]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/i915_request.c
drm/i915: Disable semaphore busywaits on saturated systems
[linux.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31
32 #include "i915_active.h"
33 #include "i915_drv.h"
34 #include "i915_globals.h"
35 #include "i915_reset.h"
36 #include "intel_pm.h"
37
38 struct execute_cb {
39         struct list_head link;
40         struct irq_work work;
41         struct i915_sw_fence *fence;
42 };
43
44 static struct i915_global_request {
45         struct i915_global base;
46         struct kmem_cache *slab_requests;
47         struct kmem_cache *slab_dependencies;
48         struct kmem_cache *slab_execute_cbs;
49 } global;
50
51 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
52 {
53         return "i915";
54 }
55
56 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
57 {
58         /*
59          * The timeline struct (as part of the ppgtt underneath a context)
60          * may be freed when the request is no longer in use by the GPU.
61          * We could extend the life of a context to beyond that of all
62          * fences, possibly keeping the hw resource around indefinitely,
63          * or we just give them a false name. Since
64          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
65          * lie seems justifiable.
66          */
67         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
68                 return "signaled";
69
70         return to_request(fence)->gem_context->name ?: "[i915]";
71 }
72
73 static bool i915_fence_signaled(struct dma_fence *fence)
74 {
75         return i915_request_completed(to_request(fence));
76 }
77
78 static bool i915_fence_enable_signaling(struct dma_fence *fence)
79 {
80         return i915_request_enable_breadcrumb(to_request(fence));
81 }
82
83 static signed long i915_fence_wait(struct dma_fence *fence,
84                                    bool interruptible,
85                                    signed long timeout)
86 {
87         return i915_request_wait(to_request(fence),
88                                  interruptible | I915_WAIT_PRIORITY,
89                                  timeout);
90 }
91
92 static void i915_fence_release(struct dma_fence *fence)
93 {
94         struct i915_request *rq = to_request(fence);
95
96         /*
97          * The request is put onto a RCU freelist (i.e. the address
98          * is immediately reused), mark the fences as being freed now.
99          * Otherwise the debugobjects for the fences are only marked as
100          * freed when the slab cache itself is freed, and so we would get
101          * caught trying to reuse dead objects.
102          */
103         i915_sw_fence_fini(&rq->submit);
104         i915_sw_fence_fini(&rq->semaphore);
105
106         kmem_cache_free(global.slab_requests, rq);
107 }
108
109 const struct dma_fence_ops i915_fence_ops = {
110         .get_driver_name = i915_fence_get_driver_name,
111         .get_timeline_name = i915_fence_get_timeline_name,
112         .enable_signaling = i915_fence_enable_signaling,
113         .signaled = i915_fence_signaled,
114         .wait = i915_fence_wait,
115         .release = i915_fence_release,
116 };
117
118 static inline void
119 i915_request_remove_from_client(struct i915_request *request)
120 {
121         struct drm_i915_file_private *file_priv;
122
123         file_priv = request->file_priv;
124         if (!file_priv)
125                 return;
126
127         spin_lock(&file_priv->mm.lock);
128         if (request->file_priv) {
129                 list_del(&request->client_link);
130                 request->file_priv = NULL;
131         }
132         spin_unlock(&file_priv->mm.lock);
133 }
134
135 static void reserve_gt(struct drm_i915_private *i915)
136 {
137         if (!i915->gt.active_requests++)
138                 i915_gem_unpark(i915);
139 }
140
141 static void unreserve_gt(struct drm_i915_private *i915)
142 {
143         GEM_BUG_ON(!i915->gt.active_requests);
144         if (!--i915->gt.active_requests)
145                 i915_gem_park(i915);
146 }
147
148 static void advance_ring(struct i915_request *request)
149 {
150         struct intel_ring *ring = request->ring;
151         unsigned int tail;
152
153         /*
154          * We know the GPU must have read the request to have
155          * sent us the seqno + interrupt, so use the position
156          * of tail of the request to update the last known position
157          * of the GPU head.
158          *
159          * Note this requires that we are always called in request
160          * completion order.
161          */
162         GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list));
163         if (list_is_last(&request->ring_link, &ring->request_list)) {
164                 /*
165                  * We may race here with execlists resubmitting this request
166                  * as we retire it. The resubmission will move the ring->tail
167                  * forwards (to request->wa_tail). We either read the
168                  * current value that was written to hw, or the value that
169                  * is just about to be. Either works, if we miss the last two
170                  * noops - they are safe to be replayed on a reset.
171                  */
172                 tail = READ_ONCE(request->tail);
173                 list_del(&ring->active_link);
174         } else {
175                 tail = request->postfix;
176         }
177         list_del_init(&request->ring_link);
178
179         ring->head = tail;
180 }
181
182 static void free_capture_list(struct i915_request *request)
183 {
184         struct i915_capture_list *capture;
185
186         capture = request->capture_list;
187         while (capture) {
188                 struct i915_capture_list *next = capture->next;
189
190                 kfree(capture);
191                 capture = next;
192         }
193 }
194
195 static void __retire_engine_request(struct intel_engine_cs *engine,
196                                     struct i915_request *rq)
197 {
198         GEM_TRACE("%s(%s) fence %llx:%lld, current %d\n",
199                   __func__, engine->name,
200                   rq->fence.context, rq->fence.seqno,
201                   hwsp_seqno(rq));
202
203         GEM_BUG_ON(!i915_request_completed(rq));
204
205         local_irq_disable();
206
207         spin_lock(&engine->timeline.lock);
208         GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests));
209         list_del_init(&rq->link);
210         spin_unlock(&engine->timeline.lock);
211
212         spin_lock(&rq->lock);
213         i915_request_mark_complete(rq);
214         if (!i915_request_signaled(rq))
215                 dma_fence_signal_locked(&rq->fence);
216         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
217                 i915_request_cancel_breadcrumb(rq);
218         if (rq->waitboost) {
219                 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
220                 atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
221         }
222         spin_unlock(&rq->lock);
223
224         local_irq_enable();
225
226         /*
227          * The backing object for the context is done after switching to the
228          * *next* context. Therefore we cannot retire the previous context until
229          * the next context has already started running. However, since we
230          * cannot take the required locks at i915_request_submit() we
231          * defer the unpinning of the active context to now, retirement of
232          * the subsequent request.
