]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge branches 'pm-core', 'pm-qos', 'pm-domains' and 'pm-opp'
[linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "intel_dsi.h"
41 #include "i915_trace.h"
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_dp_helper.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_plane_helper.h>
47 #include <drm/drm_rect.h>
48 #include <linux/dma_remapping.h>
49 #include <linux/reservation.h>
50
51 static bool is_mmio_work(struct intel_flip_work *work)
52 {
53         return work->mmio_work.func;
54 }
55
56 /* Primary plane formats for gen <= 3 */
57 static const uint32_t i8xx_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB1555,
61         DRM_FORMAT_XRGB8888,
62 };
63
64 /* Primary plane formats for gen >= 4 */
65 static const uint32_t i965_primary_formats[] = {
66         DRM_FORMAT_C8,
67         DRM_FORMAT_RGB565,
68         DRM_FORMAT_XRGB8888,
69         DRM_FORMAT_XBGR8888,
70         DRM_FORMAT_XRGB2101010,
71         DRM_FORMAT_XBGR2101010,
72 };
73
74 static const uint32_t skl_primary_formats[] = {
75         DRM_FORMAT_C8,
76         DRM_FORMAT_RGB565,
77         DRM_FORMAT_XRGB8888,
78         DRM_FORMAT_XBGR8888,
79         DRM_FORMAT_ARGB8888,
80         DRM_FORMAT_ABGR8888,
81         DRM_FORMAT_XRGB2101010,
82         DRM_FORMAT_XBGR2101010,
83         DRM_FORMAT_YUYV,
84         DRM_FORMAT_YVYU,
85         DRM_FORMAT_UYVY,
86         DRM_FORMAT_VYUY,
87 };
88
89 /* Cursor formats */
90 static const uint32_t intel_cursor_formats[] = {
91         DRM_FORMAT_ARGB8888,
92 };
93
94 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
95                                 struct intel_crtc_state *pipe_config);
96 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
97                                    struct intel_crtc_state *pipe_config);
98
99 static int intel_framebuffer_init(struct drm_device *dev,
100                                   struct intel_framebuffer *ifb,
101                                   struct drm_mode_fb_cmd2 *mode_cmd,
102                                   struct drm_i915_gem_object *obj);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107                                          struct intel_link_m_n *m_n,
108                                          struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113                             const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115                             const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void skl_init_scalers(struct drm_i915_private *dev_priv,
119                              struct intel_crtc *crtc,
120                              struct intel_crtc_state *crtc_state);
121 static void skylake_pfit_enable(struct intel_crtc *crtc);
122 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
123 static void ironlake_pfit_enable(struct intel_crtc *crtc);
124 static void intel_modeset_setup_hw_state(struct drm_device *dev);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
127 static int bxt_calc_cdclk(int max_pixclk);
128
129 struct intel_limit {
130         struct {
131                 int min, max;
132         } dot, vco, n, m, m1, m2, p, p1;
133
134         struct {
135                 int dot_limit;
136                 int p2_slow, p2_fast;
137         } p2;
138 };
139
140 /* returns HPLL frequency in kHz */
141 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142 {
143         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144
145         /* Obtain SKU information */
146         mutex_lock(&dev_priv->sb_lock);
147         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148                 CCK_FUSE_HPLL_FREQ_MASK;
149         mutex_unlock(&dev_priv->sb_lock);
150
151         return vco_freq[hpll_freq] * 1000;
152 }
153
154 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155                       const char *name, u32 reg, int ref_freq)
156 {
157         u32 val;
158         int divider;
159
160         mutex_lock(&dev_priv->sb_lock);
161         val = vlv_cck_read(dev_priv, reg);
162         mutex_unlock(&dev_priv->sb_lock);
163
164         divider = val & CCK_FREQUENCY_VALUES;
165
166         WARN((val & CCK_FREQUENCY_STATUS) !=
167              (divider << CCK_FREQUENCY_STATUS_SHIFT),
168              "%s change in progress\n", name);
169
170         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171 }
172
173 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174                                   const char *name, u32 reg)
175 {
176         if (dev_priv->hpll_freq == 0)
177                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178
179         return vlv_get_cck_clock(dev_priv, name, reg,
180                                  dev_priv->hpll_freq);
181 }
182
183 static int
184 intel_pch_rawclk(struct drm_i915_private *dev_priv)
185 {
186         return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187 }
188
189 static int
190 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191 {
192         /* RAWCLK_FREQ_VLV register updated from power well code */
193         return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194                                       CCK_DISPLAY_REF_CLOCK_CONTROL);
195 }
196
197 static int
198 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
199 {
200         uint32_t clkcfg;
201
202         /* hrawclock is 1/4 the FSB frequency */
203         clkcfg = I915_READ(CLKCFG);
204         switch (clkcfg & CLKCFG_FSB_MASK) {
205         case CLKCFG_FSB_400:
206                 return 100000;
207         case CLKCFG_FSB_533:
208                 return 133333;
209         case CLKCFG_FSB_667:
210                 return 166667;
211         case CLKCFG_FSB_800:
212                 return 200000;
213         case CLKCFG_FSB_1067:
214                 return 266667;
215         case CLKCFG_FSB_1333:
216                 return 333333;
217         /* these two are just a guess; one of them might be right */
218         case CLKCFG_FSB_1600:
219         case CLKCFG_FSB_1600_ALT:
220                 return 400000;
221         default:
222                 return 133333;
223         }
224 }
225
226 void intel_update_rawclk(struct drm_i915_private *dev_priv)
227 {
228         if (HAS_PCH_SPLIT(dev_priv))
229                 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231                 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232         else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233                 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234         else
235                 return; /* no rawclk on other platforms, or no need to know it */
236
237         DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238 }
239
240 static void intel_update_czclk(struct drm_i915_private *dev_priv)
241 {
242         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
243                 return;
244
245         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246                                                       CCK_CZ_CLOCK_CONTROL);
247
248         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249 }
250
251 static inline u32 /* units of 100MHz */
252 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253                     const struct intel_crtc_state *pipe_config)
254 {
255         if (HAS_DDI(dev_priv))
256                 return pipe_config->port_clock; /* SPLL */
257         else if (IS_GEN5(dev_priv))
258                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
259         else
260                 return 270000;
261 }
262
263 static const struct intel_limit intel_limits_i8xx_dac = {
264         .dot = { .min = 25000, .max = 350000 },
265         .vco = { .min = 908000, .max = 1512000 },
266         .n = { .min = 2, .max = 16 },
267         .m = { .min = 96, .max = 140 },
268         .m1 = { .min = 18, .max = 26 },
269         .m2 = { .min = 6, .max = 16 },
270         .p = { .min = 4, .max = 128 },
271         .p1 = { .min = 2, .max = 33 },
272         .p2 = { .dot_limit = 165000,
273                 .p2_slow = 4, .p2_fast = 2 },
274 };
275
276 static const struct intel_limit intel_limits_i8xx_dvo = {
277         .dot = { .min = 25000, .max = 350000 },
278         .vco = { .min = 908000, .max = 1512000 },
279         .n = { .min = 2, .max = 16 },
280         .m = { .min = 96, .max = 140 },
281         .m1 = { .min = 18, .max = 26 },
282         .m2 = { .min = 6, .max = 16 },
283         .p = { .min = 4, .max = 128 },
284         .p1 = { .min = 2, .max = 33 },
285         .p2 = { .dot_limit = 165000,
286                 .p2_slow = 4, .p2_fast = 4 },
287 };
288
289 static const struct intel_limit intel_limits_i8xx_lvds = {
290         .dot = { .min = 25000, .max = 350000 },
291         .vco = { .min = 908000, .max = 1512000 },
292         .n = { .min = 2, .max = 16 },
293         .m = { .min = 96, .max = 140 },
294         .m1 = { .min = 18, .max = 26 },
295         .m2 = { .min = 6, .max = 16 },
296         .p = { .min = 4, .max = 128 },
297         .p1 = { .min = 1, .max = 6 },
298         .p2 = { .dot_limit = 165000,
299                 .p2_slow = 14, .p2_fast = 7 },
300 };
301
302 static const struct intel_limit intel_limits_i9xx_sdvo = {
303         .dot = { .min = 20000, .max = 400000 },
304         .vco = { .min = 1400000, .max = 2800000 },
305         .n = { .min = 1, .max = 6 },
306         .m = { .min = 70, .max = 120 },
307         .m1 = { .min = 8, .max = 18 },
308         .m2 = { .min = 3, .max = 7 },
309         .p = { .min = 5, .max = 80 },
310         .p1 = { .min = 1, .max = 8 },
311         .p2 = { .dot_limit = 200000,
312                 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const struct intel_limit intel_limits_i9xx_lvds = {
316         .dot = { .min = 20000, .max = 400000 },
317         .vco = { .min = 1400000, .max = 2800000 },
318         .n = { .min = 1, .max = 6 },
319         .m = { .min = 70, .max = 120 },
320         .m1 = { .min = 8, .max = 18 },
321         .m2 = { .min = 3, .max = 7 },
322         .p = { .min = 7, .max = 98 },
323         .p1 = { .min = 1, .max = 8 },
324         .p2 = { .dot_limit = 112000,
325                 .p2_slow = 14, .p2_fast = 7 },
326 };
327
328
329 static const struct intel_limit intel_limits_g4x_sdvo = {
330         .dot = { .min = 25000, .max = 270000 },
331         .vco = { .min = 1750000, .max = 3500000},
332         .n = { .min = 1, .max = 4 },
333         .m = { .min = 104, .max = 138 },
334         .m1 = { .min = 17, .max = 23 },
335         .m2 = { .min = 5, .max = 11 },
336         .p = { .min = 10, .max = 30 },
337         .p1 = { .min = 1, .max = 3},
338         .p2 = { .dot_limit = 270000,
339                 .p2_slow = 10,
340                 .p2_fast = 10
341         },
342 };
343
344 static const struct intel_limit intel_limits_g4x_hdmi = {
345         .dot = { .min = 22000, .max = 400000 },
346         .vco = { .min = 1750000, .max = 3500000},
347         .n = { .min = 1, .max = 4 },
348         .m = { .min = 104, .max = 138 },
349         .m1 = { .min = 16, .max = 23 },
350         .m2 = { .min = 5, .max = 11 },
351         .p = { .min = 5, .max = 80 },
352         .p1 = { .min = 1, .max = 8},
353         .p2 = { .dot_limit = 165000,
354                 .p2_slow = 10, .p2_fast = 5 },
355 };
356
357 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
358         .dot = { .min = 20000, .max = 115000 },
359         .vco = { .min = 1750000, .max = 3500000 },
360         .n = { .min = 1, .max = 3 },
361         .m = { .min = 104, .max = 138 },
362         .m1 = { .min = 17, .max = 23 },
363         .m2 = { .min = 5, .max = 11 },
364         .p = { .min = 28, .max = 112 },
365         .p1 = { .min = 2, .max = 8 },
366         .p2 = { .dot_limit = 0,
367                 .p2_slow = 14, .p2_fast = 14
368         },
369 };
370
371 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
372         .dot = { .min = 80000, .max = 224000 },
373         .vco = { .min = 1750000, .max = 3500000 },
374         .n = { .min = 1, .max = 3 },
375         .m = { .min = 104, .max = 138 },
376         .m1 = { .min = 17, .max = 23 },
377         .m2 = { .min = 5, .max = 11 },
378         .p = { .min = 14, .max = 42 },
379         .p1 = { .min = 2, .max = 6 },
380         .p2 = { .dot_limit = 0,
381                 .p2_slow = 7, .p2_fast = 7
382         },
383 };
384
385 static const struct intel_limit intel_limits_pineview_sdvo = {
386         .dot = { .min = 20000, .max = 400000},
387         .vco = { .min = 1700000, .max = 3500000 },
388         /* Pineview's Ncounter is a ring counter */
389         .n = { .min = 3, .max = 6 },
390         .m = { .min = 2, .max = 256 },
391         /* Pineview only has one combined m divider, which we treat as m2. */
392         .m1 = { .min = 0, .max = 0 },
393         .m2 = { .min = 0, .max = 254 },
394         .p = { .min = 5, .max = 80 },
395         .p1 = { .min = 1, .max = 8 },
396         .p2 = { .dot_limit = 200000,
397                 .p2_slow = 10, .p2_fast = 5 },
398 };
399
400 static const struct intel_limit intel_limits_pineview_lvds = {
401         .dot = { .min = 20000, .max = 400000 },
402         .vco = { .min = 1700000, .max = 3500000 },
403         .n = { .min = 3, .max = 6 },
404         .m = { .min = 2, .max = 256 },
405         .m1 = { .min = 0, .max = 0 },
406         .m2 = { .min = 0, .max = 254 },
407         .p = { .min = 7, .max = 112 },
408         .p1 = { .min = 1, .max = 8 },
409         .p2 = { .dot_limit = 112000,
410                 .p2_slow = 14, .p2_fast = 14 },
411 };
412
413 /* Ironlake / Sandybridge
414  *
415  * We calculate clock using (register_value + 2) for N/M1/M2, so here
416  * the range value for them is (actual_value - 2).
417  */
418 static const struct intel_limit intel_limits_ironlake_dac = {
419         .dot = { .min = 25000, .max = 350000 },
420         .vco = { .min = 1760000, .max = 3510000 },
421         .n = { .min = 1, .max = 5 },
422         .m = { .min = 79, .max = 127 },
423         .m1 = { .min = 12, .max = 22 },
424         .m2 = { .min = 5, .max = 9 },
425         .p = { .min = 5, .max = 80 },
426         .p1 = { .min = 1, .max = 8 },
427         .p2 = { .dot_limit = 225000,
428                 .p2_slow = 10, .p2_fast = 5 },
429 };
430
431 static const struct intel_limit intel_limits_ironlake_single_lvds = {
432         .dot = { .min = 25000, .max = 350000 },
433         .vco = { .min = 1760000, .max = 3510000 },
434         .n = { .min = 1, .max = 3 },
435         .m = { .min = 79, .max = 118 },
436         .m1 = { .min = 12, .max = 22 },
437         .m2 = { .min = 5, .max = 9 },
438         .p = { .min = 28, .max = 112 },
439         .p1 = { .min = 2, .max = 8 },
440         .p2 = { .dot_limit = 225000,
441                 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
445         .dot = { .min = 25000, .max = 350000 },
446         .vco = { .min = 1760000, .max = 3510000 },
447         .n = { .min = 1, .max = 3 },
448         .m = { .min = 79, .max = 127 },
449         .m1 = { .min = 12, .max = 22 },
450         .m2 = { .min = 5, .max = 9 },
451         .p = { .min = 14, .max = 56 },
452         .p1 = { .min = 2, .max = 8 },
453         .p2 = { .dot_limit = 225000,
454                 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 /* LVDS 100mhz refclk limits. */
458 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
459         .dot = { .min = 25000, .max = 350000 },
460         .vco = { .min = 1760000, .max = 3510000 },
461         .n = { .min = 1, .max = 2 },
462         .m = { .min = 79, .max = 126 },
463         .m1 = { .min = 12, .max = 22 },
464         .m2 = { .min = 5, .max = 9 },
465         .p = { .min = 28, .max = 112 },
466         .p1 = { .min = 2, .max = 8 },
467         .p2 = { .dot_limit = 225000,
468                 .p2_slow = 14, .p2_fast = 14 },
469 };
470
471 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
472         .dot = { .min = 25000, .max = 350000 },
473         .vco = { .min = 1760000, .max = 3510000 },
474         .n = { .min = 1, .max = 3 },
475         .m = { .min = 79, .max = 126 },
476         .m1 = { .min = 12, .max = 22 },
477         .m2 = { .min = 5, .max = 9 },
478         .p = { .min = 14, .max = 42 },
479         .p1 = { .min = 2, .max = 6 },
480         .p2 = { .dot_limit = 225000,
481                 .p2_slow = 7, .p2_fast = 7 },
482 };
483
484 static const struct intel_limit intel_limits_vlv = {
485          /*
486           * These are the data rate limits (measured in fast clocks)
487           * since those are the strictest limits we have. The fast
488           * clock and actual rate limits are more relaxed, so checking
489           * them would make no difference.
490           */
491         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
492         .vco = { .min = 4000000, .max = 6000000 },
493         .n = { .min = 1, .max = 7 },
494         .m1 = { .min = 2, .max = 3 },
495         .m2 = { .min = 11, .max = 156 },
496         .p1 = { .min = 2, .max = 3 },
497         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
498 };
499
500 static const struct intel_limit intel_limits_chv = {
501         /*
502          * These are the data rate limits (measured in fast clocks)
503          * since those are the strictest limits we have.  The fast
504          * clock and actual rate limits are more relaxed, so checking
505          * them would make no difference.
506          */
507         .dot = { .min = 25000 * 5, .max = 540000 * 5},
508         .vco = { .min = 4800000, .max = 6480000 },
509         .n = { .min = 1, .max = 1 },
510         .m1 = { .min = 2, .max = 2 },
511         .m2 = { .min = 24 << 22, .max = 175 << 22 },
512         .p1 = { .min = 2, .max = 4 },
513         .p2 = { .p2_slow = 1, .p2_fast = 14 },
514 };
515
516 static const struct intel_limit intel_limits_bxt = {
517         /* FIXME: find real dot limits */
518         .dot = { .min = 0, .max = INT_MAX },
519         .vco = { .min = 4800000, .max = 6700000 },
520         .n = { .min = 1, .max = 1 },
521         .m1 = { .min = 2, .max = 2 },
522         /* FIXME: find real m2 limits */
523         .m2 = { .min = 2 << 22, .max = 255 << 22 },
524         .p1 = { .min = 2, .max = 4 },
525         .p2 = { .p2_slow = 1, .p2_fast = 20 },
526 };
527
528 static bool
529 needs_modeset(struct drm_crtc_state *state)
530 {
531         return drm_atomic_crtc_needs_modeset(state);
532 }
533
534 /*
535  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538  * The helpers' return value is the rate of the clock that is fed to the
539  * display engine's pipe which can be the above fast dot clock rate or a
540  * divided-down version of it.
541  */
542 /* m1 is reserved as 0 in Pineview, n is a ring counter */
543 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
544 {
545         clock->m = clock->m2 + 2;
546         clock->p = clock->p1 * clock->p2;
547         if (WARN_ON(clock->n == 0 || clock->p == 0))
548                 return 0;
549         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
551
552         return clock->dot;
553 }
554
555 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556 {
557         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558 }
559
560 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
561 {
562         clock->m = i9xx_dpll_compute_m(clock);
563         clock->p = clock->p1 * clock->p2;
564         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
565                 return 0;
566         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568
569         return clock->dot;
570 }
571
572 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
573 {
574         clock->m = clock->m1 * clock->m2;
575         clock->p = clock->p1 * clock->p2;
576         if (WARN_ON(clock->n == 0 || clock->p == 0))
577                 return 0;
578         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
580
581         return clock->dot / 5;
582 }
583
584 int chv_calc_dpll_params(int refclk, struct dpll *clock)
585 {
586         clock->m = clock->m1 * clock->m2;
587         clock->p = clock->p1 * clock->p2;
588         if (WARN_ON(clock->n == 0 || clock->p == 0))
589                 return 0;
590         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591                         clock->n << 22);
592         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593
594         return clock->dot / 5;
595 }
596
597 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
598 /**
599  * Returns whether the given set of divisors are valid for a given refclk with
600  * the given connectors.
601  */
602
603 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
604                                const struct intel_limit *limit,
605                                const struct dpll *clock)
606 {
607         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
608                 INTELPllInvalid("n out of range\n");
609         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
610                 INTELPllInvalid("p1 out of range\n");
611         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
612                 INTELPllInvalid("m2 out of range\n");
613         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
614                 INTELPllInvalid("m1 out of range\n");
615
616         if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
617             !IS_CHERRYVIEW(dev_priv) && !IS_BROXTON(dev_priv))
618                 if (clock->m1 <= clock->m2)
619                         INTELPllInvalid("m1 <= m2\n");
620
621         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
622             !IS_BROXTON(dev_priv)) {
623                 if (clock->p < limit->p.min || limit->p.max < clock->p)
624                         INTELPllInvalid("p out of range\n");
625                 if (clock->m < limit->m.min || limit->m.max < clock->m)
626                         INTELPllInvalid("m out of range\n");
627         }
628
629         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
630                 INTELPllInvalid("vco out of range\n");
631         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
632          * connector, etc., rather than just a single range.
633          */
634         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
635                 INTELPllInvalid("dot out of range\n");
636
637         return true;
638 }
639
640 static int
641 i9xx_select_p2_div(const struct intel_limit *limit,
642                    const struct intel_crtc_state *crtc_state,
643                    int target)
644 {
645         struct drm_device *dev = crtc_state->base.crtc->dev;
646
647         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
648                 /*
649                  * For LVDS just rely on its current settings for dual-channel.
650                  * We haven't figured out how to reliably set up different
651                  * single/dual channel state, if we even can.
652                  */
653                 if (intel_is_dual_link_lvds(dev))
654                         return limit->p2.p2_fast;
655                 else
656                         return limit->p2.p2_slow;
657         } else {
658                 if (target < limit->p2.dot_limit)
659                         return limit->p2.p2_slow;
660                 else
661                         return limit->p2.p2_fast;
662         }
663 }
664
665 /*
666  * Returns a set of divisors for the desired target clock with the given
667  * refclk, or FALSE.  The returned values represent the clock equation:
668  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
669  *
670  * Target and reference clocks are specified in kHz.
671  *
672  * If match_clock is provided, then best_clock P divider must match the P
673  * divider from @match_clock used for LVDS downclocking.
674  */
675 static bool
676 i9xx_find_best_dpll(const struct intel_limit *limit,
677                     struct intel_crtc_state *crtc_state,
678                     int target, int refclk, struct dpll *match_clock,
679                     struct dpll *best_clock)
680 {
681         struct drm_device *dev = crtc_state->base.crtc->dev;
682         struct dpll clock;
683         int err = target;
684
685         memset(best_clock, 0, sizeof(*best_clock));
686
687         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
688
689         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
690              clock.m1++) {
691                 for (clock.m2 = limit->m2.min;
692                      clock.m2 <= limit->m2.max; clock.m2++) {
693                         if (clock.m2 >= clock.m1)
694                                 break;
695                         for (clock.n = limit->n.min;
696                              clock.n <= limit->n.max; clock.n++) {
697                                 for (clock.p1 = limit->p1.min;
698                                         clock.p1 <= limit->p1.max; clock.p1++) {
699                                         int this_err;
700
701                                         i9xx_calc_dpll_params(refclk, &clock);
702                                         if (!intel_PLL_is_valid(to_i915(dev),
703                                                                 limit,
704                                                                 &clock))
705                                                 continue;
706                                         if (match_clock &&
707                                             clock.p != match_clock->p)
708                                                 continue;
709
710                                         this_err = abs(clock.dot - target);
711                                         if (this_err < err) {
712                                                 *best_clock = clock;
713                                                 err = this_err;
714                                         }
715                                 }
716                         }
717                 }
718         }
719
720         return (err != target);
721 }
722
723 /*
724  * Returns a set of divisors for the desired target clock with the given
725  * refclk, or FALSE.  The returned values represent the clock equation:
726  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
727  *
728  * Target and reference clocks are specified in kHz.
729  *
730  * If match_clock is provided, then best_clock P divider must match the P
731  * divider from @match_clock used for LVDS downclocking.
732  */
733 static bool
734 pnv_find_best_dpll(const struct intel_limit *limit,
735                    struct intel_crtc_state *crtc_state,
736                    int target, int refclk, struct dpll *match_clock,
737                    struct dpll *best_clock)
738 {
739         struct drm_device *dev = crtc_state->base.crtc->dev;
740         struct dpll clock;
741         int err = target;
742
743         memset(best_clock, 0, sizeof(*best_clock));
744
745         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746
747         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
748              clock.m1++) {
749                 for (clock.m2 = limit->m2.min;
750                      clock.m2 <= limit->m2.max; clock.m2++) {
751                         for (clock.n = limit->n.min;
752                              clock.n <= limit->n.max; clock.n++) {
753                                 for (clock.p1 = limit->p1.min;
754                                         clock.p1 <= limit->p1.max; clock.p1++) {
755                                         int this_err;
756
757                                         pnv_calc_dpll_params(refclk, &clock);
758                                         if (!intel_PLL_is_valid(to_i915(dev),
759                                                                 limit,
760                                                                 &clock))
761                                                 continue;
762                                         if (match_clock &&
763                                             clock.p != match_clock->p)
764                                                 continue;
765
766                                         this_err = abs(clock.dot - target);
767                                         if (this_err < err) {
768                                                 *best_clock = clock;
769                                                 err = this_err;
770                                         }
771                                 }
772                         }
773                 }
774         }
775
776         return (err != target);
777 }
778
779 /*
780  * Returns a set of divisors for the desired target clock with the given
781  * refclk, or FALSE.  The returned values represent the clock equation:
782  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
783  *
784  * Target and reference clocks are specified in kHz.
785  *
786  * If match_clock is provided, then best_clock P divider must match the P
787  * divider from @match_clock used for LVDS downclocking.
788  */
789 static bool
790 g4x_find_best_dpll(const struct intel_limit *limit,
791                    struct intel_crtc_state *crtc_state,
792                    int target, int refclk, struct dpll *match_clock,
793                    struct dpll *best_clock)
794 {
795         struct drm_device *dev = crtc_state->base.crtc->dev;
796         struct dpll clock;
797         int max_n;
798         bool found = false;
799         /* approximately equals target * 0.00585 */
800         int err_most = (target >> 8) + (target >> 9);
801
802         memset(best_clock, 0, sizeof(*best_clock));
803
804         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
805
806         max_n = limit->n.max;
807         /* based on hardware requirement, prefer smaller n to precision */
808         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809                 /* based on hardware requirement, prefere larger m1,m2 */
810                 for (clock.m1 = limit->m1.max;
811                      clock.m1 >= limit->m1.min; clock.m1--) {
812                         for (clock.m2 = limit->m2.max;
813                              clock.m2 >= limit->m2.min; clock.m2--) {
814                                 for (clock.p1 = limit->p1.max;
815                                      clock.p1 >= limit->p1.min; clock.p1--) {
816                                         int this_err;
817
818                                         i9xx_calc_dpll_params(refclk, &clock);
819                                         if (!intel_PLL_is_valid(to_i915(dev),
820                                                                 limit,
821                                                                 &clock))
822                                                 continue;
823
824                                         this_err = abs(clock.dot - target);
825                                         if (this_err < err_most) {
826                                                 *best_clock = clock;
827                                                 err_most = this_err;
828                                                 max_n = clock.n;
829                                                 found = true;
830                                         }
831                                 }
832                         }
833                 }
834         }
835         return found;
836 }
837
838 /*
839  * Check if the calculated PLL configuration is more optimal compared to the
840  * best configuration and error found so far. Return the calculated error.
841  */
842 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
843                                const struct dpll *calculated_clock,
844                                const struct dpll *best_clock,
845                                unsigned int best_error_ppm,
846                                unsigned int *error_ppm)
847 {
848         /*
849          * For CHV ignore the error and consider only the P value.
850          * Prefer a bigger P value based on HW requirements.
851          */
852         if (IS_CHERRYVIEW(to_i915(dev))) {
853                 *error_ppm = 0;
854
855                 return calculated_clock->p > best_clock->p;
856         }
857
858         if (WARN_ON_ONCE(!target_freq))
859                 return false;
860
861         *error_ppm = div_u64(1000000ULL *
862                                 abs(target_freq - calculated_clock->dot),
863                              target_freq);
864         /*
865          * Prefer a better P value over a better (smaller) error if the error
866          * is small. Ensure this preference for future configurations too by
867          * setting the error to 0.
868          */
869         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
870                 *error_ppm = 0;
871
872                 return true;
873         }
874
875         return *error_ppm + 10 < best_error_ppm;
876 }
877
878 /*
879  * Returns a set of divisors for the desired target clock with the given
880  * refclk, or FALSE.  The returned values represent the clock equation:
881  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
882  */
883 static bool
884 vlv_find_best_dpll(const struct intel_limit *limit,
885                    struct intel_crtc_state *crtc_state,
886                    int target, int refclk, struct dpll *match_clock,
887                    struct dpll *best_clock)
888 {
889         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
890         struct drm_device *dev = crtc->base.dev;
891         struct dpll clock;
892         unsigned int bestppm = 1000000;
893         /* min update 19.2 MHz */
894         int max_n = min(limit->n.max, refclk / 19200);
895         bool found = false;
896
897         target *= 5; /* fast clock */
898
899         memset(best_clock, 0, sizeof(*best_clock));
900
901         /* based on hardware requirement, prefer smaller n to precision */
902         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
903                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
904                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
905                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
906                                 clock.p = clock.p1 * clock.p2;
907                                 /* based on hardware requirement, prefer bigger m1,m2 values */
908                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
909                                         unsigned int ppm;
910
911                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
912                                                                      refclk * clock.m1);
913
914                                         vlv_calc_dpll_params(refclk, &clock);
915
916                                         if (!intel_PLL_is_valid(to_i915(dev),
917                                                                 limit,
918                                                                 &clock))
919                                                 continue;
920
921                                         if (!vlv_PLL_is_optimal(dev, target,
922                                                                 &clock,
923                                                                 best_clock,
924                                                                 bestppm, &ppm))
925                                                 continue;
926
927                                         *best_clock = clock;
928                                         bestppm = ppm;
929                                         found = true;
930                                 }
931                         }
932                 }
933         }
934
935         return found;
936 }
937
938 /*
939  * Returns a set of divisors for the desired target clock with the given
940  * refclk, or FALSE.  The returned values represent the clock equation:
941  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
942  */
943 static bool
944 chv_find_best_dpll(const struct intel_limit *limit,
945                    struct intel_crtc_state *crtc_state,
946                    int target, int refclk, struct dpll *match_clock,
947                    struct dpll *best_clock)
948 {
949         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
950         struct drm_device *dev = crtc->base.dev;
951         unsigned int best_error_ppm;
952         struct dpll clock;
953         uint64_t m2;
954         int found = false;
955
956         memset(best_clock, 0, sizeof(*best_clock));
957         best_error_ppm = 1000000;
958
959         /*
960          * Based on hardware doc, the n always set to 1, and m1 always
961          * set to 2.  If requires to support 200Mhz refclk, we need to
962          * revisit this because n may not 1 anymore.
963          */
964         clock.n = 1, clock.m1 = 2;
965         target *= 5;    /* fast clock */
966
967         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
968                 for (clock.p2 = limit->p2.p2_fast;
969                                 clock.p2 >= limit->p2.p2_slow;
970                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
971                         unsigned int error_ppm;
972
973                         clock.p = clock.p1 * clock.p2;
974
975                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
976                                         clock.n) << 22, refclk * clock.m1);
977
978                         if (m2 > INT_MAX/clock.m1)
979                                 continue;
980
981                         clock.m2 = m2;
982
983                         chv_calc_dpll_params(refclk, &clock);
984
985                         if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
986                                 continue;
987
988                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
989                                                 best_error_ppm, &error_ppm))
990                                 continue;
991
992                         *best_clock = clock;
993                         best_error_ppm = error_ppm;
994                         found = true;
995                 }
996         }
997
998         return found;
999 }
1000
1001 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1002                         struct dpll *best_clock)
1003 {
1004         int refclk = 100000;
1005         const struct intel_limit *limit = &intel_limits_bxt;
1006
1007         return chv_find_best_dpll(limit, crtc_state,
1008                                   target_clock, refclk, NULL, best_clock);
1009 }
1010
1011 bool intel_crtc_active(struct intel_crtc *crtc)
1012 {
1013         /* Be paranoid as we can arrive here with only partial
1014          * state retrieved from the hardware during setup.
1015          *
1016          * We can ditch the adjusted_mode.crtc_clock check as soon
1017          * as Haswell has gained clock readout/fastboot support.
1018          *
1019          * We can ditch the crtc->primary->fb check as soon as we can
1020          * properly reconstruct framebuffers.
1021          *
1022          * FIXME: The intel_crtc->active here should be switched to
1023          * crtc->state->active once we have proper CRTC states wired up
1024          * for atomic.
1025          */
1026         return crtc->active && crtc->base.primary->state->fb &&
1027                 crtc->config->base.adjusted_mode.crtc_clock;
1028 }
1029
1030 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1031                                              enum pipe pipe)
1032 {
1033         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1034
1035         return crtc->config->cpu_transcoder;
1036 }
1037
1038 static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
1039 {
1040         i915_reg_t reg = PIPEDSL(pipe);
1041         u32 line1, line2;
1042         u32 line_mask;
1043
1044         if (IS_GEN2(dev_priv))
1045                 line_mask = DSL_LINEMASK_GEN2;
1046         else
1047                 line_mask = DSL_LINEMASK_GEN3;
1048
1049         line1 = I915_READ(reg) & line_mask;
1050         msleep(5);
1051         line2 = I915_READ(reg) & line_mask;
1052
1053         return line1 == line2;
1054 }
1055
1056 /*
1057  * intel_wait_for_pipe_off - wait for pipe to turn off
1058  * @crtc: crtc whose pipe to wait for
1059  *
1060  * After disabling a pipe, we can't wait for vblank in the usual way,
1061  * spinning on the vblank interrupt status bit, since we won't actually
1062  * see an interrupt when the pipe is disabled.
1063  *
1064  * On Gen4 and above:
1065  *   wait for the pipe register state bit to turn off
1066  *
1067  * Otherwise:
1068  *   wait for the display line value to settle (it usually
1069  *   ends up stopping at the start of the next frame).
1070  *
1071  */
1072 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1073 {
1074         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1075         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1076         enum pipe pipe = crtc->pipe;
1077
1078         if (INTEL_GEN(dev_priv) >= 4) {
1079                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1080
1081                 /* Wait for the Pipe State to go off */
1082                 if (intel_wait_for_register(dev_priv,
1083                                             reg, I965_PIPECONF_ACTIVE, 0,
1084                                             100))
1085                         WARN(1, "pipe_off wait timed out\n");
1086         } else {
1087                 /* Wait for the display line to settle */
1088                 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1089                         WARN(1, "pipe_off wait timed out\n");
1090         }
1091 }
1092
1093 /* Only for pre-ILK configs */
1094 void assert_pll(struct drm_i915_private *dev_priv,
1095                 enum pipe pipe, bool state)
1096 {
1097         u32 val;
1098         bool cur_state;
1099
1100         val = I915_READ(DPLL(pipe));
1101         cur_state = !!(val & DPLL_VCO_ENABLE);
1102         I915_STATE_WARN(cur_state != state,
1103              "PLL state assertion failure (expected %s, current %s)\n",
1104                         onoff(state), onoff(cur_state));
1105 }
1106
1107 /* XXX: the dsi pll is shared between MIPI DSI ports */
1108 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1109 {
1110         u32 val;
1111         bool cur_state;
1112
1113         mutex_lock(&dev_priv->sb_lock);
1114         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1115         mutex_unlock(&dev_priv->sb_lock);
1116
1117         cur_state = val & DSI_PLL_VCO_EN;
1118         I915_STATE_WARN(cur_state != state,
1119              "DSI PLL state assertion failure (expected %s, current %s)\n",
1120                         onoff(state), onoff(cur_state));
1121 }
1122
1123 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1124                           enum pipe pipe, bool state)
1125 {
1126         bool cur_state;
1127         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128                                                                       pipe);
1129
1130         if (HAS_DDI(dev_priv)) {
1131                 /* DDI does not have a specific FDI_TX register */
1132                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1133                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1134         } else {
1135                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1136                 cur_state = !!(val & FDI_TX_ENABLE);
1137         }
1138         I915_STATE_WARN(cur_state != state,
1139              "FDI TX state assertion failure (expected %s, current %s)\n",
1140                         onoff(state), onoff(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146                           enum pipe pipe, bool state)
1147 {
1148         u32 val;
1149         bool cur_state;
1150
1151         val = I915_READ(FDI_RX_CTL(pipe));
1152         cur_state = !!(val & FDI_RX_ENABLE);
1153         I915_STATE_WARN(cur_state != state,
1154              "FDI RX state assertion failure (expected %s, current %s)\n",
1155                         onoff(state), onoff(cur_state));
1156 }
1157 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1159
1160 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1161                                       enum pipe pipe)
1162 {
1163         u32 val;
1164
1165         /* ILK FDI PLL is always enabled */
1166         if (IS_GEN5(dev_priv))
1167                 return;
1168
1169         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170         if (HAS_DDI(dev_priv))
1171                 return;
1172
1173         val = I915_READ(FDI_TX_CTL(pipe));
1174         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178                        enum pipe pipe, bool state)
1179 {
1180         u32 val;
1181         bool cur_state;
1182
1183         val = I915_READ(FDI_RX_CTL(pipe));
1184         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1185         I915_STATE_WARN(cur_state != state,
1186              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1187                         onoff(state), onoff(cur_state));
1188 }
1189
1190 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1191 {
1192         i915_reg_t pp_reg;
1193         u32 val;
1194         enum pipe panel_pipe = PIPE_A;
1195         bool locked = true;
1196
1197         if (WARN_ON(HAS_DDI(dev_priv)))
1198                 return;
1199
1200         if (HAS_PCH_SPLIT(dev_priv)) {
1201                 u32 port_sel;
1202
1203                 pp_reg = PP_CONTROL(0);
1204                 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1205
1206                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1207                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1208                         panel_pipe = PIPE_B;
1209                 /* XXX: else fix for eDP */
1210         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1211                 /* presumably write lock depends on pipe, not port select */
1212                 pp_reg = PP_CONTROL(pipe);
1213                 panel_pipe = pipe;
1214         } else {
1215                 pp_reg = PP_CONTROL(0);
1216                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1217                         panel_pipe = PIPE_B;
1218         }
1219
1220         val = I915_READ(pp_reg);
1221         if (!(val & PANEL_POWER_ON) ||
1222             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1223                 locked = false;
1224
1225         I915_STATE_WARN(panel_pipe == pipe && locked,
1226              "panel assertion failure, pipe %c regs locked\n",
1227              pipe_name(pipe));
1228 }
1229
1230 static void assert_cursor(struct drm_i915_private *dev_priv,
1231                           enum pipe pipe, bool state)
1232 {
1233         bool cur_state;
1234
1235         if (IS_845G(dev_priv) || IS_I865G(dev_priv))
1236                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1237         else
1238                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1239
1240         I915_STATE_WARN(cur_state != state,
1241              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1242                         pipe_name(pipe), onoff(state), onoff(cur_state));
1243 }
1244 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1245 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1246
1247 void assert_pipe(struct drm_i915_private *dev_priv,
1248                  enum pipe pipe, bool state)
1249 {
1250         bool cur_state;
1251         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1252                                                                       pipe);
1253         enum intel_display_power_domain power_domain;
1254
1255         /* if we need the pipe quirk it must be always on */
1256         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1257             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1258                 state = true;
1259
1260         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1261         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1262                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1263                 cur_state = !!(val & PIPECONF_ENABLE);
1264
1265                 intel_display_power_put(dev_priv, power_domain);
1266         } else {
1267                 cur_state = false;
1268         }
1269
1270         I915_STATE_WARN(cur_state != state,
1271              "pipe %c assertion failure (expected %s, current %s)\n",
1272                         pipe_name(pipe), onoff(state), onoff(cur_state));
1273 }
1274
1275 static void assert_plane(struct drm_i915_private *dev_priv,
1276                          enum plane plane, bool state)
1277 {
1278         u32 val;
1279         bool cur_state;
1280
1281         val = I915_READ(DSPCNTR(plane));
1282         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1283         I915_STATE_WARN(cur_state != state,
1284              "plane %c assertion failure (expected %s, current %s)\n",
1285                         plane_name(plane), onoff(state), onoff(cur_state));
1286 }
1287
1288 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1289 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1290
1291 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1292                                    enum pipe pipe)
1293 {
1294         int i;
1295
1296         /* Primary planes are fixed to pipes on gen4+ */
1297         if (INTEL_GEN(dev_priv) >= 4) {
1298                 u32 val = I915_READ(DSPCNTR(pipe));
1299                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1300                      "plane %c assertion failure, should be disabled but not\n",
1301                      plane_name(pipe));
1302                 return;
1303         }
1304
1305         /* Need to check both planes against the pipe */
1306         for_each_pipe(dev_priv, i) {
1307                 u32 val = I915_READ(DSPCNTR(i));
1308                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1309                         DISPPLANE_SEL_PIPE_SHIFT;
1310                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1311                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1312                      plane_name(i), pipe_name(pipe));
1313         }
1314 }
1315
1316 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1317                                     enum pipe pipe)
1318 {
1319         int sprite;
1320
1321         if (INTEL_GEN(dev_priv) >= 9) {
1322                 for_each_sprite(dev_priv, pipe, sprite) {
1323                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1324                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1325                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1326                              sprite, pipe_name(pipe));
1327                 }
1328         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1329                 for_each_sprite(dev_priv, pipe, sprite) {
1330                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1331                         I915_STATE_WARN(val & SP_ENABLE,
1332                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1333                              sprite_name(pipe, sprite), pipe_name(pipe));
1334                 }
1335         } else if (INTEL_GEN(dev_priv) >= 7) {
1336                 u32 val = I915_READ(SPRCTL(pipe));
1337                 I915_STATE_WARN(val & SPRITE_ENABLE,
1338                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1339                      plane_name(pipe), pipe_name(pipe));
1340         } else if (INTEL_GEN(dev_priv) >= 5) {
1341                 u32 val = I915_READ(DVSCNTR(pipe));
1342                 I915_STATE_WARN(val & DVS_ENABLE,
1343                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344                      plane_name(pipe), pipe_name(pipe));
1345         }
1346 }
1347
1348 static void assert_vblank_disabled(struct drm_crtc *crtc)
1349 {
1350         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1351                 drm_crtc_vblank_put(crtc);
1352 }
1353
1354 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355                                     enum pipe pipe)
1356 {
1357         u32 val;
1358         bool enabled;
1359
1360         val = I915_READ(PCH_TRANSCONF(pipe));
1361         enabled = !!(val & TRANS_ENABLE);
1362         I915_STATE_WARN(enabled,
1363              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1364              pipe_name(pipe));
1365 }
1366
1367 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1368                             enum pipe pipe, u32 port_sel, u32 val)
1369 {
1370         if ((val & DP_PORT_EN) == 0)
1371                 return false;
1372
1373         if (HAS_PCH_CPT(dev_priv)) {
1374                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1375                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1376                         return false;
1377         } else if (IS_CHERRYVIEW(dev_priv)) {
1378                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1379                         return false;
1380         } else {
1381                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1382                         return false;
1383         }
1384         return true;
1385 }
1386
1387 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1388                               enum pipe pipe, u32 val)
1389 {
1390         if ((val & SDVO_ENABLE) == 0)
1391                 return false;
1392
1393         if (HAS_PCH_CPT(dev_priv)) {
1394                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1395                         return false;
1396         } else if (IS_CHERRYVIEW(dev_priv)) {
1397                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1398                         return false;
1399         } else {
1400                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1401                         return false;
1402         }
1403         return true;
1404 }
1405
1406 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1407                               enum pipe pipe, u32 val)
1408 {
1409         if ((val & LVDS_PORT_EN) == 0)
1410                 return false;
1411
1412         if (HAS_PCH_CPT(dev_priv)) {
1413                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1414                         return false;
1415         } else {
1416                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1417                         return false;
1418         }
1419         return true;
1420 }
1421
1422 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1423                               enum pipe pipe, u32 val)
1424 {
1425         if ((val & ADPA_DAC_ENABLE) == 0)
1426                 return false;
1427         if (HAS_PCH_CPT(dev_priv)) {
1428                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1429                         return false;
1430         } else {
1431                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1432                         return false;
1433         }
1434         return true;
1435 }
1436
1437 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1438                                    enum pipe pipe, i915_reg_t reg,
1439                                    u32 port_sel)
1440 {
1441         u32 val = I915_READ(reg);
1442         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1443              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1444              i915_mmio_reg_offset(reg), pipe_name(pipe));
1445
1446         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1447              && (val & DP_PIPEB_SELECT),
1448              "IBX PCH dp port still using transcoder B\n");
1449 }
1450
1451 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1452                                      enum pipe pipe, i915_reg_t reg)
1453 {
1454         u32 val = I915_READ(reg);
1455         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1456              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1457              i915_mmio_reg_offset(reg), pipe_name(pipe));
1458
1459         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1460              && (val & SDVO_PIPE_B_SELECT),
1461              "IBX PCH hdmi port still using transcoder B\n");
1462 }
1463
1464 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1465                                       enum pipe pipe)
1466 {
1467         u32 val;
1468
1469         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1470         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1471         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1472
1473         val = I915_READ(PCH_ADPA);
1474         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1475              "PCH VGA enabled on transcoder %c, should be disabled\n",
1476              pipe_name(pipe));
1477
1478         val = I915_READ(PCH_LVDS);
1479         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1480              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1481              pipe_name(pipe));
1482
1483         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1484         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1485         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1486 }
1487
1488 static void _vlv_enable_pll(struct intel_crtc *crtc,
1489                             const struct intel_crtc_state *pipe_config)
1490 {
1491         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1492         enum pipe pipe = crtc->pipe;
1493
1494         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1495         POSTING_READ(DPLL(pipe));
1496         udelay(150);
1497
1498         if (intel_wait_for_register(dev_priv,
1499                                     DPLL(pipe),
1500                                     DPLL_LOCK_VLV,
1501                                     DPLL_LOCK_VLV,
1502                                     1))
1503                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1504 }
1505
1506 static void vlv_enable_pll(struct intel_crtc *crtc,
1507                            const struct intel_crtc_state *pipe_config)
1508 {
1509         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1510         enum pipe pipe = crtc->pipe;
1511
1512         assert_pipe_disabled(dev_priv, pipe);
1513
1514         /* PLL is protected by panel, make sure we can write it */
1515         assert_panel_unlocked(dev_priv, pipe);
1516
1517         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1518                 _vlv_enable_pll(crtc, pipe_config);
1519
1520         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1521         POSTING_READ(DPLL_MD(pipe));
1522 }
1523
1524
1525 static void _chv_enable_pll(struct intel_crtc *crtc,
1526                             const struct intel_crtc_state *pipe_config)
1527 {
1528         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1529         enum pipe pipe = crtc->pipe;
1530         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1531         u32 tmp;
1532
1533         mutex_lock(&dev_priv->sb_lock);
1534
1535         /* Enable back the 10bit clock to display controller */
1536         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1537         tmp |= DPIO_DCLKP_EN;
1538         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1539
1540         mutex_unlock(&dev_priv->sb_lock);
1541
1542         /*
1543          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1544          */
1545         udelay(1);
1546
1547         /* Enable PLL */
1548         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1549
1550         /* Check PLL is locked */
1551         if (intel_wait_for_register(dev_priv,
1552                                     DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1553                                     1))
1554                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1555 }
1556
1557 static void chv_enable_pll(struct intel_crtc *crtc,
1558                            const struct intel_crtc_state *pipe_config)
1559 {
1560         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1561         enum pipe pipe = crtc->pipe;
1562
1563         assert_pipe_disabled(dev_priv, pipe);
1564
1565         /* PLL is protected by panel, make sure we can write it */
1566         assert_panel_unlocked(dev_priv, pipe);
1567
1568         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1569                 _chv_enable_pll(crtc, pipe_config);
1570
1571         if (pipe != PIPE_A) {
1572                 /*
1573                  * WaPixelRepeatModeFixForC0:chv
1574                  *
1575                  * DPLLCMD is AWOL. Use chicken bits to propagate
1576                  * the value from DPLLBMD to either pipe B or C.
1577                  */
1578                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1579                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1580                 I915_WRITE(CBR4_VLV, 0);
1581                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1582
1583                 /*
1584                  * DPLLB VGA mode also seems to cause problems.
1585                  * We should always have it disabled.
1586                  */
1587                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1588         } else {
1589                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1590                 POSTING_READ(DPLL_MD(pipe));
1591         }
1592 }
1593
1594 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1595 {
1596         struct intel_crtc *crtc;
1597         int count = 0;
1598
1599         for_each_intel_crtc(&dev_priv->drm, crtc) {
1600                 count += crtc->base.state->active &&
1601                         intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1602         }
1603
1604         return count;
1605 }
1606
1607 static void i9xx_enable_pll(struct intel_crtc *crtc)
1608 {
1609         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1610         i915_reg_t reg = DPLL(crtc->pipe);
1611         u32 dpll = crtc->config->dpll_hw_state.dpll;
1612
1613         assert_pipe_disabled(dev_priv, crtc->pipe);
1614
1615         /* PLL is protected by panel, make sure we can write it */
1616         if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1617                 assert_panel_unlocked(dev_priv, crtc->pipe);
1618
1619         /* Enable DVO 2x clock on both PLLs if necessary */
1620         if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1621                 /*
1622                  * It appears to be important that we don't enable this
1623                  * for the current pipe before otherwise configuring the
1624                  * PLL. No idea how this should be handled if multiple
1625                  * DVO outputs are enabled simultaneosly.
1626                  */
1627                 dpll |= DPLL_DVO_2X_MODE;
1628                 I915_WRITE(DPLL(!crtc->pipe),
1629                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1630         }
1631
1632         /*
1633          * Apparently we need to have VGA mode enabled prior to changing
1634          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1635          * dividers, even though the register value does change.
1636          */
1637         I915_WRITE(reg, 0);
1638
1639         I915_WRITE(reg, dpll);
1640
1641         /* Wait for the clocks to stabilize. */
1642         POSTING_READ(reg);
1643         udelay(150);
1644
1645         if (INTEL_GEN(dev_priv) >= 4) {
1646                 I915_WRITE(DPLL_MD(crtc->pipe),
1647                            crtc->config->dpll_hw_state.dpll_md);
1648         } else {
1649                 /* The pixel multiplier can only be updated once the
1650                  * DPLL is enabled and the clocks are stable.
1651                  *
1652                  * So write it again.
1653                  */
1654                 I915_WRITE(reg, dpll);
1655         }
1656
1657         /* We do this three times for luck */
1658         I915_WRITE(reg, dpll);
1659         POSTING_READ(reg);
1660         udelay(150); /* wait for warmup */
1661         I915_WRITE(reg, dpll);
1662         POSTING_READ(reg);
1663         udelay(150); /* wait for warmup */
1664         I915_WRITE(reg, dpll);
1665         POSTING_READ(reg);
1666         udelay(150); /* wait for warmup */
1667 }
1668
1669 /**
1670  * i9xx_disable_pll - disable a PLL
1671  * @dev_priv: i915 private structure
1672  * @pipe: pipe PLL to disable
1673  *
1674  * Disable the PLL for @pipe, making sure the pipe is off first.
1675  *
1676  * Note!  This is for pre-ILK only.
1677  */
1678 static void i9xx_disable_pll(struct intel_crtc *crtc)
1679 {
1680         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1681         enum pipe pipe = crtc->pipe;
1682
1683         /* Disable DVO 2x clock on both PLLs if necessary */
1684         if (IS_I830(dev_priv) &&
1685             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1686             !intel_num_dvo_pipes(dev_priv)) {
1687                 I915_WRITE(DPLL(PIPE_B),
1688                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1689                 I915_WRITE(DPLL(PIPE_A),
1690                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1691         }
1692
1693         /* Don't disable pipe or pipe PLLs if needed */
1694         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1695             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1696                 return;
1697
1698         /* Make sure the pipe isn't still relying on us */
1699         assert_pipe_disabled(dev_priv, pipe);
1700
1701         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1702         POSTING_READ(DPLL(pipe));
1703 }
1704
1705 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1706 {
1707         u32 val;
1708
1709         /* Make sure the pipe isn't still relying on us */
1710         assert_pipe_disabled(dev_priv, pipe);
1711
1712         val = DPLL_INTEGRATED_REF_CLK_VLV |
1713                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1714         if (pipe != PIPE_A)
1715                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1716
1717         I915_WRITE(DPLL(pipe), val);
1718         POSTING_READ(DPLL(pipe));
1719 }
1720
1721 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1722 {
1723         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1724         u32 val;
1725
1726         /* Make sure the pipe isn't still relying on us */
1727         assert_pipe_disabled(dev_priv, pipe);
1728
1729         val = DPLL_SSC_REF_CLK_CHV |
1730                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1731         if (pipe != PIPE_A)
1732                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1733
1734         I915_WRITE(DPLL(pipe), val);
1735         POSTING_READ(DPLL(pipe));
1736
1737         mutex_lock(&dev_priv->sb_lock);
1738
1739         /* Disable 10bit clock to display controller */
1740         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1741         val &= ~DPIO_DCLKP_EN;
1742         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1743
1744         mutex_unlock(&dev_priv->sb_lock);
1745 }
1746
1747 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1748                          struct intel_digital_port *dport,
1749                          unsigned int expected_mask)
1750 {
1751         u32 port_mask;
1752         i915_reg_t dpll_reg;
1753
1754         switch (dport->port) {
1755         case PORT_B:
1756                 port_mask = DPLL_PORTB_READY_MASK;
1757                 dpll_reg = DPLL(0);
1758                 break;
1759         case PORT_C:
1760                 port_mask = DPLL_PORTC_READY_MASK;
1761                 dpll_reg = DPLL(0);
1762                 expected_mask <<= 4;
1763                 break;
1764         case PORT_D:
1765                 port_mask = DPLL_PORTD_READY_MASK;
1766                 dpll_reg = DPIO_PHY_STATUS;
1767                 break;
1768         default:
1769                 BUG();
1770         }
1771
1772         if (intel_wait_for_register(dev_priv,
1773                                     dpll_reg, port_mask, expected_mask,
1774                                     1000))
1775                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1776                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1777 }
1778
1779 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1780                                            enum pipe pipe)
1781 {
1782         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1783                                                                 pipe);
1784         i915_reg_t reg;
1785         uint32_t val, pipeconf_val;
1786
1787         /* Make sure PCH DPLL is enabled */
1788         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1789
1790         /* FDI must be feeding us bits for PCH ports */
1791         assert_fdi_tx_enabled(dev_priv, pipe);
1792         assert_fdi_rx_enabled(dev_priv, pipe);
1793
1794         if (HAS_PCH_CPT(dev_priv)) {
1795                 /* Workaround: Set the timing override bit before enabling the
1796                  * pch transcoder. */
1797                 reg = TRANS_CHICKEN2(pipe);
1798                 val = I915_READ(reg);
1799                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1800                 I915_WRITE(reg, val);
1801         }
1802
1803         reg = PCH_TRANSCONF(pipe);
1804         val = I915_READ(reg);
1805         pipeconf_val = I915_READ(PIPECONF(pipe));
1806
1807         if (HAS_PCH_IBX(dev_priv)) {
1808                 /*
1809                  * Make the BPC in transcoder be consistent with
1810                  * that in pipeconf reg. For HDMI we must use 8bpc
1811                  * here for both 8bpc and 12bpc.
1812                  */
1813                 val &= ~PIPECONF_BPC_MASK;
1814                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1815                         val |= PIPECONF_8BPC;
1816                 else
1817                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1818         }
1819
1820         val &= ~TRANS_INTERLACE_MASK;
1821         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1822                 if (HAS_PCH_IBX(dev_priv) &&
1823                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1824                         val |= TRANS_LEGACY_INTERLACED_ILK;
1825                 else
1826                         val |= TRANS_INTERLACED;
1827         else
1828                 val |= TRANS_PROGRESSIVE;
1829
1830         I915_WRITE(reg, val | TRANS_ENABLE);
1831         if (intel_wait_for_register(dev_priv,
1832                                     reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1833                                     100))
1834                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1835 }
1836
1837 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1838                                       enum transcoder cpu_transcoder)
1839 {
1840         u32 val, pipeconf_val;
1841
1842         /* FDI must be feeding us bits for PCH ports */
1843         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1844         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1845
1846         /* Workaround: set timing override bit. */
1847         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1848         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1849         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1850
1851         val = TRANS_ENABLE;
1852         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1853
1854         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1855             PIPECONF_INTERLACED_ILK)
1856                 val |= TRANS_INTERLACED;
1857         else
1858                 val |= TRANS_PROGRESSIVE;
1859
1860         I915_WRITE(LPT_TRANSCONF, val);
1861         if (intel_wait_for_register(dev_priv,
1862                                     LPT_TRANSCONF,
1863                                     TRANS_STATE_ENABLE,
1864                                     TRANS_STATE_ENABLE,
1865                                     100))
1866                 DRM_ERROR("Failed to enable PCH transcoder\n");
1867 }
1868
1869 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1870                                             enum pipe pipe)
1871 {
1872         i915_reg_t reg;
1873         uint32_t val;
1874
1875         /* FDI relies on the transcoder */
1876         assert_fdi_tx_disabled(dev_priv, pipe);
1877         assert_fdi_rx_disabled(dev_priv, pipe);
1878
1879         /* Ports must be off as well */
1880         assert_pch_ports_disabled(dev_priv, pipe);
1881
1882         reg = PCH_TRANSCONF(pipe);
1883         val = I915_READ(reg);
1884         val &= ~TRANS_ENABLE;
1885         I915_WRITE(reg, val);
1886         /* wait for PCH transcoder off, transcoder state */
1887         if (intel_wait_for_register(dev_priv,
1888                                     reg, TRANS_STATE_ENABLE, 0,
1889                                     50))
1890                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1891
1892         if (HAS_PCH_CPT(dev_priv)) {
1893                 /* Workaround: Clear the timing override chicken bit again. */
1894                 reg = TRANS_CHICKEN2(pipe);
1895                 val = I915_READ(reg);
1896                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1897                 I915_WRITE(reg, val);
1898         }
1899 }
1900
1901 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1902 {
1903         u32 val;
1904
1905         val = I915_READ(LPT_TRANSCONF);
1906         val &= ~TRANS_ENABLE;
1907         I915_WRITE(LPT_TRANSCONF, val);
1908         /* wait for PCH transcoder off, transcoder state */
1909         if (intel_wait_for_register(dev_priv,
1910                                     LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1911                                     50))
1912                 DRM_ERROR("Failed to disable PCH transcoder\n");
1913
1914         /* Workaround: clear timing override bit. */
1915         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1916         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1917         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1918 }
1919
1920 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1921 {
1922         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1923
1924         WARN_ON(!crtc->config->has_pch_encoder);
1925
1926         if (HAS_PCH_LPT(dev_priv))
1927                 return TRANSCODER_A;
1928         else
1929                 return (enum transcoder) crtc->pipe;
1930 }
1931
1932 /**
1933  * intel_enable_pipe - enable a pipe, asserting requirements
1934  * @crtc: crtc responsible for the pipe
1935  *
1936  * Enable @crtc's pipe, making sure that various hardware specific requirements
1937  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1938  */
1939 static void intel_enable_pipe(struct intel_crtc *crtc)
1940 {
1941         struct drm_device *dev = crtc->base.dev;
1942         struct drm_i915_private *dev_priv = to_i915(dev);
1943         enum pipe pipe = crtc->pipe;
1944         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1945         i915_reg_t reg;
1946         u32 val;
1947
1948         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1949
1950         assert_planes_disabled(dev_priv, pipe);
1951         assert_cursor_disabled(dev_priv, pipe);
1952         assert_sprites_disabled(dev_priv, pipe);
1953
1954         /*
1955          * A pipe without a PLL won't actually be able to drive bits from
1956          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1957          * need the check.
