]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/i915_request.c
Merge drm/drm-next into drm-misc-next
[linux.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31
32 #include "i915_drv.h"
33 #include "i915_active.h"
34 #include "i915_globals.h"
35 #include "i915_reset.h"
36
37 struct execute_cb {
38         struct list_head link;
39         struct irq_work work;
40         struct i915_sw_fence *fence;
41 };
42
43 static struct i915_global_request {
44         struct i915_global base;
45         struct kmem_cache *slab_requests;
46         struct kmem_cache *slab_dependencies;
47         struct kmem_cache *slab_execute_cbs;
48 } global;
49
50 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
51 {
52         return "i915";
53 }
54
55 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
56 {
57         /*
58          * The timeline struct (as part of the ppgtt underneath a context)
59          * may be freed when the request is no longer in use by the GPU.
60          * We could extend the life of a context to beyond that of all
61          * fences, possibly keeping the hw resource around indefinitely,
62          * or we just give them a false name. Since
63          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
64          * lie seems justifiable.
65          */
66         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
67                 return "signaled";
68
69         return to_request(fence)->gem_context->name ?: "[i915]";
70 }
71
72 static bool i915_fence_signaled(struct dma_fence *fence)
73 {
74         return i915_request_completed(to_request(fence));
75 }
76
77 static bool i915_fence_enable_signaling(struct dma_fence *fence)
78 {
79         return i915_request_enable_breadcrumb(to_request(fence));
80 }
81
82 static signed long i915_fence_wait(struct dma_fence *fence,
83                                    bool interruptible,
84                                    signed long timeout)
85 {
86         return i915_request_wait(to_request(fence),
87                                  interruptible | I915_WAIT_PRIORITY,
88                                  timeout);
89 }
90
91 static void i915_fence_release(struct dma_fence *fence)
92 {
93         struct i915_request *rq = to_request(fence);
94
95         /*
96          * The request is put onto a RCU freelist (i.e. the address
97          * is immediately reused), mark the fences as being freed now.
98          * Otherwise the debugobjects for the fences are only marked as
99          * freed when the slab cache itself is freed, and so we would get
100          * caught trying to reuse dead objects.
101          */
102         i915_sw_fence_fini(&rq->submit);
103
104         kmem_cache_free(global.slab_requests, rq);
105 }
106
107 const struct dma_fence_ops i915_fence_ops = {
108         .get_driver_name = i915_fence_get_driver_name,
109         .get_timeline_name = i915_fence_get_timeline_name,
110         .enable_signaling = i915_fence_enable_signaling,
111         .signaled = i915_fence_signaled,
112         .wait = i915_fence_wait,
113         .release = i915_fence_release,
114 };
115
116 static inline void
117 i915_request_remove_from_client(struct i915_request *request)
118 {
119         struct drm_i915_file_private *file_priv;
120
121         file_priv = request->file_priv;
122         if (!file_priv)
123                 return;
124
125         spin_lock(&file_priv->mm.lock);
126         if (request->file_priv) {
127                 list_del(&request->client_link);
128                 request->file_priv = NULL;
129         }
130         spin_unlock(&file_priv->mm.lock);
131 }
132
133 static void reserve_gt(struct drm_i915_private *i915)
134 {
135         if (!i915->gt.active_requests++)
136                 i915_gem_unpark(i915);
137 }
138
139 static void unreserve_gt(struct drm_i915_private *i915)
140 {
141         GEM_BUG_ON(!i915->gt.active_requests);
142         if (!--i915->gt.active_requests)
143                 i915_gem_park(i915);
144 }
145
146 static void advance_ring(struct i915_request *request)
147 {
148         struct intel_ring *ring = request->ring;
149         unsigned int tail;
150
151         /*
152          * We know the GPU must have read the request to have
153          * sent us the seqno + interrupt, so use the position
154          * of tail of the request to update the last known position
155          * of the GPU head.
156          *
157          * Note this requires that we are always called in request
158          * completion order.
159          */
160         GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list));
161         if (list_is_last(&request->ring_link, &ring->request_list)) {
162                 /*
163                  * We may race here with execlists resubmitting this request
164                  * as we retire it. The resubmission will move the ring->tail
165                  * forwards (to request->wa_tail). We either read the
166                  * current value that was written to hw, or the value that
167                  * is just about to be. Either works, if we miss the last two
168                  * noops - they are safe to be replayed on a reset.
169                  */
170                 tail = READ_ONCE(request->tail);
171                 list_del(&ring->active_link);
172         } else {
173                 tail = request->postfix;
174         }
175         list_del_init(&request->ring_link);
176
177         ring->head = tail;
178 }
179
180 static void free_capture_list(struct i915_request *request)
181 {
182         struct i915_capture_list *capture;
183
184         capture = request->capture_list;
185         while (capture) {
186                 struct i915_capture_list *next = capture->next;
187
188                 kfree(capture);
189                 capture = next;
190         }
191 }
192
193 static void __retire_engine_request(struct intel_engine_cs *engine,
194                                     struct i915_request *rq)
195 {
196         GEM_TRACE("%s(%s) fence %llx:%lld, current %d\n",
197                   __func__, engine->name,
198                   rq->fence.context, rq->fence.seqno,
199                   hwsp_seqno(rq));
200
201         GEM_BUG_ON(!i915_request_completed(rq));
202
203         local_irq_disable();
204
205         spin_lock(&engine->timeline.lock);
206         GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests));
207         list_del_init(&rq->link);
208         spin_unlock(&engine->timeline.lock);
209
210         spin_lock(&rq->lock);
211         i915_request_mark_complete(rq);
212         if (!i915_request_signaled(rq))
213                 dma_fence_signal_locked(&rq->fence);
214         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
215                 i915_request_cancel_breadcrumb(rq);
216         if (rq->waitboost) {
217                 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
218                 atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
219         }
220         spin_unlock(&rq->lock);
221
222         local_irq_enable();
223
224         /*
225          * The backing object for the context is done after switching to the
226          * *next* context. Therefore we cannot retire the previous context until
227          * the next context has already started running. However, since we
228          * cannot take the required locks at i915_request_submit() we
229          * defer the unpinning of the active context to now, retirement of
230          * the subsequent request.
