notify_ring(dev_priv->engine[BCS]);
1310
1311         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1312                       GT_BSD_CS_ERROR_INTERRUPT |
1313                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1314                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1315
1316         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1317                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1318 }
1319
1320 static void
1321 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1322 {
1323         bool tasklet = false;
1324
1325         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1326                 if (port_count(&engine->execlist_port[0])) {
1327                         __set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1328                         tasklet = true;
1329                 }
1330         }
1331
1332         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1333                 notify_ring(engine);
1334                 tasklet |= i915.enable_guc_submission;
1335         }
1336
1337         if (tasklet)
1338                 tasklet_hi_schedule(&engine->irq_tasklet);
1339 }
1340
1341 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1342                                    u32 master_ctl,
1343                                    u32 gt_iir[4])
1344 {
1345         irqreturn_t ret = IRQ_NONE;
1346
1347         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1348                 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1349                 if (gt_iir[0]) {
1350                         I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1351                         ret = IRQ_HANDLED;
1352                 } else
1353                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1354         }
1355
1356         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1357                 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1358                 if (gt_iir[1]) {
1359                         I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1360                         ret = IRQ_HANDLED;
1361                 } else
1362                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363         }
1364
1365         if (master_ctl & GEN8_GT_VECS_IRQ) {
1366                 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1367                 if (gt_iir[3]) {
1368                         I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1369                         ret = IRQ_HANDLED;
1370                 } else
1371                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1372         }
1373
1374         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1375                 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1376                 if (gt_iir[2] & (dev_priv->pm_rps_events |
1377                                  dev_priv->pm_guc_events)) {
1378                         I915_WRITE_FW(GEN8_GT_IIR(2),
1379                                       gt_iir[2] & (dev_priv->pm_rps_events |
1380                                                    dev_priv->pm_guc_events));
1381                         ret = IRQ_HANDLED;
1382                 } else
1383                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1384         }
1385
1386         return ret;
1387 }
1388
1389 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1390                                 u32 gt_iir[4])
1391 {
1392         if (gt_iir[0]) {
1393                 gen8_cs_irq_handler(dev_priv->engine[RCS],
1394                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1395                 gen8_cs_irq_handler(dev_priv->engine[BCS],
1396                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1397         }
1398
1399         if (gt_iir[1]) {
1400                 gen8_cs_irq_handler(dev_priv->engine[VCS],
1401                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1402                 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1403                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1404         }
1405
1406         if (gt_iir[3])
1407                 gen8_cs_irq_handler(dev_priv->engine[VECS],
1408                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1409
1410         if (gt_iir[2] & dev_priv->pm_rps_events)
1411                 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1412
1413         if (gt_iir[2] & dev_priv->pm_guc_events)
1414                 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1415 }
1416
1417 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1418 {
1419         switch (port) {
1420         case PORT_A:
1421                 return val & PORTA_HOTPLUG_LONG_DETECT;
1422         case PORT_B:
1423                 return val & PORTB_HOTPLUG_LONG_DETECT;
1424         case PORT_C:
1425                 return val & PORTC_HOTPLUG_LONG_DETECT;
1426         default:
1427                 return false;
1428         }
1429 }
1430
1431 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1432 {
1433         switch (port) {
1434         case PORT_E:
1435                 return val & PORTE_HOTPLUG_LONG_DETECT;
1436         default:
1437                 return false;
1438         }
1439 }
1440
1441 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1442 {
1443         switch (port) {
1444         case PORT_A:
1445                 return val & PORTA_HOTPLUG_LONG_DETECT;
1446         case PORT_B:
1447                 return val & PORTB_HOTPLUG_LONG_DETECT;
1448         case PORT_C:
1449                 return val & PORTC_HOTPLUG_LONG_DETECT;
1450         case PORT_D:
1451                 return val & PORTD_HOTPLUG_LONG_DETECT;
1452         default:
1453                 return false;
1454         }
1455 }
1456
1457 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1458 {
1459         switch (port) {
1460         case PORT_A:
1461                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1462         default:
1463                 return false;
1464         }
1465 }
1466
1467 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1468 {
1469         switch (port) {
1470         case PORT_B:
1471                 return val & PORTB_HOTPLUG_LONG_DETECT;
1472         case PORT_C:
1473                 return val & PORTC_HOTPLUG_LONG_DETECT;
1474         case PORT_D:
1475                 return val & PORTD_HOTPLUG_LONG_DETECT;
1476         default:
1477                 return false;
1478         }
1479 }
1480
1481 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1482 {
1483         switch (port) {
1484         case PORT_B:
1485                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1486         case PORT_C:
1487                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1488         case PORT_D:
1489                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1490         default:
1491                 return false;
1492         }
1493 }
1494
1495 /*
1496  * Get a bit mask of pins that have triggered, and which ones may be long.
1497  * This can be called multiple times with the same masks to accumulate
1498  * hotplug detection results from several registers.
1499  *
1500  * Note that the caller is expected to zero out the masks initially.
1501  */
1502 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1503                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1504                              const u32 hpd[HPD_NUM_PINS],
1505                              bool long_pulse_detect(enum port port, u32 val))
1506 {
1507         enum port port;
1508         int i;
1509
1510         for_each_hpd_pin(i) {
1511                 if ((hpd[i] & hotplug_trigger) == 0)
1512                         continue;
1513
1514                 *pin_mask |= BIT(i);
1515
1516                 if (!intel_hpd_pin_to_port(i, &port))
1517                         continue;
1518
1519                 if (long_pulse_detect(port, dig_hotplug_reg))
1520                         *long_mask |= BIT(i);
1521         }
1522
1523         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1524                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1525
1526 }
1527
1528 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1529 {
1530         wake_up_all(&dev_priv->gmbus_wait_queue);
1531 }
1532
1533 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1534 {
1535         wake_up_all(&dev_priv->gmbus_wait_queue);
1536 }
1537
1538 #if defined(CONFIG_DEBUG_FS)
1539 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1540                                          enum pipe pipe,
1541                                          uint32_t crc0, uint32_t crc1,
1542                                          uint32_t crc2, uint32_t crc3,
1543                                          uint32_t crc4)
1544 {
1545         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1546         struct intel_pipe_crc_entry *entry;
1547         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1548         struct drm_driver *driver = dev_priv->drm.driver;
1549         uint32_t crcs[5];
1550         int head, tail;
1551
1552         spin_lock(&pipe_crc->lock);
1553         if (pipe_crc->source) {
1554                 if (!pipe_crc->entries) {
1555                         spin_unlock(&pipe_crc->lock);
1556                         DRM_DEBUG_KMS("spurious interrupt\n");
1557                         return;
1558                 }
1559
1560                 head = pipe_crc->head;
1561                 tail = pipe_crc->tail;
1562
1563                 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1564                         spin_unlock(&pipe_crc->lock);
1565                         DRM_ERROR("CRC buffer overflowing\n");
1566                         return;
1567                 }
1568
1569                 entry = &pipe_crc->entries[head];
1570
1571                 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1572                 entry->crc[0] = crc0;
1573                 entry->crc[1] = crc1;
1574                 entry->crc[2] = crc2;
1575                 entry->crc[3] = crc3;
1576                 entry->crc[4] = crc4;
1577
1578                 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1579                 pipe_crc->head = head;
1580
1581                 spin_unlock(&pipe_crc->lock);
1582
1583                 wake_up_interruptible(&pipe_crc->wq);
1584         } else {
1585                 /*
1586                  * For some not yet identified reason, the first CRC is
1587                  * bonkers. So let's just wait for the next vblank and read
1588                  * out the buggy result.
1589                  *
1590                  * On CHV sometimes the second CRC is bonkers as well, so
1591                  * don't trust that one either.
1592                  */
1593                 if (pipe_crc->skipped == 0 ||
1594                     (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1595                         pipe_crc->skipped++;
1596                         spin_unlock(&pipe_crc->lock);
1597                         return;
1598                 }
1599                 spin_unlock(&pipe_crc->lock);
1600                 crcs[0] = crc0;
1601                 crcs[1] = crc1;
1602                 crcs[2] = crc2;
1603                 crcs[3] = crc3;
1604                 crcs[4] = crc4;
1605                 drm_crtc_add_crc_entry(&crtc->base, true,
1606                                        drm_accurate_vblank_count(&crtc->base),
1607                                        crcs);
1608         }
1609 }
1610 #else
1611 static inline void
1612 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1613                              enum pipe pipe,
1614                              uint32_t crc0, uint32_t crc1,
1615                              uint32_t crc2, uint32_t crc3,
1616                              uint32_t crc4) {}
1617 #endif
1618
1619
1620 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1621                                      enum pipe pipe)
1622 {
1623         display_pipe_crc_irq_handler(dev_priv, pipe,
1624                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1625                                      0, 0, 0, 0);
1626 }
1627
1628 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1629                                      enum pipe pipe)
1630 {
1631         display_pipe_crc_irq_handler(dev_priv, pipe,
1632                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1633                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1634                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1635                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1636                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1637 }
1638
1639 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1640                                       enum pipe pipe)
1641 {
1642         uint32_t res1, res2;
1643
1644         if (INTEL_GEN(dev_priv) >= 3)
1645                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1646         else
1647                 res1 = 0;
1648
1649         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1650                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1651         else
1652                 res2 = 0;
1653
1654         display_pipe_crc_irq_handler(dev_priv, pipe,
1655                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1656                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1657                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1658                                      res1, res2);
1659 }
1660
1661 /* The RPS events need forcewake, so we add them to a work queue and mask their
1662  * IMR bits until the work is done. Other interrupts can be processed without
1663  * the work queue. */
1664 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1665 {
1666         if (pm_iir & dev_priv->pm_rps_events) {
1667                 spin_lock(&dev_priv->irq_lock);
1668                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1669                 if (dev_priv->rps.interrupts_enabled) {
1670                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1671                         schedule_work(&dev_priv->rps.work);
1672                 }
1673                 spin_unlock(&dev_priv->irq_lock);
1674         }
1675
1676         if (INTEL_INFO(dev_priv)->gen >= 8)
1677                 return;
1678
1679         if (HAS_VEBOX(dev_priv)) {
1680                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1681                         notify_ring(dev_priv->engine[VECS]);
1682
1683                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1684                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1685         }
1686 }
1687
1688 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1689 {
1690         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1691                 /* Sample the log buffer flush related bits & clear them out now
1692                  * itself from the message identity register to minimize the
1693                  * probability of losing a flush interrupt, when there are back
1694                  * to back flush interrupts.
1695                  * There can be a new flush interrupt, for different log buffer
1696                  * type (like for ISR), whilst Host is handling one (for DPC).
1697                  * Since same bit is used in message register for ISR & DPC, it
1698                  * could happen that GuC sets the bit for 2nd interrupt but Host
1699                  * clears out the bit on handling the 1st interrupt.
1700                  */
1701                 u32 msg, flush;
1702
1703                 msg = I915_READ(SOFT_SCRATCH(15));
1704                 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1705                                INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1706                 if (flush) {
1707                         /* Clear the message bits that are handled */
1708                         I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1709
1710                         /* Handle flush interrupt in bottom half */
1711                         queue_work(dev_priv->guc.log.runtime.flush_wq,
1712                                    &dev_priv->guc.log.runtime.flush_work);
1713
1714                         dev_priv->guc.log.flush_interrupt_count++;
1715                 } else {
1716                         /* Not clearing of unhandled event bits won't result in
1717                          * re-triggering of the interrupt.