1958          */
1959         if (HAS_GMCH_DISPLAY(dev_priv)) {
1960                 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1961                         assert_dsi_pll_enabled(dev_priv);
1962                 else
1963                         assert_pll_enabled(dev_priv, pipe);
1964         } else {
1965                 if (crtc->config->has_pch_encoder) {
1966                         /* if driving the PCH, we need FDI enabled */
1967                         assert_fdi_rx_pll_enabled(dev_priv,
1968                                                   (enum pipe) intel_crtc_pch_transcoder(crtc));
1969                         assert_fdi_tx_pll_enabled(dev_priv,
1970                                                   (enum pipe) cpu_transcoder);
1971                 }
1972                 /* FIXME: assert CPU port conditions for SNB+ */
1973         }
1974
1975         reg = PIPECONF(cpu_transcoder);
1976         val = I915_READ(reg);
1977         if (val & PIPECONF_ENABLE) {
1978                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1979                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1980                 return;
1981         }
1982
1983         I915_WRITE(reg, val | PIPECONF_ENABLE);
1984         POSTING_READ(reg);
1985
1986         /*
1987          * Until the pipe starts DSL will read as 0, which would cause
1988          * an apparent vblank timestamp jump, which messes up also the
1989          * frame count when it's derived from the timestamps. So let's
1990          * wait for the pipe to start properly before we call
1991          * drm_crtc_vblank_on()
1992          */
1993         if (dev->max_vblank_count == 0 &&
1994             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1995                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1996 }
1997
1998 /**
1999  * intel_disable_pipe - disable a pipe, asserting requirements
2000  * @crtc: crtc whose pipes is to be disabled
2001  *
2002  * Disable the pipe of @crtc, making sure that various hardware
2003  * specific requirements are met, if applicable, e.g. plane
2004  * disabled, panel fitter off, etc.
2005  *
2006  * Will wait until the pipe has shut down before returning.
2007  */
2008 static void intel_disable_pipe(struct intel_crtc *crtc)
2009 {
2010         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2011         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2012         enum pipe pipe = crtc->pipe;
2013         i915_reg_t reg;
2014         u32 val;
2015
2016         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2017
2018         /*
2019          * Make sure planes won't keep trying to pump pixels to us,
2020          * or we might hang the display.
2021          */
2022         assert_planes_disabled(dev_priv, pipe);
2023         assert_cursor_disabled(dev_priv, pipe);
2024         assert_sprites_disabled(dev_priv, pipe);
2025
2026         reg = PIPECONF(cpu_transcoder);
2027         val = I915_READ(reg);
2028         if ((val & PIPECONF_ENABLE) == 0)
2029                 return;
2030
2031         /*
2032          * Double wide has implications for planes
2033          * so best keep it disabled when not needed.
2034          */
2035         if (crtc->config->double_wide)
2036                 val &= ~PIPECONF_DOUBLE_WIDE;
2037
2038         /* Don't disable pipe or pipe PLLs if needed */
2039         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2040             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2041                 val &= ~PIPECONF_ENABLE;
2042
2043         I915_WRITE(reg, val);
2044         if ((val & PIPECONF_ENABLE) == 0)
2045                 intel_wait_for_pipe_off(crtc);
2046 }
2047
2048 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2049 {
2050         return IS_GEN2(dev_priv) ? 2048 : 4096;
2051 }
2052
2053 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2054                                            uint64_t fb_modifier, unsigned int cpp)
2055 {
2056         switch (fb_modifier) {
2057         case DRM_FORMAT_MOD_NONE:
2058                 return cpp;
2059         case I915_FORMAT_MOD_X_TILED:
2060                 if (IS_GEN2(dev_priv))
2061                         return 128;
2062                 else
2063                         return 512;
2064         case I915_FORMAT_MOD_Y_TILED:
2065                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2066                         return 128;
2067                 else
2068                         return 512;
2069         case I915_FORMAT_MOD_Yf_TILED:
2070                 switch (cpp) {
2071                 case 1:
2072                         return 64;
2073                 case 2:
2074                 case 4:
2075                         return 128;
2076                 case 8:
2077                 case 16:
2078                         return 256;
2079                 default:
2080                         MISSING_CASE(cpp);
2081                         return cpp;
2082                 }
2083                 break;
2084         default:
2085                 MISSING_CASE(fb_modifier);
2086                 return cpp;
2087         }
2088 }
2089
2090 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2091                                uint64_t fb_modifier, unsigned int cpp)
2092 {
2093         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2094                 return 1;
2095         else
2096                 return intel_tile_size(dev_priv) /
2097                         intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2098 }
2099
2100 /* Return the tile dimensions in pixel units */
2101 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2102                             unsigned int *tile_width,
2103                             unsigned int *tile_height,
2104                             uint64_t fb_modifier,
2105                             unsigned int cpp)
2106 {
2107         unsigned int tile_width_bytes =
2108                 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2109
2110         *tile_width = tile_width_bytes / cpp;
2111         *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2112 }
2113
2114 unsigned int
2115 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2116                       uint32_t pixel_format, uint64_t fb_modifier)
2117 {
2118         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2119         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2120
2121         return ALIGN(height, tile_height);
2122 }
2123
2124 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2125 {
2126         unsigned int size = 0;
2127         int i;
2128
2129         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2130                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2131
2132         return size;
2133 }
2134
2135 static void
2136 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2137                         const struct drm_framebuffer *fb,
2138                         unsigned int rotation)
2139 {
2140         if (drm_rotation_90_or_270(rotation)) {
2141                 *view = i915_ggtt_view_rotated;
2142                 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2143         } else {
2144                 *view = i915_ggtt_view_normal;
2145         }
2146 }
2147
2148 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2149 {
2150         if (INTEL_INFO(dev_priv)->gen >= 9)
2151                 return 256 * 1024;
2152         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2153                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2154                 return 128 * 1024;
2155         else if (INTEL_INFO(dev_priv)->gen >= 4)
2156                 return 4 * 1024;
2157         else
2158                 return 0;
2159 }
2160
2161 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2162                                          uint64_t fb_modifier)
2163 {
2164         switch (fb_modifier) {
2165         case DRM_FORMAT_MOD_NONE:
2166                 return intel_linear_alignment(dev_priv);
2167         case I915_FORMAT_MOD_X_TILED:
2168                 if (INTEL_INFO(dev_priv)->gen >= 9)
2169                         return 256 * 1024;
2170                 return 0;
2171         case I915_FORMAT_MOD_Y_TILED:
2172         case I915_FORMAT_MOD_Yf_TILED:
2173                 return 1 * 1024 * 1024;
2174         default:
2175                 MISSING_CASE(fb_modifier);
2176                 return 0;
2177         }
2178 }
2179
2180 struct i915_vma *
2181 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2182 {
2183         struct drm_device *dev = fb->dev;
2184         struct drm_i915_private *dev_priv = to_i915(dev);
2185         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2186         struct i915_ggtt_view view;
2187         struct i915_vma *vma;
2188         u32 alignment;
2189
2190         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2191
2192         alignment = intel_surf_alignment(dev_priv, fb->modifier);
2193
2194         intel_fill_fb_ggtt_view(&view, fb, rotation);
2195
2196         /* Note that the w/a also requires 64 PTE of padding following the
2197          * bo. We currently fill all unused PTE with the shadow page and so
2198          * we should always have valid PTE following the scanout preventing
2199          * the VT-d warning.
2200          */
2201         if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2202                 alignment = 256 * 1024;
2203
2204         /*
2205          * Global gtt pte registers are special registers which actually forward
2206          * writes to a chunk of system memory. Which means that there is no risk
2207          * that the register values disappear as soon as we call
2208          * intel_runtime_pm_put(), so it is correct to wrap only the
2209          * pin/unpin/fence and not more.
2210          */
2211         intel_runtime_pm_get(dev_priv);
2212
2213         vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2214         if (IS_ERR(vma))
2215                 goto err;
2216
2217         if (i915_vma_is_map_and_fenceable(vma)) {
2218                 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2219                  * fence, whereas 965+ only requires a fence if using
2220                  * framebuffer compression.  For simplicity, we always, when
2221                  * possible, install a fence as the cost is not that onerous.
2222                  *
2223                  * If we fail to fence the tiled scanout, then either the
2224                  * modeset will reject the change (which is highly unlikely as
2225                  * the affected systems, all but one, do not have unmappable
2226                  * space) or we will not be able to enable full powersaving
2227                  * techniques (also likely not to apply due to various limits
2228                  * FBC and the like impose on the size of the buffer, which
2229                  * presumably we violated anyway with this unmappable buffer).
2230                  * Anyway, it is presumably better to stumble onwards with
2231                  * something and try to run the system in a "less than optimal"
2232                  * mode that matches the user configuration.
2233                  */
2234                 if (i915_vma_get_fence(vma) == 0)
2235                         i915_vma_pin_fence(vma);
2236         }
2237
2238         i915_vma_get(vma);
2239 err:
2240         intel_runtime_pm_put(dev_priv);
2241         return vma;
2242 }
2243
2244 void intel_unpin_fb_vma(struct i915_vma *vma)
2245 {
2246         lockdep_assert_held(&vma->vm->dev->struct_mutex);
2247
2248         if (WARN_ON_ONCE(!vma))
2249                 return;
2250
2251         i915_vma_unpin_fence(vma);
2252         i915_gem_object_unpin_from_display_plane(vma);
2253         i915_vma_put(vma);
2254 }
2255
2256 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2257                           unsigned int rotation)
2258 {
2259         if (drm_rotation_90_or_270(rotation))
2260                 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2261         else
2262                 return fb->pitches[plane];
2263 }
2264
2265 /*
2266  * Convert the x/y offsets into a linear offset.
2267  * Only valid with 0/180 degree rotation, which is fine since linear
2268  * offset is only used with linear buffers on pre-hsw and tiled buffers
2269  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2270  */
2271 u32 intel_fb_xy_to_linear(int x, int y,
2272                           const struct intel_plane_state *state,
2273                           int plane)
2274 {
2275         const struct drm_framebuffer *fb = state->base.fb;
2276         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2277         unsigned int pitch = fb->pitches[plane];
2278
2279         return y * pitch + x * cpp;
2280 }
2281
2282 /*
2283  * Add the x/y offsets derived from fb->offsets[] to the user
2284  * specified plane src x/y offsets. The resulting x/y offsets
2285  * specify the start of scanout from the beginning of the gtt mapping.
2286  */
2287 void intel_add_fb_offsets(int *x, int *y,
2288                           const struct intel_plane_state *state,
2289                           int plane)
2290
2291 {
2292         const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2293         unsigned int rotation = state->base.rotation;
2294
2295         if (drm_rotation_90_or_270(rotation)) {
2296                 *x += intel_fb->rotated[plane].x;
2297                 *y += intel_fb->rotated[plane].y;
2298         } else {
2299                 *x += intel_fb->normal[plane].x;
2300                 *y += intel_fb->normal[plane].y;
2301         }
2302 }
2303
2304 /*
2305  * Input tile dimensions and pitch must already be
2306  * rotated to match x and y, and in pixel units.
2307  */
2308 static u32 _intel_adjust_tile_offset(int *x, int *y,
2309                                      unsigned int tile_width,
2310                                      unsigned int tile_height,
2311                                      unsigned int tile_size,
2312                                      unsigned int pitch_tiles,
2313                                      u32 old_offset,
2314                                      u32 new_offset)
2315 {
2316         unsigned int pitch_pixels = pitch_tiles * tile_width;
2317         unsigned int tiles;
2318
2319         WARN_ON(old_offset & (tile_size - 1));
2320         WARN_ON(new_offset & (tile_size - 1));
2321         WARN_ON(new_offset > old_offset);
2322
2323         tiles = (old_offset - new_offset) / tile_size;
2324
2325         *y += tiles / pitch_tiles * tile_height;
2326         *x += tiles % pitch_tiles * tile_width;
2327
2328         /* minimize x in case it got needlessly big */
2329         *y += *x / pitch_pixels * tile_height;
2330         *x %= pitch_pixels;
2331
2332         return new_offset;
2333 }
2334
2335 /*
2336  * Adjust the tile offset by moving the difference into
2337  * the x/y offsets.
2338  */
2339 static u32 intel_adjust_tile_offset(int *x, int *y,
2340                                     const struct intel_plane_state *state, int plane,
2341                                     u32 old_offset, u32 new_offset)
2342 {
2343         const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2344         const struct drm_framebuffer *fb = state->base.fb;
2345         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2346         unsigned int rotation = state->base.rotation;
2347         unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2348
2349         WARN_ON(new_offset > old_offset);
2350
2351         if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2352                 unsigned int tile_size, tile_width, tile_height;
2353                 unsigned int pitch_tiles;
2354
2355                 tile_size = intel_tile_size(dev_priv);
2356                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2357                                 fb->modifier, cpp);
2358
2359                 if (drm_rotation_90_or_270(rotation)) {
2360                         pitch_tiles = pitch / tile_height;
2361                         swap(tile_width, tile_height);
2362                 } else {
2363                         pitch_tiles = pitch / (tile_width * cpp);
2364                 }
2365
2366                 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2367                                           tile_size, pitch_tiles,
2368                                           old_offset, new_offset);
2369         } else {
2370                 old_offset += *y * pitch + *x * cpp;
2371
2372                 *y = (old_offset - new_offset) / pitch;
2373                 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2374         }
2375
2376         return new_offset;
2377 }
2378
2379 /*
2380  * Computes the linear offset to the base tile and adjusts
2381  * x, y. bytes per pixel is assumed to be a power-of-two.
2382  *
2383  * In the 90/270 rotated case, x and y are assumed
2384  * to be already rotated to match the rotated GTT view, and
2385  * pitch is the tile_height aligned framebuffer height.
2386  *
2387  * This function is used when computing the derived information
2388  * under intel_framebuffer, so using any of that information
2389  * here is not allowed. Anything under drm_framebuffer can be
2390  * used. This is why the user has to pass in the pitch since it
2391  * is specified in the rotated orientation.
2392  */
2393 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2394                                       int *x, int *y,
2395                                       const struct drm_framebuffer *fb, int plane,
2396                                       unsigned int pitch,
2397                                       unsigned int rotation,
2398                                       u32 alignment)
2399 {
2400         uint64_t fb_modifier = fb->modifier;
2401         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2402         u32 offset, offset_aligned;
2403
2404         if (alignment)
2405                 alignment--;
2406
2407         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2408                 unsigned int tile_size, tile_width, tile_height;
2409                 unsigned int tile_rows, tiles, pitch_tiles;
2410
2411                 tile_size = intel_tile_size(dev_priv);
2412                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2413                                 fb_modifier, cpp);
2414
2415                 if (drm_rotation_90_or_270(rotation)) {
2416                         pitch_tiles = pitch / tile_height;
2417                         swap(tile_width, tile_height);
2418                 } else {
2419                         pitch_tiles = pitch / (tile_width * cpp);
2420                 }
2421
2422                 tile_rows = *y / tile_height;
2423                 *y %= tile_height;
2424
2425                 tiles = *x / tile_width;
2426                 *x %= tile_width;
2427
2428                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2429                 offset_aligned = offset & ~alignment;
2430
2431                 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2432                                           tile_size, pitch_tiles,
2433                                           offset, offset_aligned);
2434         } else {
2435                 offset = *y * pitch + *x * cpp;
2436                 offset_aligned = offset & ~alignment;
2437
2438                 *y = (offset & alignment) / pitch;
2439                 *x = ((offset & alignment) - *y * pitch) / cpp;
2440         }
2441
2442         return offset_aligned;
2443 }
2444
2445 u32 intel_compute_tile_offset(int *x, int *y,
2446                               const struct intel_plane_state *state,
2447                               int plane)
2448 {
2449         const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2450         const struct drm_framebuffer *fb = state->base.fb;
2451         unsigned int rotation = state->base.rotation;
2452         int pitch = intel_fb_pitch(fb, plane, rotation);
2453         u32 alignment;
2454
2455         /* AUX_DIST needs only 4K alignment */
2456         if (fb->pixel_format == DRM_FORMAT_NV12 && plane == 1)
2457                 alignment = 4096;
2458         else
2459                 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2460
2461         return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2462                                           rotation, alignment);
2463 }
2464
2465 /* Convert the fb->offset[] linear offset into x/y offsets */
2466 static void intel_fb_offset_to_xy(int *x, int *y,
2467                                   const struct drm_framebuffer *fb, int plane)
2468 {
2469         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2470         unsigned int pitch = fb->pitches[plane];
2471         u32 linear_offset = fb->offsets[plane];
2472
2473         *y = linear_offset / pitch;
2474         *x = linear_offset % pitch / cpp;
2475 }
2476
2477 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2478 {
2479         switch (fb_modifier) {
2480         case I915_FORMAT_MOD_X_TILED:
2481                 return I915_TILING_X;
2482         case I915_FORMAT_MOD_Y_TILED:
2483                 return I915_TILING_Y;
2484         default:
2485                 return I915_TILING_NONE;
2486         }
2487 }
2488
2489 static int
2490 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2491                    struct drm_framebuffer *fb)
2492 {
2493         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2494         struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2495         u32 gtt_offset_rotated = 0;
2496         unsigned int max_size = 0;
2497         uint32_t format = fb->pixel_format;
2498         int i, num_planes = drm_format_num_planes(format);
2499         unsigned int tile_size = intel_tile_size(dev_priv);
2500
2501         for (i = 0; i < num_planes; i++) {
2502                 unsigned int width, height;
2503                 unsigned int cpp, size;
2504                 u32 offset;
2505                 int x, y;
2506
2507                 cpp = drm_format_plane_cpp(format, i);
2508                 width = drm_format_plane_width(fb->width, format, i);
2509                 height = drm_format_plane_height(fb->height, format, i);
2510
2511                 intel_fb_offset_to_xy(&x, &y, fb, i);
2512
2513                 /*
2514                  * The fence (if used) is aligned to the start of the object
2515                  * so having the framebuffer wrap around across the edge of the
2516                  * fenced region doesn't really work. We have no API to configure
2517                  * the fence start offset within the object (nor could we probably
2518                  * on gen2/3). So it's just easier if we just require that the
2519                  * fb layout agrees with the fence layout. We already check that the
2520                  * fb stride matches the fence stride elsewhere.
2521                  */
2522                 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2523                     (x + width) * cpp > fb->pitches[i]) {
2524                         DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2525                                   i, fb->offsets[i]);
2526                         return -EINVAL;
2527                 }
2528
2529                 /*
2530                  * First pixel of the framebuffer from
2531                  * the start of the normal gtt mapping.
2532                  */
2533                 intel_fb->normal[i].x = x;
2534                 intel_fb->normal[i].y = y;
2535
2536                 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2537                                                     fb, 0, fb->pitches[i],
2538                                                     DRM_ROTATE_0, tile_size);
2539                 offset /= tile_size;
2540
2541                 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2542                         unsigned int tile_width, tile_height;
2543                         unsigned int pitch_tiles;
2544                         struct drm_rect r;
2545
2546                         intel_tile_dims(dev_priv, &tile_width, &tile_height,
2547                                         fb->modifier, cpp);
2548
2549                         rot_info->plane[i].offset = offset;
2550                         rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2551                         rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2552                         rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2553
2554                         intel_fb->rotated[i].pitch =
2555                                 rot_info->plane[i].height * tile_height;
2556
2557                         /* how many tiles does this plane need */
2558                         size = rot_info->plane[i].stride * rot_info->plane[i].height;
2559                         /*
2560                          * If the plane isn't horizontally tile aligned,
2561                          * we need one more tile.
2562                          */
2563                         if (x != 0)
2564                                 size++;
2565
2566                         /* rotate the x/y offsets to match the GTT view */
2567                         r.x1 = x;
2568                         r.y1 = y;
2569                         r.x2 = x + width;
2570                         r.y2 = y + height;
2571                         drm_rect_rotate(&r,
2572                                         rot_info->plane[i].width * tile_width,
2573                                         rot_info->plane[i].height * tile_height,
2574                                         DRM_ROTATE_270);
2575                         x = r.x1;
2576                         y = r.y1;
2577
2578                         /* rotate the tile dimensions to match the GTT view */
2579                         pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2580                         swap(tile_width, tile_height);
2581
2582                         /*
2583                          * We only keep the x/y offsets, so push all of the
2584                          * gtt offset into the x/y offsets.
2585                          */
2586                         _intel_adjust_tile_offset(&x, &y,
2587                                                   tile_width, tile_height,
2588                                                   tile_size, pitch_tiles,
2589                                                   gtt_offset_rotated * tile_size, 0);
2590
2591                         gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2592
2593                         /*
2594                          * First pixel of the framebuffer from
2595                          * the start of the rotated gtt mapping.
2596                          */
2597                         intel_fb->rotated[i].x = x;
2598                         intel_fb->rotated[i].y = y;
2599                 } else {
2600                         size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2601                                             x * cpp, tile_size);
2602                 }
2603
2604                 /* how many tiles in total needed in the bo */
2605                 max_size = max(max_size, offset + size);
2606         }
2607
2608         if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2609                 DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2610                           max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2611                 return -EINVAL;
2612         }
2613
2614         return 0;
2615 }
2616
2617 static int i9xx_format_to_fourcc(int format)
2618 {
2619         switch (format) {
2620         case DISPPLANE_8BPP:
2621                 return DRM_FORMAT_C8;
2622         case DISPPLANE_BGRX555:
2623                 return DRM_FORMAT_XRGB1555;
2624         case DISPPLANE_BGRX565:
2625                 return DRM_FORMAT_RGB565;
2626         default:
2627         case DISPPLANE_BGRX888:
2628                 return DRM_FORMAT_XRGB8888;
2629         case DISPPLANE_RGBX888:
2630                 return DRM_FORMAT_XBGR8888;
2631         case DISPPLANE_BGRX101010:
2632                 return DRM_FORMAT_XRGB2101010;
2633         case DISPPLANE_RGBX101010:
2634                 return DRM_FORMAT_XBGR2101010;
2635         }
2636 }
2637
2638 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2639 {
2640         switch (format) {
2641         case PLANE_CTL_FORMAT_RGB_565:
2642                 return DRM_FORMAT_RGB565;
2643         default:
2644         case PLANE_CTL_FORMAT_XRGB_8888:
2645                 if (rgb_order) {
2646                         if (alpha)
2647                                 return DRM_FORMAT_ABGR8888;
2648                         else
2649                                 return DRM_FORMAT_XBGR8888;
2650                 } else {
2651                         if (alpha)
2652                                 return DRM_FORMAT_ARGB8888;
2653                         else
2654                                 return DRM_FORMAT_XRGB8888;
2655                 }
2656         case PLANE_CTL_FORMAT_XRGB_2101010:
2657                 if (rgb_order)
2658                         return DRM_FORMAT_XBGR2101010;
2659                 else
2660                         return DRM_FORMAT_XRGB2101010;
2661         }
2662 }
2663
2664 static bool
2665 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2666                               struct intel_initial_plane_config *plane_config)
2667 {
2668         struct drm_device *dev = crtc->base.dev;
2669         struct drm_i915_private *dev_priv = to_i915(dev);
2670         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2671         struct drm_i915_gem_object *obj = NULL;
2672         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2673         struct drm_framebuffer *fb = &plane_config->fb->base;
2674         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2675         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2676                                     PAGE_SIZE);
2677
2678         size_aligned -= base_aligned;
2679
2680         if (plane_config->size == 0)
2681                 return false;
2682
2683         /* If the FB is too big, just don't use it since fbdev is not very
2684          * important and we should probably use that space with FBC or other
2685          * features. */
2686         if (size_aligned * 2 > ggtt->stolen_usable_size)
2687                 return false;
2688
2689         mutex_lock(&dev->struct_mutex);
2690
2691         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2692                                                              base_aligned,
2693                                                              base_aligned,
2694                                                              size_aligned);
2695         if (!obj) {
2696                 mutex_unlock(&dev->struct_mutex);
2697                 return false;
2698         }
2699
2700         if (plane_config->tiling == I915_TILING_X)
2701                 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2702
2703         mode_cmd.pixel_format = fb->pixel_format;
2704         mode_cmd.width = fb->width;
2705         mode_cmd.height = fb->height;
2706         mode_cmd.pitches[0] = fb->pitches[0];
2707         mode_cmd.modifier[0] = fb->modifier;
2708         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2709
2710         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2711                                    &mode_cmd, obj)) {
2712                 DRM_DEBUG_KMS("intel fb init failed\n");
2713                 goto out_unref_obj;
2714         }
2715
2716         mutex_unlock(&dev->struct_mutex);
2717
2718         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2719         return true;
2720
2721 out_unref_obj:
2722         i915_gem_object_put(obj);
2723         mutex_unlock(&dev->struct_mutex);
2724         return false;
2725 }
2726
2727 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2728 static void
2729 update_state_fb(struct drm_plane *plane)
2730 {
2731         if (plane->fb == plane->state->fb)
2732                 return;
2733
2734         if (plane->state->fb)
2735                 drm_framebuffer_unreference(plane->state->fb);
2736         plane->state->fb = plane->fb;
2737         if (plane->state->fb)
2738                 drm_framebuffer_reference(plane->state->fb);
2739 }
2740
2741 static void
2742 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2743                              struct intel_initial_plane_config *plane_config)
2744 {
2745         struct drm_device *dev = intel_crtc->base.dev;
2746         struct drm_i915_private *dev_priv = to_i915(dev);
2747         struct drm_crtc *c;
2748         struct drm_i915_gem_object *obj;
2749         struct drm_plane *primary = intel_crtc->base.primary;
2750         struct drm_plane_state *plane_state = primary->state;
2751         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2752         struct intel_plane *intel_plane = to_intel_plane(primary);
2753         struct intel_plane_state *intel_state =
2754                 to_intel_plane_state(plane_state);
2755         struct drm_framebuffer *fb;
2756
2757         if (!plane_config->fb)
2758                 return;
2759
2760         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2761                 fb = &plane_config->fb->base;
2762                 goto valid_fb;
2763         }
2764
2765         kfree(plane_config->fb);
2766
2767         /*
2768          * Failed to alloc the obj, check to see if we should share
2769          * an fb with another CRTC instead
2770          */
2771         for_each_crtc(dev, c) {
2772                 struct intel_plane_state *state;
2773
2774                 if (c == &intel_crtc->base)
2775                         continue;
2776
2777                 if (!to_intel_crtc(c)->active)
2778                         continue;
2779
2780                 state = to_intel_plane_state(c->primary->state);
2781                 if (!state->vma)
2782                         continue;
2783
2784                 if (intel_plane_ggtt_offset(state) == plane_config->base) {
2785                         fb = c->primary->fb;
2786                         drm_framebuffer_reference(fb);
2787                         goto valid_fb;
2788                 }
2789         }
2790
2791         /*
2792          * We've failed to reconstruct the BIOS FB.  Current display state
2793          * indicates that the primary plane is visible, but has a NULL FB,
2794          * which will lead to problems later if we don't fix it up.  The
2795          * simplest solution is to just disable the primary plane now and
2796          * pretend the BIOS never had it enabled.
2797          */
2798         to_intel_plane_state(plane_state)->base.visible = false;
2799         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2800         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2801         intel_plane->disable_plane(primary, &intel_crtc->base);
2802
2803         return;
2804
2805 valid_fb:
2806         mutex_lock(&dev->struct_mutex);
2807         intel_state->vma =
2808                 intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2809         mutex_unlock(&dev->struct_mutex);
2810         if (IS_ERR(intel_state->vma)) {
2811                 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2812                           intel_crtc->pipe, PTR_ERR(intel_state->vma));
2813
2814                 intel_state->vma = NULL;
2815                 drm_framebuffer_unreference(fb);
2816                 return;
2817         }
2818
2819         plane_state->src_x = 0;
2820         plane_state->src_y = 0;
2821         plane_state->src_w = fb->width << 16;
2822         plane_state->src_h = fb->height << 16;
2823
2824         plane_state->crtc_x = 0;
2825         plane_state->crtc_y = 0;
2826         plane_state->crtc_w = fb->width;
2827         plane_state->crtc_h = fb->height;
2828
2829         intel_state->base.src = drm_plane_state_src(plane_state);
2830         intel_state->base.dst = drm_plane_state_dest(plane_state);
2831
2832         obj = intel_fb_obj(fb);
2833         if (i915_gem_object_is_tiled(obj))
2834                 dev_priv->preserve_bios_swizzle = true;
2835
2836         drm_framebuffer_reference(fb);
2837         primary->fb = primary->state->fb = fb;
2838         primary->crtc = primary->state->crtc = &intel_crtc->base;
2839         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2840         atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2841                   &obj->frontbuffer_bits);
2842 }
2843
2844 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2845                                unsigned int rotation)
2846 {
2847         int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2848
2849         switch (fb->modifier) {
2850         case DRM_FORMAT_MOD_NONE:
2851         case I915_FORMAT_MOD_X_TILED:
2852                 switch (cpp) {
2853                 case 8:
2854                         return 4096;
2855                 case 4:
2856                 case 2:
2857                 case 1:
2858                         return 8192;
2859                 default:
2860                         MISSING_CASE(cpp);
2861                         break;
2862                 }
2863                 break;
2864         case I915_FORMAT_MOD_Y_TILED:
2865         case I915_FORMAT_MOD_Yf_TILED:
2866                 switch (cpp) {
2867                 case 8:
2868                         return 2048;
2869                 case 4:
2870                         return 4096;
2871                 case 2:
2872                 case 1:
2873                         return 8192;
2874                 default:
2875                         MISSING_CASE(cpp);
2876                         break;
2877                 }
2878                 break;
2879         default:
2880                 MISSING_CASE(fb->modifier);
2881         }
2882
2883         return 2048;
2884 }
2885
2886 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2887 {
2888         const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2889         const struct drm_framebuffer *fb = plane_state->base.fb;
2890         unsigned int rotation = plane_state->base.rotation;
2891         int x = plane_state->base.src.x1 >> 16;
2892         int y = plane_state->base.src.y1 >> 16;
2893         int w = drm_rect_width(&plane_state->base.src) >> 16;
2894         int h = drm_rect_height(&plane_state->base.src) >> 16;
2895         int max_width = skl_max_plane_width(fb, 0, rotation);
2896         int max_height = 4096;
2897         u32 alignment, offset, aux_offset = plane_state->aux.offset;
2898
2899         if (w > max_width || h > max_height) {
2900                 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2901                               w, h, max_width, max_height);
2902                 return -EINVAL;
2903         }
2904
2905         intel_add_fb_offsets(&x, &y, plane_state, 0);
2906         offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2907
2908         alignment = intel_surf_alignment(dev_priv, fb->modifier);
2909
2910         /*
2911          * AUX surface offset is specified as the distance from the
2912          * main surface offset, and it must be non-negative. Make
2913          * sure that is what we will get.
2914          */
2915         if (offset > aux_offset)
2916                 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2917                                                   offset, aux_offset & ~(alignment - 1));
2918
2919         /*
2920          * When using an X-tiled surface, the plane blows up
2921          * if the x offset + width exceed the stride.
2922          *
2923          * TODO: linear and Y-tiled seem fine, Yf untested,
2924          */
2925         if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2926                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2927
2928                 while ((x + w) * cpp > fb->pitches[0]) {
2929                         if (offset == 0) {
2930                                 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2931                                 return -EINVAL;
2932                         }
2933
2934                         offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2935                                                           offset, offset - alignment);
2936                 }
2937         }
2938
2939         plane_state->main.offset = offset;
2940         plane_state->main.x = x;
2941         plane_state->main.y = y;
2942
2943         return 0;
2944 }
2945
2946 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2947 {
2948         const struct drm_framebuffer *fb = plane_state->base.fb;
2949         unsigned int rotation = plane_state->base.rotation;
2950         int max_width = skl_max_plane_width(fb, 1, rotation);
2951         int max_height = 4096;
2952         int x = plane_state->base.src.x1 >> 17;
2953         int y = plane_state->base.src.y1 >> 17;
2954         int w = drm_rect_width(&plane_state->base.src) >> 17;
2955         int h = drm_rect_height(&plane_state->base.src) >> 17;
2956         u32 offset;
2957
2958         intel_add_fb_offsets(&x, &y, plane_state, 1);
2959         offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2960
2961         /* FIXME not quite sure how/if these apply to the chroma plane */
2962         if (w > max_width || h > max_height) {
2963                 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2964                               w, h, max_width, max_height);
2965                 return -EINVAL;
2966         }
2967
2968         plane_state->aux.offset = offset;
2969         plane_state->aux.x = x;
2970         plane_state->aux.y = y;
2971
2972         return 0;
2973 }
2974
2975 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2976 {
2977         const struct drm_framebuffer *fb = plane_state->base.fb;
2978         unsigned int rotation = plane_state->base.rotation;
2979         int ret;
2980
2981         if (!plane_state->base.visible)
2982                 return 0;
2983
2984         /* Rotate src coordinates to match rotated GTT view */
2985         if (drm_rotation_90_or_270(rotation))
2986                 drm_rect_rotate(&plane_state->base.src,
2987                                 fb->width << 16, fb->height << 16,
2988                                 DRM_ROTATE_270);
2989
2990         /*
2991          * Handle the AUX surface first since
2992          * the main surface setup depends on it.
2993          */
2994         if (fb->pixel_format == DRM_FORMAT_NV12) {
2995                 ret = skl_check_nv12_aux_surface(plane_state);
2996                 if (ret)
2997                         return ret;
2998         } else {
2999                 plane_state->aux.offset = ~0xfff;
3000                 plane_state->aux.x = 0;
3001                 plane_state->aux.y = 0;
3002         }
3003
3004         ret = skl_check_main_surface(plane_state);
3005         if (ret)
3006                 return ret;
3007
3008         return 0;
3009 }
3010
3011 static void i9xx_update_primary_plane(struct drm_plane *primary,
3012                                       const struct intel_crtc_state *crtc_state,
3013                                       const struct intel_plane_state *plane_state)
3014 {
3015         struct drm_i915_private *dev_priv = to_i915(primary->dev);
3016         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3017         struct drm_framebuffer *fb = plane_state->base.fb;
3018         int plane = intel_crtc->plane;
3019         u32 linear_offset;
3020         u32 dspcntr;
3021         i915_reg_t reg = DSPCNTR(plane);
3022         unsigned int rotation = plane_state->base.rotation;
3023         int x = plane_state->base.src.x1 >> 16;
3024         int y = plane_state->base.src.y1 >> 16;
3025
3026         dspcntr = DISPPLANE_GAMMA_ENABLE;
3027
3028         dspcntr |= DISPLAY_PLANE_ENABLE;
3029
3030         if (INTEL_GEN(dev_priv) < 4) {
3031                 if (intel_crtc->pipe == PIPE_B)
3032                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3033
3034                 /* pipesrc and dspsize control the size that is scaled from,
3035                  * which should always be the user's requested size.
3036                  */
3037                 I915_WRITE(DSPSIZE(plane),
3038                            ((crtc_state->pipe_src_h - 1) << 16) |
3039                            (crtc_state->pipe_src_w - 1));
3040                 I915_WRITE(DSPPOS(plane), 0);
3041         } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3042                 I915_WRITE(PRIMSIZE(plane),
3043                            ((crtc_state->pipe_src_h - 1) << 16) |
3044                            (crtc_state->pipe_src_w - 1));
3045                 I915_WRITE(PRIMPOS(plane), 0);
3046                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
3047         }
3048
3049         switch (fb->pixel_format) {
3050         case DRM_FORMAT_C8:
3051                 dspcntr |= DISPPLANE_8BPP;
3052                 break;
3053         case DRM_FORMAT_XRGB1555:
3054                 dspcntr |= DISPPLANE_BGRX555;
3055                 break;
3056         case DRM_FORMAT_RGB565:
3057                 dspcntr |= DISPPLANE_BGRX565;
3058                 break;
3059         case DRM_FORMAT_XRGB8888:
3060                 dspcntr |= DISPPLANE_BGRX888;
3061                 break;
3062         case DRM_FORMAT_XBGR8888:
3063                 dspcntr |= DISPPLANE_RGBX888;
3064                 break;
3065         case DRM_FORMAT_XRGB2101010:
3066                 dspcntr |= DISPPLANE_BGRX101010;
3067                 break;
3068         case DRM_FORMAT_XBGR2101010:
3069                 dspcntr |= DISPPLANE_RGBX101010;
3070                 break;
3071         default:
3072                 BUG();
3073         }
3074
3075         if (INTEL_GEN(dev_priv) >= 4 &&
3076             fb->modifier == I915_FORMAT_MOD_X_TILED)
3077                 dspcntr |= DISPPLANE_TILED;
3078
3079         if (rotation & DRM_ROTATE_180)
3080                 dspcntr |= DISPPLANE_ROTATE_180;
3081
3082         if (rotation & DRM_REFLECT_X)
3083                 dspcntr |= DISPPLANE_MIRROR;
3084
3085         if (IS_G4X(dev_priv))
3086                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3087
3088         intel_add_fb_offsets(&x, &y, plane_state, 0);
3089
3090         if (INTEL_GEN(dev_priv) >= 4)
3091                 intel_crtc->dspaddr_offset =
3092                         intel_compute_tile_offset(&x, &y, plane_state, 0);
3093
3094         if (rotation & DRM_ROTATE_180) {
3095                 x += crtc_state->pipe_src_w - 1;
3096                 y += crtc_state->pipe_src_h - 1;
3097         } else if (rotation & DRM_REFLECT_X) {
3098                 x += crtc_state->pipe_src_w - 1;
3099         }
3100
3101         linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3102
3103         if (INTEL_GEN(dev_priv) < 4)
3104                 intel_crtc->dspaddr_offset = linear_offset;
3105
3106         intel_crtc->adjusted_x = x;
3107         intel_crtc->adjusted_y = y;
3108
3109         I915_WRITE(reg, dspcntr);
3110
3111         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3112         if (INTEL_GEN(dev_priv) >= 4) {
3113                 I915_WRITE(DSPSURF(plane),
3114                            intel_plane_ggtt_offset(plane_state) +
3115                            intel_crtc->dspaddr_offset);
3116                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3117                 I915_WRITE(DSPLINOFF(plane), linear_offset);
3118         } else {
3119                 I915_WRITE(DSPADDR(plane),
3120                            intel_plane_ggtt_offset(plane_state) +
3121                            intel_crtc->dspaddr_offset);
3122         }
3123         POSTING_READ(reg);
3124 }
3125
3126 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3127                                        struct drm_crtc *crtc)
3128 {
3129         struct drm_device *dev = crtc->dev;
3130         struct drm_i915_private *dev_priv = to_i915(dev);
3131         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3132         int plane = intel_crtc->plane;
3133
3134         I915_WRITE(DSPCNTR(plane), 0);
3135         if (INTEL_INFO(dev_priv)->gen >= 4)
3136                 I915_WRITE(DSPSURF(plane), 0);
3137         else
3138                 I915_WRITE(DSPADDR(plane), 0);
3139         POSTING_READ(DSPCNTR(plane));
3140 }
3141
3142 static void ironlake_update_primary_plane(struct drm_plane *primary,
3143                                           const struct intel_crtc_state *crtc_state,
3144                                           const struct intel_plane_state *plane_state)
3145 {
3146         struct drm_device *dev = primary->dev;
3147         struct drm_i915_private *dev_priv = to_i915(dev);
3148         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3149         struct drm_framebuffer *fb = plane_state->base.fb;
3150         int plane = intel_crtc->plane;
3151         u32 linear_offset;
3152         u32 dspcntr;
3153         i915_reg_t reg = DSPCNTR(plane);
3154         unsigned int rotation = plane_state->base.rotation;
3155         int x = plane_state->base.src.x1 >> 16;
3156         int y = plane_state->base.src.y1 >> 16;
3157
3158         dspcntr = DISPPLANE_GAMMA_ENABLE;
3159         dspcntr |= DISPLAY_PLANE_ENABLE;
3160
3161         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3162                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3163
3164         switch (fb->pixel_format) {
3165         case DRM_FORMAT_C8:
3166                 dspcntr |= DISPPLANE_8BPP;
3167                 break;
3168         case DRM_FORMAT_RGB565:
3169                 dspcntr |= DISPPLANE_BGRX565;
3170                 break;
3171         case DRM_FORMAT_XRGB8888:
3172                 dspcntr |= DISPPLANE_BGRX888;
3173                 break;
3174         case DRM_FORMAT_XBGR8888:
3175                 dspcntr |= DISPPLANE_RGBX888;
3176                 break;
3177         case DRM_FORMAT_XRGB2101010:
3178                 dspcntr |= DISPPLANE_BGRX101010;
3179                 break;
3180         case DRM_FORMAT_XBGR2101010:
3181                 dspcntr |= DISPPLANE_RGBX101010;
3182                 break;
3183         default:
3184                 BUG();
3185         }
3186
3187         if (fb->modifier == I915_FORMAT_MOD_X_TILED)
3188                 dspcntr |= DISPPLANE_TILED;
3189
3190         if (rotation & DRM_ROTATE_180)
3191                 dspcntr |= DISPPLANE_ROTATE_180;
3192
3193         if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv))
3194                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3195
3196         intel_add_fb_offsets(&x, &y, plane_state, 0);
3197
3198         intel_crtc->dspaddr_offset =
3199                 intel_compute_tile_offset(&x, &y, plane_state, 0);
3200
3201         /* HSW+ does this automagically in hardware */
3202         if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv) &&
3203             rotation & DRM_ROTATE_180) {
3204                 x += crtc_state->pipe_src_w - 1;
3205                 y += crtc_state->pipe_src_h - 1;
3206         }
3207
3208         linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3209
3210         intel_crtc->adjusted_x = x;
3211         intel_crtc->adjusted_y = y;
3212
3213         I915_WRITE(reg, dspcntr);
3214
3215         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3216         I915_WRITE(DSPSURF(plane),
3217                    intel_plane_ggtt_offset(plane_state) +
3218                    intel_crtc->dspaddr_offset);
3219         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3220                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3221         } else {
3222                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3223                 I915_WRITE(DSPLINOFF(plane), linear_offset);
3224         }
3225         POSTING_READ(reg);
3226 }
3227
3228 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3229                               uint64_t fb_modifier, uint32_t pixel_format)
3230 {
3231         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
3232                 return 64;
3233         } else {
3234                 int cpp = drm_format_plane_cpp(pixel_format, 0);
3235
3236                 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
3237         }
3238 }
3239
3240 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3241 {
3242         struct drm_device *dev = intel_crtc->base.dev;
3243         struct drm_i915_private *dev_priv = to_i915(dev);
3244
3245         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3246         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3247         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3248 }
3249
3250 /*
3251  * This function detaches (aka. unbinds) unused scalers in hardware
3252  */
3253 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3254 {
3255         struct intel_crtc_scaler_state *scaler_state;
3256         int i;
3257
3258         scaler_state = &intel_crtc->config->scaler_state;
3259
3260         /* loop through and disable scalers that aren't in use */
3261         for (i = 0; i < intel_crtc->num_scalers; i++) {
3262                 if (!scaler_state->scalers[i].in_use)
3263                         skl_detach_scaler(intel_crtc, i);
3264         }
3265 }
3266
3267 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3268                      unsigned int rotation)
3269 {
3270         const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3271         u32 stride = intel_fb_pitch(fb, plane, rotation);
3272
3273         /*
3274          * The stride is either expressed as a multiple of 64 bytes chunks for
3275          * linear buffers or in number of tiles for tiled buffers.
3276          */
3277         if (drm_rotation_90_or_270(rotation)) {
3278                 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
3279
3280                 stride /= intel_tile_height(dev_priv, fb->modifier, cpp);
3281         } else {
3282                 stride /= intel_fb_stride_alignment(dev_priv, fb->modifier,
3283                                                     fb->pixel_format);
3284         }
3285
3286         return stride;
3287 }
3288
3289 u32 skl_plane_ctl_format(uint32_t pixel_format)
3290 {
3291         switch (pixel_format) {
3292         case DRM_FORMAT_C8:
3293                 return PLANE_CTL_FORMAT_INDEXED;
3294         case DRM_FORMAT_RGB565:
3295                 return PLANE_CTL_FORMAT_RGB_565;
3296         case DRM_FORMAT_XBGR8888:
3297                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3298         case DRM_FORMAT_XRGB8888:
3299                 return PLANE_CTL_FORMAT_XRGB_8888;
3300         /*
3301          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3302          * to be already pre-multiplied. We need to add a knob (or a different
3303          * DRM_FORMAT) for user-space to configure that.
3304          */
3305         case DRM_FORMAT_ABGR8888:
3306                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3307                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3308         case DRM_FORMAT_ARGB8888:
3309                 return PLANE_CTL_FORMAT_XRGB_8888 |
3310                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3311         case DRM_FORMAT_XRGB2101010:
3312                 return PLANE_CTL_FORMAT_XRGB_2101010;
3313         case DRM_FORMAT_XBGR2101010:
3314                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3315         case DRM_FORMAT_YUYV:
3316                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3317         case DRM_FORMAT_YVYU:
3318                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3319         case DRM_FORMAT_UYVY:
3320                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3321         case DRM_FORMAT_VYUY:
3322                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3323         default:
3324                 MISSING_CASE(pixel_format);
3325         }
3326
3327         return 0;
3328 }
3329
3330 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3331 {
3332         switch (fb_modifier) {
3333         case DRM_FORMAT_MOD_NONE:
3334                 break;
3335         case I915_FORMAT_MOD_X_TILED:
3336                 return PLANE_CTL_TILED_X;
3337         case I915_FORMAT_MOD_Y_TILED:
3338                 return PLANE_CTL_TILED_Y;
3339         case I915_FORMAT_MOD_Yf_TILED:
3340                 return PLANE_CTL_TILED_YF;
3341         default:
3342                 MISSING_CASE(fb_modifier);
3343         }
3344
3345         return 0;
3346 }
3347
3348 u32 skl_plane_ctl_rotation(unsigned int rotation)
3349 {
3350         switch (rotation) {
3351         case DRM_ROTATE_0:
3352                 break;
3353         /*
3354          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3355          * while i915 HW rotation is clockwise, thats why this swapping.
3356          */
3357         case DRM_ROTATE_90:
3358                 return PLANE_CTL_ROTATE_270;
3359         case DRM_ROTATE_180:
3360                 return PLANE_CTL_ROTATE_180;
3361         case DRM_ROTATE_270:
3362                 return PLANE_CTL_ROTATE_90;
3363         default:
3364                 MISSING_CASE(rotation);
3365         }
3366
3367         return 0;
3368 }
3369
3370 static void skylake_update_primary_plane(struct drm_plane *plane,
3371                                          const struct intel_crtc_state *crtc_state,
3372                                          const struct intel_plane_state *plane_state)
3373 {
3374         struct drm_device *dev = plane->dev;
3375         struct drm_i915_private *dev_priv = to_i915(dev);
3376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3377         struct drm_framebuffer *fb = plane_state->base.fb;
3378         int pipe = intel_crtc->pipe;
3379         u32 plane_ctl;
3380         unsigned int rotation = plane_state->base.rotation;
3381         u32 stride = skl_plane_stride(fb, 0, rotation);
3382         u32 surf_addr = plane_state->main.offset;
3383         int scaler_id = plane_state->scaler_id;
3384         int src_x = plane_state->main.x;
3385         int src_y = plane_state->main.y;
3386         int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3387         int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3388         int dst_x = plane_state->base.dst.x1;
3389         int dst_y = plane_state->base.dst.y1;
3390         int dst_w = drm_rect_width(&plane_state->base.dst);
3391         int dst_h = drm_rect_height(&plane_state->base.dst);
3392
3393         plane_ctl = PLANE_CTL_ENABLE |
3394                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3395                     PLANE_CTL_PIPE_CSC_ENABLE;
3396
3397         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3398         plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3399         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3400         plane_ctl |= skl_plane_ctl_rotation(rotation);
3401
3402         /* Sizes are 0 based */
3403         src_w--;
3404         src_h--;
3405         dst_w--;
3406         dst_h--;
3407
3408         intel_crtc->dspaddr_offset = surf_addr;
3409
3410         intel_crtc->adjusted_x = src_x;
3411         intel_crtc->adjusted_y = src_y;
3412
3413         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3414         I915_WRITE(PLANE_OFFSET(pipe, 0), (src_y << 16) | src_x);
3415         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3416         I915_WRITE(PLANE_SIZE(pipe, 0), (src_h << 16) | src_w);
3417
3418         if (scaler_id >= 0) {
3419                 uint32_t ps_ctrl = 0;
3420
3421                 WARN_ON(!dst_w || !dst_h);
3422                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3423                         crtc_state->scaler_state.scalers[scaler_id].mode;
3424                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3425                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3426                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3427                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3428                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3429         } else {
3430                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3431         }
3432
3433         I915_WRITE(PLANE_SURF(pipe, 0),
3434                    intel_plane_ggtt_offset(plane_state) + surf_addr);
3435
3436         POSTING_READ(PLANE_SURF(pipe, 0));
3437 }
3438
3439 static void skylake_disable_primary_plane(struct drm_plane *primary,
3440                                           struct drm_crtc *crtc)
3441 {
3442         struct drm_device *dev = crtc->dev;
3443         struct drm_i915_private *dev_priv = to_i915(dev);
3444         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3445         int pipe = intel_crtc->pipe;
3446
3447         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3448         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3449         POSTING_READ(PLANE_SURF(pipe, 0));
3450 }
3451
3452 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3453 static int
3454 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3455                            int x, int y, enum mode_set_atomic state)
3456 {
3457         /* Support for kgdboc is disabled, this needs a major rework. */
3458         DRM_ERROR("legacy panic handler not supported any more.\n");
3459
3460         return -ENODEV;
3461 }
3462
3463 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3464 {
3465         struct intel_crtc *crtc;
3466
3467         for_each_intel_crtc(&dev_priv->drm, crtc)
3468                 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3469 }
3470
3471 static void intel_update_primary_planes(struct drm_device *dev)
3472 {
3473         struct drm_crtc *crtc;
3474
3475         for_each_crtc(dev, crtc) {
3476                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3477                 struct intel_plane_state *plane_state =
3478                         to_intel_plane_state(plane->base.state);
3479
3480                 if (plane_state->base.visible)
3481                         plane->update_plane(&plane->base,
3482                                             to_intel_crtc_state(crtc->state),
3483                                             plane_state);
3484         }
3485 }
3486
3487 static int
3488 __intel_display_resume(struct drm_device *dev,
3489                        struct drm_atomic_state *state)
3490 {
3491         struct drm_crtc_state *crtc_state;
3492         struct drm_crtc *crtc;
3493         int i, ret;
3494
3495         intel_modeset_setup_hw_state(dev);
3496         i915_redisable_vga(to_i915(dev));
3497
3498         if (!state)
3499                 return 0;
3500
3501         for_each_crtc_in_state(state, crtc, crtc_state, i) {
3502                 /*
3503                  * Force recalculation even if we restore
3504                  * current state. With fast modeset this may not result
3505                  * in a modeset when the state is compatible.
3506                  */
3507                 crtc_state->mode_changed = true;
3508         }
3509
3510         /* ignore any reset values/BIOS leftovers in the WM registers */
3511         to_intel_atomic_state(state)->skip_intermediate_wm = true;
3512
3513         ret = drm_atomic_commit(state);
3514
3515         WARN_ON(ret == -EDEADLK);
3516         return ret;
3517 }
3518
3519 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3520 {
3521         return intel_has_gpu_reset(dev_priv) &&
3522                 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3523 }
3524
3525 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3526 {
3527         struct drm_device *dev = &dev_priv->drm;
3528         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3529         struct drm_atomic_state *state;
3530         int ret;
3531
3532         /*
3533          * Need mode_config.mutex so that we don't
3534          * trample ongoing ->detect() and whatnot.
3535          */
3536         mutex_lock(&dev->mode_config.mutex);
3537         drm_modeset_acquire_init(ctx, 0);
3538         while (1) {
3539                 ret = drm_modeset_lock_all_ctx(dev, ctx);
3540                 if (ret != -EDEADLK)
3541                         break;
3542
3543                 drm_modeset_backoff(ctx);
3544         }
3545
3546         /* reset doesn't touch the display, but flips might get nuked anyway, */
3547         if (!i915.force_reset_modeset_test &&
3548             !gpu_reset_clobbers_display(dev_priv))
3549                 return;
3550
3551         /*
3552          * Disabling the crtcs gracefully seems nicer. Also the
3553          * g33 docs say we should at least disable all the planes.
3554          */
3555         state = drm_atomic_helper_duplicate_state(dev, ctx);
3556         if (IS_ERR(state)) {
3557                 ret = PTR_ERR(state);
3558                 state = NULL;
3559                 DRM_ERROR("Duplicating state failed with %i\n", ret);
3560                 goto err;
3561         }
3562
3563         ret = drm_atomic_helper_disable_all(dev, ctx);
3564         if (ret) {
3565                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3566                 goto err;
3567         }
3568
3569         dev_priv->modeset_restore_state = state;
3570         state->acquire_ctx = ctx;
3571         return;
3572
3573 err:
3574         drm_atomic_state_put(state);
3575 }
3576
3577 void intel_finish_reset(struct drm_i915_private *dev_priv)
3578 {
3579         struct drm_device *dev = &dev_priv->drm;
3580         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3581         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3582         int ret;
3583
3584         /*
3585          * Flips in the rings will be nuked by the reset,
3586          * so complete all pending flips so that user space
3587          * will get its events and not get stuck.
3588          */
3589         intel_complete_page_flips(dev_priv);
3590
3591         dev_priv->modeset_restore_state = NULL;
3592
3593         /* reset doesn't touch the display */
3594         if (!gpu_reset_clobbers_display(dev_priv)) {
3595                 if (!state) {
3596                         /*
3597                          * Flips in the rings have been nuked by the reset,
3598                          * so update the base address of all primary
3599                          * planes to the the last fb to make sure we're
3600                          * showing the correct fb after a reset.
3601                          *
3602                          * FIXME: Atomic will make this obsolete since we won't schedule
3603                          * CS-based flips (which might get lost in gpu resets) any more.
3604                          */
3605                         intel_update_primary_planes(dev);
3606                 } else {
3607                         ret = __intel_display_resume(dev, state);
3608                         if (ret)
3609                                 DRM_ERROR("Restoring old state failed with %i\n", ret);
3610                 }
3611         } else {
3612                 /*
3613                  * The display has been reset as well,
3614                  * so need a full re-initialization.
3615                  */
3616                 intel_runtime_pm_disable_interrupts(dev_priv);
3617                 intel_runtime_pm_enable_interrupts(dev_priv);
3618
3619                 intel_pps_unlock_regs_wa(dev_priv);
3620                 intel_modeset_init_hw(dev);
3621
3622                 spin_lock_irq(&dev_priv->irq_lock);
3623                 if (dev_priv->display.hpd_irq_setup)
3624                         dev_priv->display.hpd_irq_setup(dev_priv);
3625                 spin_unlock_irq(&dev_priv->irq_lock);
3626
3627                 ret = __intel_display_resume(dev, state);
3628                 if (ret)
3629                         DRM_ERROR("Restoring old state failed with %i\n", ret);
3630
3631                 intel_hpd_init(dev_priv);
3632         }
3633
3634         if (state)
3635                 drm_atomic_state_put(state);
3636         drm_modeset_drop_locks(ctx);
3637         drm_modeset_acquire_fini(ctx);
3638         mutex_unlock(&dev->mode_config.mutex);
3639 }
3640
3641 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3642 {
3643         struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3644
3645         if (i915_reset_in_progress(error))
3646                 return true;
3647
3648         if (crtc->reset_count != i915_reset_count(error))
3649                 return true;
3650
3651         return false;
3652 }
3653
3654 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3655 {
3656         struct drm_device *dev = crtc->dev;
3657         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3658         bool pending;
3659
3660         if (abort_flip_on_reset(intel_crtc))
3661                 return false;
3662
3663         spin_lock_irq(&dev->event_lock);
3664         pending = to_intel_crtc(crtc)->flip_work != NULL;
3665         spin_unlock_irq(&dev->event_lock);
3666
3667         return pending;
3668 }
3669
3670 static void intel_update_pipe_config(struct intel_crtc *crtc,
3671                                      struct intel_crtc_state *old_crtc_state)
3672 {
3673         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3674         struct intel_crtc_state *pipe_config =
3675                 to_intel_crtc_state(crtc->base.state);
3676
3677         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3678         crtc->base.mode = crtc->base.state->mode;
3679
3680         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3681                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3682                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3683
3684         /*
3685          * Update pipe size and adjust fitter if needed: the reason for this is
3686          * that in compute_mode_changes we check the native mode (not the pfit
3687          * mode) to see if we can flip rather than do a full mode set. In the
3688          * fastboot case, we'll flip, but if we don't update the pipesrc and
3689          * pfit state, we'll end up with a big fb scanned out into the wrong
3690          * sized surface.
