]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/intel_breadcrumbs.c
Merge tag 'iommu-updates-v4.16' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / gpu / drm / i915 / intel_breadcrumbs.c
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/kthread.h>
26 #include <uapi/linux/sched/types.h>
27
28 #include "i915_drv.h"
29
30 #ifdef CONFIG_SMP
31 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL && !(tsk)->on_cpu)
32 #else
33 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL)
34 #endif
35
36 static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
37 {
38         struct intel_wait *wait;
39         unsigned int result = 0;
40
41         lockdep_assert_held(&b->irq_lock);
42
43         wait = b->irq_wait;
44         if (wait) {
45                 /*
46                  * N.B. Since task_asleep() and ttwu are not atomic, the
47                  * waiter may actually go to sleep after the check, causing
48                  * us to suppress a valid wakeup. We prefer to reduce the
49                  * number of false positive missed_breadcrumb() warnings
50                  * at the expense of a few false negatives, as it it easy
51                  * to trigger a false positive under heavy load. Enough
52                  * signal should remain from genuine missed_breadcrumb()
53                  * for us to detect in CI.
54                  */
55                 bool was_asleep = task_asleep(wait->tsk);
56
57                 result = ENGINE_WAKEUP_WAITER;
58                 if (wake_up_process(wait->tsk) && was_asleep)
59                         result |= ENGINE_WAKEUP_ASLEEP;
60         }
61
62         return result;
63 }
64
65 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
66 {
67         struct intel_breadcrumbs *b = &engine->breadcrumbs;
68         unsigned long flags;
69         unsigned int result;
70
71         spin_lock_irqsave(&b->irq_lock, flags);
72         result = __intel_breadcrumbs_wakeup(b);
73         spin_unlock_irqrestore(&b->irq_lock, flags);
74
75         return result;
76 }
77
78 static unsigned long wait_timeout(void)
79 {
80         return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
81 }
82
83 static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
84 {
85         if (drm_debug & DRM_UT_DRIVER) {
86                 struct drm_printer p = drm_debug_printer(__func__);
87
88                 intel_engine_dump(engine, &p,
89                                   "%s missed breadcrumb at %pS\n",
90                                   engine->name, __builtin_return_address(0));
91         }
92
93         set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
94 }
95
96 static void intel_breadcrumbs_hangcheck(struct timer_list *t)
97 {
98         struct intel_engine_cs *engine =
99                 from_timer(engine, t, breadcrumbs.hangcheck);
100         struct intel_breadcrumbs *b = &engine->breadcrumbs;
101
102         if (!b->irq_armed)
103                 return;
104
105         if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
106                 b->hangcheck_interrupts = atomic_read(&engine->irq_count);
107                 mod_timer(&b->hangcheck, wait_timeout());
108                 return;
109         }
110
111         /* We keep the hangcheck timer alive until we disarm the irq, even
112          * if there are no waiters at present.
113          *
114          * If the waiter was currently running, assume it hasn't had a chance
115          * to process the pending interrupt (e.g, low priority task on a loaded
116          * system) and wait until it sleeps before declaring a missed interrupt.
117          *
118          * If the waiter was asleep (and not even pending a wakeup), then we
119          * must have missed an interrupt as the GPU has stopped advancing
120          * but we still have a waiter. Assuming all batches complete within
121          * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
122          */
123         if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
124                 missed_breadcrumb(engine);
125                 mod_timer(&b->fake_irq, jiffies + 1);
126         } else {
127                 mod_timer(&b->hangcheck, wait_timeout());
128         }
129 }
130
131 static void intel_breadcrumbs_fake_irq(struct timer_list *t)
132 {
133         struct intel_engine_cs *engine = from_timer(engine, t,
134                                                     breadcrumbs.fake_irq);
135         struct intel_breadcrumbs *b = &engine->breadcrumbs;
136
137         /* The timer persists in case we cannot enable interrupts,
138          * or if we have previously seen seqno/interrupt incoherency
139          * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
140          * Here the worker will wake up every jiffie in order to kick the
141          * oldest waiter to do the coherent seqno check.