231          */
232         if (engine->last_retired_context)
233                 intel_context_unpin(engine->last_retired_context);
234         engine->last_retired_context = rq->hw_context;
235 }
236
237 static void __retire_engine_upto(struct intel_engine_cs *engine,
238                                  struct i915_request *rq)
239 {
240         struct i915_request *tmp;
241
242         if (list_empty(&rq->link))
243                 return;
244
245         do {
246                 tmp = list_first_entry(&engine->timeline.requests,
247                                        typeof(*tmp), link);
248
249                 GEM_BUG_ON(tmp->engine != engine);
250                 __retire_engine_request(engine, tmp);
251         } while (tmp != rq);
252 }
253
254 static void i915_request_retire(struct i915_request *request)
255 {
256         struct i915_active_request *active, *next;
257
258         GEM_TRACE("%s fence %llx:%lld, current %d\n",
259                   request->engine->name,
260                   request->fence.context, request->fence.seqno,
261                   hwsp_seqno(request));
262
263         lockdep_assert_held(&request->i915->drm.struct_mutex);
264         GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
265         GEM_BUG_ON(!i915_request_completed(request));
266
267         trace_i915_request_retire(request);
268
269         advance_ring(request);
270         free_capture_list(request);
271
272         /*
273          * Walk through the active list, calling retire on each. This allows
274          * objects to track their GPU activity and mark themselves as idle
275          * when their *last* active request is completed (updating state
276          * tracking lists for eviction, active references for GEM, etc).
277          *
278          * As the ->retire() may free the node, we decouple it first and
279          * pass along the auxiliary information (to avoid dereferencing
280          * the node after the callback).
281          */
282         list_for_each_entry_safe(active, next, &request->active_list, link) {
283                 /*
284                  * In microbenchmarks or focusing upon time inside the kernel,
285                  * we may spend an inordinate amount of time simply handling
286                  * the retirement of requests and processing their callbacks.
287                  * Of which, this loop itself is particularly hot due to the
288                  * cache misses when jumping around the list of
289                  * i915_active_request.  So we try to keep this loop as
290                  * streamlined as possible and also prefetch the next
291                  * i915_active_request to try and hide the likely cache miss.
292                  */
293                 prefetchw(next);
294
295                 INIT_LIST_HEAD(&active->link);
296                 RCU_INIT_POINTER(active->request, NULL);
297
298                 active->retire(active, request);
299         }
300
301         i915_request_remove_from_client(request);
302
303         intel_context_unpin(request->hw_context);
304
305         __retire_engine_upto(request->engine, request);
306
307         unreserve_gt(request->i915);
308
309         i915_sched_node_fini(&request->sched);
310         i915_request_put(request);
311 }
312
313 void i915_request_retire_upto(struct i915_request *rq)
314 {
315         struct intel_ring *ring = rq->ring;
316         struct i915_request *tmp;
317
318         GEM_TRACE("%s fence %llx:%lld, current %d\n",
319                   rq->engine->name,
320                   rq->fence.context, rq->fence.seqno,
321                   hwsp_seqno(rq));
322
323         lockdep_assert_held(&rq->i915->drm.struct_mutex);
324         GEM_BUG_ON(!i915_request_completed(rq));
325
326         if (list_empty(&rq->ring_link))
327                 return;
328
329         do {
330                 tmp = list_first_entry(&ring->request_list,
331                                        typeof(*tmp), ring_link);
332
333                 i915_request_retire(tmp);
334         } while (tmp != rq);
335 }
336
337 static void irq_execute_cb(struct irq_work *wrk)
338 {
339         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
340
341         i915_sw_fence_complete(cb->fence);
342         kmem_cache_free(global.slab_execute_cbs, cb);
343 }
344
345 static void __notify_execute_cb(struct i915_request *rq)
346 {
347         struct execute_cb *cb;
348
349         lockdep_assert_held(&rq->lock);
350
351         if (list_empty(&rq->execute_cb))
352                 return;
353
354         list_for_each_entry(cb, &rq->execute_cb, link)
355                 irq_work_queue(&cb->work);
356
357         /*
358          * XXX Rollback on __i915_request_unsubmit()
359          *
360          * In the future, perhaps when we have an active time-slicing scheduler,
361          * it will be interesting to unsubmit parallel execution and remove
362          * busywaits from the GPU until their master is restarted. This is
363          * quite hairy, we have to carefully rollback the fence and do a
364          * preempt-to-idle cycle on the target engine, all the while the
365          * master execute_cb may refire.