1718                          */
1719                 }
1720         }
1721 }
1722
1723 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1724                                      enum pipe pipe)
1725 {
1726         bool ret;
1727
1728         ret = drm_handle_vblank(&dev_priv->drm, pipe);
1729         if (ret)
1730                 intel_finish_page_flip_mmio(dev_priv, pipe);
1731
1732         return ret;
1733 }
1734
1735 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1736                                         u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1737 {
1738         int pipe;
1739
1740         spin_lock(&dev_priv->irq_lock);
1741
1742         if (!dev_priv->display_irqs_enabled) {
1743                 spin_unlock(&dev_priv->irq_lock);
1744                 return;
1745         }
1746
1747         for_each_pipe(dev_priv, pipe) {
1748                 i915_reg_t reg;
1749                 u32 mask, iir_bit = 0;
1750
1751                 /*
1752                  * PIPESTAT bits get signalled even when the interrupt is
1753                  * disabled with the mask bits, and some of the status bits do
1754                  * not generate interrupts at all (like the underrun bit). Hence
1755                  * we need to be careful that we only handle what we want to
1756                  * handle.
1757                  */
1758
1759                 /* fifo underruns are filterered in the underrun handler. */
1760                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1761
1762                 switch (pipe) {
1763                 case PIPE_A:
1764                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1765                         break;
1766                 case PIPE_B:
1767                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1768                         break;
1769                 case PIPE_C:
1770                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1771                         break;
1772                 }
1773                 if (iir & iir_bit)
1774                         mask |= dev_priv->pipestat_irq_mask[pipe];
1775
1776                 if (!mask)
1777                         continue;
1778
1779                 reg = PIPESTAT(pipe);
1780                 mask |= PIPESTAT_INT_ENABLE_MASK;
1781                 pipe_stats[pipe] = I915_READ(reg) & mask;
1782
1783                 /*
1784                  * Clear the PIPE*STAT regs before the IIR
1785                  */
1786                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1787                                         PIPESTAT_INT_STATUS_MASK))
1788                         I915_WRITE(reg, pipe_stats[pipe]);
1789         }
1790         spin_unlock(&dev_priv->irq_lock);
1791 }
1792
1793 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1794                                             u32 pipe_stats[I915_MAX_PIPES])
1795 {
1796         enum pipe pipe;
1797
1798         for_each_pipe(dev_priv, pipe) {
1799                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1800                     intel_pipe_handle_vblank(dev_priv, pipe))
1801                         intel_check_page_flip(dev_priv, pipe);
1802
1803                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1804                         intel_finish_page_flip_cs(dev_priv, pipe);
1805
1806                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1807                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1808
1809                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1810                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1811         }
1812
1813         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1814                 gmbus_irq_handler(dev_priv);
1815 }
1816
1817 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1818 {
1819         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1820
1821         if (hotplug_status)
1822                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1823
1824         return hotplug_status;
1825 }
1826
1827 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1828                                  u32 hotplug_status)
1829 {
1830         u32 pin_mask = 0, long_mask = 0;
1831
1832         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1833             IS_CHERRYVIEW(dev_priv)) {
1834                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1835
1836                 if (hotplug_trigger) {
1837                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1838                                            hotplug_trigger, hpd_status_g4x,
1839                                            i9xx_port_hotplug_long_detect);
1840
1841                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1842                 }
1843
1844                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1845                         dp_aux_irq_handler(dev_priv);
1846         } else {
1847                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1848
1849                 if (hotplug_trigger) {
1850                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1851                                            hotplug_trigger, hpd_status_i915,
1852                                            i9xx_port_hotplug_long_detect);
1853                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1854                 }
1855         }
1856 }
1857
1858 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1859 {
1860         struct drm_device *dev = arg;
1861         struct drm_i915_private *dev_priv = to_i915(dev);
1862         irqreturn_t ret = IRQ_NONE;
1863
1864         if (!intel_irqs_enabled(dev_priv))
1865                 return IRQ_NONE;
1866
1867         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1868         disable_rpm_wakeref_asserts(dev_priv);
1869
1870         do {
1871                 u32 iir, gt_iir, pm_iir;
1872                 u32 pipe_stats[I915_MAX_PIPES] = {};
1873                 u32 hotplug_status = 0;
1874                 u32 ier = 0;
1875
1876                 gt_iir = I915_READ(GTIIR);
1877                 pm_iir = I915_READ(GEN6_PMIIR);
1878                 iir = I915_READ(VLV_IIR);
1879
1880                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1881                         break;
1882
1883                 ret = IRQ_HANDLED;
1884
1885                 /*
1886                  * Theory on interrupt generation, based on empirical evidence:
1887                  *
1888                  * x = ((VLV_IIR & VLV_IER) ||
1889                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1890                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1891                  *
1892                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1893                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1894                  * guarantee the CPU interrupt will be raised again even if we
1895                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1896                  * bits this time around.
1897                  */
1898                 I915_WRITE(VLV_MASTER_IER, 0);
1899                 ier = I915_READ(VLV_IER);
1900                 I915_WRITE(VLV_IER, 0);
1901
1902                 if (gt_iir)
1903                         I915_WRITE(GTIIR, gt_iir);
1904                 if (pm_iir)
1905                         I915_WRITE(GEN6_PMIIR, pm_iir);
1906
1907                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1908                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1909
1910                 /* Call regardless, as some status bits might not be
1911                  * signalled in iir */
1912                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1913
1914                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1915                            I915_LPE_PIPE_B_INTERRUPT))
1916                         intel_lpe_audio_irq_handler(dev_priv);
1917
1918                 /*
1919                  * VLV_IIR is single buffered, and reflects the level
1920                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1921                  */
1922                 if (iir)
1923                         I915_WRITE(VLV_IIR, iir);
1924
1925                 I915_WRITE(VLV_IER, ier);
1926                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1927                 POSTING_READ(VLV_MASTER_IER);
1928
1929                 if (gt_iir)
1930                         snb_gt_irq_handler(dev_priv, gt_iir);
1931                 if (pm_iir)
1932                         gen6_rps_irq_handler(dev_priv, pm_iir);
1933
1934                 if (hotplug_status)
1935                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1936
1937                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1938         } while (0);
1939
1940         enable_rpm_wakeref_asserts(dev_priv);
1941
1942         return ret;
1943 }
1944
1945 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1946 {
1947         struct drm_device *dev = arg;
1948         struct drm_i915_private *dev_priv = to_i915(dev);
1949         irqreturn_t ret = IRQ_NONE;
1950
1951         if (!intel_irqs_enabled(dev_priv))
1952                 return IRQ_NONE;
1953
1954         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1955         disable_rpm_wakeref_asserts(dev_priv);
1956
1957         do {
1958                 u32 master_ctl, iir;
1959                 u32 gt_iir[4] = {};
1960                 u32 pipe_stats[I915_MAX_PIPES] = {};
1961                 u32 hotplug_status = 0;
1962                 u32 ier = 0;
1963
1964                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1965                 iir = I915_READ(VLV_IIR);
1966
1967                 if (master_ctl == 0 && iir == 0)
1968                         break;
1969
1970                 ret = IRQ_HANDLED;
1971
1972                 /*
1973                  * Theory on interrupt generation, based on empirical evidence:
1974                  *
1975                  * x = ((VLV_IIR & VLV_IER) ||
1976                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1977                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1978                  *
1979                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1980                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1981                  * guarantee the CPU interrupt will be raised again even if we
1982                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1983                  * bits this time around.
1984                  */
1985                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1986                 ier = I915_READ(VLV_IER);
1987                 I915_WRITE(VLV_IER, 0);
1988
1989                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1990
1991                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1992                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1993
1994                 /* Call regardless, as some status bits might not be
1995                  * signalled in iir */
1996                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1997
1998                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1999                            I915_LPE_PIPE_B_INTERRUPT |
2000                            I915_LPE_PIPE_C_INTERRUPT))
2001                         intel_lpe_audio_irq_handler(dev_priv);
2002
2003                 /*
2004                  * VLV_IIR is single buffered, and reflects the level
2005                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2006                  */
2007                 if (iir)
2008                         I915_WRITE(VLV_IIR, iir);
2009
2010                 I915_WRITE(VLV_IER, ier);
2011                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2012                 POSTING_READ(GEN8_MASTER_IRQ);
2013
2014                 gen8_gt_irq_handler(dev_priv, gt_iir);
2015
2016                 if (hotplug_status)
2017                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2018
2019                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2020         } while (0);
2021
2022         enable_rpm_wakeref_asserts(dev_priv);
2023
2024         return ret;
2025 }
2026
2027 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2028                                 u32 hotplug_trigger,
2029                                 const u32 hpd[HPD_NUM_PINS])
2030 {
2031         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2032
2033         /*
2034          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2035          * unless we touch the hotplug register, even if hotplug_trigger is
2036          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2037          * errors.