142          */
143
144         spin_lock_irq(&b->irq_lock);
145         if (b->irq_armed && !__intel_breadcrumbs_wakeup(b))
146                 __intel_engine_disarm_breadcrumbs(engine);
147         spin_unlock_irq(&b->irq_lock);
148         if (!b->irq_armed)
149                 return;
150
151         mod_timer(&b->fake_irq, jiffies + 1);
152 }
153
154 static void irq_enable(struct intel_engine_cs *engine)
155 {
156         /*
157          * FIXME: Ideally we want this on the API boundary, but for the
158          * sake of testing with mock breadcrumbs (no HW so unable to
159          * enable irqs) we place it deep within the bowels, at the point
160          * of no return.
161          */
162         GEM_BUG_ON(!intel_irqs_enabled(engine->i915));
163
164         /* Enabling the IRQ may miss the generation of the interrupt, but
165          * we still need to force the barrier before reading the seqno,
166          * just in case.
167          */
168         set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
169
170         /* Caller disables interrupts */
171         spin_lock(&engine->i915->irq_lock);
172         engine->irq_enable(engine);
173         spin_unlock(&engine->i915->irq_lock);
174 }
175
176 static void irq_disable(struct intel_engine_cs *engine)
177 {
178         /* Caller disables interrupts */
179         spin_lock(&engine->i915->irq_lock);
180         engine->irq_disable(engine);
181         spin_unlock(&engine->i915->irq_lock);
182 }
183
184 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
185 {
186         struct intel_breadcrumbs *b = &engine->breadcrumbs;
187
188         lockdep_assert_held(&b->irq_lock);
189         GEM_BUG_ON(b->irq_wait);
190         GEM_BUG_ON(!b->irq_armed);
191
192         GEM_BUG_ON(!b->irq_enabled);
193         if (!--b->irq_enabled)
194                 irq_disable(engine);
195
196         b->irq_armed = false;
197 }
198
199 void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine)
200 {
201         struct intel_breadcrumbs *b = &engine->breadcrumbs;
202
203         spin_lock_irq(&b->irq_lock);
204         if (!b->irq_enabled++)
205                 irq_enable(engine);
206         GEM_BUG_ON(!b->irq_enabled); /* no overflow! */
207         spin_unlock_irq(&b->irq_lock);
208 }
209
210 void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine)
211 {
212         struct intel_breadcrumbs *b = &engine->breadcrumbs;
213
214         spin_lock_irq(&b->irq_lock);
215         GEM_BUG_ON(!b->irq_enabled); /* no underflow! */
216         if (!--b->irq_enabled)
217                 irq_disable(engine);
218         spin_unlock_irq(&b->irq_lock);
219 }
220
221 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
222 {
223         struct intel_breadcrumbs *b = &engine->breadcrumbs;
224         struct intel_wait *wait, *n;
225
226         if (!b->irq_armed)
227                 goto wakeup_signaler;
228
229         /*
230          * We only disarm the irq when we are idle (all requests completed),
231          * so if the bottom-half remains asleep, it missed the request
232          * completion.
233          */
234         if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP)
235                 missed_breadcrumb(engine);
236
237         spin_lock_irq(&b->rb_lock);
238
239         spin_lock(&b->irq_lock);
240         b->irq_wait = NULL;
241         if (b->irq_armed)
242                 __intel_engine_disarm_breadcrumbs(engine);
243         spin_unlock(&b->irq_lock);
244
245         rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
246                 RB_CLEAR_NODE(&wait->node);
247                 wake_up_process(wait->tsk);
248         }
249         b->waiters = RB_ROOT;
250
251         spin_unlock_irq(&b->rb_lock);
252
253         /*
254          * The signaling thread may be asleep holding a reference to a request,
255          * that had its signaling cancelled prior to being preempted. We need
256          * to kick the signaler, just in case, to release any such reference.