366          */
367         INIT_LIST_HEAD(&rq->execute_cb);
368 }
369
370 static int
371 i915_request_await_execution(struct i915_request *rq,
372                              struct i915_request *signal,
373                              gfp_t gfp)
374 {
375         struct execute_cb *cb;
376
377         if (i915_request_is_active(signal))
378                 return 0;
379
380         cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
381         if (!cb)
382                 return -ENOMEM;
383
384         cb->fence = &rq->submit;
385         i915_sw_fence_await(cb->fence);
386         init_irq_work(&cb->work, irq_execute_cb);
387
388         spin_lock_irq(&signal->lock);
389         if (i915_request_is_active(signal)) {
390                 i915_sw_fence_complete(cb->fence);
391                 kmem_cache_free(global.slab_execute_cbs, cb);
392         } else {
393                 list_add_tail(&cb->link, &signal->execute_cb);
394         }
395         spin_unlock_irq(&signal->lock);
396
397         return 0;
398 }
399
400 static void move_to_timeline(struct i915_request *request,
401                              struct i915_timeline *timeline)
402 {
403         GEM_BUG_ON(request->timeline == &request->engine->timeline);
404         lockdep_assert_held(&request->engine->timeline.lock);
405
406         spin_lock(&request->timeline->lock);
407         list_move_tail(&request->link, &timeline->requests);
408         spin_unlock(&request->timeline->lock);
409 }
410
411 void __i915_request_submit(struct i915_request *request)
412 {
413         struct intel_engine_cs *engine = request->engine;
414
415         GEM_TRACE("%s fence %llx:%lld -> current %d\n",
416                   engine->name,
417                   request->fence.context, request->fence.seqno,
418                   hwsp_seqno(request));
419
420         GEM_BUG_ON(!irqs_disabled());
421         lockdep_assert_held(&engine->timeline.lock);
422
423         if (i915_gem_context_is_banned(request->gem_context))
424                 i915_request_skip(request, -EIO);
425
426         /* We may be recursing from the signal callback of another i915 fence */
427         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
428
429         GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
430         set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
431
432         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
433             !i915_request_enable_breadcrumb(request))
434                 intel_engine_queue_breadcrumbs(engine);
435
436         __notify_execute_cb(request);
437
438         spin_unlock(&request->lock);
439
440         engine->emit_fini_breadcrumb(request,
441                                      request->ring->vaddr + request->postfix);
442
443         /* Transfer from per-context onto the global per-engine timeline */
444         move_to_timeline(request, &engine->timeline);
445
446         trace_i915_request_execute(request);
447 }
448
449 void i915_request_submit(struct i915_request *request)
450 {
451         struct intel_engine_cs *engine = request->engine;
452         unsigned long flags;
453
454         /* Will be called from irq-context when using foreign fences. */
455         spin_lock_irqsave(&engine->timeline.lock, flags);
456
457         __i915_request_submit(request);
458
459         spin_unlock_irqrestore(&engine->timeline.lock, flags);
460 }
461
462 void __i915_request_unsubmit(struct i915_request *request)
463 {
464         struct intel_engine_cs *engine = request->engine;
465
466         GEM_TRACE("%s fence %llx:%lld, current %d\n",
467                   engine->name,
468                   request->fence.context, request->fence.seqno,
469                   hwsp_seqno(request));
470
471         GEM_BUG_ON(!irqs_disabled());
472         lockdep_assert_held(&engine->timeline.lock);
473
474         /*
475          * Only unwind in reverse order, required so that the per-context list
476          * is kept in seqno/ring order.
477          */
478
479         /* We may be recursing from the signal callback of another i915 fence */
480         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
481
482         /*
483          * As we do not allow WAIT to preempt inflight requests,
484          * once we have executed a request, along with triggering
485          * any execution callbacks, we must preserve its ordering
486          * within the non-preemptible FIFO.
487          */
488         BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
489         request->sched.attr.priority |= __NO_PREEMPTION;
490
491         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
492                 i915_request_cancel_breadcrumb(request);
493
494         GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
495         clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
496
497         spin_unlock(&request->lock);
498
499         /* Transfer back from the global per-engine timeline to per-context */
500         move_to_timeline(request, request->timeline);
501
502         /*
503          * We don't need to wake_up any waiters on request->execute, they
504          * will get woken by any other event or us re-adding this request
505          * to the engine timeline (__i915_request_submit()). The waiters
506          * should be quite adapt at finding that the request now has a new
507          * global_seqno to the one they went to sleep on.
508          */
509 }
510
511 void i915_request_unsubmit(struct i915_request *request)
512 {
513         struct intel_engine_cs *engine = request->engine;
514         unsigned long flags;
515
516         /* Will be called from irq-context when using foreign fences. */
517         spin_lock_irqsave(&engine->timeline.lock, flags);
518
519         __i915_request_unsubmit(request);
520
521         spin_unlock_irqrestore(&engine->timeline.lock, flags);
522 }
523
524 static int __i915_sw_fence_call
525 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
526 {
527         struct i915_request *request =
528                 container_of(fence, typeof(*request), submit);
529
530         switch (state) {
531         case FENCE_COMPLETE:
532                 trace_i915_request_submit(request);
533                 /*
534                  * We need to serialize use of the submit_request() callback
535                  * with its hotplugging performed during an emergency
536                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
537                  * critical section in order to force i915_gem_set_wedged() to
538                  * wait until the submit_request() is completed before
539                  * proceeding.
540                  */
541                 rcu_read_lock();
542                 request->engine->submit_request(request);
543                 rcu_read_unlock();
544                 break;
545
546         case FENCE_FREE:
547                 i915_request_put(request);
548                 break;
549         }
550
551         return NOTIFY_DONE;
552 }
553
554 static void ring_retire_requests(struct intel_ring *ring)
555 {
556         struct i915_request *rq, *rn;
557
558         list_for_each_entry_safe(rq, rn, &ring->request_list, ring_link) {
559                 if (!i915_request_completed(rq))
560                         break;
561
562                 i915_request_retire(rq);
563         }
564 }
565
566 static noinline struct i915_request *
567 i915_request_alloc_slow(struct intel_context *ce)
568 {
569         struct intel_ring *ring = ce->ring;
570         struct i915_request *rq;
571
572         if (list_empty(&ring->request_list))
573                 goto out;
574
575         /* Ratelimit ourselves to prevent oom from malicious clients */
576         rq = list_last_entry(&ring->request_list, typeof(*rq), ring_link);
577         cond_synchronize_rcu(rq->rcustate);
578
579         /* Retire our old requests in the hope that we free some */
580         ring_retire_requests(ring);
581
582 out:
583         return kmem_cache_alloc(global.slab_requests, GFP_KERNEL);
584 }
585
586 static int add_timeline_barrier(struct i915_request *rq)
587 {
588         return i915_request_await_active_request(rq, &rq->timeline->barrier);
589 }
590
591 /**
592  * i915_request_alloc - allocate a request structure
593  *
594  * @engine: engine that we wish to issue the request on.