3691          */
3692
3693         I915_WRITE(PIPESRC(crtc->pipe),
3694                    ((pipe_config->pipe_src_w - 1) << 16) |
3695                    (pipe_config->pipe_src_h - 1));
3696
3697         /* on skylake this is done by detaching scalers */
3698         if (INTEL_GEN(dev_priv) >= 9) {
3699                 skl_detach_scalers(crtc);
3700
3701                 if (pipe_config->pch_pfit.enabled)
3702                         skylake_pfit_enable(crtc);
3703         } else if (HAS_PCH_SPLIT(dev_priv)) {
3704                 if (pipe_config->pch_pfit.enabled)
3705                         ironlake_pfit_enable(crtc);
3706                 else if (old_crtc_state->pch_pfit.enabled)
3707                         ironlake_pfit_disable(crtc, true);
3708         }
3709 }
3710
3711 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3712 {
3713         struct drm_device *dev = crtc->dev;
3714         struct drm_i915_private *dev_priv = to_i915(dev);
3715         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3716         int pipe = intel_crtc->pipe;
3717         i915_reg_t reg;
3718         u32 temp;
3719
3720         /* enable normal train */
3721         reg = FDI_TX_CTL(pipe);
3722         temp = I915_READ(reg);
3723         if (IS_IVYBRIDGE(dev_priv)) {
3724                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3725                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3726         } else {
3727                 temp &= ~FDI_LINK_TRAIN_NONE;
3728                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3729         }
3730         I915_WRITE(reg, temp);
3731
3732         reg = FDI_RX_CTL(pipe);
3733         temp = I915_READ(reg);
3734         if (HAS_PCH_CPT(dev_priv)) {
3735                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3736                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3737         } else {
3738                 temp &= ~FDI_LINK_TRAIN_NONE;
3739                 temp |= FDI_LINK_TRAIN_NONE;
3740         }
3741         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3742
3743         /* wait one idle pattern time */
3744         POSTING_READ(reg);
3745         udelay(1000);
3746
3747         /* IVB wants error correction enabled */
3748         if (IS_IVYBRIDGE(dev_priv))
3749                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3750                            FDI_FE_ERRC_ENABLE);
3751 }
3752
3753 /* The FDI link training functions for ILK/Ibexpeak. */
3754 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3755 {
3756         struct drm_device *dev = crtc->dev;
3757         struct drm_i915_private *dev_priv = to_i915(dev);
3758         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3759         int pipe = intel_crtc->pipe;
3760         i915_reg_t reg;
3761         u32 temp, tries;
3762
3763         /* FDI needs bits from pipe first */
3764         assert_pipe_enabled(dev_priv, pipe);
3765
3766         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3767            for train result */
3768         reg = FDI_RX_IMR(pipe);
3769         temp = I915_READ(reg);
3770         temp &= ~FDI_RX_SYMBOL_LOCK;
3771         temp &= ~FDI_RX_BIT_LOCK;
3772         I915_WRITE(reg, temp);
3773         I915_READ(reg);
3774         udelay(150);
3775
3776         /* enable CPU FDI TX and PCH FDI RX */
3777         reg = FDI_TX_CTL(pipe);
3778         temp = I915_READ(reg);
3779         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3780         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3781         temp &= ~FDI_LINK_TRAIN_NONE;
3782         temp |= FDI_LINK_TRAIN_PATTERN_1;
3783         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3784
3785         reg = FDI_RX_CTL(pipe);
3786         temp = I915_READ(reg);
3787         temp &= ~FDI_LINK_TRAIN_NONE;
3788         temp |= FDI_LINK_TRAIN_PATTERN_1;
3789         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3790
3791         POSTING_READ(reg);
3792         udelay(150);
3793
3794         /* Ironlake workaround, enable clock pointer after FDI enable*/
3795         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3796         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3797                    FDI_RX_PHASE_SYNC_POINTER_EN);
3798
3799         reg = FDI_RX_IIR(pipe);
3800         for (tries = 0; tries < 5; tries++) {
3801                 temp = I915_READ(reg);
3802                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3803
3804                 if ((temp & FDI_RX_BIT_LOCK)) {
3805                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3806                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3807                         break;
3808                 }
3809         }
3810         if (tries == 5)
3811                 DRM_ERROR("FDI train 1 fail!\n");
3812
3813         /* Train 2 */
3814         reg = FDI_TX_CTL(pipe);
3815         temp = I915_READ(reg);
3816         temp &= ~FDI_LINK_TRAIN_NONE;
3817         temp |= FDI_LINK_TRAIN_PATTERN_2;
3818         I915_WRITE(reg, temp);
3819
3820         reg = FDI_RX_CTL(pipe);
3821         temp = I915_READ(reg);
3822         temp &= ~FDI_LINK_TRAIN_NONE;
3823         temp |= FDI_LINK_TRAIN_PATTERN_2;
3824         I915_WRITE(reg, temp);
3825
3826         POSTING_READ(reg);
3827         udelay(150);
3828
3829         reg = FDI_RX_IIR(pipe);
3830         for (tries = 0; tries < 5; tries++) {
3831                 temp = I915_READ(reg);
3832                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3833
3834                 if (temp & FDI_RX_SYMBOL_LOCK) {
3835                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3836                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3837                         break;
3838                 }
3839         }
3840         if (tries == 5)
3841                 DRM_ERROR("FDI train 2 fail!\n");
3842
3843         DRM_DEBUG_KMS("FDI train done\n");
3844
3845 }
3846
3847 static const int snb_b_fdi_train_param[] = {
3848         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3849         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3850         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3851         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3852 };
3853
3854 /* The FDI link training functions for SNB/Cougarpoint. */
3855 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3856 {
3857         struct drm_device *dev = crtc->dev;
3858         struct drm_i915_private *dev_priv = to_i915(dev);
3859         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3860         int pipe = intel_crtc->pipe;
3861         i915_reg_t reg;
3862         u32 temp, i, retry;
3863
3864         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3865            for train result */
3866         reg = FDI_RX_IMR(pipe);
3867         temp = I915_READ(reg);
3868         temp &= ~FDI_RX_SYMBOL_LOCK;
3869         temp &= ~FDI_RX_BIT_LOCK;
3870         I915_WRITE(reg, temp);
3871
3872         POSTING_READ(reg);
3873         udelay(150);
3874
3875         /* enable CPU FDI TX and PCH FDI RX */
3876         reg = FDI_TX_CTL(pipe);
3877         temp = I915_READ(reg);
3878         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3879         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3880         temp &= ~FDI_LINK_TRAIN_NONE;
3881         temp |= FDI_LINK_TRAIN_PATTERN_1;
3882         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3883         /* SNB-B */
3884         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3885         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3886
3887         I915_WRITE(FDI_RX_MISC(pipe),
3888                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3889
3890         reg = FDI_RX_CTL(pipe);
3891         temp = I915_READ(reg);
3892         if (HAS_PCH_CPT(dev_priv)) {
3893                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3894                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3895         } else {
3896                 temp &= ~FDI_LINK_TRAIN_NONE;
3897                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3898         }
3899         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3900
3901         POSTING_READ(reg);
3902         udelay(150);
3903
3904         for (i = 0; i < 4; i++) {
3905                 reg = FDI_TX_CTL(pipe);
3906                 temp = I915_READ(reg);
3907                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3908                 temp |= snb_b_fdi_train_param[i];
3909                 I915_WRITE(reg, temp);
3910
3911                 POSTING_READ(reg);
3912                 udelay(500);
3913
3914                 for (retry = 0; retry < 5; retry++) {
3915                         reg = FDI_RX_IIR(pipe);
3916                         temp = I915_READ(reg);
3917                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3918                         if (temp & FDI_RX_BIT_LOCK) {
3919                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3920                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3921                                 break;
3922                         }
3923                         udelay(50);
3924                 }
3925                 if (retry < 5)
3926                         break;
3927         }
3928         if (i == 4)
3929                 DRM_ERROR("FDI train 1 fail!\n");
3930
3931         /* Train 2 */
3932         reg = FDI_TX_CTL(pipe);
3933         temp = I915_READ(reg);
3934         temp &= ~FDI_LINK_TRAIN_NONE;
3935         temp |= FDI_LINK_TRAIN_PATTERN_2;
3936         if (IS_GEN6(dev_priv)) {
3937                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3938                 /* SNB-B */
3939                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3940         }
3941         I915_WRITE(reg, temp);
3942
3943         reg = FDI_RX_CTL(pipe);
3944         temp = I915_READ(reg);
3945         if (HAS_PCH_CPT(dev_priv)) {
3946                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3947                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3948         } else {
3949                 temp &= ~FDI_LINK_TRAIN_NONE;
3950                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3951         }
3952         I915_WRITE(reg, temp);
3953
3954         POSTING_READ(reg);
3955         udelay(150);
3956
3957         for (i = 0; i < 4; i++) {
3958                 reg = FDI_TX_CTL(pipe);
3959                 temp = I915_READ(reg);
3960                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3961                 temp |= snb_b_fdi_train_param[i];
3962                 I915_WRITE(reg, temp);
3963
3964                 POSTING_READ(reg);
3965                 udelay(500);
3966
3967                 for (retry = 0; retry < 5; retry++) {
3968                         reg = FDI_RX_IIR(pipe);
3969                         temp = I915_READ(reg);
3970                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3971                         if (temp & FDI_RX_SYMBOL_LOCK) {
3972                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3973                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3974                                 break;
3975                         }
3976                         udelay(50);
3977                 }
3978                 if (retry < 5)
3979                         break;
3980         }
3981         if (i == 4)
3982                 DRM_ERROR("FDI train 2 fail!\n");
3983
3984         DRM_DEBUG_KMS("FDI train done.\n");
3985 }
3986
3987 /* Manual link training for Ivy Bridge A0 parts */
3988 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3989 {
3990         struct drm_device *dev = crtc->dev;
3991         struct drm_i915_private *dev_priv = to_i915(dev);
3992         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3993         int pipe = intel_crtc->pipe;
3994         i915_reg_t reg;
3995         u32 temp, i, j;
3996
3997         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3998            for train result */
3999         reg = FDI_RX_IMR(pipe);
4000         temp = I915_READ(reg);
4001         temp &= ~FDI_RX_SYMBOL_LOCK;
4002         temp &= ~FDI_RX_BIT_LOCK;
4003         I915_WRITE(reg, temp);
4004
4005         POSTING_READ(reg);
4006         udelay(150);
4007
4008         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4009                       I915_READ(FDI_RX_IIR(pipe)));
4010
4011         /* Try each vswing and preemphasis setting twice before moving on */
4012         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4013                 /* disable first in case we need to retry */
4014                 reg = FDI_TX_CTL(pipe);
4015                 temp = I915_READ(reg);
4016                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4017                 temp &= ~FDI_TX_ENABLE;
4018                 I915_WRITE(reg, temp);
4019
4020                 reg = FDI_RX_CTL(pipe);
4021                 temp = I915_READ(reg);
4022                 temp &= ~FDI_LINK_TRAIN_AUTO;
4023                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4024                 temp &= ~FDI_RX_ENABLE;
4025                 I915_WRITE(reg, temp);
4026
4027                 /* enable CPU FDI TX and PCH FDI RX */
4028                 reg = FDI_TX_CTL(pipe);
4029                 temp = I915_READ(reg);
4030                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4031                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4032                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4033                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4034                 temp |= snb_b_fdi_train_param[j/2];
4035                 temp |= FDI_COMPOSITE_SYNC;
4036                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4037
4038                 I915_WRITE(FDI_RX_MISC(pipe),
4039                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4040
4041                 reg = FDI_RX_CTL(pipe);
4042                 temp = I915_READ(reg);
4043                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4044                 temp |= FDI_COMPOSITE_SYNC;
4045                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4046
4047                 POSTING_READ(reg);
4048                 udelay(1); /* should be 0.5us */
4049
4050                 for (i = 0; i < 4; i++) {
4051                         reg = FDI_RX_IIR(pipe);
4052                         temp = I915_READ(reg);
4053                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4054
4055                         if (temp & FDI_RX_BIT_LOCK ||
4056                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4057                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4058                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4059                                               i);
4060                                 break;
4061                         }
4062                         udelay(1); /* should be 0.5us */
4063                 }
4064                 if (i == 4) {
4065                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4066                         continue;
4067                 }
4068
4069                 /* Train 2 */
4070                 reg = FDI_TX_CTL(pipe);
4071                 temp = I915_READ(reg);
4072                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4073                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4074                 I915_WRITE(reg, temp);
4075
4076                 reg = FDI_RX_CTL(pipe);
4077                 temp = I915_READ(reg);
4078                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4079                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4080                 I915_WRITE(reg, temp);
4081
4082                 POSTING_READ(reg);
4083                 udelay(2); /* should be 1.5us */
4084
4085                 for (i = 0; i < 4; i++) {
4086                         reg = FDI_RX_IIR(pipe);
4087                         temp = I915_READ(reg);
4088                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4089
4090                         if (temp & FDI_RX_SYMBOL_LOCK ||
4091                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4092                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4093                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4094                                               i);
4095                                 goto train_done;
4096                         }
4097                         udelay(2); /* should be 1.5us */
4098                 }
4099                 if (i == 4)
4100                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4101         }
4102
4103 train_done:
4104         DRM_DEBUG_KMS("FDI train done.\n");
4105 }
4106
4107 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4108 {
4109         struct drm_device *dev = intel_crtc->base.dev;
4110         struct drm_i915_private *dev_priv = to_i915(dev);
4111         int pipe = intel_crtc->pipe;
4112         i915_reg_t reg;
4113         u32 temp;
4114
4115         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4116         reg = FDI_RX_CTL(pipe);
4117         temp = I915_READ(reg);
4118         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4119         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4120         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4121         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4122
4123         POSTING_READ(reg);
4124         udelay(200);
4125
4126         /* Switch from Rawclk to PCDclk */
4127         temp = I915_READ(reg);
4128         I915_WRITE(reg, temp | FDI_PCDCLK);
4129
4130         POSTING_READ(reg);
4131         udelay(200);
4132
4133         /* Enable CPU FDI TX PLL, always on for Ironlake */
4134         reg = FDI_TX_CTL(pipe);
4135         temp = I915_READ(reg);
4136         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4137                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4138
4139                 POSTING_READ(reg);
4140                 udelay(100);
4141         }
4142 }
4143
4144 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4145 {
4146         struct drm_device *dev = intel_crtc->base.dev;
4147         struct drm_i915_private *dev_priv = to_i915(dev);
4148         int pipe = intel_crtc->pipe;
4149         i915_reg_t reg;
4150         u32 temp;
4151
4152         /* Switch from PCDclk to Rawclk */
4153         reg = FDI_RX_CTL(pipe);
4154         temp = I915_READ(reg);
4155         I915_WRITE(reg, temp & ~FDI_PCDCLK);
4156
4157         /* Disable CPU FDI TX PLL */
4158         reg = FDI_TX_CTL(pipe);
4159         temp = I915_READ(reg);
4160         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4161
4162         POSTING_READ(reg);
4163         udelay(100);
4164
4165         reg = FDI_RX_CTL(pipe);
4166         temp = I915_READ(reg);
4167         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4168
4169         /* Wait for the clocks to turn off. */
4170         POSTING_READ(reg);
4171         udelay(100);
4172 }
4173
4174 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4175 {
4176         struct drm_device *dev = crtc->dev;
4177         struct drm_i915_private *dev_priv = to_i915(dev);
4178         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4179         int pipe = intel_crtc->pipe;
4180         i915_reg_t reg;
4181         u32 temp;
4182
4183         /* disable CPU FDI tx and PCH FDI rx */
4184         reg = FDI_TX_CTL(pipe);
4185         temp = I915_READ(reg);
4186         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4187         POSTING_READ(reg);
4188
4189         reg = FDI_RX_CTL(pipe);
4190         temp = I915_READ(reg);
4191         temp &= ~(0x7 << 16);
4192         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4193         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4194
4195         POSTING_READ(reg);
4196         udelay(100);
4197
4198         /* Ironlake workaround, disable clock pointer after downing FDI */
4199         if (HAS_PCH_IBX(dev_priv))
4200                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4201
4202         /* still set train pattern 1 */
4203         reg = FDI_TX_CTL(pipe);
4204         temp = I915_READ(reg);
4205         temp &= ~FDI_LINK_TRAIN_NONE;
4206         temp |= FDI_LINK_TRAIN_PATTERN_1;
4207         I915_WRITE(reg, temp);
4208
4209         reg = FDI_RX_CTL(pipe);
4210         temp = I915_READ(reg);
4211         if (HAS_PCH_CPT(dev_priv)) {
4212                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4213                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4214         } else {
4215                 temp &= ~FDI_LINK_TRAIN_NONE;
4216                 temp |= FDI_LINK_TRAIN_PATTERN_1;
4217         }
4218         /* BPC in FDI rx is consistent with that in PIPECONF */
4219         temp &= ~(0x07 << 16);
4220         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4221         I915_WRITE(reg, temp);
4222
4223         POSTING_READ(reg);
4224         udelay(100);
4225 }
4226
4227 bool intel_has_pending_fb_unpin(struct drm_device *dev)
4228 {
4229         struct drm_i915_private *dev_priv = to_i915(dev);
4230         struct intel_crtc *crtc;
4231
4232         /* Note that we don't need to be called with mode_config.lock here
4233          * as our list of CRTC objects is static for the lifetime of the
4234          * device and so cannot disappear as we iterate. Similarly, we can
4235          * happily treat the predicates as racy, atomic checks as userspace
4236          * cannot claim and pin a new fb without at least acquring the
4237          * struct_mutex and so serialising with us.
4238          */
4239         for_each_intel_crtc(dev, crtc) {
4240                 if (atomic_read(&crtc->unpin_work_count) == 0)
4241                         continue;
4242
4243                 if (crtc->flip_work)
4244                         intel_wait_for_vblank(dev_priv, crtc->pipe);
4245
4246                 return true;
4247         }
4248
4249         return false;
4250 }
4251
4252 static void page_flip_completed(struct intel_crtc *intel_crtc)
4253 {
4254         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4255         struct intel_flip_work *work = intel_crtc->flip_work;
4256
4257         intel_crtc->flip_work = NULL;
4258
4259         if (work->event)
4260                 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4261
4262         drm_crtc_vblank_put(&intel_crtc->base);
4263
4264         wake_up_all(&dev_priv->pending_flip_queue);
4265         trace_i915_flip_complete(intel_crtc->plane,
4266                                  work->pending_flip_obj);
4267
4268         queue_work(dev_priv->wq, &work->unpin_work);
4269 }
4270
4271 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4272 {
4273         struct drm_device *dev = crtc->dev;
4274         struct drm_i915_private *dev_priv = to_i915(dev);
4275         long ret;
4276
4277         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4278
4279         ret = wait_event_interruptible_timeout(
4280                                         dev_priv->pending_flip_queue,
4281                                         !intel_crtc_has_pending_flip(crtc),
4282                                         60*HZ);
4283
4284         if (ret < 0)
4285                 return ret;
4286
4287         if (ret == 0) {
4288                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4289                 struct intel_flip_work *work;
4290
4291                 spin_lock_irq(&dev->event_lock);
4292                 work = intel_crtc->flip_work;
4293                 if (work && !is_mmio_work(work)) {
4294                         WARN_ONCE(1, "Removing stuck page flip\n");
4295                         page_flip_completed(intel_crtc);
4296                 }
4297                 spin_unlock_irq(&dev->event_lock);
4298         }
4299
4300         return 0;
4301 }
4302
4303 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4304 {
4305         u32 temp;
4306
4307         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4308
4309         mutex_lock(&dev_priv->sb_lock);
4310
4311         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4312         temp |= SBI_SSCCTL_DISABLE;
4313         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4314
4315         mutex_unlock(&dev_priv->sb_lock);
4316 }
4317
4318 /* Program iCLKIP clock to the desired frequency */
4319 static void lpt_program_iclkip(struct drm_crtc *crtc)
4320 {
4321         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4322         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
4323         u32 divsel, phaseinc, auxdiv, phasedir = 0;
4324         u32 temp;
4325
4326         lpt_disable_iclkip(dev_priv);
4327
4328         /* The iCLK virtual clock root frequency is in MHz,
4329          * but the adjusted_mode->crtc_clock in in KHz. To get the
4330          * divisors, it is necessary to divide one by another, so we
4331          * convert the virtual clock precision to KHz here for higher
4332          * precision.
4333          */
4334         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4335                 u32 iclk_virtual_root_freq = 172800 * 1000;
4336                 u32 iclk_pi_range = 64;
4337                 u32 desired_divisor;
4338
4339                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4340                                                     clock << auxdiv);
4341                 divsel = (desired_divisor / iclk_pi_range) - 2;
4342                 phaseinc = desired_divisor % iclk_pi_range;
4343
4344                 /*
4345                  * Near 20MHz is a corner case which is
4346                  * out of range for the 7-bit divisor
4347                  */
4348                 if (divsel <= 0x7f)
4349                         break;
4350         }
4351
4352         /* This should not happen with any sane values */
4353         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4354                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4355         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4356                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4357
4358         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4359                         clock,
4360                         auxdiv,
4361                         divsel,
4362                         phasedir,
4363                         phaseinc);
4364
4365         mutex_lock(&dev_priv->sb_lock);
4366
4367         /* Program SSCDIVINTPHASE6 */
4368         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4369         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4370         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4371         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4372         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4373         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4374         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4375         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4376
4377         /* Program SSCAUXDIV */
4378         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4379         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4380         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4381         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4382
4383         /* Enable modulator and associated divider */
4384         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4385         temp &= ~SBI_SSCCTL_DISABLE;
4386         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4387
4388         mutex_unlock(&dev_priv->sb_lock);
4389
4390         /* Wait for initialization time */
4391         udelay(24);
4392
4393         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4394 }
4395
4396 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4397 {
4398         u32 divsel, phaseinc, auxdiv;
4399         u32 iclk_virtual_root_freq = 172800 * 1000;
4400         u32 iclk_pi_range = 64;
4401         u32 desired_divisor;
4402         u32 temp;
4403
4404         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4405                 return 0;
4406
4407         mutex_lock(&dev_priv->sb_lock);
4408
4409         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4410         if (temp & SBI_SSCCTL_DISABLE) {
4411                 mutex_unlock(&dev_priv->sb_lock);
4412                 return 0;
4413         }
4414
4415         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4416         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4417                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4418         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4419                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4420
4421         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4422         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4423                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4424
4425         mutex_unlock(&dev_priv->sb_lock);
4426
4427         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4428
4429         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4430                                  desired_divisor << auxdiv);
4431 }
4432
4433 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4434                                                 enum pipe pch_transcoder)
4435 {
4436         struct drm_device *dev = crtc->base.dev;
4437         struct drm_i915_private *dev_priv = to_i915(dev);
4438         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4439
4440         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4441                    I915_READ(HTOTAL(cpu_transcoder)));
4442         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4443                    I915_READ(HBLANK(cpu_transcoder)));
4444         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4445                    I915_READ(HSYNC(cpu_transcoder)));
4446
4447         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4448                    I915_READ(VTOTAL(cpu_transcoder)));
4449         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4450                    I915_READ(VBLANK(cpu_transcoder)));
4451         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4452                    I915_READ(VSYNC(cpu_transcoder)));
4453         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4454                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4455 }
4456
4457 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4458 {
4459         struct drm_i915_private *dev_priv = to_i915(dev);
4460         uint32_t temp;
4461
4462         temp = I915_READ(SOUTH_CHICKEN1);
4463         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4464                 return;
4465
4466         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4467         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4468
4469         temp &= ~FDI_BC_BIFURCATION_SELECT;
4470         if (enable)
4471                 temp |= FDI_BC_BIFURCATION_SELECT;
4472
4473         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4474         I915_WRITE(SOUTH_CHICKEN1, temp);
4475         POSTING_READ(SOUTH_CHICKEN1);
4476 }
4477
4478 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4479 {
4480         struct drm_device *dev = intel_crtc->base.dev;
4481
4482         switch (intel_crtc->pipe) {
4483         case PIPE_A:
4484                 break;
4485         case PIPE_B:
4486                 if (intel_crtc->config->fdi_lanes > 2)
4487                         cpt_set_fdi_bc_bifurcation(dev, false);
4488                 else
4489                         cpt_set_fdi_bc_bifurcation(dev, true);
4490
4491                 break;
4492         case PIPE_C:
4493                 cpt_set_fdi_bc_bifurcation(dev, true);
4494
4495                 break;
4496         default:
4497                 BUG();
4498         }
4499 }
4500
4501 /* Return which DP Port should be selected for Transcoder DP control */
4502 static enum port
4503 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4504 {
4505         struct drm_device *dev = crtc->dev;
4506         struct intel_encoder *encoder;
4507
4508         for_each_encoder_on_crtc(dev, crtc, encoder) {
4509                 if (encoder->type == INTEL_OUTPUT_DP ||
4510                     encoder->type == INTEL_OUTPUT_EDP)
4511                         return enc_to_dig_port(&encoder->base)->port;
4512         }
4513
4514         return -1;
4515 }
4516
4517 /*
4518  * Enable PCH resources required for PCH ports:
4519  *   - PCH PLLs
4520  *   - FDI training & RX/TX
4521  *   - update transcoder timings
4522  *   - DP transcoding bits
4523  *   - transcoder
4524  */
4525 static void ironlake_pch_enable(struct drm_crtc *crtc)
4526 {
4527         struct drm_device *dev = crtc->dev;
4528         struct drm_i915_private *dev_priv = to_i915(dev);
4529         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4530         int pipe = intel_crtc->pipe;
4531         u32 temp;
4532
4533         assert_pch_transcoder_disabled(dev_priv, pipe);
4534
4535         if (IS_IVYBRIDGE(dev_priv))
4536                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4537
4538         /* Write the TU size bits before fdi link training, so that error
4539          * detection works. */
4540         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4541                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4542
4543         /* For PCH output, training FDI link */
4544         dev_priv->display.fdi_link_train(crtc);
4545
4546         /* We need to program the right clock selection before writing the pixel
4547          * mutliplier into the DPLL. */
4548         if (HAS_PCH_CPT(dev_priv)) {
4549                 u32 sel;
4550
4551                 temp = I915_READ(PCH_DPLL_SEL);
4552                 temp |= TRANS_DPLL_ENABLE(pipe);
4553                 sel = TRANS_DPLLB_SEL(pipe);
4554                 if (intel_crtc->config->shared_dpll ==
4555                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4556                         temp |= sel;
4557                 else
4558                         temp &= ~sel;
4559                 I915_WRITE(PCH_DPLL_SEL, temp);
4560         }
4561
4562         /* XXX: pch pll's can be enabled any time before we enable the PCH
4563          * transcoder, and we actually should do this to not upset any PCH
4564          * transcoder that already use the clock when we share it.
4565          *
4566          * Note that enable_shared_dpll tries to do the right thing, but
4567          * get_shared_dpll unconditionally resets the pll - we need that to have
4568          * the right LVDS enable sequence. */
4569         intel_enable_shared_dpll(intel_crtc);
4570
4571         /* set transcoder timing, panel must allow it */
4572         assert_panel_unlocked(dev_priv, pipe);
4573         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4574
4575         intel_fdi_normal_train(crtc);
4576
4577         /* For PCH DP, enable TRANS_DP_CTL */
4578         if (HAS_PCH_CPT(dev_priv) &&
4579             intel_crtc_has_dp_encoder(intel_crtc->config)) {
4580                 const struct drm_display_mode *adjusted_mode =
4581                         &intel_crtc->config->base.adjusted_mode;
4582                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4583                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4584                 temp = I915_READ(reg);
4585                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4586                           TRANS_DP_SYNC_MASK |
4587                           TRANS_DP_BPC_MASK);
4588                 temp |= TRANS_DP_OUTPUT_ENABLE;
4589                 temp |= bpc << 9; /* same format but at 11:9 */
4590
4591                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4592                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4593                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4594                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4595
4596                 switch (intel_trans_dp_port_sel(crtc)) {
4597                 case PORT_B:
4598                         temp |= TRANS_DP_PORT_SEL_B;
4599                         break;
4600                 case PORT_C:
4601                         temp |= TRANS_DP_PORT_SEL_C;
4602                         break;
4603                 case PORT_D:
4604                         temp |= TRANS_DP_PORT_SEL_D;
4605                         break;
4606                 default:
4607                         BUG();
4608                 }
4609
4610                 I915_WRITE(reg, temp);
4611         }
4612
4613         ironlake_enable_pch_transcoder(dev_priv, pipe);
4614 }
4615
4616 static void lpt_pch_enable(struct drm_crtc *crtc)
4617 {
4618         struct drm_device *dev = crtc->dev;
4619         struct drm_i915_private *dev_priv = to_i915(dev);
4620         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4621         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4622
4623         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4624
4625         lpt_program_iclkip(crtc);
4626
4627         /* Set transcoder timing. */
4628         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4629
4630         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4631 }
4632
4633 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4634 {
4635         struct drm_i915_private *dev_priv = to_i915(dev);
4636         i915_reg_t dslreg = PIPEDSL(pipe);
4637         u32 temp;
4638
4639         temp = I915_READ(dslreg);
4640         udelay(500);
4641         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4642                 if (wait_for(I915_READ(dslreg) != temp, 5))
4643                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4644         }
4645 }
4646
4647 static int
4648 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4649                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4650                   int src_w, int src_h, int dst_w, int dst_h)
4651 {
4652         struct intel_crtc_scaler_state *scaler_state =
4653                 &crtc_state->scaler_state;
4654         struct intel_crtc *intel_crtc =
4655                 to_intel_crtc(crtc_state->base.crtc);
4656         int need_scaling;
4657
4658         need_scaling = drm_rotation_90_or_270(rotation) ?
4659                 (src_h != dst_w || src_w != dst_h):
4660                 (src_w != dst_w || src_h != dst_h);
4661
4662         /*
4663          * if plane is being disabled or scaler is no more required or force detach
4664          *  - free scaler binded to this plane/crtc
4665          *  - in order to do this, update crtc->scaler_usage
4666          *
4667          * Here scaler state in crtc_state is set free so that
4668          * scaler can be assigned to other user. Actual register
4669          * update to free the scaler is done in plane/panel-fit programming.
4670          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4671          */
4672         if (force_detach || !need_scaling) {
4673                 if (*scaler_id >= 0) {
4674                         scaler_state->scaler_users &= ~(1 << scaler_user);
4675                         scaler_state->scalers[*scaler_id].in_use = 0;
4676
4677                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4678                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4679                                 intel_crtc->pipe, scaler_user, *scaler_id,
4680                                 scaler_state->scaler_users);
4681                         *scaler_id = -1;
4682                 }
4683                 return 0;
4684         }
4685
4686         /* range checks */
4687         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4688                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4689
4690                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4691                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4692                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4693                         "size is out of scaler range\n",
4694                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4695                 return -EINVAL;
4696         }
4697
4698         /* mark this plane as a scaler user in crtc_state */
4699         scaler_state->scaler_users |= (1 << scaler_user);
4700         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4701                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4702                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4703                 scaler_state->scaler_users);
4704
4705         return 0;
4706 }
4707
4708 /**
4709  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4710  *
4711  * @state: crtc's scaler state
4712  *
4713  * Return
4714  *     0 - scaler_usage updated successfully
4715  *    error - requested scaling cannot be supported or other error condition
4716  */
4717 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4718 {
4719         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4720
4721         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4722                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4723                 state->pipe_src_w, state->pipe_src_h,
4724                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4725 }
4726
4727 /**
4728  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4729  *
4730  * @state: crtc's scaler state
4731  * @plane_state: atomic plane state to update
4732  *
4733  * Return
4734  *     0 - scaler_usage updated successfully
4735  *    error - requested scaling cannot be supported or other error condition
4736  */
4737 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4738                                    struct intel_plane_state *plane_state)
4739 {
4740
4741         struct intel_plane *intel_plane =
4742                 to_intel_plane(plane_state->base.plane);
4743         struct drm_framebuffer *fb = plane_state->base.fb;
4744         int ret;
4745
4746         bool force_detach = !fb || !plane_state->base.visible;
4747
4748         ret = skl_update_scaler(crtc_state, force_detach,
4749                                 drm_plane_index(&intel_plane->base),
4750                                 &plane_state->scaler_id,
4751                                 plane_state->base.rotation,
4752                                 drm_rect_width(&plane_state->base.src) >> 16,
4753                                 drm_rect_height(&plane_state->base.src) >> 16,
4754                                 drm_rect_width(&plane_state->base.dst),
4755                                 drm_rect_height(&plane_state->base.dst));
4756
4757         if (ret || plane_state->scaler_id < 0)
4758                 return ret;
4759
4760         /* check colorkey */
4761         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4762                 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4763                               intel_plane->base.base.id,
4764                               intel_plane->base.name);
4765                 return -EINVAL;
4766         }
4767
4768         /* Check src format */
4769         switch (fb->pixel_format) {
4770         case DRM_FORMAT_RGB565:
4771         case DRM_FORMAT_XBGR8888:
4772         case DRM_FORMAT_XRGB8888:
4773         case DRM_FORMAT_ABGR8888:
4774         case DRM_FORMAT_ARGB8888:
4775         case DRM_FORMAT_XRGB2101010:
4776         case DRM_FORMAT_XBGR2101010:
4777         case DRM_FORMAT_YUYV:
4778         case DRM_FORMAT_YVYU:
4779         case DRM_FORMAT_UYVY:
4780         case DRM_FORMAT_VYUY:
4781                 break;
4782         default:
4783                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4784                               intel_plane->base.base.id, intel_plane->base.name,
4785                               fb->base.id, fb->pixel_format);
4786                 return -EINVAL;
4787         }
4788
4789         return 0;
4790 }
4791
4792 static void skylake_scaler_disable(struct intel_crtc *crtc)
4793 {
4794         int i;
4795
4796         for (i = 0; i < crtc->num_scalers; i++)
4797                 skl_detach_scaler(crtc, i);
4798 }
4799
4800 static void skylake_pfit_enable(struct intel_crtc *crtc)
4801 {
4802         struct drm_device *dev = crtc->base.dev;
4803         struct drm_i915_private *dev_priv = to_i915(dev);
4804         int pipe = crtc->pipe;
4805         struct intel_crtc_scaler_state *scaler_state =
4806                 &crtc->config->scaler_state;
4807
4808         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4809
4810         if (crtc->config->pch_pfit.enabled) {
4811                 int id;
4812
4813                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4814                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4815                         return;
4816                 }
4817
4818                 id = scaler_state->scaler_id;
4819                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4820                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4821                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4822                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4823
4824                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4825         }
4826 }
4827
4828 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4829 {
4830         struct drm_device *dev = crtc->base.dev;
4831         struct drm_i915_private *dev_priv = to_i915(dev);
4832         int pipe = crtc->pipe;
4833
4834         if (crtc->config->pch_pfit.enabled) {
4835                 /* Force use of hard-coded filter coefficients
4836                  * as some pre-programmed values are broken,
4837                  * e.g. x201.
4838                  */
4839                 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4840                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4841                                                  PF_PIPE_SEL_IVB(pipe));
4842                 else
4843                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4844                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4845                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4846         }
4847 }
4848
4849 void hsw_enable_ips(struct intel_crtc *crtc)
4850 {
4851         struct drm_device *dev = crtc->base.dev;
4852         struct drm_i915_private *dev_priv = to_i915(dev);
4853
4854         if (!crtc->config->ips_enabled)
4855                 return;
4856
4857         /*
4858          * We can only enable IPS after we enable a plane and wait for a vblank
4859          * This function is called from post_plane_update, which is run after
4860          * a vblank wait.
4861          */
4862
4863         assert_plane_enabled(dev_priv, crtc->plane);
4864         if (IS_BROADWELL(dev_priv)) {
4865                 mutex_lock(&dev_priv->rps.hw_lock);
4866                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4867                 mutex_unlock(&dev_priv->rps.hw_lock);
4868                 /* Quoting Art Runyan: "its not safe to expect any particular
4869                  * value in IPS_CTL bit 31 after enabling IPS through the
4870                  * mailbox." Moreover, the mailbox may return a bogus state,
4871                  * so we need to just enable it and continue on.
4872                  */
4873         } else {
4874                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4875                 /* The bit only becomes 1 in the next vblank, so this wait here
4876                  * is essentially intel_wait_for_vblank. If we don't have this
4877                  * and don't wait for vblanks until the end of crtc_enable, then
4878                  * the HW state readout code will complain that the expected
4879                  * IPS_CTL value is not the one we read. */
4880                 if (intel_wait_for_register(dev_priv,
4881                                             IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4882                                             50))
4883                         DRM_ERROR("Timed out waiting for IPS enable\n");
4884         }
4885 }
4886
4887 void hsw_disable_ips(struct intel_crtc *crtc)
4888 {
4889         struct drm_device *dev = crtc->base.dev;
4890         struct drm_i915_private *dev_priv = to_i915(dev);
4891
4892         if (!crtc->config->ips_enabled)
4893                 return;
4894
4895         assert_plane_enabled(dev_priv, crtc->plane);
4896         if (IS_BROADWELL(dev_priv)) {
4897                 mutex_lock(&dev_priv->rps.hw_lock);
4898                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4899                 mutex_unlock(&dev_priv->rps.hw_lock);
4900                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4901                 if (intel_wait_for_register(dev_priv,
4902                                             IPS_CTL, IPS_ENABLE, 0,
4903                                             42))
4904                         DRM_ERROR("Timed out waiting for IPS disable\n");
4905         } else {
4906                 I915_WRITE(IPS_CTL, 0);
4907                 POSTING_READ(IPS_CTL);
4908         }
4909
4910         /* We need to wait for a vblank before we can disable the plane. */
4911         intel_wait_for_vblank(dev_priv, crtc->pipe);
4912 }
4913
4914 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4915 {
4916         if (intel_crtc->overlay) {
4917                 struct drm_device *dev = intel_crtc->base.dev;
4918                 struct drm_i915_private *dev_priv = to_i915(dev);
4919
4920                 mutex_lock(&dev->struct_mutex);
4921                 dev_priv->mm.interruptible = false;
4922                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4923                 dev_priv->mm.interruptible = true;
4924                 mutex_unlock(&dev->struct_mutex);
4925         }
4926
4927         /* Let userspace switch the overlay on again. In most cases userspace
4928          * has to recompute where to put it anyway.
4929          */
4930 }
4931
4932 /**
4933  * intel_post_enable_primary - Perform operations after enabling primary plane
4934  * @crtc: the CRTC whose primary plane was just enabled
4935  *
4936  * Performs potentially sleeping operations that must be done after the primary
4937  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4938  * called due to an explicit primary plane update, or due to an implicit
4939  * re-enable that is caused when a sprite plane is updated to no longer
4940  * completely hide the primary plane.
4941  */
4942 static void
4943 intel_post_enable_primary(struct drm_crtc *crtc)
4944 {
4945         struct drm_device *dev = crtc->dev;
4946         struct drm_i915_private *dev_priv = to_i915(dev);
4947         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4948         int pipe = intel_crtc->pipe;
4949
4950         /*
4951          * FIXME IPS should be fine as long as one plane is
4952          * enabled, but in practice it seems to have problems
4953          * when going from primary only to sprite only and vice
4954          * versa.
4955          */
4956         hsw_enable_ips(intel_crtc);
4957
4958         /*
4959          * Gen2 reports pipe underruns whenever all planes are disabled.
4960          * So don't enable underrun reporting before at least some planes
4961          * are enabled.
4962          * FIXME: Need to fix the logic to work when we turn off all planes
4963          * but leave the pipe running.
4964          */
4965         if (IS_GEN2(dev_priv))
4966                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4967
4968         /* Underruns don't always raise interrupts, so check manually. */
4969         intel_check_cpu_fifo_underruns(dev_priv);
4970         intel_check_pch_fifo_underruns(dev_priv);
4971 }
4972
4973 /* FIXME move all this to pre_plane_update() with proper state tracking */
4974 static void
4975 intel_pre_disable_primary(struct drm_crtc *crtc)
4976 {
4977         struct drm_device *dev = crtc->dev;
4978         struct drm_i915_private *dev_priv = to_i915(dev);
4979         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4980         int pipe = intel_crtc->pipe;
4981
4982         /*
4983          * Gen2 reports pipe underruns whenever all planes are disabled.
4984          * So diasble underrun reporting before all the planes get disabled.
4985          * FIXME: Need to fix the logic to work when we turn off all planes
4986          * but leave the pipe running.
4987          */
4988         if (IS_GEN2(dev_priv))
4989                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4990
4991         /*
4992          * FIXME IPS should be fine as long as one plane is
4993          * enabled, but in practice it seems to have problems
4994          * when going from primary only to sprite only and vice
4995          * versa.
4996          */
4997         hsw_disable_ips(intel_crtc);
4998 }
4999
5000 /* FIXME get rid of this and use pre_plane_update */
5001 static void
5002 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5003 {
5004         struct drm_device *dev = crtc->dev;
5005         struct drm_i915_private *dev_priv = to_i915(dev);
5006         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5007         int pipe = intel_crtc->pipe;
5008
5009         intel_pre_disable_primary(crtc);
5010
5011         /*
5012          * Vblank time updates from the shadow to live plane control register
5013          * are blocked if the memory self-refresh mode is active at that
5014          * moment. So to make sure the plane gets truly disabled, disable
5015          * first the self-refresh mode. The self-refresh enable bit in turn
5016          * will be checked/applied by the HW only at the next frame start
5017          * event which is after the vblank start event, so we need to have a
5018          * wait-for-vblank between disabling the plane and the pipe.
5019          */
5020         if (HAS_GMCH_DISPLAY(dev_priv)) {
5021                 intel_set_memory_cxsr(dev_priv, false);
5022                 dev_priv->wm.vlv.cxsr = false;
5023                 intel_wait_for_vblank(dev_priv, pipe);
5024         }
5025 }
5026
5027 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5028 {
5029         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5030         struct drm_atomic_state *old_state = old_crtc_state->base.state;
5031         struct intel_crtc_state *pipe_config =
5032                 to_intel_crtc_state(crtc->base.state);
5033         struct drm_plane *primary = crtc->base.primary;
5034         struct drm_plane_state *old_pri_state =
5035                 drm_atomic_get_existing_plane_state(old_state, primary);
5036
5037         intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5038
5039         crtc->wm.cxsr_allowed = true;
5040
5041         if (pipe_config->update_wm_post && pipe_config->base.active)
5042                 intel_update_watermarks(crtc);
5043
5044         if (old_pri_state) {
5045                 struct intel_plane_state *primary_state =
5046                         to_intel_plane_state(primary->state);
5047                 struct intel_plane_state *old_primary_state =
5048                         to_intel_plane_state(old_pri_state);
5049
5050                 intel_fbc_post_update(crtc);
5051
5052                 if (primary_state->base.visible &&
5053                     (needs_modeset(&pipe_config->base) ||
5054                      !old_primary_state->base.visible))
5055                         intel_post_enable_primary(&crtc->base);
5056         }
5057 }
5058
5059 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
5060 {
5061         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5062         struct drm_device *dev = crtc->base.dev;
5063         struct drm_i915_private *dev_priv = to_i915(dev);
5064         struct intel_crtc_state *pipe_config =
5065                 to_intel_crtc_state(crtc->base.state);
5066         struct drm_atomic_state *old_state = old_crtc_state->base.state;
5067         struct drm_plane *primary = crtc->base.primary;
5068         struct drm_plane_state *old_pri_state =
5069                 drm_atomic_get_existing_plane_state(old_state, primary);
5070         bool modeset = needs_modeset(&pipe_config->base);
5071         struct intel_atomic_state *old_intel_state =
5072                 to_intel_atomic_state(old_state);
5073
5074         if (old_pri_state) {
5075                 struct intel_plane_state *primary_state =
5076                         to_intel_plane_state(primary->state);
5077                 struct intel_plane_state *old_primary_state =
5078                         to_intel_plane_state(old_pri_state);
5079
5080                 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5081
5082                 if (old_primary_state->base.visible &&
5083                     (modeset || !primary_state->base.visible))
5084                         intel_pre_disable_primary(&crtc->base);
5085         }
5086
5087         if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev_priv)) {
5088                 crtc->wm.cxsr_allowed = false;
5089
5090                 /*
5091                  * Vblank time updates from the shadow to live plane control register
5092                  * are blocked if the memory self-refresh mode is active at that
5093                  * moment. So to make sure the plane gets truly disabled, disable
5094                  * first the self-refresh mode. The self-refresh enable bit in turn
5095                  * will be checked/applied by the HW only at the next frame start
5096                  * event which is after the vblank start event, so we need to have a
5097                  * wait-for-vblank between disabling the plane and the pipe.
5098                  */
5099                 if (old_crtc_state->base.active) {
5100                         intel_set_memory_cxsr(dev_priv, false);
5101                         dev_priv->wm.vlv.cxsr = false;
5102                         intel_wait_for_vblank(dev_priv, crtc->pipe);
5103                 }
5104         }
5105
5106         /*
5107          * IVB workaround: must disable low power watermarks for at least
5108          * one frame before enabling scaling.  LP watermarks can be re-enabled
5109          * when scaling is disabled.
5110          *
5111          * WaCxSRDisabledForSpriteScaling:ivb
5112          */
5113         if (pipe_config->disable_lp_wm) {
5114                 ilk_disable_lp_wm(dev);
5115                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5116         }
5117
5118         /*
5119          * If we're doing a modeset, we're done.  No need to do any pre-vblank
5120          * watermark programming here.
5121          */
5122         if (needs_modeset(&pipe_config->base))
5123                 return;
5124
5125         /*
5126          * For platforms that support atomic watermarks, program the
5127          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
5128          * will be the intermediate values that are safe for both pre- and
5129          * post- vblank; when vblank happens, the 'active' values will be set
5130          * to the final 'target' values and we'll do this again to get the
5131          * optimal watermarks.  For gen9+ platforms, the values we program here
5132          * will be the final target values which will get automatically latched
5133          * at vblank time; no further programming will be necessary.
5134          *
5135          * If a platform hasn't been transitioned to atomic watermarks yet,
5136          * we'll continue to update watermarks the old way, if flags tell
5137          * us to.
5138          */
5139         if (dev_priv->display.initial_watermarks != NULL)
5140                 dev_priv->display.initial_watermarks(old_intel_state,
5141                                                      pipe_config);
5142         else if (pipe_config->update_wm_pre)
5143                 intel_update_watermarks(crtc);
5144 }
5145
5146 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5147 {
5148         struct drm_device *dev = crtc->dev;
5149         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5150         struct drm_plane *p;
5151         int pipe = intel_crtc->pipe;
5152
5153         intel_crtc_dpms_overlay_disable(intel_crtc);
5154
5155         drm_for_each_plane_mask(p, dev, plane_mask)
5156                 to_intel_plane(p)->disable_plane(p, crtc);
5157
5158         /*
5159          * FIXME: Once we grow proper nuclear flip support out of this we need
5160          * to compute the mask of flip planes precisely. For the time being
5161          * consider this a flip to a NULL plane.
5162          */
5163         intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5164 }
5165
5166 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5167                                           struct intel_crtc_state *crtc_state,
5168                                           struct drm_atomic_state *old_state)
5169 {
5170         struct drm_connector_state *old_conn_state;
5171         struct drm_connector *conn;
5172         int i;
5173
5174         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5175                 struct drm_connector_state *conn_state = conn->state;
5176                 struct intel_encoder *encoder =
5177                         to_intel_encoder(conn_state->best_encoder);
5178
5179                 if (conn_state->crtc != crtc)
5180                         continue;
5181
5182                 if (encoder->pre_pll_enable)
5183                         encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5184         }
5185 }
5186
5187 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5188                                       struct intel_crtc_state *crtc_state,
5189                                       struct drm_atomic_state *old_state)
5190 {
5191         struct drm_connector_state *old_conn_state;
5192         struct drm_connector *conn;
5193         int i;
5194
5195         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5196                 struct drm_connector_state *conn_state = conn->state;
5197                 struct intel_encoder *encoder =
5198                         to_intel_encoder(conn_state->best_encoder);
5199
5200                 if (conn_state->crtc != crtc)
5201                         continue;
5202
5203                 if (encoder->pre_enable)
5204                         encoder->pre_enable(encoder, crtc_state, conn_state);
5205         }
5206 }
5207
5208 static void intel_encoders_enable(struct drm_crtc *crtc,
5209                                   struct intel_crtc_state *crtc_state,
5210                                   struct drm_atomic_state *old_state)
5211 {
5212         struct drm_connector_state *old_conn_state;
5213         struct drm_connector *conn;
5214         int i;
5215
5216         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5217                 struct drm_connector_state *conn_state = conn->state;
5218                 struct intel_encoder *encoder =
5219                         to_intel_encoder(conn_state->best_encoder);
5220
5221                 if (conn_state->crtc != crtc)
5222                         continue;
5223
5224                 encoder->enable(encoder, crtc_state, conn_state);
5225                 intel_opregion_notify_encoder(encoder, true);
5226         }
5227 }
5228
5229 static void intel_encoders_disable(struct drm_crtc *crtc,
5230                                    struct intel_crtc_state *old_crtc_state,
5231                                    struct drm_atomic_state *old_state)
5232 {
5233         struct drm_connector_state *old_conn_state;
5234         struct drm_connector *conn;
5235         int i;
5236
5237         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5238                 struct intel_encoder *encoder =
5239                         to_intel_encoder(old_conn_state->best_encoder);
5240
5241                 if (old_conn_state->crtc != crtc)
5242                         continue;
5243
5244                 intel_opregion_notify_encoder(encoder, false);
5245                 encoder->disable(encoder, old_crtc_state, old_conn_state);
5246         }
5247 }
5248
5249 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5250                                         struct intel_crtc_state *old_crtc_state,
5251                                         struct drm_atomic_state *old_state)
5252 {
5253         struct drm_connector_state *old_conn_state;
5254         struct drm_connector *conn;
5255         int i;
5256
5257         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5258                 struct intel_encoder *encoder =
5259                         to_intel_encoder(old_conn_state->best_encoder);
5260
5261                 if (old_conn_state->crtc != crtc)
5262                         continue;
5263
5264                 if (encoder->post_disable)
5265                         encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5266         }
5267 }
5268
5269 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5270                                             struct intel_crtc_state *old_crtc_state,
5271                                             struct drm_atomic_state *old_state)
5272 {
5273         struct drm_connector_state *old_conn_state;
5274         struct drm_connector *conn;
5275         int i;
5276
5277         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5278                 struct intel_encoder *encoder =
5279                         to_intel_encoder(old_conn_state->best_encoder);
5280
5281                 if (old_conn_state->crtc != crtc)
5282                         continue;
5283
5284                 if (encoder->post_pll_disable)
5285                         encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5286         }
5287 }
5288
5289 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5290                                  struct drm_atomic_state *old_state)
5291 {
5292         struct drm_crtc *crtc = pipe_config->base.crtc;
5293         struct drm_device *dev = crtc->dev;
5294         struct drm_i915_private *dev_priv = to_i915(dev);
5295         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5296         int pipe = intel_crtc->pipe;
5297         struct intel_atomic_state *old_intel_state =
5298                 to_intel_atomic_state(old_state);
5299
5300         if (WARN_ON(intel_crtc->active))
5301                 return;
5302
5303         /*
5304          * Sometimes spurious CPU pipe underruns happen during FDI
5305          * training, at least with VGA+HDMI cloning. Suppress them.
5306          *
5307          * On ILK we get an occasional spurious CPU pipe underruns
5308          * between eDP port A enable and vdd enable. Also PCH port
5309          * enable seems to result in the occasional CPU pipe underrun.
5310          *
5311          * Spurious PCH underruns also occur during PCH enabling.
5312          */
5313         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5314                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5315         if (intel_crtc->config->has_pch_encoder)
5316                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5317
5318         if (intel_crtc->config->has_pch_encoder)
5319                 intel_prepare_shared_dpll(intel_crtc);
5320
5321         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5322                 intel_dp_set_m_n(intel_crtc, M1_N1);
5323
5324         intel_set_pipe_timings(intel_crtc);
5325         intel_set_pipe_src_size(intel_crtc);
5326
5327         if (intel_crtc->config->has_pch_encoder) {
5328                 intel_cpu_transcoder_set_m_n(intel_crtc,
5329                                      &intel_crtc->config->fdi_m_n, NULL);
5330         }
5331
5332         ironlake_set_pipeconf(crtc);
5333
5334         intel_crtc->active = true;
5335
5336         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5337
5338         if (intel_crtc->config->has_pch_encoder) {
5339                 /* Note: FDI PLL enabling _must_ be done before we enable the
5340                  * cpu pipes, hence this is separate from all the other fdi/pch
5341                  * enabling. */
5342                 ironlake_fdi_pll_enable(intel_crtc);
5343         } else {
5344                 assert_fdi_tx_disabled(dev_priv, pipe);
5345                 assert_fdi_rx_disabled(dev_priv, pipe);
5346         }
5347
5348         ironlake_pfit_enable(intel_crtc);
5349
5350         /*
5351          * On ILK+ LUT must be loaded before the pipe is running but with
5352          * clocks enabled
5353          */
5354         intel_color_load_luts(&pipe_config->base);
5355
5356         if (dev_priv->display.initial_watermarks != NULL)
5357                 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5358         intel_enable_pipe(intel_crtc);
5359
5360         if (intel_crtc->config->has_pch_encoder)
5361                 ironlake_pch_enable(crtc);
5362
5363         assert_vblank_disabled(crtc);
5364         drm_crtc_vblank_on(crtc);
5365
5366         intel_encoders_enable(crtc, pipe_config, old_state);
5367
5368         if (HAS_PCH_CPT(dev_priv))
5369                 cpt_verify_modeset(dev, intel_crtc->pipe);
5370
5371         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5372         if (intel_crtc->config->has_pch_encoder)
5373                 intel_wait_for_vblank(dev_priv, pipe);
5374         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5375         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5376 }
5377
5378 /* IPS only exists on ULT machines and is tied to pipe A. */
5379 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5380 {
5381         return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5382 }
5383
5384 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5385                                 struct drm_atomic_state *old_state)
5386 {
5387         struct drm_crtc *crtc = pipe_config->base.crtc;
5388         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5389         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5390         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5391         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5392         struct intel_atomic_state *old_intel_state =
5393                 to_intel_atomic_state(old_state);
5394
5395         if (WARN_ON(intel_crtc->active))
5396                 return;
5397
5398         if (intel_crtc->config->has_pch_encoder)
5399                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5400                                                       false);
5401
5402         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5403
5404         if (intel_crtc->config->shared_dpll)
5405                 intel_enable_shared_dpll(intel_crtc);
5406
5407         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5408                 intel_dp_set_m_n(intel_crtc, M1_N1);
5409
5410         if (!transcoder_is_dsi(cpu_transcoder))
5411                 intel_set_pipe_timings(intel_crtc);
5412
5413         intel_set_pipe_src_size(intel_crtc);
5414
5415         if (cpu_transcoder != TRANSCODER_EDP &&
5416             !transcoder_is_dsi(cpu_transcoder)) {
5417                 I915_WRITE(PIPE_MULT(cpu_transcoder),
5418                            intel_crtc->config->pixel_multiplier - 1);
5419         }
5420
5421         if (intel_crtc->config->has_pch_encoder) {
5422                 intel_cpu_transcoder_set_m_n(intel_crtc,
5423                                      &intel_crtc->config->fdi_m_n, NULL);
5424         }
5425
5426         if (!transcoder_is_dsi(cpu_transcoder))
5427                 haswell_set_pipeconf(crtc);
5428
5429         haswell_set_pipemisc(crtc);
5430
5431         intel_color_set_csc(&pipe_config->base);
5432
5433         intel_crtc->active = true;
5434
5435         if (intel_crtc->config->has_pch_encoder)
5436                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5437         else
5438                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5439
5440         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5441
5442         if (intel_crtc->config->has_pch_encoder)
5443                 dev_priv->display.fdi_link_train(crtc);
5444
5445         if (!transcoder_is_dsi(cpu_transcoder))
5446                 intel_ddi_enable_pipe_clock(intel_crtc);
5447
5448         if (INTEL_GEN(dev_priv) >= 9)
5449                 skylake_pfit_enable(intel_crtc);
5450         else
5451                 ironlake_pfit_enable(intel_crtc);
5452
5453         /*
5454          * On ILK+ LUT must be loaded before the pipe is running but with
5455          * clocks enabled
5456          */
5457         intel_color_load_luts(&pipe_config->base);
5458
5459         intel_ddi_set_pipe_settings(crtc);
5460         if (!transcoder_is_dsi(cpu_transcoder))
5461                 intel_ddi_enable_transcoder_func(crtc);
5462
5463         if (dev_priv->display.initial_watermarks != NULL)
5464                 dev_priv->display.initial_watermarks(old_intel_state,
5465                                                      pipe_config);
5466         else
5467                 intel_update_watermarks(intel_crtc);
5468
5469         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5470         if (!transcoder_is_dsi(cpu_transcoder))
5471                 intel_enable_pipe(intel_crtc);
5472
5473         if (intel_crtc->config->has_pch_encoder)
5474                 lpt_pch_enable(crtc);
5475
5476         if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5477                 intel_ddi_set_vc_payload_alloc(crtc, true);
5478
5479         assert_vblank_disabled(crtc);
5480         drm_crtc_vblank_on(crtc);
5481
5482         intel_encoders_enable(crtc, pipe_config, old_state);
5483
5484         if (intel_crtc->config->has_pch_encoder) {
5485                 intel_wait_for_vblank(dev_priv, pipe);
5486                 intel_wait_for_vblank(dev_priv, pipe);
5487                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5488                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5489                                                       true);
5490         }
5491
5492         /* If we change the relative order between pipe/planes enabling, we need
5493          * to change the workaround. */
5494         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5495         if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5496                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5497                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5498         }
5499 }
5500
5501 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5502 {
5503         struct drm_device *dev = crtc->base.dev;
5504         struct drm_i915_private *dev_priv = to_i915(dev);
5505         int pipe = crtc->pipe;
5506
5507         /* To avoid upsetting the power well on haswell only disable the pfit if
5508          * it's in use. The hw state code will make sure we get this right. */
5509         if (force || crtc->config->pch_pfit.enabled) {
5510                 I915_WRITE(PF_CTL(pipe), 0);
5511                 I915_WRITE(PF_WIN_POS(pipe), 0);
5512                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5513         }
5514 }
5515
5516 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5517                                   struct drm_atomic_state *old_state)
5518 {
5519         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5520         struct drm_device *dev = crtc->dev;
5521         struct drm_i915_private *dev_priv = to_i915(dev);
5522         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5523         int pipe = intel_crtc->pipe;
5524
5525         /*
5526          * Sometimes spurious CPU pipe underruns happen when the
5527          * pipe is already disabled, but FDI RX/TX is still enabled.
5528          * Happens at least with VGA+HDMI cloning. Suppress them.
5529          */
5530         if (intel_crtc->config->has_pch_encoder) {
5531                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5532                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5533         }
5534
5535         intel_encoders_disable(crtc, old_crtc_state, old_state);
5536
5537         drm_crtc_vblank_off(crtc);
5538         assert_vblank_disabled(crtc);
5539
5540         intel_disable_pipe(intel_crtc);
5541
5542         ironlake_pfit_disable(intel_crtc, false);
5543
5544         if (intel_crtc->config->has_pch_encoder)
5545                 ironlake_fdi_disable(crtc);
5546
5547         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5548
5549         if (intel_crtc->config->has_pch_encoder) {
5550                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5551
5552                 if (HAS_PCH_CPT(dev_priv)) {
5553                         i915_reg_t reg;
5554                         u32 temp;
5555
5556                         /* disable TRANS_DP_CTL */
5557                         reg = TRANS_DP_CTL(pipe);
5558                         temp = I915_READ(reg);
5559                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5560                                   TRANS_DP_PORT_SEL_MASK);
5561                         temp |= TRANS_DP_PORT_SEL_NONE;
5562                         I915_WRITE(reg, temp);
5563
5564                         /* disable DPLL_SEL */
5565                         temp = I915_READ(PCH_DPLL_SEL);
5566                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5567                         I915_WRITE(PCH_DPLL_SEL, temp);
5568                 }
5569
5570                 ironlake_fdi_pll_disable(intel_crtc);
5571         }
5572
5573         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5574         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5575 }
5576
5577 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5578                                  struct drm_atomic_state *old_state)
5579 {
5580         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5581         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5582         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5583         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5584
5585         if (intel_crtc->config->has_pch_encoder)
5586                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5587                                                       false);
5588
5589         intel_encoders_disable(crtc, old_crtc_state, old_state);
5590
5591         drm_crtc_vblank_off(crtc);
5592         assert_vblank_disabled(crtc);
5593
5594         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5595         if (!transcoder_is_dsi(cpu_transcoder))
5596                 intel_disable_pipe(intel_crtc);
5597
5598         if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5599                 intel_ddi_set_vc_payload_alloc(crtc, false);
5600
5601         if (!transcoder_is_dsi(cpu_transcoder))
5602                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5603
5604         if (INTEL_GEN(dev_priv) >= 9)
5605                 skylake_scaler_disable(intel_crtc);
5606         else
5607                 ironlake_pfit_disable(intel_crtc, false);
5608
5609         if (!transcoder_is_dsi(cpu_transcoder))
5610                 intel_ddi_disable_pipe_clock(intel_crtc);
5611
5612         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5613
5614         if (old_crtc_state->has_pch_encoder)
5615                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5616                                                       true);
5617 }
5618
5619 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5620 {
5621         struct drm_device *dev = crtc->base.dev;
5622         struct drm_i915_private *dev_priv = to_i915(dev);
5623         struct intel_crtc_state *pipe_config = crtc->config;
5624
5625         if (!pipe_config->gmch_pfit.control)
5626                 return;
5627
5628         /*
5629          * The panel fitter should only be adjusted whilst the pipe is disabled,
5630          * according to register description and PRM.
5631          */
5632         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5633         assert_pipe_disabled(dev_priv, crtc->pipe);
5634
5635         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5636         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5637
5638         /* Border color in case we don't scale up to the full screen. Black by
5639          * default, change to something else for debugging. */
5640         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5641 }
5642
5643 static enum intel_display_power_domain port_to_power_domain(enum port port)
5644 {
5645         switch (port) {
5646         case PORT_A:
5647                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5648         case PORT_B:
5649                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5650         case PORT_C:
5651                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5652         case PORT_D:
5653                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5654         case PORT_E:
5655                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5656         default:
5657                 MISSING_CASE(port);
5658                 return POWER_DOMAIN_PORT_OTHER;
5659         }
5660 }
5661
5662 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5663 {
5664         switch (port) {
5665         case PORT_A:
5666                 return POWER_DOMAIN_AUX_A;
5667         case PORT_B:
5668                 return POWER_DOMAIN_AUX_B;
5669         case PORT_C:
5670                 return POWER_DOMAIN_AUX_C;
5671         case PORT_D:
5672                 return POWER_DOMAIN_AUX_D;
5673         case PORT_E:
5674                 /* FIXME: Check VBT for actual wiring of PORT E */
5675                 return POWER_DOMAIN_AUX_D;
5676         default:
5677                 MISSING_CASE(port);
5678                 return POWER_DOMAIN_AUX_A;
5679         }
5680 }
5681
5682 enum intel_display_power_domain
5683 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5684 {
5685         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5686         struct intel_digital_port *intel_dig_port;
5687
5688         switch (intel_encoder->type) {
5689         case INTEL_OUTPUT_UNKNOWN:
5690                 /* Only DDI platforms should ever use this output type */
5691                 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5692         case INTEL_OUTPUT_DP:
5693         case INTEL_OUTPUT_HDMI:
5694         case INTEL_OUTPUT_EDP:
5695                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5696                 return port_to_power_domain(intel_dig_port->port);
5697         case INTEL_OUTPUT_DP_MST:
5698                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5699                 return port_to_power_domain(intel_dig_port->port);
5700         case INTEL_OUTPUT_ANALOG:
5701                 return POWER_DOMAIN_PORT_CRT;
5702         case INTEL_OUTPUT_DSI:
5703                 return POWER_DOMAIN_PORT_DSI;
5704         default:
5705                 return POWER_DOMAIN_PORT_OTHER;
5706         }
5707 }
5708
5709 enum intel_display_power_domain
5710 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5711 {
5712         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5713         struct intel_digital_port *intel_dig_port;
5714
5715         switch (intel_encoder->type) {
5716         case INTEL_OUTPUT_UNKNOWN:
5717         case INTEL_OUTPUT_HDMI:
5718                 /*
5719                  * Only DDI platforms should ever use these output types.
