]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/i915_request.c
Merge tag 'ktest-v5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux...
[linux.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 #include "gt/intel_ring.h"
35 #include "gt/intel_rps.h"
36
37 #include "i915_active.h"
38 #include "i915_drv.h"
39 #include "i915_globals.h"
40 #include "i915_trace.h"
41 #include "intel_pm.h"
42
43 struct execute_cb {
44         struct list_head link;
45         struct irq_work work;
46         struct i915_sw_fence *fence;
47         void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48         struct i915_request *signal;
49 };
50
51 static struct i915_global_request {
52         struct i915_global base;
53         struct kmem_cache *slab_requests;
54         struct kmem_cache *slab_dependencies;
55         struct kmem_cache *slab_execute_cbs;
56 } global;
57
58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60         return dev_name(to_request(fence)->i915->drm.dev);
61 }
62
63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65         const struct i915_gem_context *ctx;
66
67         /*
68          * The timeline struct (as part of the ppgtt underneath a context)
69          * may be freed when the request is no longer in use by the GPU.
70          * We could extend the life of a context to beyond that of all
71          * fences, possibly keeping the hw resource around indefinitely,
72          * or we just give them a false name. Since
73          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74          * lie seems justifiable.
75          */
76         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77                 return "signaled";
78
79         ctx = i915_request_gem_context(to_request(fence));
80         if (!ctx)
81                 return "[" DRIVER_NAME "]";
82
83         return ctx->name;
84 }
85
86 static bool i915_fence_signaled(struct dma_fence *fence)
87 {
88         return i915_request_completed(to_request(fence));
89 }
90
91 static bool i915_fence_enable_signaling(struct dma_fence *fence)
92 {
93         return i915_request_enable_breadcrumb(to_request(fence));
94 }
95
96 static signed long i915_fence_wait(struct dma_fence *fence,
97                                    bool interruptible,
98                                    signed long timeout)
99 {
100         return i915_request_wait(to_request(fence),
101                                  interruptible | I915_WAIT_PRIORITY,
102                                  timeout);
103 }
104
105 static void i915_fence_release(struct dma_fence *fence)
106 {
107         struct i915_request *rq = to_request(fence);
108
109         /*
110          * The request is put onto a RCU freelist (i.e. the address
111          * is immediately reused), mark the fences as being freed now.
112          * Otherwise the debugobjects for the fences are only marked as
113          * freed when the slab cache itself is freed, and so we would get
114          * caught trying to reuse dead objects.
115          */
116         i915_sw_fence_fini(&rq->submit);
117         i915_sw_fence_fini(&rq->semaphore);
118
119         kmem_cache_free(global.slab_requests, rq);
120 }
121
122 const struct dma_fence_ops i915_fence_ops = {
123         .get_driver_name = i915_fence_get_driver_name,
124         .get_timeline_name = i915_fence_get_timeline_name,
125         .enable_signaling = i915_fence_enable_signaling,
126         .signaled = i915_fence_signaled,
127         .wait = i915_fence_wait,
128         .release = i915_fence_release,
129 };
130
131 static void irq_execute_cb(struct irq_work *wrk)
132 {
133         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
134
135         i915_sw_fence_complete(cb->fence);
136         kmem_cache_free(global.slab_execute_cbs, cb);
137 }
138
139 static void irq_execute_cb_hook(struct irq_work *wrk)
140 {
141         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
142
143         cb->hook(container_of(cb->fence, struct i915_request, submit),
144                  &cb->signal->fence);
145         i915_request_put(cb->signal);
146
147         irq_execute_cb(wrk);
148 }
149
150 static void __notify_execute_cb(struct i915_request *rq)
151 {
152         struct execute_cb *cb;
153
154         lockdep_assert_held(&rq->lock);
155
156         if (list_empty(&rq->execute_cb))
157                 return;
158
159         list_for_each_entry(cb, &rq->execute_cb, link)
160                 irq_work_queue(&cb->work);
161
162         /*
163          * XXX Rollback on __i915_request_unsubmit()
164          *
165          * In the future, perhaps when we have an active time-slicing scheduler,
166          * it will be interesting to unsubmit parallel execution and remove
167          * busywaits from the GPU until their master is restarted. This is
168          * quite hairy, we have to carefully rollback the fence and do a
169          * preempt-to-idle cycle on the target engine, all the while the
170          * master execute_cb may refire.
171          */
172         INIT_LIST_HEAD(&rq->execute_cb);
173 }
174
175 static inline void
176 remove_from_client(struct i915_request *request)
177 {
178         struct drm_i915_file_private *file_priv;
179
180         if (!READ_ONCE(request->file_priv))
181                 return;
182
183         rcu_read_lock();
184         file_priv = xchg(&request->file_priv, NULL);
185         if (file_priv) {
186                 spin_lock(&file_priv->mm.lock);
187                 list_del(&request->client_link);
188                 spin_unlock(&file_priv->mm.lock);
189         }
190         rcu_read_unlock();
191 }
192
193 static void free_capture_list(struct i915_request *request)
194 {
195         struct i915_capture_list *capture;
196
197         capture = fetch_and_zero(&request->capture_list);
198         while (capture) {
199                 struct i915_capture_list *next = capture->next;
200
201                 kfree(capture);
202                 capture = next;
203         }
204 }
205
206 static void remove_from_engine(struct i915_request *rq)
207 {
208         struct intel_engine_cs *engine, *locked;
209
210         /*
211          * Virtual engines complicate acquiring the engine timeline lock,
212          * as their rq->engine pointer is not stable until under that
213          * engine lock. The simple ploy we use is to take the lock then
214          * check that the rq still belongs to the newly locked engine.
215          */
216         locked = READ_ONCE(rq->engine);
217         spin_lock_irq(&locked->active.lock);
218         while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
219                 spin_unlock(&locked->active.lock);
220                 spin_lock(&engine->active.lock);
221                 locked = engine;
222         }
223         list_del_init(&rq->sched.link);
224         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
225         clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
226         spin_unlock_irq(&locked->active.lock);
227 }
228
229 bool i915_request_retire(struct i915_request *rq)
230 {
231         if (!i915_request_completed(rq))
232                 return false;
233
234         RQ_TRACE(rq, "\n");
235
236         GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
237         trace_i915_request_retire(rq);
238
239         /*
240          * We know the GPU must have read the request to have
241          * sent us the seqno + interrupt, so use the position
242          * of tail of the request to update the last known position
243          * of the GPU head.
244          *
245          * Note this requires that we are always called in request
246          * completion order.