233          */
234         if (engine->last_retired_context)
235                 intel_context_unpin(engine->last_retired_context);
236         engine->last_retired_context = rq->hw_context;
237 }
238
239 static void __retire_engine_upto(struct intel_engine_cs *engine,
240                                  struct i915_request *rq)
241 {
242         struct i915_request *tmp;
243
244         if (list_empty(&rq->link))
245                 return;
246
247         do {
248                 tmp = list_first_entry(&engine->timeline.requests,
249                                        typeof(*tmp), link);
250
251                 GEM_BUG_ON(tmp->engine != engine);
252                 __retire_engine_request(engine, tmp);
253         } while (tmp != rq);
254 }
255
256 static void i915_request_retire(struct i915_request *request)
257 {
258         struct i915_active_request *active, *next;
259
260         GEM_TRACE("%s fence %llx:%lld, current %d\n",
261                   request->engine->name,
262                   request->fence.context, request->fence.seqno,
263                   hwsp_seqno(request));
264
265         lockdep_assert_held(&request->i915->drm.struct_mutex);
266         GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
267         GEM_BUG_ON(!i915_request_completed(request));
268
269         trace_i915_request_retire(request);
270
271         advance_ring(request);
272         free_capture_list(request);
273
274         /*
275          * Walk through the active list, calling retire on each. This allows
276          * objects to track their GPU activity and mark themselves as idle
277          * when their *last* active request is completed (updating state
278          * tracking lists for eviction, active references for GEM, etc).
279          *
280          * As the ->retire() may free the node, we decouple it first and
281          * pass along the auxiliary information (to avoid dereferencing
282          * the node after the callback).
283          */
284         list_for_each_entry_safe(active, next, &request->active_list, link) {
285                 /*
286                  * In microbenchmarks or focusing upon time inside the kernel,
287                  * we may spend an inordinate amount of time simply handling
288                  * the retirement of requests and processing their callbacks.
289                  * Of which, this loop itself is particularly hot due to the
290                  * cache misses when jumping around the list of
291                  * i915_active_request.  So we try to keep this loop as
292                  * streamlined as possible and also prefetch the next
293                  * i915_active_request to try and hide the likely cache miss.
294                  */
295                 prefetchw(next);
296
297                 INIT_LIST_HEAD(&active->link);
298                 RCU_INIT_POINTER(active->request, NULL);
299
300                 active->retire(active, request);
301         }
302
303         i915_request_remove_from_client(request);
304
305         intel_context_unpin(request->hw_context);
306
307         __retire_engine_upto(request->engine, request);
308
309         unreserve_gt(request->i915);
310
311         i915_sched_node_fini(&request->sched);
312         i915_request_put(request);
313 }
314
315 void i915_request_retire_upto(struct i915_request *rq)
316 {
317         struct intel_ring *ring = rq->ring;
318         struct i915_request *tmp;
319
320         GEM_TRACE("%s fence %llx:%lld, current %d\n",
321                   rq->engine->name,
322                   rq->fence.context, rq->fence.seqno,
323                   hwsp_seqno(rq));
324
325         lockdep_assert_held(&rq->i915->drm.struct_mutex);
326         GEM_BUG_ON(!i915_request_completed(rq));
327
328         if (list_empty(&rq->ring_link))
329                 return;
330
331         do {
332                 tmp = list_first_entry(&ring->request_list,
333                                        typeof(*tmp), ring_link);
334
335                 i915_request_retire(tmp);
336         } while (tmp != rq);
337 }
338
339 static void irq_execute_cb(struct irq_work *wrk)
340 {
341         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
342
343         i915_sw_fence_complete(cb->fence);
344         kmem_cache_free(global.slab_execute_cbs, cb);
345 }
346
347 static void __notify_execute_cb(struct i915_request *rq)
348 {
349         struct execute_cb *cb;
350
351         lockdep_assert_held(&rq->lock);
352
353         if (list_empty(&rq->execute_cb))
354                 return;
355
356         list_for_each_entry(cb, &rq->execute_cb, link)
357                 irq_work_queue(&cb->work);
358
359         /*
360          * XXX Rollback on __i915_request_unsubmit()
361          *
362          * In the future, perhaps when we have an active time-slicing scheduler,
363          * it will be interesting to unsubmit parallel execution and remove
364          * busywaits from the GPU until their master is restarted. This is
365          * quite hairy, we have to carefully rollback the fence and do a
366          * preempt-to-idle cycle on the target engine, all the while the
367          * master execute_cb may refire.
368          */
369         INIT_LIST_HEAD(&rq->execute_cb);
370 }
371
372 static int
373 i915_request_await_execution(struct i915_request *rq,
374                              struct i915_request *signal,
375                              gfp_t gfp)
376 {
377         struct execute_cb *cb;
378
379         if (i915_request_is_active(signal))
380                 return 0;
381
382         cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
383         if (!cb)
384                 return -ENOMEM;
385
386         cb->fence = &rq->submit;
387         i915_sw_fence_await(cb->fence);
388         init_irq_work(&cb->work, irq_execute_cb);
389
390         spin_lock_irq(&signal->lock);
391         if (i915_request_is_active(signal)) {
392                 i915_sw_fence_complete(cb->fence);
393                 kmem_cache_free(global.slab_execute_cbs, cb);
394         } else {
395                 list_add_tail(&cb->link, &signal->execute_cb);
396         }
397         spin_unlock_irq(&signal->lock);
398
399         return 0;
400 }
401
402 static void move_to_timeline(struct i915_request *request,
403                              struct i915_timeline *timeline)
404 {
405         GEM_BUG_ON(request->timeline == &request->engine->timeline);
406         lockdep_assert_held(&request->engine->timeline.lock);
407
408         spin_lock(&request->timeline->lock);
409         list_move_tail(&request->link, &timeline->requests);
410         spin_unlock(&request->timeline->lock);
411 }
412
413 void __i915_request_submit(struct i915_request *request)
414 {
415         struct intel_engine_cs *engine = request->engine;
416
417         GEM_TRACE("%s fence %llx:%lld -> current %d\n",
418                   engine->name,
419                   request->fence.context, request->fence.seqno,
420                   hwsp_seqno(request));
421
422         GEM_BUG_ON(!irqs_disabled());
423         lockdep_assert_held(&engine->timeline.lock);
424
425         if (i915_gem_context_is_banned(request->gem_context))
426                 i915_request_skip(request, -EIO);
427
428         /*
429          * Are we using semaphores when the gpu is already saturated?