2038          */
2039         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2040         if (!hotplug_trigger) {
2041                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2042                         PORTD_HOTPLUG_STATUS_MASK |
2043                         PORTC_HOTPLUG_STATUS_MASK |
2044                         PORTB_HOTPLUG_STATUS_MASK;
2045                 dig_hotplug_reg &= ~mask;
2046         }
2047
2048         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2049         if (!hotplug_trigger)
2050                 return;
2051
2052         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2053                            dig_hotplug_reg, hpd,
2054                            pch_port_hotplug_long_detect);
2055
2056         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2057 }
2058
2059 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2060 {
2061         int pipe;
2062         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2063
2064         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2065
2066         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2067                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2068                                SDE_AUDIO_POWER_SHIFT);
2069                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2070                                  port_name(port));
2071         }
2072
2073         if (pch_iir & SDE_AUX_MASK)
2074                 dp_aux_irq_handler(dev_priv);
2075
2076         if (pch_iir & SDE_GMBUS)
2077                 gmbus_irq_handler(dev_priv);
2078
2079         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2080                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2081
2082         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2083                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2084
2085         if (pch_iir & SDE_POISON)
2086                 DRM_ERROR("PCH poison interrupt\n");
2087
2088         if (pch_iir & SDE_FDI_MASK)
2089                 for_each_pipe(dev_priv, pipe)
2090                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2091                                          pipe_name(pipe),
2092                                          I915_READ(FDI_RX_IIR(pipe)));
2093
2094         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2095                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2096
2097         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2098                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2099
2100         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2101                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2102
2103         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2104                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2105 }
2106
2107 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2108 {
2109         u32 err_int = I915_READ(GEN7_ERR_INT);
2110         enum pipe pipe;
2111
2112         if (err_int & ERR_INT_POISON)
2113                 DRM_ERROR("Poison interrupt\n");
2114
2115         for_each_pipe(dev_priv, pipe) {
2116                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2117                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2118
2119                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2120                         if (IS_IVYBRIDGE(dev_priv))
2121                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2122                         else
2123                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2124                 }
2125         }
2126
2127         I915_WRITE(GEN7_ERR_INT, err_int);
2128 }
2129
2130 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2131 {
2132         u32 serr_int = I915_READ(SERR_INT);
2133
2134         if (serr_int & SERR_INT_POISON)
2135                 DRM_ERROR("PCH poison interrupt\n");
2136
2137         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2138                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2139
2140         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2141                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2142
2143         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2144                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2145
2146         I915_WRITE(SERR_INT, serr_int);
2147 }
2148
2149 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2150 {
2151         int pipe;
2152         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2153
2154         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2155
2156         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2157                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2158                                SDE_AUDIO_POWER_SHIFT_CPT);
2159                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2160                                  port_name(port));
2161         }
2162
2163         if (pch_iir & SDE_AUX_MASK_CPT)
2164                 dp_aux_irq_handler(dev_priv);
2165
2166         if (pch_iir & SDE_GMBUS_CPT)
2167                 gmbus_irq_handler(dev_priv);
2168
2169         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2170                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2171
2172         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2173                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2174
2175         if (pch_iir & SDE_FDI_MASK_CPT)
2176                 for_each_pipe(dev_priv, pipe)
2177                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2178                                          pipe_name(pipe),
2179                                          I915_READ(FDI_RX_IIR(pipe)));
2180
2181         if (pch_iir & SDE_ERROR_CPT)
2182                 cpt_serr_int_handler(dev_priv);
2183 }
2184
2185 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2186 {
2187         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2188                 ~SDE_PORTE_HOTPLUG_SPT;
2189         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2190         u32 pin_mask = 0, long_mask = 0;
2191
2192         if (hotplug_trigger) {
2193                 u32 dig_hotplug_reg;
2194
2195                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2196                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2197
2198                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2199                                    dig_hotplug_reg, hpd_spt,
2200                                    spt_port_hotplug_long_detect);
2201         }
2202
2203         if (hotplug2_trigger) {
2204                 u32 dig_hotplug_reg;
2205
2206                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2207                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2208
2209                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2210                                    dig_hotplug_reg, hpd_spt,
2211                                    spt_port_hotplug2_long_detect);
2212         }
2213
2214         if (pin_mask)
2215                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2216
2217         if (pch_iir & SDE_GMBUS_CPT)
2218                 gmbus_irq_handler(dev_priv);
2219 }
2220
2221 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2222                                 u32 hotplug_trigger,
2223                                 const u32 hpd[HPD_NUM_PINS])
2224 {
2225         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2226
2227         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2228         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2229
2230         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2231                            dig_hotplug_reg, hpd,
2232                            ilk_port_hotplug_long_detect);
2233
2234         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2235 }
2236
2237 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2238                                     u32 de_iir)
2239 {
2240         enum pipe pipe;
2241         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2242
2243         if (hotplug_trigger)
2244                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2245
2246         if (de_iir & DE_AUX_CHANNEL_A)
2247                 dp_aux_irq_handler(dev_priv);
2248
2249         if (de_iir & DE_GSE)
2250                 intel_opregion_asle_intr(dev_priv);
2251
2252         if (de_iir & DE_POISON)
2253                 DRM_ERROR("Poison interrupt\n");
2254
2255         for_each_pipe(dev_priv, pipe) {
2256                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2257                     intel_pipe_handle_vblank(dev_priv, pipe))
2258                         intel_check_page_flip(dev_priv, pipe);
2259
2260                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2261                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2262
2263                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2264                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2265
2266                 /* plane/pipes map 1:1 on ilk+ */
2267                 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2268                         intel_finish_page_flip_cs(dev_priv, pipe);
2269         }
2270
2271         /* check event from PCH */
2272         if (de_iir & DE_PCH_EVENT) {
2273                 u32 pch_iir = I915_READ(SDEIIR);
2274
2275                 if (HAS_PCH_CPT(dev_priv))
2276                         cpt_irq_handler(dev_priv, pch_iir);
2277                 else
2278                         ibx_irq_handler(dev_priv, pch_iir);
2279
2280                 /* should clear PCH hotplug event before clear CPU irq */
2281                 I915_WRITE(SDEIIR, pch_iir);
2282         }
2283
2284         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2285                 ironlake_rps_change_irq_handler(dev_priv);
2286 }
2287
2288 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2289                                     u32 de_iir)
2290 {
2291         enum pipe pipe;
2292         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2293
2294         if (hotplug_trigger)
2295                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2296
2297         if (de_iir & DE_ERR_INT_IVB)
2298                 ivb_err_int_handler(dev_priv);
2299
2300         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2301                 dp_aux_irq_handler(dev_priv);
2302
2303         if (de_iir & DE_GSE_IVB)
2304                 intel_opregion_asle_intr(dev_priv);
2305
2306         for_each_pipe(dev_priv, pipe) {
2307                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2308                     intel_pipe_handle_vblank(dev_priv, pipe))
2309                         intel_check_page_flip(dev_priv, pipe);
2310
2311                 /* plane/pipes map 1:1 on ilk+ */
2312                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2313                         intel_finish_page_flip_cs(dev_priv, pipe);
2314         }
2315
2316         /* check event from PCH */
2317         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2318                 u32 pch_iir = I915_READ(SDEIIR);
2319
2320                 cpt_irq_handler(dev_priv, pch_iir);
2321
2322                 /* clear PCH hotplug event before clear CPU irq */
2323                 I915_WRITE(SDEIIR, pch_iir);
2324         }
2325 }
2326
2327 /*
2328  * To handle irqs with the minimum potential races with fresh interrupts, we:
2329  * 1 - Disable Master Interrupt Control.
2330  * 2 - Find the source(s) of the interrupt.
2331  * 3 - Clear the Interrupt Identity bits (IIR).
2332  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2333  * 5 - Re-enable Master Interrupt Control.
2334  */
2335 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2336 {
2337         struct drm_device *dev = arg;
2338         struct drm_i915_private *dev_priv = to_i915(dev);
2339         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2340         irqreturn_t ret = IRQ_NONE;
2341
2342         if (!intel_irqs_enabled(dev_priv))
2343                 return IRQ_NONE;
2344
2345         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2346         disable_rpm_wakeref_asserts(dev_priv);
2347
2348         /* disable master interrupt before clearing iir  */
2349         de_ier = I915_READ(DEIER);
2350         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2351         POSTING_READ(DEIER);
2352
2353         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2354          * interrupts will will be stored on its back queue, and then we'll be
2355          * able to process them after we restore SDEIER (as soon as we restore
2356          * it, we'll get an interrupt if SDEIIR still has something to process
2357          * due to its back queue). */
2358         if (!HAS_PCH_NOP(dev_priv)) {
2359                 sde_ier = I915_READ(SDEIER);
2360                 I915_WRITE(SDEIER, 0);
2361                 POSTING_READ(SDEIER);
2362         }
2363
2364         /* Find, clear, then process each source of interrupt */
2365
2366         gt_iir = I915_READ(GTIIR);
2367         if (gt_iir) {
2368                 I915_WRITE(GTIIR, gt_iir);
2369                 ret = IRQ_HANDLED;
2370                 if (INTEL_GEN(dev_priv) >= 6)
2371                         snb_gt_irq_handler(dev_priv, gt_iir);
2372                 else
2373                         ilk_gt_irq_handler(dev_priv, gt_iir);
2374         }
2375
2376         de_iir = I915_READ(DEIIR);
2377         if (de_iir) {
2378                 I915_WRITE(DEIIR, de_iir);
2379                 ret = IRQ_HANDLED;
2380                 if (INTEL_GEN(dev_priv) >= 7)
2381                         ivb_display_irq_handler(dev_priv, de_iir);
2382                 else
2383                         ilk_display_irq_handler(dev_priv, de_iir);
2384         }
2385
2386         if (INTEL_GEN(dev_priv) >= 6) {
2387                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2388                 if (pm_iir) {
2389                         I915_WRITE(GEN6_PMIIR, pm_iir);
2390                         ret = IRQ_HANDLED;
2391                         gen6_rps_irq_handler(dev_priv, pm_iir);
2392                 }
2393         }
2394
2395         I915_WRITE(DEIER, de_ier);
2396         POSTING_READ(DEIER);
2397         if (!HAS_PCH_NOP(dev_priv)) {
2398                 I915_WRITE(SDEIER, sde_ier);
2399                 POSTING_READ(SDEIER);
2400         }
2401
2402         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2403         enable_rpm_wakeref_asserts(dev_priv);
2404
2405         return ret;
2406 }
2407
2408 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2409                                 u32 hotplug_trigger,
2410                                 const u32 hpd[HPD_NUM_PINS])
2411 {
2412         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2413
2414         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2415         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2416
2417         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2418                            dig_hotplug_reg, hpd,
2419                            bxt_port_hotplug_long_detect);
2420
2421         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2422 }
2423
2424 static irqreturn_t
2425 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2426 {
2427         irqreturn_t ret = IRQ_NONE;
2428         u32 iir;
2429         enum pipe pipe;
2430
2431         if (master_ctl & GEN8_DE_MISC_IRQ) {
2432                 iir = I915_READ(GEN8_DE_MISC_IIR);
2433                 if (iir) {
2434                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2435                         ret = IRQ_HANDLED;
2436                         if (iir & GEN8_DE_MISC_GSE)
2437                                 intel_opregion_asle_intr(dev_priv);
2438                         else
2439                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2440                 }
2441                 else
2442                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2443         }
2444
2445         if (master_ctl & GEN8_DE_PORT_IRQ) {
2446                 iir = I915_READ(GEN8_DE_PORT_IIR);
2447                 if (iir) {
2448                         u32 tmp_mask;
2449                         bool found = false;
2450
2451                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2452                         ret = IRQ_HANDLED;
2453
2454                         tmp_mask = GEN8_AUX_CHANNEL_A;
2455                         if (INTEL_INFO(dev_priv)->gen >= 9)
2456                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2457                                             GEN9_AUX_CHANNEL_C |
2458                                             GEN9_AUX_CHANNEL_D;
2459
2460                         if (iir & tmp_mask) {
2461                                 dp_aux_irq_handler(dev_priv);
2462                                 found = true;
2463                         }
2464
2465                         if (IS_GEN9_LP(dev_priv)) {
2466                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2467                                 if (tmp_mask) {
2468                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2469                                                             hpd_bxt);
2470                                         found = true;
2471                                 }
2472                         } else if (IS_BROADWELL(dev_priv)) {
2473                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2474                                 if (tmp_mask) {
2475                                         ilk_hpd_irq_handler(dev_priv,
2476                                                             tmp_mask, hpd_bdw);
2477                                         found = true;
2478                                 }
2479                         }
2480
2481                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2482                                 gmbus_irq_handler(dev_priv);
2483                                 found = true;
2484                         }
2485
2486                         if (!found)
2487                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2488                 }
2489                 else
2490                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2491         }
2492
2493         for_each_pipe(dev_priv, pipe) {
2494                 u32 flip_done, fault_errors;
2495
2496                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2497                         continue;
2498
2499                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2500                 if (!iir) {
2501                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2502                         continue;
2503                 }
2504
2505                 ret = IRQ_HANDLED;
2506                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2507
2508                 if (iir & GEN8_PIPE_VBLANK &&
2509                     intel_pipe_handle_vblank(dev_priv, pipe))
2510                         intel_check_page_flip(dev_priv, pipe);
2511
2512                 flip_done = iir;
2513                 if (INTEL_INFO(dev_priv)->gen >= 9)
2514                         flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2515                 else
2516                         flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2517
2518                 if (flip_done)
2519                         intel_finish_page_flip_cs(dev_priv, pipe);
2520
2521                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2522                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2523
2524                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2525                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2526
2527                 fault_errors = iir;
2528                 if (INTEL_INFO(dev_priv)->gen >= 9)
2529                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2530                 else
2531                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2532
2533                 if (fault_errors)
2534                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2535                                   pipe_name(pipe),
2536                                   fault_errors);
2537         }
2538
2539         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2540             master_ctl & GEN8_DE_PCH_IRQ) {
2541                 /*
2542                  * FIXME(BDW): Assume for now that the new interrupt handling
2543                  * scheme also closed the SDE interrupt handling race we've seen
2544                  * on older pch-split platforms. But this needs testing.
2545                  */
2546                 iir = I915_READ(SDEIIR);
2547                 if (iir) {
2548                         I915_WRITE(SDEIIR, iir);
2549                         ret = IRQ_HANDLED;
2550
2551                         if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2552                             HAS_PCH_CNP(dev_priv))
2553                                 spt_irq_handler(dev_priv, iir);
2554                         else
2555                                 cpt_irq_handler(dev_priv, iir);
2556                 } else {
2557                         /*
2558                          * Like on previous PCH there seems to be something
2559                          * fishy going on with forwarding PCH interrupts.