247          */
248         GEM_BUG_ON(!list_is_first(&rq->link,
249                                   &i915_request_timeline(rq)->requests));
250         rq->ring->head = rq->postfix;
251
252         /*
253          * We only loosely track inflight requests across preemption,
254          * and so we may find ourselves attempting to retire a _completed_
255          * request that we have removed from the HW and put back on a run
256          * queue.
257          */
258         remove_from_engine(rq);
259
260         spin_lock_irq(&rq->lock);
261         i915_request_mark_complete(rq);
262         if (!i915_request_signaled(rq))
263                 dma_fence_signal_locked(&rq->fence);
264         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
265                 i915_request_cancel_breadcrumb(rq);
266         if (i915_request_has_waitboost(rq)) {
267                 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
268                 atomic_dec(&rq->engine->gt->rps.num_waiters);
269         }
270         if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
271                 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
272                 __notify_execute_cb(rq);
273         }
274         GEM_BUG_ON(!list_empty(&rq->execute_cb));
275         spin_unlock_irq(&rq->lock);
276
277         remove_from_client(rq);
278         list_del_rcu(&rq->link);
279
280         intel_context_exit(rq->context);
281         intel_context_unpin(rq->context);
282
283         free_capture_list(rq);
284         i915_sched_node_fini(&rq->sched);
285         i915_request_put(rq);
286
287         return true;
288 }
289
290 void i915_request_retire_upto(struct i915_request *rq)
291 {
292         struct intel_timeline * const tl = i915_request_timeline(rq);
293         struct i915_request *tmp;
294
295         RQ_TRACE(rq, "\n");
296
297         GEM_BUG_ON(!i915_request_completed(rq));
298
299         do {
300                 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
301         } while (i915_request_retire(tmp) && tmp != rq);
302 }
303
304 static int
305 __await_execution(struct i915_request *rq,
306                   struct i915_request *signal,
307                   void (*hook)(struct i915_request *rq,
308                                struct dma_fence *signal),
309                   gfp_t gfp)
310 {
311         struct execute_cb *cb;
312
313         if (i915_request_is_active(signal)) {
314                 if (hook)
315                         hook(rq, &signal->fence);
316                 return 0;
317         }
318
319         cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
320         if (!cb)
321                 return -ENOMEM;
322
323         cb->fence = &rq->submit;
324         i915_sw_fence_await(cb->fence);
325         init_irq_work(&cb->work, irq_execute_cb);
326
327         if (hook) {
328                 cb->hook = hook;
329                 cb->signal = i915_request_get(signal);
330                 cb->work.func = irq_execute_cb_hook;
331         }
332
333         spin_lock_irq(&signal->lock);
334         if (i915_request_is_active(signal)) {
335                 if (hook) {
336                         hook(rq, &signal->fence);
337                         i915_request_put(signal);
338                 }
339                 i915_sw_fence_complete(cb->fence);
340                 kmem_cache_free(global.slab_execute_cbs, cb);
341         } else {
342                 list_add_tail(&cb->link, &signal->execute_cb);
343         }
344         spin_unlock_irq(&signal->lock);
345
346         /* Copy across semaphore status as we need the same behaviour */
347         rq->sched.flags |= signal->sched.flags;
348         return 0;
349 }
350
351 bool __i915_request_submit(struct i915_request *request)
352 {
353         struct intel_engine_cs *engine = request->engine;
354         bool result = false;
355
356         RQ_TRACE(request, "\n");
357
358         GEM_BUG_ON(!irqs_disabled());
359         lockdep_assert_held(&engine->active.lock);
360
361         /*
362          * With the advent of preempt-to-busy, we frequently encounter
363          * requests that we have unsubmitted from HW, but left running
364          * until the next ack and so have completed in the meantime. On
365          * resubmission of that completed request, we can skip
366          * updating the payload, and execlists can even skip submitting
367          * the request.
368          *
369          * We must remove the request from the caller's priority queue,
370          * and the caller must only call us when the request is in their
371          * priority queue, under the active.lock. This ensures that the
372          * request has *not* yet been retired and we can safely move
373          * the request into the engine->active.list where it will be
374          * dropped upon retiring. (Otherwise if resubmit a *retired*
375          * request, this would be a horrible use-after-free.)
376          */
377         if (i915_request_completed(request))
378                 goto xfer;
379
380         if (intel_context_is_banned(request->context))
381                 i915_request_skip(request, -EIO);
382
383         /*
384          * Are we using semaphores when the gpu is already saturated?
385          *
386          * Using semaphores incurs a cost in having the GPU poll a
387          * memory location, busywaiting for it to change. The continual
388          * memory reads can have a noticeable impact on the rest of the
389          * system with the extra bus traffic, stalling the cpu as it too
390          * tries to access memory across the bus (perf stat -e bus-cycles).
391          *
392          * If we installed a semaphore on this request and we only submit
393          * the request after the signaler completed, that indicates the
394          * system is overloaded and using semaphores at this time only
395          * increases the amount of work we are doing. If so, we disable
396          * further use of semaphores until we are idle again, whence we
397          * optimistically try again.
398          */
399         if (request->sched.semaphores &&
400             i915_sw_fence_signaled(&request->semaphore))
401                 engine->saturated |= request->sched.semaphores;
402
403         engine->emit_fini_breadcrumb(request,
404                                      request->ring->vaddr + request->postfix);
405
406         trace_i915_request_execute(request);
407         engine->serial++;
408         result = true;
409
410 xfer:   /* We may be recursing from the signal callback of another i915 fence */
411         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
412
413         if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
414                 list_move_tail(&request->sched.link, &engine->active.requests);
415                 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
416         }
417
418         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
419             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
420             !i915_request_enable_breadcrumb(request))
421                 intel_engine_signal_breadcrumbs(engine);
422
423         __notify_execute_cb(request);
424
425         spin_unlock(&request->lock);
426
427         return result;
428 }
429
430 void i915_request_submit(struct i915_request *request)
431 {
432         struct intel_engine_cs *engine = request->engine;
433         unsigned long flags;
434
435         /* Will be called from irq-context when using foreign fences. */
436         spin_lock_irqsave(&engine->active.lock, flags);
437
438         __i915_request_submit(request);
439
440         spin_unlock_irqrestore(&engine->active.lock, flags);
441 }
442
443 void __i915_request_unsubmit(struct i915_request *request)
444 {
445         struct intel_engine_cs *engine = request->engine;
446
447         RQ_TRACE(request, "\n");
448
449         GEM_BUG_ON(!irqs_disabled());
450         lockdep_assert_held(&engine->active.lock);
451
452         /*
453          * Only unwind in reverse order, required so that the per-context list
454          * is kept in seqno/ring order.