257          */
258 wakeup_signaler:
259         wake_up_process(b->signaler);
260 }
261
262 static bool use_fake_irq(const struct intel_breadcrumbs *b)
263 {
264         const struct intel_engine_cs *engine =
265                 container_of(b, struct intel_engine_cs, breadcrumbs);
266
267         if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
268                 return false;
269
270         /* Only start with the heavy weight fake irq timer if we have not
271          * seen any interrupts since enabling it the first time. If the
272          * interrupts are still arriving, it means we made a mistake in our
273          * engine->seqno_barrier(), a timing error that should be transient
274          * and unlikely to reoccur.
275          */
276         return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
277 }
278
279 static void enable_fake_irq(struct intel_breadcrumbs *b)
280 {
281         /* Ensure we never sleep indefinitely */
282         if (!b->irq_enabled || use_fake_irq(b))
283                 mod_timer(&b->fake_irq, jiffies + 1);
284         else
285                 mod_timer(&b->hangcheck, wait_timeout());
286 }
287
288 static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
289 {
290         struct intel_engine_cs *engine =
291                 container_of(b, struct intel_engine_cs, breadcrumbs);
292         struct drm_i915_private *i915 = engine->i915;
293         bool enabled;
294
295         lockdep_assert_held(&b->irq_lock);
296         if (b->irq_armed)
297                 return false;
298
299         /* The breadcrumb irq will be disarmed on the interrupt after the
300          * waiters are signaled. This gives us a single interrupt window in
301          * which we can add a new waiter and avoid the cost of re-enabling
302          * the irq.
303          */
304         b->irq_armed = true;
305
306         if (I915_SELFTEST_ONLY(b->mock)) {
307                 /* For our mock objects we want to avoid interaction
308                  * with the real hardware (which is not set up). So
309                  * we simply pretend we have enabled the powerwell
310                  * and the irq, and leave it up to the mock
311                  * implementation to call intel_engine_wakeup()
312                  * itself when it wants to simulate a user interrupt,
313                  */
314                 return true;
315         }
316
317         /* Since we are waiting on a request, the GPU should be busy
318          * and should have its own rpm reference. This is tracked
319          * by i915->gt.awake, we can forgo holding our own wakref
320          * for the interrupt as before i915->gt.awake is released (when
321          * the driver is idle) we disarm the breadcrumbs.
322          */
323
324         /* No interrupts? Kick the waiter every jiffie! */
325         enabled = false;
326         if (!b->irq_enabled++ &&
327             !test_bit(engine->id, &i915->gpu_error.test_irq_rings)) {
328                 irq_enable(engine);
329                 enabled = true;
330         }
331
332         enable_fake_irq(b);
333         return enabled;
334 }
335
336 static inline struct intel_wait *to_wait(struct rb_node *node)
337 {
338         return rb_entry(node, struct intel_wait, node);
339 }
340
341 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
342                                               struct intel_wait *wait)
343 {
344         lockdep_assert_held(&b->rb_lock);
345         GEM_BUG_ON(b->irq_wait == wait);
346
347         /* This request is completed, so remove it from the tree, mark it as
348          * complete, and *then* wake up the associated task. N.B. when the
349          * task wakes up, it will find the empty rb_node, discern that it
350          * has already been removed from the tree and skip the serialisation
351          * of the b->rb_lock and b->irq_lock. This means that the destruction
352          * of the intel_wait is not serialised with the interrupt handler
353          * by the waiter - it must instead be serialised by the caller.