595  * @ctx: context that the request will be associated with.
596  *
597  * Returns a pointer to the allocated request if successful,
598  * or an error code if not.
599  */
600 struct i915_request *
601 i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
602 {
603         struct drm_i915_private *i915 = engine->i915;
604         struct intel_context *ce;
605         struct i915_timeline *tl;
606         struct i915_request *rq;
607         u32 seqno;
608         int ret;
609
610         lockdep_assert_held(&i915->drm.struct_mutex);
611
612         /*
613          * Preempt contexts are reserved for exclusive use to inject a
614          * preemption context switch. They are never to be used for any trivial
615          * request!
616          */
617         GEM_BUG_ON(ctx == i915->preempt_context);
618
619         /*
620          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
621          * EIO if the GPU is already wedged.
622          */
623         ret = i915_terminally_wedged(i915);
624         if (ret)
625                 return ERR_PTR(ret);
626
627         /*
628          * Pinning the contexts may generate requests in order to acquire
629          * GGTT space, so do this first before we reserve a seqno for
630          * ourselves.
631          */
632         ce = intel_context_pin(ctx, engine);
633         if (IS_ERR(ce))
634                 return ERR_CAST(ce);
635
636         reserve_gt(i915);
637         mutex_lock(&ce->ring->timeline->mutex);
638
639         /* Move our oldest request to the slab-cache (if not in use!) */
640         rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link);
641         if (!list_is_last(&rq->ring_link, &ce->ring->request_list) &&
642             i915_request_completed(rq))
643                 i915_request_retire(rq);
644
645         /*
646          * Beware: Dragons be flying overhead.
647          *
648          * We use RCU to look up requests in flight. The lookups may
649          * race with the request being allocated from the slab freelist.
650          * That is the request we are writing to here, may be in the process
651          * of being read by __i915_active_request_get_rcu(). As such,
652          * we have to be very careful when overwriting the contents. During
653          * the RCU lookup, we change chase the request->engine pointer,
654          * read the request->global_seqno and increment the reference count.
655          *
656          * The reference count is incremented atomically. If it is zero,
657          * the lookup knows the request is unallocated and complete. Otherwise,
658          * it is either still in use, or has been reallocated and reset
659          * with dma_fence_init(). This increment is safe for release as we
660          * check that the request we have a reference to and matches the active
661          * request.
662          *
663          * Before we increment the refcount, we chase the request->engine
664          * pointer. We must not call kmem_cache_zalloc() or else we set
665          * that pointer to NULL and cause a crash during the lookup. If
666          * we see the request is completed (based on the value of the
667          * old engine and seqno), the lookup is complete and reports NULL.
668          * If we decide the request is not completed (new engine or seqno),
669          * then we grab a reference and double check that it is still the
670          * active request - which it won't be and restart the lookup.
671          *
672          * Do not use kmem_cache_zalloc() here!
673          */
674         rq = kmem_cache_alloc(global.slab_requests,
675                               GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
676         if (unlikely(!rq)) {
677                 rq = i915_request_alloc_slow(ce);
678                 if (!rq) {
679                         ret = -ENOMEM;
680                         goto err_unreserve;
681                 }
682         }
683
684         INIT_LIST_HEAD(&rq->active_list);
685         INIT_LIST_HEAD(&rq->execute_cb);
686
687         tl = ce->ring->timeline;
688         ret = i915_timeline_get_seqno(tl, rq, &seqno);
689         if (ret)
690                 goto err_free;
691
692         rq->i915 = i915;
693         rq->engine = engine;
694         rq->gem_context = ctx;
695         rq->hw_context = ce;
696         rq->ring = ce->ring;
697         rq->timeline = tl;
698         GEM_BUG_ON(rq->timeline == &engine->timeline);
699         rq->hwsp_seqno = tl->hwsp_seqno;
700         rq->hwsp_cacheline = tl->hwsp_cacheline;
701         rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
702
703         spin_lock_init(&rq->lock);
704         dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
705                        tl->fence_context, seqno);
706
707         /* We bump the ref for the fence chain */
708         i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
709
710         i915_sched_node_init(&rq->sched);
711
712         /* No zalloc, must clear what we need by hand */
713         rq->file_priv = NULL;
714         rq->batch = NULL;
715         rq->capture_list = NULL;
716         rq->waitboost = false;
717
718         /*
719          * Reserve space in the ring buffer for all the commands required to
720          * eventually emit this request. This is to guarantee that the
721          * i915_request_add() call can't fail. Note that the reserve may need
722          * to be redone if the request is not actually submitted straight
723          * away, e.g. because a GPU scheduler has deferred it.
724          *
725          * Note that due to how we add reserved_space to intel_ring_begin()
726          * we need to double our request to ensure that if we need to wrap
727          * around inside i915_request_add() there is sufficient space at
728          * the beginning of the ring as well.
729          */
730         rq->reserved_space = 2 * engine->emit_fini_breadcrumb_dw * sizeof(u32);
731
732         /*
733          * Record the position of the start of the request so that
734          * should we detect the updated seqno part-way through the
735          * GPU processing the request, we never over-estimate the
736          * position of the head.