430          *
431          * Using semaphores incurs a cost in having the GPU poll a
432          * memory location, busywaiting for it to change. The continual
433          * memory reads can have a noticeable impact on the rest of the
434          * system with the extra bus traffic, stalling the cpu as it too
435          * tries to access memory across the bus (perf stat -e bus-cycles).
436          *
437          * If we installed a semaphore on this request and we only submit
438          * the request after the signaler completed, that indicates the
439          * system is overloaded and using semaphores at this time only
440          * increases the amount of work we are doing. If so, we disable
441          * further use of semaphores until we are idle again, whence we
442          * optimistically try again.
443          */
444         if (request->sched.semaphores &&
445             i915_sw_fence_signaled(&request->semaphore))
446                 request->hw_context->saturated |= request->sched.semaphores;
447
448         /* We may be recursing from the signal callback of another i915 fence */
449         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
450
451         GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
452         set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
453
454         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
455             !i915_request_enable_breadcrumb(request))
456                 intel_engine_queue_breadcrumbs(engine);
457
458         __notify_execute_cb(request);
459
460         spin_unlock(&request->lock);
461
462         engine->emit_fini_breadcrumb(request,
463                                      request->ring->vaddr + request->postfix);
464
465         /* Transfer from per-context onto the global per-engine timeline */
466         move_to_timeline(request, &engine->timeline);
467
468         trace_i915_request_execute(request);
469 }
470
471 void i915_request_submit(struct i915_request *request)
472 {
473         struct intel_engine_cs *engine = request->engine;
474         unsigned long flags;
475
476         /* Will be called from irq-context when using foreign fences. */
477         spin_lock_irqsave(&engine->timeline.lock, flags);
478
479         __i915_request_submit(request);
480
481         spin_unlock_irqrestore(&engine->timeline.lock, flags);
482 }
483
484 void __i915_request_unsubmit(struct i915_request *request)
485 {
486         struct intel_engine_cs *engine = request->engine;
487
488         GEM_TRACE("%s fence %llx:%lld, current %d\n",
489                   engine->name,
490                   request->fence.context, request->fence.seqno,
491                   hwsp_seqno(request));
492
493         GEM_BUG_ON(!irqs_disabled());
494         lockdep_assert_held(&engine->timeline.lock);
495
496         /*
497          * Only unwind in reverse order, required so that the per-context list
498          * is kept in seqno/ring order.
499          */
500
501         /* We may be recursing from the signal callback of another i915 fence */
502         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
503
504         /*
505          * As we do not allow WAIT to preempt inflight requests,
506          * once we have executed a request, along with triggering
507          * any execution callbacks, we must preserve its ordering
508          * within the non-preemptible FIFO.
509          */
510         BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
511         request->sched.attr.priority |= __NO_PREEMPTION;
512
513         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
514                 i915_request_cancel_breadcrumb(request);
515
516         GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
517         clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
518
519         spin_unlock(&request->lock);
520
521         /* Transfer back from the global per-engine timeline to per-context */
522         move_to_timeline(request, request->timeline);
523
524         /*
525          * We don't need to wake_up any waiters on request->execute, they
526          * will get woken by any other event or us re-adding this request
527          * to the engine timeline (__i915_request_submit()). The waiters
528          * should be quite adapt at finding that the request now has a new
529          * global_seqno to the one they went to sleep on.
530          */
531 }
532
533 void i915_request_unsubmit(struct i915_request *request)
534 {
535         struct intel_engine_cs *engine = request->engine;
536         unsigned long flags;
537
538         /* Will be called from irq-context when using foreign fences. */
539         spin_lock_irqsave(&engine->timeline.lock, flags);
540
541         __i915_request_unsubmit(request);
542
543         spin_unlock_irqrestore(&engine->timeline.lock, flags);
544 }
545
546 static int __i915_sw_fence_call
547 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
548 {
549         struct i915_request *request =
550                 container_of(fence, typeof(*request), submit);
551
552         switch (state) {
553         case FENCE_COMPLETE:
554                 trace_i915_request_submit(request);
555                 /*
556                  * We need to serialize use of the submit_request() callback
557                  * with its hotplugging performed during an emergency
558                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
559                  * critical section in order to force i915_gem_set_wedged() to
560                  * wait until the submit_request() is completed before
561                  * proceeding.
562                  */
563                 rcu_read_lock();
564                 request->engine->submit_request(request);
565                 rcu_read_unlock();
566                 break;
567
568         case FENCE_FREE:
569                 i915_request_put(request);
570                 break;
571         }
572
573         return NOTIFY_DONE;
574 }
575
576 static int __i915_sw_fence_call
577 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
578 {
579         struct i915_request *request =
580                 container_of(fence, typeof(*request), semaphore);
581
582         switch (state) {
583         case FENCE_COMPLETE:
584                 /*
585                  * We only check a small portion of our dependencies
586                  * and so cannot guarantee that there remains no
587                  * semaphore chain across all. Instead of opting
588                  * for the full NOSEMAPHORE boost, we go for the
589                  * smaller (but still preempting) boost of
590                  * NEWCLIENT. This will be enough to boost over
591                  * a busywaiting request (as that cannot be
592                  * NEWCLIENT) without accidentally boosting
593                  * a busywait over real work elsewhere.
594                  */
595                 i915_schedule_bump_priority(request, I915_PRIORITY_NEWCLIENT);
596                 break;
597
598         case FENCE_FREE:
599                 i915_request_put(request);
600                 break;
601         }
602
603         return NOTIFY_DONE;
604 }
605
606 static void ring_retire_requests(struct intel_ring *ring)
607 {
608         struct i915_request *rq, *rn;
609
610         list_for_each_entry_safe(rq, rn, &ring->request_list, ring_link) {
611                 if (!i915_request_completed(rq))
612                         break;
613
614                 i915_request_retire(rq);
615         }
616 }
617
618 static noinline struct i915_request *
619 i915_request_alloc_slow(struct intel_context *ce)
620 {
621         struct intel_ring *ring = ce->ring;
622         struct i915_request *rq;
623
624         if (list_empty(&ring->request_list))
625                 goto out;
626
627         /* Ratelimit ourselves to prevent oom from malicious clients */
628         rq = list_last_entry(&ring->request_list, typeof(*rq), ring_link);
629         cond_synchronize_rcu(rq->rcustate);
630
631         /* Retire our old requests in the hope that we free some */
632         ring_retire_requests(ring);
633
634 out:
635         return kmem_cache_alloc(global.slab_requests, GFP_KERNEL);
636 }
637
638 /**
639  * i915_request_alloc - allocate a request structure
640  *
641  * @engine: engine that we wish to issue the request on.