455          */
456
457         /* We may be recursing from the signal callback of another i915 fence */
458         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
459
460         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
461                 i915_request_cancel_breadcrumb(request);
462
463         GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
464         clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
465
466         spin_unlock(&request->lock);
467
468         /* We've already spun, don't charge on resubmitting. */
469         if (request->sched.semaphores && i915_request_started(request)) {
470                 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
471                 request->sched.semaphores = 0;
472         }
473
474         /*
475          * We don't need to wake_up any waiters on request->execute, they
476          * will get woken by any other event or us re-adding this request
477          * to the engine timeline (__i915_request_submit()). The waiters
478          * should be quite adapt at finding that the request now has a new
479          * global_seqno to the one they went to sleep on.
480          */
481 }
482
483 void i915_request_unsubmit(struct i915_request *request)
484 {
485         struct intel_engine_cs *engine = request->engine;
486         unsigned long flags;
487
488         /* Will be called from irq-context when using foreign fences. */
489         spin_lock_irqsave(&engine->active.lock, flags);
490
491         __i915_request_unsubmit(request);
492
493         spin_unlock_irqrestore(&engine->active.lock, flags);
494 }
495
496 static int __i915_sw_fence_call
497 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
498 {
499         struct i915_request *request =
500                 container_of(fence, typeof(*request), submit);
501
502         switch (state) {
503         case FENCE_COMPLETE:
504                 trace_i915_request_submit(request);
505
506                 if (unlikely(fence->error))
507                         i915_request_skip(request, fence->error);
508
509                 /*
510                  * We need to serialize use of the submit_request() callback
511                  * with its hotplugging performed during an emergency
512                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
513                  * critical section in order to force i915_gem_set_wedged() to
514                  * wait until the submit_request() is completed before
515                  * proceeding.
516                  */
517                 rcu_read_lock();
518                 request->engine->submit_request(request);
519                 rcu_read_unlock();
520                 break;
521
522         case FENCE_FREE:
523                 i915_request_put(request);
524                 break;
525         }
526
527         return NOTIFY_DONE;
528 }
529
530 static int __i915_sw_fence_call
531 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
532 {
533         struct i915_request *request =
534                 container_of(fence, typeof(*request), semaphore);
535
536         switch (state) {
537         case FENCE_COMPLETE:
538                 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
539                 break;
540
541         case FENCE_FREE:
542                 i915_request_put(request);
543                 break;
544         }
545
546         return NOTIFY_DONE;
547 }
548
549 static void retire_requests(struct intel_timeline *tl)
550 {
551         struct i915_request *rq, *rn;
552
553         list_for_each_entry_safe(rq, rn, &tl->requests, link)
554                 if (!i915_request_retire(rq))
555                         break;
556 }
557
558 static noinline struct i915_request *
559 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
560 {
561         struct i915_request *rq;
562
563         if (list_empty(&tl->requests))
564                 goto out;
565
566         if (!gfpflags_allow_blocking(gfp))
567                 goto out;
568
569         /* Move our oldest request to the slab-cache (if not in use!) */
570         rq = list_first_entry(&tl->requests, typeof(*rq), link);
571         i915_request_retire(rq);
572
573         rq = kmem_cache_alloc(global.slab_requests,
574                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
575         if (rq)
576                 return rq;
577
578         /* Ratelimit ourselves to prevent oom from malicious clients */
579         rq = list_last_entry(&tl->requests, typeof(*rq), link);
580         cond_synchronize_rcu(rq->rcustate);
581
582         /* Retire our old requests in the hope that we free some */
583         retire_requests(tl);
584
585 out:
586         return kmem_cache_alloc(global.slab_requests, gfp);
587 }
588
589 static void __i915_request_ctor(void *arg)
590 {
591         struct i915_request *rq = arg;
592
593         spin_lock_init(&rq->lock);
594         i915_sched_node_init(&rq->sched);
595         i915_sw_fence_init(&rq->submit, submit_notify);
596         i915_sw_fence_init(&rq->semaphore, semaphore_notify);
597
598         dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
599
600         rq->file_priv = NULL;
601         rq->capture_list = NULL;
602
603         INIT_LIST_HEAD(&rq->execute_cb);
604 }
605
606 struct i915_request *
607 __i915_request_create(struct intel_context *ce, gfp_t gfp)
608 {
609         struct intel_timeline *tl = ce->timeline;
610         struct i915_request *rq;
611         u32 seqno;
612         int ret;
613
614         might_sleep_if(gfpflags_allow_blocking(gfp));
615
616         /* Check that the caller provided an already pinned context */
617         __intel_context_pin(ce);
618
619         /*
620          * Beware: Dragons be flying overhead.
621          *
622          * We use RCU to look up requests in flight. The lookups may
623          * race with the request being allocated from the slab freelist.
624          * That is the request we are writing to here, may be in the process
625          * of being read by __i915_active_request_get_rcu(). As such,
626          * we have to be very careful when overwriting the contents. During
627          * the RCU lookup, we change chase the request->engine pointer,
628          * read the request->global_seqno and increment the reference count.
629          *
630          * The reference count is incremented atomically. If it is zero,
631          * the lookup knows the request is unallocated and complete. Otherwise,
632          * it is either still in use, or has been reallocated and reset
633          * with dma_fence_init(). This increment is safe for release as we
634          * check that the request we have a reference to and matches the active
635          * request.
636          *
637          * Before we increment the refcount, we chase the request->engine
638          * pointer. We must not call kmem_cache_zalloc() or else we set
639          * that pointer to NULL and cause a crash during the lookup. If
640          * we see the request is completed (based on the value of the
641          * old engine and seqno), the lookup is complete and reports NULL.
642          * If we decide the request is not completed (new engine or seqno),
643          * then we grab a reference and double check that it is still the
644          * active request - which it won't be and restart the lookup.
645          *
646          * Do not use kmem_cache_zalloc() here!