5720                  * We can get here after the HDMI detect code has already set
5721                  * the type of the shared encoder. Since we can't be sure
5722                  * what's the status of the given connectors, play safe and
5723                  * run the DP detection too.
5724                  */
5725                 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5726         case INTEL_OUTPUT_DP:
5727         case INTEL_OUTPUT_EDP:
5728                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5729                 return port_to_aux_power_domain(intel_dig_port->port);
5730         case INTEL_OUTPUT_DP_MST:
5731                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5732                 return port_to_aux_power_domain(intel_dig_port->port);
5733         default:
5734                 MISSING_CASE(intel_encoder->type);
5735                 return POWER_DOMAIN_AUX_A;
5736         }
5737 }
5738
5739 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5740                                             struct intel_crtc_state *crtc_state)
5741 {
5742         struct drm_device *dev = crtc->dev;
5743         struct drm_encoder *encoder;
5744         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5745         enum pipe pipe = intel_crtc->pipe;
5746         unsigned long mask;
5747         enum transcoder transcoder = crtc_state->cpu_transcoder;
5748
5749         if (!crtc_state->base.active)
5750                 return 0;
5751
5752         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5753         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5754         if (crtc_state->pch_pfit.enabled ||
5755             crtc_state->pch_pfit.force_thru)
5756                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5757
5758         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5759                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5760
5761                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5762         }
5763
5764         if (crtc_state->shared_dpll)
5765                 mask |= BIT(POWER_DOMAIN_PLLS);
5766
5767         return mask;
5768 }
5769
5770 static unsigned long
5771 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5772                                struct intel_crtc_state *crtc_state)
5773 {
5774         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5775         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5776         enum intel_display_power_domain domain;
5777         unsigned long domains, new_domains, old_domains;
5778
5779         old_domains = intel_crtc->enabled_power_domains;
5780         intel_crtc->enabled_power_domains = new_domains =
5781                 get_crtc_power_domains(crtc, crtc_state);
5782
5783         domains = new_domains & ~old_domains;
5784
5785         for_each_power_domain(domain, domains)
5786                 intel_display_power_get(dev_priv, domain);
5787
5788         return old_domains & ~new_domains;
5789 }
5790
5791 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5792                                       unsigned long domains)
5793 {
5794         enum intel_display_power_domain domain;
5795
5796         for_each_power_domain(domain, domains)
5797                 intel_display_power_put(dev_priv, domain);
5798 }
5799
5800 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5801 {
5802         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5803
5804         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5805             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5806                 return max_cdclk_freq;
5807         else if (IS_CHERRYVIEW(dev_priv))
5808                 return max_cdclk_freq*95/100;
5809         else if (INTEL_INFO(dev_priv)->gen < 4)
5810                 return 2*max_cdclk_freq*90/100;
5811         else
5812                 return max_cdclk_freq*90/100;
5813 }
5814
5815 static int skl_calc_cdclk(int max_pixclk, int vco);
5816
5817 static void intel_update_max_cdclk(struct drm_i915_private *dev_priv)
5818 {
5819         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5820                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5821                 int max_cdclk, vco;
5822
5823                 vco = dev_priv->skl_preferred_vco_freq;
5824                 WARN_ON(vco != 8100000 && vco != 8640000);
5825
5826                 /*
5827                  * Use the lower (vco 8640) cdclk values as a
5828                  * first guess. skl_calc_cdclk() will correct it
5829                  * if the preferred vco is 8100 instead.
5830                  */
5831                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5832                         max_cdclk = 617143;
5833                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5834                         max_cdclk = 540000;
5835                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5836                         max_cdclk = 432000;
5837                 else
5838                         max_cdclk = 308571;
5839
5840                 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5841         } else if (IS_BROXTON(dev_priv)) {
5842                 dev_priv->max_cdclk_freq = 624000;
5843         } else if (IS_BROADWELL(dev_priv))  {
5844                 /*
5845                  * FIXME with extra cooling we can allow
5846                  * 540 MHz for ULX and 675 Mhz for ULT.
5847                  * How can we know if extra cooling is
5848                  * available? PCI ID, VTB, something else?
5849                  */
5850                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5851                         dev_priv->max_cdclk_freq = 450000;
5852                 else if (IS_BDW_ULX(dev_priv))
5853                         dev_priv->max_cdclk_freq = 450000;
5854                 else if (IS_BDW_ULT(dev_priv))
5855                         dev_priv->max_cdclk_freq = 540000;
5856                 else
5857                         dev_priv->max_cdclk_freq = 675000;
5858         } else if (IS_CHERRYVIEW(dev_priv)) {
5859                 dev_priv->max_cdclk_freq = 320000;
5860         } else if (IS_VALLEYVIEW(dev_priv)) {
5861                 dev_priv->max_cdclk_freq = 400000;
5862         } else {
5863                 /* otherwise assume cdclk is fixed */
5864                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5865         }
5866
5867         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5868
5869         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5870                          dev_priv->max_cdclk_freq);
5871
5872         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5873                          dev_priv->max_dotclk_freq);
5874 }
5875
5876 static void intel_update_cdclk(struct drm_i915_private *dev_priv)
5877 {
5878         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev_priv);
5879
5880         if (INTEL_GEN(dev_priv) >= 9)
5881                 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5882                                  dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5883                                  dev_priv->cdclk_pll.ref);
5884         else
5885                 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5886                                  dev_priv->cdclk_freq);
5887
5888         /*
5889          * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5890          * Programmng [sic] note: bit[9:2] should be programmed to the number
5891          * of cdclk that generates 4MHz reference clock freq which is used to
5892          * generate GMBus clock. This will vary with the cdclk freq.
5893          */
5894         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5895                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5896 }
5897
5898 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5899 static int skl_cdclk_decimal(int cdclk)
5900 {
5901         return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5902 }
5903
5904 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5905 {
5906         int ratio;
5907
5908         if (cdclk == dev_priv->cdclk_pll.ref)
5909                 return 0;
5910
5911         switch (cdclk) {
5912         default:
5913                 MISSING_CASE(cdclk);
5914         case 144000:
5915         case 288000:
5916         case 384000:
5917         case 576000:
5918                 ratio = 60;
5919                 break;
5920         case 624000:
5921                 ratio = 65;
5922                 break;
5923         }
5924
5925         return dev_priv->cdclk_pll.ref * ratio;
5926 }
5927
5928 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5929 {
5930         I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5931
5932         /* Timeout 200us */
5933         if (intel_wait_for_register(dev_priv,
5934                                     BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5935                                     1))
5936                 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5937
5938         dev_priv->cdclk_pll.vco = 0;
5939 }
5940
5941 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5942 {
5943         int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5944         u32 val;
5945
5946         val = I915_READ(BXT_DE_PLL_CTL);
5947         val &= ~BXT_DE_PLL_RATIO_MASK;
5948         val |= BXT_DE_PLL_RATIO(ratio);
5949         I915_WRITE(BXT_DE_PLL_CTL, val);
5950
5951         I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5952
5953         /* Timeout 200us */
5954         if (intel_wait_for_register(dev_priv,
5955                                     BXT_DE_PLL_ENABLE,
5956                                     BXT_DE_PLL_LOCK,
5957                                     BXT_DE_PLL_LOCK,
5958                                     1))
5959                 DRM_ERROR("timeout waiting for DE PLL lock\n");
5960
5961         dev_priv->cdclk_pll.vco = vco;
5962 }
5963
5964 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5965 {
5966         u32 val, divider;
5967         int vco, ret;
5968
5969         vco = bxt_de_pll_vco(dev_priv, cdclk);
5970
5971         DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5972
5973         /* cdclk = vco / 2 / div{1,1.5,2,4} */
5974         switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5975         case 8:
5976                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5977                 break;
5978         case 4:
5979                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5980                 break;
5981         case 3:
5982                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5983                 break;
5984         case 2:
5985                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5986                 break;
5987         default:
5988                 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5989                 WARN_ON(vco != 0);
5990
5991                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5992                 break;
5993         }
5994
5995         /* Inform power controller of upcoming frequency change */
5996         mutex_lock(&dev_priv->rps.hw_lock);
5997         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5998                                       0x80000000);
5999         mutex_unlock(&dev_priv->rps.hw_lock);
6000
6001         if (ret) {
6002                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
6003                           ret, cdclk);
6004                 return;
6005         }
6006
6007         if (dev_priv->cdclk_pll.vco != 0 &&
6008             dev_priv->cdclk_pll.vco != vco)
6009                 bxt_de_pll_disable(dev_priv);
6010
6011         if (dev_priv->cdclk_pll.vco != vco)
6012                 bxt_de_pll_enable(dev_priv, vco);
6013
6014         val = divider | skl_cdclk_decimal(cdclk);
6015         /*
6016          * FIXME if only the cd2x divider needs changing, it could be done
6017          * without shutting off the pipe (if only one pipe is active).
6018          */
6019         val |= BXT_CDCLK_CD2X_PIPE_NONE;
6020         /*
6021          * Disable SSA Precharge when CD clock frequency < 500 MHz,
6022          * enable otherwise.
6023          */
6024         if (cdclk >= 500000)
6025                 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6026         I915_WRITE(CDCLK_CTL, val);
6027
6028         mutex_lock(&dev_priv->rps.hw_lock);
6029         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6030                                       DIV_ROUND_UP(cdclk, 25000));
6031         mutex_unlock(&dev_priv->rps.hw_lock);
6032
6033         if (ret) {
6034                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
6035                           ret, cdclk);
6036                 return;
6037         }
6038
6039         intel_update_cdclk(dev_priv);
6040 }
6041
6042 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
6043 {
6044         u32 cdctl, expected;
6045
6046         intel_update_cdclk(dev_priv);
6047
6048         if (dev_priv->cdclk_pll.vco == 0 ||
6049             dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6050                 goto sanitize;
6051
6052         /* DPLL okay; verify the cdclock
6053          *
6054          * Some BIOS versions leave an incorrect decimal frequency value and
6055          * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6056          * so sanitize this register.
6057          */
6058         cdctl = I915_READ(CDCLK_CTL);
6059         /*
6060          * Let's ignore the pipe field, since BIOS could have configured the
6061          * dividers both synching to an active pipe, or asynchronously
6062          * (PIPE_NONE).
6063          */
6064         cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
6065
6066         expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
6067                    skl_cdclk_decimal(dev_priv->cdclk_freq);
6068         /*
6069          * Disable SSA Precharge when CD clock frequency < 500 MHz,
6070          * enable otherwise.
6071          */
6072         if (dev_priv->cdclk_freq >= 500000)
6073                 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6074
6075         if (cdctl == expected)
6076                 /* All well; nothing to sanitize */
6077                 return;
6078
6079 sanitize:
6080         DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6081
6082         /* force cdclk programming */
6083         dev_priv->cdclk_freq = 0;
6084
6085         /* force full PLL disable + enable */
6086         dev_priv->cdclk_pll.vco = -1;
6087 }
6088
6089 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
6090 {
6091         bxt_sanitize_cdclk(dev_priv);
6092
6093         if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
6094                 return;
6095
6096         /*
6097          * FIXME:
6098          * - The initial CDCLK needs to be read from VBT.
6099          *   Need to make this change after VBT has changes for BXT.
6100          */
6101         bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
6102 }
6103
6104 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
6105 {
6106         bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
6107 }
6108
6109 static int skl_calc_cdclk(int max_pixclk, int vco)
6110 {
6111         if (vco == 8640000) {
6112                 if (max_pixclk > 540000)
6113                         return 617143;
6114                 else if (max_pixclk > 432000)
6115                         return 540000;
6116                 else if (max_pixclk > 308571)
6117                         return 432000;
6118                 else
6119                         return 308571;
6120         } else {
6121                 if (max_pixclk > 540000)
6122                         return 675000;
6123                 else if (max_pixclk > 450000)
6124                         return 540000;
6125                 else if (max_pixclk > 337500)
6126                         return 450000;
6127                 else
6128                         return 337500;
6129         }
6130 }
6131
6132 static void
6133 skl_dpll0_update(struct drm_i915_private *dev_priv)
6134 {
6135         u32 val;
6136
6137         dev_priv->cdclk_pll.ref = 24000;
6138         dev_priv->cdclk_pll.vco = 0;
6139
6140         val = I915_READ(LCPLL1_CTL);
6141         if ((val & LCPLL_PLL_ENABLE) == 0)
6142                 return;
6143
6144         if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6145                 return;
6146
6147         val = I915_READ(DPLL_CTRL1);
6148
6149         if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6150                             DPLL_CTRL1_SSC(SKL_DPLL0) |
6151                             DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6152                     DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6153                 return;
6154
6155         switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6156         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6157         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6158         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6159         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
6160                 dev_priv->cdclk_pll.vco = 8100000;
6161                 break;
6162         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6163         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
6164                 dev_priv->cdclk_pll.vco = 8640000;
6165                 break;
6166         default:
6167                 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6168                 break;
6169         }
6170 }
6171
6172 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6173 {
6174         bool changed = dev_priv->skl_preferred_vco_freq != vco;
6175
6176         dev_priv->skl_preferred_vco_freq = vco;
6177
6178         if (changed)
6179                 intel_update_max_cdclk(dev_priv);
6180 }
6181
6182 static void
6183 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
6184 {
6185         int min_cdclk = skl_calc_cdclk(0, vco);
6186         u32 val;
6187
6188         WARN_ON(vco != 8100000 && vco != 8640000);
6189
6190         /* select the minimum CDCLK before enabling DPLL 0 */
6191         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
6192         I915_WRITE(CDCLK_CTL, val);
6193         POSTING_READ(CDCLK_CTL);
6194
6195         /*
6196          * We always enable DPLL0 with the lowest link rate possible, but still
6197          * taking into account the VCO required to operate the eDP panel at the
6198          * desired frequency. The usual DP link rates operate with a VCO of
6199          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6200          * The modeset code is responsible for the selection of the exact link
6201          * rate later on, with the constraint of choosing a frequency that
6202          * works with vco.
6203          */
6204         val = I915_READ(DPLL_CTRL1);
6205
6206         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6207                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6208         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
6209         if (vco == 8640000)
6210                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6211                                             SKL_DPLL0);
6212         else
6213                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6214                                             SKL_DPLL0);
6215
6216         I915_WRITE(DPLL_CTRL1, val);
6217         POSTING_READ(DPLL_CTRL1);
6218
6219         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6220
6221         if (intel_wait_for_register(dev_priv,
6222                                     LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6223                                     5))
6224                 DRM_ERROR("DPLL0 not locked\n");
6225
6226         dev_priv->cdclk_pll.vco = vco;
6227
6228         /* We'll want to keep using the current vco from now on. */
6229         skl_set_preferred_cdclk_vco(dev_priv, vco);
6230 }
6231
6232 static void
6233 skl_dpll0_disable(struct drm_i915_private *dev_priv)
6234 {
6235         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
6236         if (intel_wait_for_register(dev_priv,
6237                                    LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6238                                    1))
6239                 DRM_ERROR("Couldn't disable DPLL0\n");
6240
6241         dev_priv->cdclk_pll.vco = 0;
6242 }
6243
6244 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
6245 {
6246         u32 freq_select, pcu_ack;
6247         int ret;
6248
6249         WARN_ON((cdclk == 24000) != (vco == 0));
6250
6251         DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6252
6253         mutex_lock(&dev_priv->rps.hw_lock);
6254         ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL,
6255                                 SKL_CDCLK_PREPARE_FOR_CHANGE,
6256                                 SKL_CDCLK_READY_FOR_CHANGE,
6257                                 SKL_CDCLK_READY_FOR_CHANGE, 3);
6258         mutex_unlock(&dev_priv->rps.hw_lock);
6259         if (ret) {
6260                 DRM_ERROR("Failed to inform PCU about cdclk change (%d)\n",
6261                           ret);
6262                 return;
6263         }
6264
6265         /* set CDCLK_CTL */
6266         switch (cdclk) {
6267         case 450000:
6268         case 432000:
6269                 freq_select = CDCLK_FREQ_450_432;
6270                 pcu_ack = 1;
6271                 break;
6272         case 540000:
6273                 freq_select = CDCLK_FREQ_540;
6274                 pcu_ack = 2;
6275                 break;
6276         case 308571:
6277         case 337500:
6278         default:
6279                 freq_select = CDCLK_FREQ_337_308;
6280                 pcu_ack = 0;
6281                 break;
6282         case 617143:
6283         case 675000:
6284                 freq_select = CDCLK_FREQ_675_617;
6285                 pcu_ack = 3;
6286                 break;
6287         }
6288
6289         if (dev_priv->cdclk_pll.vco != 0 &&
6290             dev_priv->cdclk_pll.vco != vco)
6291                 skl_dpll0_disable(dev_priv);
6292
6293         if (dev_priv->cdclk_pll.vco != vco)
6294                 skl_dpll0_enable(dev_priv, vco);
6295
6296         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
6297         POSTING_READ(CDCLK_CTL);
6298
6299         /* inform PCU of the change */
6300         mutex_lock(&dev_priv->rps.hw_lock);
6301         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6302         mutex_unlock(&dev_priv->rps.hw_lock);
6303
6304         intel_update_cdclk(dev_priv);
6305 }
6306
6307 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6308
6309 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6310 {
6311         skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
6312 }
6313
6314 void skl_init_cdclk(struct drm_i915_private *dev_priv)
6315 {
6316         int cdclk, vco;
6317
6318         skl_sanitize_cdclk(dev_priv);
6319
6320         if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
6321                 /*
6322                  * Use the current vco as our initial
6323                  * guess as to what the preferred vco is.
6324                  */
6325                 if (dev_priv->skl_preferred_vco_freq == 0)
6326                         skl_set_preferred_cdclk_vco(dev_priv,
6327                                                     dev_priv->cdclk_pll.vco);
6328                 return;
6329         }
6330
6331         vco = dev_priv->skl_preferred_vco_freq;
6332         if (vco == 0)
6333                 vco = 8100000;
6334         cdclk = skl_calc_cdclk(0, vco);
6335
6336         skl_set_cdclk(dev_priv, cdclk, vco);
6337 }
6338
6339 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
6340 {
6341         uint32_t cdctl, expected;
6342
6343         /*
6344          * check if the pre-os intialized the display
6345          * There is SWF18 scratchpad register defined which is set by the
6346          * pre-os which can be used by the OS drivers to check the status
6347          */
6348         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6349                 goto sanitize;
6350
6351         intel_update_cdclk(dev_priv);
6352         /* Is PLL enabled and locked ? */
6353         if (dev_priv->cdclk_pll.vco == 0 ||
6354             dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6355                 goto sanitize;
6356
6357         /* DPLL okay; verify the cdclock
6358          *
6359          * Noticed in some instances that the freq selection is correct but
6360          * decimal part is programmed wrong from BIOS where pre-os does not
6361          * enable display. Verify the same as well.
6362          */
6363         cdctl = I915_READ(CDCLK_CTL);
6364         expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6365                 skl_cdclk_decimal(dev_priv->cdclk_freq);
6366         if (cdctl == expected)
6367                 /* All well; nothing to sanitize */
6368                 return;
6369
6370 sanitize:
6371         DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6372
6373         /* force cdclk programming */
6374         dev_priv->cdclk_freq = 0;
6375         /* force full PLL disable + enable */
6376         dev_priv->cdclk_pll.vco = -1;
6377 }
6378
6379 /* Adjust CDclk dividers to allow high res or save power if possible */
6380 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6381 {
6382         struct drm_i915_private *dev_priv = to_i915(dev);
6383         u32 val, cmd;
6384
6385         WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6386                                         != dev_priv->cdclk_freq);
6387
6388         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
6389                 cmd = 2;
6390         else if (cdclk == 266667)
6391                 cmd = 1;
6392         else
6393                 cmd = 0;
6394
6395         mutex_lock(&dev_priv->rps.hw_lock);
6396         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6397         val &= ~DSPFREQGUAR_MASK;
6398         val |= (cmd << DSPFREQGUAR_SHIFT);
6399         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6400         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6401                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6402                      50)) {
6403                 DRM_ERROR("timed out waiting for CDclk change\n");
6404         }
6405         mutex_unlock(&dev_priv->rps.hw_lock);
6406
6407         mutex_lock(&dev_priv->sb_lock);
6408
6409         if (cdclk == 400000) {
6410                 u32 divider;
6411
6412                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6413
6414                 /* adjust cdclk divider */
6415                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6416                 val &= ~CCK_FREQUENCY_VALUES;
6417                 val |= divider;
6418                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
6419
6420                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6421                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
6422                              50))
6423                         DRM_ERROR("timed out waiting for CDclk change\n");
6424         }
6425
6426         /* adjust self-refresh exit latency value */
6427         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6428         val &= ~0x7f;
6429
6430         /*
6431          * For high bandwidth configs, we set a higher latency in the bunit
6432          * so that the core display fetch happens in time to avoid underruns.
6433          */
6434         if (cdclk == 400000)
6435                 val |= 4500 / 250; /* 4.5 usec */
6436         else
6437                 val |= 3000 / 250; /* 3.0 usec */
6438         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
6439
6440         mutex_unlock(&dev_priv->sb_lock);
6441
6442         intel_update_cdclk(dev_priv);
6443 }
6444
6445 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6446 {
6447         struct drm_i915_private *dev_priv = to_i915(dev);
6448         u32 val, cmd;
6449
6450         WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6451                                                 != dev_priv->cdclk_freq);
6452
6453         switch (cdclk) {
6454         case 333333:
6455         case 320000:
6456         case 266667:
6457         case 200000:
6458                 break;
6459         default:
6460                 MISSING_CASE(cdclk);
6461                 return;
6462         }
6463
6464         /*
6465          * Specs are full of misinformation, but testing on actual
6466          * hardware has shown that we just need to write the desired
6467          * CCK divider into the Punit register.
6468          */
6469         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6470
6471         mutex_lock(&dev_priv->rps.hw_lock);
6472         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6473         val &= ~DSPFREQGUAR_MASK_CHV;
6474         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6475         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6476         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6477                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6478                      50)) {
6479                 DRM_ERROR("timed out waiting for CDclk change\n");
6480         }
6481         mutex_unlock(&dev_priv->rps.hw_lock);
6482
6483         intel_update_cdclk(dev_priv);
6484 }
6485
6486 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6487                                  int max_pixclk)
6488 {
6489         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
6490         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6491
6492         /*
6493          * Really only a few cases to deal with, as only 4 CDclks are supported:
6494          *   200MHz
6495          *   267MHz
6496          *   320/333MHz (depends on HPLL freq)
6497          *   400MHz (VLV only)
6498          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6499          * of the lower bin and adjust if needed.
6500          *
6501          * We seem to get an unstable or solid color picture at 200MHz.
6502          * Not sure what's wrong. For now use 200MHz only when all pipes
6503          * are off.
6504          */
6505         if (!IS_CHERRYVIEW(dev_priv) &&
6506             max_pixclk > freq_320*limit/100)
6507                 return 400000;
6508         else if (max_pixclk > 266667*limit/100)
6509                 return freq_320;
6510         else if (max_pixclk > 0)
6511                 return 266667;
6512         else
6513                 return 200000;
6514 }
6515
6516 static int bxt_calc_cdclk(int max_pixclk)
6517 {
6518         if (max_pixclk > 576000)
6519                 return 624000;
6520         else if (max_pixclk > 384000)
6521                 return 576000;
6522         else if (max_pixclk > 288000)
6523                 return 384000;
6524         else if (max_pixclk > 144000)
6525                 return 288000;
6526         else
6527                 return 144000;
6528 }
6529
6530 /* Compute the max pixel clock for new configuration. */
6531 static int intel_mode_max_pixclk(struct drm_device *dev,
6532                                  struct drm_atomic_state *state)
6533 {
6534         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6535         struct drm_i915_private *dev_priv = to_i915(dev);
6536         struct drm_crtc *crtc;
6537         struct drm_crtc_state *crtc_state;
6538         unsigned max_pixclk = 0, i;
6539         enum pipe pipe;
6540
6541         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6542                sizeof(intel_state->min_pixclk));
6543
6544         for_each_crtc_in_state(state, crtc, crtc_state, i) {
6545                 int pixclk = 0;
6546
6547                 if (crtc_state->enable)
6548                         pixclk = crtc_state->adjusted_mode.crtc_clock;
6549
6550                 intel_state->min_pixclk[i] = pixclk;
6551         }
6552
6553         for_each_pipe(dev_priv, pipe)
6554                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6555
6556         return max_pixclk;
6557 }
6558
6559 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6560 {
6561         struct drm_device *dev = state->dev;
6562         struct drm_i915_private *dev_priv = to_i915(dev);
6563         int max_pixclk = intel_mode_max_pixclk(dev, state);
6564         struct intel_atomic_state *intel_state =
6565                 to_intel_atomic_state(state);
6566
6567         intel_state->cdclk = intel_state->dev_cdclk =
6568                 valleyview_calc_cdclk(dev_priv, max_pixclk);
6569
6570         if (!intel_state->active_crtcs)
6571                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6572
6573         return 0;
6574 }
6575
6576 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6577 {
6578         int max_pixclk = ilk_max_pixel_rate(state);
6579         struct intel_atomic_state *intel_state =
6580                 to_intel_atomic_state(state);
6581
6582         intel_state->cdclk = intel_state->dev_cdclk =
6583                 bxt_calc_cdclk(max_pixclk);
6584
6585         if (!intel_state->active_crtcs)
6586                 intel_state->dev_cdclk = bxt_calc_cdclk(0);
6587
6588         return 0;
6589 }
6590
6591 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6592 {
6593         unsigned int credits, default_credits;
6594
6595         if (IS_CHERRYVIEW(dev_priv))
6596                 default_credits = PFI_CREDIT(12);
6597         else
6598                 default_credits = PFI_CREDIT(8);
6599
6600         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6601                 /* CHV suggested value is 31 or 63 */
6602                 if (IS_CHERRYVIEW(dev_priv))
6603                         credits = PFI_CREDIT_63;
6604                 else
6605                         credits = PFI_CREDIT(15);
6606         } else {
6607                 credits = default_credits;
6608         }
6609
6610         /*
6611          * WA - write default credits before re-programming
6612          * FIXME: should we also set the resend bit here?
6613          */
6614         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6615                    default_credits);
6616
6617         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6618                    credits | PFI_CREDIT_RESEND);
6619
6620         /*
6621          * FIXME is this guaranteed to clear
6622          * immediately or should we poll for it?
6623          */
6624         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6625 }
6626
6627 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6628 {
6629         struct drm_device *dev = old_state->dev;
6630         struct drm_i915_private *dev_priv = to_i915(dev);
6631         struct intel_atomic_state *old_intel_state =
6632                 to_intel_atomic_state(old_state);
6633         unsigned req_cdclk = old_intel_state->dev_cdclk;
6634
6635         /*
6636          * FIXME: We can end up here with all power domains off, yet
6637          * with a CDCLK frequency other than the minimum. To account
6638          * for this take the PIPE-A power domain, which covers the HW
6639          * blocks needed for the following programming. This can be
6640          * removed once it's guaranteed that we get here either with
6641          * the minimum CDCLK set, or the required power domains
6642          * enabled.
6643          */
6644         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6645
6646         if (IS_CHERRYVIEW(dev_priv))
6647                 cherryview_set_cdclk(dev, req_cdclk);
6648         else
6649                 valleyview_set_cdclk(dev, req_cdclk);
6650
6651         vlv_program_pfi_credits(dev_priv);
6652
6653         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6654 }
6655
6656 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6657                                    struct drm_atomic_state *old_state)
6658 {
6659         struct drm_crtc *crtc = pipe_config->base.crtc;
6660         struct drm_device *dev = crtc->dev;
6661         struct drm_i915_private *dev_priv = to_i915(dev);
6662         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6663         int pipe = intel_crtc->pipe;
6664
6665         if (WARN_ON(intel_crtc->active))
6666                 return;
6667
6668         if (intel_crtc_has_dp_encoder(intel_crtc->config))
6669                 intel_dp_set_m_n(intel_crtc, M1_N1);
6670
6671         intel_set_pipe_timings(intel_crtc);
6672         intel_set_pipe_src_size(intel_crtc);
6673
6674         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
6675                 struct drm_i915_private *dev_priv = to_i915(dev);
6676
6677                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6678                 I915_WRITE(CHV_CANVAS(pipe), 0);
6679         }
6680
6681         i9xx_set_pipeconf(intel_crtc);
6682
6683         intel_crtc->active = true;
6684
6685         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6686
6687         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
6688
6689         if (IS_CHERRYVIEW(dev_priv)) {
6690                 chv_prepare_pll(intel_crtc, intel_crtc->config);
6691                 chv_enable_pll(intel_crtc, intel_crtc->config);
6692         } else {
6693                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6694                 vlv_enable_pll(intel_crtc, intel_crtc->config);
6695         }
6696
6697         intel_encoders_pre_enable(crtc, pipe_config, old_state);
6698
6699         i9xx_pfit_enable(intel_crtc);
6700
6701         intel_color_load_luts(&pipe_config->base);
6702
6703         intel_update_watermarks(intel_crtc);
6704         intel_enable_pipe(intel_crtc);
6705
6706         assert_vblank_disabled(crtc);
6707         drm_crtc_vblank_on(crtc);
6708
6709         intel_encoders_enable(crtc, pipe_config, old_state);
6710 }
6711
6712 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6713 {
6714         struct drm_device *dev = crtc->base.dev;
6715         struct drm_i915_private *dev_priv = to_i915(dev);
6716
6717         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6718         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6719 }
6720
6721 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6722                              struct drm_atomic_state *old_state)
6723 {
6724         struct drm_crtc *crtc = pipe_config->base.crtc;
6725         struct drm_device *dev = crtc->dev;
6726         struct drm_i915_private *dev_priv = to_i915(dev);
6727         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6728         enum pipe pipe = intel_crtc->pipe;
6729
6730         if (WARN_ON(intel_crtc->active))
6731                 return;
6732
6733         i9xx_set_pll_dividers(intel_crtc);
6734
6735         if (intel_crtc_has_dp_encoder(intel_crtc->config))
6736                 intel_dp_set_m_n(intel_crtc, M1_N1);
6737
6738         intel_set_pipe_timings(intel_crtc);
6739         intel_set_pipe_src_size(intel_crtc);
6740
6741         i9xx_set_pipeconf(intel_crtc);
6742
6743         intel_crtc->active = true;
6744
6745         if (!IS_GEN2(dev_priv))
6746                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6747
6748         intel_encoders_pre_enable(crtc, pipe_config, old_state);
6749
6750         i9xx_enable_pll(intel_crtc);
6751
6752         i9xx_pfit_enable(intel_crtc);
6753
6754         intel_color_load_luts(&pipe_config->base);
6755
6756         intel_update_watermarks(intel_crtc);
6757         intel_enable_pipe(intel_crtc);
6758
6759         assert_vblank_disabled(crtc);
6760         drm_crtc_vblank_on(crtc);
6761
6762         intel_encoders_enable(crtc, pipe_config, old_state);
6763 }
6764
6765 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6766 {
6767         struct drm_device *dev = crtc->base.dev;
6768         struct drm_i915_private *dev_priv = to_i915(dev);
6769
6770         if (!crtc->config->gmch_pfit.control)
6771                 return;
6772
6773         assert_pipe_disabled(dev_priv, crtc->pipe);
6774
6775         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6776                          I915_READ(PFIT_CONTROL));
6777         I915_WRITE(PFIT_CONTROL, 0);
6778 }
6779
6780 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6781                               struct drm_atomic_state *old_state)
6782 {
6783         struct drm_crtc *crtc = old_crtc_state->base.crtc;
6784         struct drm_device *dev = crtc->dev;
6785         struct drm_i915_private *dev_priv = to_i915(dev);
6786         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6787         int pipe = intel_crtc->pipe;
6788
6789         /*
6790          * On gen2 planes are double buffered but the pipe isn't, so we must
6791          * wait for planes to fully turn off before disabling the pipe.
6792          */
6793         if (IS_GEN2(dev_priv))
6794                 intel_wait_for_vblank(dev_priv, pipe);
6795
6796         intel_encoders_disable(crtc, old_crtc_state, old_state);
6797
6798         drm_crtc_vblank_off(crtc);
6799         assert_vblank_disabled(crtc);
6800
6801         intel_disable_pipe(intel_crtc);
6802
6803         i9xx_pfit_disable(intel_crtc);
6804
6805         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6806
6807         if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6808                 if (IS_CHERRYVIEW(dev_priv))
6809                         chv_disable_pll(dev_priv, pipe);
6810                 else if (IS_VALLEYVIEW(dev_priv))
6811                         vlv_disable_pll(dev_priv, pipe);
6812                 else
6813                         i9xx_disable_pll(intel_crtc);
6814         }
6815
6816         intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
6817
6818         if (!IS_GEN2(dev_priv))
6819                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6820 }
6821
6822 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6823 {
6824         struct intel_encoder *encoder;
6825         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6826         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6827         enum intel_display_power_domain domain;
6828         unsigned long domains;
6829         struct drm_atomic_state *state;
6830         struct intel_crtc_state *crtc_state;
6831         int ret;
6832
6833         if (!intel_crtc->active)
6834                 return;
6835
6836         if (to_intel_plane_state(crtc->primary->state)->base.visible) {
6837                 WARN_ON(intel_crtc->flip_work);
6838
6839                 intel_pre_disable_primary_noatomic(crtc);
6840
6841                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6842                 to_intel_plane_state(crtc->primary->state)->base.visible = false;
6843         }
6844
6845         state = drm_atomic_state_alloc(crtc->dev);
6846         if (!state) {
6847                 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
6848                               crtc->base.id, crtc->name);
6849                 return;
6850         }
6851
6852         state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
6853
6854         /* Everything's already locked, -EDEADLK can't happen. */
6855         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6856         ret = drm_atomic_add_affected_connectors(state, crtc);
6857
6858         WARN_ON(IS_ERR(crtc_state) || ret);
6859
6860         dev_priv->display.crtc_disable(crtc_state, state);
6861
6862         drm_atomic_state_put(state);
6863
6864         DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6865                       crtc->base.id, crtc->name);
6866
6867         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6868         crtc->state->active = false;
6869         intel_crtc->active = false;
6870         crtc->enabled = false;
6871         crtc->state->connector_mask = 0;
6872         crtc->state->encoder_mask = 0;
6873
6874         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6875                 encoder->base.crtc = NULL;
6876
6877         intel_fbc_disable(intel_crtc);
6878         intel_update_watermarks(intel_crtc);
6879         intel_disable_shared_dpll(intel_crtc);
6880
6881         domains = intel_crtc->enabled_power_domains;
6882         for_each_power_domain(domain, domains)
6883                 intel_display_power_put(dev_priv, domain);
6884         intel_crtc->enabled_power_domains = 0;
6885
6886         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6887         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6888 }
6889
6890 /*
6891  * turn all crtc's off, but do not adjust state
6892  * This has to be paired with a call to intel_modeset_setup_hw_state.
6893  */
6894 int intel_display_suspend(struct drm_device *dev)
6895 {
6896         struct drm_i915_private *dev_priv = to_i915(dev);
6897         struct drm_atomic_state *state;
6898         int ret;
6899
6900         state = drm_atomic_helper_suspend(dev);
6901         ret = PTR_ERR_OR_ZERO(state);
6902         if (ret)
6903                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6904         else
6905                 dev_priv->modeset_restore_state = state;
6906         return ret;
6907 }
6908
6909 void intel_encoder_destroy(struct drm_encoder *encoder)
6910 {
6911         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6912
6913         drm_encoder_cleanup(encoder);
6914         kfree(intel_encoder);
6915 }
6916
6917 /* Cross check the actual hw state with our own modeset state tracking (and it's
6918  * internal consistency). */
6919 static void intel_connector_verify_state(struct intel_connector *connector)
6920 {
6921         struct drm_crtc *crtc = connector->base.state->crtc;
6922
6923         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6924                       connector->base.base.id,
6925                       connector->base.name);
6926
6927         if (connector->get_hw_state(connector)) {
6928                 struct intel_encoder *encoder = connector->encoder;
6929                 struct drm_connector_state *conn_state = connector->base.state;
6930
6931                 I915_STATE_WARN(!crtc,
6932                          "connector enabled without attached crtc\n");
6933
6934                 if (!crtc)
6935                         return;
6936
6937                 I915_STATE_WARN(!crtc->state->active,
6938                       "connector is active, but attached crtc isn't\n");
6939
6940                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6941                         return;
6942
6943                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6944                         "atomic encoder doesn't match attached encoder\n");
6945
6946                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6947                         "attached encoder crtc differs from connector crtc\n");
6948         } else {
6949                 I915_STATE_WARN(crtc && crtc->state->active,
6950                         "attached crtc is active, but connector isn't\n");
6951                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6952                         "best encoder set without crtc!\n");
6953         }
6954 }
6955
6956 int intel_connector_init(struct intel_connector *connector)
6957 {
6958         drm_atomic_helper_connector_reset(&connector->base);
6959
6960         if (!connector->base.state)
6961                 return -ENOMEM;
6962
6963         return 0;
6964 }
6965
6966 struct intel_connector *intel_connector_alloc(void)
6967 {
6968         struct intel_connector *connector;
6969
6970         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6971         if (!connector)
6972                 return NULL;
6973
6974         if (intel_connector_init(connector) < 0) {
6975                 kfree(connector);
6976                 return NULL;
6977         }
6978
6979         return connector;
6980 }
6981
6982 /* Simple connector->get_hw_state implementation for encoders that support only
6983  * one connector and no cloning and hence the encoder state determines the state
6984  * of the connector. */
6985 bool intel_connector_get_hw_state(struct intel_connector *connector)
6986 {
6987         enum pipe pipe = 0;
6988         struct intel_encoder *encoder = connector->encoder;
6989
6990         return encoder->get_hw_state(encoder, &pipe);
6991 }
6992
6993 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6994 {
6995         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6996                 return crtc_state->fdi_lanes;
6997
6998         return 0;
6999 }
7000
7001 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7002                                      struct intel_crtc_state *pipe_config)
7003 {
7004         struct drm_i915_private *dev_priv = to_i915(dev);
7005         struct drm_atomic_state *state = pipe_config->base.state;
7006         struct intel_crtc *other_crtc;
7007         struct intel_crtc_state *other_crtc_state;
7008
7009         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7010                       pipe_name(pipe), pipe_config->fdi_lanes);
7011         if (pipe_config->fdi_lanes > 4) {
7012                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7013                               pipe_name(pipe), pipe_config->fdi_lanes);
7014                 return -EINVAL;
7015         }
7016
7017         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7018                 if (pipe_config->fdi_lanes > 2) {
7019                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7020                                       pipe_config->fdi_lanes);
7021                         return -EINVAL;
7022                 } else {
7023                         return 0;
7024                 }
7025         }
7026
7027         if (INTEL_INFO(dev_priv)->num_pipes == 2)
7028                 return 0;
7029
7030         /* Ivybridge 3 pipe is really complicated */
7031         switch (pipe) {
7032         case PIPE_A:
7033                 return 0;
7034         case PIPE_B:
7035                 if (pipe_config->fdi_lanes <= 2)
7036                         return 0;
7037
7038                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7039                 other_crtc_state =
7040                         intel_atomic_get_crtc_state(state, other_crtc);
7041                 if (IS_ERR(other_crtc_state))
7042                         return PTR_ERR(other_crtc_state);
7043
7044                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7045                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7046                                       pipe_name(pipe), pipe_config->fdi_lanes);
7047                         return -EINVAL;
7048                 }
7049                 return 0;
7050         case PIPE_C:
7051                 if (pipe_config->fdi_lanes > 2) {
7052                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7053                                       pipe_name(pipe), pipe_config->fdi_lanes);
7054                         return -EINVAL;
7055                 }
7056
7057                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7058                 other_crtc_state =
7059                         intel_atomic_get_crtc_state(state, other_crtc);
7060                 if (IS_ERR(other_crtc_state))
7061                         return PTR_ERR(other_crtc_state);
7062
7063                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7064                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7065                         return -EINVAL;
7066                 }
7067                 return 0;
7068         default:
7069                 BUG();
7070         }
7071 }
7072
7073 #define RETRY 1
7074 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7075                                        struct intel_crtc_state *pipe_config)
7076 {
7077         struct drm_device *dev = intel_crtc->base.dev;
7078         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7079         int lane, link_bw, fdi_dotclock, ret;
7080         bool needs_recompute = false;
7081
7082 retry:
7083         /* FDI is a binary signal running at ~2.7GHz, encoding
7084          * each output octet as 10 bits. The actual frequency
7085          * is stored as a divider into a 100MHz clock, and the
7086          * mode pixel clock is stored in units of 1KHz.
7087          * Hence the bw of each lane in terms of the mode signal
7088          * is:
7089          */
7090         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7091
7092         fdi_dotclock = adjusted_mode->crtc_clock;
7093
7094         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7095                                            pipe_config->pipe_bpp);
7096
7097         pipe_config->fdi_lanes = lane;
7098
7099         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7100                                link_bw, &pipe_config->fdi_m_n);
7101
7102         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7103         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7104                 pipe_config->pipe_bpp -= 2*3;
7105                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7106                               pipe_config->pipe_bpp);
7107                 needs_recompute = true;
7108                 pipe_config->bw_constrained = true;
7109
7110                 goto retry;
7111         }
7112
7113         if (needs_recompute)
7114                 return RETRY;
7115
7116         return ret;
7117 }
7118
7119 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7120                                      struct intel_crtc_state *pipe_config)
7121 {
7122         if (pipe_config->pipe_bpp > 24)
7123                 return false;
7124
7125         /* HSW can handle pixel rate up to cdclk? */
7126         if (IS_HASWELL(dev_priv))
7127                 return true;
7128
7129         /*
7130          * We compare against max which means we must take
7131          * the increased cdclk requirement into account when
7132          * calculating the new cdclk.
7133          *
7134          * Should measure whether using a lower cdclk w/o IPS
7135          */
7136         return ilk_pipe_pixel_rate(pipe_config) <=
7137                 dev_priv->max_cdclk_freq * 95 / 100;
7138 }
7139
7140 static void hsw_compute_ips_config(struct intel_crtc *crtc,
7141                                    struct intel_crtc_state *pipe_config)
7142 {
7143         struct drm_device *dev = crtc->base.dev;
7144         struct drm_i915_private *dev_priv = to_i915(dev);
7145
7146         pipe_config->ips_enabled = i915.enable_ips &&
7147                 hsw_crtc_supports_ips(crtc) &&
7148                 pipe_config_supports_ips(dev_priv, pipe_config);
7149 }
7150
7151 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7152 {
7153         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7154
7155         /* GDG double wide on either pipe, otherwise pipe A only */
7156         return INTEL_INFO(dev_priv)->gen < 4 &&
7157                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7158 }
7159
7160 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7161                                      struct intel_crtc_state *pipe_config)
7162 {
7163         struct drm_device *dev = crtc->base.dev;
7164         struct drm_i915_private *dev_priv = to_i915(dev);
7165         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7166         int clock_limit = dev_priv->max_dotclk_freq;
7167
7168         if (INTEL_GEN(dev_priv) < 4) {
7169                 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7170
7171                 /*
7172                  * Enable double wide mode when the dot clock
7173                  * is > 90% of the (display) core speed.
7174                  */
7175                 if (intel_crtc_supports_double_wide(crtc) &&
7176                     adjusted_mode->crtc_clock > clock_limit) {
7177                         clock_limit = dev_priv->max_dotclk_freq;
7178                         pipe_config->double_wide = true;
7179                 }
7180         }
7181
7182         if (adjusted_mode->crtc_clock > clock_limit) {
7183                 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7184                               adjusted_mode->crtc_clock, clock_limit,
7185                               yesno(pipe_config->double_wide));
7186                 return -EINVAL;
7187         }
7188
7189         /*
7190          * Pipe horizontal size must be even in:
7191          * - DVO ganged mode
7192          * - LVDS dual channel mode
7193          * - Double wide pipe
7194          */
7195         if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7196              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7197                 pipe_config->pipe_src_w &= ~1;
7198
7199         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7200          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7201          */
7202         if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7203                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7204                 return -EINVAL;
7205
7206         if (HAS_IPS(dev_priv))
7207                 hsw_compute_ips_config(crtc, pipe_config);
7208
7209         if (pipe_config->has_pch_encoder)
7210                 return ironlake_fdi_compute_config(crtc, pipe_config);
7211
7212         return 0;
7213 }
7214
7215 static int skylake_get_display_clock_speed(struct drm_i915_private *dev_priv)
7216 {
7217         u32 cdctl;
7218
7219         skl_dpll0_update(dev_priv);
7220
7221         if (dev_priv->cdclk_pll.vco == 0)
7222                 return dev_priv->cdclk_pll.ref;
7223
7224         cdctl = I915_READ(CDCLK_CTL);
7225
7226         if (dev_priv->cdclk_pll.vco == 8640000) {
7227                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7228                 case CDCLK_FREQ_450_432:
7229                         return 432000;
7230                 case CDCLK_FREQ_337_308:
7231                         return 308571;
7232                 case CDCLK_FREQ_540:
7233                         return 540000;
7234                 case CDCLK_FREQ_675_617:
7235                         return 617143;
7236                 default:
7237                         MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7238                 }
7239         } else {
7240                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7241                 case CDCLK_FREQ_450_432:
7242                         return 450000;
7243                 case CDCLK_FREQ_337_308:
7244                         return 337500;
7245                 case CDCLK_FREQ_540:
7246                         return 540000;
7247                 case CDCLK_FREQ_675_617:
7248                         return 675000;
7249                 default:
7250                         MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7251                 }
7252         }
7253
7254         return dev_priv->cdclk_pll.ref;
7255 }
7256
7257 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7258 {
7259         u32 val;
7260
7261         dev_priv->cdclk_pll.ref = 19200;
7262         dev_priv->cdclk_pll.vco = 0;
7263
7264         val = I915_READ(BXT_DE_PLL_ENABLE);
7265         if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
7266                 return;
7267
7268         if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7269                 return;
7270
7271         val = I915_READ(BXT_DE_PLL_CTL);
7272         dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7273                 dev_priv->cdclk_pll.ref;
7274 }
7275
7276 static int broxton_get_display_clock_speed(struct drm_i915_private *dev_priv)
7277 {
7278         u32 divider;
7279         int div, vco;
7280
7281         bxt_de_pll_update(dev_priv);
7282
7283         vco = dev_priv->cdclk_pll.vco;
7284         if (vco == 0)
7285                 return dev_priv->cdclk_pll.ref;
7286
7287         divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
7288
7289         switch (divider) {
7290         case BXT_CDCLK_CD2X_DIV_SEL_1:
7291                 div = 2;
7292                 break;
7293         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
7294                 div = 3;
7295                 break;
7296         case BXT_CDCLK_CD2X_DIV_SEL_2:
7297                 div = 4;
7298                 break;
7299         case BXT_CDCLK_CD2X_DIV_SEL_4:
7300                 div = 8;
7301                 break;
7302         default:
7303                 MISSING_CASE(divider);
7304                 return dev_priv->cdclk_pll.ref;
7305         }
7306
7307         return DIV_ROUND_CLOSEST(vco, div);
7308 }
7309
7310 static int broadwell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7311 {
7312         uint32_t lcpll = I915_READ(LCPLL_CTL);
7313         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7314
7315         if (lcpll & LCPLL_CD_SOURCE_FCLK)
7316                 return 800000;
7317         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7318                 return 450000;
7319         else if (freq == LCPLL_CLK_FREQ_450)
7320                 return 450000;
7321         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7322                 return 540000;
7323         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7324                 return 337500;
7325         else
7326                 return 675000;
7327 }
7328
7329 static int haswell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7330 {
7331         uint32_t lcpll = I915_READ(LCPLL_CTL);
7332         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7333
7334         if (lcpll & LCPLL_CD_SOURCE_FCLK)
7335                 return 800000;
7336         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7337                 return 450000;
7338         else if (freq == LCPLL_CLK_FREQ_450)
7339                 return 450000;
7340         else if (IS_HSW_ULT(dev_priv))
7341                 return 337500;
7342         else
7343                 return 540000;
7344 }
7345
7346 static int valleyview_get_display_clock_speed(struct drm_i915_private *dev_priv)
7347 {
7348         return vlv_get_cck_clock_hpll(dev_priv, "cdclk",
7349                                       CCK_DISPLAY_CLOCK_CONTROL);
7350 }
7351
7352 static int ilk_get_display_clock_speed(struct drm_i915_private *dev_priv)
7353 {
7354         return 450000;
7355 }
7356
7357 static int i945_get_display_clock_speed(struct drm_i915_private *dev_priv)
7358 {
7359         return 400000;
7360 }
7361
7362 static int i915_get_display_clock_speed(struct drm_i915_private *dev_priv)
7363 {
7364         return 333333;
7365 }
7366
7367 static int i9xx_misc_get_display_clock_speed(struct drm_i915_private *dev_priv)
7368 {
7369         return 200000;
7370 }
7371
7372 static int pnv_get_display_clock_speed(struct drm_i915_private *dev_priv)
7373 {
7374         struct pci_dev *pdev = dev_priv->drm.pdev;
7375         u16 gcfgc = 0;
7376
7377         pci_read_config_word(pdev, GCFGC, &gcfgc);
7378
7379         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7380         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
7381                 return 266667;
7382         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
7383                 return 333333;
7384         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
7385                 return 444444;
7386         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7387                 return 200000;
7388         default:
7389                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7390         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
7391                 return 133333;
7392         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
7393                 return 166667;
7394         }
7395 }
7396
7397 static int i915gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7398 {
7399         struct pci_dev *pdev = dev_priv->drm.pdev;
7400         u16 gcfgc = 0;
7401
7402         pci_read_config_word(pdev, GCFGC, &gcfgc);
7403
7404         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
7405                 return 133333;
7406         else {
7407                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7408                 case GC_DISPLAY_CLOCK_333_MHZ:
7409                         return 333333;
7410                 default:
7411                 case GC_DISPLAY_CLOCK_190_200_MHZ:
7412                         return 190000;
7413                 }
7414         }
7415 }
7416
7417 static int i865_get_display_clock_speed(struct drm_i915_private *dev_priv)
7418 {
7419         return 266667;
7420 }
7421
7422 static int i85x_get_display_clock_speed(struct drm_i915_private *dev_priv)
7423 {
7424         struct pci_dev *pdev = dev_priv->drm.pdev;
7425         u16 hpllcc = 0;
7426
7427         /*
7428          * 852GM/852GMV only supports 133 MHz and the HPLLCC
7429          * encoding is different :(
7430          * FIXME is this the right way to detect 852GM/852GMV?
7431          */
7432         if (pdev->revision == 0x1)
7433                 return 133333;
7434
7435         pci_bus_read_config_word(pdev->bus,
7436                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7437
7438         /* Assume that the hardware is in the high speed state.  This
7439          * should be the default.
7440          */
7441         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7442         case GC_CLOCK_133_200:
7443         case GC_CLOCK_133_200_2:
7444         case GC_CLOCK_100_200:
7445                 return 200000;
7446         case GC_CLOCK_166_250:
7447                 return 250000;
7448         case GC_CLOCK_100_133:
7449                 return 133333;
7450         case GC_CLOCK_133_266:
7451         case GC_CLOCK_133_266_2:
7452         case GC_CLOCK_166_266:
7453                 return 266667;
7454         }
7455
7456         /* Shouldn't happen */
7457         return 0;
7458 }
7459
7460 static int i830_get_display_clock_speed(struct drm_i915_private *dev_priv)
7461 {
7462         return 133333;
7463 }
7464
7465 static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv)
7466 {
7467         static const unsigned int blb_vco[8] = {
7468                 [0] = 3200000,
7469                 [1] = 4000000,
7470                 [2] = 5333333,
7471                 [3] = 4800000,
7472                 [4] = 6400000,
7473         };
7474         static const unsigned int pnv_vco[8] = {
7475                 [0] = 3200000,
7476                 [1] = 4000000,
7477                 [2] = 5333333,
7478                 [3] = 4800000,
7479                 [4] = 2666667,
7480         };
7481         static const unsigned int cl_vco[8] = {
7482                 [0] = 3200000,
7483                 [1] = 4000000,
7484                 [2] = 5333333,
7485                 [3] = 6400000,
7486                 [4] = 3333333,
7487                 [5] = 3566667,
7488                 [6] = 4266667,
7489         };
7490         static const unsigned int elk_vco[8] = {
7491                 [0] = 3200000,
7492                 [1] = 4000000,
7493                 [2] = 5333333,
7494                 [3] = 4800000,
7495         };
7496         static const unsigned int ctg_vco[8] = {
7497                 [0] = 3200000,
7498                 [1] = 4000000,
7499                 [2] = 5333333,
7500                 [3] = 6400000,
7501                 [4] = 2666667,
7502                 [5] = 4266667,
7503         };
7504         const unsigned int *vco_table;
7505         unsigned int vco;
7506         uint8_t tmp = 0;
7507
7508         /* FIXME other chipsets? */
7509         if (IS_GM45(dev_priv))
7510                 vco_table = ctg_vco;
7511         else if (IS_G4X(dev_priv))
7512                 vco_table = elk_vco;
7513         else if (IS_CRESTLINE(dev_priv))
7514                 vco_table = cl_vco;
7515         else if (IS_PINEVIEW(dev_priv))
7516                 vco_table = pnv_vco;
7517         else if (IS_G33(dev_priv))
7518                 vco_table = blb_vco;
7519         else
7520                 return 0;
7521
7522         tmp = I915_READ(IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO);
7523
7524         vco = vco_table[tmp & 0x7];
7525         if (vco == 0)
7526                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7527         else
7528                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7529
7530         return vco;
7531 }
7532
7533 static int gm45_get_display_clock_speed(struct drm_i915_private *dev_priv)
7534 {
7535         struct pci_dev *pdev = dev_priv->drm.pdev;
7536         unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7537         uint16_t tmp = 0;
7538
7539         pci_read_config_word(pdev, GCFGC, &tmp);
7540
7541         cdclk_sel = (tmp >> 12) & 0x1;
7542
7543         switch (vco) {
7544         case 2666667:
7545         case 4000000:
7546         case 5333333:
7547                 return cdclk_sel ? 333333 : 222222;
7548         case 3200000:
7549                 return cdclk_sel ? 320000 : 228571;
7550         default:
7551                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7552                 return 222222;
7553         }
7554 }
7555
7556 static int i965gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7557 {
7558         struct pci_dev *pdev = dev_priv->drm.pdev;
7559         static const uint8_t div_3200[] = { 16, 10,  8 };
7560         static const uint8_t div_4000[] = { 20, 12, 10 };
7561         static const uint8_t div_5333[] = { 24, 16, 14 };
7562         const uint8_t *div_table;
7563         unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7564         uint16_t tmp = 0;
7565
7566         pci_read_config_word(pdev, GCFGC, &tmp);
7567
7568         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7569
7570         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7571                 goto fail;
7572
7573         switch (vco) {
7574         case 3200000:
7575                 div_table = div_3200;
7576                 break;
7577         case 4000000:
7578                 div_table = div_4000;
7579                 break;
7580         case 5333333:
7581                 div_table = div_5333;
7582                 break;
7583         default:
7584                 goto fail;
7585         }
7586
7587         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7588
7589 fail:
7590         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7591         return 200000;
7592 }
7593
7594 static int g33_get_display_clock_speed(struct drm_i915_private *dev_priv)
7595 {
7596         struct pci_dev *pdev = dev_priv->drm.pdev;
7597         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7598         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7599         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7600         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7601         const uint8_t *div_table;
7602         unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7603         uint16_t tmp = 0;
7604
7605         pci_read_config_word(pdev, GCFGC, &tmp);
7606
7607         cdclk_sel = (tmp >> 4) & 0x7;
7608
7609         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7610                 goto fail;
7611
7612         switch (vco) {
7613         case 3200000:
7614                 div_table = div_3200;
7615                 break;
7616         case 4000000:
7617                 div_table = div_4000;
7618                 break;
7619         case 4800000:
7620                 div_table = div_4800;
7621                 break;
7622         case 5333333:
7623                 div_table = div_5333;
7624                 break;
7625         default:
7626                 goto fail;
7627         }
7628
7629         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7630
7631 fail:
7632         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7633         return 190476;
7634 }
7635
7636 static void
7637 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7638 {
7639         while (*num > DATA_LINK_M_N_MASK ||
7640                *den > DATA_LINK_M_N_MASK) {
7641                 *num >>= 1;
7642                 *den >>= 1;
7643         }
7644 }
7645
7646 static void compute_m_n(unsigned int m, unsigned int n,
7647                         uint32_t *ret_m, uint32_t *ret_n)
7648 {
7649         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7650         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7651         intel_reduce_m_n_ratio(ret_m, ret_n);
7652 }
7653
7654 void
7655 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7656                        int pixel_clock, int link_clock,
7657                        struct intel_link_m_n *m_n)
7658 {
7659         m_n->tu = 64;
7660
7661         compute_m_n(bits_per_pixel * pixel_clock,
7662                     link_clock * nlanes * 8,
7663                     &m_n->gmch_m, &m_n->gmch_n);
7664
7665         compute_m_n(pixel_clock, link_clock,
7666                     &m_n->link_m, &m_n->link_n);
7667 }
7668
7669 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7670 {
7671         if (i915.panel_use_ssc >= 0)
7672                 return i915.panel_use_ssc != 0;
7673         return dev_priv->vbt.lvds_use_ssc
7674                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7675 }
7676
7677 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7678 {
7679         return (1 << dpll->n) << 16 | dpll->m2;
7680 }
7681
7682 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7683 {
7684         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7685 }
7686
7687 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7688                                      struct intel_crtc_state *crtc_state,
7689                                      struct dpll *reduced_clock)
7690 {
7691         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7692         u32 fp, fp2 = 0;
7693
7694         if (IS_PINEVIEW(dev_priv)) {
7695                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7696                 if (reduced_clock)
7697                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7698         } else {
7699                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7700                 if (reduced_clock)
7701                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7702         }
7703
7704         crtc_state->dpll_hw_state.fp0 = fp;
7705
7706         crtc->lowfreq_avail = false;
7707         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7708             reduced_clock) {
7709                 crtc_state->dpll_hw_state.fp1 = fp2;
7710                 crtc->lowfreq_avail = true;
7711         } else {
7712                 crtc_state->dpll_hw_state.fp1 = fp;
7713         }
7714 }
7715
7716 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7717                 pipe)
7718 {
7719         u32 reg_val;
7720
7721         /*
7722          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7723          * and set it to a reasonable value instead.