2560                          */
2561                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2562                 }
2563         }
2564
2565         return ret;
2566 }
2567
2568 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2569 {
2570         struct drm_device *dev = arg;
2571         struct drm_i915_private *dev_priv = to_i915(dev);
2572         u32 master_ctl;
2573         u32 gt_iir[4] = {};
2574         irqreturn_t ret;
2575
2576         if (!intel_irqs_enabled(dev_priv))
2577                 return IRQ_NONE;
2578
2579         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2580         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2581         if (!master_ctl)
2582                 return IRQ_NONE;
2583
2584         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2585
2586         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2587         disable_rpm_wakeref_asserts(dev_priv);
2588
2589         /* Find, clear, then process each source of interrupt */
2590         ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2591         gen8_gt_irq_handler(dev_priv, gt_iir);
2592         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2593
2594         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2595         POSTING_READ_FW(GEN8_MASTER_IRQ);
2596
2597         enable_rpm_wakeref_asserts(dev_priv);
2598
2599         return ret;
2600 }
2601
2602 struct wedge_me {
2603         struct delayed_work work;
2604         struct drm_i915_private *i915;
2605         const char *name;
2606 };
2607
2608 static void wedge_me(struct work_struct *work)
2609 {
2610         struct wedge_me *w = container_of(work, typeof(*w), work.work);
2611
2612         dev_err(w->i915->drm.dev,
2613                 "%s timed out, cancelling all in-flight rendering.\n",
2614                 w->name);
2615         i915_gem_set_wedged(w->i915);
2616 }
2617
2618 static void __init_wedge(struct wedge_me *w,
2619                          struct drm_i915_private *i915,
2620                          long timeout,
2621                          const char *name)
2622 {
2623         w->i915 = i915;
2624         w->name = name;
2625
2626         INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2627         schedule_delayed_work(&w->work, timeout);
2628 }
2629
2630 static void __fini_wedge(struct wedge_me *w)
2631 {
2632         cancel_delayed_work_sync(&w->work);
2633         destroy_delayed_work_on_stack(&w->work);
2634         w->i915 = NULL;
2635 }
2636
2637 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)                          \
2638         for (__init_wedge((W), (DEV), (TIMEOUT), __func__);             \
2639              (W)->i915;                                                 \
2640              __fini_wedge((W)))
2641
2642 /**
2643  * i915_reset_device - do process context error handling work
2644  * @dev_priv: i915 device private
2645  *
2646  * Fire an error uevent so userspace can see that a hang or error
2647  * was detected.
2648  */
2649 static void i915_reset_device(struct drm_i915_private *dev_priv)
2650 {
2651         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2652         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2653         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2654         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2655         struct wedge_me w;
2656
2657         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2658
2659         DRM_DEBUG_DRIVER("resetting chip\n");
2660         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2661
2662         /* Use a watchdog to ensure that our reset completes */
2663         i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
2664                 intel_prepare_reset(dev_priv);
2665
2666                 /* Signal that locked waiters should reset the GPU */
2667                 set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2668                 wake_up_all(&dev_priv->gpu_error.wait_queue);
2669
2670                 /* Wait for anyone holding the lock to wakeup, without
2671                  * blocking indefinitely on struct_mutex.
2672                  */
2673                 do {
2674                         if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2675                                 i915_reset(dev_priv);
2676                                 mutex_unlock(&dev_priv->drm.struct_mutex);
2677                         }
2678                 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2679                                              I915_RESET_HANDOFF,
2680                                              TASK_UNINTERRUPTIBLE,
2681                                              1));
2682
2683                 intel_finish_reset(dev_priv);
2684         }
2685
2686         if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2687                 kobject_uevent_env(kobj,
2688                                    KOBJ_CHANGE, reset_done_event);
2689 }
2690
2691 static inline void
2692 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2693                         struct intel_instdone *instdone)
2694 {
2695         int slice;
2696         int subslice;
2697
2698         pr_err("  INSTDONE: 0x%08x\n", instdone->instdone);
2699
2700         if (INTEL_GEN(dev_priv) <= 3)
2701                 return;
2702
2703         pr_err("  SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2704
2705         if (INTEL_GEN(dev_priv) <= 6)
2706                 return;
2707
2708         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2709                 pr_err("  SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2710                        slice, subslice, instdone->sampler[slice][subslice]);
2711
2712         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2713                 pr_err("  ROW_INSTDONE[%d][%d]: 0x%08x\n",
2714                        slice, subslice, instdone->row[slice][subslice]);
2715 }
2716
2717 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2718 {
2719         u32 eir;
2720
2721         if (!IS_GEN2(dev_priv))
2722                 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2723
2724         if (INTEL_GEN(dev_priv) < 4)
2725                 I915_WRITE(IPEIR, I915_READ(IPEIR));
2726         else
2727                 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2728
2729         I915_WRITE(EIR, I915_READ(EIR));
2730         eir = I915_READ(EIR);
2731         if (eir) {
2732                 /*
2733                  * some errors might have become stuck,
2734                  * mask them.
2735                  */
2736                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2737                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2738                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2739         }
2740 }
2741
2742 /**
2743  * i915_handle_error - handle a gpu error
2744  * @dev_priv: i915 device private
2745  * @engine_mask: mask representing engines that are hung
2746  * @fmt: Error message format string
2747  *
2748  * Do some basic checking of register state at error time and
2749  * dump it to the syslog.  Also call i915_capture_error_state() to make
2750  * sure we get a record and make it available in debugfs.  Fire a uevent
2751  * so userspace knows something bad happened (should trigger collection
2752  * of a ring dump etc.).
2753  */
2754 void i915_handle_error(struct drm_i915_private *dev_priv,
2755                        u32 engine_mask,
2756                        const char *fmt, ...)
2757 {
2758         struct intel_engine_cs *engine;
2759         unsigned int tmp;
2760         va_list args;
2761         char error_msg[80];
2762
2763         va_start(args, fmt);
2764         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2765         va_end(args);
2766
2767         /*
2768          * In most cases it's guaranteed that we get here with an RPM
2769          * reference held, for example because there is a pending GPU
2770          * request that won't finish until the reset is done. This
2771          * isn't the case at least when we get here by doing a
2772          * simulated reset via debugfs, so get an RPM reference.
2773          */
2774         intel_runtime_pm_get(dev_priv);
2775
2776         i915_capture_error_state(dev_priv, engine_mask, error_msg);
2777         i915_clear_error_registers(dev_priv);
2778
2779         /*
2780          * Try engine reset when available. We fall back to full reset if
2781          * single reset fails.
2782          */
2783         if (intel_has_reset_engine(dev_priv)) {
2784                 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
2785                         BUILD_BUG_ON(I915_RESET_HANDOFF >= I915_RESET_ENGINE);
2786                         if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2787                                              &dev_priv->gpu_error.flags))
2788                                 continue;
2789
2790                         if (i915_reset_engine(engine) == 0)
2791                                 engine_mask &= ~intel_engine_flag(engine);
2792
2793                         clear_bit(I915_RESET_ENGINE + engine->id,
2794                                   &dev_priv->gpu_error.flags);
2795                         wake_up_bit(&dev_priv->gpu_error.flags,
2796                                     I915_RESET_ENGINE + engine->id);
2797                 }
2798         }
2799
2800         if (!engine_mask)
2801                 goto out;
2802
2803         /* Full reset needs the mutex, stop any other user trying to do so. */
2804         if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
2805                 wait_event(dev_priv->gpu_error.reset_queue,
2806                            !test_bit(I915_RESET_BACKOFF,
2807                                      &dev_priv->gpu_error.flags));
2808                 goto out;
2809         }
2810
2811         /* Prevent any other reset-engine attempt. */
2812         for_each_engine(engine, dev_priv, tmp) {
2813                 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2814                                         &dev_priv->gpu_error.flags))
2815                         wait_on_bit(&dev_priv->gpu_error.flags,
2816                                     I915_RESET_ENGINE + engine->id,
2817                                     TASK_UNINTERRUPTIBLE);
2818         }
2819
2820         i915_reset_device(dev_priv);
2821
2822         for_each_engine(engine, dev_priv, tmp) {
2823                 clear_bit(I915_RESET_ENGINE + engine->id,
2824                           &dev_priv->gpu_error.flags);
2825         }
2826
2827         clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2828         wake_up_all(&dev_priv->gpu_error.reset_queue);
2829
2830 out:
2831         intel_runtime_pm_put(dev_priv);
2832 }
2833
2834 /* Called from drm generic code, passed 'crtc' which
2835  * we use as a pipe index
2836  */
2837 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2838 {
2839         struct drm_i915_private *dev_priv = to_i915(dev);
2840         unsigned long irqflags;
2841
2842         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2843         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2844         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2845
2846         return 0;
2847 }
2848
2849 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2850 {
2851         struct drm_i915_private *dev_priv = to_i915(dev);
2852         unsigned long irqflags;
2853
2854         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2855         i915_enable_pipestat(dev_priv, pipe,
2856                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2857         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2858
2859         return 0;
2860 }
2861
2862 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2863 {
2864         struct drm_i915_private *dev_priv = to_i915(dev);
2865         unsigned long irqflags;
2866         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2867                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2868
2869         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2870         ilk_enable_display_irq(dev_priv, bit);
2871         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2872
2873         return 0;
2874 }
2875
2876 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2877 {
2878         struct drm_i915_private *dev_priv = to_i915(dev);
2879         unsigned long irqflags;
2880
2881         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2882         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2883         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2884
2885         return 0;
2886 }
2887
2888 /* Called from drm generic code, passed 'crtc' which
2889  * we use as a pipe index
2890  */
2891 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2892 {
2893         struct drm_i915_private *dev_priv = to_i915(dev);
2894         unsigned long irqflags;
2895
2896         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2897         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2898         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2899 }
2900
2901 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2902 {
2903         struct drm_i915_private *dev_priv = to_i915(dev);
2904         unsigned long irqflags;
2905
2906         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2907         i915_disable_pipestat(dev_priv, pipe,
2908                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2909         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2910 }
2911
2912 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2913 {
2914         struct drm_i915_private *dev_priv = to_i915(dev);
2915         unsigned long irqflags;
2916         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2917                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2918
2919         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2920         ilk_disable_display_irq(dev_priv, bit);
2921         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2922 }
2923
2924 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2925 {
2926         struct drm_i915_private *dev_priv = to_i915(dev);
2927         unsigned long irqflags;
2928
2929         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2930         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2931         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2932 }
2933
2934 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2935 {
2936         if (HAS_PCH_NOP(dev_priv))
2937                 return;
2938
2939         GEN5_IRQ_RESET(SDE);
2940
2941         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2942                 I915_WRITE(SERR_INT, 0xffffffff);
2943 }
2944
2945 /*
2946  * SDEIER is also touched by the interrupt handler to work around missed PCH
2947  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2948  * instead we unconditionally enable all PCH interrupt sources here, but then
2949  * only unmask them as needed with SDEIMR.
2950  *
2951  * This function needs to be called before interrupts are enabled.