647          */
648         rq = kmem_cache_alloc(global.slab_requests,
649                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
650         if (unlikely(!rq)) {
651                 rq = request_alloc_slow(tl, gfp);
652                 if (!rq) {
653                         ret = -ENOMEM;
654                         goto err_unreserve;
655                 }
656         }
657
658         rq->i915 = ce->engine->i915;
659         rq->context = ce;
660         rq->engine = ce->engine;
661         rq->ring = ce->ring;
662         rq->execution_mask = ce->engine->mask;
663
664         kref_init(&rq->fence.refcount);
665         rq->fence.flags = 0;
666         rq->fence.error = 0;
667         INIT_LIST_HEAD(&rq->fence.cb_list);
668
669         ret = intel_timeline_get_seqno(tl, rq, &seqno);
670         if (ret)
671                 goto err_free;
672
673         rq->fence.context = tl->fence_context;
674         rq->fence.seqno = seqno;
675
676         RCU_INIT_POINTER(rq->timeline, tl);
677         RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
678         rq->hwsp_seqno = tl->hwsp_seqno;
679
680         rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
681
682         /* We bump the ref for the fence chain */
683         i915_sw_fence_reinit(&i915_request_get(rq)->submit);
684         i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
685
686         i915_sched_node_reinit(&rq->sched);
687
688         /* No zalloc, everything must be cleared after use */
689         rq->batch = NULL;
690         GEM_BUG_ON(rq->file_priv);
691         GEM_BUG_ON(rq->capture_list);
692         GEM_BUG_ON(!list_empty(&rq->execute_cb));
693
694         /*
695          * Reserve space in the ring buffer for all the commands required to
696          * eventually emit this request. This is to guarantee that the
697          * i915_request_add() call can't fail. Note that the reserve may need
698          * to be redone if the request is not actually submitted straight
699          * away, e.g. because a GPU scheduler has deferred it.
700          *
701          * Note that due to how we add reserved_space to intel_ring_begin()
702          * we need to double our request to ensure that if we need to wrap
703          * around inside i915_request_add() there is sufficient space at
704          * the beginning of the ring as well.
705          */
706         rq->reserved_space =
707                 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
708
709         /*
710          * Record the position of the start of the request so that
711          * should we detect the updated seqno part-way through the
712          * GPU processing the request, we never over-estimate the
713          * position of the head.
714          */
715         rq->head = rq->ring->emit;
716
717         ret = rq->engine->request_alloc(rq);
718         if (ret)
719                 goto err_unwind;
720
721         rq->infix = rq->ring->emit; /* end of header; start of user payload */
722
723         intel_context_mark_active(ce);
724         list_add_tail_rcu(&rq->link, &tl->requests);
725
726         return rq;
727
728 err_unwind:
729         ce->ring->emit = rq->head;
730
731         /* Make sure we didn't add ourselves to external state before freeing */
732         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
733         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
734
735 err_free:
736         kmem_cache_free(global.slab_requests, rq);
737 err_unreserve:
738         intel_context_unpin(ce);
739         return ERR_PTR(ret);
740 }
741
742 struct i915_request *
743 i915_request_create(struct intel_context *ce)
744 {
745         struct i915_request *rq;
746         struct intel_timeline *tl;
747
748         tl = intel_context_timeline_lock(ce);
749         if (IS_ERR(tl))
750                 return ERR_CAST(tl);
751
752         /* Move our oldest request to the slab-cache (if not in use!) */
753         rq = list_first_entry(&tl->requests, typeof(*rq), link);
754         if (!list_is_last(&rq->link, &tl->requests))
755                 i915_request_retire(rq);
756
757         intel_context_enter(ce);
758         rq = __i915_request_create(ce, GFP_KERNEL);
759         intel_context_exit(ce); /* active reference transferred to request */
760         if (IS_ERR(rq))
761                 goto err_unlock;
762
763         /* Check that we do not interrupt ourselves with a new request */
764         rq->cookie = lockdep_pin_lock(&tl->mutex);
765
766         return rq;
767
768 err_unlock:
769         intel_context_timeline_unlock(tl);
770         return rq;
771 }
772
773 static int
774 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
775 {
776         struct dma_fence *fence;
777         int err;
778
779         GEM_BUG_ON(i915_request_timeline(rq) ==
780                    rcu_access_pointer(signal->timeline));
781
782         if (i915_request_started(signal))
783                 return 0;
784
785         fence = NULL;
786         rcu_read_lock();
787         spin_lock_irq(&signal->lock);
788         do {
789                 struct list_head *pos = READ_ONCE(signal->link.prev);
790                 struct i915_request *prev;
791
792                 /* Confirm signal has not been retired, the link is valid */
793                 if (unlikely(i915_request_started(signal)))
794                         break;
795
796                 /* Is signal the earliest request on its timeline? */
797                 if (pos == &rcu_dereference(signal->timeline)->requests)
798                         break;
799
800                 /*
801                  * Peek at the request before us in the timeline. That
802                  * request will only be valid before it is retired, so
803                  * after acquiring a reference to it, confirm that it is
804                  * still part of the signaler's timeline.
805                  */
806                 prev = list_entry(pos, typeof(*prev), link);
807                 if (!i915_request_get_rcu(prev))
808                         break;
809
810                 /* After the strong barrier, confirm prev is still attached */
811                 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
812                         i915_request_put(prev);
813                         break;
814                 }
815
816                 fence = &prev->fence;
817         } while (0);
818         spin_unlock_irq(&signal->lock);
819         rcu_read_unlock();
820         if (!fence)
821                 return 0;
822
823         err = 0;
824         if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
825                 err = i915_sw_fence_await_dma_fence(&rq->submit,
826                                                     fence, 0,
827                                                     I915_FENCE_GFP);
828         dma_fence_put(fence);
829
830         return err;
831 }
832
833 static intel_engine_mask_t
834 already_busywaiting(struct i915_request *rq)
835 {
836         /*
837          * Polling a semaphore causes bus traffic, delaying other users of
838          * both the GPU and CPU. We want to limit the impact on others,
839          * while taking advantage of early submission to reduce GPU
840          * latency. Therefore we restrict ourselves to not using more
841          * than one semaphore from each source, and not using a semaphore
842          * if we have detected the engine is saturated (i.e. would not be
843          * submitted early and cause bus traffic reading an already passed
844          * semaphore).
845          *
846          * See the are-we-too-late? check in __i915_request_submit().
847          */
848         return rq->sched.semaphores | rq->engine->saturated;
849 }
850
851 static int
852 __emit_semaphore_wait(struct i915_request *to,
853                       struct i915_request *from,
854                       u32 seqno)
855 {
856         const int has_token = INTEL_GEN(to->i915) >= 12;
857         u32 hwsp_offset;
858         int len, err;
859         u32 *cs;
860
861         GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
862
863         /* We need to pin the signaler's HWSP until we are finished reading. */
864         err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
865         if (err)
866                 return err;
867
868         len = 4;
869         if (has_token)
870                 len += 2;
871
872         cs = intel_ring_begin(to, len);
873         if (IS_ERR(cs))
874                 return PTR_ERR(cs);
875
876         /*
877          * Using greater-than-or-equal here means we have to worry
878          * about seqno wraparound. To side step that issue, we swap
879          * the timeline HWSP upon wrapping, so that everyone listening
880          * for the old (pre-wrap) values do not see the much smaller
881          * (post-wrap) values than they were expecting (and so wait
882          * forever).