7724          */
7725         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7726         reg_val &= 0xffffff00;
7727         reg_val |= 0x00000030;
7728         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7729
7730         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7731         reg_val &= 0x8cffffff;
7732         reg_val = 0x8c000000;
7733         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7734
7735         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7736         reg_val &= 0xffffff00;
7737         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7738
7739         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7740         reg_val &= 0x00ffffff;
7741         reg_val |= 0xb0000000;
7742         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7743 }
7744
7745 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7746                                          struct intel_link_m_n *m_n)
7747 {
7748         struct drm_device *dev = crtc->base.dev;
7749         struct drm_i915_private *dev_priv = to_i915(dev);
7750         int pipe = crtc->pipe;
7751
7752         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7753         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7754         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7755         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7756 }
7757
7758 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7759                                          struct intel_link_m_n *m_n,
7760                                          struct intel_link_m_n *m2_n2)
7761 {
7762         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7763         int pipe = crtc->pipe;
7764         enum transcoder transcoder = crtc->config->cpu_transcoder;
7765
7766         if (INTEL_GEN(dev_priv) >= 5) {
7767                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7768                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7769                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7770                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7771                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7772                  * for gen < 8) and if DRRS is supported (to make sure the
7773                  * registers are not unnecessarily accessed).
7774                  */
7775                 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
7776                     INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
7777                         I915_WRITE(PIPE_DATA_M2(transcoder),
7778                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7779                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7780                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7781                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7782                 }
7783         } else {
7784                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7785                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7786                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7787                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7788         }
7789 }
7790
7791 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7792 {
7793         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7794
7795         if (m_n == M1_N1) {
7796                 dp_m_n = &crtc->config->dp_m_n;
7797                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7798         } else if (m_n == M2_N2) {
7799
7800                 /*
7801                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7802                  * needs to be programmed into M1_N1.
7803                  */
7804                 dp_m_n = &crtc->config->dp_m2_n2;
7805         } else {
7806                 DRM_ERROR("Unsupported divider value\n");
7807                 return;
7808         }
7809
7810         if (crtc->config->has_pch_encoder)
7811                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7812         else
7813                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7814 }
7815
7816 static void vlv_compute_dpll(struct intel_crtc *crtc,
7817                              struct intel_crtc_state *pipe_config)
7818 {
7819         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7820                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7821         if (crtc->pipe != PIPE_A)
7822                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7823
7824         /* DPLL not used with DSI, but still need the rest set up */
7825         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7826                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7827                         DPLL_EXT_BUFFER_ENABLE_VLV;
7828
7829         pipe_config->dpll_hw_state.dpll_md =
7830                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7831 }
7832
7833 static void chv_compute_dpll(struct intel_crtc *crtc,
7834                              struct intel_crtc_state *pipe_config)
7835 {
7836         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7837                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7838         if (crtc->pipe != PIPE_A)
7839                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7840
7841         /* DPLL not used with DSI, but still need the rest set up */
7842         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7843                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7844
7845         pipe_config->dpll_hw_state.dpll_md =
7846                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7847 }
7848
7849 static void vlv_prepare_pll(struct intel_crtc *crtc,
7850                             const struct intel_crtc_state *pipe_config)
7851 {
7852         struct drm_device *dev = crtc->base.dev;
7853         struct drm_i915_private *dev_priv = to_i915(dev);
7854         enum pipe pipe = crtc->pipe;
7855         u32 mdiv;
7856         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7857         u32 coreclk, reg_val;
7858
7859         /* Enable Refclk */
7860         I915_WRITE(DPLL(pipe),
7861                    pipe_config->dpll_hw_state.dpll &
7862                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7863
7864         /* No need to actually set up the DPLL with DSI */
7865         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7866                 return;
7867
7868         mutex_lock(&dev_priv->sb_lock);
7869
7870         bestn = pipe_config->dpll.n;
7871         bestm1 = pipe_config->dpll.m1;
7872         bestm2 = pipe_config->dpll.m2;
7873         bestp1 = pipe_config->dpll.p1;
7874         bestp2 = pipe_config->dpll.p2;
7875
7876         /* See eDP HDMI DPIO driver vbios notes doc */
7877
7878         /* PLL B needs special handling */
7879         if (pipe == PIPE_B)
7880                 vlv_pllb_recal_opamp(dev_priv, pipe);
7881
7882         /* Set up Tx target for periodic Rcomp update */
7883         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7884
7885         /* Disable target IRef on PLL */
7886         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7887         reg_val &= 0x00ffffff;
7888         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7889
7890         /* Disable fast lock */
7891         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7892
7893         /* Set idtafcrecal before PLL is enabled */
7894         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7895         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7896         mdiv |= ((bestn << DPIO_N_SHIFT));
7897         mdiv |= (1 << DPIO_K_SHIFT);
7898
7899         /*
7900          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7901          * but we don't support that).
7902          * Note: don't use the DAC post divider as it seems unstable.
7903          */
7904         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7905         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7906
7907         mdiv |= DPIO_ENABLE_CALIBRATION;
7908         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7909
7910         /* Set HBR and RBR LPF coefficients */
7911         if (pipe_config->port_clock == 162000 ||
7912             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7913             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7914                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7915                                  0x009f0003);
7916         else
7917                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7918                                  0x00d0000f);
7919
7920         if (intel_crtc_has_dp_encoder(pipe_config)) {
7921                 /* Use SSC source */
7922                 if (pipe == PIPE_A)
7923                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7924                                          0x0df40000);
7925                 else
7926                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7927                                          0x0df70000);
7928         } else { /* HDMI or VGA */
7929                 /* Use bend source */
7930                 if (pipe == PIPE_A)
7931                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7932                                          0x0df70000);
7933                 else
7934                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7935                                          0x0df40000);
7936         }
7937
7938         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7939         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7940         if (intel_crtc_has_dp_encoder(crtc->config))
7941                 coreclk |= 0x01000000;
7942         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7943
7944         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7945         mutex_unlock(&dev_priv->sb_lock);
7946 }
7947
7948 static void chv_prepare_pll(struct intel_crtc *crtc,
7949                             const struct intel_crtc_state *pipe_config)
7950 {
7951         struct drm_device *dev = crtc->base.dev;
7952         struct drm_i915_private *dev_priv = to_i915(dev);
7953         enum pipe pipe = crtc->pipe;
7954         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7955         u32 loopfilter, tribuf_calcntr;
7956         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7957         u32 dpio_val;
7958         int vco;
7959
7960         /* Enable Refclk and SSC */
7961         I915_WRITE(DPLL(pipe),
7962                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7963
7964         /* No need to actually set up the DPLL with DSI */
7965         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7966                 return;
7967
7968         bestn = pipe_config->dpll.n;
7969         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7970         bestm1 = pipe_config->dpll.m1;
7971         bestm2 = pipe_config->dpll.m2 >> 22;
7972         bestp1 = pipe_config->dpll.p1;
7973         bestp2 = pipe_config->dpll.p2;
7974         vco = pipe_config->dpll.vco;
7975         dpio_val = 0;
7976         loopfilter = 0;
7977
7978         mutex_lock(&dev_priv->sb_lock);
7979
7980         /* p1 and p2 divider */
7981         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7982                         5 << DPIO_CHV_S1_DIV_SHIFT |
7983                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7984                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7985                         1 << DPIO_CHV_K_DIV_SHIFT);
7986
7987         /* Feedback post-divider - m2 */
7988         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7989
7990         /* Feedback refclk divider - n and m1 */
7991         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7992                         DPIO_CHV_M1_DIV_BY_2 |
7993                         1 << DPIO_CHV_N_DIV_SHIFT);
7994
7995         /* M2 fraction division */
7996         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7997
7998         /* M2 fraction division enable */
7999         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8000         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8001         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8002         if (bestm2_frac)
8003                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8004         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8005
8006         /* Program digital lock detect threshold */
8007         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8008         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8009                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8010         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8011         if (!bestm2_frac)
8012                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8013         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8014
8015         /* Loop filter */
8016         if (vco == 5400000) {
8017                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8018                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8019                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8020                 tribuf_calcntr = 0x9;
8021         } else if (vco <= 6200000) {
8022                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8023                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8024                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8025                 tribuf_calcntr = 0x9;
8026         } else if (vco <= 6480000) {
8027                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8028                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8029                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8030                 tribuf_calcntr = 0x8;
8031         } else {
8032                 /* Not supported. Apply the same limits as in the max case */
8033                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8034                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8035                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8036                 tribuf_calcntr = 0;
8037         }
8038         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8039
8040         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8041         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8042         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8043         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8044
8045         /* AFC Recal */
8046         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8047                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8048                         DPIO_AFC_RECAL);
8049
8050         mutex_unlock(&dev_priv->sb_lock);
8051 }
8052
8053 /**
8054  * vlv_force_pll_on - forcibly enable just the PLL
8055  * @dev_priv: i915 private structure
8056  * @pipe: pipe PLL to enable
8057  * @dpll: PLL configuration
8058  *
8059  * Enable the PLL for @pipe using the supplied @dpll config. To be used
8060  * in cases where we need the PLL enabled even when @pipe is not going to
8061  * be enabled.
8062  */
8063 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8064                      const struct dpll *dpll)
8065 {
8066         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8067         struct intel_crtc_state *pipe_config;
8068
8069         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8070         if (!pipe_config)
8071                 return -ENOMEM;
8072
8073         pipe_config->base.crtc = &crtc->base;
8074         pipe_config->pixel_multiplier = 1;
8075         pipe_config->dpll = *dpll;
8076
8077         if (IS_CHERRYVIEW(dev_priv)) {
8078                 chv_compute_dpll(crtc, pipe_config);
8079                 chv_prepare_pll(crtc, pipe_config);
8080                 chv_enable_pll(crtc, pipe_config);
8081         } else {
8082                 vlv_compute_dpll(crtc, pipe_config);
8083                 vlv_prepare_pll(crtc, pipe_config);
8084                 vlv_enable_pll(crtc, pipe_config);
8085         }
8086
8087         kfree(pipe_config);
8088
8089         return 0;
8090 }
8091
8092 /**
8093  * vlv_force_pll_off - forcibly disable just the PLL
8094  * @dev_priv: i915 private structure
8095  * @pipe: pipe PLL to disable
8096  *
8097  * Disable the PLL for @pipe. To be used in cases where we need
8098  * the PLL enabled even when @pipe is not going to be enabled.
8099  */
8100 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8101 {
8102         if (IS_CHERRYVIEW(dev_priv))
8103                 chv_disable_pll(dev_priv, pipe);
8104         else
8105                 vlv_disable_pll(dev_priv, pipe);
8106 }
8107
8108 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8109                               struct intel_crtc_state *crtc_state,
8110                               struct dpll *reduced_clock)
8111 {
8112         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8113         u32 dpll;
8114         struct dpll *clock = &crtc_state->dpll;
8115
8116         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8117
8118         dpll = DPLL_VGA_MODE_DIS;
8119
8120         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8121                 dpll |= DPLLB_MODE_LVDS;
8122         else
8123                 dpll |= DPLLB_MODE_DAC_SERIAL;
8124
8125         if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || IS_G33(dev_priv)) {
8126                 dpll |= (crtc_state->pixel_multiplier - 1)
8127                         << SDVO_MULTIPLIER_SHIFT_HIRES;
8128         }
8129
8130         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8131             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8132                 dpll |= DPLL_SDVO_HIGH_SPEED;
8133
8134         if (intel_crtc_has_dp_encoder(crtc_state))
8135                 dpll |= DPLL_SDVO_HIGH_SPEED;
8136
8137         /* compute bitmask from p1 value */
8138         if (IS_PINEVIEW(dev_priv))
8139                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8140         else {
8141                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8142                 if (IS_G4X(dev_priv) && reduced_clock)
8143                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8144         }
8145         switch (clock->p2) {
8146         case 5:
8147                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8148                 break;
8149         case 7:
8150                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8151                 break;
8152         case 10:
8153                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8154                 break;
8155         case 14:
8156                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8157                 break;
8158         }
8159         if (INTEL_GEN(dev_priv) >= 4)
8160                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8161
8162         if (crtc_state->sdvo_tv_clock)
8163                 dpll |= PLL_REF_INPUT_TVCLKINBC;
8164         else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8165                  intel_panel_use_ssc(dev_priv))
8166                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8167         else
8168                 dpll |= PLL_REF_INPUT_DREFCLK;
8169
8170         dpll |= DPLL_VCO_ENABLE;
8171         crtc_state->dpll_hw_state.dpll = dpll;
8172
8173         if (INTEL_GEN(dev_priv) >= 4) {
8174                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8175                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8176                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8177         }
8178 }
8179
8180 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8181                               struct intel_crtc_state *crtc_state,
8182                               struct dpll *reduced_clock)
8183 {
8184         struct drm_device *dev = crtc->base.dev;
8185         struct drm_i915_private *dev_priv = to_i915(dev);
8186         u32 dpll;
8187         struct dpll *clock = &crtc_state->dpll;
8188
8189         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8190
8191         dpll = DPLL_VGA_MODE_DIS;
8192
8193         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8194                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8195         } else {
8196                 if (clock->p1 == 2)
8197                         dpll |= PLL_P1_DIVIDE_BY_TWO;
8198                 else
8199                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8200                 if (clock->p2 == 4)
8201                         dpll |= PLL_P2_DIVIDE_BY_4;
8202         }
8203
8204         if (!IS_I830(dev_priv) &&
8205             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8206                 dpll |= DPLL_DVO_2X_MODE;
8207
8208         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8209             intel_panel_use_ssc(dev_priv))
8210                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8211         else
8212                 dpll |= PLL_REF_INPUT_DREFCLK;
8213
8214         dpll |= DPLL_VCO_ENABLE;
8215         crtc_state->dpll_hw_state.dpll = dpll;
8216 }
8217
8218 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
8219 {
8220         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8221         enum pipe pipe = intel_crtc->pipe;
8222         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8223         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
8224         uint32_t crtc_vtotal, crtc_vblank_end;
8225         int vsyncshift = 0;
8226
8227         /* We need to be careful not to changed the adjusted mode, for otherwise
8228          * the hw state checker will get angry at the mismatch. */
8229         crtc_vtotal = adjusted_mode->crtc_vtotal;
8230         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8231
8232         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8233                 /* the chip adds 2 halflines automatically */
8234                 crtc_vtotal -= 1;
8235                 crtc_vblank_end -= 1;
8236
8237                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8238                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8239                 else
8240                         vsyncshift = adjusted_mode->crtc_hsync_start -
8241                                 adjusted_mode->crtc_htotal / 2;
8242                 if (vsyncshift < 0)
8243                         vsyncshift += adjusted_mode->crtc_htotal;
8244         }
8245
8246         if (INTEL_GEN(dev_priv) > 3)
8247                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8248
8249         I915_WRITE(HTOTAL(cpu_transcoder),
8250                    (adjusted_mode->crtc_hdisplay - 1) |
8251                    ((adjusted_mode->crtc_htotal - 1) << 16));
8252         I915_WRITE(HBLANK(cpu_transcoder),
8253                    (adjusted_mode->crtc_hblank_start - 1) |
8254                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
8255         I915_WRITE(HSYNC(cpu_transcoder),
8256                    (adjusted_mode->crtc_hsync_start - 1) |
8257                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
8258
8259         I915_WRITE(VTOTAL(cpu_transcoder),
8260                    (adjusted_mode->crtc_vdisplay - 1) |
8261                    ((crtc_vtotal - 1) << 16));
8262         I915_WRITE(VBLANK(cpu_transcoder),
8263                    (adjusted_mode->crtc_vblank_start - 1) |
8264                    ((crtc_vblank_end - 1) << 16));
8265         I915_WRITE(VSYNC(cpu_transcoder),
8266                    (adjusted_mode->crtc_vsync_start - 1) |
8267                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
8268
8269         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8270          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8271          * documented on the DDI_FUNC_CTL register description, EDP Input Select
8272          * bits. */
8273         if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8274             (pipe == PIPE_B || pipe == PIPE_C))
8275                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8276
8277 }
8278
8279 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8280 {
8281         struct drm_device *dev = intel_crtc->base.dev;
8282         struct drm_i915_private *dev_priv = to_i915(dev);
8283         enum pipe pipe = intel_crtc->pipe;
8284
8285         /* pipesrc controls the size that is scaled from, which should
8286          * always be the user's requested size.
8287          */
8288         I915_WRITE(PIPESRC(pipe),
8289                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
8290                    (intel_crtc->config->pipe_src_h - 1));
8291 }
8292
8293 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8294                                    struct intel_crtc_state *pipe_config)
8295 {
8296         struct drm_device *dev = crtc->base.dev;
8297         struct drm_i915_private *dev_priv = to_i915(dev);
8298         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8299         uint32_t tmp;
8300
8301         tmp = I915_READ(HTOTAL(cpu_transcoder));
8302         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8303         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8304         tmp = I915_READ(HBLANK(cpu_transcoder));
8305         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8306         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
8307         tmp = I915_READ(HSYNC(cpu_transcoder));
8308         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8309         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8310
8311         tmp = I915_READ(VTOTAL(cpu_transcoder));
8312         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8313         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8314         tmp = I915_READ(VBLANK(cpu_transcoder));
8315         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8316         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
8317         tmp = I915_READ(VSYNC(cpu_transcoder));
8318         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8319         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8320
8321         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8322                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8323                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8324                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8325         }
8326 }
8327
8328 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8329                                     struct intel_crtc_state *pipe_config)
8330 {
8331         struct drm_device *dev = crtc->base.dev;
8332         struct drm_i915_private *dev_priv = to_i915(dev);
8333         u32 tmp;
8334
8335         tmp = I915_READ(PIPESRC(crtc->pipe));
8336         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8337         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8338
8339         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8340         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8341 }
8342
8343 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8344                                  struct intel_crtc_state *pipe_config)
8345 {
8346         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8347         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8348         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8349         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8350
8351         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8352         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8353         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8354         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8355
8356         mode->flags = pipe_config->base.adjusted_mode.flags;
8357         mode->type = DRM_MODE_TYPE_DRIVER;
8358
8359         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8360         mode->flags |= pipe_config->base.adjusted_mode.flags;
8361
8362         mode->hsync = drm_mode_hsync(mode);
8363         mode->vrefresh = drm_mode_vrefresh(mode);
8364         drm_mode_set_name(mode);
8365 }
8366
8367 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8368 {
8369         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8370         uint32_t pipeconf;
8371
8372         pipeconf = 0;
8373
8374         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8375             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8376                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
8377
8378         if (intel_crtc->config->double_wide)
8379                 pipeconf |= PIPECONF_DOUBLE_WIDE;
8380
8381         /* only g4x and later have fancy bpc/dither controls */
8382         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8383             IS_CHERRYVIEW(dev_priv)) {
8384                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8385                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
8386                         pipeconf |= PIPECONF_DITHER_EN |
8387                                     PIPECONF_DITHER_TYPE_SP;
8388
8389                 switch (intel_crtc->config->pipe_bpp) {
8390                 case 18:
8391                         pipeconf |= PIPECONF_6BPC;
8392                         break;
8393                 case 24:
8394                         pipeconf |= PIPECONF_8BPC;
8395                         break;
8396                 case 30:
8397                         pipeconf |= PIPECONF_10BPC;
8398                         break;
8399                 default:
8400                         /* Case prevented by intel_choose_pipe_bpp_dither. */
8401                         BUG();
8402                 }
8403         }
8404
8405         if (HAS_PIPE_CXSR(dev_priv)) {
8406                 if (intel_crtc->lowfreq_avail) {
8407                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8408                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8409                 } else {
8410                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
8411                 }
8412         }
8413
8414         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8415                 if (INTEL_GEN(dev_priv) < 4 ||
8416                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8417                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8418                 else
8419                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8420         } else
8421                 pipeconf |= PIPECONF_PROGRESSIVE;
8422
8423         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8424              intel_crtc->config->limited_color_range)
8425                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8426
8427         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8428         POSTING_READ(PIPECONF(intel_crtc->pipe));
8429 }
8430
8431 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8432                                    struct intel_crtc_state *crtc_state)
8433 {
8434         struct drm_device *dev = crtc->base.dev;
8435         struct drm_i915_private *dev_priv = to_i915(dev);
8436         const struct intel_limit *limit;
8437         int refclk = 48000;
8438
8439         memset(&crtc_state->dpll_hw_state, 0,
8440                sizeof(crtc_state->dpll_hw_state));
8441
8442         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8443                 if (intel_panel_use_ssc(dev_priv)) {
8444                         refclk = dev_priv->vbt.lvds_ssc_freq;
8445                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8446                 }
8447
8448                 limit = &intel_limits_i8xx_lvds;
8449         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8450                 limit = &intel_limits_i8xx_dvo;
8451         } else {
8452                 limit = &intel_limits_i8xx_dac;
8453         }
8454
8455         if (!crtc_state->clock_set &&
8456             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8457                                  refclk, NULL, &crtc_state->dpll)) {
8458                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8459                 return -EINVAL;
8460         }
8461
8462         i8xx_compute_dpll(crtc, crtc_state, NULL);
8463
8464         return 0;
8465 }
8466
8467 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8468                                   struct intel_crtc_state *crtc_state)
8469 {
8470         struct drm_device *dev = crtc->base.dev;
8471         struct drm_i915_private *dev_priv = to_i915(dev);
8472         const struct intel_limit *limit;
8473         int refclk = 96000;
8474
8475         memset(&crtc_state->dpll_hw_state, 0,
8476                sizeof(crtc_state->dpll_hw_state));
8477
8478         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8479                 if (intel_panel_use_ssc(dev_priv)) {
8480                         refclk = dev_priv->vbt.lvds_ssc_freq;
8481                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8482                 }
8483
8484                 if (intel_is_dual_link_lvds(dev))
8485                         limit = &intel_limits_g4x_dual_channel_lvds;
8486                 else
8487                         limit = &intel_limits_g4x_single_channel_lvds;
8488         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8489                    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8490                 limit = &intel_limits_g4x_hdmi;
8491         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8492                 limit = &intel_limits_g4x_sdvo;
8493         } else {
8494                 /* The option is for other outputs */
8495                 limit = &intel_limits_i9xx_sdvo;
8496         }
8497
8498         if (!crtc_state->clock_set &&
8499             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8500                                 refclk, NULL, &crtc_state->dpll)) {
8501                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8502                 return -EINVAL;
8503         }
8504
8505         i9xx_compute_dpll(crtc, crtc_state, NULL);
8506
8507         return 0;
8508 }
8509
8510 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8511                                   struct intel_crtc_state *crtc_state)
8512 {
8513         struct drm_device *dev = crtc->base.dev;
8514         struct drm_i915_private *dev_priv = to_i915(dev);
8515         const struct intel_limit *limit;
8516         int refclk = 96000;
8517
8518         memset(&crtc_state->dpll_hw_state, 0,
8519                sizeof(crtc_state->dpll_hw_state));
8520
8521         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8522                 if (intel_panel_use_ssc(dev_priv)) {
8523                         refclk = dev_priv->vbt.lvds_ssc_freq;
8524                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8525                 }
8526
8527                 limit = &intel_limits_pineview_lvds;
8528         } else {
8529                 limit = &intel_limits_pineview_sdvo;
8530         }
8531
8532         if (!crtc_state->clock_set &&
8533             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8534                                 refclk, NULL, &crtc_state->dpll)) {
8535                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8536                 return -EINVAL;
8537         }
8538
8539         i9xx_compute_dpll(crtc, crtc_state, NULL);
8540
8541         return 0;
8542 }
8543
8544 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8545                                    struct intel_crtc_state *crtc_state)
8546 {
8547         struct drm_device *dev = crtc->base.dev;
8548         struct drm_i915_private *dev_priv = to_i915(dev);
8549         const struct intel_limit *limit;
8550         int refclk = 96000;
8551
8552         memset(&crtc_state->dpll_hw_state, 0,
8553                sizeof(crtc_state->dpll_hw_state));
8554
8555         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8556                 if (intel_panel_use_ssc(dev_priv)) {
8557                         refclk = dev_priv->vbt.lvds_ssc_freq;
8558                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8559                 }
8560
8561                 limit = &intel_limits_i9xx_lvds;
8562         } else {
8563                 limit = &intel_limits_i9xx_sdvo;
8564         }
8565
8566         if (!crtc_state->clock_set &&
8567             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8568                                  refclk, NULL, &crtc_state->dpll)) {
8569                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8570                 return -EINVAL;
8571         }
8572
8573         i9xx_compute_dpll(crtc, crtc_state, NULL);
8574
8575         return 0;
8576 }
8577
8578 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8579                                   struct intel_crtc_state *crtc_state)
8580 {
8581         int refclk = 100000;
8582         const struct intel_limit *limit = &intel_limits_chv;
8583
8584         memset(&crtc_state->dpll_hw_state, 0,
8585                sizeof(crtc_state->dpll_hw_state));
8586
8587         if (!crtc_state->clock_set &&
8588             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8589                                 refclk, NULL, &crtc_state->dpll)) {
8590                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8591                 return -EINVAL;
8592         }
8593
8594         chv_compute_dpll(crtc, crtc_state);
8595
8596         return 0;
8597 }
8598
8599 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8600                                   struct intel_crtc_state *crtc_state)
8601 {
8602         int refclk = 100000;
8603         const struct intel_limit *limit = &intel_limits_vlv;
8604
8605         memset(&crtc_state->dpll_hw_state, 0,
8606                sizeof(crtc_state->dpll_hw_state));
8607
8608         if (!crtc_state->clock_set &&
8609             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8610                                 refclk, NULL, &crtc_state->dpll)) {
8611                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8612                 return -EINVAL;
8613         }
8614
8615         vlv_compute_dpll(crtc, crtc_state);
8616
8617         return 0;
8618 }
8619
8620 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8621                                  struct intel_crtc_state *pipe_config)
8622 {
8623         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8624         uint32_t tmp;
8625
8626         if (INTEL_GEN(dev_priv) <= 3 &&
8627             (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
8628                 return;
8629
8630         tmp = I915_READ(PFIT_CONTROL);
8631         if (!(tmp & PFIT_ENABLE))
8632                 return;
8633
8634         /* Check whether the pfit is attached to our pipe. */
8635         if (INTEL_GEN(dev_priv) < 4) {
8636                 if (crtc->pipe != PIPE_B)
8637                         return;
8638         } else {
8639                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8640                         return;
8641         }
8642
8643         pipe_config->gmch_pfit.control = tmp;
8644         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8645 }
8646
8647 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8648                                struct intel_crtc_state *pipe_config)
8649 {
8650         struct drm_device *dev = crtc->base.dev;
8651         struct drm_i915_private *dev_priv = to_i915(dev);
8652         int pipe = pipe_config->cpu_transcoder;
8653         struct dpll clock;
8654         u32 mdiv;
8655         int refclk = 100000;
8656
8657         /* In case of DSI, DPLL will not be used */
8658         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8659                 return;
8660
8661         mutex_lock(&dev_priv->sb_lock);
8662         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8663         mutex_unlock(&dev_priv->sb_lock);
8664
8665         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8666         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8667         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8668         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8669         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8670
8671         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8672 }
8673
8674 static void
8675 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8676                               struct intel_initial_plane_config *plane_config)
8677 {
8678         struct drm_device *dev = crtc->base.dev;
8679         struct drm_i915_private *dev_priv = to_i915(dev);
8680         u32 val, base, offset;
8681         int pipe = crtc->pipe, plane = crtc->plane;
8682         int fourcc, pixel_format;
8683         unsigned int aligned_height;
8684         struct drm_framebuffer *fb;
8685         struct intel_framebuffer *intel_fb;
8686
8687         val = I915_READ(DSPCNTR(plane));
8688         if (!(val & DISPLAY_PLANE_ENABLE))
8689                 return;
8690
8691         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8692         if (!intel_fb) {
8693                 DRM_DEBUG_KMS("failed to alloc fb\n");
8694                 return;
8695         }
8696
8697         fb = &intel_fb->base;
8698
8699         if (INTEL_GEN(dev_priv) >= 4) {
8700                 if (val & DISPPLANE_TILED) {
8701                         plane_config->tiling = I915_TILING_X;
8702                         fb->modifier = I915_FORMAT_MOD_X_TILED;
8703                 }
8704         }
8705
8706         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8707         fourcc = i9xx_format_to_fourcc(pixel_format);
8708         fb->pixel_format = fourcc;
8709         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8710
8711         if (INTEL_GEN(dev_priv) >= 4) {
8712                 if (plane_config->tiling)
8713                         offset = I915_READ(DSPTILEOFF(plane));
8714                 else
8715                         offset = I915_READ(DSPLINOFF(plane));
8716                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8717         } else {
8718                 base = I915_READ(DSPADDR(plane));
8719         }
8720         plane_config->base = base;
8721
8722         val = I915_READ(PIPESRC(pipe));
8723         fb->width = ((val >> 16) & 0xfff) + 1;
8724         fb->height = ((val >> 0) & 0xfff) + 1;
8725
8726         val = I915_READ(DSPSTRIDE(pipe));
8727         fb->pitches[0] = val & 0xffffffc0;
8728
8729         aligned_height = intel_fb_align_height(dev, fb->height,
8730                                                fb->pixel_format,
8731                                                fb->modifier);
8732
8733         plane_config->size = fb->pitches[0] * aligned_height;
8734
8735         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8736                       pipe_name(pipe), plane, fb->width, fb->height,
8737                       fb->bits_per_pixel, base, fb->pitches[0],
8738                       plane_config->size);
8739
8740         plane_config->fb = intel_fb;
8741 }
8742
8743 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8744                                struct intel_crtc_state *pipe_config)
8745 {
8746         struct drm_device *dev = crtc->base.dev;
8747         struct drm_i915_private *dev_priv = to_i915(dev);
8748         int pipe = pipe_config->cpu_transcoder;
8749         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8750         struct dpll clock;
8751         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8752         int refclk = 100000;
8753
8754         /* In case of DSI, DPLL will not be used */
8755         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8756                 return;
8757
8758         mutex_lock(&dev_priv->sb_lock);
8759         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8760         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8761         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8762         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8763         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8764         mutex_unlock(&dev_priv->sb_lock);
8765
8766         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8767         clock.m2 = (pll_dw0 & 0xff) << 22;
8768         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8769                 clock.m2 |= pll_dw2 & 0x3fffff;
8770         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8771         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8772         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8773
8774         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8775 }
8776
8777 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8778                                  struct intel_crtc_state *pipe_config)
8779 {
8780         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8781         enum intel_display_power_domain power_domain;
8782         uint32_t tmp;
8783         bool ret;
8784
8785         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8786         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8787                 return false;
8788
8789         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8790         pipe_config->shared_dpll = NULL;
8791
8792         ret = false;
8793
8794         tmp = I915_READ(PIPECONF(crtc->pipe));
8795         if (!(tmp & PIPECONF_ENABLE))
8796                 goto out;
8797
8798         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8799             IS_CHERRYVIEW(dev_priv)) {
8800                 switch (tmp & PIPECONF_BPC_MASK) {
8801                 case PIPECONF_6BPC:
8802                         pipe_config->pipe_bpp = 18;
8803                         break;
8804                 case PIPECONF_8BPC:
8805                         pipe_config->pipe_bpp = 24;
8806                         break;
8807                 case PIPECONF_10BPC:
8808                         pipe_config->pipe_bpp = 30;
8809                         break;
8810                 default:
8811                         break;
8812                 }
8813         }
8814
8815         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8816             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8817                 pipe_config->limited_color_range = true;
8818
8819         if (INTEL_GEN(dev_priv) < 4)
8820                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8821
8822         intel_get_pipe_timings(crtc, pipe_config);
8823         intel_get_pipe_src_size(crtc, pipe_config);
8824
8825         i9xx_get_pfit_config(crtc, pipe_config);
8826
8827         if (INTEL_GEN(dev_priv) >= 4) {
8828                 /* No way to read it out on pipes B and C */
8829                 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
8830                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
8831                 else
8832                         tmp = I915_READ(DPLL_MD(crtc->pipe));
8833                 pipe_config->pixel_multiplier =
8834                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8835                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8836                 pipe_config->dpll_hw_state.dpll_md = tmp;
8837         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8838                    IS_G33(dev_priv)) {
8839                 tmp = I915_READ(DPLL(crtc->pipe));
8840                 pipe_config->pixel_multiplier =
8841                         ((tmp & SDVO_MULTIPLIER_MASK)
8842                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8843         } else {
8844                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8845                  * port and will be fixed up in the encoder->get_config
8846                  * function. */
8847                 pipe_config->pixel_multiplier = 1;
8848         }
8849         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8850         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
8851                 /*
8852                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8853                  * on 830. Filter it out here so that we don't
8854                  * report errors due to that.
8855                  */
8856                 if (IS_I830(dev_priv))
8857                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8858
8859                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8860                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8861         } else {
8862                 /* Mask out read-only status bits. */
8863                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8864                                                      DPLL_PORTC_READY_MASK |
8865                                                      DPLL_PORTB_READY_MASK);
8866         }
8867
8868         if (IS_CHERRYVIEW(dev_priv))
8869                 chv_crtc_clock_get(crtc, pipe_config);
8870         else if (IS_VALLEYVIEW(dev_priv))
8871                 vlv_crtc_clock_get(crtc, pipe_config);
8872         else
8873                 i9xx_crtc_clock_get(crtc, pipe_config);
8874
8875         /*
8876          * Normally the dotclock is filled in by the encoder .get_config()
8877          * but in case the pipe is enabled w/o any ports we need a sane
8878          * default.
8879          */
8880         pipe_config->base.adjusted_mode.crtc_clock =
8881                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8882
8883         ret = true;
8884
8885 out:
8886         intel_display_power_put(dev_priv, power_domain);
8887
8888         return ret;
8889 }
8890
8891 static void ironlake_init_pch_refclk(struct drm_device *dev)
8892 {
8893         struct drm_i915_private *dev_priv = to_i915(dev);
8894         struct intel_encoder *encoder;
8895         int i;
8896         u32 val, final;
8897         bool has_lvds = false;
8898         bool has_cpu_edp = false;
8899         bool has_panel = false;
8900         bool has_ck505 = false;
8901         bool can_ssc = false;
8902         bool using_ssc_source = false;
8903
8904         /* We need to take the global config into account */
8905         for_each_intel_encoder(dev, encoder) {
8906                 switch (encoder->type) {
8907                 case INTEL_OUTPUT_LVDS:
8908                         has_panel = true;
8909                         has_lvds = true;
8910                         break;
8911                 case INTEL_OUTPUT_EDP:
8912                         has_panel = true;
8913                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8914                                 has_cpu_edp = true;
8915                         break;
8916                 default:
8917                         break;
8918                 }
8919         }
8920
8921         if (HAS_PCH_IBX(dev_priv)) {
8922                 has_ck505 = dev_priv->vbt.display_clock_mode;
8923                 can_ssc = has_ck505;
8924         } else {
8925                 has_ck505 = false;
8926                 can_ssc = true;
8927         }
8928
8929         /* Check if any DPLLs are using the SSC source */
8930         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8931                 u32 temp = I915_READ(PCH_DPLL(i));
8932
8933                 if (!(temp & DPLL_VCO_ENABLE))
8934                         continue;
8935
8936                 if ((temp & PLL_REF_INPUT_MASK) ==
8937                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8938                         using_ssc_source = true;
8939                         break;
8940                 }
8941         }
8942
8943         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8944                       has_panel, has_lvds, has_ck505, using_ssc_source);
8945
8946         /* Ironlake: try to setup display ref clock before DPLL
8947          * enabling. This is only under driver's control after
8948          * PCH B stepping, previous chipset stepping should be
8949          * ignoring this setting.
8950          */
8951         val = I915_READ(PCH_DREF_CONTROL);
8952
8953         /* As we must carefully and slowly disable/enable each source in turn,
8954          * compute the final state we want first and check if we need to
8955          * make any changes at all.
8956          */
8957         final = val;
8958         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8959         if (has_ck505)
8960                 final |= DREF_NONSPREAD_CK505_ENABLE;
8961         else
8962                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8963
8964         final &= ~DREF_SSC_SOURCE_MASK;
8965         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8966         final &= ~DREF_SSC1_ENABLE;
8967
8968         if (has_panel) {
8969                 final |= DREF_SSC_SOURCE_ENABLE;
8970
8971                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8972                         final |= DREF_SSC1_ENABLE;
8973
8974                 if (has_cpu_edp) {
8975                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8976                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8977                         else
8978                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8979                 } else
8980                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8981         } else if (using_ssc_source) {
8982                 final |= DREF_SSC_SOURCE_ENABLE;
8983                 final |= DREF_SSC1_ENABLE;
8984         }
8985
8986         if (final == val)
8987                 return;
8988
8989         /* Always enable nonspread source */
8990         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8991
8992         if (has_ck505)
8993                 val |= DREF_NONSPREAD_CK505_ENABLE;
8994         else
8995                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8996
8997         if (has_panel) {
8998                 val &= ~DREF_SSC_SOURCE_MASK;
8999                 val |= DREF_SSC_SOURCE_ENABLE;
9000
9001                 /* SSC must be turned on before enabling the CPU output  */
9002                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9003                         DRM_DEBUG_KMS("Using SSC on panel\n");
9004                         val |= DREF_SSC1_ENABLE;
9005                 } else
9006                         val &= ~DREF_SSC1_ENABLE;
9007
9008                 /* Get SSC going before enabling the outputs */
9009                 I915_WRITE(PCH_DREF_CONTROL, val);
9010                 POSTING_READ(PCH_DREF_CONTROL);
9011                 udelay(200);
9012
9013                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9014
9015                 /* Enable CPU source on CPU attached eDP */
9016                 if (has_cpu_edp) {
9017                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9018                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
9019                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9020                         } else
9021                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9022                 } else
9023                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9024
9025                 I915_WRITE(PCH_DREF_CONTROL, val);
9026                 POSTING_READ(PCH_DREF_CONTROL);
9027                 udelay(200);
9028         } else {
9029                 DRM_DEBUG_KMS("Disabling CPU source output\n");
9030
9031                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9032
9033                 /* Turn off CPU output */
9034                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9035
9036                 I915_WRITE(PCH_DREF_CONTROL, val);
9037                 POSTING_READ(PCH_DREF_CONTROL);
9038                 udelay(200);
9039
9040                 if (!using_ssc_source) {
9041                         DRM_DEBUG_KMS("Disabling SSC source\n");
9042
9043                         /* Turn off the SSC source */
9044                         val &= ~DREF_SSC_SOURCE_MASK;
9045                         val |= DREF_SSC_SOURCE_DISABLE;
9046
9047                         /* Turn off SSC1 */
9048                         val &= ~DREF_SSC1_ENABLE;
9049
9050                         I915_WRITE(PCH_DREF_CONTROL, val);
9051                         POSTING_READ(PCH_DREF_CONTROL);
9052                         udelay(200);
9053                 }
9054         }
9055
9056         BUG_ON(val != final);
9057 }
9058
9059 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9060 {
9061         uint32_t tmp;
9062
9063         tmp = I915_READ(SOUTH_CHICKEN2);
9064         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9065         I915_WRITE(SOUTH_CHICKEN2, tmp);
9066
9067         if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9068                         FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9069                 DRM_ERROR("FDI mPHY reset assert timeout\n");
9070
9071         tmp = I915_READ(SOUTH_CHICKEN2);
9072         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9073         I915_WRITE(SOUTH_CHICKEN2, tmp);
9074
9075         if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9076                          FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9077                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9078 }
9079
9080 /* WaMPhyProgramming:hsw */
9081 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9082 {
9083         uint32_t tmp;
9084
9085         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9086         tmp &= ~(0xFF << 24);
9087         tmp |= (0x12 << 24);
9088         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9089
9090         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9091         tmp |= (1 << 11);
9092         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9093
9094         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9095         tmp |= (1 << 11);
9096         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9097
9098         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9099         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9100         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9101
9102         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9103         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9104         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9105
9106         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9107         tmp &= ~(7 << 13);
9108         tmp |= (5 << 13);
9109         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9110
9111         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9112         tmp &= ~(7 << 13);
9113         tmp |= (5 << 13);
9114         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9115
9116         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9117         tmp &= ~0xFF;
9118         tmp |= 0x1C;
9119         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9120
9121         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9122         tmp &= ~0xFF;
9123         tmp |= 0x1C;
9124         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9125
9126         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9127         tmp &= ~(0xFF << 16);
9128         tmp |= (0x1C << 16);
9129         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9130
9131         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9132         tmp &= ~(0xFF << 16);
9133         tmp |= (0x1C << 16);
9134         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9135
9136         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9137         tmp |= (1 << 27);
9138         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9139
9140         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9141         tmp |= (1 << 27);
9142         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9143
9144         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9145         tmp &= ~(0xF << 28);
9146         tmp |= (4 << 28);
9147         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9148
9149         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9150         tmp &= ~(0xF << 28);
9151         tmp |= (4 << 28);
9152         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9153 }
9154
9155 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9156  * Programming" based on the parameters passed:
9157  * - Sequence to enable CLKOUT_DP
9158  * - Sequence to enable CLKOUT_DP without spread
9159  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9160  */
9161 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
9162                                  bool with_fdi)
9163 {
9164         struct drm_i915_private *dev_priv = to_i915(dev);
9165         uint32_t reg, tmp;
9166
9167         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9168                 with_spread = true;
9169         if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9170             with_fdi, "LP PCH doesn't have FDI\n"))
9171                 with_fdi = false;
9172
9173         mutex_lock(&dev_priv->sb_lock);
9174
9175         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9176         tmp &= ~SBI_SSCCTL_DISABLE;
9177         tmp |= SBI_SSCCTL_PATHALT;
9178         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9179
9180         udelay(24);
9181
9182         if (with_spread) {
9183                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9184                 tmp &= ~SBI_SSCCTL_PATHALT;
9185                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9186
9187                 if (with_fdi) {
9188                         lpt_reset_fdi_mphy(dev_priv);
9189                         lpt_program_fdi_mphy(dev_priv);
9190                 }
9191         }
9192
9193         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9194         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9195         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9196         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9197
9198         mutex_unlock(&dev_priv->sb_lock);
9199 }
9200
9201 /* Sequence to disable CLKOUT_DP */
9202 static void lpt_disable_clkout_dp(struct drm_device *dev)
9203 {
9204         struct drm_i915_private *dev_priv = to_i915(dev);
9205         uint32_t reg, tmp;
9206
9207         mutex_lock(&dev_priv->sb_lock);
9208
9209         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9210         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9211         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9212         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9213
9214         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9215         if (!(tmp & SBI_SSCCTL_DISABLE)) {
9216                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9217                         tmp |= SBI_SSCCTL_PATHALT;
9218                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9219                         udelay(32);
9220                 }
9221                 tmp |= SBI_SSCCTL_DISABLE;
9222                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9223         }
9224
9225         mutex_unlock(&dev_priv->sb_lock);
9226 }
9227
9228 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9229
9230 static const uint16_t sscdivintphase[] = {
9231         [BEND_IDX( 50)] = 0x3B23,
9232         [BEND_IDX( 45)] = 0x3B23,
9233         [BEND_IDX( 40)] = 0x3C23,
9234         [BEND_IDX( 35)] = 0x3C23,
9235         [BEND_IDX( 30)] = 0x3D23,
9236         [BEND_IDX( 25)] = 0x3D23,
9237         [BEND_IDX( 20)] = 0x3E23,
9238         [BEND_IDX( 15)] = 0x3E23,
9239         [BEND_IDX( 10)] = 0x3F23,
9240         [BEND_IDX(  5)] = 0x3F23,
9241         [BEND_IDX(  0)] = 0x0025,
9242         [BEND_IDX( -5)] = 0x0025,
9243         [BEND_IDX(-10)] = 0x0125,
9244         [BEND_IDX(-15)] = 0x0125,
9245         [BEND_IDX(-20)] = 0x0225,
9246         [BEND_IDX(-25)] = 0x0225,
9247         [BEND_IDX(-30)] = 0x0325,
9248         [BEND_IDX(-35)] = 0x0325,
9249         [BEND_IDX(-40)] = 0x0425,
9250         [BEND_IDX(-45)] = 0x0425,
9251         [BEND_IDX(-50)] = 0x0525,
9252 };
9253
9254 /*
9255  * Bend CLKOUT_DP
9256  * steps -50 to 50 inclusive, in steps of 5
9257  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9258  * change in clock period = -(steps / 10) * 5.787 ps
9259  */
9260 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9261 {
9262         uint32_t tmp;
9263         int idx = BEND_IDX(steps);
9264
9265         if (WARN_ON(steps % 5 != 0))
9266                 return;
9267
9268         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9269                 return;
9270
9271         mutex_lock(&dev_priv->sb_lock);
9272
9273         if (steps % 10 != 0)
9274                 tmp = 0xAAAAAAAB;
9275         else
9276                 tmp = 0x00000000;
9277         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9278
9279         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9280         tmp &= 0xffff0000;
9281         tmp |= sscdivintphase[idx];
9282         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9283
9284         mutex_unlock(&dev_priv->sb_lock);
9285 }
9286
9287 #undef BEND_IDX
9288
9289 static void lpt_init_pch_refclk(struct drm_device *dev)
9290 {
9291         struct intel_encoder *encoder;
9292         bool has_vga = false;
9293
9294         for_each_intel_encoder(dev, encoder) {
9295                 switch (encoder->type) {
9296                 case INTEL_OUTPUT_ANALOG:
9297                         has_vga = true;
9298                         break;
9299                 default:
9300                         break;
9301                 }
9302         }
9303
9304         if (has_vga) {
9305                 lpt_bend_clkout_dp(to_i915(dev), 0);
9306                 lpt_enable_clkout_dp(dev, true, true);
9307         } else {
9308                 lpt_disable_clkout_dp(dev);
9309         }
9310 }
9311
9312 /*
9313  * Initialize reference clocks when the driver loads
9314  */
9315 void intel_init_pch_refclk(struct drm_device *dev)
9316 {
9317         struct drm_i915_private *dev_priv = to_i915(dev);
9318
9319         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9320                 ironlake_init_pch_refclk(dev);
9321         else if (HAS_PCH_LPT(dev_priv))
9322                 lpt_init_pch_refclk(dev);
9323 }
9324
9325 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
9326 {
9327         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9328         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9329         int pipe = intel_crtc->pipe;
9330         uint32_t val;
9331
9332         val = 0;
9333
9334         switch (intel_crtc->config->pipe_bpp) {
9335         case 18:
9336                 val |= PIPECONF_6BPC;
9337                 break;
9338         case 24:
9339                 val |= PIPECONF_8BPC;
9340                 break;
9341         case 30:
9342                 val |= PIPECONF_10BPC;
9343                 break;
9344         case 36:
9345                 val |= PIPECONF_12BPC;
9346                 break;
9347         default:
9348                 /* Case prevented by intel_choose_pipe_bpp_dither. */
9349                 BUG();
9350         }
9351
9352         if (intel_crtc->config->dither)
9353                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9354
9355         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9356                 val |= PIPECONF_INTERLACED_ILK;
9357         else
9358                 val |= PIPECONF_PROGRESSIVE;
9359
9360         if (intel_crtc->config->limited_color_range)
9361                 val |= PIPECONF_COLOR_RANGE_SELECT;
9362
9363         I915_WRITE(PIPECONF(pipe), val);
9364         POSTING_READ(PIPECONF(pipe));
9365 }
9366
9367 static void haswell_set_pipeconf(struct drm_crtc *crtc)
9368 {
9369         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9370         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9371         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9372         u32 val = 0;
9373
9374         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
9375                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9376
9377         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9378                 val |= PIPECONF_INTERLACED_ILK;
9379         else
9380                 val |= PIPECONF_PROGRESSIVE;
9381
9382         I915_WRITE(PIPECONF(cpu_transcoder), val);
9383         POSTING_READ(PIPECONF(cpu_transcoder));
9384 }
9385
9386 static void haswell_set_pipemisc(struct drm_crtc *crtc)
9387 {
9388         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9389         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9390
9391         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9392                 u32 val = 0;
9393
9394                 switch (intel_crtc->config->pipe_bpp) {
9395                 case 18:
9396                         val |= PIPEMISC_DITHER_6_BPC;
9397                         break;
9398                 case 24:
9399                         val |= PIPEMISC_DITHER_8_BPC;
9400                         break;
9401                 case 30:
9402                         val |= PIPEMISC_DITHER_10_BPC;
9403                         break;
9404                 case 36:
9405                         val |= PIPEMISC_DITHER_12_BPC;
9406                         break;
9407                 default:
9408                         /* Case prevented by pipe_config_set_bpp. */
9409                         BUG();
9410                 }
9411
9412                 if (intel_crtc->config->dither)
9413                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9414
9415                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
9416         }
9417 }
9418
9419 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9420 {
9421         /*
9422          * Account for spread spectrum to avoid
9423          * oversubscribing the link. Max center spread
9424          * is 2.5%; use 5% for safety's sake.
9425          */
9426         u32 bps = target_clock * bpp * 21 / 20;
9427         return DIV_ROUND_UP(bps, link_bw * 8);
9428 }
9429
9430 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9431 {
9432         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9433 }
9434
9435 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9436                                   struct intel_crtc_state *crtc_state,
9437                                   struct dpll *reduced_clock)
9438 {
9439         struct drm_crtc *crtc = &intel_crtc->base;
9440         struct drm_device *dev = crtc->dev;
9441         struct drm_i915_private *dev_priv = to_i915(dev);
9442         u32 dpll, fp, fp2;
9443         int factor;
9444
9445         /* Enable autotuning of the PLL clock (if permissible) */
9446         factor = 21;
9447         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9448                 if ((intel_panel_use_ssc(dev_priv) &&
9449                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
9450                     (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
9451                         factor = 25;
9452         } else if (crtc_state->sdvo_tv_clock)
9453                 factor = 20;
9454
9455         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9456
9457         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9458                 fp |= FP_CB_TUNE;
9459
9460         if (reduced_clock) {
9461                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
9462
9463                 if (reduced_clock->m < factor * reduced_clock->n)
9464                         fp2 |= FP_CB_TUNE;
9465         } else {
9466                 fp2 = fp;
9467         }
9468
9469         dpll = 0;
9470
9471         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9472                 dpll |= DPLLB_MODE_LVDS;
9473         else
9474                 dpll |= DPLLB_MODE_DAC_SERIAL;
9475
9476         dpll |= (crtc_state->pixel_multiplier - 1)
9477                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9478
9479         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9480             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9481                 dpll |= DPLL_SDVO_HIGH_SPEED;
9482
9483         if (intel_crtc_has_dp_encoder(crtc_state))
9484                 dpll |= DPLL_SDVO_HIGH_SPEED;
9485
9486         /*
9487          * The high speed IO clock is only really required for
9488          * SDVO/HDMI/DP, but we also enable it for CRT to make it
9489          * possible to share the DPLL between CRT and HDMI. Enabling
9490          * the clock needlessly does no real harm, except use up a
9491          * bit of power potentially.
9492          *
9493          * We'll limit this to IVB with 3 pipes, since it has only two
9494          * DPLLs and so DPLL sharing is the only way to get three pipes
9495          * driving PCH ports at the same time. On SNB we could do this,
9496          * and potentially avoid enabling the second DPLL, but it's not
9497          * clear if it''s a win or loss power wise. No point in doing
9498          * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9499          */
9500         if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
9501             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9502                 dpll |= DPLL_SDVO_HIGH_SPEED;
9503
9504         /* compute bitmask from p1 value */
9505         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9506         /* also FPA1 */
9507         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9508
9509         switch (crtc_state->dpll.p2) {
9510         case 5:
9511                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9512                 break;
9513         case 7:
9514                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9515                 break;
9516         case 10:
9517                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9518                 break;
9519         case 14:
9520                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9521                 break;
9522         }
9523
9524         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9525             intel_panel_use_ssc(dev_priv))
9526                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9527         else
9528                 dpll |= PLL_REF_INPUT_DREFCLK;
9529
9530         dpll |= DPLL_VCO_ENABLE;
9531
9532         crtc_state->dpll_hw_state.dpll = dpll;
9533         crtc_state->dpll_hw_state.fp0 = fp;
9534         crtc_state->dpll_hw_state.fp1 = fp2;
9535 }
9536
9537 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9538                                        struct intel_crtc_state *crtc_state)
9539 {
9540         struct drm_device *dev = crtc->base.dev;
9541         struct drm_i915_private *dev_priv = to_i915(dev);
9542         struct dpll reduced_clock;
9543         bool has_reduced_clock = false;
9544         struct intel_shared_dpll *pll;
9545         const struct intel_limit *limit;
9546         int refclk = 120000;
9547
9548         memset(&crtc_state->dpll_hw_state, 0,
9549                sizeof(crtc_state->dpll_hw_state));
9550
9551         crtc->lowfreq_avail = false;
9552
9553         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9554         if (!crtc_state->has_pch_encoder)
9555                 return 0;
9556
9557         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9558                 if (intel_panel_use_ssc(dev_priv)) {
9559                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9560                                       dev_priv->vbt.lvds_ssc_freq);
9561                         refclk = dev_priv->vbt.lvds_ssc_freq;
9562                 }
9563
9564                 if (intel_is_dual_link_lvds(dev)) {
9565                         if (refclk == 100000)
9566                                 limit = &intel_limits_ironlake_dual_lvds_100m;
9567                         else
9568                                 limit = &intel_limits_ironlake_dual_lvds;
9569                 } else {
9570                         if (refclk == 100000)
9571                                 limit = &intel_limits_ironlake_single_lvds_100m;
9572                         else
9573                                 limit = &intel_limits_ironlake_single_lvds;
9574                 }
9575         } else {
9576                 limit = &intel_limits_ironlake_dac;
9577         }
9578
9579         if (!crtc_state->clock_set &&
9580             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9581                                 refclk, NULL, &crtc_state->dpll)) {
9582                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9583                 return -EINVAL;
9584         }
9585
9586         ironlake_compute_dpll(crtc, crtc_state,
9587                               has_reduced_clock ? &reduced_clock : NULL);
9588
9589         pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9590         if (pll == NULL) {
9591                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9592                                  pipe_name(crtc->pipe));
9593                 return -EINVAL;
9594         }
9595
9596         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9597             has_reduced_clock)
9598                 crtc->lowfreq_avail = true;
9599
9600         return 0;
9601 }
9602
9603 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9604                                          struct intel_link_m_n *m_n)
9605 {
9606         struct drm_device *dev = crtc->base.dev;
9607         struct drm_i915_private *dev_priv = to_i915(dev);
9608         enum pipe pipe = crtc->pipe;
9609
9610         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9611         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9612         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9613                 & ~TU_SIZE_MASK;
9614         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9615         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9616                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9617 }
9618
9619 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9620                                          enum transcoder transcoder,
9621                                          struct intel_link_m_n *m_n,
9622                                          struct intel_link_m_n *m2_n2)
9623 {
9624         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9625         enum pipe pipe = crtc->pipe;
9626
9627         if (INTEL_GEN(dev_priv) >= 5) {
9628                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9629                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9630                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9631                         & ~TU_SIZE_MASK;
9632                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9633                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9634                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9635                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9636                  * gen < 8) and if DRRS is supported (to make sure the
9637                  * registers are not unnecessarily read).
9638                  */
9639                 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
9640                         crtc->config->has_drrs) {
9641                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9642                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9643                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9644                                         & ~TU_SIZE_MASK;
9645                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9646                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9647                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9648                 }
9649         } else {
9650                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9651                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9652                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9653                         & ~TU_SIZE_MASK;
9654                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9655                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9656                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9657         }
9658 }
9659
9660 void intel_dp_get_m_n(struct intel_crtc *crtc,
9661                       struct intel_crtc_state *pipe_config)
9662 {
9663         if (pipe_config->has_pch_encoder)
9664                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9665         else
9666                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9667                                              &pipe_config->dp_m_n,
9668                                              &pipe_config->dp_m2_n2);
9669 }
9670
9671 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9672                                         struct intel_crtc_state *pipe_config)
9673 {
9674         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9675                                      &pipe_config->fdi_m_n, NULL);
9676 }
9677
9678 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9679                                     struct intel_crtc_state *pipe_config)
9680 {
9681         struct drm_device *dev = crtc->base.dev;
9682         struct drm_i915_private *dev_priv = to_i915(dev);
9683         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9684         uint32_t ps_ctrl = 0;
9685         int id = -1;
9686         int i;
9687
9688         /* find scaler attached to this pipe */
9689         for (i = 0; i < crtc->num_scalers; i++) {
9690                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9691                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9692                         id = i;
9693                         pipe_config->pch_pfit.enabled = true;
9694                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9695                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9696                         break;
9697                 }
9698         }
9699
9700         scaler_state->scaler_id = id;
9701         if (id >= 0) {
9702                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9703         } else {
9704                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9705         }
9706 }
9707
9708 static void
9709 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9710                                  struct intel_initial_plane_config *plane_config)
9711 {
9712         struct drm_device *dev = crtc->base.dev;
9713         struct drm_i915_private *dev_priv = to_i915(dev);
9714         u32 val, base, offset, stride_mult, tiling;
9715         int pipe = crtc->pipe;
9716         int fourcc, pixel_format;
9717         unsigned int aligned_height;
9718         struct drm_framebuffer *fb;
9719         struct intel_framebuffer *intel_fb;
9720
9721         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9722         if (!intel_fb) {
9723                 DRM_DEBUG_KMS("failed to alloc fb\n");
9724                 return;
9725         }
9726
9727         fb = &intel_fb->base;
9728
9729         val = I915_READ(PLANE_CTL(pipe, 0));
9730         if (!(val & PLANE_CTL_ENABLE))
9731                 goto error;
9732
9733         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9734         fourcc = skl_format_to_fourcc(pixel_format,
9735                                       val & PLANE_CTL_ORDER_RGBX,
9736                                       val & PLANE_CTL_ALPHA_MASK);
9737         fb->pixel_format = fourcc;
9738         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9739
9740         tiling = val & PLANE_CTL_TILED_MASK;
9741         switch (tiling) {
9742         case PLANE_CTL_TILED_LINEAR:
9743                 fb->modifier = DRM_FORMAT_MOD_NONE;
9744                 break;
9745         case PLANE_CTL_TILED_X:
9746                 plane_config->tiling = I915_TILING_X;
9747                 fb->modifier = I915_FORMAT_MOD_X_TILED;
9748                 break;
9749         case PLANE_CTL_TILED_Y:
9750                 fb->modifier = I915_FORMAT_MOD_Y_TILED;
9751                 break;
9752         case PLANE_CTL_TILED_YF:
9753                 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
9754                 break;
9755         default:
9756                 MISSING_CASE(tiling);
9757                 goto error;
9758         }
9759
9760         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9761         plane_config->base = base;
9762
9763         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9764
9765         val = I915_READ(PLANE_SIZE(pipe, 0));
9766         fb->height = ((val >> 16) & 0xfff) + 1;
9767         fb->width = ((val >> 0) & 0x1fff) + 1;
9768
9769         val = I915_READ(PLANE_STRIDE(pipe, 0));
9770         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier,
9771                                                 fb->pixel_format);
9772         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9773
9774         aligned_height = intel_fb_align_height(dev, fb->height,
9775                                                fb->pixel_format,
9776                                                fb->modifier);
9777
9778         plane_config->size = fb->pitches[0] * aligned_height;
9779
9780         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9781                       pipe_name(pipe), fb->width, fb->height,
9782                       fb->bits_per_pixel, base, fb->pitches[0],
9783                       plane_config->size);
9784
9785         plane_config->fb = intel_fb;
9786         return;
9787
9788 error:
9789         kfree(intel_fb);
9790 }
9791
9792 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9793                                      struct intel_crtc_state *pipe_config)
9794 {
9795         struct drm_device *dev = crtc->base.dev;
9796         struct drm_i915_private *dev_priv = to_i915(dev);
9797         uint32_t tmp;
9798
9799         tmp = I915_READ(PF_CTL(crtc->pipe));
9800
9801         if (tmp & PF_ENABLE) {
9802                 pipe_config->pch_pfit.enabled = true;
9803                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9804                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9805
9806                 /* We currently do not free assignements of panel fitters on
9807                  * ivb/hsw (since we don't use the higher upscaling modes which
9808                  * differentiates them) so just WARN about this case for now. */
9809                 if (IS_GEN7(dev_priv)) {
9810                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9811                                 PF_PIPE_SEL_IVB(crtc->pipe));
9812                 }
9813         }
9814 }
9815
9816 static void
9817 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9818                                   struct intel_initial_plane_config *plane_config)
9819 {
9820         struct drm_device *dev = crtc->base.dev;
9821         struct drm_i915_private *dev_priv = to_i915(dev);
9822         u32 val, base, offset;
9823         int pipe = crtc->pipe;
9824         int fourcc, pixel_format;
9825         unsigned int aligned_height;
9826         struct drm_framebuffer *fb;
9827         struct intel_framebuffer *intel_fb;
9828
9829         val = I915_READ(DSPCNTR(pipe));
9830         if (!(val & DISPLAY_PLANE_ENABLE))
9831                 return;
9832
9833         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9834         if (!intel_fb) {
9835                 DRM_DEBUG_KMS("failed to alloc fb\n");
9836                 return;
9837         }
9838
9839         fb = &intel_fb->base;
9840
9841         if (INTEL_GEN(dev_priv) >= 4) {
9842                 if (val & DISPPLANE_TILED) {
9843                         plane_config->tiling = I915_TILING_X;
9844                         fb->modifier = I915_FORMAT_MOD_X_TILED;
9845                 }
9846         }
9847
9848         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9849         fourcc = i9xx_format_to_fourcc(pixel_format);
9850         fb->pixel_format = fourcc;
9851         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9852
9853         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9854         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9855                 offset = I915_READ(DSPOFFSET(pipe));
9856         } else {
9857                 if (plane_config->tiling)
9858                         offset = I915_READ(DSPTILEOFF(pipe));
9859                 else
9860                         offset = I915_READ(DSPLINOFF(pipe));
9861         }
9862         plane_config->base = base;
9863
9864         val = I915_READ(PIPESRC(pipe));
9865         fb->width = ((val >> 16) & 0xfff) + 1;
9866         fb->height = ((val >> 0) & 0xfff) + 1;
9867
9868         val = I915_READ(DSPSTRIDE(pipe));
9869         fb->pitches[0] = val & 0xffffffc0;
9870
9871         aligned_height = intel_fb_align_height(dev, fb->height,
9872                                                fb->pixel_format,
9873                                                fb->modifier);
9874
9875         plane_config->size = fb->pitches[0] * aligned_height;
9876
9877         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9878                       pipe_name(pipe), fb->width, fb->height,
9879                       fb->bits_per_pixel, base, fb->pitches[0],
9880                       plane_config->size);
9881
9882         plane_config->fb = intel_fb;
9883 }
9884
9885 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9886                                      struct intel_crtc_state *pipe_config)
9887 {
9888         struct drm_device *dev = crtc->base.dev;
9889         struct drm_i915_private *dev_priv = to_i915(dev);
9890         enum intel_display_power_domain power_domain;
9891         uint32_t tmp;
9892         bool ret;
9893
9894         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9895         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9896                 return false;
9897
9898         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9899         pipe_config->shared_dpll = NULL;
9900
9901         ret = false;
9902         tmp = I915_READ(PIPECONF(crtc->pipe));
9903         if (!(tmp & PIPECONF_ENABLE))
9904                 goto out;
9905
9906         switch (tmp & PIPECONF_BPC_MASK) {
9907         case PIPECONF_6BPC:
9908                 pipe_config->pipe_bpp = 18;
9909                 break;
9910         case PIPECONF_8BPC:
9911                 pipe_config->pipe_bpp = 24;
9912                 break;
9913         case PIPECONF_10BPC:
9914                 pipe_config->pipe_bpp = 30;
9915                 break;
9916         case PIPECONF_12BPC:
9917                 pipe_config->pipe_bpp = 36;
9918                 break;
9919         default:
9920                 break;
9921         }
9922
9923         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9924                 pipe_config->limited_color_range = true;
9925
9926         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9927                 struct intel_shared_dpll *pll;
9928                 enum intel_dpll_id pll_id;
9929
9930                 pipe_config->has_pch_encoder = true;
9931
9932                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9933                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9934                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9935
9936                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9937
9938                 if (HAS_PCH_IBX(dev_priv)) {
9939                         /*
9940                          * The pipe->pch transcoder and pch transcoder->pll
9941                          * mapping is fixed.