737          */
738         rq->head = rq->ring->emit;
739
740         ret = add_timeline_barrier(rq);
741         if (ret)
742                 goto err_unwind;
743
744         ret = engine->request_alloc(rq);
745         if (ret)
746                 goto err_unwind;
747
748         /* Keep a second pin for the dual retirement along engine and ring */
749         __intel_context_pin(ce);
750
751         rq->infix = rq->ring->emit; /* end of header; start of user payload */
752
753         /* Check that we didn't interrupt ourselves with a new request */
754         GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
755         return rq;
756
757 err_unwind:
758         ce->ring->emit = rq->head;
759
760         /* Make sure we didn't add ourselves to external state before freeing */
761         GEM_BUG_ON(!list_empty(&rq->active_list));
762         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
763         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
764
765 err_free:
766         kmem_cache_free(global.slab_requests, rq);
767 err_unreserve:
768         mutex_unlock(&ce->ring->timeline->mutex);
769         unreserve_gt(i915);
770         intel_context_unpin(ce);
771         return ERR_PTR(ret);
772 }
773
774 static int
775 emit_semaphore_wait(struct i915_request *to,
776                     struct i915_request *from,
777                     gfp_t gfp)
778 {
779         u32 hwsp_offset;
780         u32 *cs;
781         int err;
782
783         GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
784         GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
785
786         /* We need to pin the signaler's HWSP until we are finished reading. */
787         err = i915_timeline_read_hwsp(from, to, &hwsp_offset);
788         if (err)
789                 return err;
790
791         /* Only submit our spinner after the signaler is running! */
792         err = i915_request_await_execution(to, from, gfp);
793         if (err)
794                 return err;
795
796         cs = intel_ring_begin(to, 4);
797         if (IS_ERR(cs))
798                 return PTR_ERR(cs);
799
800         /*
801          * Using greater-than-or-equal here means we have to worry
802          * about seqno wraparound. To side step that issue, we swap
803          * the timeline HWSP upon wrapping, so that everyone listening
804          * for the old (pre-wrap) values do not see the much smaller
805          * (post-wrap) values than they were expecting (and so wait
806          * forever).
807          */
808         *cs++ = MI_SEMAPHORE_WAIT |
809                 MI_SEMAPHORE_GLOBAL_GTT |
810                 MI_SEMAPHORE_POLL |
811                 MI_SEMAPHORE_SAD_GTE_SDD;
812         *cs++ = from->fence.seqno;
813         *cs++ = hwsp_offset;
814         *cs++ = 0;
815
816         intel_ring_advance(to, cs);
817         to->sched.flags |= I915_SCHED_HAS_SEMAPHORE;
818         return 0;
819 }
820
821 static int
822 i915_request_await_request(struct i915_request *to, struct i915_request *from)
823 {
824         int ret;
825
826         GEM_BUG_ON(to == from);
827         GEM_BUG_ON(to->timeline == from->timeline);
828
829         if (i915_request_completed(from))
830                 return 0;
831
832         if (to->engine->schedule) {
833                 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
834                 if (ret < 0)
835                         return ret;
836         }
837
838         if (to->engine == from->engine) {
839                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
840                                                        &from->submit,
841                                                        I915_FENCE_GFP);
842         } else if (intel_engine_has_semaphores(to->engine) &&
843                    to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
844                 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
845         } else {
846                 ret = i915_sw_fence_await_dma_fence(&to->submit,
847                                                     &from->fence, 0,
848                                                     I915_FENCE_GFP);
849         }
850
851         return ret < 0 ? ret : 0;
852 }
853
854 int
855 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
856 {
857         struct dma_fence **child = &fence;
858         unsigned int nchild = 1;
859         int ret;
860
861         /*
862          * Note that if the fence-array was created in signal-on-any mode,
863          * we should *not* decompose it into its individual fences. However,
864          * we don't currently store which mode the fence-array is operating
865          * in. Fortunately, the only user of signal-on-any is private to
866          * amdgpu and we should not see any incoming fence-array from
867          * sync-file being in signal-on-any mode.
868          */
869         if (dma_fence_is_array(fence)) {
870                 struct dma_fence_array *array = to_dma_fence_array(fence);
871
872                 child = array->fences;
873                 nchild = array->num_fences;
874                 GEM_BUG_ON(!nchild);
875         }
876
877         do {
878                 fence = *child++;
879                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
880                         continue;
881
882                 /*
883                  * Requests on the same timeline are explicitly ordered, along
884                  * with their dependencies, by i915_request_add() which ensures
885                  * that requests are submitted in-order through each ring.
886                  */
887                 if (fence->context == rq->fence.context)
888                         continue;
889
890                 /* Squash repeated waits to the same timelines */
891                 if (fence->context != rq->i915->mm.unordered_timeline &&
892                     i915_timeline_sync_is_later(rq->timeline, fence))
893                         continue;
894
895                 if (dma_fence_is_i915(fence))
896                         ret = i915_request_await_request(rq, to_request(fence));
897                 else
898                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
899                                                             I915_FENCE_TIMEOUT,
900                                                             I915_FENCE_GFP);
901                 if (ret < 0)
902                         return ret;
903
904                 /* Record the latest fence used against each timeline */
905                 if (fence->context != rq->i915->mm.unordered_timeline)
906                         i915_timeline_sync_set(rq->timeline, fence);
907         } while (--nchild);
908
909         return 0;
910 }
911
912 /**
913  * i915_request_await_object - set this request to (async) wait upon a bo
914  * @to: request we are wishing to use
915  * @obj: object which may be in use on another ring.
916  * @write: whether the wait is on behalf of a writer
917  *
918  * This code is meant to abstract object synchronization with the GPU.
919  * Conceptually we serialise writes between engines inside the GPU.
920  * We only allow one engine to write into a buffer at any time, but
921  * multiple readers. To ensure each has a coherent view of memory, we must:
922  *
923  * - If there is an outstanding write request to the object, the new
924  *   request must wait for it to complete (either CPU or in hw, requests
925  *   on the same ring will be naturally ordered).
926  *
927  * - If we are a write request (pending_write_domain is set), the new
928  *   request must wait for outstanding read requests to complete.