883          */
884         *cs++ = (MI_SEMAPHORE_WAIT |
885                  MI_SEMAPHORE_GLOBAL_GTT |
886                  MI_SEMAPHORE_POLL |
887                  MI_SEMAPHORE_SAD_GTE_SDD) +
888                 has_token;
889         *cs++ = seqno;
890         *cs++ = hwsp_offset;
891         *cs++ = 0;
892         if (has_token) {
893                 *cs++ = 0;
894                 *cs++ = MI_NOOP;
895         }
896
897         intel_ring_advance(to, cs);
898         return 0;
899 }
900
901 static int
902 emit_semaphore_wait(struct i915_request *to,
903                     struct i915_request *from,
904                     gfp_t gfp)
905 {
906         /* Just emit the first semaphore we see as request space is limited. */
907         if (already_busywaiting(to) & from->engine->mask)
908                 goto await_fence;
909
910         if (i915_request_await_start(to, from) < 0)
911                 goto await_fence;
912
913         /* Only submit our spinner after the signaler is running! */
914         if (__await_execution(to, from, NULL, gfp))
915                 goto await_fence;
916
917         if (__emit_semaphore_wait(to, from, from->fence.seqno))
918                 goto await_fence;
919
920         to->sched.semaphores |= from->engine->mask;
921         to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
922         return 0;
923
924 await_fence:
925         return i915_sw_fence_await_dma_fence(&to->submit,
926                                              &from->fence, 0,
927                                              I915_FENCE_GFP);
928 }
929
930 static int
931 i915_request_await_request(struct i915_request *to, struct i915_request *from)
932 {
933         int ret;
934
935         GEM_BUG_ON(to == from);
936         GEM_BUG_ON(to->timeline == from->timeline);
937
938         if (i915_request_completed(from))
939                 return 0;
940
941         if (to->engine->schedule) {
942                 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
943                 if (ret < 0)
944                         return ret;
945         }
946
947         if (to->engine == from->engine)
948                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
949                                                        &from->submit,
950                                                        I915_FENCE_GFP);
951         else if (intel_context_use_semaphores(to->context))
952                 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
953         else
954                 ret = i915_sw_fence_await_dma_fence(&to->submit,
955                                                     &from->fence, 0,
956                                                     I915_FENCE_GFP);
957         if (ret < 0)
958                 return ret;
959
960         if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
961                 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
962                                                     &from->fence, 0,
963                                                     I915_FENCE_GFP);
964                 if (ret < 0)
965                         return ret;
966         }
967
968         return 0;
969 }
970
971 int
972 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
973 {
974         struct dma_fence **child = &fence;
975         unsigned int nchild = 1;
976         int ret;
977
978         /*
979          * Note that if the fence-array was created in signal-on-any mode,
980          * we should *not* decompose it into its individual fences. However,
981          * we don't currently store which mode the fence-array is operating
982          * in. Fortunately, the only user of signal-on-any is private to
983          * amdgpu and we should not see any incoming fence-array from
984          * sync-file being in signal-on-any mode.
985          */
986         if (dma_fence_is_array(fence)) {
987                 struct dma_fence_array *array = to_dma_fence_array(fence);
988
989                 child = array->fences;
990                 nchild = array->num_fences;
991                 GEM_BUG_ON(!nchild);
992         }
993
994         do {
995                 fence = *child++;
996                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
997                         i915_sw_fence_set_error_once(&rq->submit, fence->error);
998                         continue;
999                 }
1000
1001                 /*
1002                  * Requests on the same timeline are explicitly ordered, along
1003                  * with their dependencies, by i915_request_add() which ensures
1004                  * that requests are submitted in-order through each ring.
1005                  */
1006                 if (fence->context == rq->fence.context)
1007                         continue;
1008
1009                 /* Squash repeated waits to the same timelines */
1010                 if (fence->context &&
1011                     intel_timeline_sync_is_later(i915_request_timeline(rq),
1012                                                  fence))
1013                         continue;
1014
1015                 if (dma_fence_is_i915(fence))
1016                         ret = i915_request_await_request(rq, to_request(fence));
1017                 else
1018                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1019                                                             fence->context ? I915_FENCE_TIMEOUT : 0,
1020                                                             I915_FENCE_GFP);
1021                 if (ret < 0)
1022                         return ret;
1023
1024                 /* Record the latest fence used against each timeline */
1025                 if (fence->context)
1026                         intel_timeline_sync_set(i915_request_timeline(rq),
1027                                                 fence);
1028         } while (--nchild);
1029
1030         return 0;
1031 }
1032
1033 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1034                                           struct dma_fence *fence)
1035 {
1036         return __intel_timeline_sync_is_later(tl,
1037                                               fence->context,
1038                                               fence->seqno - 1);
1039 }
1040
1041 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1042                                          const struct dma_fence *fence)
1043 {
1044         return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1045 }
1046
1047 static int
1048 __i915_request_await_execution(struct i915_request *to,
1049                                struct i915_request *from,
1050                                void (*hook)(struct i915_request *rq,
1051                                             struct dma_fence *signal))
1052 {
1053         int err;
1054
1055         /* Submit both requests at the same time */
1056         err = __await_execution(to, from, hook, I915_FENCE_GFP);
1057         if (err)
1058                 return err;
1059
1060         /* Squash repeated depenendices to the same timelines */
1061         if (intel_timeline_sync_has_start(i915_request_timeline(to),
1062                                           &from->fence))
1063                 return 0;
1064
1065         /* Ensure both start together [after all semaphores in signal] */
1066         if (intel_engine_has_semaphores(to->engine))
1067                 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1068         else
1069                 err = i915_request_await_start(to, from);
1070         if (err < 0)
1071                 return err;
1072
1073         /* Couple the dependency tree for PI on this exposed to->fence */
1074         if (to->engine->schedule) {
1075                 err = i915_sched_node_add_dependency(&to->sched, &from->sched);
1076                 if (err < 0)
1077                         return err;
1078         }
1079
1080         return intel_timeline_sync_set_start(i915_request_timeline(to),
1081                                              &from->fence);
1082 }
1083
1084 int
1085 i915_request_await_execution(struct i915_request *rq,
1086                              struct dma_fence *fence,
1087                              void (*hook)(struct i915_request *rq,
1088                                           struct dma_fence *signal))
1089 {
1090         struct dma_fence **child = &fence;
1091         unsigned int nchild = 1;
1092         int ret;
1093
1094         if (dma_fence_is_array(fence)) {
1095                 struct dma_fence_array *array = to_dma_fence_array(fence);
1096
1097                 /* XXX Error for signal-on-any fence arrays */
1098
1099                 child = array->fences;
1100                 nchild = array->num_fences;
1101                 GEM_BUG_ON(!nchild);
1102         }
1103
1104         do {
1105                 fence = *child++;
1106                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1107                         i915_sw_fence_set_error_once(&rq->submit, fence->error);
1108                         continue;
1109                 }
1110
1111                 /*
1112                  * We don't squash repeated fence dependencies here as we
1113                  * want to run our callback in all cases.