9942                          */
9943                         pll_id = (enum intel_dpll_id) crtc->pipe;
9944                 } else {
9945                         tmp = I915_READ(PCH_DPLL_SEL);
9946                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9947                                 pll_id = DPLL_ID_PCH_PLL_B;
9948                         else
9949                                 pll_id= DPLL_ID_PCH_PLL_A;
9950                 }
9951
9952                 pipe_config->shared_dpll =
9953                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
9954                 pll = pipe_config->shared_dpll;
9955
9956                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9957                                                  &pipe_config->dpll_hw_state));
9958
9959                 tmp = pipe_config->dpll_hw_state.dpll;
9960                 pipe_config->pixel_multiplier =
9961                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9962                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9963
9964                 ironlake_pch_clock_get(crtc, pipe_config);
9965         } else {
9966                 pipe_config->pixel_multiplier = 1;
9967         }
9968
9969         intel_get_pipe_timings(crtc, pipe_config);
9970         intel_get_pipe_src_size(crtc, pipe_config);
9971
9972         ironlake_get_pfit_config(crtc, pipe_config);
9973
9974         ret = true;
9975
9976 out:
9977         intel_display_power_put(dev_priv, power_domain);
9978
9979         return ret;
9980 }
9981
9982 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9983 {
9984         struct drm_device *dev = &dev_priv->drm;
9985         struct intel_crtc *crtc;
9986
9987         for_each_intel_crtc(dev, crtc)
9988                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9989                      pipe_name(crtc->pipe));
9990
9991         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9992         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9993         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9994         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9995         I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
9996         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9997              "CPU PWM1 enabled\n");
9998         if (IS_HASWELL(dev_priv))
9999                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
10000                      "CPU PWM2 enabled\n");
10001         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
10002              "PCH PWM1 enabled\n");
10003         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
10004              "Utility pin enabled\n");
10005         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
10006
10007         /*
10008          * In theory we can still leave IRQs enabled, as long as only the HPD
10009          * interrupts remain enabled. We used to check for that, but since it's
10010          * gen-specific and since we only disable LCPLL after we fully disable
10011          * the interrupts, the check below should be enough.
10012          */
10013         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
10014 }
10015
10016 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10017 {
10018         if (IS_HASWELL(dev_priv))
10019                 return I915_READ(D_COMP_HSW);
10020         else
10021                 return I915_READ(D_COMP_BDW);
10022 }
10023
10024 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10025 {
10026         if (IS_HASWELL(dev_priv)) {
10027                 mutex_lock(&dev_priv->rps.hw_lock);
10028                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10029                                             val))
10030                         DRM_DEBUG_KMS("Failed to write to D_COMP\n");
10031                 mutex_unlock(&dev_priv->rps.hw_lock);
10032         } else {
10033                 I915_WRITE(D_COMP_BDW, val);
10034                 POSTING_READ(D_COMP_BDW);
10035         }
10036 }
10037
10038 /*
10039  * This function implements pieces of two sequences from BSpec:
10040  * - Sequence for display software to disable LCPLL
10041  * - Sequence for display software to allow package C8+
10042  * The steps implemented here are just the steps that actually touch the LCPLL
10043  * register. Callers should take care of disabling all the display engine
10044  * functions, doing the mode unset, fixing interrupts, etc.
10045  */
10046 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10047                               bool switch_to_fclk, bool allow_power_down)
10048 {
10049         uint32_t val;
10050
10051         assert_can_disable_lcpll(dev_priv);
10052
10053         val = I915_READ(LCPLL_CTL);
10054
10055         if (switch_to_fclk) {
10056                 val |= LCPLL_CD_SOURCE_FCLK;
10057                 I915_WRITE(LCPLL_CTL, val);
10058
10059                 if (wait_for_us(I915_READ(LCPLL_CTL) &
10060                                 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10061                         DRM_ERROR("Switching to FCLK failed\n");
10062
10063                 val = I915_READ(LCPLL_CTL);
10064         }
10065
10066         val |= LCPLL_PLL_DISABLE;
10067         I915_WRITE(LCPLL_CTL, val);
10068         POSTING_READ(LCPLL_CTL);
10069
10070         if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
10071                 DRM_ERROR("LCPLL still locked\n");
10072
10073         val = hsw_read_dcomp(dev_priv);
10074         val |= D_COMP_COMP_DISABLE;
10075         hsw_write_dcomp(dev_priv, val);
10076         ndelay(100);
10077
10078         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10079                      1))
10080                 DRM_ERROR("D_COMP RCOMP still in progress\n");
10081
10082         if (allow_power_down) {
10083                 val = I915_READ(LCPLL_CTL);
10084                 val |= LCPLL_POWER_DOWN_ALLOW;
10085                 I915_WRITE(LCPLL_CTL, val);
10086                 POSTING_READ(LCPLL_CTL);
10087         }
10088 }
10089
10090 /*
10091  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10092  * source.
10093  */
10094 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
10095 {
10096         uint32_t val;
10097
10098         val = I915_READ(LCPLL_CTL);
10099
10100         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10101                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10102                 return;
10103
10104         /*
10105          * Make sure we're not on PC8 state before disabling PC8, otherwise
10106          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
10107          */
10108         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
10109
10110         if (val & LCPLL_POWER_DOWN_ALLOW) {
10111                 val &= ~LCPLL_POWER_DOWN_ALLOW;
10112                 I915_WRITE(LCPLL_CTL, val);
10113                 POSTING_READ(LCPLL_CTL);
10114         }
10115
10116         val = hsw_read_dcomp(dev_priv);
10117         val |= D_COMP_COMP_FORCE;
10118         val &= ~D_COMP_COMP_DISABLE;
10119         hsw_write_dcomp(dev_priv, val);
10120
10121         val = I915_READ(LCPLL_CTL);
10122         val &= ~LCPLL_PLL_DISABLE;
10123         I915_WRITE(LCPLL_CTL, val);
10124
10125         if (intel_wait_for_register(dev_priv,
10126                                     LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10127                                     5))
10128                 DRM_ERROR("LCPLL not locked yet\n");
10129
10130         if (val & LCPLL_CD_SOURCE_FCLK) {
10131                 val = I915_READ(LCPLL_CTL);
10132                 val &= ~LCPLL_CD_SOURCE_FCLK;
10133                 I915_WRITE(LCPLL_CTL, val);
10134
10135                 if (wait_for_us((I915_READ(LCPLL_CTL) &
10136                                  LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10137                         DRM_ERROR("Switching back to LCPLL failed\n");
10138         }
10139
10140         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10141         intel_update_cdclk(dev_priv);
10142 }
10143
10144 /*
10145  * Package states C8 and deeper are really deep PC states that can only be
10146  * reached when all the devices on the system allow it, so even if the graphics
10147  * device allows PC8+, it doesn't mean the system will actually get to these
10148  * states. Our driver only allows PC8+ when going into runtime PM.
10149  *
10150  * The requirements for PC8+ are that all the outputs are disabled, the power
10151  * well is disabled and most interrupts are disabled, and these are also
10152  * requirements for runtime PM. When these conditions are met, we manually do
10153  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10154  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10155  * hang the machine.
10156  *
10157  * When we really reach PC8 or deeper states (not just when we allow it) we lose
10158  * the state of some registers, so when we come back from PC8+ we need to
10159  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10160  * need to take care of the registers kept by RC6. Notice that this happens even
10161  * if we don't put the device in PCI D3 state (which is what currently happens
10162  * because of the runtime PM support).
10163  *
10164  * For more, read "Display Sequences for Package C8" on the hardware
10165  * documentation.
10166  */
10167 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
10168 {
10169         struct drm_device *dev = &dev_priv->drm;
10170         uint32_t val;
10171
10172         DRM_DEBUG_KMS("Enabling package C8+\n");
10173
10174         if (HAS_PCH_LPT_LP(dev_priv)) {
10175                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10176                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10177                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10178         }
10179
10180         lpt_disable_clkout_dp(dev);
10181         hsw_disable_lcpll(dev_priv, true, true);
10182 }
10183
10184 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
10185 {
10186         struct drm_device *dev = &dev_priv->drm;
10187         uint32_t val;
10188
10189         DRM_DEBUG_KMS("Disabling package C8+\n");
10190
10191         hsw_restore_lcpll(dev_priv);
10192         lpt_init_pch_refclk(dev);
10193
10194         if (HAS_PCH_LPT_LP(dev_priv)) {
10195                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10196                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10197                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10198         }
10199 }
10200
10201 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10202 {
10203         struct drm_device *dev = old_state->dev;
10204         struct intel_atomic_state *old_intel_state =
10205                 to_intel_atomic_state(old_state);
10206         unsigned int req_cdclk = old_intel_state->dev_cdclk;
10207
10208         bxt_set_cdclk(to_i915(dev), req_cdclk);
10209 }
10210
10211 static int bdw_adjust_min_pipe_pixel_rate(struct intel_crtc_state *crtc_state,
10212                                           int pixel_rate)
10213 {
10214         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
10215
10216         /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10217         if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
10218                 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10219
10220         /* BSpec says "Do not use DisplayPort with CDCLK less than
10221          * 432 MHz, audio enabled, port width x4, and link rate
10222          * HBR2 (5.4 GHz), or else there may be audio corruption or
10223          * screen corruption."
10224          */
10225         if (intel_crtc_has_dp_encoder(crtc_state) &&
10226             crtc_state->has_audio &&
10227             crtc_state->port_clock >= 540000 &&
10228             crtc_state->lane_count == 4)
10229                 pixel_rate = max(432000, pixel_rate);
10230
10231         return pixel_rate;
10232 }
10233
10234 /* compute the max rate for new configuration */
10235 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
10236 {
10237         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10238         struct drm_i915_private *dev_priv = to_i915(state->dev);
10239         struct drm_crtc *crtc;
10240         struct drm_crtc_state *cstate;
10241         struct intel_crtc_state *crtc_state;
10242         unsigned max_pixel_rate = 0, i;
10243         enum pipe pipe;
10244
10245         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10246                sizeof(intel_state->min_pixclk));
10247
10248         for_each_crtc_in_state(state, crtc, cstate, i) {
10249                 int pixel_rate;
10250
10251                 crtc_state = to_intel_crtc_state(cstate);
10252                 if (!crtc_state->base.enable) {
10253                         intel_state->min_pixclk[i] = 0;
10254                         continue;
10255                 }
10256
10257                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
10258
10259                 if (IS_BROADWELL(dev_priv) || IS_GEN9(dev_priv))
10260                         pixel_rate = bdw_adjust_min_pipe_pixel_rate(crtc_state,
10261                                                                     pixel_rate);
10262
10263                 intel_state->min_pixclk[i] = pixel_rate;
10264         }
10265
10266         for_each_pipe(dev_priv, pipe)
10267                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10268
10269         return max_pixel_rate;
10270 }
10271
10272 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10273 {
10274         struct drm_i915_private *dev_priv = to_i915(dev);
10275         uint32_t val, data;
10276         int ret;
10277
10278         if (WARN((I915_READ(LCPLL_CTL) &
10279                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10280                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10281                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10282                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10283                  "trying to change cdclk frequency with cdclk not enabled\n"))
10284                 return;
10285
10286         mutex_lock(&dev_priv->rps.hw_lock);
10287         ret = sandybridge_pcode_write(dev_priv,
10288                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10289         mutex_unlock(&dev_priv->rps.hw_lock);
10290         if (ret) {
10291                 DRM_ERROR("failed to inform pcode about cdclk change\n");
10292                 return;
10293         }
10294
10295         val = I915_READ(LCPLL_CTL);
10296         val |= LCPLL_CD_SOURCE_FCLK;
10297         I915_WRITE(LCPLL_CTL, val);
10298
10299         if (wait_for_us(I915_READ(LCPLL_CTL) &
10300                         LCPLL_CD_SOURCE_FCLK_DONE, 1))
10301                 DRM_ERROR("Switching to FCLK failed\n");
10302
10303         val = I915_READ(LCPLL_CTL);
10304         val &= ~LCPLL_CLK_FREQ_MASK;
10305
10306         switch (cdclk) {
10307         case 450000:
10308                 val |= LCPLL_CLK_FREQ_450;
10309                 data = 0;
10310                 break;
10311         case 540000:
10312                 val |= LCPLL_CLK_FREQ_54O_BDW;
10313                 data = 1;
10314                 break;
10315         case 337500:
10316                 val |= LCPLL_CLK_FREQ_337_5_BDW;
10317                 data = 2;
10318                 break;
10319         case 675000:
10320                 val |= LCPLL_CLK_FREQ_675_BDW;
10321                 data = 3;
10322                 break;
10323         default:
10324                 WARN(1, "invalid cdclk frequency\n");
10325                 return;
10326         }
10327
10328         I915_WRITE(LCPLL_CTL, val);
10329
10330         val = I915_READ(LCPLL_CTL);
10331         val &= ~LCPLL_CD_SOURCE_FCLK;
10332         I915_WRITE(LCPLL_CTL, val);
10333
10334         if (wait_for_us((I915_READ(LCPLL_CTL) &
10335                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10336                 DRM_ERROR("Switching back to LCPLL failed\n");
10337
10338         mutex_lock(&dev_priv->rps.hw_lock);
10339         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10340         mutex_unlock(&dev_priv->rps.hw_lock);
10341
10342         I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10343
10344         intel_update_cdclk(dev_priv);
10345
10346         WARN(cdclk != dev_priv->cdclk_freq,
10347              "cdclk requested %d kHz but got %d kHz\n",
10348              cdclk, dev_priv->cdclk_freq);
10349 }
10350
10351 static int broadwell_calc_cdclk(int max_pixclk)
10352 {
10353         if (max_pixclk > 540000)
10354                 return 675000;
10355         else if (max_pixclk > 450000)
10356                 return 540000;
10357         else if (max_pixclk > 337500)
10358                 return 450000;
10359         else
10360                 return 337500;
10361 }
10362
10363 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
10364 {
10365         struct drm_i915_private *dev_priv = to_i915(state->dev);
10366         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10367         int max_pixclk = ilk_max_pixel_rate(state);
10368         int cdclk;
10369
10370         /*
10371          * FIXME should also account for plane ratio
10372          * once 64bpp pixel formats are supported.
10373          */
10374         cdclk = broadwell_calc_cdclk(max_pixclk);
10375
10376         if (cdclk > dev_priv->max_cdclk_freq) {
10377                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10378                               cdclk, dev_priv->max_cdclk_freq);
10379                 return -EINVAL;
10380         }
10381
10382         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10383         if (!intel_state->active_crtcs)
10384                 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
10385
10386         return 0;
10387 }
10388
10389 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10390 {
10391         struct drm_device *dev = old_state->dev;
10392         struct intel_atomic_state *old_intel_state =
10393                 to_intel_atomic_state(old_state);
10394         unsigned req_cdclk = old_intel_state->dev_cdclk;
10395
10396         broadwell_set_cdclk(dev, req_cdclk);
10397 }
10398
10399 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10400 {
10401         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10402         struct drm_i915_private *dev_priv = to_i915(state->dev);
10403         const int max_pixclk = ilk_max_pixel_rate(state);
10404         int vco = intel_state->cdclk_pll_vco;
10405         int cdclk;
10406
10407         /*
10408          * FIXME should also account for plane ratio
10409          * once 64bpp pixel formats are supported.
10410          */
10411         cdclk = skl_calc_cdclk(max_pixclk, vco);
10412
10413         /*
10414          * FIXME move the cdclk caclulation to
10415          * compute_config() so we can fail gracegully.
10416          */
10417         if (cdclk > dev_priv->max_cdclk_freq) {
10418                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10419                           cdclk, dev_priv->max_cdclk_freq);
10420                 cdclk = dev_priv->max_cdclk_freq;
10421         }
10422
10423         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10424         if (!intel_state->active_crtcs)
10425                 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
10426
10427         return 0;
10428 }
10429
10430 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10431 {
10432         struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10433         struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10434         unsigned int req_cdclk = intel_state->dev_cdclk;
10435         unsigned int req_vco = intel_state->cdclk_pll_vco;
10436
10437         skl_set_cdclk(dev_priv, req_cdclk, req_vco);
10438 }
10439
10440 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10441                                       struct intel_crtc_state *crtc_state)
10442 {
10443         if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
10444                 if (!intel_ddi_pll_select(crtc, crtc_state))
10445                         return -EINVAL;
10446         }
10447
10448         crtc->lowfreq_avail = false;
10449
10450         return 0;
10451 }
10452
10453 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10454                                 enum port port,
10455                                 struct intel_crtc_state *pipe_config)
10456 {
10457         enum intel_dpll_id id;
10458
10459         switch (port) {
10460         case PORT_A:
10461                 id = DPLL_ID_SKL_DPLL0;
10462                 break;
10463         case PORT_B:
10464                 id = DPLL_ID_SKL_DPLL1;
10465                 break;
10466         case PORT_C:
10467                 id = DPLL_ID_SKL_DPLL2;
10468                 break;
10469         default:
10470                 DRM_ERROR("Incorrect port type\n");
10471                 return;
10472         }
10473
10474         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10475 }
10476
10477 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10478                                 enum port port,
10479                                 struct intel_crtc_state *pipe_config)
10480 {
10481         enum intel_dpll_id id;
10482         u32 temp;
10483
10484         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10485         id = temp >> (port * 3 + 1);
10486
10487         if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10488                 return;
10489
10490         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10491 }
10492
10493 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10494                                 enum port port,
10495                                 struct intel_crtc_state *pipe_config)
10496 {
10497         enum intel_dpll_id id;
10498         uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10499
10500         switch (ddi_pll_sel) {
10501         case PORT_CLK_SEL_WRPLL1:
10502                 id = DPLL_ID_WRPLL1;
10503                 break;
10504         case PORT_CLK_SEL_WRPLL2:
10505                 id = DPLL_ID_WRPLL2;
10506                 break;
10507         case PORT_CLK_SEL_SPLL:
10508                 id = DPLL_ID_SPLL;
10509                 break;
10510         case PORT_CLK_SEL_LCPLL_810:
10511                 id = DPLL_ID_LCPLL_810;
10512                 break;
10513         case PORT_CLK_SEL_LCPLL_1350:
10514                 id = DPLL_ID_LCPLL_1350;
10515                 break;
10516         case PORT_CLK_SEL_LCPLL_2700:
10517                 id = DPLL_ID_LCPLL_2700;
10518                 break;
10519         default:
10520                 MISSING_CASE(ddi_pll_sel);
10521                 /* fall through */
10522         case PORT_CLK_SEL_NONE:
10523                 return;
10524         }
10525
10526         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10527 }
10528
10529 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10530                                      struct intel_crtc_state *pipe_config,
10531                                      unsigned long *power_domain_mask)
10532 {
10533         struct drm_device *dev = crtc->base.dev;
10534         struct drm_i915_private *dev_priv = to_i915(dev);
10535         enum intel_display_power_domain power_domain;
10536         u32 tmp;
10537
10538         /*
10539          * The pipe->transcoder mapping is fixed with the exception of the eDP
10540          * transcoder handled below.
10541          */
10542         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10543
10544         /*
10545          * XXX: Do intel_display_power_get_if_enabled before reading this (for
10546          * consistency and less surprising code; it's in always on power).
10547          */
10548         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10549         if (tmp & TRANS_DDI_FUNC_ENABLE) {
10550                 enum pipe trans_edp_pipe;
10551                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10552                 default:
10553                         WARN(1, "unknown pipe linked to edp transcoder\n");
10554                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10555                 case TRANS_DDI_EDP_INPUT_A_ON:
10556                         trans_edp_pipe = PIPE_A;
10557                         break;
10558                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10559                         trans_edp_pipe = PIPE_B;
10560                         break;
10561                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10562                         trans_edp_pipe = PIPE_C;
10563                         break;
10564                 }
10565
10566                 if (trans_edp_pipe == crtc->pipe)
10567                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
10568         }
10569
10570         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10571         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10572                 return false;
10573         *power_domain_mask |= BIT(power_domain);
10574
10575         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10576
10577         return tmp & PIPECONF_ENABLE;
10578 }
10579
10580 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10581                                          struct intel_crtc_state *pipe_config,
10582                                          unsigned long *power_domain_mask)
10583 {
10584         struct drm_device *dev = crtc->base.dev;
10585         struct drm_i915_private *dev_priv = to_i915(dev);
10586         enum intel_display_power_domain power_domain;
10587         enum port port;
10588         enum transcoder cpu_transcoder;
10589         u32 tmp;
10590
10591         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10592                 if (port == PORT_A)
10593                         cpu_transcoder = TRANSCODER_DSI_A;
10594                 else
10595                         cpu_transcoder = TRANSCODER_DSI_C;
10596
10597                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10598                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10599                         continue;
10600                 *power_domain_mask |= BIT(power_domain);
10601
10602                 /*
10603                  * The PLL needs to be enabled with a valid divider
10604                  * configuration, otherwise accessing DSI registers will hang
10605                  * the machine. See BSpec North Display Engine
10606                  * registers/MIPI[BXT]. We can break out here early, since we
10607                  * need the same DSI PLL to be enabled for both DSI ports.
10608                  */
10609                 if (!intel_dsi_pll_is_enabled(dev_priv))
10610                         break;
10611
10612                 /* XXX: this works for video mode only */
10613                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10614                 if (!(tmp & DPI_ENABLE))
10615                         continue;
10616
10617                 tmp = I915_READ(MIPI_CTRL(port));
10618                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10619                         continue;
10620
10621                 pipe_config->cpu_transcoder = cpu_transcoder;
10622                 break;
10623         }
10624
10625         return transcoder_is_dsi(pipe_config->cpu_transcoder);
10626 }
10627
10628 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10629                                        struct intel_crtc_state *pipe_config)
10630 {
10631         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10632         struct intel_shared_dpll *pll;
10633         enum port port;
10634         uint32_t tmp;
10635
10636         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10637
10638         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10639
10640         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
10641                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10642         else if (IS_BROXTON(dev_priv))
10643                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10644         else
10645                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10646
10647         pll = pipe_config->shared_dpll;
10648         if (pll) {
10649                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10650                                                  &pipe_config->dpll_hw_state));
10651         }
10652
10653         /*
10654          * Haswell has only FDI/PCH transcoder A. It is which is connected to
10655          * DDI E. So just check whether this pipe is wired to DDI E and whether
10656          * the PCH transcoder is on.
10657          */
10658         if (INTEL_GEN(dev_priv) < 9 &&
10659             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10660                 pipe_config->has_pch_encoder = true;
10661
10662                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10663                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10664                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
10665
10666                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10667         }
10668 }
10669
10670 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10671                                     struct intel_crtc_state *pipe_config)
10672 {
10673         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10674         enum intel_display_power_domain power_domain;
10675         unsigned long power_domain_mask;
10676         bool active;
10677
10678         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10679         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10680                 return false;
10681         power_domain_mask = BIT(power_domain);
10682
10683         pipe_config->shared_dpll = NULL;
10684
10685         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10686
10687         if (IS_BROXTON(dev_priv) &&
10688             bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10689                 WARN_ON(active);
10690                 active = true;
10691         }
10692
10693         if (!active)
10694                 goto out;
10695
10696         if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10697                 haswell_get_ddi_port_state(crtc, pipe_config);
10698                 intel_get_pipe_timings(crtc, pipe_config);
10699         }
10700
10701         intel_get_pipe_src_size(crtc, pipe_config);
10702
10703         pipe_config->gamma_mode =
10704                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10705
10706         if (INTEL_GEN(dev_priv) >= 9) {
10707                 skl_init_scalers(dev_priv, crtc, pipe_config);
10708
10709                 pipe_config->scaler_state.scaler_id = -1;
10710                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10711         }
10712
10713         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10714         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10715                 power_domain_mask |= BIT(power_domain);
10716                 if (INTEL_GEN(dev_priv) >= 9)
10717                         skylake_get_pfit_config(crtc, pipe_config);
10718                 else
10719                         ironlake_get_pfit_config(crtc, pipe_config);
10720         }
10721
10722         if (IS_HASWELL(dev_priv))
10723                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10724                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10725
10726         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10727             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10728                 pipe_config->pixel_multiplier =
10729                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10730         } else {
10731                 pipe_config->pixel_multiplier = 1;
10732         }
10733
10734 out:
10735         for_each_power_domain(power_domain, power_domain_mask)
10736                 intel_display_power_put(dev_priv, power_domain);
10737
10738         return active;
10739 }
10740
10741 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10742                                const struct intel_plane_state *plane_state)
10743 {
10744         struct drm_device *dev = crtc->dev;
10745         struct drm_i915_private *dev_priv = to_i915(dev);
10746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10747         uint32_t cntl = 0, size = 0;
10748
10749         if (plane_state && plane_state->base.visible) {
10750                 unsigned int width = plane_state->base.crtc_w;
10751                 unsigned int height = plane_state->base.crtc_h;
10752                 unsigned int stride = roundup_pow_of_two(width) * 4;
10753
10754                 switch (stride) {
10755                 default:
10756                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10757                                   width, stride);
10758                         stride = 256;
10759                         /* fallthrough */
10760                 case 256:
10761                 case 512:
10762                 case 1024:
10763                 case 2048:
10764                         break;
10765                 }
10766
10767                 cntl |= CURSOR_ENABLE |
10768                         CURSOR_GAMMA_ENABLE |
10769                         CURSOR_FORMAT_ARGB |
10770                         CURSOR_STRIDE(stride);
10771
10772                 size = (height << 12) | width;
10773         }
10774
10775         if (intel_crtc->cursor_cntl != 0 &&
10776             (intel_crtc->cursor_base != base ||
10777              intel_crtc->cursor_size != size ||
10778              intel_crtc->cursor_cntl != cntl)) {
10779                 /* On these chipsets we can only modify the base/size/stride
10780                  * whilst the cursor is disabled.
10781                  */
10782                 I915_WRITE(CURCNTR(PIPE_A), 0);
10783                 POSTING_READ(CURCNTR(PIPE_A));
10784                 intel_crtc->cursor_cntl = 0;
10785         }
10786
10787         if (intel_crtc->cursor_base != base) {
10788                 I915_WRITE(CURBASE(PIPE_A), base);
10789                 intel_crtc->cursor_base = base;
10790         }
10791
10792         if (intel_crtc->cursor_size != size) {
10793                 I915_WRITE(CURSIZE, size);
10794                 intel_crtc->cursor_size = size;
10795         }
10796
10797         if (intel_crtc->cursor_cntl != cntl) {
10798                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10799                 POSTING_READ(CURCNTR(PIPE_A));
10800                 intel_crtc->cursor_cntl = cntl;
10801         }
10802 }
10803
10804 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10805                                const struct intel_plane_state *plane_state)
10806 {
10807         struct drm_device *dev = crtc->dev;
10808         struct drm_i915_private *dev_priv = to_i915(dev);
10809         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10810         int pipe = intel_crtc->pipe;
10811         uint32_t cntl = 0;
10812
10813         if (plane_state && plane_state->base.visible) {
10814                 cntl = MCURSOR_GAMMA_ENABLE;
10815                 switch (plane_state->base.crtc_w) {
10816                         case 64:
10817                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10818                                 break;
10819                         case 128:
10820                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10821                                 break;
10822                         case 256:
10823                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10824                                 break;
10825                         default:
10826                                 MISSING_CASE(plane_state->base.crtc_w);
10827                                 return;
10828                 }
10829                 cntl |= pipe << 28; /* Connect to correct pipe */
10830
10831                 if (HAS_DDI(dev_priv))
10832                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10833
10834                 if (plane_state->base.rotation & DRM_ROTATE_180)
10835                         cntl |= CURSOR_ROTATE_180;
10836         }
10837
10838         if (intel_crtc->cursor_cntl != cntl) {
10839                 I915_WRITE(CURCNTR(pipe), cntl);
10840                 POSTING_READ(CURCNTR(pipe));
10841                 intel_crtc->cursor_cntl = cntl;
10842         }
10843
10844         /* and commit changes on next vblank */
10845         I915_WRITE(CURBASE(pipe), base);
10846         POSTING_READ(CURBASE(pipe));
10847
10848         intel_crtc->cursor_base = base;
10849 }
10850
10851 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10852 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10853                                      const struct intel_plane_state *plane_state)
10854 {
10855         struct drm_device *dev = crtc->dev;
10856         struct drm_i915_private *dev_priv = to_i915(dev);
10857         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10858         int pipe = intel_crtc->pipe;
10859         u32 base = intel_crtc->cursor_addr;
10860         u32 pos = 0;
10861
10862         if (plane_state) {
10863                 int x = plane_state->base.crtc_x;
10864                 int y = plane_state->base.crtc_y;
10865
10866                 if (x < 0) {
10867                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10868                         x = -x;
10869                 }
10870                 pos |= x << CURSOR_X_SHIFT;
10871
10872                 if (y < 0) {
10873                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10874                         y = -y;
10875                 }
10876                 pos |= y << CURSOR_Y_SHIFT;
10877
10878                 /* ILK+ do this automagically */
10879                 if (HAS_GMCH_DISPLAY(dev_priv) &&
10880                     plane_state->base.rotation & DRM_ROTATE_180) {
10881                         base += (plane_state->base.crtc_h *
10882                                  plane_state->base.crtc_w - 1) * 4;
10883                 }
10884         }
10885
10886         I915_WRITE(CURPOS(pipe), pos);
10887
10888         if (IS_845G(dev_priv) || IS_I865G(dev_priv))
10889                 i845_update_cursor(crtc, base, plane_state);
10890         else
10891                 i9xx_update_cursor(crtc, base, plane_state);
10892 }
10893
10894 static bool cursor_size_ok(struct drm_i915_private *dev_priv,
10895                            uint32_t width, uint32_t height)
10896 {
10897         if (width == 0 || height == 0)
10898                 return false;
10899
10900         /*
10901          * 845g/865g are special in that they are only limited by
10902          * the width of their cursors, the height is arbitrary up to
10903          * the precision of the register. Everything else requires
10904          * square cursors, limited to a few power-of-two sizes.
10905          */
10906         if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
10907                 if ((width & 63) != 0)
10908                         return false;
10909
10910                 if (width > (IS_845G(dev_priv) ? 64 : 512))
10911                         return false;
10912
10913                 if (height > 1023)
10914                         return false;
10915         } else {
10916                 switch (width | height) {
10917                 case 256:
10918                 case 128:
10919                         if (IS_GEN2(dev_priv))
10920                                 return false;
10921                 case 64:
10922                         break;
10923                 default:
10924                         return false;
10925                 }
10926         }
10927
10928         return true;
10929 }
10930
10931 /* VESA 640x480x72Hz mode to set on the pipe */
10932 static struct drm_display_mode load_detect_mode = {
10933         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10934                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10935 };
10936
10937 struct drm_framebuffer *
10938 __intel_framebuffer_create(struct drm_device *dev,
10939                            struct drm_mode_fb_cmd2 *mode_cmd,
10940                            struct drm_i915_gem_object *obj)
10941 {
10942         struct intel_framebuffer *intel_fb;
10943         int ret;
10944
10945         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10946         if (!intel_fb)
10947                 return ERR_PTR(-ENOMEM);
10948
10949         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10950         if (ret)
10951                 goto err;
10952
10953         return &intel_fb->base;
10954
10955 err:
10956         kfree(intel_fb);
10957         return ERR_PTR(ret);
10958 }
10959
10960 static struct drm_framebuffer *
10961 intel_framebuffer_create(struct drm_device *dev,
10962                          struct drm_mode_fb_cmd2 *mode_cmd,
10963                          struct drm_i915_gem_object *obj)
10964 {
10965         struct drm_framebuffer *fb;
10966         int ret;
10967
10968         ret = i915_mutex_lock_interruptible(dev);
10969         if (ret)
10970                 return ERR_PTR(ret);
10971         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10972         mutex_unlock(&dev->struct_mutex);
10973
10974         return fb;
10975 }
10976
10977 static u32
10978 intel_framebuffer_pitch_for_width(int width, int bpp)
10979 {
10980         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10981         return ALIGN(pitch, 64);
10982 }
10983
10984 static u32
10985 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10986 {
10987         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10988         return PAGE_ALIGN(pitch * mode->vdisplay);
10989 }
10990
10991 static struct drm_framebuffer *
10992 intel_framebuffer_create_for_mode(struct drm_device *dev,
10993                                   struct drm_display_mode *mode,
10994                                   int depth, int bpp)
10995 {
10996         struct drm_framebuffer *fb;
10997         struct drm_i915_gem_object *obj;
10998         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10999
11000         obj = i915_gem_object_create(dev,
11001                                     intel_framebuffer_size_for_mode(mode, bpp));
11002         if (IS_ERR(obj))
11003                 return ERR_CAST(obj);
11004
11005         mode_cmd.width = mode->hdisplay;
11006         mode_cmd.height = mode->vdisplay;
11007         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
11008                                                                 bpp);
11009         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
11010
11011         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11012         if (IS_ERR(fb))
11013                 i915_gem_object_put(obj);
11014
11015         return fb;
11016 }
11017
11018 static struct drm_framebuffer *
11019 mode_fits_in_fbdev(struct drm_device *dev,
11020                    struct drm_display_mode *mode)
11021 {
11022 #ifdef CONFIG_DRM_FBDEV_EMULATION
11023         struct drm_i915_private *dev_priv = to_i915(dev);
11024         struct drm_i915_gem_object *obj;
11025         struct drm_framebuffer *fb;
11026
11027         if (!dev_priv->fbdev)
11028                 return NULL;
11029
11030         if (!dev_priv->fbdev->fb)
11031                 return NULL;
11032
11033         obj = dev_priv->fbdev->fb->obj;
11034         BUG_ON(!obj);
11035
11036         fb = &dev_priv->fbdev->fb->base;
11037         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11038                                                                fb->bits_per_pixel))
11039                 return NULL;
11040
11041         if (obj->base.size < mode->vdisplay * fb->pitches[0])
11042                 return NULL;
11043
11044         drm_framebuffer_reference(fb);
11045         return fb;
11046 #else
11047         return NULL;
11048 #endif
11049 }
11050
11051 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11052                                            struct drm_crtc *crtc,
11053                                            struct drm_display_mode *mode,
11054                                            struct drm_framebuffer *fb,
11055                                            int x, int y)
11056 {
11057         struct drm_plane_state *plane_state;
11058         int hdisplay, vdisplay;
11059         int ret;
11060
11061         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11062         if (IS_ERR(plane_state))
11063                 return PTR_ERR(plane_state);
11064
11065         if (mode)
11066                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11067         else
11068                 hdisplay = vdisplay = 0;
11069
11070         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11071         if (ret)
11072                 return ret;
11073         drm_atomic_set_fb_for_plane(plane_state, fb);
11074         plane_state->crtc_x = 0;
11075         plane_state->crtc_y = 0;
11076         plane_state->crtc_w = hdisplay;
11077         plane_state->crtc_h = vdisplay;
11078         plane_state->src_x = x << 16;
11079         plane_state->src_y = y << 16;
11080         plane_state->src_w = hdisplay << 16;
11081         plane_state->src_h = vdisplay << 16;
11082
11083         return 0;
11084 }
11085
11086 bool intel_get_load_detect_pipe(struct drm_connector *connector,
11087                                 struct drm_display_mode *mode,
11088                                 struct intel_load_detect_pipe *old,
11089                                 struct drm_modeset_acquire_ctx *ctx)
11090 {
11091         struct intel_crtc *intel_crtc;
11092         struct intel_encoder *intel_encoder =
11093                 intel_attached_encoder(connector);
11094         struct drm_crtc *possible_crtc;
11095         struct drm_encoder *encoder = &intel_encoder->base;
11096         struct drm_crtc *crtc = NULL;
11097         struct drm_device *dev = encoder->dev;
11098         struct drm_i915_private *dev_priv = to_i915(dev);
11099         struct drm_framebuffer *fb;
11100         struct drm_mode_config *config = &dev->mode_config;
11101         struct drm_atomic_state *state = NULL, *restore_state = NULL;
11102         struct drm_connector_state *connector_state;
11103         struct intel_crtc_state *crtc_state;
11104         int ret, i = -1;
11105
11106         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11107                       connector->base.id, connector->name,
11108                       encoder->base.id, encoder->name);
11109
11110         old->restore_state = NULL;
11111
11112 retry:
11113         ret = drm_modeset_lock(&config->connection_mutex, ctx);
11114         if (ret)
11115                 goto fail;
11116
11117         /*
11118          * Algorithm gets a little messy:
11119          *
11120          *   - if the connector already has an assigned crtc, use it (but make
11121          *     sure it's on first)
11122          *
11123          *   - try to find the first unused crtc that can drive this connector,
11124          *     and use that if we find one
11125          */
11126
11127         /* See if we already have a CRTC for this connector */
11128         if (connector->state->crtc) {
11129                 crtc = connector->state->crtc;
11130
11131                 ret = drm_modeset_lock(&crtc->mutex, ctx);
11132                 if (ret)
11133                         goto fail;
11134
11135                 /* Make sure the crtc and connector are running */
11136                 goto found;
11137         }
11138
11139         /* Find an unused one (if possible) */
11140         for_each_crtc(dev, possible_crtc) {
11141                 i++;
11142                 if (!(encoder->possible_crtcs & (1 << i)))
11143                         continue;
11144
11145                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11146                 if (ret)
11147                         goto fail;
11148
11149                 if (possible_crtc->state->enable) {
11150                         drm_modeset_unlock(&possible_crtc->mutex);
11151                         continue;
11152                 }
11153
11154                 crtc = possible_crtc;
11155                 break;
11156         }
11157
11158         /*
11159          * If we didn't find an unused CRTC, don't use any.
11160          */
11161         if (!crtc) {
11162                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
11163                 goto fail;
11164         }
11165
11166 found:
11167         intel_crtc = to_intel_crtc(crtc);
11168
11169         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11170         if (ret)
11171                 goto fail;
11172
11173         state = drm_atomic_state_alloc(dev);
11174         restore_state = drm_atomic_state_alloc(dev);
11175         if (!state || !restore_state) {
11176                 ret = -ENOMEM;
11177                 goto fail;
11178         }
11179
11180         state->acquire_ctx = ctx;
11181         restore_state->acquire_ctx = ctx;
11182
11183         connector_state = drm_atomic_get_connector_state(state, connector);
11184         if (IS_ERR(connector_state)) {
11185                 ret = PTR_ERR(connector_state);
11186                 goto fail;
11187         }
11188
11189         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11190         if (ret)
11191                 goto fail;
11192
11193         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11194         if (IS_ERR(crtc_state)) {
11195                 ret = PTR_ERR(crtc_state);
11196                 goto fail;
11197         }
11198
11199         crtc_state->base.active = crtc_state->base.enable = true;
11200
11201         if (!mode)
11202                 mode = &load_detect_mode;
11203
11204         /* We need a framebuffer large enough to accommodate all accesses
11205          * that the plane may generate whilst we perform load detection.
11206          * We can not rely on the fbcon either being present (we get called
11207          * during its initialisation to detect all boot displays, or it may
11208          * not even exist) or that it is large enough to satisfy the
11209          * requested mode.
11210          */
11211         fb = mode_fits_in_fbdev(dev, mode);
11212         if (fb == NULL) {
11213                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11214                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
11215         } else
11216                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11217         if (IS_ERR(fb)) {
11218                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11219                 goto fail;
11220         }
11221
11222         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11223         if (ret)
11224                 goto fail;
11225
11226         drm_framebuffer_unreference(fb);
11227
11228         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11229         if (ret)
11230                 goto fail;
11231
11232         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11233         if (!ret)
11234                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11235         if (!ret)
11236                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11237         if (ret) {
11238                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11239                 goto fail;
11240         }
11241
11242         ret = drm_atomic_commit(state);
11243         if (ret) {
11244                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11245                 goto fail;
11246         }
11247
11248         old->restore_state = restore_state;
11249         drm_atomic_state_put(state);
11250
11251         /* let the connector get through one full cycle before testing */
11252         intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
11253         return true;
11254
11255 fail:
11256         if (state) {
11257                 drm_atomic_state_put(state);
11258                 state = NULL;
11259         }
11260         if (restore_state) {
11261                 drm_atomic_state_put(restore_state);
11262                 restore_state = NULL;
11263         }
11264
11265         if (ret == -EDEADLK) {
11266                 drm_modeset_backoff(ctx);
11267                 goto retry;
11268         }
11269
11270         return false;
11271 }
11272
11273 void intel_release_load_detect_pipe(struct drm_connector *connector,
11274                                     struct intel_load_detect_pipe *old,
11275                                     struct drm_modeset_acquire_ctx *ctx)
11276 {
11277         struct intel_encoder *intel_encoder =
11278                 intel_attached_encoder(connector);
11279         struct drm_encoder *encoder = &intel_encoder->base;
11280         struct drm_atomic_state *state = old->restore_state;
11281         int ret;
11282
11283         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11284                       connector->base.id, connector->name,
11285                       encoder->base.id, encoder->name);
11286
11287         if (!state)
11288                 return;
11289
11290         ret = drm_atomic_commit(state);
11291         if (ret)
11292                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11293         drm_atomic_state_put(state);
11294 }
11295
11296 static int i9xx_pll_refclk(struct drm_device *dev,
11297                            const struct intel_crtc_state *pipe_config)
11298 {
11299         struct drm_i915_private *dev_priv = to_i915(dev);
11300         u32 dpll = pipe_config->dpll_hw_state.dpll;
11301
11302         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11303                 return dev_priv->vbt.lvds_ssc_freq;
11304         else if (HAS_PCH_SPLIT(dev_priv))
11305                 return 120000;
11306         else if (!IS_GEN2(dev_priv))
11307                 return 96000;
11308         else
11309                 return 48000;
11310 }
11311
11312 /* Returns the clock of the currently programmed mode of the given pipe. */
11313 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11314                                 struct intel_crtc_state *pipe_config)
11315 {
11316         struct drm_device *dev = crtc->base.dev;
11317         struct drm_i915_private *dev_priv = to_i915(dev);
11318         int pipe = pipe_config->cpu_transcoder;
11319         u32 dpll = pipe_config->dpll_hw_state.dpll;
11320         u32 fp;
11321         struct dpll clock;
11322         int port_clock;
11323         int refclk = i9xx_pll_refclk(dev, pipe_config);
11324
11325         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11326                 fp = pipe_config->dpll_hw_state.fp0;
11327         else
11328                 fp = pipe_config->dpll_hw_state.fp1;
11329
11330         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11331         if (IS_PINEVIEW(dev_priv)) {
11332                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11333                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11334         } else {
11335                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11336                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11337         }
11338
11339         if (!IS_GEN2(dev_priv)) {
11340                 if (IS_PINEVIEW(dev_priv))
11341                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11342                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11343                 else
11344                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11345                                DPLL_FPA01_P1_POST_DIV_SHIFT);
11346
11347                 switch (dpll & DPLL_MODE_MASK) {
11348                 case DPLLB_MODE_DAC_SERIAL:
11349                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11350                                 5 : 10;
11351                         break;
11352                 case DPLLB_MODE_LVDS:
11353                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11354                                 7 : 14;
11355                         break;
11356                 default:
11357                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11358                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
11359                         return;
11360                 }
11361
11362                 if (IS_PINEVIEW(dev_priv))
11363                         port_clock = pnv_calc_dpll_params(refclk, &clock);
11364                 else
11365                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
11366         } else {
11367                 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11368                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11369
11370                 if (is_lvds) {
11371                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11372                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
11373
11374                         if (lvds & LVDS_CLKB_POWER_UP)
11375                                 clock.p2 = 7;
11376                         else
11377                                 clock.p2 = 14;
11378                 } else {
11379                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
11380                                 clock.p1 = 2;
11381                         else {
11382                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11383                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11384                         }
11385                         if (dpll & PLL_P2_DIVIDE_BY_4)
11386                                 clock.p2 = 4;
11387                         else
11388                                 clock.p2 = 2;
11389                 }
11390
11391                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11392         }
11393
11394         /*
11395          * This value includes pixel_multiplier. We will use
11396          * port_clock to compute adjusted_mode.crtc_clock in the
11397          * encoder's get_config() function.
11398          */
11399         pipe_config->port_clock = port_clock;
11400 }
11401
11402 int intel_dotclock_calculate(int link_freq,
11403                              const struct intel_link_m_n *m_n)
11404 {
11405         /*
11406          * The calculation for the data clock is:
11407          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11408          * But we want to avoid losing precison if possible, so:
11409          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11410          *
11411          * and the link clock is simpler:
11412          * link_clock = (m * link_clock) / n
11413          */
11414
11415         if (!m_n->link_n)
11416                 return 0;
11417
11418         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11419 }
11420
11421 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11422                                    struct intel_crtc_state *pipe_config)
11423 {
11424         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11425
11426         /* read out port_clock from the DPLL */
11427         i9xx_crtc_clock_get(crtc, pipe_config);
11428
11429         /*
11430          * In case there is an active pipe without active ports,
11431          * we may need some idea for the dotclock anyway.
11432          * Calculate one based on the FDI configuration.
11433          */
11434         pipe_config->base.adjusted_mode.crtc_clock =
11435                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11436                                          &pipe_config->fdi_m_n);
11437 }
11438
11439 /** Returns the currently programmed mode of the given pipe. */
11440 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11441                                              struct drm_crtc *crtc)
11442 {
11443         struct drm_i915_private *dev_priv = to_i915(dev);
11444         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11445         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
11446         struct drm_display_mode *mode;
11447         struct intel_crtc_state *pipe_config;
11448         int htot = I915_READ(HTOTAL(cpu_transcoder));
11449         int hsync = I915_READ(HSYNC(cpu_transcoder));
11450         int vtot = I915_READ(VTOTAL(cpu_transcoder));
11451         int vsync = I915_READ(VSYNC(cpu_transcoder));
11452         enum pipe pipe = intel_crtc->pipe;
11453
11454         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11455         if (!mode)
11456                 return NULL;
11457
11458         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11459         if (!pipe_config) {
11460                 kfree(mode);
11461                 return NULL;
11462         }
11463
11464         /*
11465          * Construct a pipe_config sufficient for getting the clock info
11466          * back out of crtc_clock_get.
11467          *
11468          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11469          * to use a real value here instead.
11470          */
11471         pipe_config->cpu_transcoder = (enum transcoder) pipe;
11472         pipe_config->pixel_multiplier = 1;
11473         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11474         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11475         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11476         i9xx_crtc_clock_get(intel_crtc, pipe_config);
11477
11478         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
11479         mode->hdisplay = (htot & 0xffff) + 1;
11480         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11481         mode->hsync_start = (hsync & 0xffff) + 1;
11482         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11483         mode->vdisplay = (vtot & 0xffff) + 1;
11484         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11485         mode->vsync_start = (vsync & 0xffff) + 1;
11486         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11487
11488         drm_mode_set_name(mode);
11489
11490         kfree(pipe_config);
11491
11492         return mode;
11493 }
11494
11495 static void intel_crtc_destroy(struct drm_crtc *crtc)
11496 {
11497         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11498         struct drm_device *dev = crtc->dev;
11499         struct intel_flip_work *work;
11500
11501         spin_lock_irq(&dev->event_lock);
11502         work = intel_crtc->flip_work;
11503         intel_crtc->flip_work = NULL;
11504         spin_unlock_irq(&dev->event_lock);
11505
11506         if (work) {
11507                 cancel_work_sync(&work->mmio_work);
11508                 cancel_work_sync(&work->unpin_work);
11509                 kfree(work);
11510         }
11511
11512         drm_crtc_cleanup(crtc);
11513
11514         kfree(intel_crtc);
11515 }
11516
11517 static void intel_unpin_work_fn(struct work_struct *__work)
11518 {
11519         struct intel_flip_work *work =
11520                 container_of(__work, struct intel_flip_work, unpin_work);
11521         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11522         struct drm_device *dev = crtc->base.dev;
11523         struct drm_plane *primary = crtc->base.primary;
11524
11525         if (is_mmio_work(work))
11526                 flush_work(&work->mmio_work);
11527
11528         mutex_lock(&dev->struct_mutex);
11529         intel_unpin_fb_vma(work->old_vma);
11530         i915_gem_object_put(work->pending_flip_obj);
11531         mutex_unlock(&dev->struct_mutex);
11532
11533         i915_gem_request_put(work->flip_queued_req);
11534
11535         intel_frontbuffer_flip_complete(to_i915(dev),
11536                                         to_intel_plane(primary)->frontbuffer_bit);
11537         intel_fbc_post_update(crtc);
11538         drm_framebuffer_unreference(work->old_fb);
11539
11540         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11541         atomic_dec(&crtc->unpin_work_count);
11542
11543         kfree(work);
11544 }
11545
11546 /* Is 'a' after or equal to 'b'? */
11547 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11548 {
11549         return !((a - b) & 0x80000000);
11550 }
11551
11552 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11553                                    struct intel_flip_work *work)
11554 {
11555         struct drm_device *dev = crtc->base.dev;
11556         struct drm_i915_private *dev_priv = to_i915(dev);
11557
11558         if (abort_flip_on_reset(crtc))
11559                 return true;
11560
11561         /*
11562          * The relevant registers doen't exist on pre-ctg.
11563          * As the flip done interrupt doesn't trigger for mmio
11564          * flips on gmch platforms, a flip count check isn't
11565          * really needed there. But since ctg has the registers,
11566          * include it in the check anyway.
11567          */
11568         if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11569                 return true;
11570
11571         /*
11572          * BDW signals flip done immediately if the plane
11573          * is disabled, even if the plane enable is already
11574          * armed to occur at the next vblank :(
11575          */
11576
11577         /*
11578          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11579          * used the same base address. In that case the mmio flip might
11580          * have completed, but the CS hasn't even executed the flip yet.
11581          *
11582          * A flip count check isn't enough as the CS might have updated
11583          * the base address just after start of vblank, but before we
11584          * managed to process the interrupt. This means we'd complete the
11585          * CS flip too soon.
11586          *
11587          * Combining both checks should get us a good enough result. It may
11588          * still happen that the CS flip has been executed, but has not
11589          * yet actually completed. But in case the base address is the same
11590          * anyway, we don't really care.
11591          */
11592         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11593                 crtc->flip_work->gtt_offset &&
11594                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11595                                     crtc->flip_work->flip_count);
11596 }
11597
11598 static bool
11599 __pageflip_finished_mmio(struct intel_crtc *crtc,
11600                                struct intel_flip_work *work)
11601 {
11602         /*
11603          * MMIO work completes when vblank is different from
11604          * flip_queued_vblank.
11605          *
11606          * Reset counter value doesn't matter, this is handled by
11607          * i915_wait_request finishing early, so no need to handle
11608          * reset here.
11609          */
11610         return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11611 }
11612
11613
11614 static bool pageflip_finished(struct intel_crtc *crtc,
11615                               struct intel_flip_work *work)
11616 {
11617         if (!atomic_read(&work->pending))
11618                 return false;
11619
11620         smp_rmb();
11621
11622         if (is_mmio_work(work))
11623                 return __pageflip_finished_mmio(crtc, work);
11624         else
11625                 return __pageflip_finished_cs(crtc, work);
11626 }
11627
11628 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11629 {
11630         struct drm_device *dev = &dev_priv->drm;
11631         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11632         struct intel_flip_work *work;
11633         unsigned long flags;
11634
11635         /* Ignore early vblank irqs */
11636         if (!crtc)
11637                 return;
11638
11639         /*
11640          * This is called both by irq handlers and the reset code (to complete
11641          * lost pageflips) so needs the full irqsave spinlocks.
11642          */
11643         spin_lock_irqsave(&dev->event_lock, flags);
11644         work = crtc->flip_work;
11645
11646         if (work != NULL &&
11647             !is_mmio_work(work) &&
11648             pageflip_finished(crtc, work))
11649                 page_flip_completed(crtc);
11650
11651         spin_unlock_irqrestore(&dev->event_lock, flags);
11652 }
11653
11654 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11655 {
11656         struct drm_device *dev = &dev_priv->drm;
11657         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11658         struct intel_flip_work *work;
11659         unsigned long flags;
11660
11661         /* Ignore early vblank irqs */
11662         if (!crtc)
11663                 return;
11664
11665         /*
11666          * This is called both by irq handlers and the reset code (to complete
11667          * lost pageflips) so needs the full irqsave spinlocks.
11668          */
11669         spin_lock_irqsave(&dev->event_lock, flags);
11670         work = crtc->flip_work;
11671
11672         if (work != NULL &&
11673             is_mmio_work(work) &&
11674             pageflip_finished(crtc, work))
11675                 page_flip_completed(crtc);
11676
11677         spin_unlock_irqrestore(&dev->event_lock, flags);
11678 }
11679
11680 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11681                                                struct intel_flip_work *work)
11682 {
11683         work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11684
11685         /* Ensure that the work item is consistent when activating it ... */
11686         smp_mb__before_atomic();
11687         atomic_set(&work->pending, 1);
11688 }
11689
11690 static int intel_gen2_queue_flip(struct drm_device *dev,
11691                                  struct drm_crtc *crtc,
11692                                  struct drm_framebuffer *fb,
11693                                  struct drm_i915_gem_object *obj,
11694                                  struct drm_i915_gem_request *req,
11695                                  uint32_t flags)
11696 {
11697         struct intel_ring *ring = req->ring;
11698         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11699         u32 flip_mask;
11700         int ret;
11701
11702         ret = intel_ring_begin(req, 6);
11703         if (ret)
11704                 return ret;
11705
11706         /* Can't queue multiple flips, so wait for the previous
11707          * one to finish before executing the next.
11708          */
11709         if (intel_crtc->plane)
11710                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11711         else
11712                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11713         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11714         intel_ring_emit(ring, MI_NOOP);
11715         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11716                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11717         intel_ring_emit(ring, fb->pitches[0]);
11718         intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11719         intel_ring_emit(ring, 0); /* aux display base address, unused */
11720
11721         return 0;
11722 }
11723
11724 static int intel_gen3_queue_flip(struct drm_device *dev,
11725                                  struct drm_crtc *crtc,
11726                                  struct drm_framebuffer *fb,
11727                                  struct drm_i915_gem_object *obj,
11728                                  struct drm_i915_gem_request *req,
11729                                  uint32_t flags)
11730 {
11731         struct intel_ring *ring = req->ring;
11732         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11733         u32 flip_mask;
11734         int ret;
11735
11736         ret = intel_ring_begin(req, 6);
11737         if (ret)
11738                 return ret;
11739
11740         if (intel_crtc->plane)
11741                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11742         else
11743                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11744         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11745         intel_ring_emit(ring, MI_NOOP);
11746         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11747                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11748         intel_ring_emit(ring, fb->pitches[0]);
11749         intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11750         intel_ring_emit(ring, MI_NOOP);
11751
11752         return 0;
11753 }
11754
11755 static int intel_gen4_queue_flip(struct drm_device *dev,
11756                                  struct drm_crtc *crtc,
11757                                  struct drm_framebuffer *fb,
11758                                  struct drm_i915_gem_object *obj,
11759                                  struct drm_i915_gem_request *req,
11760                                  uint32_t flags)
11761 {
11762         struct intel_ring *ring = req->ring;
11763         struct drm_i915_private *dev_priv = to_i915(dev);
11764         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11765         uint32_t pf, pipesrc;
11766         int ret;
11767
11768         ret = intel_ring_begin(req, 4);
11769         if (ret)
11770                 return ret;
11771
11772         /* i965+ uses the linear or tiled offsets from the
11773          * Display Registers (which do not change across a page-flip)
11774          * so we need only reprogram the base address.
11775          */
11776         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11777                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11778         intel_ring_emit(ring, fb->pitches[0]);
11779         intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11780                         intel_fb_modifier_to_tiling(fb->modifier));
11781
11782         /* XXX Enabling the panel-fitter across page-flip is so far
11783          * untested on non-native modes, so ignore it for now.