929  *
930  * Returns 0 if successful, else propagates up the lower layer error.
931  */
932 int
933 i915_request_await_object(struct i915_request *to,
934                           struct drm_i915_gem_object *obj,
935                           bool write)
936 {
937         struct dma_fence *excl;
938         int ret = 0;
939
940         if (write) {
941                 struct dma_fence **shared;
942                 unsigned int count, i;
943
944                 ret = reservation_object_get_fences_rcu(obj->resv,
945                                                         &excl, &count, &shared);
946                 if (ret)
947                         return ret;
948
949                 for (i = 0; i < count; i++) {
950                         ret = i915_request_await_dma_fence(to, shared[i]);
951                         if (ret)
952                                 break;
953
954                         dma_fence_put(shared[i]);
955                 }
956
957                 for (; i < count; i++)
958                         dma_fence_put(shared[i]);
959                 kfree(shared);
960         } else {
961                 excl = reservation_object_get_excl_rcu(obj->resv);
962         }
963
964         if (excl) {
965                 if (ret == 0)
966                         ret = i915_request_await_dma_fence(to, excl);
967
968                 dma_fence_put(excl);
969         }
970
971         return ret;
972 }
973
974 void i915_request_skip(struct i915_request *rq, int error)
975 {
976         void *vaddr = rq->ring->vaddr;
977         u32 head;
978
979         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
980         dma_fence_set_error(&rq->fence, error);
981
982         /*
983          * As this request likely depends on state from the lost
984          * context, clear out all the user operations leaving the
985          * breadcrumb at the end (so we get the fence notifications).
986          */
987         head = rq->infix;
988         if (rq->postfix < head) {
989                 memset(vaddr + head, 0, rq->ring->size - head);
990                 head = 0;
991         }
992         memset(vaddr + head, 0, rq->postfix - head);
993 }
994
995 static struct i915_request *
996 __i915_request_add_to_timeline(struct i915_request *rq)
997 {
998         struct i915_timeline *timeline = rq->timeline;
999         struct i915_request *prev;
1000
1001         /*
1002          * Dependency tracking and request ordering along the timeline
1003          * is special cased so that we can eliminate redundant ordering
1004          * operations while building the request (we know that the timeline
1005          * itself is ordered, and here we guarantee it).
1006          *
1007          * As we know we will need to emit tracking along the timeline,
1008          * we embed the hooks into our request struct -- at the cost of
1009          * having to have specialised no-allocation interfaces (which will
1010          * be beneficial elsewhere).
1011          *
1012          * A second benefit to open-coding i915_request_await_request is
1013          * that we can apply a slight variant of the rules specialised
1014          * for timelines that jump between engines (such as virtual engines).
1015          * If we consider the case of virtual engine, we must emit a dma-fence
1016          * to prevent scheduling of the second request until the first is
1017          * complete (to maximise our greedy late load balancing) and this
1018          * precludes optimising to use semaphores serialisation of a single
1019          * timeline across engines.
1020          */
1021         prev = i915_active_request_raw(&timeline->last_request,
1022                                        &rq->i915->drm.struct_mutex);
1023         if (prev && !i915_request_completed(prev)) {
1024                 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1025                         i915_sw_fence_await_sw_fence(&rq->submit,
1026                                                      &prev->submit,
1027                                                      &rq->submitq);
1028                 else
1029                         __i915_sw_fence_await_dma_fence(&rq->submit,
1030                                                         &prev->fence,
1031                                                         &rq->dmaq);
1032                 if (rq->engine->schedule)
1033                         __i915_sched_node_add_dependency(&rq->sched,
1034                                                          &prev->sched,
1035                                                          &rq->dep,
1036                                                          0);
1037         }
1038
1039         spin_lock_irq(&timeline->lock);
1040         list_add_tail(&rq->link, &timeline->requests);
1041         spin_unlock_irq(&timeline->lock);
1042
1043         GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1044         __i915_active_request_set(&timeline->last_request, rq);
1045
1046         return prev;
1047 }
1048
1049 /*
1050  * NB: This function is not allowed to fail. Doing so would mean the the
1051  * request is not being tracked for completion but the work itself is
1052  * going to happen on the hardware. This would be a Bad Thing(tm).
1053  */
1054 void i915_request_add(struct i915_request *request)
1055 {
1056         struct intel_engine_cs *engine = request->engine;
1057         struct i915_timeline *timeline = request->timeline;
1058         struct intel_ring *ring = request->ring;
1059         struct i915_request *prev;
1060         u32 *cs;
1061
1062         GEM_TRACE("%s fence %llx:%lld\n",
1063                   engine->name, request->fence.context, request->fence.seqno);
1064
1065         lockdep_assert_held(&request->timeline->mutex);
1066         trace_i915_request_add(request);
1067
1068         /*
1069          * Make sure that no request gazumped us - if it was allocated after
1070          * our i915_request_alloc() and called __i915_request_add() before
1071          * us, the timeline will hold its seqno which is later than ours.
1072          */
1073         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1074
1075         /*
1076          * To ensure that this call will not fail, space for its emissions
1077          * should already have been reserved in the ring buffer. Let the ring
1078          * know that it is time to use that space up.
1079          */
1080         GEM_BUG_ON(request->reserved_space > request->ring->space);
1081         request->reserved_space = 0;
1082
1083         /*
1084          * Record the position of the start of the breadcrumb so that
1085          * should we detect the updated seqno part-way through the
1086          * GPU processing the request, we never over-estimate the
1087          * position of the ring's HEAD.