2952  */
2953 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2954 {
2955         struct drm_i915_private *dev_priv = to_i915(dev);
2956
2957         if (HAS_PCH_NOP(dev_priv))
2958                 return;
2959
2960         WARN_ON(I915_READ(SDEIER) != 0);
2961         I915_WRITE(SDEIER, 0xffffffff);
2962         POSTING_READ(SDEIER);
2963 }
2964
2965 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2966 {
2967         GEN5_IRQ_RESET(GT);
2968         if (INTEL_GEN(dev_priv) >= 6)
2969                 GEN5_IRQ_RESET(GEN6_PM);
2970 }
2971
2972 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2973 {
2974         enum pipe pipe;
2975
2976         if (IS_CHERRYVIEW(dev_priv))
2977                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2978         else
2979                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2980
2981         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2982         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2983
2984         for_each_pipe(dev_priv, pipe) {
2985                 I915_WRITE(PIPESTAT(pipe),
2986                            PIPE_FIFO_UNDERRUN_STATUS |
2987                            PIPESTAT_INT_STATUS_MASK);
2988                 dev_priv->pipestat_irq_mask[pipe] = 0;
2989         }
2990
2991         GEN5_IRQ_RESET(VLV_);
2992         dev_priv->irq_mask = ~0;
2993 }
2994
2995 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2996 {
2997         u32 pipestat_mask;
2998         u32 enable_mask;
2999         enum pipe pipe;
3000
3001         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3002                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3003
3004         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3005         for_each_pipe(dev_priv, pipe)
3006                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3007
3008         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3009                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3010                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3011                 I915_LPE_PIPE_A_INTERRUPT |
3012                 I915_LPE_PIPE_B_INTERRUPT;
3013
3014         if (IS_CHERRYVIEW(dev_priv))
3015                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3016                         I915_LPE_PIPE_C_INTERRUPT;
3017
3018         WARN_ON(dev_priv->irq_mask != ~0);
3019
3020         dev_priv->irq_mask = ~enable_mask;
3021
3022         GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3023 }
3024
3025 /* drm_dma.h hooks
3026 */
3027 static void ironlake_irq_reset(struct drm_device *dev)
3028 {
3029         struct drm_i915_private *dev_priv = to_i915(dev);
3030
3031         I915_WRITE(HWSTAM, 0xffffffff);
3032
3033         GEN5_IRQ_RESET(DE);
3034         if (IS_GEN7(dev_priv))
3035                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3036
3037         gen5_gt_irq_reset(dev_priv);
3038
3039         ibx_irq_reset(dev_priv);
3040 }
3041
3042 static void valleyview_irq_preinstall(struct drm_device *dev)
3043 {
3044         struct drm_i915_private *dev_priv = to_i915(dev);
3045
3046         I915_WRITE(VLV_MASTER_IER, 0);
3047         POSTING_READ(VLV_MASTER_IER);
3048
3049         gen5_gt_irq_reset(dev_priv);
3050
3051         spin_lock_irq(&dev_priv->irq_lock);
3052         if (dev_priv->display_irqs_enabled)
3053                 vlv_display_irq_reset(dev_priv);
3054         spin_unlock_irq(&dev_priv->irq_lock);
3055 }
3056
3057 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3058 {
3059         GEN8_IRQ_RESET_NDX(GT, 0);
3060         GEN8_IRQ_RESET_NDX(GT, 1);
3061         GEN8_IRQ_RESET_NDX(GT, 2);
3062         GEN8_IRQ_RESET_NDX(GT, 3);
3063 }
3064
3065 static void gen8_irq_reset(struct drm_device *dev)
3066 {
3067         struct drm_i915_private *dev_priv = to_i915(dev);
3068         int pipe;
3069
3070         I915_WRITE(GEN8_MASTER_IRQ, 0);
3071         POSTING_READ(GEN8_MASTER_IRQ);
3072
3073         gen8_gt_irq_reset(dev_priv);
3074
3075         for_each_pipe(dev_priv, pipe)
3076                 if (intel_display_power_is_enabled(dev_priv,
3077                                                    POWER_DOMAIN_PIPE(pipe)))
3078                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3079
3080         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3081         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3082         GEN5_IRQ_RESET(GEN8_PCU_);
3083
3084         if (HAS_PCH_SPLIT(dev_priv))
3085                 ibx_irq_reset(dev_priv);
3086 }
3087
3088 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3089                                      unsigned int pipe_mask)
3090 {
3091         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3092         enum pipe pipe;
3093
3094         spin_lock_irq(&dev_priv->irq_lock);
3095         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3096                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3097                                   dev_priv->de_irq_mask[pipe],
3098                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3099         spin_unlock_irq(&dev_priv->irq_lock);
3100 }
3101
3102 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3103                                      unsigned int pipe_mask)
3104 {
3105         enum pipe pipe;
3106
3107         spin_lock_irq(&dev_priv->irq_lock);
3108         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3109                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3110         spin_unlock_irq(&dev_priv->irq_lock);
3111
3112         /* make sure we're done processing display irqs */
3113         synchronize_irq(dev_priv->drm.irq);
3114 }
3115
3116 static void cherryview_irq_preinstall(struct drm_device *dev)
3117 {
3118         struct drm_i915_private *dev_priv = to_i915(dev);
3119
3120         I915_WRITE(GEN8_MASTER_IRQ, 0);
3121         POSTING_READ(GEN8_MASTER_IRQ);
3122
3123         gen8_gt_irq_reset(dev_priv);
3124
3125         GEN5_IRQ_RESET(GEN8_PCU_);
3126
3127         spin_lock_irq(&dev_priv->irq_lock);
3128         if (dev_priv->display_irqs_enabled)
3129                 vlv_display_irq_reset(dev_priv);
3130         spin_unlock_irq(&dev_priv->irq_lock);
3131 }
3132
3133 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3134                                   const u32 hpd[HPD_NUM_PINS])
3135 {
3136         struct intel_encoder *encoder;
3137         u32 enabled_irqs = 0;
3138
3139         for_each_intel_encoder(&dev_priv->drm, encoder)
3140                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3141                         enabled_irqs |= hpd[encoder->hpd_pin];
3142
3143         return enabled_irqs;
3144 }
3145
3146 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3147 {
3148         u32 hotplug;
3149
3150         /*
3151          * Enable digital hotplug on the PCH, and configure the DP short pulse
3152          * duration to 2ms (which is the minimum in the Display Port spec).
3153          * The pulse duration bits are reserved on LPT+.
3154          */
3155         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3156         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3157                      PORTC_PULSE_DURATION_MASK |
3158                      PORTD_PULSE_DURATION_MASK);
3159         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3160         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3161         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3162         /*
3163          * When CPU and PCH are on the same package, port A
3164          * HPD must be enabled in both north and south.
3165          */
3166         if (HAS_PCH_LPT_LP(dev_priv))
3167                 hotplug |= PORTA_HOTPLUG_ENABLE;
3168         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3169 }
3170
3171 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3172 {
3173         u32 hotplug_irqs, enabled_irqs;
3174
3175         if (HAS_PCH_IBX(dev_priv)) {
3176                 hotplug_irqs = SDE_HOTPLUG_MASK;
3177                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3178         } else {
3179                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3180                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3181         }
3182
3183         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3184
3185         ibx_hpd_detection_setup(dev_priv);
3186 }
3187
3188 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3189 {
3190         u32 hotplug;
3191
3192         /* Enable digital hotplug on the PCH */
3193         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3194         hotplug |= PORTA_HOTPLUG_ENABLE |
3195                    PORTB_HOTPLUG_ENABLE |
3196                    PORTC_HOTPLUG_ENABLE |
3197                    PORTD_HOTPLUG_ENABLE;
3198         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3199
3200         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3201         hotplug |= PORTE_HOTPLUG_ENABLE;
3202         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3203 }
3204
3205 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3206 {
3207         u32 hotplug_irqs, enabled_irqs;
3208
3209         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3210         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3211
3212         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3213
3214         spt_hpd_detection_setup(dev_priv);
3215 }
3216
3217 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3218 {
3219         u32 hotplug;
3220
3221         /*
3222          * Enable digital hotplug on the CPU, and configure the DP short pulse
3223          * duration to 2ms (which is the minimum in the Display Port spec)
3224          * The pulse duration bits are reserved on HSW+.
3225          */
3226         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3227         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3228         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3229                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3230         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3231 }
3232
3233 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3234 {
3235         u32 hotplug_irqs, enabled_irqs;
3236
3237         if (INTEL_GEN(dev_priv) >= 8) {
3238                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3239                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3240
3241                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3242         } else if (INTEL_GEN(dev_priv) >= 7) {
3243                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3244                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3245
3246                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3247         } else {
3248                 hotplug_irqs = DE_DP_A_HOTPLUG;
3249                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3250
3251                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3252         }
3253
3254         ilk_hpd_detection_setup(dev_priv);
3255
3256         ibx_hpd_irq_setup(dev_priv);
3257 }
3258
3259 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3260                                       u32 enabled_irqs)
3261 {
3262         u32 hotplug;
3263
3264         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3265         hotplug |= PORTA_HOTPLUG_ENABLE |
3266                    PORTB_HOTPLUG_ENABLE |
3267                    PORTC_HOTPLUG_ENABLE;
3268
3269         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3270                       hotplug, enabled_irqs);
3271         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3272
3273         /*
3274          * For BXT invert bit has to be set based on AOB design
3275          * for HPD detection logic, update it based on VBT fields.
3276          */
3277         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3278             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3279                 hotplug |= BXT_DDIA_HPD_INVERT;
3280         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3281             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3282                 hotplug |= BXT_DDIB_HPD_INVERT;
3283         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3284             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3285                 hotplug |= BXT_DDIC_HPD_INVERT;
3286
3287         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3288 }
3289
3290 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3291 {
3292         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3293 }
3294
3295 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3296 {
3297         u32 hotplug_irqs, enabled_irqs;
3298
3299         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3300         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3301
3302         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3303
3304         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3305 }
3306
3307 static void ibx_irq_postinstall(struct drm_device *dev)
3308 {
3309         struct drm_i915_private *dev_priv = to_i915(dev);
3310         u32 mask;
3311
3312         if (HAS_PCH_NOP(dev_priv))
3313                 return;
3314
3315         if (HAS_PCH_IBX(dev_priv))
3316                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3317         else
3318                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3319
3320         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3321         I915_WRITE(SDEIMR, ~mask);
3322
3323         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3324             HAS_PCH_LPT(dev_priv))
3325                 ibx_hpd_detection_setup(dev_priv);
3326         else
3327                 spt_hpd_detection_setup(dev_priv);
3328 }
3329
3330 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3331 {
3332         struct drm_i915_private *dev_priv = to_i915(dev);
3333         u32 pm_irqs, gt_irqs;
3334
3335         pm_irqs = gt_irqs = 0;
3336
3337         dev_priv->gt_irq_mask = ~0;
3338         if (HAS_L3_DPF(dev_priv)) {
3339                 /* L3 parity interrupt is always unmasked. */
3340                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3341                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3342         }
3343
3344         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3345         if (IS_GEN5(dev_priv)) {
3346                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3347         } else {
3348                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3349         }
3350
3351         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3352
3353         if (INTEL_GEN(dev_priv) >= 6) {
3354                 /*
3355                  * RPS interrupts will get enabled/disabled on demand when RPS
3356                  * itself is enabled/disabled.