11784          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11785          */
11786         pf = 0;
11787         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11788         intel_ring_emit(ring, pf | pipesrc);
11789
11790         return 0;
11791 }
11792
11793 static int intel_gen6_queue_flip(struct drm_device *dev,
11794                                  struct drm_crtc *crtc,
11795                                  struct drm_framebuffer *fb,
11796                                  struct drm_i915_gem_object *obj,
11797                                  struct drm_i915_gem_request *req,
11798                                  uint32_t flags)
11799 {
11800         struct intel_ring *ring = req->ring;
11801         struct drm_i915_private *dev_priv = to_i915(dev);
11802         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11803         uint32_t pf, pipesrc;
11804         int ret;
11805
11806         ret = intel_ring_begin(req, 4);
11807         if (ret)
11808                 return ret;
11809
11810         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11811                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11812         intel_ring_emit(ring, fb->pitches[0] |
11813                         intel_fb_modifier_to_tiling(fb->modifier));
11814         intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11815
11816         /* Contrary to the suggestions in the documentation,
11817          * "Enable Panel Fitter" does not seem to be required when page
11818          * flipping with a non-native mode, and worse causes a normal
11819          * modeset to fail.
11820          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11821          */
11822         pf = 0;
11823         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11824         intel_ring_emit(ring, pf | pipesrc);
11825
11826         return 0;
11827 }
11828
11829 static int intel_gen7_queue_flip(struct drm_device *dev,
11830                                  struct drm_crtc *crtc,
11831                                  struct drm_framebuffer *fb,
11832                                  struct drm_i915_gem_object *obj,
11833                                  struct drm_i915_gem_request *req,
11834                                  uint32_t flags)
11835 {
11836         struct drm_i915_private *dev_priv = to_i915(dev);
11837         struct intel_ring *ring = req->ring;
11838         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11839         uint32_t plane_bit = 0;
11840         int len, ret;
11841
11842         switch (intel_crtc->plane) {
11843         case PLANE_A:
11844                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11845                 break;
11846         case PLANE_B:
11847                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11848                 break;
11849         case PLANE_C:
11850                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11851                 break;
11852         default:
11853                 WARN_ONCE(1, "unknown plane in flip command\n");
11854                 return -ENODEV;
11855         }
11856
11857         len = 4;
11858         if (req->engine->id == RCS) {
11859                 len += 6;
11860                 /*
11861                  * On Gen 8, SRM is now taking an extra dword to accommodate
11862                  * 48bits addresses, and we need a NOOP for the batch size to
11863                  * stay even.
11864                  */
11865                 if (IS_GEN8(dev_priv))
11866                         len += 2;
11867         }
11868
11869         /*
11870          * BSpec MI_DISPLAY_FLIP for IVB:
11871          * "The full packet must be contained within the same cache line."
11872          *
11873          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11874          * cacheline, if we ever start emitting more commands before
11875          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11876          * then do the cacheline alignment, and finally emit the
11877          * MI_DISPLAY_FLIP.
11878          */
11879         ret = intel_ring_cacheline_align(req);
11880         if (ret)
11881                 return ret;
11882
11883         ret = intel_ring_begin(req, len);
11884         if (ret)
11885                 return ret;
11886
11887         /* Unmask the flip-done completion message. Note that the bspec says that
11888          * we should do this for both the BCS and RCS, and that we must not unmask
11889          * more than one flip event at any time (or ensure that one flip message
11890          * can be sent by waiting for flip-done prior to queueing new flips).
11891          * Experimentation says that BCS works despite DERRMR masking all
11892          * flip-done completion events and that unmasking all planes at once
11893          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11894          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11895          */
11896         if (req->engine->id == RCS) {
11897                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11898                 intel_ring_emit_reg(ring, DERRMR);
11899                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11900                                           DERRMR_PIPEB_PRI_FLIP_DONE |
11901                                           DERRMR_PIPEC_PRI_FLIP_DONE));
11902                 if (IS_GEN8(dev_priv))
11903                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11904                                               MI_SRM_LRM_GLOBAL_GTT);
11905                 else
11906                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11907                                               MI_SRM_LRM_GLOBAL_GTT);
11908                 intel_ring_emit_reg(ring, DERRMR);
11909                 intel_ring_emit(ring,
11910                                 i915_ggtt_offset(req->engine->scratch) + 256);
11911                 if (IS_GEN8(dev_priv)) {
11912                         intel_ring_emit(ring, 0);
11913                         intel_ring_emit(ring, MI_NOOP);
11914                 }
11915         }
11916
11917         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11918         intel_ring_emit(ring, fb->pitches[0] |
11919                         intel_fb_modifier_to_tiling(fb->modifier));
11920         intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11921         intel_ring_emit(ring, (MI_NOOP));
11922
11923         return 0;
11924 }
11925
11926 static bool use_mmio_flip(struct intel_engine_cs *engine,
11927                           struct drm_i915_gem_object *obj)
11928 {
11929         /*
11930          * This is not being used for older platforms, because
11931          * non-availability of flip done interrupt forces us to use
11932          * CS flips. Older platforms derive flip done using some clever
11933          * tricks involving the flip_pending status bits and vblank irqs.
11934          * So using MMIO flips there would disrupt this mechanism.
11935          */
11936
11937         if (engine == NULL)
11938                 return true;
11939
11940         if (INTEL_GEN(engine->i915) < 5)
11941                 return false;
11942
11943         if (i915.use_mmio_flip < 0)
11944                 return false;
11945         else if (i915.use_mmio_flip > 0)
11946                 return true;
11947         else if (i915.enable_execlists)
11948                 return true;
11949
11950         return engine != i915_gem_object_last_write_engine(obj);
11951 }
11952
11953 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11954                              unsigned int rotation,
11955                              struct intel_flip_work *work)
11956 {
11957         struct drm_device *dev = intel_crtc->base.dev;
11958         struct drm_i915_private *dev_priv = to_i915(dev);
11959         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11960         const enum pipe pipe = intel_crtc->pipe;
11961         u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
11962
11963         ctl = I915_READ(PLANE_CTL(pipe, 0));
11964         ctl &= ~PLANE_CTL_TILED_MASK;
11965         switch (fb->modifier) {
11966         case DRM_FORMAT_MOD_NONE:
11967                 break;
11968         case I915_FORMAT_MOD_X_TILED:
11969                 ctl |= PLANE_CTL_TILED_X;
11970                 break;
11971         case I915_FORMAT_MOD_Y_TILED:
11972                 ctl |= PLANE_CTL_TILED_Y;
11973                 break;
11974         case I915_FORMAT_MOD_Yf_TILED:
11975                 ctl |= PLANE_CTL_TILED_YF;
11976                 break;
11977         default:
11978                 MISSING_CASE(fb->modifier);
11979         }
11980
11981         /*
11982          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11983          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11984          */
11985         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11986         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11987
11988         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11989         POSTING_READ(PLANE_SURF(pipe, 0));
11990 }
11991
11992 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11993                              struct intel_flip_work *work)
11994 {
11995         struct drm_device *dev = intel_crtc->base.dev;
11996         struct drm_i915_private *dev_priv = to_i915(dev);
11997         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11998         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11999         u32 dspcntr;
12000
12001         dspcntr = I915_READ(reg);
12002
12003         if (fb->modifier == I915_FORMAT_MOD_X_TILED)
12004                 dspcntr |= DISPPLANE_TILED;
12005         else
12006                 dspcntr &= ~DISPPLANE_TILED;
12007
12008         I915_WRITE(reg, dspcntr);
12009
12010         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12011         POSTING_READ(DSPSURF(intel_crtc->plane));
12012 }
12013
12014 static void intel_mmio_flip_work_func(struct work_struct *w)
12015 {
12016         struct intel_flip_work *work =
12017                 container_of(w, struct intel_flip_work, mmio_work);
12018         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12019         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12020         struct intel_framebuffer *intel_fb =
12021                 to_intel_framebuffer(crtc->base.primary->fb);
12022         struct drm_i915_gem_object *obj = intel_fb->obj;
12023
12024         WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
12025
12026         intel_pipe_update_start(crtc);
12027
12028         if (INTEL_GEN(dev_priv) >= 9)
12029                 skl_do_mmio_flip(crtc, work->rotation, work);
12030         else
12031                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
12032                 ilk_do_mmio_flip(crtc, work);
12033
12034         intel_pipe_update_end(crtc, work);
12035 }
12036
12037 static int intel_default_queue_flip(struct drm_device *dev,
12038                                     struct drm_crtc *crtc,
12039                                     struct drm_framebuffer *fb,
12040                                     struct drm_i915_gem_object *obj,
12041                                     struct drm_i915_gem_request *req,
12042                                     uint32_t flags)
12043 {
12044         return -ENODEV;
12045 }
12046
12047 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12048                                       struct intel_crtc *intel_crtc,
12049                                       struct intel_flip_work *work)
12050 {
12051         u32 addr, vblank;
12052
12053         if (!atomic_read(&work->pending))
12054                 return false;
12055
12056         smp_rmb();
12057
12058         vblank = intel_crtc_get_vblank_counter(intel_crtc);
12059         if (work->flip_ready_vblank == 0) {
12060                 if (work->flip_queued_req &&
12061                     !i915_gem_request_completed(work->flip_queued_req))
12062                         return false;
12063
12064                 work->flip_ready_vblank = vblank;
12065         }
12066
12067         if (vblank - work->flip_ready_vblank < 3)
12068                 return false;
12069
12070         /* Potential stall - if we see that the flip has happened,
12071          * assume a missed interrupt. */
12072         if (INTEL_GEN(dev_priv) >= 4)
12073                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12074         else
12075                 addr = I915_READ(DSPADDR(intel_crtc->plane));
12076
12077         /* There is a potential issue here with a false positive after a flip
12078          * to the same address. We could address this by checking for a
12079          * non-incrementing frame counter.
12080          */
12081         return addr == work->gtt_offset;
12082 }
12083
12084 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12085 {
12086         struct drm_device *dev = &dev_priv->drm;
12087         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12088         struct intel_flip_work *work;
12089
12090         WARN_ON(!in_interrupt());
12091
12092         if (crtc == NULL)
12093                 return;
12094
12095         spin_lock(&dev->event_lock);
12096         work = crtc->flip_work;
12097
12098         if (work != NULL && !is_mmio_work(work) &&
12099             __pageflip_stall_check_cs(dev_priv, crtc, work)) {
12100                 WARN_ONCE(1,
12101                           "Kicking stuck page flip: queued at %d, now %d\n",
12102                         work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
12103                 page_flip_completed(crtc);
12104                 work = NULL;
12105         }
12106
12107         if (work != NULL && !is_mmio_work(work) &&
12108             intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
12109                 intel_queue_rps_boost_for_request(work->flip_queued_req);
12110         spin_unlock(&dev->event_lock);
12111 }
12112
12113 static int intel_crtc_page_flip(struct drm_crtc *crtc,
12114                                 struct drm_framebuffer *fb,
12115                                 struct drm_pending_vblank_event *event,
12116                                 uint32_t page_flip_flags)
12117 {
12118         struct drm_device *dev = crtc->dev;
12119         struct drm_i915_private *dev_priv = to_i915(dev);
12120         struct drm_framebuffer *old_fb = crtc->primary->fb;
12121         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12122         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12123         struct drm_plane *primary = crtc->primary;
12124         enum pipe pipe = intel_crtc->pipe;
12125         struct intel_flip_work *work;
12126         struct intel_engine_cs *engine;
12127         bool mmio_flip;
12128         struct drm_i915_gem_request *request;
12129         struct i915_vma *vma;
12130         int ret;
12131
12132         /*
12133          * drm_mode_page_flip_ioctl() should already catch this, but double
12134          * check to be safe.  In the future we may enable pageflipping from
12135          * a disabled primary plane.
12136          */
12137         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12138                 return -EBUSY;
12139
12140         /* Can't change pixel format via MI display flips. */
12141         if (fb->pixel_format != crtc->primary->fb->pixel_format)
12142                 return -EINVAL;
12143
12144         /*
12145          * TILEOFF/LINOFF registers can't be changed via MI display flips.
12146          * Note that pitch changes could also affect these register.
12147          */
12148         if (INTEL_GEN(dev_priv) > 3 &&
12149             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12150              fb->pitches[0] != crtc->primary->fb->pitches[0]))
12151                 return -EINVAL;
12152
12153         if (i915_terminally_wedged(&dev_priv->gpu_error))
12154                 goto out_hang;
12155
12156         work = kzalloc(sizeof(*work), GFP_KERNEL);
12157         if (work == NULL)
12158                 return -ENOMEM;
12159
12160         work->event = event;
12161         work->crtc = crtc;
12162         work->old_fb = old_fb;
12163         INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12164
12165         ret = drm_crtc_vblank_get(crtc);
12166         if (ret)
12167                 goto free_work;
12168
12169         /* We borrow the event spin lock for protecting flip_work */
12170         spin_lock_irq(&dev->event_lock);
12171         if (intel_crtc->flip_work) {
12172                 /* Before declaring the flip queue wedged, check if
12173                  * the hardware completed the operation behind our backs.
12174                  */
12175                 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12176                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12177                         page_flip_completed(intel_crtc);
12178                 } else {
12179                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12180                         spin_unlock_irq(&dev->event_lock);
12181
12182                         drm_crtc_vblank_put(crtc);
12183                         kfree(work);
12184                         return -EBUSY;
12185                 }
12186         }
12187         intel_crtc->flip_work = work;
12188         spin_unlock_irq(&dev->event_lock);
12189
12190         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12191                 flush_workqueue(dev_priv->wq);
12192
12193         /* Reference the objects for the scheduled work. */
12194         drm_framebuffer_reference(work->old_fb);
12195
12196         crtc->primary->fb = fb;
12197         update_state_fb(crtc->primary);
12198
12199         work->pending_flip_obj = i915_gem_object_get(obj);
12200
12201         ret = i915_mutex_lock_interruptible(dev);
12202         if (ret)
12203                 goto cleanup;
12204
12205         intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12206         if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
12207                 ret = -EIO;
12208                 goto unlock;
12209         }
12210
12211         atomic_inc(&intel_crtc->unpin_work_count);
12212
12213         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
12214                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12215
12216         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
12217                 engine = dev_priv->engine[BCS];
12218                 if (fb->modifier != old_fb->modifier)
12219                         /* vlv: DISPLAY_FLIP fails to change tiling */
12220                         engine = NULL;
12221         } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
12222                 engine = dev_priv->engine[BCS];
12223         } else if (INTEL_GEN(dev_priv) >= 7) {
12224                 engine = i915_gem_object_last_write_engine(obj);
12225                 if (engine == NULL || engine->id != RCS)
12226                         engine = dev_priv->engine[BCS];
12227         } else {
12228                 engine = dev_priv->engine[RCS];
12229         }
12230
12231         mmio_flip = use_mmio_flip(engine, obj);
12232
12233         vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12234         if (IS_ERR(vma)) {
12235                 ret = PTR_ERR(vma);
12236                 goto cleanup_pending;
12237         }
12238
12239         work->old_vma = to_intel_plane_state(primary->state)->vma;
12240         to_intel_plane_state(primary->state)->vma = vma;
12241
12242         work->gtt_offset = i915_ggtt_offset(vma) + intel_crtc->dspaddr_offset;
12243         work->rotation = crtc->primary->state->rotation;
12244
12245         /*
12246          * There's the potential that the next frame will not be compatible with
12247          * FBC, so we want to call pre_update() before the actual page flip.
12248          * The problem is that pre_update() caches some information about the fb
12249          * object, so we want to do this only after the object is pinned. Let's
12250          * be on the safe side and do this immediately before scheduling the
12251          * flip.
12252          */
12253         intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12254                              to_intel_plane_state(primary->state));
12255
12256         if (mmio_flip) {
12257                 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12258                 queue_work(system_unbound_wq, &work->mmio_work);
12259         } else {
12260                 request = i915_gem_request_alloc(engine, engine->last_context);
12261                 if (IS_ERR(request)) {
12262                         ret = PTR_ERR(request);
12263                         goto cleanup_unpin;
12264                 }
12265
12266                 ret = i915_gem_request_await_object(request, obj, false);
12267                 if (ret)
12268                         goto cleanup_request;
12269
12270                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12271                                                    page_flip_flags);
12272                 if (ret)
12273                         goto cleanup_request;
12274
12275                 intel_mark_page_flip_active(intel_crtc, work);
12276
12277                 work->flip_queued_req = i915_gem_request_get(request);
12278                 i915_add_request_no_flush(request);
12279         }
12280
12281         i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
12282         i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12283                           to_intel_plane(primary)->frontbuffer_bit);
12284         mutex_unlock(&dev->struct_mutex);
12285
12286         intel_frontbuffer_flip_prepare(to_i915(dev),
12287                                        to_intel_plane(primary)->frontbuffer_bit);
12288
12289         trace_i915_flip_request(intel_crtc->plane, obj);
12290
12291         return 0;
12292
12293 cleanup_request:
12294         i915_add_request_no_flush(request);
12295 cleanup_unpin:
12296         to_intel_plane_state(primary->state)->vma = work->old_vma;
12297         intel_unpin_fb_vma(vma);
12298 cleanup_pending:
12299         atomic_dec(&intel_crtc->unpin_work_count);
12300 unlock:
12301         mutex_unlock(&dev->struct_mutex);
12302 cleanup:
12303         crtc->primary->fb = old_fb;
12304         update_state_fb(crtc->primary);
12305
12306         i915_gem_object_put(obj);
12307         drm_framebuffer_unreference(work->old_fb);
12308
12309         spin_lock_irq(&dev->event_lock);
12310         intel_crtc->flip_work = NULL;
12311         spin_unlock_irq(&dev->event_lock);
12312
12313         drm_crtc_vblank_put(crtc);
12314 free_work:
12315         kfree(work);
12316
12317         if (ret == -EIO) {
12318                 struct drm_atomic_state *state;
12319                 struct drm_plane_state *plane_state;
12320
12321 out_hang:
12322                 state = drm_atomic_state_alloc(dev);
12323                 if (!state)
12324                         return -ENOMEM;
12325                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12326
12327 retry:
12328                 plane_state = drm_atomic_get_plane_state(state, primary);
12329                 ret = PTR_ERR_OR_ZERO(plane_state);
12330                 if (!ret) {
12331                         drm_atomic_set_fb_for_plane(plane_state, fb);
12332
12333                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12334                         if (!ret)
12335                                 ret = drm_atomic_commit(state);
12336                 }
12337
12338                 if (ret == -EDEADLK) {
12339                         drm_modeset_backoff(state->acquire_ctx);
12340                         drm_atomic_state_clear(state);
12341                         goto retry;
12342                 }
12343
12344                 drm_atomic_state_put(state);
12345
12346                 if (ret == 0 && event) {
12347                         spin_lock_irq(&dev->event_lock);
12348                         drm_crtc_send_vblank_event(crtc, event);
12349                         spin_unlock_irq(&dev->event_lock);
12350                 }
12351         }
12352         return ret;
12353 }
12354
12355
12356 /**
12357  * intel_wm_need_update - Check whether watermarks need updating
12358  * @plane: drm plane
12359  * @state: new plane state
12360  *
12361  * Check current plane state versus the new one to determine whether
12362  * watermarks need to be recalculated.
12363  *
12364  * Returns true or false.
12365  */
12366 static bool intel_wm_need_update(struct drm_plane *plane,
12367                                  struct drm_plane_state *state)
12368 {
12369         struct intel_plane_state *new = to_intel_plane_state(state);
12370         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12371
12372         /* Update watermarks on tiling or size changes. */
12373         if (new->base.visible != cur->base.visible)
12374                 return true;
12375
12376         if (!cur->base.fb || !new->base.fb)
12377                 return false;
12378
12379         if (cur->base.fb->modifier != new->base.fb->modifier ||
12380             cur->base.rotation != new->base.rotation ||
12381             drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12382             drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12383             drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12384             drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
12385                 return true;
12386
12387         return false;
12388 }
12389
12390 static bool needs_scaling(struct intel_plane_state *state)
12391 {
12392         int src_w = drm_rect_width(&state->base.src) >> 16;
12393         int src_h = drm_rect_height(&state->base.src) >> 16;
12394         int dst_w = drm_rect_width(&state->base.dst);
12395         int dst_h = drm_rect_height(&state->base.dst);
12396
12397         return (src_w != dst_w || src_h != dst_h);
12398 }
12399
12400 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12401                                     struct drm_plane_state *plane_state)
12402 {
12403         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
12404         struct drm_crtc *crtc = crtc_state->crtc;
12405         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12406         struct drm_plane *plane = plane_state->plane;
12407         struct drm_device *dev = crtc->dev;
12408         struct drm_i915_private *dev_priv = to_i915(dev);
12409         struct intel_plane_state *old_plane_state =
12410                 to_intel_plane_state(plane->state);
12411         bool mode_changed = needs_modeset(crtc_state);
12412         bool was_crtc_enabled = crtc->state->active;
12413         bool is_crtc_enabled = crtc_state->active;
12414         bool turn_off, turn_on, visible, was_visible;
12415         struct drm_framebuffer *fb = plane_state->fb;
12416         int ret;
12417
12418         if (INTEL_GEN(dev_priv) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
12419                 ret = skl_update_scaler_plane(
12420                         to_intel_crtc_state(crtc_state),
12421                         to_intel_plane_state(plane_state));
12422                 if (ret)
12423                         return ret;
12424         }
12425
12426         was_visible = old_plane_state->base.visible;
12427         visible = to_intel_plane_state(plane_state)->base.visible;
12428
12429         if (!was_crtc_enabled && WARN_ON(was_visible))
12430                 was_visible = false;
12431
12432         /*
12433          * Visibility is calculated as if the crtc was on, but
12434          * after scaler setup everything depends on it being off
12435          * when the crtc isn't active.
12436          *
12437          * FIXME this is wrong for watermarks. Watermarks should also
12438          * be computed as if the pipe would be active. Perhaps move
12439          * per-plane wm computation to the .check_plane() hook, and
12440          * only combine the results from all planes in the current place?
12441          */
12442         if (!is_crtc_enabled)
12443                 to_intel_plane_state(plane_state)->base.visible = visible = false;
12444
12445         if (!was_visible && !visible)
12446                 return 0;
12447
12448         if (fb != old_plane_state->base.fb)
12449                 pipe_config->fb_changed = true;
12450
12451         turn_off = was_visible && (!visible || mode_changed);
12452         turn_on = visible && (!was_visible || mode_changed);
12453
12454         DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12455                          intel_crtc->base.base.id,
12456                          intel_crtc->base.name,
12457                          plane->base.id, plane->name,
12458                          fb ? fb->base.id : -1);
12459
12460         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12461                          plane->base.id, plane->name,
12462                          was_visible, visible,
12463                          turn_off, turn_on, mode_changed);
12464
12465         if (turn_on) {
12466                 pipe_config->update_wm_pre = true;
12467
12468                 /* must disable cxsr around plane enable/disable */
12469                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12470                         pipe_config->disable_cxsr = true;
12471         } else if (turn_off) {
12472                 pipe_config->update_wm_post = true;
12473
12474                 /* must disable cxsr around plane enable/disable */
12475                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12476                         pipe_config->disable_cxsr = true;
12477         } else if (intel_wm_need_update(plane, plane_state)) {
12478                 /* FIXME bollocks */
12479                 pipe_config->update_wm_pre = true;
12480                 pipe_config->update_wm_post = true;
12481         }
12482
12483         /* Pre-gen9 platforms need two-step watermark updates */
12484         if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12485             INTEL_GEN(dev_priv) < 9 && dev_priv->display.optimize_watermarks)
12486                 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12487
12488         if (visible || was_visible)
12489                 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12490
12491         /*
12492          * WaCxSRDisabledForSpriteScaling:ivb
12493          *
12494          * cstate->update_wm was already set above, so this flag will
12495          * take effect when we commit and program watermarks.
12496          */
12497         if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev_priv) &&
12498             needs_scaling(to_intel_plane_state(plane_state)) &&
12499             !needs_scaling(old_plane_state))
12500                 pipe_config->disable_lp_wm = true;
12501
12502         return 0;
12503 }
12504
12505 static bool encoders_cloneable(const struct intel_encoder *a,
12506                                const struct intel_encoder *b)
12507 {
12508         /* masks could be asymmetric, so check both ways */
12509         return a == b || (a->cloneable & (1 << b->type) &&
12510                           b->cloneable & (1 << a->type));
12511 }
12512
12513 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12514                                          struct intel_crtc *crtc,
12515                                          struct intel_encoder *encoder)
12516 {
12517         struct intel_encoder *source_encoder;
12518         struct drm_connector *connector;
12519         struct drm_connector_state *connector_state;
12520         int i;
12521
12522         for_each_connector_in_state(state, connector, connector_state, i) {
12523                 if (connector_state->crtc != &crtc->base)
12524                         continue;
12525
12526                 source_encoder =
12527                         to_intel_encoder(connector_state->best_encoder);
12528                 if (!encoders_cloneable(encoder, source_encoder))
12529                         return false;
12530         }
12531
12532         return true;
12533 }
12534
12535 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12536                                    struct drm_crtc_state *crtc_state)
12537 {
12538         struct drm_device *dev = crtc->dev;
12539         struct drm_i915_private *dev_priv = to_i915(dev);
12540         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12541         struct intel_crtc_state *pipe_config =
12542                 to_intel_crtc_state(crtc_state);
12543         struct drm_atomic_state *state = crtc_state->state;
12544         int ret;
12545         bool mode_changed = needs_modeset(crtc_state);
12546
12547         if (mode_changed && !crtc_state->active)
12548                 pipe_config->update_wm_post = true;
12549
12550         if (mode_changed && crtc_state->enable &&
12551             dev_priv->display.crtc_compute_clock &&
12552             !WARN_ON(pipe_config->shared_dpll)) {
12553                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12554                                                            pipe_config);
12555                 if (ret)
12556                         return ret;
12557         }
12558
12559         if (crtc_state->color_mgmt_changed) {
12560                 ret = intel_color_check(crtc, crtc_state);
12561                 if (ret)
12562                         return ret;
12563
12564                 /*
12565                  * Changing color management on Intel hardware is
12566                  * handled as part of planes update.
12567                  */
12568                 crtc_state->planes_changed = true;
12569         }
12570
12571         ret = 0;
12572         if (dev_priv->display.compute_pipe_wm) {
12573                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12574                 if (ret) {
12575                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12576                         return ret;
12577                 }
12578         }
12579
12580         if (dev_priv->display.compute_intermediate_wm &&
12581             !to_intel_atomic_state(state)->skip_intermediate_wm) {
12582                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12583                         return 0;
12584
12585                 /*
12586                  * Calculate 'intermediate' watermarks that satisfy both the
12587                  * old state and the new state.  We can program these
12588                  * immediately.
12589                  */
12590                 ret = dev_priv->display.compute_intermediate_wm(dev,
12591                                                                 intel_crtc,
12592                                                                 pipe_config);
12593                 if (ret) {
12594                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12595                         return ret;
12596                 }
12597         } else if (dev_priv->display.compute_intermediate_wm) {
12598                 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12599                         pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12600         }
12601
12602         if (INTEL_GEN(dev_priv) >= 9) {
12603                 if (mode_changed)
12604                         ret = skl_update_scaler_crtc(pipe_config);
12605
12606                 if (!ret)
12607                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
12608                                                          pipe_config);
12609         }
12610
12611         return ret;
12612 }
12613
12614 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12615         .mode_set_base_atomic = intel_pipe_set_base_atomic,
12616         .atomic_begin = intel_begin_crtc_commit,
12617         .atomic_flush = intel_finish_crtc_commit,
12618         .atomic_check = intel_crtc_atomic_check,
12619 };
12620
12621 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12622 {
12623         struct intel_connector *connector;
12624
12625         for_each_intel_connector(dev, connector) {
12626                 if (connector->base.state->crtc)
12627                         drm_connector_unreference(&connector->base);
12628
12629                 if (connector->base.encoder) {
12630                         connector->base.state->best_encoder =
12631                                 connector->base.encoder;
12632                         connector->base.state->crtc =
12633                                 connector->base.encoder->crtc;
12634
12635                         drm_connector_reference(&connector->base);
12636                 } else {
12637                         connector->base.state->best_encoder = NULL;
12638                         connector->base.state->crtc = NULL;
12639                 }
12640         }
12641 }
12642
12643 static void
12644 connected_sink_compute_bpp(struct intel_connector *connector,
12645                            struct intel_crtc_state *pipe_config)
12646 {
12647         const struct drm_display_info *info = &connector->base.display_info;
12648         int bpp = pipe_config->pipe_bpp;
12649
12650         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12651                       connector->base.base.id,
12652                       connector->base.name);
12653
12654         /* Don't use an invalid EDID bpc value */
12655         if (info->bpc != 0 && info->bpc * 3 < bpp) {
12656                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12657                               bpp, info->bpc * 3);
12658                 pipe_config->pipe_bpp = info->bpc * 3;
12659         }
12660
12661         /* Clamp bpp to 8 on screens without EDID 1.4 */
12662         if (info->bpc == 0 && bpp > 24) {
12663                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12664                               bpp);
12665                 pipe_config->pipe_bpp = 24;
12666         }
12667 }
12668
12669 static int
12670 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12671                           struct intel_crtc_state *pipe_config)
12672 {
12673         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12674         struct drm_atomic_state *state;
12675         struct drm_connector *connector;
12676         struct drm_connector_state *connector_state;
12677         int bpp, i;
12678
12679         if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12680             IS_CHERRYVIEW(dev_priv)))
12681                 bpp = 10*3;
12682         else if (INTEL_GEN(dev_priv) >= 5)
12683                 bpp = 12*3;
12684         else
12685                 bpp = 8*3;
12686
12687
12688         pipe_config->pipe_bpp = bpp;
12689
12690         state = pipe_config->base.state;
12691
12692         /* Clamp display bpp to EDID value */
12693         for_each_connector_in_state(state, connector, connector_state, i) {
12694                 if (connector_state->crtc != &crtc->base)
12695                         continue;
12696
12697                 connected_sink_compute_bpp(to_intel_connector(connector),
12698                                            pipe_config);
12699         }
12700
12701         return bpp;
12702 }
12703
12704 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12705 {
12706         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12707                         "type: 0x%x flags: 0x%x\n",
12708                 mode->crtc_clock,
12709                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12710                 mode->crtc_hsync_end, mode->crtc_htotal,
12711                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12712                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12713 }
12714
12715 static inline void
12716 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
12717                       unsigned int lane_count, struct intel_link_m_n *m_n)
12718 {
12719         DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12720                       id, lane_count,
12721                       m_n->gmch_m, m_n->gmch_n,
12722                       m_n->link_m, m_n->link_n, m_n->tu);
12723 }
12724
12725 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12726                                    struct intel_crtc_state *pipe_config,
12727                                    const char *context)
12728 {
12729         struct drm_device *dev = crtc->base.dev;
12730         struct drm_i915_private *dev_priv = to_i915(dev);
12731         struct drm_plane *plane;
12732         struct intel_plane *intel_plane;
12733         struct intel_plane_state *state;
12734         struct drm_framebuffer *fb;
12735
12736         DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
12737                       crtc->base.base.id, crtc->base.name, context);
12738
12739         DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
12740                       transcoder_name(pipe_config->cpu_transcoder),
12741                       pipe_config->pipe_bpp, pipe_config->dither);
12742
12743         if (pipe_config->has_pch_encoder)
12744                 intel_dump_m_n_config(pipe_config, "fdi",
12745                                       pipe_config->fdi_lanes,
12746                                       &pipe_config->fdi_m_n);
12747
12748         if (intel_crtc_has_dp_encoder(pipe_config)) {
12749                 intel_dump_m_n_config(pipe_config, "dp m_n",
12750                                 pipe_config->lane_count, &pipe_config->dp_m_n);
12751                 if (pipe_config->has_drrs)
12752                         intel_dump_m_n_config(pipe_config, "dp m2_n2",
12753                                               pipe_config->lane_count,
12754                                               &pipe_config->dp_m2_n2);
12755         }
12756
12757         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12758                       pipe_config->has_audio, pipe_config->has_infoframe);
12759
12760         DRM_DEBUG_KMS("requested mode:\n");
12761         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12762         DRM_DEBUG_KMS("adjusted mode:\n");
12763         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12764         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12765         DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d\n",
12766                       pipe_config->port_clock,
12767                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12768
12769         if (INTEL_GEN(dev_priv) >= 9)
12770                 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12771                               crtc->num_scalers,
12772                               pipe_config->scaler_state.scaler_users,
12773                               pipe_config->scaler_state.scaler_id);
12774
12775         if (HAS_GMCH_DISPLAY(dev_priv))
12776                 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12777                               pipe_config->gmch_pfit.control,
12778                               pipe_config->gmch_pfit.pgm_ratios,
12779                               pipe_config->gmch_pfit.lvds_border_bits);
12780         else
12781                 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12782                               pipe_config->pch_pfit.pos,
12783                               pipe_config->pch_pfit.size,
12784                               enableddisabled(pipe_config->pch_pfit.enabled));
12785
12786         DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
12787                       pipe_config->ips_enabled, pipe_config->double_wide);
12788
12789         if (IS_BROXTON(dev_priv)) {
12790                 DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12791                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12792                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12793                               pipe_config->dpll_hw_state.ebb0,
12794                               pipe_config->dpll_hw_state.ebb4,
12795                               pipe_config->dpll_hw_state.pll0,
12796                               pipe_config->dpll_hw_state.pll1,
12797                               pipe_config->dpll_hw_state.pll2,
12798                               pipe_config->dpll_hw_state.pll3,
12799                               pipe_config->dpll_hw_state.pll6,
12800                               pipe_config->dpll_hw_state.pll8,
12801                               pipe_config->dpll_hw_state.pll9,
12802                               pipe_config->dpll_hw_state.pll10,
12803                               pipe_config->dpll_hw_state.pcsdw12);
12804         } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
12805                 DRM_DEBUG_KMS("dpll_hw_state: "
12806                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12807                               pipe_config->dpll_hw_state.ctrl1,
12808                               pipe_config->dpll_hw_state.cfgcr1,
12809                               pipe_config->dpll_hw_state.cfgcr2);
12810         } else if (HAS_DDI(dev_priv)) {
12811                 DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12812                               pipe_config->dpll_hw_state.wrpll,
12813                               pipe_config->dpll_hw_state.spll);
12814         } else {
12815                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12816                               "fp0: 0x%x, fp1: 0x%x\n",
12817                               pipe_config->dpll_hw_state.dpll,
12818                               pipe_config->dpll_hw_state.dpll_md,
12819                               pipe_config->dpll_hw_state.fp0,
12820                               pipe_config->dpll_hw_state.fp1);
12821         }
12822
12823         DRM_DEBUG_KMS("planes on this crtc\n");
12824         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12825                 struct drm_format_name_buf format_name;
12826                 intel_plane = to_intel_plane(plane);
12827                 if (intel_plane->pipe != crtc->pipe)
12828                         continue;
12829
12830                 state = to_intel_plane_state(plane->state);
12831                 fb = state->base.fb;
12832                 if (!fb) {
12833                         DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12834                                       plane->base.id, plane->name, state->scaler_id);
12835                         continue;
12836                 }
12837
12838                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
12839                               plane->base.id, plane->name,
12840                               fb->base.id, fb->width, fb->height,
12841                               drm_get_format_name(fb->pixel_format, &format_name));
12842                 if (INTEL_GEN(dev_priv) >= 9)
12843                         DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12844                                       state->scaler_id,
12845                                       state->base.src.x1 >> 16,
12846                                       state->base.src.y1 >> 16,
12847                                       drm_rect_width(&state->base.src) >> 16,
12848                                       drm_rect_height(&state->base.src) >> 16,
12849                                       state->base.dst.x1, state->base.dst.y1,
12850                                       drm_rect_width(&state->base.dst),
12851                                       drm_rect_height(&state->base.dst));
12852         }
12853 }
12854
12855 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12856 {
12857         struct drm_device *dev = state->dev;
12858         struct drm_connector *connector;
12859         unsigned int used_ports = 0;
12860         unsigned int used_mst_ports = 0;
12861
12862         /*
12863          * Walk the connector list instead of the encoder
12864          * list to detect the problem on ddi platforms
12865          * where there's just one encoder per digital port.
12866          */
12867         drm_for_each_connector(connector, dev) {
12868                 struct drm_connector_state *connector_state;
12869                 struct intel_encoder *encoder;
12870
12871                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12872                 if (!connector_state)
12873                         connector_state = connector->state;
12874
12875                 if (!connector_state->best_encoder)
12876                         continue;
12877
12878                 encoder = to_intel_encoder(connector_state->best_encoder);
12879
12880                 WARN_ON(!connector_state->crtc);
12881
12882                 switch (encoder->type) {
12883                         unsigned int port_mask;
12884                 case INTEL_OUTPUT_UNKNOWN:
12885                         if (WARN_ON(!HAS_DDI(to_i915(dev))))
12886                                 break;
12887                 case INTEL_OUTPUT_DP:
12888                 case INTEL_OUTPUT_HDMI:
12889                 case INTEL_OUTPUT_EDP:
12890                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12891
12892                         /* the same port mustn't appear more than once */
12893                         if (used_ports & port_mask)
12894                                 return false;
12895
12896                         used_ports |= port_mask;
12897                         break;
12898                 case INTEL_OUTPUT_DP_MST:
12899                         used_mst_ports |=
12900                                 1 << enc_to_mst(&encoder->base)->primary->port;
12901                         break;
12902                 default:
12903                         break;
12904                 }
12905         }
12906
12907         /* can't mix MST and SST/HDMI on the same port */
12908         if (used_ports & used_mst_ports)
12909                 return false;
12910
12911         return true;
12912 }
12913
12914 static void
12915 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12916 {
12917         struct drm_crtc_state tmp_state;
12918         struct intel_crtc_scaler_state scaler_state;
12919         struct intel_dpll_hw_state dpll_hw_state;
12920         struct intel_shared_dpll *shared_dpll;
12921         bool force_thru;
12922
12923         /* FIXME: before the switch to atomic started, a new pipe_config was
12924          * kzalloc'd. Code that depends on any field being zero should be
12925          * fixed, so that the crtc_state can be safely duplicated. For now,
12926          * only fields that are know to not cause problems are preserved. */
12927
12928         tmp_state = crtc_state->base;
12929         scaler_state = crtc_state->scaler_state;
12930         shared_dpll = crtc_state->shared_dpll;
12931         dpll_hw_state = crtc_state->dpll_hw_state;
12932         force_thru = crtc_state->pch_pfit.force_thru;
12933
12934         memset(crtc_state, 0, sizeof *crtc_state);
12935
12936         crtc_state->base = tmp_state;
12937         crtc_state->scaler_state = scaler_state;
12938         crtc_state->shared_dpll = shared_dpll;
12939         crtc_state->dpll_hw_state = dpll_hw_state;
12940         crtc_state->pch_pfit.force_thru = force_thru;
12941 }
12942
12943 static int
12944 intel_modeset_pipe_config(struct drm_crtc *crtc,
12945                           struct intel_crtc_state *pipe_config)
12946 {
12947         struct drm_atomic_state *state = pipe_config->base.state;
12948         struct intel_encoder *encoder;
12949         struct drm_connector *connector;
12950         struct drm_connector_state *connector_state;
12951         int base_bpp, ret = -EINVAL;
12952         int i;
12953         bool retry = true;
12954
12955         clear_intel_crtc_state(pipe_config);
12956
12957         pipe_config->cpu_transcoder =
12958                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12959
12960         /*
12961          * Sanitize sync polarity flags based on requested ones. If neither
12962          * positive or negative polarity is requested, treat this as meaning
12963          * negative polarity.
12964          */
12965         if (!(pipe_config->base.adjusted_mode.flags &
12966               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12967                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12968
12969         if (!(pipe_config->base.adjusted_mode.flags &
12970               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12971                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12972
12973         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12974                                              pipe_config);
12975         if (base_bpp < 0)
12976                 goto fail;
12977
12978         /*
12979          * Determine the real pipe dimensions. Note that stereo modes can
12980          * increase the actual pipe size due to the frame doubling and
12981          * insertion of additional space for blanks between the frame. This
12982          * is stored in the crtc timings. We use the requested mode to do this
12983          * computation to clearly distinguish it from the adjusted mode, which
12984          * can be changed by the connectors in the below retry loop.
12985          */
12986         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12987                                &pipe_config->pipe_src_w,
12988                                &pipe_config->pipe_src_h);
12989
12990         for_each_connector_in_state(state, connector, connector_state, i) {
12991                 if (connector_state->crtc != crtc)
12992                         continue;
12993
12994                 encoder = to_intel_encoder(connector_state->best_encoder);
12995
12996                 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12997                         DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12998                         goto fail;
12999                 }
13000
13001                 /*
13002                  * Determine output_types before calling the .compute_config()
13003                  * hooks so that the hooks can use this information safely.
13004                  */
13005                 pipe_config->output_types |= 1 << encoder->type;
13006         }
13007
13008 encoder_retry:
13009         /* Ensure the port clock defaults are reset when retrying. */
13010         pipe_config->port_clock = 0;
13011         pipe_config->pixel_multiplier = 1;
13012
13013         /* Fill in default crtc timings, allow encoders to overwrite them. */
13014         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13015                               CRTC_STEREO_DOUBLE);
13016
13017         /* Pass our mode to the connectors and the CRTC to give them a chance to
13018          * adjust it according to limitations or connector properties, and also
13019          * a chance to reject the mode entirely.
13020          */
13021         for_each_connector_in_state(state, connector, connector_state, i) {
13022                 if (connector_state->crtc != crtc)
13023                         continue;
13024
13025                 encoder = to_intel_encoder(connector_state->best_encoder);
13026
13027                 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
13028                         DRM_DEBUG_KMS("Encoder config failure\n");
13029                         goto fail;
13030                 }
13031         }
13032
13033         /* Set default port clock if not overwritten by the encoder. Needs to be
13034          * done afterwards in case the encoder adjusts the mode. */
13035         if (!pipe_config->port_clock)
13036                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
13037                         * pipe_config->pixel_multiplier;
13038
13039         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13040         if (ret < 0) {
13041                 DRM_DEBUG_KMS("CRTC fixup failed\n");
13042                 goto fail;
13043         }
13044
13045         if (ret == RETRY) {
13046                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
13047                         ret = -EINVAL;
13048                         goto fail;
13049                 }
13050
13051                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13052                 retry = false;
13053                 goto encoder_retry;
13054         }
13055
13056         /* Dithering seems to not pass-through bits correctly when it should, so
13057          * only enable it on 6bpc panels. */
13058         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
13059         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13060                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13061
13062 fail:
13063         return ret;
13064 }
13065
13066 static void
13067 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
13068 {
13069         struct drm_crtc *crtc;
13070         struct drm_crtc_state *crtc_state;
13071         int i;
13072
13073         /* Double check state. */
13074         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13075                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
13076
13077                 /* Update hwmode for vblank functions */
13078                 if (crtc->state->active)
13079                         crtc->hwmode = crtc->state->adjusted_mode;
13080                 else
13081                         crtc->hwmode.crtc_clock = 0;
13082
13083                 /*
13084                  * Update legacy state to satisfy fbc code. This can
13085                  * be removed when fbc uses the atomic state.
13086                  */
13087                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13088                         struct drm_plane_state *plane_state = crtc->primary->state;
13089
13090                         crtc->primary->fb = plane_state->fb;
13091                         crtc->x = plane_state->src_x >> 16;
13092                         crtc->y = plane_state->src_y >> 16;
13093                 }
13094         }
13095 }
13096
13097 static bool intel_fuzzy_clock_check(int clock1, int clock2)
13098 {
13099         int diff;
13100
13101         if (clock1 == clock2)
13102                 return true;
13103
13104         if (!clock1 || !clock2)
13105                 return false;
13106
13107         diff = abs(clock1 - clock2);
13108
13109         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13110                 return true;
13111
13112         return false;
13113 }
13114
13115 static bool
13116 intel_compare_m_n(unsigned int m, unsigned int n,
13117                   unsigned int m2, unsigned int n2,
13118                   bool exact)
13119 {
13120         if (m == m2 && n == n2)
13121                 return true;
13122
13123         if (exact || !m || !n || !m2 || !n2)
13124                 return false;
13125
13126         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13127
13128         if (n > n2) {
13129                 while (n > n2) {
13130                         m2 <<= 1;
13131                         n2 <<= 1;
13132                 }
13133         } else if (n < n2) {
13134                 while (n < n2) {
13135                         m <<= 1;
13136                         n <<= 1;
13137                 }
13138         }
13139
13140         if (n != n2)
13141                 return false;
13142
13143         return intel_fuzzy_clock_check(m, m2);
13144 }
13145
13146 static bool
13147 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13148                        struct intel_link_m_n *m2_n2,
13149                        bool adjust)
13150 {
13151         if (m_n->tu == m2_n2->tu &&
13152             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13153                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13154             intel_compare_m_n(m_n->link_m, m_n->link_n,
13155                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
13156                 if (adjust)
13157                         *m2_n2 = *m_n;
13158
13159                 return true;
13160         }
13161
13162         return false;
13163 }
13164
13165 static bool
13166 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
13167                           struct intel_crtc_state *current_config,
13168                           struct intel_crtc_state *pipe_config,
13169                           bool adjust)
13170 {
13171         bool ret = true;
13172
13173 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
13174         do { \
13175                 if (!adjust) \
13176                         DRM_ERROR(fmt, ##__VA_ARGS__); \
13177                 else \
13178                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
13179         } while (0)
13180
13181 #define PIPE_CONF_CHECK_X(name) \
13182         if (current_config->name != pipe_config->name) { \
13183                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13184                           "(expected 0x%08x, found 0x%08x)\n", \
13185                           current_config->name, \
13186                           pipe_config->name); \
13187                 ret = false; \
13188         }
13189
13190 #define PIPE_CONF_CHECK_I(name) \
13191         if (current_config->name != pipe_config->name) { \
13192                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13193                           "(expected %i, found %i)\n", \
13194                           current_config->name, \
13195                           pipe_config->name); \
13196                 ret = false; \
13197         }
13198
13199 #define PIPE_CONF_CHECK_P(name) \
13200         if (current_config->name != pipe_config->name) { \
13201                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13202                           "(expected %p, found %p)\n", \
13203                           current_config->name, \
13204                           pipe_config->name); \
13205                 ret = false; \
13206         }
13207
13208 #define PIPE_CONF_CHECK_M_N(name) \
13209         if (!intel_compare_link_m_n(&current_config->name, \
13210                                     &pipe_config->name,\
13211                                     adjust)) { \
13212                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13213                           "(expected tu %i gmch %i/%i link %i/%i, " \
13214                           "found tu %i, gmch %i/%i link %i/%i)\n", \
13215                           current_config->name.tu, \
13216                           current_config->name.gmch_m, \
13217                           current_config->name.gmch_n, \
13218                           current_config->name.link_m, \
13219                           current_config->name.link_n, \
13220                           pipe_config->name.tu, \
13221                           pipe_config->name.gmch_m, \
13222                           pipe_config->name.gmch_n, \
13223                           pipe_config->name.link_m, \
13224                           pipe_config->name.link_n); \
13225                 ret = false; \
13226         }
13227
13228 /* This is required for BDW+ where there is only one set of registers for
13229  * switching between high and low RR.
13230  * This macro can be used whenever a comparison has to be made between one
13231  * hw state and multiple sw state variables.
13232  */
13233 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13234         if (!intel_compare_link_m_n(&current_config->name, \
13235                                     &pipe_config->name, adjust) && \
13236             !intel_compare_link_m_n(&current_config->alt_name, \
13237                                     &pipe_config->name, adjust)) { \
13238                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13239                           "(expected tu %i gmch %i/%i link %i/%i, " \
13240                           "or tu %i gmch %i/%i link %i/%i, " \
13241                           "found tu %i, gmch %i/%i link %i/%i)\n", \
13242                           current_config->name.tu, \
13243                           current_config->name.gmch_m, \
13244                           current_config->name.gmch_n, \
13245                           current_config->name.link_m, \
13246                           current_config->name.link_n, \
13247                           current_config->alt_name.tu, \
13248                           current_config->alt_name.gmch_m, \
13249                           current_config->alt_name.gmch_n, \
13250                           current_config->alt_name.link_m, \
13251                           current_config->alt_name.link_n, \
13252                           pipe_config->name.tu, \
13253                           pipe_config->name.gmch_m, \
13254                           pipe_config->name.gmch_n, \
13255                           pipe_config->name.link_m, \
13256                           pipe_config->name.link_n); \
13257                 ret = false; \
13258         }
13259
13260 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
13261         if ((current_config->name ^ pipe_config->name) & (mask)) { \
13262                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
13263                           "(expected %i, found %i)\n", \
13264                           current_config->name & (mask), \
13265                           pipe_config->name & (mask)); \
13266                 ret = false; \
13267         }
13268
13269 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13270         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13271                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13272                           "(expected %i, found %i)\n", \
13273                           current_config->name, \
13274                           pipe_config->name); \
13275                 ret = false; \
13276         }
13277
13278 #define PIPE_CONF_QUIRK(quirk)  \
13279         ((current_config->quirks | pipe_config->quirks) & (quirk))
13280
13281         PIPE_CONF_CHECK_I(cpu_transcoder);
13282
13283         PIPE_CONF_CHECK_I(has_pch_encoder);
13284         PIPE_CONF_CHECK_I(fdi_lanes);
13285         PIPE_CONF_CHECK_M_N(fdi_m_n);
13286
13287         PIPE_CONF_CHECK_I(lane_count);
13288         PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13289
13290         if (INTEL_GEN(dev_priv) < 8) {
13291                 PIPE_CONF_CHECK_M_N(dp_m_n);
13292
13293                 if (current_config->has_drrs)
13294                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
13295         } else
13296                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13297
13298         PIPE_CONF_CHECK_X(output_types);
13299
13300         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13301         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13302         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13303         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13304         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13305         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13306
13307         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13308         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13309         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13310         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13311         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13312         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13313
13314         PIPE_CONF_CHECK_I(pixel_multiplier);
13315         PIPE_CONF_CHECK_I(has_hdmi_sink);
13316         if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13317             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13318                 PIPE_CONF_CHECK_I(limited_color_range);
13319         PIPE_CONF_CHECK_I(has_infoframe);
13320
13321         PIPE_CONF_CHECK_I(has_audio);
13322
13323         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13324                               DRM_MODE_FLAG_INTERLACE);
13325
13326         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13327                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13328                                       DRM_MODE_FLAG_PHSYNC);
13329                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13330                                       DRM_MODE_FLAG_NHSYNC);
13331                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13332                                       DRM_MODE_FLAG_PVSYNC);
13333                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13334                                       DRM_MODE_FLAG_NVSYNC);
13335         }
13336
13337         PIPE_CONF_CHECK_X(gmch_pfit.control);
13338         /* pfit ratios are autocomputed by the hw on gen4+ */
13339         if (INTEL_GEN(dev_priv) < 4)
13340                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13341         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13342
13343         if (!adjust) {
13344                 PIPE_CONF_CHECK_I(pipe_src_w);
13345                 PIPE_CONF_CHECK_I(pipe_src_h);
13346
13347                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
13348                 if (current_config->pch_pfit.enabled) {
13349                         PIPE_CONF_CHECK_X(pch_pfit.pos);
13350                         PIPE_CONF_CHECK_X(pch_pfit.size);
13351                 }
13352
13353                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13354         }
13355
13356         /* BDW+ don't expose a synchronous way to read the state */
13357         if (IS_HASWELL(dev_priv))
13358                 PIPE_CONF_CHECK_I(ips_enabled);
13359
13360         PIPE_CONF_CHECK_I(double_wide);
13361
13362         PIPE_CONF_CHECK_P(shared_dpll);
13363         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13364         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13365         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13366         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13367         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13368         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13369         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13370         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13371         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13372
13373         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13374         PIPE_CONF_CHECK_X(dsi_pll.div);
13375
13376         if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13377                 PIPE_CONF_CHECK_I(pipe_bpp);
13378
13379         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13380         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13381
13382 #undef PIPE_CONF_CHECK_X
13383 #undef PIPE_CONF_CHECK_I
13384 #undef PIPE_CONF_CHECK_P
13385 #undef PIPE_CONF_CHECK_FLAGS
13386 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13387 #undef PIPE_CONF_QUIRK
13388 #undef INTEL_ERR_OR_DBG_KMS
13389
13390         return ret;
13391 }
13392
13393 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13394                                            const struct intel_crtc_state *pipe_config)
13395 {
13396         if (pipe_config->has_pch_encoder) {
13397                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13398                                                             &pipe_config->fdi_m_n);
13399                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13400
13401                 /*
13402                  * FDI already provided one idea for the dotclock.
13403                  * Yell if the encoder disagrees.
13404                  */
13405                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13406                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13407                      fdi_dotclock, dotclock);
13408         }
13409 }
13410
13411 static void verify_wm_state(struct drm_crtc *crtc,
13412                             struct drm_crtc_state *new_state)
13413 {
13414         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13415         struct skl_ddb_allocation hw_ddb, *sw_ddb;
13416         struct skl_pipe_wm hw_wm, *sw_wm;
13417         struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13418         struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
13419         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13420         const enum pipe pipe = intel_crtc->pipe;
13421         int plane, level, max_level = ilk_wm_max_level(dev_priv);
13422
13423         if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
13424                 return;
13425
13426         skl_pipe_wm_get_hw_state(crtc, &hw_wm);
13427         sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
13428
13429         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13430         sw_ddb = &dev_priv->wm.skl_hw.ddb;
13431
13432         /* planes */
13433         for_each_universal_plane(dev_priv, pipe, plane) {
13434                 hw_plane_wm = &hw_wm.planes[plane];
13435                 sw_plane_wm = &sw_wm->planes[plane];
13436
13437                 /* Watermarks */
13438                 for (level = 0; level <= max_level; level++) {
13439                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13440                                                 &sw_plane_wm->wm[level]))
13441                                 continue;
13442
13443                         DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13444                                   pipe_name(pipe), plane + 1, level,
13445                                   sw_plane_wm->wm[level].plane_en,
13446                                   sw_plane_wm->wm[level].plane_res_b,
13447                                   sw_plane_wm->wm[level].plane_res_l,
13448                                   hw_plane_wm->wm[level].plane_en,
13449                                   hw_plane_wm->wm[level].plane_res_b,
13450                                   hw_plane_wm->wm[level].plane_res_l);
13451                 }
13452
13453                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13454                                          &sw_plane_wm->trans_wm)) {
13455                         DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13456                                   pipe_name(pipe), plane + 1,
13457                                   sw_plane_wm->trans_wm.plane_en,
13458                                   sw_plane_wm->trans_wm.plane_res_b,
13459                                   sw_plane_wm->trans_wm.plane_res_l,
13460                                   hw_plane_wm->trans_wm.plane_en,
13461                                   hw_plane_wm->trans_wm.plane_res_b,
13462                                   hw_plane_wm->trans_wm.plane_res_l);
13463                 }
13464
13465                 /* DDB */
13466                 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
13467                 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
13468
13469                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13470                         DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13471                                   pipe_name(pipe), plane + 1,
13472                                   sw_ddb_entry->start, sw_ddb_entry->end,
13473                                   hw_ddb_entry->start, hw_ddb_entry->end);
13474                 }
13475         }
13476
13477         /*
13478          * cursor
13479          * If the cursor plane isn't active, we may not have updated it's ddb
13480          * allocation. In that case since the ddb allocation will be updated
13481          * once the plane becomes visible, we can skip this check
13482          */
13483         if (intel_crtc->cursor_addr) {
13484                 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
13485                 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
13486
13487                 /* Watermarks */
13488                 for (level = 0; level <= max_level; level++) {
13489                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13490                                                 &sw_plane_wm->wm[level]))
13491                                 continue;
13492
13493                         DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13494                                   pipe_name(pipe), level,
13495                                   sw_plane_wm->wm[level].plane_en,
13496                                   sw_plane_wm->wm[level].plane_res_b,
13497                                   sw_plane_wm->wm[level].plane_res_l,
13498                                   hw_plane_wm->wm[level].plane_en,
13499                                   hw_plane_wm->wm[level].plane_res_b,
13500                                   hw_plane_wm->wm[level].plane_res_l);
13501                 }
13502
13503                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13504                                          &sw_plane_wm->trans_wm)) {
13505                         DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13506                                   pipe_name(pipe),
13507                                   sw_plane_wm->trans_wm.plane_en,
13508                                   sw_plane_wm->trans_wm.plane_res_b,
13509                                   sw_plane_wm->trans_wm.plane_res_l,
13510                                   hw_plane_wm->trans_wm.plane_en,
13511                                   hw_plane_wm->trans_wm.plane_res_b,
13512                                   hw_plane_wm->trans_wm.plane_res_l);
13513                 }
13514
13515                 /* DDB */
13516                 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13517                 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13518
13519                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13520                         DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13521                                   pipe_name(pipe),
13522                                   sw_ddb_entry->start, sw_ddb_entry->end,
13523                                   hw_ddb_entry->start, hw_ddb_entry->end);
13524                 }
13525         }
13526 }
13527
13528 static void
13529 verify_connector_state(struct drm_device *dev,
13530                        struct drm_atomic_state *state,
13531                        struct drm_crtc *crtc)
13532 {
13533         struct drm_connector *connector;
13534         struct drm_connector_state *old_conn_state;
13535         int i;
13536
13537         for_each_connector_in_state(state, connector, old_conn_state, i) {
13538                 struct drm_encoder *encoder = connector->encoder;
13539                 struct drm_connector_state *state = connector->state;
13540
13541                 if (state->crtc != crtc)
13542                         continue;
13543
13544                 intel_connector_verify_state(to_intel_connector(connector));
13545
13546                 I915_STATE_WARN(state->best_encoder != encoder,
13547                      "connector's atomic encoder doesn't match legacy encoder\n");
13548         }
13549 }
13550
13551 static void
13552 verify_encoder_state(struct drm_device *dev)
13553 {
13554         struct intel_encoder *encoder;
13555         struct intel_connector *connector;
13556
13557         for_each_intel_encoder(dev, encoder) {
13558                 bool enabled = false;
13559                 enum pipe pipe;
13560
13561                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13562                               encoder->base.base.id,
13563                               encoder->base.name);
13564
13565                 for_each_intel_connector(dev, connector) {
13566                         if (connector->base.state->best_encoder != &encoder->base)
13567                                 continue;
13568                         enabled = true;
13569
13570                         I915_STATE_WARN(connector->base.state->crtc !=
13571                                         encoder->base.crtc,
13572                              "connector's crtc doesn't match encoder crtc\n");
13573                 }
13574
13575                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13576                      "encoder's enabled state mismatch "
13577                      "(expected %i, found %i)\n",
13578                      !!encoder->base.crtc, enabled);
13579
13580                 if (!encoder->base.crtc) {
13581                         bool active;
13582
13583                         active = encoder->get_hw_state(encoder, &pipe);
13584                         I915_STATE_WARN(active,
13585                              "encoder detached but still enabled on pipe %c.\n",
13586                              pipe_name(pipe));
13587                 }
13588         }
13589 }
13590
13591 static void
13592 verify_crtc_state(struct drm_crtc *crtc,
13593                   struct drm_crtc_state *old_crtc_state,
13594                   struct drm_crtc_state *new_crtc_state)
13595 {
13596         struct drm_device *dev = crtc->dev;
13597         struct drm_i915_private *dev_priv = to_i915(dev);
13598         struct intel_encoder *encoder;
13599         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13600         struct intel_crtc_state *pipe_config, *sw_config;
13601         struct drm_atomic_state *old_state;
13602         bool active;
13603
13604         old_state = old_crtc_state->state;
13605         __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13606         pipe_config = to_intel_crtc_state(old_crtc_state);
13607         memset(pipe_config, 0, sizeof(*pipe_config));
13608         pipe_config->base.crtc = crtc;
13609         pipe_config->base.state = old_state;
13610
13611         DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13612
13613         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13614
13615         /* hw state is inconsistent with the pipe quirk */
13616         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13617             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13618                 active = new_crtc_state->active;
13619
13620         I915_STATE_WARN(new_crtc_state->active != active,
13621              "crtc active state doesn't match with hw state "
13622              "(expected %i, found %i)\n", new_crtc_state->active, active);
13623
13624         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13625              "transitional active state does not match atomic hw state "
13626              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13627
13628         for_each_encoder_on_crtc(dev, crtc, encoder) {
13629                 enum pipe pipe;
13630
13631                 active = encoder->get_hw_state(encoder, &pipe);
13632                 I915_STATE_WARN(active != new_crtc_state->active,
13633                         "[ENCODER:%i] active %i with crtc active %i\n",
13634                         encoder->base.base.id, active, new_crtc_state->active);
13635
13636                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13637                                 "Encoder connected to wrong pipe %c\n",
13638                                 pipe_name(pipe));
13639
13640                 if (active) {
13641                         pipe_config->output_types |= 1 << encoder->type;
13642                         encoder->get_config(encoder, pipe_config);
13643                 }
13644         }
13645
13646         if (!new_crtc_state->active)
13647                 return;
13648
13649         intel_pipe_config_sanity_check(dev_priv, pipe_config);
13650
13651         sw_config = to_intel_crtc_state(crtc->state);
13652         if (!intel_pipe_config_compare(dev_priv, sw_config,
13653                                        pipe_config, false)) {
13654                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13655                 intel_dump_pipe_config(intel_crtc, pipe_config,
13656                                        "[hw state]");
13657                 intel_dump_pipe_config(intel_crtc, sw_config,
13658                                        "[sw state]");
13659         }
13660 }
13661
13662 static void
13663 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13664                          struct intel_shared_dpll *pll,
13665                          struct drm_crtc *crtc,
13666                          struct drm_crtc_state *new_state)
13667 {
13668         struct intel_dpll_hw_state dpll_hw_state;
13669         unsigned crtc_mask;
13670         bool active;
13671
13672         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13673
13674         DRM_DEBUG_KMS("%s\n", pll->name);
13675
13676         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13677
13678         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13679                 I915_STATE_WARN(!pll->on && pll->active_mask,
13680                      "pll in active use but not on in sw tracking\n");
13681                 I915_STATE_WARN(pll->on && !pll->active_mask,
13682                      "pll is on but not used by any active crtc\n");
13683                 I915_STATE_WARN(pll->on != active,
13684                      "pll on state mismatch (expected %i, found %i)\n",
13685                      pll->on, active);
13686         }
13687
13688         if (!crtc) {
13689                 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13690                                 "more active pll users than references: %x vs %x\n",
13691                                 pll->active_mask, pll->config.crtc_mask);
13692
13693                 return;
13694         }
13695
13696         crtc_mask = 1 << drm_crtc_index(crtc);
13697
13698         if (new_state->active)
13699                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13700                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13701                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13702         else
13703                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13704                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13705                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13706
13707         I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13708                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13709                         crtc_mask, pll->config.crtc_mask);
13710
13711         I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13712                                           &dpll_hw_state,
13713                                           sizeof(dpll_hw_state)),
13714                         "pll hw state mismatch\n");
13715 }
13716
13717 static void
13718 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13719                          struct drm_crtc_state *old_crtc_state,
13720                          struct drm_crtc_state *new_crtc_state)
13721 {
13722         struct drm_i915_private *dev_priv = to_i915(dev);
13723         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13724         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13725
13726         if (new_state->shared_dpll)
13727                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13728
13729         if (old_state->shared_dpll &&
13730             old_state->shared_dpll != new_state->shared_dpll) {
13731                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13732                 struct intel_shared_dpll *pll = old_state->shared_dpll;
13733
13734                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13735                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13736                                 pipe_name(drm_crtc_index(crtc)));
13737                 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13738                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13739                                 pipe_name(drm_crtc_index(crtc)));
13740         }
13741 }
13742
13743 static void
13744 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13745                           struct drm_atomic_state *state,
13746                           struct drm_crtc_state *old_state,
13747                           struct drm_crtc_state *new_state)
13748 {
13749         if (!needs_modeset(new_state) &&
13750             !to_intel_crtc_state(new_state)->update_pipe)
13751                 return;
13752
13753         verify_wm_state(crtc, new_state);
13754         verify_connector_state(crtc->dev, state, crtc);
13755         verify_crtc_state(crtc, old_state, new_state);
13756         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13757 }
13758
13759 static void
13760 verify_disabled_dpll_state(struct drm_device *dev)
13761 {
13762         struct drm_i915_private *dev_priv = to_i915(dev);
13763         int i;
13764
13765         for (i = 0; i < dev_priv->num_shared_dpll; i++)
13766                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13767 }
13768
13769 static void
13770 intel_modeset_verify_disabled(struct drm_device *dev,
13771                               struct drm_atomic_state *state)
13772 {
13773         verify_encoder_state(dev);
13774         verify_connector_state(dev, state, NULL);
13775         verify_disabled_dpll_state(dev);
13776 }
13777
13778 static void update_scanline_offset(struct intel_crtc *crtc)
13779 {
13780         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13781
13782         /*
13783          * The scanline counter increments at the leading edge of hsync.