354          */
355         rb_erase(&wait->node, &b->waiters);
356         RB_CLEAR_NODE(&wait->node);
357
358         wake_up_process(wait->tsk); /* implicit smp_wmb() */
359 }
360
361 static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
362                                             struct rb_node *next)
363 {
364         struct intel_breadcrumbs *b = &engine->breadcrumbs;
365
366         spin_lock(&b->irq_lock);
367         GEM_BUG_ON(!b->irq_armed);
368         GEM_BUG_ON(!b->irq_wait);
369         b->irq_wait = to_wait(next);
370         spin_unlock(&b->irq_lock);
371
372         /* We always wake up the next waiter that takes over as the bottom-half
373          * as we may delegate not only the irq-seqno barrier to the next waiter
374          * but also the task of waking up concurrent waiters.
375          */
376         if (next)
377                 wake_up_process(to_wait(next)->tsk);
378 }
379
380 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
381                                     struct intel_wait *wait)
382 {
383         struct intel_breadcrumbs *b = &engine->breadcrumbs;
384         struct rb_node **p, *parent, *completed;
385         bool first, armed;
386         u32 seqno;
387
388         /* Insert the request into the retirement ordered list
389          * of waiters by walking the rbtree. If we are the oldest
390          * seqno in the tree (the first to be retired), then
391          * set ourselves as the bottom-half.
392          *
393          * As we descend the tree, prune completed branches since we hold the
394          * spinlock we know that the first_waiter must be delayed and can
395          * reduce some of the sequential wake up latency if we take action
396          * ourselves and wake up the completed tasks in parallel. Also, by
397          * removing stale elements in the tree, we may be able to reduce the
398          * ping-pong between the old bottom-half and ourselves as first-waiter.
399          */
400         armed = false;
401         first = true;
402         parent = NULL;
403         completed = NULL;
404         seqno = intel_engine_get_seqno(engine);
405
406          /* If the request completed before we managed to grab the spinlock,
407           * return now before adding ourselves to the rbtree. We let the
408           * current bottom-half handle any pending wakeups and instead
409           * try and get out of the way quickly.
410           */
411         if (i915_seqno_passed(seqno, wait->seqno)) {
412                 RB_CLEAR_NODE(&wait->node);
413                 return first;
414         }
415
416         p = &b->waiters.rb_node;
417         while (*p) {
418                 parent = *p;
419                 if (wait->seqno == to_wait(parent)->seqno) {
420                         /* We have multiple waiters on the same seqno, select
421                          * the highest priority task (that with the smallest
422                          * task->prio) to serve as the bottom-half for this
423                          * group.
424                          */
425                         if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
426                                 p = &parent->rb_right;
427                                 first = false;
428                         } else {
429                                 p = &parent->rb_left;
430                         }
431                 } else if (i915_seqno_passed(wait->seqno,
432                                              to_wait(parent)->seqno)) {
433                         p = &parent->rb_right;
434                         if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
435                                 completed = parent;
436                         else
437                                 first = false;
438                 } else {
439                         p = &parent->rb_left;
440                 }
441         }
442         rb_link_node(&wait->node, parent, p);
443         rb_insert_color(&wait->node, &b->waiters);
444
445         if (first) {
446                 spin_lock(&b->irq_lock);
447                 b->irq_wait = wait;
448                 /* After assigning ourselves as the new bottom-half, we must
449                  * perform a cursory check to prevent a missed interrupt.
450                  * Either we miss the interrupt whilst programming the hardware,
451                  * or if there was a previous waiter (for a later seqno) they
452                  * may be woken instead of us (due to the inherent race
453                  * in the unlocked read of b->irq_seqno_bh in the irq handler)
454                  * and so we miss the wake up.
455                  */
456                 armed = __intel_breadcrumbs_enable_irq(b);
457                 spin_unlock(&b->irq_lock);
458         }
459
460         if (completed) {
461                 /* Advance the bottom-half (b->irq_wait) before we wake up
462                  * the waiters who may scribble over their intel_wait
463                  * just as the interrupt handler is dereferencing it via
464                  * b->irq_wait.