642  * @ctx: context that the request will be associated with.
643  *
644  * Returns a pointer to the allocated request if successful,
645  * or an error code if not.
646  */
647 struct i915_request *
648 i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
649 {
650         struct drm_i915_private *i915 = engine->i915;
651         struct intel_context *ce;
652         struct i915_timeline *tl;
653         struct i915_request *rq;
654         u32 seqno;
655         int ret;
656
657         lockdep_assert_held(&i915->drm.struct_mutex);
658
659         /*
660          * Preempt contexts are reserved for exclusive use to inject a
661          * preemption context switch. They are never to be used for any trivial
662          * request!
663          */
664         GEM_BUG_ON(ctx == i915->preempt_context);
665
666         /*
667          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
668          * EIO if the GPU is already wedged.
669          */
670         ret = i915_terminally_wedged(i915);
671         if (ret)
672                 return ERR_PTR(ret);
673
674         /*
675          * Pinning the contexts may generate requests in order to acquire
676          * GGTT space, so do this first before we reserve a seqno for
677          * ourselves.
678          */
679         ce = intel_context_pin(ctx, engine);
680         if (IS_ERR(ce))
681                 return ERR_CAST(ce);
682
683         reserve_gt(i915);
684         mutex_lock(&ce->ring->timeline->mutex);
685
686         /* Move our oldest request to the slab-cache (if not in use!) */
687         rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link);
688         if (!list_is_last(&rq->ring_link, &ce->ring->request_list) &&
689             i915_request_completed(rq))
690                 i915_request_retire(rq);
691
692         /*
693          * Beware: Dragons be flying overhead.
694          *
695          * We use RCU to look up requests in flight. The lookups may
696          * race with the request being allocated from the slab freelist.
697          * That is the request we are writing to here, may be in the process
698          * of being read by __i915_active_request_get_rcu(). As such,
699          * we have to be very careful when overwriting the contents. During
700          * the RCU lookup, we change chase the request->engine pointer,
701          * read the request->global_seqno and increment the reference count.
702          *
703          * The reference count is incremented atomically. If it is zero,
704          * the lookup knows the request is unallocated and complete. Otherwise,
705          * it is either still in use, or has been reallocated and reset
706          * with dma_fence_init(). This increment is safe for release as we
707          * check that the request we have a reference to and matches the active
708          * request.
709          *
710          * Before we increment the refcount, we chase the request->engine
711          * pointer. We must not call kmem_cache_zalloc() or else we set
712          * that pointer to NULL and cause a crash during the lookup. If
713          * we see the request is completed (based on the value of the
714          * old engine and seqno), the lookup is complete and reports NULL.
715          * If we decide the request is not completed (new engine or seqno),
716          * then we grab a reference and double check that it is still the
717          * active request - which it won't be and restart the lookup.
718          *
719          * Do not use kmem_cache_zalloc() here!
720          */
721         rq = kmem_cache_alloc(global.slab_requests,
722                               GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
723         if (unlikely(!rq)) {
724                 rq = i915_request_alloc_slow(ce);
725                 if (!rq) {
726                         ret = -ENOMEM;
727                         goto err_unreserve;
728                 }
729         }
730
731         INIT_LIST_HEAD(&rq->active_list);
732         INIT_LIST_HEAD(&rq->execute_cb);
733
734         tl = ce->ring->timeline;
735         ret = i915_timeline_get_seqno(tl, rq, &seqno);
736         if (ret)
737                 goto err_free;
738
739         rq->i915 = i915;
740         rq->engine = engine;
741         rq->gem_context = ctx;
742         rq->hw_context = ce;
743         rq->ring = ce->ring;
744         rq->timeline = tl;
745         GEM_BUG_ON(rq->timeline == &engine->timeline);
746         rq->hwsp_seqno = tl->hwsp_seqno;
747         rq->hwsp_cacheline = tl->hwsp_cacheline;
748         rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
749
750         spin_lock_init(&rq->lock);
751         dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
752                        tl->fence_context, seqno);
753
754         /* We bump the ref for the fence chain */
755         i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
756         i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
757
758         i915_sched_node_init(&rq->sched);
759
760         /* No zalloc, must clear what we need by hand */
761         rq->file_priv = NULL;
762         rq->batch = NULL;
763         rq->capture_list = NULL;
764         rq->waitboost = false;
765
766         /*
767          * Reserve space in the ring buffer for all the commands required to
768          * eventually emit this request. This is to guarantee that the
769          * i915_request_add() call can't fail. Note that the reserve may need
770          * to be redone if the request is not actually submitted straight
771          * away, e.g. because a GPU scheduler has deferred it.
772          *
773          * Note that due to how we add reserved_space to intel_ring_begin()
774          * we need to double our request to ensure that if we need to wrap
775          * around inside i915_request_add() there is sufficient space at
776          * the beginning of the ring as well.
777          */
778         rq->reserved_space = 2 * engine->emit_fini_breadcrumb_dw * sizeof(u32);
779
780         /*
781          * Record the position of the start of the request so that
782          * should we detect the updated seqno part-way through the
783          * GPU processing the request, we never over-estimate the
784          * position of the head.