1114                  */
1115
1116                 if (dma_fence_is_i915(fence))
1117                         ret = __i915_request_await_execution(rq,
1118                                                              to_request(fence),
1119                                                              hook);
1120                 else
1121                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1122                                                             I915_FENCE_TIMEOUT,
1123                                                             GFP_KERNEL);
1124                 if (ret < 0)
1125                         return ret;
1126         } while (--nchild);
1127
1128         return 0;
1129 }
1130
1131 /**
1132  * i915_request_await_object - set this request to (async) wait upon a bo
1133  * @to: request we are wishing to use
1134  * @obj: object which may be in use on another ring.
1135  * @write: whether the wait is on behalf of a writer
1136  *
1137  * This code is meant to abstract object synchronization with the GPU.
1138  * Conceptually we serialise writes between engines inside the GPU.
1139  * We only allow one engine to write into a buffer at any time, but
1140  * multiple readers. To ensure each has a coherent view of memory, we must:
1141  *
1142  * - If there is an outstanding write request to the object, the new
1143  *   request must wait for it to complete (either CPU or in hw, requests
1144  *   on the same ring will be naturally ordered).
1145  *
1146  * - If we are a write request (pending_write_domain is set), the new
1147  *   request must wait for outstanding read requests to complete.
1148  *
1149  * Returns 0 if successful, else propagates up the lower layer error.
1150  */
1151 int
1152 i915_request_await_object(struct i915_request *to,
1153                           struct drm_i915_gem_object *obj,
1154                           bool write)
1155 {
1156         struct dma_fence *excl;
1157         int ret = 0;
1158
1159         if (write) {
1160                 struct dma_fence **shared;
1161                 unsigned int count, i;
1162
1163                 ret = dma_resv_get_fences_rcu(obj->base.resv,
1164                                                         &excl, &count, &shared);
1165                 if (ret)
1166                         return ret;
1167
1168                 for (i = 0; i < count; i++) {
1169                         ret = i915_request_await_dma_fence(to, shared[i]);
1170                         if (ret)
1171                                 break;
1172
1173                         dma_fence_put(shared[i]);
1174                 }
1175
1176                 for (; i < count; i++)
1177                         dma_fence_put(shared[i]);
1178                 kfree(shared);
1179         } else {
1180                 excl = dma_resv_get_excl_rcu(obj->base.resv);
1181         }
1182
1183         if (excl) {
1184                 if (ret == 0)
1185                         ret = i915_request_await_dma_fence(to, excl);
1186
1187                 dma_fence_put(excl);
1188         }
1189
1190         return ret;
1191 }
1192
1193 void i915_request_skip(struct i915_request *rq, int error)
1194 {
1195         void *vaddr = rq->ring->vaddr;
1196         u32 head;
1197
1198         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1199         dma_fence_set_error(&rq->fence, error);
1200
1201         if (rq->infix == rq->postfix)
1202                 return;
1203
1204         /*
1205          * As this request likely depends on state from the lost
1206          * context, clear out all the user operations leaving the
1207          * breadcrumb at the end (so we get the fence notifications).
1208          */
1209         head = rq->infix;
1210         if (rq->postfix < head) {
1211                 memset(vaddr + head, 0, rq->ring->size - head);
1212                 head = 0;
1213         }
1214         memset(vaddr + head, 0, rq->postfix - head);
1215         rq->infix = rq->postfix;
1216 }
1217
1218 static struct i915_request *
1219 __i915_request_add_to_timeline(struct i915_request *rq)
1220 {
1221         struct intel_timeline *timeline = i915_request_timeline(rq);
1222         struct i915_request *prev;
1223
1224         /*
1225          * Dependency tracking and request ordering along the timeline
1226          * is special cased so that we can eliminate redundant ordering
1227          * operations while building the request (we know that the timeline
1228          * itself is ordered, and here we guarantee it).
1229          *
1230          * As we know we will need to emit tracking along the timeline,
1231          * we embed the hooks into our request struct -- at the cost of
1232          * having to have specialised no-allocation interfaces (which will
1233          * be beneficial elsewhere).
1234          *
1235          * A second benefit to open-coding i915_request_await_request is
1236          * that we can apply a slight variant of the rules specialised
1237          * for timelines that jump between engines (such as virtual engines).
1238          * If we consider the case of virtual engine, we must emit a dma-fence
1239          * to prevent scheduling of the second request until the first is
1240          * complete (to maximise our greedy late load balancing) and this
1241          * precludes optimising to use semaphores serialisation of a single
1242          * timeline across engines.
1243          */
1244         prev = to_request(__i915_active_fence_set(&timeline->last_request,
1245                                                   &rq->fence));
1246         if (prev && !i915_request_completed(prev)) {
1247                 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1248                         i915_sw_fence_await_sw_fence(&rq->submit,
1249                                                      &prev->submit,
1250                                                      &rq->submitq);
1251                 else
1252                         __i915_sw_fence_await_dma_fence(&rq->submit,
1253                                                         &prev->fence,
1254                                                         &rq->dmaq);
1255                 if (rq->engine->schedule)
1256                         __i915_sched_node_add_dependency(&rq->sched,
1257                                                          &prev->sched,
1258                                                          &rq->dep,
1259                                                          0);
1260         }
1261
1262         /*
1263          * Make sure that no request gazumped us - if it was allocated after
1264          * our i915_request_alloc() and called __i915_request_add() before
1265          * us, the timeline will hold its seqno which is later than ours.
1266          */
1267         GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1268
1269         return prev;
1270 }
1271
1272 /*
1273  * NB: This function is not allowed to fail. Doing so would mean the the
1274  * request is not being tracked for completion but the work itself is
1275  * going to happen on the hardware. This would be a Bad Thing(tm).
1276  */
1277 struct i915_request *__i915_request_commit(struct i915_request *rq)
1278 {
1279         struct intel_engine_cs *engine = rq->engine;
1280         struct intel_ring *ring = rq->ring;
1281         u32 *cs;
1282
1283         RQ_TRACE(rq, "\n");
1284
1285         /*
1286          * To ensure that this call will not fail, space for its emissions
1287          * should already have been reserved in the ring buffer. Let the ring
1288          * know that it is time to use that space up.
1289          */
1290         GEM_BUG_ON(rq->reserved_space > ring->space);
1291         rq->reserved_space = 0;
1292         rq->emitted_jiffies = jiffies;
1293
1294         /*
1295          * Record the position of the start of the breadcrumb so that
1296          * should we detect the updated seqno part-way through the
1297          * GPU processing the request, we never over-estimate the
1298          * position of the ring's HEAD.