465                  */
466                 if (!first) {
467                         struct rb_node *next = rb_next(completed);
468                         GEM_BUG_ON(next == &wait->node);
469                         __intel_breadcrumbs_next(engine, next);
470                 }
471
472                 do {
473                         struct intel_wait *crumb = to_wait(completed);
474                         completed = rb_prev(completed);
475                         __intel_breadcrumbs_finish(b, crumb);
476                 } while (completed);
477         }
478
479         GEM_BUG_ON(!b->irq_wait);
480         GEM_BUG_ON(!b->irq_armed);
481         GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
482
483         return armed;
484 }
485
486 bool intel_engine_add_wait(struct intel_engine_cs *engine,
487                            struct intel_wait *wait)
488 {
489         struct intel_breadcrumbs *b = &engine->breadcrumbs;
490         bool armed;
491
492         spin_lock_irq(&b->rb_lock);
493         armed = __intel_engine_add_wait(engine, wait);
494         spin_unlock_irq(&b->rb_lock);
495         if (armed)
496                 return armed;
497
498         /* Make the caller recheck if its request has already started. */
499         return i915_seqno_passed(intel_engine_get_seqno(engine),
500                                  wait->seqno - 1);
501 }
502
503 static inline bool chain_wakeup(struct rb_node *rb, int priority)
504 {
505         return rb && to_wait(rb)->tsk->prio <= priority;
506 }
507
508 static inline int wakeup_priority(struct intel_breadcrumbs *b,
509                                   struct task_struct *tsk)
510 {
511         if (tsk == b->signaler)
512                 return INT_MIN;
513         else
514                 return tsk->prio;
515 }
516
517 static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
518                                        struct intel_wait *wait)
519 {
520         struct intel_breadcrumbs *b = &engine->breadcrumbs;
521
522         lockdep_assert_held(&b->rb_lock);
523
524         if (RB_EMPTY_NODE(&wait->node))
525                 goto out;
526
527         if (b->irq_wait == wait) {
528                 const int priority = wakeup_priority(b, wait->tsk);
529                 struct rb_node *next;
530
531                 /* We are the current bottom-half. Find the next candidate,
532                  * the first waiter in the queue on the remaining oldest
533                  * request. As multiple seqnos may complete in the time it
534                  * takes us to wake up and find the next waiter, we have to
535                  * wake up that waiter for it to perform its own coherent
536                  * completion check.
537                  */
538                 next = rb_next(&wait->node);
539                 if (chain_wakeup(next, priority)) {
540                         /* If the next waiter is already complete,
541                          * wake it up and continue onto the next waiter. So
542                          * if have a small herd, they will wake up in parallel
543                          * rather than sequentially, which should reduce
544                          * the overall latency in waking all the completed
545                          * clients.
546                          *
547                          * However, waking up a chain adds extra latency to
548                          * the first_waiter. This is undesirable if that
549                          * waiter is a high priority task.
550                          */
551                         u32 seqno = intel_engine_get_seqno(engine);
552
553                         while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
554                                 struct rb_node *n = rb_next(next);
555
556                                 __intel_breadcrumbs_finish(b, to_wait(next));
557                                 next = n;
558                                 if (!chain_wakeup(next, priority))
559                                         break;
560                         }
561                 }
562
563                 __intel_breadcrumbs_next(engine, next);
564         } else {
565                 GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
566         }
567
568         GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
569         rb_erase(&wait->node, &b->waiters);
570         RB_CLEAR_NODE(&wait->node);
571
572 out:
573         GEM_BUG_ON(b->irq_wait == wait);
574         GEM_BUG_ON(rb_first(&b->waiters) !=
575                    (b->irq_wait ? &b->irq_wait->node : NULL));
576 }
577
578 void intel_engine_remove_wait(struct intel_engine_cs *engine,
579                               struct intel_wait *wait)
580 {
581         struct intel_breadcrumbs *b = &engine->breadcrumbs;
582
583         /* Quick check to see if this waiter was already decoupled from
584          * the tree by the bottom-half to avoid contention on the spinlock
585          * by the herd.