785          */
786         rq->head = rq->ring->emit;
787
788         ret = engine->request_alloc(rq);
789         if (ret)
790                 goto err_unwind;
791
792         /* Keep a second pin for the dual retirement along engine and ring */
793         __intel_context_pin(ce);
794
795         rq->infix = rq->ring->emit; /* end of header; start of user payload */
796
797         /* Check that we didn't interrupt ourselves with a new request */
798         lockdep_assert_held(&rq->timeline->mutex);
799         GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
800         rq->cookie = lockdep_pin_lock(&rq->timeline->mutex);
801
802         return rq;
803
804 err_unwind:
805         ce->ring->emit = rq->head;
806
807         /* Make sure we didn't add ourselves to external state before freeing */
808         GEM_BUG_ON(!list_empty(&rq->active_list));
809         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
810         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
811
812 err_free:
813         kmem_cache_free(global.slab_requests, rq);
814 err_unreserve:
815         mutex_unlock(&ce->ring->timeline->mutex);
816         unreserve_gt(i915);
817         intel_context_unpin(ce);
818         return ERR_PTR(ret);
819 }
820
821 static int
822 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
823 {
824         if (list_is_first(&signal->ring_link, &signal->ring->request_list))
825                 return 0;
826
827         signal = list_prev_entry(signal, ring_link);
828         if (i915_timeline_sync_is_later(rq->timeline, &signal->fence))
829                 return 0;
830
831         return i915_sw_fence_await_dma_fence(&rq->submit,
832                                              &signal->fence, 0,
833                                              I915_FENCE_GFP);
834 }
835
836 static intel_engine_mask_t
837 already_busywaiting(struct i915_request *rq)
838 {
839         /*
840          * Polling a semaphore causes bus traffic, delaying other users of
841          * both the GPU and CPU. We want to limit the impact on others,
842          * while taking advantage of early submission to reduce GPU
843          * latency. Therefore we restrict ourselves to not using more
844          * than one semaphore from each source, and not using a semaphore
845          * if we have detected the engine is saturated (i.e. would not be
846          * submitted early and cause bus traffic reading an already passed
847          * semaphore).
848          *
849          * See the are-we-too-late? check in __i915_request_submit().
850          */
851         return rq->sched.semaphores | rq->hw_context->saturated;
852 }
853
854 static int
855 emit_semaphore_wait(struct i915_request *to,
856                     struct i915_request *from,
857                     gfp_t gfp)
858 {
859         u32 hwsp_offset;
860         u32 *cs;
861         int err;
862
863         GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
864         GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
865
866         /* Just emit the first semaphore we see as request space is limited. */
867         if (already_busywaiting(to) & from->engine->mask)
868                 return i915_sw_fence_await_dma_fence(&to->submit,
869                                                      &from->fence, 0,
870                                                      I915_FENCE_GFP);
871
872         err = i915_request_await_start(to, from);
873         if (err < 0)
874                 return err;
875
876         err = i915_sw_fence_await_dma_fence(&to->semaphore,
877                                             &from->fence, 0,
878                                             I915_FENCE_GFP);
879         if (err < 0)
880                 return err;
881
882         /* We need to pin the signaler's HWSP until we are finished reading. */
883         err = i915_timeline_read_hwsp(from, to, &hwsp_offset);
884         if (err)
885                 return err;
886
887         /* Only submit our spinner after the signaler is running! */
888         err = i915_request_await_execution(to, from, gfp);
889         if (err)
890                 return err;
891
892         cs = intel_ring_begin(to, 4);
893         if (IS_ERR(cs))
894                 return PTR_ERR(cs);
895
896         /*
897          * Using greater-than-or-equal here means we have to worry
898          * about seqno wraparound. To side step that issue, we swap
899          * the timeline HWSP upon wrapping, so that everyone listening
900          * for the old (pre-wrap) values do not see the much smaller
901          * (post-wrap) values than they were expecting (and so wait
902          * forever).
903          */
904         *cs++ = MI_SEMAPHORE_WAIT |
905                 MI_SEMAPHORE_GLOBAL_GTT |
906                 MI_SEMAPHORE_POLL |
907                 MI_SEMAPHORE_SAD_GTE_SDD;
908         *cs++ = from->fence.seqno;
909         *cs++ = hwsp_offset;
910         *cs++ = 0;
911
912         intel_ring_advance(to, cs);
913         to->sched.semaphores |= from->engine->mask;
914         to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
915         return 0;
916 }
917
918 static int
919 i915_request_await_request(struct i915_request *to, struct i915_request *from)
920 {
921         int ret;
922
923         GEM_BUG_ON(to == from);
924         GEM_BUG_ON(to->timeline == from->timeline);
925
926         if (i915_request_completed(from))
927                 return 0;
928
929         if (to->engine->schedule) {
930                 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
931                 if (ret < 0)
932                         return ret;
933         }
934
935         if (to->engine == from->engine) {
936                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
937                                                        &from->submit,
938                                                        I915_FENCE_GFP);
939         } else if (intel_engine_has_semaphores(to->engine) &&
940                    to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
941                 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
942         } else {
943                 ret = i915_sw_fence_await_dma_fence(&to->submit,
944                                                     &from->fence, 0,
945                                                     I915_FENCE_GFP);
946         }
947
948         return ret < 0 ? ret : 0;
949 }
950
951 int
952 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
953 {
954         struct dma_fence **child = &fence;
955         unsigned int nchild = 1;
956         int ret;
957
958         /*
959          * Note that if the fence-array was created in signal-on-any mode,
960          * we should *not* decompose it into its individual fences. However,
961          * we don't currently store which mode the fence-array is operating
962          * in. Fortunately, the only user of signal-on-any is private to
963          * amdgpu and we should not see any incoming fence-array from
964          * sync-file being in signal-on-any mode.
965          */
966         if (dma_fence_is_array(fence)) {
967                 struct dma_fence_array *array = to_dma_fence_array(fence);
968
969                 child = array->fences;
970                 nchild = array->num_fences;
971                 GEM_BUG_ON(!nchild);
972         }
973
974         do {
975                 fence = *child++;
976                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
977                         continue;
978
979                 /*
980                  * Requests on the same timeline are explicitly ordered, along
981                  * with their dependencies, by i915_request_add() which ensures
982                  * that requests are submitted in-order through each ring.
983                  */
984                 if (fence->context == rq->fence.context)
985                         continue;
986
987                 /* Squash repeated waits to the same timelines */
988                 if (fence->context != rq->i915->mm.unordered_timeline &&
989                     i915_timeline_sync_is_later(rq->timeline, fence))
990                         continue;
991
992                 if (dma_fence_is_i915(fence))
993                         ret = i915_request_await_request(rq, to_request(fence));
994                 else
995                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
996                                                             I915_FENCE_TIMEOUT,
997                                                             I915_FENCE_GFP);
998                 if (ret < 0)
999                         return ret;
1000
1001                 /* Record the latest fence used against each timeline */
1002                 if (fence->context != rq->i915->mm.unordered_timeline)
1003                         i915_timeline_sync_set(rq->timeline, fence);
1004         } while (--nchild);
1005
1006         return 0;
1007 }
1008
1009 /**
1010  * i915_request_await_object - set this request to (async) wait upon a bo
1011  * @to: request we are wishing to use
1012  * @obj: object which may be in use on another ring.