1299          */
1300         cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1301         GEM_BUG_ON(IS_ERR(cs));
1302         rq->postfix = intel_ring_offset(rq, cs);
1303
1304         return __i915_request_add_to_timeline(rq);
1305 }
1306
1307 void __i915_request_queue(struct i915_request *rq,
1308                           const struct i915_sched_attr *attr)
1309 {
1310         /*
1311          * Let the backend know a new request has arrived that may need
1312          * to adjust the existing execution schedule due to a high priority
1313          * request - i.e. we may want to preempt the current request in order
1314          * to run a high priority dependency chain *before* we can execute this
1315          * request.
1316          *
1317          * This is called before the request is ready to run so that we can
1318          * decide whether to preempt the entire chain so that it is ready to
1319          * run at the earliest possible convenience.
1320          */
1321         i915_sw_fence_commit(&rq->semaphore);
1322         if (attr && rq->engine->schedule)
1323                 rq->engine->schedule(rq, attr);
1324         i915_sw_fence_commit(&rq->submit);
1325 }
1326
1327 void i915_request_add(struct i915_request *rq)
1328 {
1329         struct intel_timeline * const tl = i915_request_timeline(rq);
1330         struct i915_sched_attr attr = {};
1331         struct i915_request *prev;
1332
1333         lockdep_assert_held(&tl->mutex);
1334         lockdep_unpin_lock(&tl->mutex, rq->cookie);
1335
1336         trace_i915_request_add(rq);
1337
1338         prev = __i915_request_commit(rq);
1339
1340         if (rcu_access_pointer(rq->context->gem_context))
1341                 attr = i915_request_gem_context(rq)->sched;
1342
1343         /*
1344          * Boost actual workloads past semaphores!
1345          *
1346          * With semaphores we spin on one engine waiting for another,
1347          * simply to reduce the latency of starting our work when
1348          * the signaler completes. However, if there is any other
1349          * work that we could be doing on this engine instead, that
1350          * is better utilisation and will reduce the overall duration
1351          * of the current work. To avoid PI boosting a semaphore
1352          * far in the distance past over useful work, we keep a history
1353          * of any semaphore use along our dependency chain.
1354          */
1355         if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1356                 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1357
1358         /*
1359          * Boost priorities to new clients (new request flows).
1360          *
1361          * Allow interactive/synchronous clients to jump ahead of
1362          * the bulk clients. (FQ_CODEL)
1363          */
1364         if (list_empty(&rq->sched.signalers_list))
1365                 attr.priority |= I915_PRIORITY_WAIT;
1366
1367         local_bh_disable();
1368         __i915_request_queue(rq, &attr);
1369         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1370
1371         /*
1372          * In typical scenarios, we do not expect the previous request on
1373          * the timeline to be still tracked by timeline->last_request if it
1374          * has been completed. If the completed request is still here, that
1375          * implies that request retirement is a long way behind submission,
1376          * suggesting that we haven't been retiring frequently enough from
1377          * the combination of retire-before-alloc, waiters and the background
1378          * retirement worker. So if the last request on this timeline was
1379          * already completed, do a catch up pass, flushing the retirement queue
1380          * up to this client. Since we have now moved the heaviest operations
1381          * during retirement onto secondary workers, such as freeing objects
1382          * or contexts, retiring a bunch of requests is mostly list management
1383          * (and cache misses), and so we should not be overly penalizing this
1384          * client by performing excess work, though we may still performing
1385          * work on behalf of others -- but instead we should benefit from
1386          * improved resource management. (Well, that's the theory at least.)
1387          */
1388         if (prev &&
1389             i915_request_completed(prev) &&
1390             rcu_access_pointer(prev->timeline) == tl)
1391                 i915_request_retire_upto(prev);
1392
1393         mutex_unlock(&tl->mutex);
1394 }
1395
1396 static unsigned long local_clock_us(unsigned int *cpu)
1397 {
1398         unsigned long t;
1399
1400         /*
1401          * Cheaply and approximately convert from nanoseconds to microseconds.
1402          * The result and subsequent calculations are also defined in the same
1403          * approximate microseconds units. The principal source of timing
1404          * error here is from the simple truncation.
1405          *
1406          * Note that local_clock() is only defined wrt to the current CPU;
1407          * the comparisons are no longer valid if we switch CPUs. Instead of
1408          * blocking preemption for the entire busywait, we can detect the CPU
1409          * switch and use that as indicator of system load and a reason to
1410          * stop busywaiting, see busywait_stop().
1411          */
1412         *cpu = get_cpu();
1413         t = local_clock() >> 10;
1414         put_cpu();
1415
1416         return t;
1417 }
1418
1419 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1420 {
1421         unsigned int this_cpu;
1422
1423         if (time_after(local_clock_us(&this_cpu), timeout))
1424                 return true;
1425
1426         return this_cpu != cpu;
1427 }
1428
1429 static bool __i915_spin_request(const struct i915_request * const rq,
1430                                 int state, unsigned long timeout_us)
1431 {
1432         unsigned int cpu;
1433
1434         /*
1435          * Only wait for the request if we know it is likely to complete.
1436          *
1437          * We don't track the timestamps around requests, nor the average
1438          * request length, so we do not have a good indicator that this
1439          * request will complete within the timeout. What we do know is the
1440          * order in which requests are executed by the context and so we can
1441          * tell if the request has been started. If the request is not even
1442          * running yet, it is a fair assumption that it will not complete
1443          * within our relatively short timeout.
1444          */
1445         if (!i915_request_is_running(rq))
1446                 return false;
1447
1448         /*
1449          * When waiting for high frequency requests, e.g. during synchronous
1450          * rendering split between the CPU and GPU, the finite amount of time
1451          * required to set up the irq and wait upon it limits the response
1452          * rate. By busywaiting on the request completion for a short while we
1453          * can service the high frequency waits as quick as possible. However,
1454          * if it is a slow request, we want to sleep as quickly as possible.
1455          * The tradeoff between waiting and sleeping is roughly the time it
1456          * takes to sleep on a request, on the order of a microsecond.