586          */
587         if (RB_EMPTY_NODE(&wait->node)) {
588                 GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
589                 return;
590         }
591
592         spin_lock_irq(&b->rb_lock);
593         __intel_engine_remove_wait(engine, wait);
594         spin_unlock_irq(&b->rb_lock);
595 }
596
597 static bool signal_valid(const struct drm_i915_gem_request *request)
598 {
599         return intel_wait_check_request(&request->signaling.wait, request);
600 }
601
602 static bool signal_complete(const struct drm_i915_gem_request *request)
603 {
604         if (!request)
605                 return false;
606
607         /* If another process served as the bottom-half it may have already
608          * signalled that this wait is already completed.
609          */
610         if (intel_wait_complete(&request->signaling.wait))
611                 return signal_valid(request);
612
613         /* Carefully check if the request is complete, giving time for the
614          * seqno to be visible or if the GPU hung.
615          */
616         if (__i915_request_irq_complete(request))
617                 return true;
618
619         return false;
620 }
621
622 static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
623 {
624         return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
625 }
626
627 static void signaler_set_rtpriority(void)
628 {
629          struct sched_param param = { .sched_priority = 1 };
630
631          sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
632 }
633
634 static int intel_breadcrumbs_signaler(void *arg)
635 {
636         struct intel_engine_cs *engine = arg;
637         struct intel_breadcrumbs *b = &engine->breadcrumbs;
638         struct drm_i915_gem_request *request;
639
640         /* Install ourselves with high priority to reduce signalling latency */
641         signaler_set_rtpriority();
642
643         do {
644                 bool do_schedule = true;
645
646                 set_current_state(TASK_INTERRUPTIBLE);
647
648                 /* We are either woken up by the interrupt bottom-half,
649                  * or by a client adding a new signaller. In both cases,
650                  * the GPU seqno may have advanced beyond our oldest signal.
651                  * If it has, propagate the signal, remove the waiter and
652                  * check again with the next oldest signal. Otherwise we
653                  * need to wait for a new interrupt from the GPU or for
654                  * a new client.
655                  */
656                 rcu_read_lock();
657                 request = rcu_dereference(b->first_signal);
658                 if (request)
659                         request = i915_gem_request_get_rcu(request);
660                 rcu_read_unlock();
661                 if (signal_complete(request)) {
662                         local_bh_disable();
663                         dma_fence_signal(&request->fence);
664                         local_bh_enable(); /* kick start the tasklets */
665
666                         spin_lock_irq(&b->rb_lock);
667
668                         /* Wake up all other completed waiters and select the
669                          * next bottom-half for the next user interrupt.
670                          */
671                         __intel_engine_remove_wait(engine,
672                                                    &request->signaling.wait);
673
674                         /* Find the next oldest signal. Note that as we have
675                          * not been holding the lock, another client may
676                          * have installed an even older signal than the one
677                          * we just completed - so double check we are still
678                          * the oldest before picking the next one.
679                          */
680                         if (request == rcu_access_pointer(b->first_signal)) {
681                                 struct rb_node *rb =
682                                         rb_next(&request->signaling.node);
683                                 rcu_assign_pointer(b->first_signal,
684                                                    rb ? to_signaler(rb) : NULL);
685                         }
686                         rb_erase(&request->signaling.node, &b->signals);
687                         RB_CLEAR_NODE(&request->signaling.node);
688
689                         spin_unlock_irq(&b->rb_lock);
690
691                         i915_gem_request_put(request);
692
693                         /* If the engine is saturated we may be continually
694                          * processing completed requests. This angers the
695                          * NMI watchdog if we never let anything else
696                          * have access to the CPU. Let's pretend to be nice
697                          * and relinquish the CPU if we burn through the
698                          * entire RT timeslice!