1013  * @write: whether the wait is on behalf of a writer
1014  *
1015  * This code is meant to abstract object synchronization with the GPU.
1016  * Conceptually we serialise writes between engines inside the GPU.
1017  * We only allow one engine to write into a buffer at any time, but
1018  * multiple readers. To ensure each has a coherent view of memory, we must:
1019  *
1020  * - If there is an outstanding write request to the object, the new
1021  *   request must wait for it to complete (either CPU or in hw, requests
1022  *   on the same ring will be naturally ordered).
1023  *
1024  * - If we are a write request (pending_write_domain is set), the new
1025  *   request must wait for outstanding read requests to complete.
1026  *
1027  * Returns 0 if successful, else propagates up the lower layer error.
1028  */
1029 int
1030 i915_request_await_object(struct i915_request *to,
1031                           struct drm_i915_gem_object *obj,
1032                           bool write)
1033 {
1034         struct dma_fence *excl;
1035         int ret = 0;
1036
1037         if (write) {
1038                 struct dma_fence **shared;
1039                 unsigned int count, i;
1040
1041                 ret = reservation_object_get_fences_rcu(obj->resv,
1042                                                         &excl, &count, &shared);
1043                 if (ret)
1044                         return ret;
1045
1046                 for (i = 0; i < count; i++) {
1047                         ret = i915_request_await_dma_fence(to, shared[i]);
1048                         if (ret)
1049                                 break;
1050
1051                         dma_fence_put(shared[i]);
1052                 }
1053
1054                 for (; i < count; i++)
1055                         dma_fence_put(shared[i]);
1056                 kfree(shared);
1057         } else {
1058                 excl = reservation_object_get_excl_rcu(obj->resv);
1059         }
1060
1061         if (excl) {
1062                 if (ret == 0)
1063                         ret = i915_request_await_dma_fence(to, excl);
1064
1065                 dma_fence_put(excl);
1066         }
1067
1068         return ret;
1069 }
1070
1071 void i915_request_skip(struct i915_request *rq, int error)
1072 {
1073         void *vaddr = rq->ring->vaddr;
1074         u32 head;
1075
1076         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1077         dma_fence_set_error(&rq->fence, error);
1078
1079         /*
1080          * As this request likely depends on state from the lost
1081          * context, clear out all the user operations leaving the
1082          * breadcrumb at the end (so we get the fence notifications).
1083          */
1084         head = rq->infix;
1085         if (rq->postfix < head) {
1086                 memset(vaddr + head, 0, rq->ring->size - head);
1087                 head = 0;
1088         }
1089         memset(vaddr + head, 0, rq->postfix - head);
1090 }
1091
1092 static struct i915_request *
1093 __i915_request_add_to_timeline(struct i915_request *rq)
1094 {
1095         struct i915_timeline *timeline = rq->timeline;
1096         struct i915_request *prev;
1097
1098         /*
1099          * Dependency tracking and request ordering along the timeline
1100          * is special cased so that we can eliminate redundant ordering
1101          * operations while building the request (we know that the timeline
1102          * itself is ordered, and here we guarantee it).
1103          *
1104          * As we know we will need to emit tracking along the timeline,
1105          * we embed the hooks into our request struct -- at the cost of
1106          * having to have specialised no-allocation interfaces (which will
1107          * be beneficial elsewhere).
1108          *
1109          * A second benefit to open-coding i915_request_await_request is
1110          * that we can apply a slight variant of the rules specialised
1111          * for timelines that jump between engines (such as virtual engines).
1112          * If we consider the case of virtual engine, we must emit a dma-fence
1113          * to prevent scheduling of the second request until the first is
1114          * complete (to maximise our greedy late load balancing) and this
1115          * precludes optimising to use semaphores serialisation of a single
1116          * timeline across engines.
1117          */
1118         prev = i915_active_request_raw(&timeline->last_request,
1119                                        &rq->i915->drm.struct_mutex);
1120         if (prev && !i915_request_completed(prev)) {
1121                 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1122                         i915_sw_fence_await_sw_fence(&rq->submit,
1123                                                      &prev->submit,
1124                                                      &rq->submitq);
1125                 else
1126                         __i915_sw_fence_await_dma_fence(&rq->submit,
1127                                                         &prev->fence,
1128                                                         &rq->dmaq);
1129                 if (rq->engine->schedule)
1130                         __i915_sched_node_add_dependency(&rq->sched,
1131                                                          &prev->sched,
1132                                                          &rq->dep,
1133                                                          0);
1134         }
1135
1136         spin_lock_irq(&timeline->lock);
1137         list_add_tail(&rq->link, &timeline->requests);
1138         spin_unlock_irq(&timeline->lock);
1139
1140         GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1141         __i915_active_request_set(&timeline->last_request, rq);
1142
1143         return prev;
1144 }
1145
1146 /*
1147  * NB: This function is not allowed to fail. Doing so would mean the the
1148  * request is not being tracked for completion but the work itself is
1149  * going to happen on the hardware. This would be a Bad Thing(tm).
1150  */
1151 void i915_request_add(struct i915_request *request)
1152 {
1153         struct intel_engine_cs *engine = request->engine;
1154         struct i915_timeline *timeline = request->timeline;
1155         struct intel_ring *ring = request->ring;
1156         struct i915_request *prev;
1157         u32 *cs;
1158
1159         GEM_TRACE("%s fence %llx:%lld\n",
1160                   engine->name, request->fence.context, request->fence.seqno);
1161
1162         lockdep_assert_held(&request->timeline->mutex);
1163         lockdep_unpin_lock(&request->timeline->mutex, request->cookie);
1164
1165         trace_i915_request_add(request);
1166
1167         /*
1168          * Make sure that no request gazumped us - if it was allocated after
1169          * our i915_request_alloc() and called __i915_request_add() before
1170          * us, the timeline will hold its seqno which is later than ours.