1457          */
1458
1459         timeout_us += local_clock_us(&cpu);
1460         do {
1461                 if (i915_request_completed(rq))
1462                         return true;
1463
1464                 if (signal_pending_state(state, current))
1465                         break;
1466
1467                 if (busywait_stop(timeout_us, cpu))
1468                         break;
1469
1470                 cpu_relax();
1471         } while (!need_resched());
1472
1473         return false;
1474 }
1475
1476 struct request_wait {
1477         struct dma_fence_cb cb;
1478         struct task_struct *tsk;
1479 };
1480
1481 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1482 {
1483         struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1484
1485         wake_up_process(wait->tsk);
1486 }
1487
1488 /**
1489  * i915_request_wait - wait until execution of request has finished
1490  * @rq: the request to wait upon
1491  * @flags: how to wait
1492  * @timeout: how long to wait in jiffies
1493  *
1494  * i915_request_wait() waits for the request to be completed, for a
1495  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1496  * unbounded wait).
1497  *
1498  * Returns the remaining time (in jiffies) if the request completed, which may
1499  * be zero or -ETIME if the request is unfinished after the timeout expires.
1500  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1501  * pending before the request completes.
1502  */
1503 long i915_request_wait(struct i915_request *rq,
1504                        unsigned int flags,
1505                        long timeout)
1506 {
1507         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1508                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1509         struct request_wait wait;
1510
1511         might_sleep();
1512         GEM_BUG_ON(timeout < 0);
1513
1514         if (dma_fence_is_signaled(&rq->fence))
1515                 return timeout;
1516
1517         if (!timeout)
1518                 return -ETIME;
1519
1520         trace_i915_request_wait_begin(rq, flags);
1521
1522         /*
1523          * We must never wait on the GPU while holding a lock as we
1524          * may need to perform a GPU reset. So while we don't need to
1525          * serialise wait/reset with an explicit lock, we do want
1526          * lockdep to detect potential dependency cycles.
1527          */
1528         mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1529
1530         /*
1531          * Optimistic spin before touching IRQs.
1532          *
1533          * We may use a rather large value here to offset the penalty of
1534          * switching away from the active task. Frequently, the client will
1535          * wait upon an old swapbuffer to throttle itself to remain within a
1536          * frame of the gpu. If the client is running in lockstep with the gpu,
1537          * then it should not be waiting long at all, and a sleep now will incur
1538          * extra scheduler latency in producing the next frame. To try to
1539          * avoid adding the cost of enabling/disabling the interrupt to the
1540          * short wait, we first spin to see if the request would have completed
1541          * in the time taken to setup the interrupt.
1542          *
1543          * We need upto 5us to enable the irq, and upto 20us to hide the
1544          * scheduler latency of a context switch, ignoring the secondary
1545          * impacts from a context switch such as cache eviction.
1546          *
1547          * The scheme used for low-latency IO is called "hybrid interrupt
1548          * polling". The suggestion there is to sleep until just before you
1549          * expect to be woken by the device interrupt and then poll for its
1550          * completion. That requires having a good predictor for the request
1551          * duration, which we currently lack.
1552          */
1553         if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1554             __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1555                 dma_fence_signal(&rq->fence);
1556                 goto out;
1557         }
1558
1559         /*
1560          * This client is about to stall waiting for the GPU. In many cases
1561          * this is undesirable and limits the throughput of the system, as
1562          * many clients cannot continue processing user input/output whilst
1563          * blocked. RPS autotuning may take tens of milliseconds to respond
1564          * to the GPU load and thus incurs additional latency for the client.
1565          * We can circumvent that by promoting the GPU frequency to maximum
1566          * before we sleep. This makes the GPU throttle up much more quickly
1567          * (good for benchmarks and user experience, e.g. window animations),
1568          * but at a cost of spending more power processing the workload
1569          * (bad for battery).
1570          */
1571         if (flags & I915_WAIT_PRIORITY) {
1572                 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1573                         intel_rps_boost(rq);
1574                 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1575         }
1576
1577         wait.tsk = current;
1578         if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1579                 goto out;
1580
1581         for (;;) {
1582                 set_current_state(state);
1583
1584                 if (i915_request_completed(rq)) {
1585                         dma_fence_signal(&rq->fence);
1586                         break;
1587                 }
1588
1589                 if (signal_pending_state(state, current)) {
1590                         timeout = -ERESTARTSYS;
1591                         break;
1592                 }
1593
1594                 if (!timeout) {
1595                         timeout = -ETIME;
1596                         break;
1597                 }
1598
1599                 intel_engine_flush_submission(rq->engine);
1600                 timeout = io_schedule_timeout(timeout);
1601         }
1602         __set_current_state(TASK_RUNNING);
1603
1604         dma_fence_remove_callback(&rq->fence, &wait.cb);
1605
1606 out:
1607         mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1608         trace_i915_request_wait_end(rq);
1609         return timeout;
1610 }
1611
1612 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1613 #include "selftests/mock_request.c"
1614 #include "selftests/i915_request.c"
1615 #endif
1616
1617 static void i915_global_request_shrink(void)
1618 {
1619         kmem_cache_shrink(global.slab_dependencies);
1620         kmem_cache_shrink(global.slab_execute_cbs);
1621         kmem_cache_shrink(global.slab_requests);
1622 }
1623
1624 static void i915_global_request_exit(void)
1625 {
1626         kmem_cache_destroy(global.slab_dependencies);
1627         kmem_cache_destroy(global.slab_execute_cbs);
1628         kmem_cache_destroy(global.slab_requests);
1629 }
1630
1631 static struct i915_global_request global = { {
1632         .shrink = i915_global_request_shrink,
1633         .exit = i915_global_request_exit,
1634 } };
1635
1636 int __init i915_global_request_init(void)
1637 {
1638         global.slab_requests =
1639                 kmem_cache_create("i915_request",
1640                                   sizeof(struct i915_request),
1641                                   __alignof__(struct i915_request),
1642                                   SLAB_HWCACHE_ALIGN |
1643                                   SLAB_RECLAIM_ACCOUNT |
1644                                   SLAB_TYPESAFE_BY_RCU,
1645                                   __i915_request_ctor);
1646         if (!global.slab_requests)
1647                 return -ENOMEM;
1648
1649         global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1650                                              SLAB_HWCACHE_ALIGN |
1651                                              SLAB_RECLAIM_ACCOUNT |
1652                                              SLAB_TYPESAFE_BY_RCU);
1653         if (!global.slab_execute_cbs)
1654                 goto err_requests;
1655
1656         global.slab_dependencies = KMEM_CACHE(i915_dependency,
1657                                               SLAB_HWCACHE_ALIGN |
1658                                               SLAB_RECLAIM_ACCOUNT);
1659         if (!global.slab_dependencies)
1660                 goto err_execute_cbs;
1661
1662         i915_global_register(&global.base);
1663         return 0;
1664
1665 err_execute_cbs:
1666         kmem_cache_destroy(global.slab_execute_cbs);
1667 err_requests:
1668         kmem_cache_destroy(global.slab_requests);
1669         return -ENOMEM;
1670 }