3357                  */
3358                 if (HAS_VEBOX(dev_priv)) {
3359                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3360                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3361                 }
3362
3363                 dev_priv->pm_imr = 0xffffffff;
3364                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3365         }
3366 }
3367
3368 static int ironlake_irq_postinstall(struct drm_device *dev)
3369 {
3370         struct drm_i915_private *dev_priv = to_i915(dev);
3371         u32 display_mask, extra_mask;
3372
3373         if (INTEL_GEN(dev_priv) >= 7) {
3374                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3375                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3376                                 DE_PLANEB_FLIP_DONE_IVB |
3377                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3378                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3379                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3380                               DE_DP_A_HOTPLUG_IVB);
3381         } else {
3382                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3383                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3384                                 DE_AUX_CHANNEL_A |
3385                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3386                                 DE_POISON);
3387                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3388                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3389                               DE_DP_A_HOTPLUG);
3390         }
3391
3392         dev_priv->irq_mask = ~display_mask;
3393
3394         I915_WRITE(HWSTAM, 0xeffe);
3395
3396         ibx_irq_pre_postinstall(dev);
3397
3398         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3399
3400         gen5_gt_irq_postinstall(dev);
3401
3402         ilk_hpd_detection_setup(dev_priv);
3403
3404         ibx_irq_postinstall(dev);
3405
3406         if (IS_IRONLAKE_M(dev_priv)) {
3407                 /* Enable PCU event interrupts
3408                  *
3409                  * spinlocking not required here for correctness since interrupt
3410                  * setup is guaranteed to run in single-threaded context. But we
3411                  * need it to make the assert_spin_locked happy. */
3412                 spin_lock_irq(&dev_priv->irq_lock);
3413                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3414                 spin_unlock_irq(&dev_priv->irq_lock);
3415         }
3416
3417         return 0;
3418 }
3419
3420 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3421 {
3422         lockdep_assert_held(&dev_priv->irq_lock);
3423
3424         if (dev_priv->display_irqs_enabled)
3425                 return;
3426
3427         dev_priv->display_irqs_enabled = true;
3428
3429         if (intel_irqs_enabled(dev_priv)) {
3430                 vlv_display_irq_reset(dev_priv);
3431                 vlv_display_irq_postinstall(dev_priv);
3432         }
3433 }
3434
3435 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3436 {
3437         lockdep_assert_held(&dev_priv->irq_lock);
3438
3439         if (!dev_priv->display_irqs_enabled)
3440                 return;
3441
3442         dev_priv->display_irqs_enabled = false;
3443
3444         if (intel_irqs_enabled(dev_priv))
3445                 vlv_display_irq_reset(dev_priv);
3446 }
3447
3448
3449 static int valleyview_irq_postinstall(struct drm_device *dev)
3450 {
3451         struct drm_i915_private *dev_priv = to_i915(dev);
3452
3453         gen5_gt_irq_postinstall(dev);
3454
3455         spin_lock_irq(&dev_priv->irq_lock);
3456         if (dev_priv->display_irqs_enabled)
3457                 vlv_display_irq_postinstall(dev_priv);
3458         spin_unlock_irq(&dev_priv->irq_lock);
3459
3460         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3461         POSTING_READ(VLV_MASTER_IER);
3462
3463         return 0;
3464 }
3465
3466 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3467 {
3468         /* These are interrupts we'll toggle with the ring mask register */
3469         uint32_t gt_interrupts[] = {
3470                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3471                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3472                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3473                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3474                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3475                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3476                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3477                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3478                 0,
3479                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3480                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3481                 };
3482
3483         if (HAS_L3_DPF(dev_priv))
3484                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3485
3486         dev_priv->pm_ier = 0x0;
3487         dev_priv->pm_imr = ~dev_priv->pm_ier;
3488         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3489         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3490         /*
3491          * RPS interrupts will get enabled/disabled on demand when RPS itself
3492          * is enabled/disabled. Same wil be the case for GuC interrupts.
3493          */
3494         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3495         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3496 }
3497
3498 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3499 {
3500         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3501         uint32_t de_pipe_enables;
3502         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3503         u32 de_port_enables;
3504         u32 de_misc_masked = GEN8_DE_MISC_GSE;
3505         enum pipe pipe;
3506
3507         if (INTEL_INFO(dev_priv)->gen >= 9) {
3508                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3509                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3510                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3511                                   GEN9_AUX_CHANNEL_D;
3512                 if (IS_GEN9_LP(dev_priv))
3513                         de_port_masked |= BXT_DE_PORT_GMBUS;
3514         } else {
3515                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3516                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3517         }
3518
3519         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3520                                            GEN8_PIPE_FIFO_UNDERRUN;
3521
3522         de_port_enables = de_port_masked;
3523         if (IS_GEN9_LP(dev_priv))
3524                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3525         else if (IS_BROADWELL(dev_priv))
3526                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3527
3528         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3529         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3530         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3531
3532         for_each_pipe(dev_priv, pipe)
3533                 if (intel_display_power_is_enabled(dev_priv,
3534                                 POWER_DOMAIN_PIPE(pipe)))
3535                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3536                                           dev_priv->de_irq_mask[pipe],
3537                                           de_pipe_enables);
3538
3539         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3540         GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3541
3542         if (IS_GEN9_LP(dev_priv))
3543                 bxt_hpd_detection_setup(dev_priv);
3544         else if (IS_BROADWELL(dev_priv))
3545                 ilk_hpd_detection_setup(dev_priv);
3546 }
3547
3548 static int gen8_irq_postinstall(struct drm_device *dev)
3549 {
3550         struct drm_i915_private *dev_priv = to_i915(dev);
3551
3552         if (HAS_PCH_SPLIT(dev_priv))
3553                 ibx_irq_pre_postinstall(dev);
3554
3555         gen8_gt_irq_postinstall(dev_priv);
3556         gen8_de_irq_postinstall(dev_priv);
3557
3558         if (HAS_PCH_SPLIT(dev_priv))
3559                 ibx_irq_postinstall(dev);
3560
3561         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3562         POSTING_READ(GEN8_MASTER_IRQ);
3563
3564         return 0;
3565 }
3566
3567 static int cherryview_irq_postinstall(struct drm_device *dev)
3568 {
3569         struct drm_i915_private *dev_priv = to_i915(dev);
3570
3571         gen8_gt_irq_postinstall(dev_priv);
3572
3573         spin_lock_irq(&dev_priv->irq_lock);
3574         if (dev_priv->display_irqs_enabled)
3575                 vlv_display_irq_postinstall(dev_priv);
3576         spin_unlock_irq(&dev_priv->irq_lock);
3577
3578         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3579         POSTING_READ(GEN8_MASTER_IRQ);
3580
3581         return 0;
3582 }
3583
3584 static void gen8_irq_uninstall(struct drm_device *dev)
3585 {
3586         struct drm_i915_private *dev_priv = to_i915(dev);
3587
3588         if (!dev_priv)
3589                 return;
3590
3591         gen8_irq_reset(dev);
3592 }
3593
3594 static void valleyview_irq_uninstall(struct drm_device *dev)
3595 {
3596         struct drm_i915_private *dev_priv = to_i915(dev);
3597
3598         if (!dev_priv)
3599                 return;
3600
3601         I915_WRITE(VLV_MASTER_IER, 0);
3602         POSTING_READ(VLV_MASTER_IER);
3603
3604         gen5_gt_irq_reset(dev_priv);
3605
3606         I915_WRITE(HWSTAM, 0xffffffff);
3607
3608         spin_lock_irq(&dev_priv->irq_lock);
3609         if (dev_priv->display_irqs_enabled)
3610                 vlv_display_irq_reset(dev_priv);
3611         spin_unlock_irq(&dev_priv->irq_lock);
3612 }
3613
3614 static void cherryview_irq_uninstall(struct drm_device *dev)
3615 {
3616         struct drm_i915_private *dev_priv = to_i915(dev);
3617
3618         if (!dev_priv)
3619                 return;
3620
3621         I915_WRITE(GEN8_MASTER_IRQ, 0);
3622         POSTING_READ(GEN8_MASTER_IRQ);
3623
3624         gen8_gt_irq_reset(dev_priv);
3625
3626         GEN5_IRQ_RESET(GEN8_PCU_);
3627
3628         spin_lock_irq(&dev_priv->irq_lock);
3629         if (dev_priv->display_irqs_enabled)
3630                 vlv_display_irq_reset(dev_priv);
3631         spin_unlock_irq(&dev_priv->irq_lock);
3632 }
3633
3634 static void ironlake_irq_uninstall(struct drm_device *dev)
3635 {
3636         struct drm_i915_private *dev_priv = to_i915(dev);
3637
3638         if (!dev_priv)
3639                 return;
3640
3641         ironlake_irq_reset(dev);
3642 }
3643
3644 static void i8xx_irq_preinstall(struct drm_device * dev)
3645 {
3646         struct drm_i915_private *dev_priv = to_i915(dev);
3647         int pipe;
3648
3649         for_each_pipe(dev_priv, pipe)
3650                 I915_WRITE(PIPESTAT(pipe), 0);
3651         I915_WRITE16(IMR, 0xffff);
3652         I915_WRITE16(IER, 0x0);
3653         POSTING_READ16(IER);
3654 }
3655
3656 static int i8xx_irq_postinstall(struct drm_device *dev)
3657 {
3658         struct drm_i915_private *dev_priv = to_i915(dev);
3659
3660         I915_WRITE16(EMR,
3661                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3662
3663         /* Unmask the interrupts that we always want on. */
3664         dev_priv->irq_mask =
3665                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3666                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3667                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3668                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3669         I915_WRITE16(IMR, dev_priv->irq_mask);
3670
3671         I915_WRITE16(IER,
3672                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3673                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3674                      I915_USER_INTERRUPT);
3675         POSTING_READ16(IER);
3676
3677         /* Interrupt setup is already guaranteed to be single-threaded, this is
3678          * just to make the assert_spin_locked check happy. */
3679         spin_lock_irq(&dev_priv->irq_lock);
3680         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3681         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3682         spin_unlock_irq(&dev_priv->irq_lock);
3683
3684         return 0;
3685 }
3686
3687 /*
3688  * Returns true when a page flip has completed.
3689  */
3690 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3691                                int plane, int pipe, u32 iir)
3692 {
3693         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3694
3695         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3696                 return false;
3697
3698         if ((iir & flip_pending) == 0)
3699                 goto check_page_flip;
3700
3701         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3702          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3703          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3704          * the flip is completed (no longer pending). Since this doesn't raise
3705          * an interrupt per se, we watch for the change at vblank.
3706          */
3707         if (I915_READ16(ISR) & flip_pending)
3708                 goto check_page_flip;
3709
3710         intel_finish_page_flip_cs(dev_priv, pipe);
3711         return true;
3712
3713 check_page_flip:
3714         intel_check_page_flip(dev_priv, pipe);
3715         return false;
3716 }
3717
3718 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3719 {
3720         struct drm_device *dev = arg;
3721         struct drm_i915_private *dev_priv = to_i915(dev);
3722         u16 iir, new_iir;
3723         u32 pipe_stats[2];
3724         int pipe;
3725         u16 flip_mask =
3726                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3727                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3728         irqreturn_t ret;
3729
3730         if (!intel_irqs_enabled(dev_priv))
3731                 return IRQ_NONE;
3732
3733         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3734         disable_rpm_wakeref_asserts(dev_priv);
3735
3736         ret = IRQ_NONE;
3737         iir = I915_READ16(IIR);
3738         if (iir == 0)
3739                 goto out;
3740
3741         while (iir & ~flip_mask) {
3742                 /* Can't rely on pipestat interrupt bit in iir as it might
3743                  * have been cleared after the pipestat interrupt was received.
3744                  * It doesn't set the bit in iir again, but it still produces
3745                  * interrupts (for non-MSI).