1171          */
1172         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1173
1174         /*
1175          * To ensure that this call will not fail, space for its emissions
1176          * should already have been reserved in the ring buffer. Let the ring
1177          * know that it is time to use that space up.
1178          */
1179         GEM_BUG_ON(request->reserved_space > request->ring->space);
1180         request->reserved_space = 0;
1181
1182         /*
1183          * Record the position of the start of the breadcrumb so that
1184          * should we detect the updated seqno part-way through the
1185          * GPU processing the request, we never over-estimate the
1186          * position of the ring's HEAD.
1187          */
1188         cs = intel_ring_begin(request, engine->emit_fini_breadcrumb_dw);
1189         GEM_BUG_ON(IS_ERR(cs));
1190         request->postfix = intel_ring_offset(request, cs);
1191
1192         prev = __i915_request_add_to_timeline(request);
1193
1194         list_add_tail(&request->ring_link, &ring->request_list);
1195         if (list_is_first(&request->ring_link, &ring->request_list))
1196                 list_add(&ring->active_link, &request->i915->gt.active_rings);
1197         request->i915->gt.active_engines |= request->engine->mask;
1198         request->emitted_jiffies = jiffies;
1199
1200         /*
1201          * Let the backend know a new request has arrived that may need
1202          * to adjust the existing execution schedule due to a high priority
1203          * request - i.e. we may want to preempt the current request in order
1204          * to run a high priority dependency chain *before* we can execute this
1205          * request.
1206          *
1207          * This is called before the request is ready to run so that we can
1208          * decide whether to preempt the entire chain so that it is ready to
1209          * run at the earliest possible convenience.
1210          */
1211         local_bh_disable();
1212         i915_sw_fence_commit(&request->semaphore);
1213         rcu_read_lock(); /* RCU serialisation for set-wedged protection */
1214         if (engine->schedule) {
1215                 struct i915_sched_attr attr = request->gem_context->sched;
1216
1217                 /*
1218                  * Boost actual workloads past semaphores!
1219                  *
1220                  * With semaphores we spin on one engine waiting for another,
1221                  * simply to reduce the latency of starting our work when
1222                  * the signaler completes. However, if there is any other
1223                  * work that we could be doing on this engine instead, that
1224                  * is better utilisation and will reduce the overall duration
1225                  * of the current work. To avoid PI boosting a semaphore
1226                  * far in the distance past over useful work, we keep a history
1227                  * of any semaphore use along our dependency chain.
1228                  */
1229                 if (!(request->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1230                         attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1231
1232                 /*
1233                  * Boost priorities to new clients (new request flows).
1234                  *
1235                  * Allow interactive/synchronous clients to jump ahead of
1236                  * the bulk clients. (FQ_CODEL)
1237                  */
1238                 if (list_empty(&request->sched.signalers_list))
1239                         attr.priority |= I915_PRIORITY_NEWCLIENT;
1240
1241                 engine->schedule(request, &attr);
1242         }
1243         rcu_read_unlock();
1244         i915_sw_fence_commit(&request->submit);
1245         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1246
1247         /*
1248          * In typical scenarios, we do not expect the previous request on
1249          * the timeline to be still tracked by timeline->last_request if it
1250          * has been completed. If the completed request is still here, that
1251          * implies that request retirement is a long way behind submission,
1252          * suggesting that we haven't been retiring frequently enough from
1253          * the combination of retire-before-alloc, waiters and the background
1254          * retirement worker. So if the last request on this timeline was
1255          * already completed, do a catch up pass, flushing the retirement queue
1256          * up to this client. Since we have now moved the heaviest operations
1257          * during retirement onto secondary workers, such as freeing objects
1258          * or contexts, retiring a bunch of requests is mostly list management
1259          * (and cache misses), and so we should not be overly penalizing this
1260          * client by performing excess work, though we may still performing
1261          * work on behalf of others -- but instead we should benefit from
1262          * improved resource management. (Well, that's the theory at least.)
1263          */
1264         if (prev && i915_request_completed(prev))
1265                 i915_request_retire_upto(prev);
1266
1267         mutex_unlock(&request->timeline->mutex);
1268 }
1269
1270 static unsigned long local_clock_us(unsigned int *cpu)
1271 {
1272         unsigned long t;
1273
1274         /*
1275          * Cheaply and approximately convert from nanoseconds to microseconds.
1276          * The result and subsequent calculations are also defined in the same
1277          * approximate microseconds units. The principal source of timing
1278          * error here is from the simple truncation.
1279          *
1280          * Note that local_clock() is only defined wrt to the current CPU;
1281          * the comparisons are no longer valid if we switch CPUs. Instead of
1282          * blocking preemption for the entire busywait, we can detect the CPU
1283          * switch and use that as indicator of system load and a reason to
1284          * stop busywaiting, see busywait_stop().
1285          */
1286         *cpu = get_cpu();
1287         t = local_clock() >> 10;
1288         put_cpu();
1289
1290         return t;
1291 }
1292
1293 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1294 {
1295         unsigned int this_cpu;
1296
1297         if (time_after(local_clock_us(&this_cpu), timeout))
1298                 return true;
1299
1300         return this_cpu != cpu;
1301 }
1302
1303 static bool __i915_spin_request(const struct i915_request * const rq,
1304                                 int state, unsigned long timeout_us)
1305 {
1306         unsigned int cpu;
1307
1308         /*
1309          * Only wait for the request if we know it is likely to complete.
1310          *
1311          * We don't track the timestamps around requests, nor the average
1312          * request length, so we do not have a good indicator that this
1313          * request will complete within the timeout. What we do know is the
1314          * order in which requests are executed by the context and so we can
1315          * tell if the request has been started. If the request is not even
1316          * running yet, it is a fair assumption that it will not complete
1317          * within our relatively short timeout.
1318          */
1319         if (!i915_request_is_running(rq))
1320                 return false;
1321
1322         /*
1323          * When waiting for high frequency requests, e.g. during synchronous
1324          * rendering split between the CPU and GPU, the finite amount of time
1325          * required to set up the irq and wait upon it limits the response
1326          * rate. By busywaiting on the request completion for a short while we
1327          * can service the high frequency waits as quick as possible. However,
1328          * if it is a slow request, we want to sleep as quickly as possible.
1329          * The tradeoff between waiting and sleeping is roughly the time it
1330          * takes to sleep on a request, on the order of a microsecond.