699                          */
700                         do_schedule = need_resched();
701                 }
702
703                 if (unlikely(do_schedule)) {
704                         if (kthread_should_park())
705                                 kthread_parkme();
706
707                         if (unlikely(kthread_should_stop())) {
708                                 i915_gem_request_put(request);
709                                 break;
710                         }
711
712                         schedule();
713                 }
714                 i915_gem_request_put(request);
715         } while (1);
716         __set_current_state(TASK_RUNNING);
717
718         return 0;
719 }
720
721 void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
722                                    bool wakeup)
723 {
724         struct intel_engine_cs *engine = request->engine;
725         struct intel_breadcrumbs *b = &engine->breadcrumbs;
726         u32 seqno;
727
728         /* Note that we may be called from an interrupt handler on another
729          * device (e.g. nouveau signaling a fence completion causing us
730          * to submit a request, and so enable signaling). As such,
731          * we need to make sure that all other users of b->rb_lock protect
732          * against interrupts, i.e. use spin_lock_irqsave.
733          */
734
735         /* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
736         GEM_BUG_ON(!irqs_disabled());
737         lockdep_assert_held(&request->lock);
738
739         seqno = i915_gem_request_global_seqno(request);
740         if (!seqno)
741                 return;
742
743         request->signaling.wait.tsk = b->signaler;
744         request->signaling.wait.request = request;
745         request->signaling.wait.seqno = seqno;
746         i915_gem_request_get(request);
747
748         spin_lock(&b->rb_lock);
749
750         /* First add ourselves into the list of waiters, but register our
751          * bottom-half as the signaller thread. As per usual, only the oldest
752          * waiter (not just signaller) is tasked as the bottom-half waking
753          * up all completed waiters after the user interrupt.
754          *
755          * If we are the oldest waiter, enable the irq (after which we
756          * must double check that the seqno did not complete).
757          */
758         wakeup &= __intel_engine_add_wait(engine, &request->signaling.wait);
759
760         if (!__i915_gem_request_completed(request, seqno)) {
761                 struct rb_node *parent, **p;
762                 bool first;
763
764                 /* Now insert ourselves into the retirement ordered list of
765                  * signals on this engine. We track the oldest seqno as that
766                  * will be the first signal to complete.
767                  */
768                 parent = NULL;
769                 first = true;
770                 p = &b->signals.rb_node;
771                 while (*p) {
772                         parent = *p;
773                         if (i915_seqno_passed(seqno,
774                                               to_signaler(parent)->signaling.wait.seqno)) {
775                                 p = &parent->rb_right;
776                                 first = false;
777                         } else {
778                                 p = &parent->rb_left;
779                         }
780                 }
781                 rb_link_node(&request->signaling.node, parent, p);
782                 rb_insert_color(&request->signaling.node, &b->signals);
783                 if (first)
784                         rcu_assign_pointer(b->first_signal, request);
785         } else {
786                 __intel_engine_remove_wait(engine, &request->signaling.wait);
787                 i915_gem_request_put(request);
788                 wakeup = false;
789         }
790
791         spin_unlock(&b->rb_lock);
792
793         if (wakeup)
794                 wake_up_process(b->signaler);
795 }
796
797 void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
798 {
799         struct intel_engine_cs *engine = request->engine;
800         struct intel_breadcrumbs *b = &engine->breadcrumbs;
801
802         GEM_BUG_ON(!irqs_disabled());
803         lockdep_assert_held(&request->lock);
804         GEM_BUG_ON(!request->signaling.wait.seqno);
805
806         spin_lock(&b->rb_lock);
807
808         if (!RB_EMPTY_NODE(&request->signaling.node)) {
809                 if (request == rcu_access_pointer(b->first_signal)) {
810                         struct rb_node *rb =
811                                 rb_next(&request->signaling.node);
812                         rcu_assign_pointer(b->first_signal,
813                                            rb ? to_signaler(rb) : NULL);
814                 }
815                 rb_erase(&request->signaling.node, &b->signals);
816                 RB_CLEAR_NODE(&request->signaling.node);
817                 i915_gem_request_put(request);
818         }
819
820         __intel_engine_remove_wait(engine, &request->signaling.wait);
821
822         spin_unlock(&b->rb_lock);
823
824         request->signaling.wait.seqno = 0;
825 }
826
827 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
828 {
829         struct intel_breadcrumbs *b = &engine->breadcrumbs;
830         struct task_struct *tsk;
831
832         spin_lock_init(&b->rb_lock);
833         spin_lock_init(&b->irq_lock);
834
835         timer_setup(&b->fake_irq, intel_breadcrumbs_fake_irq, 0);
836         timer_setup(&b->hangcheck, intel_breadcrumbs_hangcheck, 0);
837
838         /* Spawn a thread to provide a common bottom-half for all signals.