1088          */
1089         cs = intel_ring_begin(request, engine->emit_fini_breadcrumb_dw);
1090         GEM_BUG_ON(IS_ERR(cs));
1091         request->postfix = intel_ring_offset(request, cs);
1092
1093         prev = __i915_request_add_to_timeline(request);
1094
1095         list_add_tail(&request->ring_link, &ring->request_list);
1096         if (list_is_first(&request->ring_link, &ring->request_list))
1097                 list_add(&ring->active_link, &request->i915->gt.active_rings);
1098         request->i915->gt.active_engines |= request->engine->mask;
1099         request->emitted_jiffies = jiffies;
1100
1101         /*
1102          * Let the backend know a new request has arrived that may need
1103          * to adjust the existing execution schedule due to a high priority
1104          * request - i.e. we may want to preempt the current request in order
1105          * to run a high priority dependency chain *before* we can execute this
1106          * request.
1107          *
1108          * This is called before the request is ready to run so that we can
1109          * decide whether to preempt the entire chain so that it is ready to
1110          * run at the earliest possible convenience.
1111          */
1112         local_bh_disable();
1113         rcu_read_lock(); /* RCU serialisation for set-wedged protection */
1114         if (engine->schedule) {
1115                 struct i915_sched_attr attr = request->gem_context->sched;
1116
1117                 /*
1118                  * Boost actual workloads past semaphores!
1119                  *
1120                  * With semaphores we spin on one engine waiting for another,
1121                  * simply to reduce the latency of starting our work when
1122                  * the signaler completes. However, if there is any other
1123                  * work that we could be doing on this engine instead, that
1124                  * is better utilisation and will reduce the overall duration
1125                  * of the current work. To avoid PI boosting a semaphore
1126                  * far in the distance past over useful work, we keep a history
1127                  * of any semaphore use along our dependency chain.
1128                  */
1129                 if (!(request->sched.flags & I915_SCHED_HAS_SEMAPHORE))
1130                         attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1131
1132                 /*
1133                  * Boost priorities to new clients (new request flows).
1134                  *
1135                  * Allow interactive/synchronous clients to jump ahead of
1136                  * the bulk clients. (FQ_CODEL)
1137                  */
1138                 if (list_empty(&request->sched.signalers_list))
1139                         attr.priority |= I915_PRIORITY_NEWCLIENT;
1140
1141                 engine->schedule(request, &attr);
1142         }
1143         rcu_read_unlock();
1144         i915_sw_fence_commit(&request->submit);
1145         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1146
1147         /*
1148          * In typical scenarios, we do not expect the previous request on
1149          * the timeline to be still tracked by timeline->last_request if it
1150          * has been completed. If the completed request is still here, that
1151          * implies that request retirement is a long way behind submission,
1152          * suggesting that we haven't been retiring frequently enough from
1153          * the combination of retire-before-alloc, waiters and the background
1154          * retirement worker. So if the last request on this timeline was
1155          * already completed, do a catch up pass, flushing the retirement queue
1156          * up to this client. Since we have now moved the heaviest operations
1157          * during retirement onto secondary workers, such as freeing objects
1158          * or contexts, retiring a bunch of requests is mostly list management
1159          * (and cache misses), and so we should not be overly penalizing this
1160          * client by performing excess work, though we may still performing
1161          * work on behalf of others -- but instead we should benefit from
1162          * improved resource management. (Well, that's the theory at least.)
1163          */
1164         if (prev && i915_request_completed(prev))
1165                 i915_request_retire_upto(prev);
1166
1167         mutex_unlock(&request->timeline->mutex);
1168 }
1169
1170 static unsigned long local_clock_us(unsigned int *cpu)
1171 {
1172         unsigned long t;
1173
1174         /*
1175          * Cheaply and approximately convert from nanoseconds to microseconds.
1176          * The result and subsequent calculations are also defined in the same
1177          * approximate microseconds units. The principal source of timing
1178          * error here is from the simple truncation.
1179          *
1180          * Note that local_clock() is only defined wrt to the current CPU;
1181          * the comparisons are no longer valid if we switch CPUs. Instead of
1182          * blocking preemption for the entire busywait, we can detect the CPU
1183          * switch and use that as indicator of system load and a reason to
1184          * stop busywaiting, see busywait_stop().
1185          */
1186         *cpu = get_cpu();
1187         t = local_clock() >> 10;
1188         put_cpu();
1189
1190         return t;
1191 }
1192
1193 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1194 {
1195         unsigned int this_cpu;
1196
1197         if (time_after(local_clock_us(&this_cpu), timeout))
1198                 return true;
1199
1200         return this_cpu != cpu;
1201 }
1202
1203 static bool __i915_spin_request(const struct i915_request * const rq,
1204                                 int state, unsigned long timeout_us)
1205 {
1206         unsigned int cpu;
1207
1208         /*
1209          * Only wait for the request if we know it is likely to complete.
1210          *
1211          * We don't track the timestamps around requests, nor the average
1212          * request length, so we do not have a good indicator that this
1213          * request will complete within the timeout. What we do know is the
1214          * order in which requests are executed by the context and so we can
1215          * tell if the request has been started. If the request is not even
1216          * running yet, it is a fair assumption that it will not complete
1217          * within our relatively short timeout.
1218          */
1219         if (!i915_request_is_running(rq))
1220                 return false;
1221
1222         /*
1223          * When waiting for high frequency requests, e.g. during synchronous
1224          * rendering split between the CPU and GPU, the finite amount of time
1225          * required to set up the irq and wait upon it limits the response
1226          * rate. By busywaiting on the request completion for a short while we
1227          * can service the high frequency waits as quick as possible. However,
1228          * if it is a slow request, we want to sleep as quickly as possible.
1229          * The tradeoff between waiting and sleeping is roughly the time it
1230          * takes to sleep on a request, on the order of a microsecond.