1331          */
1332
1333         timeout_us += local_clock_us(&cpu);
1334         do {
1335                 if (i915_request_completed(rq))
1336                         return true;
1337
1338                 if (signal_pending_state(state, current))
1339                         break;
1340
1341                 if (busywait_stop(timeout_us, cpu))
1342                         break;
1343
1344                 cpu_relax();
1345         } while (!need_resched());
1346
1347         return false;
1348 }
1349
1350 struct request_wait {
1351         struct dma_fence_cb cb;
1352         struct task_struct *tsk;
1353 };
1354
1355 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1356 {
1357         struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1358
1359         wake_up_process(wait->tsk);
1360 }
1361
1362 /**
1363  * i915_request_wait - wait until execution of request has finished
1364  * @rq: the request to wait upon
1365  * @flags: how to wait
1366  * @timeout: how long to wait in jiffies
1367  *
1368  * i915_request_wait() waits for the request to be completed, for a
1369  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1370  * unbounded wait).
1371  *
1372  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1373  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1374  * must not specify that the wait is locked.
1375  *
1376  * Returns the remaining time (in jiffies) if the request completed, which may
1377  * be zero or -ETIME if the request is unfinished after the timeout expires.
1378  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1379  * pending before the request completes.
1380  */
1381 long i915_request_wait(struct i915_request *rq,
1382                        unsigned int flags,
1383                        long timeout)
1384 {
1385         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1386                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1387         struct request_wait wait;
1388
1389         might_sleep();
1390         GEM_BUG_ON(timeout < 0);
1391
1392         if (i915_request_completed(rq))
1393                 return timeout;
1394
1395         if (!timeout)
1396                 return -ETIME;
1397
1398         trace_i915_request_wait_begin(rq, flags);
1399
1400         /* Optimistic short spin before touching IRQs */
1401         if (__i915_spin_request(rq, state, 5))
1402                 goto out;
1403
1404         /*
1405          * This client is about to stall waiting for the GPU. In many cases
1406          * this is undesirable and limits the throughput of the system, as
1407          * many clients cannot continue processing user input/output whilst
1408          * blocked. RPS autotuning may take tens of milliseconds to respond
1409          * to the GPU load and thus incurs additional latency for the client.
1410          * We can circumvent that by promoting the GPU frequency to maximum
1411          * before we sleep. This makes the GPU throttle up much more quickly
1412          * (good for benchmarks and user experience, e.g. window animations),
1413          * but at a cost of spending more power processing the workload
1414          * (bad for battery).
1415          */
1416         if (flags & I915_WAIT_PRIORITY) {
1417                 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1418                         gen6_rps_boost(rq);
1419                 local_bh_disable(); /* suspend tasklets for reprioritisation */
1420                 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1421                 local_bh_enable(); /* kick tasklets en masse */
1422         }
1423
1424         wait.tsk = current;
1425         if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1426                 goto out;
1427
1428         for (;;) {
1429                 set_current_state(state);
1430
1431                 if (i915_request_completed(rq))
1432                         break;
1433
1434                 if (signal_pending_state(state, current)) {
1435                         timeout = -ERESTARTSYS;
1436                         break;
1437                 }
1438
1439                 if (!timeout) {
1440                         timeout = -ETIME;
1441                         break;
1442                 }
1443
1444                 timeout = io_schedule_timeout(timeout);
1445         }
1446         __set_current_state(TASK_RUNNING);
1447
1448         dma_fence_remove_callback(&rq->fence, &wait.cb);
1449
1450 out:
1451         trace_i915_request_wait_end(rq);
1452         return timeout;
1453 }
1454
1455 void i915_retire_requests(struct drm_i915_private *i915)
1456 {
1457         struct intel_ring *ring, *tmp;
1458
1459         lockdep_assert_held(&i915->drm.struct_mutex);
1460
1461         if (!i915->gt.active_requests)
1462                 return;
1463
1464         list_for_each_entry_safe(ring, tmp,
1465                                  &i915->gt.active_rings, active_link) {
1466                 intel_ring_get(ring); /* last rq holds reference! */
1467                 ring_retire_requests(ring);
1468                 intel_ring_put(ring);
1469         }
1470 }
1471
1472 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1473 #include "selftests/mock_request.c"
1474 #include "selftests/i915_request.c"
1475 #endif
1476
1477 static void i915_global_request_shrink(void)
1478 {
1479         kmem_cache_shrink(global.slab_dependencies);
1480         kmem_cache_shrink(global.slab_execute_cbs);
1481         kmem_cache_shrink(global.slab_requests);
1482 }
1483
1484 static void i915_global_request_exit(void)
1485 {
1486         kmem_cache_destroy(global.slab_dependencies);
1487         kmem_cache_destroy(global.slab_execute_cbs);
1488         kmem_cache_destroy(global.slab_requests);
1489 }
1490
1491 static struct i915_global_request global = { {
1492         .shrink = i915_global_request_shrink,
1493         .exit = i915_global_request_exit,
1494 } };
1495
1496 int __init i915_global_request_init(void)
1497 {
1498         global.slab_requests = KMEM_CACHE(i915_request,
1499                                           SLAB_HWCACHE_ALIGN |
1500                                           SLAB_RECLAIM_ACCOUNT |
1501                                           SLAB_TYPESAFE_BY_RCU);
1502         if (!global.slab_requests)
1503                 return -ENOMEM;
1504
1505         global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1506                                              SLAB_HWCACHE_ALIGN |
1507                                              SLAB_RECLAIM_ACCOUNT |
1508                                              SLAB_TYPESAFE_BY_RCU);
1509         if (!global.slab_execute_cbs)
1510                 goto err_requests;
1511
1512         global.slab_dependencies = KMEM_CACHE(i915_dependency,
1513                                               SLAB_HWCACHE_ALIGN |
1514                                               SLAB_RECLAIM_ACCOUNT);
1515         if (!global.slab_dependencies)
1516                 goto err_execute_cbs;
1517
1518         i915_global_register(&global.base);
1519         return 0;
1520
1521 err_execute_cbs:
1522         kmem_cache_destroy(global.slab_execute_cbs);
1523 err_requests:
1524         kmem_cache_destroy(global.slab_requests);
1525         return -ENOMEM;
1526 }