839          * As this is an asynchronous interface we cannot steal the current
840          * task for handling the bottom-half to the user interrupt, therefore
841          * we create a thread to do the coherent seqno dance after the
842          * interrupt and then signal the waitqueue (via the dma-buf/fence).
843          */
844         tsk = kthread_run(intel_breadcrumbs_signaler, engine,
845                           "i915/signal:%d", engine->id);
846         if (IS_ERR(tsk))
847                 return PTR_ERR(tsk);
848
849         b->signaler = tsk;
850
851         return 0;
852 }
853
854 static void cancel_fake_irq(struct intel_engine_cs *engine)
855 {
856         struct intel_breadcrumbs *b = &engine->breadcrumbs;
857
858         del_timer_sync(&b->hangcheck);
859         del_timer_sync(&b->fake_irq);
860         clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
861 }
862
863 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
864 {
865         struct intel_breadcrumbs *b = &engine->breadcrumbs;
866
867         cancel_fake_irq(engine);
868         spin_lock_irq(&b->irq_lock);
869
870         if (b->irq_enabled)
871                 irq_enable(engine);
872         else
873                 irq_disable(engine);
874
875         /* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
876          * GPU is active and may have already executed the MI_USER_INTERRUPT
877          * before the CPU is ready to receive. However, the engine is currently
878          * idle (we haven't started it yet), there is no possibility for a
879          * missed interrupt as we enabled the irq and so we can clear the
880          * immediate wakeup (until a real interrupt arrives for the waiter).
881          */
882         clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
883
884         if (b->irq_armed)
885                 enable_fake_irq(b);
886
887         spin_unlock_irq(&b->irq_lock);
888 }
889
890 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
891 {
892         struct intel_breadcrumbs *b = &engine->breadcrumbs;
893
894         /* The engines should be idle and all requests accounted for! */
895         WARN_ON(READ_ONCE(b->irq_wait));
896         WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
897         WARN_ON(rcu_access_pointer(b->first_signal));
898         WARN_ON(!RB_EMPTY_ROOT(&b->signals));
899
900         if (!IS_ERR_OR_NULL(b->signaler))
901                 kthread_stop(b->signaler);
902
903         cancel_fake_irq(engine);
904 }
905
906 bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
907 {
908         struct intel_breadcrumbs *b = &engine->breadcrumbs;
909         bool busy = false;
910
911         spin_lock_irq(&b->rb_lock);
912
913         if (b->irq_wait) {
914                 wake_up_process(b->irq_wait->tsk);
915                 busy = true;
916         }
917
918         if (rcu_access_pointer(b->first_signal)) {
919                 wake_up_process(b->signaler);
920                 busy = true;
921         }
922
923         spin_unlock_irq(&b->rb_lock);
924
925         return busy;
926 }
927
928 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
929 #include "selftests/intel_breadcrumbs.c"
930 #endif