1231          */
1232
1233         timeout_us += local_clock_us(&cpu);
1234         do {
1235                 if (i915_request_completed(rq))
1236                         return true;
1237
1238                 if (signal_pending_state(state, current))
1239                         break;
1240
1241                 if (busywait_stop(timeout_us, cpu))
1242                         break;
1243
1244                 cpu_relax();
1245         } while (!need_resched());
1246
1247         return false;
1248 }
1249
1250 struct request_wait {
1251         struct dma_fence_cb cb;
1252         struct task_struct *tsk;
1253 };
1254
1255 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1256 {
1257         struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1258
1259         wake_up_process(wait->tsk);
1260 }
1261
1262 /**
1263  * i915_request_wait - wait until execution of request has finished
1264  * @rq: the request to wait upon
1265  * @flags: how to wait
1266  * @timeout: how long to wait in jiffies
1267  *
1268  * i915_request_wait() waits for the request to be completed, for a
1269  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1270  * unbounded wait).
1271  *
1272  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1273  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1274  * must not specify that the wait is locked.
1275  *
1276  * Returns the remaining time (in jiffies) if the request completed, which may
1277  * be zero or -ETIME if the request is unfinished after the timeout expires.
1278  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1279  * pending before the request completes.
1280  */
1281 long i915_request_wait(struct i915_request *rq,
1282                        unsigned int flags,
1283                        long timeout)
1284 {
1285         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1286                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1287         struct request_wait wait;
1288
1289         might_sleep();
1290         GEM_BUG_ON(timeout < 0);
1291
1292         if (i915_request_completed(rq))
1293                 return timeout;
1294
1295         if (!timeout)
1296                 return -ETIME;
1297
1298         trace_i915_request_wait_begin(rq, flags);
1299
1300         /* Optimistic short spin before touching IRQs */
1301         if (__i915_spin_request(rq, state, 5))
1302                 goto out;
1303
1304         /*
1305          * This client is about to stall waiting for the GPU. In many cases
1306          * this is undesirable and limits the throughput of the system, as
1307          * many clients cannot continue processing user input/output whilst
1308          * blocked. RPS autotuning may take tens of milliseconds to respond
1309          * to the GPU load and thus incurs additional latency for the client.
1310          * We can circumvent that by promoting the GPU frequency to maximum
1311          * before we sleep. This makes the GPU throttle up much more quickly
1312          * (good for benchmarks and user experience, e.g. window animations),
1313          * but at a cost of spending more power processing the workload
1314          * (bad for battery).
1315          */
1316         if (flags & I915_WAIT_PRIORITY) {
1317                 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1318                         gen6_rps_boost(rq);
1319                 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1320         }
1321
1322         wait.tsk = current;
1323         if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1324                 goto out;
1325
1326         for (;;) {
1327                 set_current_state(state);
1328
1329                 if (i915_request_completed(rq))
1330                         break;
1331
1332                 if (signal_pending_state(state, current)) {
1333                         timeout = -ERESTARTSYS;
1334                         break;
1335                 }
1336
1337                 if (!timeout) {
1338                         timeout = -ETIME;
1339                         break;
1340                 }
1341
1342                 timeout = io_schedule_timeout(timeout);
1343         }
1344         __set_current_state(TASK_RUNNING);
1345
1346         dma_fence_remove_callback(&rq->fence, &wait.cb);
1347
1348 out:
1349         trace_i915_request_wait_end(rq);
1350         return timeout;
1351 }
1352
1353 void i915_retire_requests(struct drm_i915_private *i915)
1354 {
1355         struct intel_ring *ring, *tmp;
1356
1357         lockdep_assert_held(&i915->drm.struct_mutex);
1358
1359         if (!i915->gt.active_requests)
1360                 return;
1361
1362         list_for_each_entry_safe(ring, tmp,
1363                                  &i915->gt.active_rings, active_link) {
1364                 intel_ring_get(ring); /* last rq holds reference! */
1365                 ring_retire_requests(ring);
1366                 intel_ring_put(ring);
1367         }
1368 }
1369
1370 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1371 #include "selftests/mock_request.c"
1372 #include "selftests/i915_request.c"
1373 #endif
1374
1375 static void i915_global_request_shrink(void)
1376 {
1377         kmem_cache_shrink(global.slab_dependencies);
1378         kmem_cache_shrink(global.slab_execute_cbs);
1379         kmem_cache_shrink(global.slab_requests);
1380 }
1381
1382 static void i915_global_request_exit(void)
1383 {
1384         kmem_cache_destroy(global.slab_dependencies);
1385         kmem_cache_destroy(global.slab_execute_cbs);
1386         kmem_cache_destroy(global.slab_requests);
1387 }
1388
1389 static struct i915_global_request global = { {
1390         .shrink = i915_global_request_shrink,
1391         .exit = i915_global_request_exit,
1392 } };
1393
1394 int __init i915_global_request_init(void)
1395 {
1396         global.slab_requests = KMEM_CACHE(i915_request,
1397                                           SLAB_HWCACHE_ALIGN |
1398                                           SLAB_RECLAIM_ACCOUNT |
1399                                           SLAB_TYPESAFE_BY_RCU);
1400         if (!global.slab_requests)
1401                 return -ENOMEM;
1402
1403         global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1404                                              SLAB_HWCACHE_ALIGN |
1405                                              SLAB_RECLAIM_ACCOUNT |
1406                                              SLAB_TYPESAFE_BY_RCU);
1407         if (!global.slab_execute_cbs)
1408                 goto err_requests;
1409
1410         global.slab_dependencies = KMEM_CACHE(i915_dependency,
1411                                               SLAB_HWCACHE_ALIGN |
1412                                               SLAB_RECLAIM_ACCOUNT);
1413         if (!global.slab_dependencies)
1414                 goto err_execute_cbs;
1415
1416         i915_global_register(&global.base);
1417         return 0;
1418
1419 err_execute_cbs:
1420         kmem_cache_destroy(global.slab_execute_cbs);
1421 err_requests:
1422         kmem_cache_destroy(global.slab_requests);
1423         return -ENOMEM;
1424 }