3746                  */
3747                 spin_lock(&dev_priv->irq_lock);
3748                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3749                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3750
3751                 for_each_pipe(dev_priv, pipe) {
3752                         i915_reg_t reg = PIPESTAT(pipe);
3753                         pipe_stats[pipe] = I915_READ(reg);
3754
3755                         /*
3756                          * Clear the PIPE*STAT regs before the IIR
3757                          */
3758                         if (pipe_stats[pipe] & 0x8000ffff)
3759                                 I915_WRITE(reg, pipe_stats[pipe]);
3760                 }
3761                 spin_unlock(&dev_priv->irq_lock);
3762
3763                 I915_WRITE16(IIR, iir & ~flip_mask);
3764                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3765
3766                 if (iir & I915_USER_INTERRUPT)
3767                         notify_ring(dev_priv->engine[RCS]);
3768
3769                 for_each_pipe(dev_priv, pipe) {
3770                         int plane = pipe;
3771                         if (HAS_FBC(dev_priv))
3772                                 plane = !plane;
3773
3774                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3775                             i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3776                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3777
3778                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3779                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3780
3781                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3782                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3783                                                                     pipe);
3784                 }
3785
3786                 iir = new_iir;
3787         }
3788         ret = IRQ_HANDLED;
3789
3790 out:
3791         enable_rpm_wakeref_asserts(dev_priv);
3792
3793         return ret;
3794 }
3795
3796 static void i8xx_irq_uninstall(struct drm_device * dev)
3797 {
3798         struct drm_i915_private *dev_priv = to_i915(dev);
3799         int pipe;
3800
3801         for_each_pipe(dev_priv, pipe) {
3802                 /* Clear enable bits; then clear status bits */
3803                 I915_WRITE(PIPESTAT(pipe), 0);
3804                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3805         }
3806         I915_WRITE16(IMR, 0xffff);
3807         I915_WRITE16(IER, 0x0);
3808         I915_WRITE16(IIR, I915_READ16(IIR));
3809 }
3810
3811 static void i915_irq_preinstall(struct drm_device * dev)
3812 {
3813         struct drm_i915_private *dev_priv = to_i915(dev);
3814         int pipe;
3815
3816         if (I915_HAS_HOTPLUG(dev_priv)) {
3817                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3818                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3819         }
3820
3821         I915_WRITE16(HWSTAM, 0xeffe);
3822         for_each_pipe(dev_priv, pipe)
3823                 I915_WRITE(PIPESTAT(pipe), 0);
3824         I915_WRITE(IMR, 0xffffffff);
3825         I915_WRITE(IER, 0x0);
3826         POSTING_READ(IER);
3827 }
3828
3829 static int i915_irq_postinstall(struct drm_device *dev)
3830 {
3831         struct drm_i915_private *dev_priv = to_i915(dev);
3832         u32 enable_mask;
3833
3834         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3835
3836         /* Unmask the interrupts that we always want on. */
3837         dev_priv->irq_mask =
3838                 ~(I915_ASLE_INTERRUPT |
3839                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3840                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3841                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3842                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3843
3844         enable_mask =
3845                 I915_ASLE_INTERRUPT |
3846                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3847                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3848                 I915_USER_INTERRUPT;
3849
3850         if (I915_HAS_HOTPLUG(dev_priv)) {
3851                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3852                 POSTING_READ(PORT_HOTPLUG_EN);
3853
3854                 /* Enable in IER... */
3855                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3856                 /* and unmask in IMR */
3857                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3858         }
3859
3860         I915_WRITE(IMR, dev_priv->irq_mask);
3861         I915_WRITE(IER, enable_mask);
3862         POSTING_READ(IER);
3863
3864         i915_enable_asle_pipestat(dev_priv);
3865
3866         /* Interrupt setup is already guaranteed to be single-threaded, this is
3867          * just to make the assert_spin_locked check happy. */
3868         spin_lock_irq(&dev_priv->irq_lock);
3869         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3870         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3871         spin_unlock_irq(&dev_priv->irq_lock);
3872
3873         return 0;
3874 }
3875
3876 /*
3877  * Returns true when a page flip has completed.
3878  */
3879 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
3880                                int plane, int pipe, u32 iir)
3881 {
3882         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3883
3884         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3885                 return false;
3886
3887         if ((iir & flip_pending) == 0)
3888                 goto check_page_flip;
3889
3890         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3891          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3892          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3893          * the flip is completed (no longer pending). Since this doesn't raise
3894          * an interrupt per se, we watch for the change at vblank.
3895          */
3896         if (I915_READ(ISR) & flip_pending)
3897                 goto check_page_flip;
3898
3899         intel_finish_page_flip_cs(dev_priv, pipe);
3900         return true;
3901
3902 check_page_flip:
3903         intel_check_page_flip(dev_priv, pipe);
3904         return false;
3905 }
3906
3907 static irqreturn_t i915_irq_handler(int irq, void *arg)
3908 {
3909         struct drm_device *dev = arg;
3910         struct drm_i915_private *dev_priv = to_i915(dev);
3911         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3912         u32 flip_mask =
3913                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3914                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3915         int pipe, ret = IRQ_NONE;
3916
3917         if (!intel_irqs_enabled(dev_priv))
3918                 return IRQ_NONE;
3919
3920         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3921         disable_rpm_wakeref_asserts(dev_priv);
3922
3923         iir = I915_READ(IIR);
3924         do {
3925                 bool irq_received = (iir & ~flip_mask) != 0;
3926                 bool blc_event = false;
3927
3928                 /* Can't rely on pipestat interrupt bit in iir as it might
3929                  * have been cleared after the pipestat interrupt was received.
3930                  * It doesn't set the bit in iir again, but it still produces
3931                  * interrupts (for non-MSI).
3932                  */
3933                 spin_lock(&dev_priv->irq_lock);
3934                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3935                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3936
3937                 for_each_pipe(dev_priv, pipe) {
3938                         i915_reg_t reg = PIPESTAT(pipe);
3939                         pipe_stats[pipe] = I915_READ(reg);
3940
3941                         /* Clear the PIPE*STAT regs before the IIR */
3942                         if (pipe_stats[pipe] & 0x8000ffff) {
3943                                 I915_WRITE(reg, pipe_stats[pipe]);
3944                                 irq_received = true;
3945                         }
3946                 }
3947                 spin_unlock(&dev_priv->irq_lock);
3948
3949                 if (!irq_received)
3950                         break;
3951
3952                 /* Consume port.  Then clear IIR or we'll miss events */
3953                 if (I915_HAS_HOTPLUG(dev_priv) &&
3954                     iir & I915_DISPLAY_PORT_INTERRUPT) {
3955                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3956                         if (hotplug_status)
3957                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3958                 }
3959
3960                 I915_WRITE(IIR, iir & ~flip_mask);
3961                 new_iir = I915_READ(IIR); /* Flush posted writes */
3962
3963                 if (iir & I915_USER_INTERRUPT)
3964                         notify_ring(dev_priv->engine[RCS]);
3965
3966                 for_each_pipe(dev_priv, pipe) {
3967                         int plane = pipe;
3968                         if (HAS_FBC(dev_priv))
3969                                 plane = !plane;
3970
3971                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3972                             i915_handle_vblank(dev_priv, plane, pipe, iir))
3973                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3974
3975                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3976                                 blc_event = true;
3977
3978                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3979                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3980
3981                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3982                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3983                                                                     pipe);
3984                 }
3985
3986                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3987                         intel_opregion_asle_intr(dev_priv);
3988
3989                 /* With MSI, interrupts are only generated when iir
3990                  * transitions from zero to nonzero.  If another bit got
3991                  * set while we were handling the existing iir bits, then
3992                  * we would never get another interrupt.
3993                  *
3994                  * This is fine on non-MSI as well, as if we hit this path
3995                  * we avoid exiting the interrupt handler only to generate
3996                  * another one.
3997                  *
3998                  * Note that for MSI this could cause a stray interrupt report
3999                  * if an interrupt landed in the time between writing IIR and
4000                  * the posting read.  This should be rare enough to never
4001                  * trigger the 99% of 100,000 interrupts test for disabling
4002                  * stray interrupts.
4003                  */
4004                 ret = IRQ_HANDLED;
4005                 iir = new_iir;
4006         } while (iir & ~flip_mask);
4007
4008         enable_rpm_wakeref_asserts(dev_priv);
4009
4010         return ret;
4011 }
4012
4013 static void i915_irq_uninstall(struct drm_device * dev)
4014 {
4015         struct drm_i915_private *dev_priv = to_i915(dev);
4016         int pipe;
4017
4018         if (I915_HAS_HOTPLUG(dev_priv)) {
4019                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4020                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4021         }
4022
4023         I915_WRITE16(HWSTAM, 0xffff);
4024         for_each_pipe(dev_priv, pipe) {
4025                 /* Clear enable bits; then clear status bits */
4026                 I915_WRITE(PIPESTAT(pipe), 0);
4027                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4028         }
4029         I915_WRITE(IMR, 0xffffffff);
4030         I915_WRITE(IER, 0x0);
4031
4032         I915_WRITE(IIR, I915_READ(IIR));
4033 }
4034
4035 static void i965_irq_preinstall(struct drm_device * dev)
4036 {
4037         struct drm_i915_private *dev_priv = to_i915(dev);
4038         int pipe;
4039
4040         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4041         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4042
4043         I915_WRITE(HWSTAM, 0xeffe);
4044         for_each_pipe(dev_priv, pipe)
4045                 I915_WRITE(PIPESTAT(pipe), 0);
4046         I915_WRITE(IMR, 0xffffffff);
4047         I915_WRITE(IER, 0x0);
4048         POSTING_READ(IER);
4049 }
4050
4051 static int i965_irq_postinstall(struct drm_device *dev)
4052 {
4053         struct drm_i915_private *dev_priv = to_i915(dev);
4054         u32 enable_mask;
4055         u32 error_mask;
4056
4057         /* Unmask the interrupts that we always want on. */
4058         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4059                                I915_DISPLAY_PORT_INTERRUPT |
4060                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4061                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4062                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4063                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4064                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4065
4066         enable_mask = ~dev_priv->irq_mask;
4067         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4068                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4069         enable_mask |= I915_USER_INTERRUPT;
4070
4071         if (IS_G4X(dev_priv))
4072                 enable_mask |= I915_BSD_USER_INTERRUPT;
4073
4074         /* Interrupt setup is already guaranteed to be single-threaded, this is
4075          * just to make the assert_spin_locked check happy. */
4076         spin_lock_irq(&dev_priv->irq_lock);
4077         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4078         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4079         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4080         spin_unlock_irq(&dev_priv->irq_lock);
4081
4082         /*
4083          * Enable some error detection, note the instruction error mask
4084          * bit is reserved, so we leave it masked.
4085          */
4086         if (IS_G4X(dev_priv)) {
4087                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4088                                GM45_ERROR_MEM_PRIV |
4089                                GM45_ERROR_CP_PRIV |
4090                                I915_ERROR_MEMORY_REFRESH);
4091         } else {
4092                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4093                                I915_ERROR_MEMORY_REFRESH);
4094         }
4095         I915_WRITE(EMR, error_mask);
4096
4097         I915_WRITE(IMR, dev_priv->irq_mask);
4098         I915_WRITE(IER, enable_mask);
4099         POSTING_READ(IER);
4100
4101         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4102         POSTING_READ(PORT_HOTPLUG_EN);
4103
4104         i915_enable_asle_pipestat(dev_priv);
4105
4106         return 0;
4107 }
4108
4109 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4110 {
4111         u32 hotplug_en;
4112
4113         lockdep_assert_held(&dev_priv->irq_lock);
4114
4115         /* Note HDMI and DP share hotplug bits */
4116         /* enable bits are the same for all generations */
4117         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4118         /* Programming the CRT detection parameters tends
4119            to generate a spurious hotplug event about three
4120            seconds later.  So just do it once.
4121         */
4122         if (IS_G4X(dev_priv))
4123                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4124         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4125
4126         /* Ignore TV since it's buggy */
4127         i915_hotplug_interrupt_update_locked(dev_priv,
4128                                              HOTPLUG_INT_EN_MASK |
4129                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4130                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4131                                              hotplug_en);
4132 }
4133
4134 static irqreturn_t i965_irq_handler(int irq, void *arg)
4135 {
4136         struct drm_device *dev = arg;
4137         struct drm_i915_private *dev_priv = to_i915(dev);
4138         u32 iir, new_iir;
4139         u32 pipe_stats[I915_MAX_PIPES];
4140         int ret = IRQ_NONE, pipe;
4141         u32 flip_mask =
4142                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4143                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4144
4145         if (!intel_irqs_enabled(dev_priv))
4146                 return IRQ_NONE;
4147
4148         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4149         disable_rpm_wakeref_asserts(dev_priv);
4150
4151         iir = I915_READ(IIR);
4152
4153         for (;;) {
4154                 bool irq_received = (iir & ~flip_mask) != 0;
4155                 bool blc_event = false;
4156
4157                 /* Can't rely on pipestat interrupt bit in iir as it might
4158                  * have been cleared after the pipestat interrupt was received.
4159                  * It doesn't set the bit in iir again, but it still produces
4160                  * interrupts (for non-MSI).
4161                  */
4162                 spin_lock(&dev_priv->irq_lock);
4163                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4164                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4165
4166                 for_each_pipe(dev_priv, pipe) {
4167                         i915_reg_t reg = PIPESTAT(pipe);
4168                         pipe_stats[pipe] = I915_READ(reg);
4169
4170                         /*
4171                          * Clear the PIPE*STAT regs before the IIR
4172                          */
4173                         if (pipe_stats[pipe] & 0x8000ffff) {
4174                                 I915_WRITE(reg, pipe_stats[pipe]);
4175                                 irq_received = true;
4176                         }
4177                 }
4178                 spin_unlock(&dev_priv->irq_lock);
4179
4180                 if (!irq_received)
4181                         break;
4182
4183                 ret = IRQ_HANDLED;
4184
4185                 /* Consume port.  Then clear IIR or we'll miss events */
4186                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4187                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4188                         if (hotplug_status)
4189                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4190                 }
4191
4192                 I915_WRITE(IIR, iir & ~flip_mask);
4193                 new_iir = I915_READ(IIR); /* Flush posted writes */
4194
4195                 if (iir & I915_USER_INTERRUPT)
4196                         notify_ring(dev_priv->engine[RCS]);
4197                 if (iir & I915_BSD_USER_INTERRUPT)
4198                         notify_ring(dev_priv->engine[VCS]);
4199
4200                 for_each_pipe(dev_priv, pipe) {
4201                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4202                             i915_handle_vblank(dev_priv, pipe, pipe, iir))
4203                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4204
4205                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4206                                 blc_event = true;
4207
4208                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4209                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4210
4211                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4212                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4213                 }
4214
4215                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4216                         intel_opregion_asle_intr(dev_priv);
4217
4218                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4219                         gmbus_irq_handler(dev_priv);
4220
4221                 /* With MSI, interrupts are only generated when iir
4222                  * transitions from zero to nonzero.  If another bit got
4223                  * set while we were handling the existing iir bits, then
4224                  * we would never get another interrupt.
4225                  *
4226                  * This is fine on non-MSI as well, as if we hit this path
4227                  * we avoid exiting the interrupt handler only to generate
4228                  * another one.
4229                  *
4230                  * Note that for MSI this could cause a stray interrupt report
4231                  * if an interrupt landed in the time between writing IIR and
4232                  * the posting read.  This should be rare enough to never
4233                  * trigger the 99% of 100,000 interrupts test for disabling
4234                  * stray interrupts.
4235                  */
4236                 iir = new_iir;
4237         }
4238
4239         enable_rpm_wakeref_asserts(dev_priv);
4240
4241         return ret;
4242 }
4243
4244 static void i965_irq_uninstall(struct drm_device * dev)
4245 {
4246         struct drm_i915_private *dev_priv = to_i915(dev);
4247         int pipe;
4248
4249         if (!dev_priv)
4250                 return;
4251
4252         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4253         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4254
4255         I915_WRITE(HWSTAM, 0xffffffff);
4256         for_each_pipe(dev_priv, pipe)
4257                 I915_WRITE(PIPESTAT(pipe), 0);
4258         I915_WRITE(IMR, 0xffffffff);
4259         I915_WRITE(IER, 0x0);
4260
4261         for_each_pipe(dev_priv, pipe)
4262                 I915_WRITE(PIPESTAT(pipe),
4263                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4264         I915_WRITE(IIR, I915_READ(IIR));
4265 }
4266
4267 /**
4268  * intel_irq_init - initializes irq support
4269  * @dev_priv: i915 device instance
4270  *
4271  * This function initializes all the irq support including work items, timers
4272  * and all the vtables. It does not setup the interrupt itself though.
4273  */
4274 void intel_irq_init(struct drm_i915_private *dev_priv)
4275 {
4276         struct drm_device *dev = &dev_priv->drm;
4277         int i;
4278
4279         intel_hpd_init_work(dev_priv);
4280
4281         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4282
4283         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4284         for (i = 0; i < MAX_L3_SLICES; ++i)
4285                 dev_priv->l3_parity.remap_info[i] = NULL;
4286
4287         if (HAS_GUC_SCHED(dev_priv))
4288                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4289
4290         /* Let's track the enabled rps events */
4291         if (IS_VALLEYVIEW(dev_priv))
4292                 /* WaGsvRC0ResidencyMethod:vlv */
4293                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4294         else
4295                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4296
4297         dev_priv->rps.pm_intrmsk_mbz = 0;
4298
4299         /*
4300          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4301          * if GEN6_PM_UP_EI_EXPIRED is masked.
4302          *
4303          * TODO: verify if this can be reproduced on VLV,CHV.
4304          */
4305         if (INTEL_INFO(dev_priv)->gen <= 7)
4306                 dev_priv->rps.pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4307
4308         if (INTEL_INFO(dev_priv)->gen >= 8)
4309                 dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4310
4311         if (IS_GEN2(dev_priv)) {
4312                 /* Gen2 doesn't have a hardware frame counter */
4313                 dev->max_vblank_count = 0;
4314         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4315                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4316                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4317         } else {
4318                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4319                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4320         }
4321
4322         /*
4323          * Opt out of the vblank disable timer on everything except gen2.
4324          * Gen2 doesn't have a hardware frame counter and so depends on
4325          * vblank interrupts to produce sane vblank seuquence numbers.
4326          */
4327         if (!IS_GEN2(dev_priv))
4328                 dev->vblank_disable_immediate = true;
4329
4330         /* Most platforms treat the display irq block as an always-on
4331          * power domain. vlv/chv can disable it at runtime and need
4332          * special care to avoid writing any of the display block registers
4333          * outside of the power domain. We defer setting up the display irqs
4334          * in this case to the runtime pm.
4335          */
4336         dev_priv->display_irqs_enabled = true;
4337         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4338                 dev_priv->display_irqs_enabled = false;
4339
4340         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4341
4342         dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4343         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4344
4345         if (IS_CHERRYVIEW(dev_priv)) {
4346                 dev->driver->irq_handler = cherryview_irq_handler;
4347                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4348                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4349                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4350                 dev->driver->enable_vblank = i965_enable_vblank;
4351                 dev->driver->disable_vblank = i965_disable_vblank;
4352                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4353         } else if (IS_VALLEYVIEW(dev_priv)) {
4354                 dev->driver->irq_handler = valleyview_irq_handler;
4355                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4356                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4357                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4358                 dev->driver->enable_vblank = i965_enable_vblank;
4359                 dev->driver->disable_vblank = i965_disable_vblank;
4360                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4361         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4362                 dev->driver->irq_handler = gen8_irq_handler;
4363                 dev->driver->irq_preinstall = gen8_irq_reset;
4364                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4365                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4366                 dev->driver->enable_vblank = gen8_enable_vblank;
4367                 dev->driver->disable_vblank = gen8_disable_vblank;
4368                 if (IS_GEN9_LP(dev_priv))
4369                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4370                 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4371                          HAS_PCH_CNP(dev_priv))
4372                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4373                 else
4374                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4375         } else if (HAS_PCH_SPLIT(dev_priv)) {
4376                 dev->driver->irq_handler = ironlake_irq_handler;
4377                 dev->driver->irq_preinstall = ironlake_irq_reset;
4378                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4379                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4380                 dev->driver->enable_vblank = ironlake_enable_vblank;
4381                 dev->driver->disable_vblank = ironlake_disable_vblank;
4382                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4383         } else {
4384                 if (IS_GEN2(dev_priv)) {
4385                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4386                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4387                         dev->driver->irq_handler = i8xx_irq_handler;
4388                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4389                         dev->driver->enable_vblank = i8xx_enable_vblank;
4390                         dev->driver->disable_vblank = i8xx_disable_vblank;
4391                 } else if (IS_GEN3(dev_priv)) {
4392                         dev->driver->irq_preinstall = i915_irq_preinstall;
4393                         dev->driver->irq_postinstall = i915_irq_postinstall;
4394                         dev->driver->irq_uninstall = i915_irq_uninstall;
4395                         dev->driver->irq_handler = i915_irq_handler;
4396                         dev->driver->enable_vblank = i8xx_enable_vblank;
4397                         dev->driver->disable_vblank = i8xx_disable_vblank;
4398                 } else {
4399                         dev->driver->irq_preinstall = i965_irq_preinstall;
4400                         dev->driver->irq_postinstall = i965_irq_postinstall;
4401                         dev->driver->irq_uninstall = i965_irq_uninstall;
4402                         dev->driver->irq_handler = i965_irq_handler;
4403                         dev->driver->enable_vblank = i965_enable_vblank;
4404                         dev->driver->disable_vblank = i965_disable_vblank;
4405                 }
4406                 if (I915_HAS_HOTPLUG(dev_priv))
4407                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4408         }
4409 }
4410
4411 /**
4412  * intel_irq_fini - deinitializes IRQ support
4413  * @i915: i915 device instance
4414  *
4415  * This function deinitializes all the IRQ support.
4416  */
4417 void intel_irq_fini(struct drm_i915_private *i915)
4418 {
4419         int i;
4420
4421         for (i = 0; i < MAX_L3_SLICES; ++i)
4422                 kfree(i915->l3_parity.remap_info[i]);
4423 }
4424
4425 /**
4426  * intel_irq_install - enables the hardware interrupt
4427  * @dev_priv: i915 device instance
4428  *
4429  * This function enables the hardware interrupt handling, but leaves the hotplug
4430  * handling still disabled. It is called after intel_irq_init().
4431  *
4432  * In the driver load and resume code we need working interrupts in a few places
4433  * but don't want to deal with the hassle of concurrent probe and hotplug
4434  * workers. Hence the split into this two-stage approach.
4435  */
4436 int intel_irq_install(struct drm_i915_private *dev_priv)
4437 {
4438         /*
4439          * We enable some interrupt sources in our postinstall hooks, so mark
4440          * interrupts as enabled _before_ actually enabling them to avoid
4441          * special cases in our ordering checks.
4442          */
4443         dev_priv->pm.irqs_enabled = true;
4444
4445         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4446 }
4447
4448 /**
4449  * intel_irq_uninstall - finilizes all irq handling
4450  * @dev_priv: i915 device instance
4451  *
4452  * This stops interrupt and hotplug handling and unregisters and frees all
4453  * resources acquired in the init functions.
4454  */
4455 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4456 {
4457         drm_irq_uninstall(&dev_priv->drm);
4458         intel_hpd_cancel_work(dev_priv);
4459         dev_priv->pm.irqs_enabled = false;
4460 }
4461
4462 /**
4463  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4464  * @dev_priv: i915 device instance
4465  *
4466  * This function is used to disable interrupts at runtime, both in the runtime
4467  * pm and the system suspend/resume code.
4468  */
4469 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4470 {
4471         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4472         dev_priv->pm.irqs_enabled = false;
4473         synchronize_irq(dev_priv->drm.irq);
4474 }
4475
4476 /**
4477  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4478  * @dev_priv: i915 device instance
4479  *
4480  * This function is used to enable interrupts at runtime, both in the runtime
4481  * pm and the system suspend/resume code.
4482  */
4483 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4484 {
4485         dev_priv->pm.irqs_enabled = true;
4486         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4487         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4488 }