13784          *
13785          * On most platforms it starts counting from vtotal-1 on the
13786          * first active line. That means the scanline counter value is
13787          * always one less than what we would expect. Ie. just after
13788          * start of vblank, which also occurs at start of hsync (on the
13789          * last active line), the scanline counter will read vblank_start-1.
13790          *
13791          * On gen2 the scanline counter starts counting from 1 instead
13792          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13793          * to keep the value positive), instead of adding one.
13794          *
13795          * On HSW+ the behaviour of the scanline counter depends on the output
13796          * type. For DP ports it behaves like most other platforms, but on HDMI
13797          * there's an extra 1 line difference. So we need to add two instead of
13798          * one to the value.
13799          */
13800         if (IS_GEN2(dev_priv)) {
13801                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13802                 int vtotal;
13803
13804                 vtotal = adjusted_mode->crtc_vtotal;
13805                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13806                         vtotal /= 2;
13807
13808                 crtc->scanline_offset = vtotal - 1;
13809         } else if (HAS_DDI(dev_priv) &&
13810                    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13811                 crtc->scanline_offset = 2;
13812         } else
13813                 crtc->scanline_offset = 1;
13814 }
13815
13816 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13817 {
13818         struct drm_device *dev = state->dev;
13819         struct drm_i915_private *dev_priv = to_i915(dev);
13820         struct intel_shared_dpll_config *shared_dpll = NULL;
13821         struct drm_crtc *crtc;
13822         struct drm_crtc_state *crtc_state;
13823         int i;
13824
13825         if (!dev_priv->display.crtc_compute_clock)
13826                 return;
13827
13828         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13829                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13830                 struct intel_shared_dpll *old_dpll =
13831                         to_intel_crtc_state(crtc->state)->shared_dpll;
13832
13833                 if (!needs_modeset(crtc_state))
13834                         continue;
13835
13836                 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13837
13838                 if (!old_dpll)
13839                         continue;
13840
13841                 if (!shared_dpll)
13842                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13843
13844                 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13845         }
13846 }
13847
13848 /*
13849  * This implements the workaround described in the "notes" section of the mode
13850  * set sequence documentation. When going from no pipes or single pipe to
13851  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13852  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13853  */
13854 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13855 {
13856         struct drm_crtc_state *crtc_state;
13857         struct intel_crtc *intel_crtc;
13858         struct drm_crtc *crtc;
13859         struct intel_crtc_state *first_crtc_state = NULL;
13860         struct intel_crtc_state *other_crtc_state = NULL;
13861         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13862         int i;
13863
13864         /* look at all crtc's that are going to be enabled in during modeset */
13865         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13866                 intel_crtc = to_intel_crtc(crtc);
13867
13868                 if (!crtc_state->active || !needs_modeset(crtc_state))
13869                         continue;
13870
13871                 if (first_crtc_state) {
13872                         other_crtc_state = to_intel_crtc_state(crtc_state);
13873                         break;
13874                 } else {
13875                         first_crtc_state = to_intel_crtc_state(crtc_state);
13876                         first_pipe = intel_crtc->pipe;
13877                 }
13878         }
13879
13880         /* No workaround needed? */
13881         if (!first_crtc_state)
13882                 return 0;
13883
13884         /* w/a possibly needed, check how many crtc's are already enabled. */
13885         for_each_intel_crtc(state->dev, intel_crtc) {
13886                 struct intel_crtc_state *pipe_config;
13887
13888                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13889                 if (IS_ERR(pipe_config))
13890                         return PTR_ERR(pipe_config);
13891
13892                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13893
13894                 if (!pipe_config->base.active ||
13895                     needs_modeset(&pipe_config->base))
13896                         continue;
13897
13898                 /* 2 or more enabled crtcs means no need for w/a */
13899                 if (enabled_pipe != INVALID_PIPE)
13900                         return 0;
13901
13902                 enabled_pipe = intel_crtc->pipe;
13903         }
13904
13905         if (enabled_pipe != INVALID_PIPE)
13906                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13907         else if (other_crtc_state)
13908                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13909
13910         return 0;
13911 }
13912
13913 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13914 {
13915         struct drm_crtc *crtc;
13916         struct drm_crtc_state *crtc_state;
13917         int ret = 0;
13918
13919         /* add all active pipes to the state */
13920         for_each_crtc(state->dev, crtc) {
13921                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13922                 if (IS_ERR(crtc_state))
13923                         return PTR_ERR(crtc_state);
13924
13925                 if (!crtc_state->active || needs_modeset(crtc_state))
13926                         continue;
13927
13928                 crtc_state->mode_changed = true;
13929
13930                 ret = drm_atomic_add_affected_connectors(state, crtc);
13931                 if (ret)
13932                         break;
13933
13934                 ret = drm_atomic_add_affected_planes(state, crtc);
13935                 if (ret)
13936                         break;
13937         }
13938
13939         return ret;
13940 }
13941
13942 static int intel_modeset_checks(struct drm_atomic_state *state)
13943 {
13944         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13945         struct drm_i915_private *dev_priv = to_i915(state->dev);
13946         struct drm_crtc *crtc;
13947         struct drm_crtc_state *crtc_state;
13948         int ret = 0, i;
13949
13950         if (!check_digital_port_conflicts(state)) {
13951                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13952                 return -EINVAL;
13953         }
13954
13955         intel_state->modeset = true;
13956         intel_state->active_crtcs = dev_priv->active_crtcs;
13957
13958         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13959                 if (crtc_state->active)
13960                         intel_state->active_crtcs |= 1 << i;
13961                 else
13962                         intel_state->active_crtcs &= ~(1 << i);
13963
13964                 if (crtc_state->active != crtc->state->active)
13965                         intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13966         }
13967
13968         /*
13969          * See if the config requires any additional preparation, e.g.
13970          * to adjust global state with pipes off.  We need to do this
13971          * here so we can get the modeset_pipe updated config for the new
13972          * mode set on this crtc.  For other crtcs we need to use the
13973          * adjusted_mode bits in the crtc directly.
13974          */
13975         if (dev_priv->display.modeset_calc_cdclk) {
13976                 if (!intel_state->cdclk_pll_vco)
13977                         intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13978                 if (!intel_state->cdclk_pll_vco)
13979                         intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13980
13981                 ret = dev_priv->display.modeset_calc_cdclk(state);
13982                 if (ret < 0)
13983                         return ret;
13984
13985                 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13986                     intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13987                         ret = intel_modeset_all_pipes(state);
13988
13989                 if (ret < 0)
13990                         return ret;
13991
13992                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13993                               intel_state->cdclk, intel_state->dev_cdclk);
13994         } else {
13995                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13996         }
13997
13998         intel_modeset_clear_plls(state);
13999
14000         if (IS_HASWELL(dev_priv))
14001                 return haswell_mode_set_planes_workaround(state);
14002
14003         return 0;
14004 }
14005
14006 /*
14007  * Handle calculation of various watermark data at the end of the atomic check
14008  * phase.  The code here should be run after the per-crtc and per-plane 'check'
14009  * handlers to ensure that all derived state has been updated.
14010  */
14011 static int calc_watermark_data(struct drm_atomic_state *state)
14012 {
14013         struct drm_device *dev = state->dev;
14014         struct drm_i915_private *dev_priv = to_i915(dev);
14015
14016         /* Is there platform-specific watermark information to calculate? */
14017         if (dev_priv->display.compute_global_watermarks)
14018                 return dev_priv->display.compute_global_watermarks(state);
14019
14020         return 0;
14021 }
14022
14023 /**
14024  * intel_atomic_check - validate state object
14025  * @dev: drm device
14026  * @state: state to validate
14027  */
14028 static int intel_atomic_check(struct drm_device *dev,
14029                               struct drm_atomic_state *state)
14030 {
14031         struct drm_i915_private *dev_priv = to_i915(dev);
14032         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14033         struct drm_crtc *crtc;
14034         struct drm_crtc_state *crtc_state;
14035         int ret, i;
14036         bool any_ms = false;
14037
14038         ret = drm_atomic_helper_check_modeset(dev, state);
14039         if (ret)
14040                 return ret;
14041
14042         for_each_crtc_in_state(state, crtc, crtc_state, i) {
14043                 struct intel_crtc_state *pipe_config =
14044                         to_intel_crtc_state(crtc_state);
14045
14046                 /* Catch I915_MODE_FLAG_INHERITED */
14047                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
14048                         crtc_state->mode_changed = true;
14049
14050                 if (!needs_modeset(crtc_state))
14051                         continue;
14052
14053                 if (!crtc_state->enable) {
14054                         any_ms = true;
14055                         continue;
14056                 }
14057
14058                 /* FIXME: For only active_changed we shouldn't need to do any
14059                  * state recomputation at all. */
14060
14061                 ret = drm_atomic_add_affected_connectors(state, crtc);
14062                 if (ret)
14063                         return ret;
14064
14065                 ret = intel_modeset_pipe_config(crtc, pipe_config);
14066                 if (ret) {
14067                         intel_dump_pipe_config(to_intel_crtc(crtc),
14068                                                pipe_config, "[failed]");
14069                         return ret;
14070                 }
14071
14072                 if (i915.fastboot &&
14073                     intel_pipe_config_compare(dev_priv,
14074                                         to_intel_crtc_state(crtc->state),
14075                                         pipe_config, true)) {
14076                         crtc_state->mode_changed = false;
14077                         to_intel_crtc_state(crtc_state)->update_pipe = true;
14078                 }
14079
14080                 if (needs_modeset(crtc_state))
14081                         any_ms = true;
14082
14083                 ret = drm_atomic_add_affected_planes(state, crtc);
14084                 if (ret)
14085                         return ret;
14086
14087                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14088                                        needs_modeset(crtc_state) ?
14089                                        "[modeset]" : "[fastset]");
14090         }
14091
14092         if (any_ms) {
14093                 ret = intel_modeset_checks(state);
14094
14095                 if (ret)
14096                         return ret;
14097         } else {
14098                 intel_state->cdclk = dev_priv->atomic_cdclk_freq;
14099         }
14100
14101         ret = drm_atomic_helper_check_planes(dev, state);
14102         if (ret)
14103                 return ret;
14104
14105         intel_fbc_choose_crtc(dev_priv, state);
14106         return calc_watermark_data(state);
14107 }
14108
14109 static int intel_atomic_prepare_commit(struct drm_device *dev,
14110                                        struct drm_atomic_state *state)
14111 {
14112         struct drm_i915_private *dev_priv = to_i915(dev);
14113         struct drm_crtc_state *crtc_state;
14114         struct drm_crtc *crtc;
14115         int i, ret;
14116
14117         for_each_crtc_in_state(state, crtc, crtc_state, i) {
14118                 if (state->legacy_cursor_update)
14119                         continue;
14120
14121                 ret = intel_crtc_wait_for_pending_flips(crtc);
14122                 if (ret)
14123                         return ret;
14124
14125                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14126                         flush_workqueue(dev_priv->wq);
14127         }
14128
14129         ret = mutex_lock_interruptible(&dev->struct_mutex);
14130         if (ret)
14131                 return ret;
14132
14133         ret = drm_atomic_helper_prepare_planes(dev, state);
14134         mutex_unlock(&dev->struct_mutex);
14135
14136         return ret;
14137 }
14138
14139 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14140 {
14141         struct drm_device *dev = crtc->base.dev;
14142
14143         if (!dev->max_vblank_count)
14144                 return drm_accurate_vblank_count(&crtc->base);
14145
14146         return dev->driver->get_vblank_counter(dev, crtc->pipe);
14147 }
14148
14149 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14150                                           struct drm_i915_private *dev_priv,
14151                                           unsigned crtc_mask)
14152 {
14153         unsigned last_vblank_count[I915_MAX_PIPES];
14154         enum pipe pipe;
14155         int ret;
14156
14157         if (!crtc_mask)
14158                 return;
14159
14160         for_each_pipe(dev_priv, pipe) {
14161                 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14162                                                                   pipe);
14163
14164                 if (!((1 << pipe) & crtc_mask))
14165                         continue;
14166
14167                 ret = drm_crtc_vblank_get(&crtc->base);
14168                 if (WARN_ON(ret != 0)) {
14169                         crtc_mask &= ~(1 << pipe);
14170                         continue;
14171                 }
14172
14173                 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
14174         }
14175
14176         for_each_pipe(dev_priv, pipe) {
14177                 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14178                                                                   pipe);
14179                 long lret;
14180
14181                 if (!((1 << pipe) & crtc_mask))
14182                         continue;
14183
14184                 lret = wait_event_timeout(dev->vblank[pipe].queue,
14185                                 last_vblank_count[pipe] !=
14186                                         drm_crtc_vblank_count(&crtc->base),
14187                                 msecs_to_jiffies(50));
14188
14189                 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
14190
14191                 drm_crtc_vblank_put(&crtc->base);
14192         }
14193 }
14194
14195 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
14196 {
14197         /* fb updated, need to unpin old fb */
14198         if (crtc_state->fb_changed)
14199                 return true;
14200
14201         /* wm changes, need vblank before final wm's */
14202         if (crtc_state->update_wm_post)
14203                 return true;
14204
14205         /*
14206          * cxsr is re-enabled after vblank.
14207          * This is already handled by crtc_state->update_wm_post,
14208          * but added for clarity.
14209          */
14210         if (crtc_state->disable_cxsr)
14211                 return true;
14212
14213         return false;
14214 }
14215
14216 static void intel_update_crtc(struct drm_crtc *crtc,
14217                               struct drm_atomic_state *state,
14218                               struct drm_crtc_state *old_crtc_state,
14219                               unsigned int *crtc_vblank_mask)
14220 {
14221         struct drm_device *dev = crtc->dev;
14222         struct drm_i915_private *dev_priv = to_i915(dev);
14223         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14224         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14225         bool modeset = needs_modeset(crtc->state);
14226
14227         if (modeset) {
14228                 update_scanline_offset(intel_crtc);
14229                 dev_priv->display.crtc_enable(pipe_config, state);
14230         } else {
14231                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14232         }
14233
14234         if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14235                 intel_fbc_enable(
14236                     intel_crtc, pipe_config,
14237                     to_intel_plane_state(crtc->primary->state));
14238         }
14239
14240         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14241
14242         if (needs_vblank_wait(pipe_config))
14243                 *crtc_vblank_mask |= drm_crtc_mask(crtc);
14244 }
14245
14246 static void intel_update_crtcs(struct drm_atomic_state *state,
14247                                unsigned int *crtc_vblank_mask)
14248 {
14249         struct drm_crtc *crtc;
14250         struct drm_crtc_state *old_crtc_state;
14251         int i;
14252
14253         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14254                 if (!crtc->state->active)
14255                         continue;
14256
14257                 intel_update_crtc(crtc, state, old_crtc_state,
14258                                   crtc_vblank_mask);
14259         }
14260 }
14261
14262 static void skl_update_crtcs(struct drm_atomic_state *state,
14263                              unsigned int *crtc_vblank_mask)
14264 {
14265         struct drm_i915_private *dev_priv = to_i915(state->dev);
14266         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14267         struct drm_crtc *crtc;
14268         struct intel_crtc *intel_crtc;
14269         struct drm_crtc_state *old_crtc_state;
14270         struct intel_crtc_state *cstate;
14271         unsigned int updated = 0;
14272         bool progress;
14273         enum pipe pipe;
14274         int i;
14275
14276         const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
14277
14278         for_each_crtc_in_state(state, crtc, old_crtc_state, i)
14279                 /* ignore allocations for crtc's that have been turned off. */
14280                 if (crtc->state->active)
14281                         entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
14282
14283         /*
14284          * Whenever the number of active pipes changes, we need to make sure we
14285          * update the pipes in the right order so that their ddb allocations
14286          * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14287          * cause pipe underruns and other bad stuff.
14288          */
14289         do {
14290                 progress = false;
14291
14292                 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14293                         bool vbl_wait = false;
14294                         unsigned int cmask = drm_crtc_mask(crtc);
14295
14296                         intel_crtc = to_intel_crtc(crtc);
14297                         cstate = to_intel_crtc_state(crtc->state);
14298                         pipe = intel_crtc->pipe;
14299
14300                         if (updated & cmask || !cstate->base.active)
14301                                 continue;
14302
14303                         if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
14304                                 continue;
14305
14306                         updated |= cmask;
14307                         entries[i] = &cstate->wm.skl.ddb;
14308
14309                         /*
14310                          * If this is an already active pipe, it's DDB changed,
14311                          * and this isn't the last pipe that needs updating
14312                          * then we need to wait for a vblank to pass for the
14313                          * new ddb allocation to take effect.
14314                          */
14315                         if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
14316                                                  &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
14317                             !crtc->state->active_changed &&
14318                             intel_state->wm_results.dirty_pipes != updated)
14319                                 vbl_wait = true;
14320
14321                         intel_update_crtc(crtc, state, old_crtc_state,
14322                                           crtc_vblank_mask);
14323
14324                         if (vbl_wait)
14325                                 intel_wait_for_vblank(dev_priv, pipe);
14326
14327                         progress = true;
14328                 }
14329         } while (progress);
14330 }
14331
14332 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
14333 {
14334         struct drm_device *dev = state->dev;
14335         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14336         struct drm_i915_private *dev_priv = to_i915(dev);
14337         struct drm_crtc_state *old_crtc_state;
14338         struct drm_crtc *crtc;
14339         struct intel_crtc_state *intel_cstate;
14340         bool hw_check = intel_state->modeset;
14341         unsigned long put_domains[I915_MAX_PIPES] = {};
14342         unsigned crtc_vblank_mask = 0;
14343         int i;
14344
14345         drm_atomic_helper_wait_for_dependencies(state);
14346
14347         if (intel_state->modeset)
14348                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14349
14350         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14351                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14352
14353                 if (needs_modeset(crtc->state) ||
14354                     to_intel_crtc_state(crtc->state)->update_pipe) {
14355                         hw_check = true;
14356
14357                         put_domains[to_intel_crtc(crtc)->pipe] =
14358                                 modeset_get_crtc_power_domains(crtc,
14359                                         to_intel_crtc_state(crtc->state));
14360                 }
14361
14362                 if (!needs_modeset(crtc->state))
14363                         continue;
14364
14365                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14366
14367                 if (old_crtc_state->active) {
14368                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
14369                         dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
14370                         intel_crtc->active = false;
14371                         intel_fbc_disable(intel_crtc);
14372                         intel_disable_shared_dpll(intel_crtc);
14373
14374                         /*
14375                          * Underruns don't always raise
14376                          * interrupts, so check manually.
14377                          */
14378                         intel_check_cpu_fifo_underruns(dev_priv);
14379                         intel_check_pch_fifo_underruns(dev_priv);
14380
14381                         if (!crtc->state->active) {
14382                                 /*
14383                                  * Make sure we don't call initial_watermarks
14384                                  * for ILK-style watermark updates.
14385                                  */
14386                                 if (dev_priv->display.atomic_update_watermarks)
14387                                         dev_priv->display.initial_watermarks(intel_state,
14388                                                                              to_intel_crtc_state(crtc->state));
14389                                 else
14390                                         intel_update_watermarks(intel_crtc);
14391                         }
14392                 }
14393         }
14394
14395         /* Only after disabling all output pipelines that will be changed can we
14396          * update the the output configuration. */
14397         intel_modeset_update_crtc_state(state);
14398
14399         if (intel_state->modeset) {
14400                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
14401
14402                 if (dev_priv->display.modeset_commit_cdclk &&
14403                     (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14404                      intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
14405                         dev_priv->display.modeset_commit_cdclk(state);
14406
14407                 /*
14408                  * SKL workaround: bspec recommends we disable the SAGV when we
14409                  * have more then one pipe enabled
14410                  */
14411                 if (!intel_can_enable_sagv(state))
14412                         intel_disable_sagv(dev_priv);
14413
14414                 intel_modeset_verify_disabled(dev, state);
14415         }
14416
14417         /* Complete the events for pipes that have now been disabled */
14418         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14419                 bool modeset = needs_modeset(crtc->state);
14420
14421                 /* Complete events for now disable pipes here. */
14422                 if (modeset && !crtc->state->active && crtc->state->event) {
14423                         spin_lock_irq(&dev->event_lock);
14424                         drm_crtc_send_vblank_event(crtc, crtc->state->event);
14425                         spin_unlock_irq(&dev->event_lock);
14426
14427                         crtc->state->event = NULL;
14428                 }
14429         }
14430
14431         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14432         dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14433
14434         /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14435          * already, but still need the state for the delayed optimization. To
14436          * fix this:
14437          * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14438          * - schedule that vblank worker _before_ calling hw_done
14439          * - at the start of commit_tail, cancel it _synchrously
14440          * - switch over to the vblank wait helper in the core after that since
14441          *   we don't need out special handling any more.
14442          */
14443         if (!state->legacy_cursor_update)
14444                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14445
14446         /*
14447          * Now that the vblank has passed, we can go ahead and program the
14448          * optimal watermarks on platforms that need two-step watermark
14449          * programming.
14450          *
14451          * TODO: Move this (and other cleanup) to an async worker eventually.
14452          */
14453         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14454                 intel_cstate = to_intel_crtc_state(crtc->state);
14455
14456                 if (dev_priv->display.optimize_watermarks)
14457                         dev_priv->display.optimize_watermarks(intel_state,
14458                                                               intel_cstate);
14459         }
14460
14461         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14462                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14463
14464                 if (put_domains[i])
14465                         modeset_put_power_domains(dev_priv, put_domains[i]);
14466
14467                 intel_modeset_verify_crtc(crtc, state, old_crtc_state, crtc->state);
14468         }
14469
14470         if (intel_state->modeset && intel_can_enable_sagv(state))
14471                 intel_enable_sagv(dev_priv);
14472
14473         drm_atomic_helper_commit_hw_done(state);
14474
14475         if (intel_state->modeset)
14476                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14477
14478         mutex_lock(&dev->struct_mutex);
14479         drm_atomic_helper_cleanup_planes(dev, state);
14480         mutex_unlock(&dev->struct_mutex);
14481
14482         drm_atomic_helper_commit_cleanup_done(state);
14483
14484         drm_atomic_state_put(state);
14485
14486         /* As one of the primary mmio accessors, KMS has a high likelihood
14487          * of triggering bugs in unclaimed access. After we finish
14488          * modesetting, see if an error has been flagged, and if so
14489          * enable debugging for the next modeset - and hope we catch
14490          * the culprit.
14491          *
14492          * XXX note that we assume display power is on at this point.
14493          * This might hold true now but we need to add pm helper to check
14494          * unclaimed only when the hardware is on, as atomic commits
14495          * can happen also when the device is completely off.
14496          */
14497         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
14498 }
14499
14500 static void intel_atomic_commit_work(struct work_struct *work)
14501 {
14502         struct drm_atomic_state *state =
14503                 container_of(work, struct drm_atomic_state, commit_work);
14504
14505         intel_atomic_commit_tail(state);
14506 }
14507
14508 static int __i915_sw_fence_call
14509 intel_atomic_commit_ready(struct i915_sw_fence *fence,
14510                           enum i915_sw_fence_notify notify)
14511 {
14512         struct intel_atomic_state *state =
14513                 container_of(fence, struct intel_atomic_state, commit_ready);
14514
14515         switch (notify) {
14516         case FENCE_COMPLETE:
14517                 if (state->base.commit_work.func)
14518                         queue_work(system_unbound_wq, &state->base.commit_work);
14519                 break;
14520
14521         case FENCE_FREE:
14522                 {
14523                         struct intel_atomic_helper *helper =
14524                                 &to_i915(state->base.dev)->atomic_helper;
14525
14526                         if (llist_add(&state->freed, &helper->free_list))
14527                                 schedule_work(&helper->free_work);
14528                         break;
14529                 }
14530         }
14531
14532         return NOTIFY_DONE;
14533 }
14534
14535 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14536 {
14537         struct drm_plane_state *old_plane_state;
14538         struct drm_plane *plane;
14539         int i;
14540
14541         for_each_plane_in_state(state, plane, old_plane_state, i)
14542                 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14543                                   intel_fb_obj(plane->state->fb),
14544                                   to_intel_plane(plane)->frontbuffer_bit);
14545 }
14546
14547 /**
14548  * intel_atomic_commit - commit validated state object
14549  * @dev: DRM device
14550  * @state: the top-level driver state object
14551  * @nonblock: nonblocking commit
14552  *
14553  * This function commits a top-level state object that has been validated
14554  * with drm_atomic_helper_check().
14555  *
14556  * RETURNS
14557  * Zero for success or -errno.
14558  */
14559 static int intel_atomic_commit(struct drm_device *dev,
14560                                struct drm_atomic_state *state,
14561                                bool nonblock)
14562 {
14563         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14564         struct drm_i915_private *dev_priv = to_i915(dev);
14565         int ret = 0;
14566
14567         ret = drm_atomic_helper_setup_commit(state, nonblock);
14568         if (ret)
14569                 return ret;
14570
14571         drm_atomic_state_get(state);
14572         i915_sw_fence_init(&intel_state->commit_ready,
14573                            intel_atomic_commit_ready);
14574
14575         ret = intel_atomic_prepare_commit(dev, state);
14576         if (ret) {
14577                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14578                 i915_sw_fence_commit(&intel_state->commit_ready);
14579                 return ret;
14580         }
14581
14582         drm_atomic_helper_swap_state(state, true);
14583         dev_priv->wm.distrust_bios_wm = false;
14584         intel_shared_dpll_commit(state);
14585         intel_atomic_track_fbs(state);
14586
14587         if (intel_state->modeset) {
14588                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14589                        sizeof(intel_state->min_pixclk));
14590                 dev_priv->active_crtcs = intel_state->active_crtcs;
14591                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
14592         }
14593
14594         drm_atomic_state_get(state);
14595         INIT_WORK(&state->commit_work,
14596                   nonblock ? intel_atomic_commit_work : NULL);
14597
14598         i915_sw_fence_commit(&intel_state->commit_ready);
14599         if (!nonblock) {
14600                 i915_sw_fence_wait(&intel_state->commit_ready);
14601                 intel_atomic_commit_tail(state);
14602         }
14603
14604         return 0;
14605 }
14606
14607 void intel_crtc_restore_mode(struct drm_crtc *crtc)
14608 {
14609         struct drm_device *dev = crtc->dev;
14610         struct drm_atomic_state *state;
14611         struct drm_crtc_state *crtc_state;
14612         int ret;
14613
14614         state = drm_atomic_state_alloc(dev);
14615         if (!state) {
14616                 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14617                               crtc->base.id, crtc->name);
14618                 return;
14619         }
14620
14621         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14622
14623 retry:
14624         crtc_state = drm_atomic_get_crtc_state(state, crtc);
14625         ret = PTR_ERR_OR_ZERO(crtc_state);
14626         if (!ret) {
14627                 if (!crtc_state->active)
14628                         goto out;
14629
14630                 crtc_state->mode_changed = true;
14631                 ret = drm_atomic_commit(state);
14632         }
14633
14634         if (ret == -EDEADLK) {
14635                 drm_atomic_state_clear(state);
14636                 drm_modeset_backoff(state->acquire_ctx);
14637                 goto retry;
14638         }
14639
14640 out:
14641         drm_atomic_state_put(state);
14642 }
14643
14644 /*
14645  * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14646  *        drm_atomic_helper_legacy_gamma_set() directly.
14647  */
14648 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14649                                          u16 *red, u16 *green, u16 *blue,
14650                                          uint32_t size)
14651 {
14652         struct drm_device *dev = crtc->dev;
14653         struct drm_mode_config *config = &dev->mode_config;
14654         struct drm_crtc_state *state;
14655         int ret;
14656
14657         ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14658         if (ret)
14659                 return ret;
14660
14661         /*
14662          * Make sure we update the legacy properties so this works when
14663          * atomic is not enabled.
14664          */
14665
14666         state = crtc->state;
14667
14668         drm_object_property_set_value(&crtc->base,
14669                                       config->degamma_lut_property,
14670                                       (state->degamma_lut) ?
14671                                       state->degamma_lut->base.id : 0);
14672
14673         drm_object_property_set_value(&crtc->base,
14674                                       config->ctm_property,
14675                                       (state->ctm) ?
14676                                       state->ctm->base.id : 0);
14677
14678         drm_object_property_set_value(&crtc->base,
14679                                       config->gamma_lut_property,
14680                                       (state->gamma_lut) ?
14681                                       state->gamma_lut->base.id : 0);
14682
14683         return 0;
14684 }
14685
14686 static const struct drm_crtc_funcs intel_crtc_funcs = {
14687         .gamma_set = intel_atomic_legacy_gamma_set,
14688         .set_config = drm_atomic_helper_set_config,
14689         .set_property = drm_atomic_helper_crtc_set_property,
14690         .destroy = intel_crtc_destroy,
14691         .page_flip = intel_crtc_page_flip,
14692         .atomic_duplicate_state = intel_crtc_duplicate_state,
14693         .atomic_destroy_state = intel_crtc_destroy_state,
14694 };
14695
14696 /**
14697  * intel_prepare_plane_fb - Prepare fb for usage on plane
14698  * @plane: drm plane to prepare for
14699  * @fb: framebuffer to prepare for presentation
14700  *
14701  * Prepares a framebuffer for usage on a display plane.  Generally this
14702  * involves pinning the underlying object and updating the frontbuffer tracking
14703  * bits.  Some older platforms need special physical address handling for
14704  * cursor planes.
14705  *
14706  * Must be called with struct_mutex held.
14707  *
14708  * Returns 0 on success, negative error code on failure.
14709  */
14710 int
14711 intel_prepare_plane_fb(struct drm_plane *plane,
14712                        struct drm_plane_state *new_state)
14713 {
14714         struct intel_atomic_state *intel_state =
14715                 to_intel_atomic_state(new_state->state);
14716         struct drm_i915_private *dev_priv = to_i915(plane->dev);
14717         struct drm_framebuffer *fb = new_state->fb;
14718         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14719         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14720         int ret;
14721
14722         if (!obj && !old_obj)
14723                 return 0;
14724
14725         if (old_obj) {
14726                 struct drm_crtc_state *crtc_state =
14727                         drm_atomic_get_existing_crtc_state(new_state->state,
14728                                                            plane->state->crtc);
14729
14730                 /* Big Hammer, we also need to ensure that any pending
14731                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14732                  * current scanout is retired before unpinning the old
14733                  * framebuffer. Note that we rely on userspace rendering
14734                  * into the buffer attached to the pipe they are waiting
14735                  * on. If not, userspace generates a GPU hang with IPEHR
14736                  * point to the MI_WAIT_FOR_EVENT.
14737                  *
14738                  * This should only fail upon a hung GPU, in which case we
14739                  * can safely continue.
14740                  */
14741                 if (needs_modeset(crtc_state)) {
14742                         ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14743                                                               old_obj->resv, NULL,
14744                                                               false, 0,
14745                                                               GFP_KERNEL);
14746                         if (ret < 0)
14747                                 return ret;
14748                 }
14749         }
14750
14751         if (new_state->fence) { /* explicit fencing */
14752                 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
14753                                                     new_state->fence,
14754                                                     I915_FENCE_TIMEOUT,
14755                                                     GFP_KERNEL);
14756                 if (ret < 0)
14757                         return ret;
14758         }
14759
14760         if (!obj)
14761                 return 0;
14762
14763         if (!new_state->fence) { /* implicit fencing */
14764                 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14765                                                       obj->resv, NULL,
14766                                                       false, I915_FENCE_TIMEOUT,
14767                                                       GFP_KERNEL);
14768                 if (ret < 0)
14769                         return ret;
14770
14771                 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
14772         }
14773
14774         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14775             INTEL_INFO(dev_priv)->cursor_needs_physical) {
14776                 int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
14777                 ret = i915_gem_object_attach_phys(obj, align);
14778                 if (ret) {
14779                         DRM_DEBUG_KMS("failed to attach phys object\n");
14780                         return ret;
14781                 }
14782         } else {
14783                 struct i915_vma *vma;
14784
14785                 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14786                 if (IS_ERR(vma)) {
14787                         DRM_DEBUG_KMS("failed to pin object\n");
14788                         return PTR_ERR(vma);
14789                 }
14790
14791                 to_intel_plane_state(new_state)->vma = vma;
14792         }
14793
14794         return 0;
14795 }
14796
14797 /**
14798  * intel_cleanup_plane_fb - Cleans up an fb after plane use
14799  * @plane: drm plane to clean up for
14800  * @fb: old framebuffer that was on plane
14801  *
14802  * Cleans up a framebuffer that has just been removed from a plane.
14803  *
14804  * Must be called with struct_mutex held.
14805  */
14806 void
14807 intel_cleanup_plane_fb(struct drm_plane *plane,
14808                        struct drm_plane_state *old_state)
14809 {
14810         struct i915_vma *vma;
14811
14812         /* Should only be called after a successful intel_prepare_plane_fb()! */
14813         vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
14814         if (vma)
14815                 intel_unpin_fb_vma(vma);
14816 }
14817
14818 int
14819 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14820 {
14821         int max_scale;
14822         int crtc_clock, cdclk;
14823
14824         if (!intel_crtc || !crtc_state->base.enable)
14825                 return DRM_PLANE_HELPER_NO_SCALING;
14826
14827         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14828         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14829
14830         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14831                 return DRM_PLANE_HELPER_NO_SCALING;
14832
14833         /*
14834          * skl max scale is lower of:
14835          *    close to 3 but not 3, -1 is for that purpose
14836          *            or
14837          *    cdclk/crtc_clock
14838          */
14839         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14840
14841         return max_scale;
14842 }
14843
14844 static int
14845 intel_check_primary_plane(struct drm_plane *plane,
14846                           struct intel_crtc_state *crtc_state,
14847                           struct intel_plane_state *state)
14848 {
14849         struct drm_i915_private *dev_priv = to_i915(plane->dev);
14850         struct drm_crtc *crtc = state->base.crtc;
14851         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14852         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14853         bool can_position = false;
14854         int ret;
14855
14856         if (INTEL_GEN(dev_priv) >= 9) {
14857                 /* use scaler when colorkey is not required */
14858                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14859                         min_scale = 1;
14860                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14861                 }
14862                 can_position = true;
14863         }
14864
14865         ret = drm_plane_helper_check_state(&state->base,
14866                                            &state->clip,
14867                                            min_scale, max_scale,
14868                                            can_position, true);
14869         if (ret)
14870                 return ret;
14871
14872         if (!state->base.fb)
14873                 return 0;
14874
14875         if (INTEL_GEN(dev_priv) >= 9) {
14876                 ret = skl_check_plane_surface(state);
14877                 if (ret)
14878                         return ret;
14879         }
14880
14881         return 0;
14882 }
14883
14884 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14885                                     struct drm_crtc_state *old_crtc_state)
14886 {
14887         struct drm_device *dev = crtc->dev;
14888         struct drm_i915_private *dev_priv = to_i915(dev);
14889         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14890         struct intel_crtc_state *intel_cstate =
14891                 to_intel_crtc_state(crtc->state);
14892         struct intel_crtc_state *old_intel_cstate =
14893                 to_intel_crtc_state(old_crtc_state);
14894         struct intel_atomic_state *old_intel_state =
14895                 to_intel_atomic_state(old_crtc_state->state);
14896         bool modeset = needs_modeset(crtc->state);
14897
14898         /* Perform vblank evasion around commit operation */
14899         intel_pipe_update_start(intel_crtc);
14900
14901         if (modeset)
14902                 goto out;
14903
14904         if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14905                 intel_color_set_csc(crtc->state);
14906                 intel_color_load_luts(crtc->state);
14907         }
14908
14909         if (intel_cstate->update_pipe)
14910                 intel_update_pipe_config(intel_crtc, old_intel_cstate);
14911         else if (INTEL_GEN(dev_priv) >= 9)
14912                 skl_detach_scalers(intel_crtc);
14913
14914 out:
14915         if (dev_priv->display.atomic_update_watermarks)
14916                 dev_priv->display.atomic_update_watermarks(old_intel_state,
14917                                                            intel_cstate);
14918 }
14919
14920 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14921                                      struct drm_crtc_state *old_crtc_state)
14922 {
14923         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14924
14925         intel_pipe_update_end(intel_crtc, NULL);
14926 }
14927
14928 /**
14929  * intel_plane_destroy - destroy a plane
14930  * @plane: plane to destroy
14931  *
14932  * Common destruction function for all types of planes (primary, cursor,
14933  * sprite).
14934  */
14935 void intel_plane_destroy(struct drm_plane *plane)
14936 {
14937         drm_plane_cleanup(plane);
14938         kfree(to_intel_plane(plane));
14939 }
14940
14941 const struct drm_plane_funcs intel_plane_funcs = {
14942         .update_plane = drm_atomic_helper_update_plane,
14943         .disable_plane = drm_atomic_helper_disable_plane,
14944         .destroy = intel_plane_destroy,
14945         .set_property = drm_atomic_helper_plane_set_property,
14946         .atomic_get_property = intel_plane_atomic_get_property,
14947         .atomic_set_property = intel_plane_atomic_set_property,
14948         .atomic_duplicate_state = intel_plane_duplicate_state,
14949         .atomic_destroy_state = intel_plane_destroy_state,
14950 };
14951
14952 static struct intel_plane *
14953 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
14954 {
14955         struct intel_plane *primary = NULL;
14956         struct intel_plane_state *state = NULL;
14957         const uint32_t *intel_primary_formats;
14958         unsigned int supported_rotations;
14959         unsigned int num_formats;
14960         int ret;
14961
14962         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14963         if (!primary) {
14964                 ret = -ENOMEM;
14965                 goto fail;
14966         }
14967
14968         state = intel_create_plane_state(&primary->base);
14969         if (!state) {
14970                 ret = -ENOMEM;
14971                 goto fail;
14972         }
14973
14974         primary->base.state = &state->base;
14975
14976         primary->can_scale = false;
14977         primary->max_downscale = 1;
14978         if (INTEL_GEN(dev_priv) >= 9) {
14979                 primary->can_scale = true;
14980                 state->scaler_id = -1;
14981         }
14982         primary->pipe = pipe;
14983         /*
14984          * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
14985          * port is hooked to pipe B. Hence we want plane A feeding pipe B.
14986          */
14987         if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
14988                 primary->plane = (enum plane) !pipe;
14989         else
14990                 primary->plane = (enum plane) pipe;
14991         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14992         primary->check_plane = intel_check_primary_plane;
14993
14994         if (INTEL_GEN(dev_priv) >= 9) {
14995                 intel_primary_formats = skl_primary_formats;
14996                 num_formats = ARRAY_SIZE(skl_primary_formats);
14997
14998                 primary->update_plane = skylake_update_primary_plane;
14999                 primary->disable_plane = skylake_disable_primary_plane;
15000         } else if (HAS_PCH_SPLIT(dev_priv)) {
15001                 intel_primary_formats = i965_primary_formats;
15002                 num_formats = ARRAY_SIZE(i965_primary_formats);
15003
15004                 primary->update_plane = ironlake_update_primary_plane;
15005                 primary->disable_plane = i9xx_disable_primary_plane;
15006         } else if (INTEL_GEN(dev_priv) >= 4) {
15007                 intel_primary_formats = i965_primary_formats;
15008                 num_formats = ARRAY_SIZE(i965_primary_formats);
15009
15010                 primary->update_plane = i9xx_update_primary_plane;
15011                 primary->disable_plane = i9xx_disable_primary_plane;
15012         } else {
15013                 intel_primary_formats = i8xx_primary_formats;
15014                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
15015
15016                 primary->update_plane = i9xx_update_primary_plane;
15017                 primary->disable_plane = i9xx_disable_primary_plane;
15018         }
15019
15020         if (INTEL_GEN(dev_priv) >= 9)
15021                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15022                                                0, &intel_plane_funcs,
15023                                                intel_primary_formats, num_formats,
15024                                                DRM_PLANE_TYPE_PRIMARY,
15025                                                "plane 1%c", pipe_name(pipe));
15026         else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
15027                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15028                                                0, &intel_plane_funcs,
15029                                                intel_primary_formats, num_formats,
15030                                                DRM_PLANE_TYPE_PRIMARY,
15031                                                "primary %c", pipe_name(pipe));
15032         else
15033                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15034                                                0, &intel_plane_funcs,
15035                                                intel_primary_formats, num_formats,
15036                                                DRM_PLANE_TYPE_PRIMARY,
15037                                                "plane %c", plane_name(primary->plane));
15038         if (ret)
15039                 goto fail;
15040
15041         if (INTEL_GEN(dev_priv) >= 9) {
15042                 supported_rotations =
15043                         DRM_ROTATE_0 | DRM_ROTATE_90 |
15044                         DRM_ROTATE_180 | DRM_ROTATE_270;
15045         } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
15046                 supported_rotations =
15047                         DRM_ROTATE_0 | DRM_ROTATE_180 |
15048                         DRM_REFLECT_X;
15049         } else if (INTEL_GEN(dev_priv) >= 4) {
15050                 supported_rotations =
15051                         DRM_ROTATE_0 | DRM_ROTATE_180;
15052         } else {
15053                 supported_rotations = DRM_ROTATE_0;
15054         }
15055
15056         if (INTEL_GEN(dev_priv) >= 4)
15057                 drm_plane_create_rotation_property(&primary->base,
15058                                                    DRM_ROTATE_0,
15059                                                    supported_rotations);
15060
15061         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
15062
15063         return primary;
15064
15065 fail:
15066         kfree(state);
15067         kfree(primary);
15068
15069         return ERR_PTR(ret);
15070 }
15071
15072 static int
15073 intel_check_cursor_plane(struct drm_plane *plane,
15074                          struct intel_crtc_state *crtc_state,
15075                          struct intel_plane_state *state)
15076 {
15077         struct drm_framebuffer *fb = state->base.fb;
15078         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15079         enum pipe pipe = to_intel_plane(plane)->pipe;
15080         unsigned stride;
15081         int ret;
15082
15083         ret = drm_plane_helper_check_state(&state->base,
15084                                            &state->clip,
15085                                            DRM_PLANE_HELPER_NO_SCALING,
15086                                            DRM_PLANE_HELPER_NO_SCALING,
15087                                            true, true);
15088         if (ret)
15089                 return ret;
15090
15091         /* if we want to turn off the cursor ignore width and height */
15092         if (!obj)
15093                 return 0;
15094
15095         /* Check for which cursor types we support */
15096         if (!cursor_size_ok(to_i915(plane->dev), state->base.crtc_w,
15097                             state->base.crtc_h)) {
15098                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15099                           state->base.crtc_w, state->base.crtc_h);
15100                 return -EINVAL;
15101         }
15102
15103         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15104         if (obj->base.size < stride * state->base.crtc_h) {
15105                 DRM_DEBUG_KMS("buffer is too small\n");
15106                 return -ENOMEM;
15107         }
15108
15109         if (fb->modifier != DRM_FORMAT_MOD_NONE) {
15110                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
15111                 return -EINVAL;
15112         }
15113
15114         /*
15115          * There's something wrong with the cursor on CHV pipe C.
15116          * If it straddles the left edge of the screen then
15117          * moving it away from the edge or disabling it often
15118          * results in a pipe underrun, and often that can lead to
15119          * dead pipe (constant underrun reported, and it scans
15120          * out just a solid color). To recover from that, the
15121          * display power well must be turned off and on again.
15122          * Refuse the put the cursor into that compromised position.
15123          */
15124         if (IS_CHERRYVIEW(to_i915(plane->dev)) && pipe == PIPE_C &&
15125             state->base.visible && state->base.crtc_x < 0) {
15126                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15127                 return -EINVAL;
15128         }
15129
15130         return 0;
15131 }
15132
15133 static void
15134 intel_disable_cursor_plane(struct drm_plane *plane,
15135                            struct drm_crtc *crtc)
15136 {
15137         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15138
15139         intel_crtc->cursor_addr = 0;
15140         intel_crtc_update_cursor(crtc, NULL);
15141 }
15142
15143 static void
15144 intel_update_cursor_plane(struct drm_plane *plane,
15145                           const struct intel_crtc_state *crtc_state,
15146                           const struct intel_plane_state *state)
15147 {
15148         struct drm_crtc *crtc = crtc_state->base.crtc;
15149         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15150         struct drm_i915_private *dev_priv = to_i915(plane->dev);
15151         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
15152         uint32_t addr;
15153
15154         if (!obj)
15155                 addr = 0;
15156         else if (!INTEL_INFO(dev_priv)->cursor_needs_physical)
15157                 addr = intel_plane_ggtt_offset(state);
15158         else
15159                 addr = obj->phys_handle->busaddr;
15160
15161         intel_crtc->cursor_addr = addr;
15162         intel_crtc_update_cursor(crtc, state);
15163 }
15164
15165 static struct intel_plane *
15166 intel_cursor_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
15167 {
15168         struct intel_plane *cursor = NULL;
15169         struct intel_plane_state *state = NULL;
15170         int ret;
15171
15172         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
15173         if (!cursor) {
15174                 ret = -ENOMEM;
15175                 goto fail;
15176         }
15177
15178         state = intel_create_plane_state(&cursor->base);
15179         if (!state) {
15180                 ret = -ENOMEM;
15181                 goto fail;
15182         }
15183
15184         cursor->base.state = &state->base;
15185
15186         cursor->can_scale = false;
15187         cursor->max_downscale = 1;
15188         cursor->pipe = pipe;
15189         cursor->plane = pipe;
15190         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
15191         cursor->check_plane = intel_check_cursor_plane;
15192         cursor->update_plane = intel_update_cursor_plane;
15193         cursor->disable_plane = intel_disable_cursor_plane;
15194
15195         ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
15196                                        0, &intel_plane_funcs,
15197                                        intel_cursor_formats,
15198                                        ARRAY_SIZE(intel_cursor_formats),
15199                                        DRM_PLANE_TYPE_CURSOR,
15200                                        "cursor %c", pipe_name(pipe));
15201         if (ret)
15202                 goto fail;
15203
15204         if (INTEL_GEN(dev_priv) >= 4)
15205                 drm_plane_create_rotation_property(&cursor->base,
15206                                                    DRM_ROTATE_0,
15207                                                    DRM_ROTATE_0 |
15208                                                    DRM_ROTATE_180);
15209
15210         if (INTEL_GEN(dev_priv) >= 9)
15211                 state->scaler_id = -1;
15212
15213         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15214
15215         return cursor;
15216
15217 fail:
15218         kfree(state);
15219         kfree(cursor);
15220
15221         return ERR_PTR(ret);
15222 }
15223
15224 static void skl_init_scalers(struct drm_i915_private *dev_priv,
15225                              struct intel_crtc *crtc,
15226                              struct intel_crtc_state *crtc_state)
15227 {
15228         struct intel_crtc_scaler_state *scaler_state =
15229                 &crtc_state->scaler_state;
15230         int i;
15231
15232         for (i = 0; i < crtc->num_scalers; i++) {
15233                 struct intel_scaler *scaler = &scaler_state->scalers[i];
15234
15235                 scaler->in_use = 0;
15236                 scaler->mode = PS_SCALER_MODE_DYN;
15237         }
15238
15239         scaler_state->scaler_id = -1;
15240 }
15241
15242 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
15243 {
15244         struct intel_crtc *intel_crtc;
15245         struct intel_crtc_state *crtc_state = NULL;
15246         struct intel_plane *primary = NULL;
15247         struct intel_plane *cursor = NULL;
15248         int sprite, ret;
15249
15250         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15251         if (!intel_crtc)
15252                 return -ENOMEM;
15253
15254         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15255         if (!crtc_state) {
15256                 ret = -ENOMEM;
15257                 goto fail;
15258         }
15259         intel_crtc->config = crtc_state;
15260         intel_crtc->base.state = &crtc_state->base;
15261         crtc_state->base.crtc = &intel_crtc->base;
15262
15263         /* initialize shared scalers */
15264         if (INTEL_GEN(dev_priv) >= 9) {
15265                 if (pipe == PIPE_C)
15266                         intel_crtc->num_scalers = 1;
15267                 else
15268                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
15269
15270                 skl_init_scalers(dev_priv, intel_crtc, crtc_state);
15271         }
15272
15273         primary = intel_primary_plane_create(dev_priv, pipe);
15274         if (IS_ERR(primary)) {
15275                 ret = PTR_ERR(primary);
15276                 goto fail;
15277         }
15278
15279         for_each_sprite(dev_priv, pipe, sprite) {
15280                 struct intel_plane *plane;
15281
15282                 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
15283                 if (IS_ERR(plane)) {
15284                         ret = PTR_ERR(plane);
15285                         goto fail;
15286                 }
15287         }
15288
15289         cursor = intel_cursor_plane_create(dev_priv, pipe);
15290         if (IS_ERR(cursor)) {
15291                 ret = PTR_ERR(cursor);
15292                 goto fail;
15293         }
15294
15295         ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
15296                                         &primary->base, &cursor->base,
15297                                         &intel_crtc_funcs,
15298                                         "pipe %c", pipe_name(pipe));
15299         if (ret)
15300                 goto fail;
15301
15302         intel_crtc->pipe = pipe;
15303         intel_crtc->plane = primary->plane;
15304
15305         intel_crtc->cursor_base = ~0;
15306         intel_crtc->cursor_cntl = ~0;
15307         intel_crtc->cursor_size = ~0;
15308
15309         intel_crtc->wm.cxsr_allowed = true;
15310
15311         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15312                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15313         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
15314         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
15315
15316         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15317
15318         intel_color_init(&intel_crtc->base);
15319
15320         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15321
15322         return 0;
15323
15324 fail:
15325         /*
15326          * drm_mode_config_cleanup() will free up any
15327          * crtcs/planes already initialized.
15328          */
15329         kfree(crtc_state);
15330         kfree(intel_crtc);
15331
15332         return ret;
15333 }
15334
15335 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15336 {
15337         struct drm_encoder *encoder = connector->base.encoder;
15338         struct drm_device *dev = connector->base.dev;
15339
15340         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
15341
15342         if (!encoder || WARN_ON(!encoder->crtc))
15343                 return INVALID_PIPE;
15344
15345         return to_intel_crtc(encoder->crtc)->pipe;
15346 }
15347
15348 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
15349                                 struct drm_file *file)
15350 {
15351         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15352         struct drm_crtc *drmmode_crtc;
15353         struct intel_crtc *crtc;
15354
15355         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
15356         if (!drmmode_crtc)
15357                 return -ENOENT;
15358
15359         crtc = to_intel_crtc(drmmode_crtc);
15360         pipe_from_crtc_id->pipe = crtc->pipe;
15361
15362         return 0;
15363 }
15364
15365 static int intel_encoder_clones(struct intel_encoder *encoder)
15366 {
15367         struct drm_device *dev = encoder->base.dev;
15368         struct intel_encoder *source_encoder;
15369         int index_mask = 0;
15370         int entry = 0;
15371
15372         for_each_intel_encoder(dev, source_encoder) {
15373                 if (encoders_cloneable(encoder, source_encoder))
15374                         index_mask |= (1 << entry);
15375
15376                 entry++;
15377         }
15378
15379         return index_mask;
15380 }
15381
15382 static bool has_edp_a(struct drm_i915_private *dev_priv)
15383 {
15384         if (!IS_MOBILE(dev_priv))
15385                 return false;
15386
15387         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15388                 return false;
15389
15390         if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15391                 return false;
15392
15393         return true;
15394 }
15395
15396 static bool intel_crt_present(struct drm_i915_private *dev_priv)
15397 {
15398         if (INTEL_GEN(dev_priv) >= 9)
15399                 return false;
15400
15401         if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
15402                 return false;
15403
15404         if (IS_CHERRYVIEW(dev_priv))
15405                 return false;
15406
15407         if (HAS_PCH_LPT_H(dev_priv) &&
15408             I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15409                 return false;
15410
15411         /* DDI E can't be used if DDI A requires 4 lanes */
15412         if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15413                 return false;
15414
15415         if (!dev_priv->vbt.int_crt_support)
15416                 return false;
15417
15418         return true;
15419 }
15420
15421 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15422 {
15423         int pps_num;
15424         int pps_idx;
15425
15426         if (HAS_DDI(dev_priv))
15427                 return;
15428         /*
15429          * This w/a is needed at least on CPT/PPT, but to be sure apply it
15430          * everywhere where registers can be write protected.
15431          */
15432         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15433                 pps_num = 2;
15434         else
15435                 pps_num = 1;
15436
15437         for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15438                 u32 val = I915_READ(PP_CONTROL(pps_idx));
15439
15440                 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15441                 I915_WRITE(PP_CONTROL(pps_idx), val);
15442         }
15443 }
15444
15445 static void intel_pps_init(struct drm_i915_private *dev_priv)
15446 {
15447         if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv))
15448                 dev_priv->pps_mmio_base = PCH_PPS_BASE;
15449         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15450                 dev_priv->pps_mmio_base = VLV_PPS_BASE;
15451         else
15452                 dev_priv->pps_mmio_base = PPS_BASE;
15453
15454         intel_pps_unlock_regs_wa(dev_priv);
15455 }
15456
15457 static void intel_setup_outputs(struct drm_device *dev)
15458 {
15459         struct drm_i915_private *dev_priv = to_i915(dev);
15460         struct intel_encoder *encoder;
15461         bool dpd_is_edp = false;
15462
15463         intel_pps_init(dev_priv);
15464
15465         /*
15466          * intel_edp_init_connector() depends on this completing first, to
15467          * prevent the registeration of both eDP and LVDS and the incorrect
15468          * sharing of the PPS.
15469          */
15470         intel_lvds_init(dev);
15471
15472         if (intel_crt_present(dev_priv))
15473                 intel_crt_init(dev);
15474
15475         if (IS_BROXTON(dev_priv)) {
15476                 /*
15477                  * FIXME: Broxton doesn't support port detection via the
15478                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15479                  * detect the ports.
15480                  */
15481                 intel_ddi_init(dev, PORT_A);
15482                 intel_ddi_init(dev, PORT_B);
15483                 intel_ddi_init(dev, PORT_C);
15484
15485                 intel_dsi_init(dev);
15486         } else if (HAS_DDI(dev_priv)) {
15487                 int found;
15488
15489                 /*
15490                  * Haswell uses DDI functions to detect digital outputs.
15491                  * On SKL pre-D0 the strap isn't connected, so we assume
15492                  * it's there.
15493                  */
15494                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15495                 /* WaIgnoreDDIAStrap: skl */
15496                 if (found || IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15497                         intel_ddi_init(dev, PORT_A);
15498
15499                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
15500                  * register */
15501                 found = I915_READ(SFUSE_STRAP);
15502
15503                 if (found & SFUSE_STRAP_DDIB_DETECTED)
15504                         intel_ddi_init(dev, PORT_B);
15505                 if (found & SFUSE_STRAP_DDIC_DETECTED)
15506                         intel_ddi_init(dev, PORT_C);
15507                 if (found & SFUSE_STRAP_DDID_DETECTED)
15508                         intel_ddi_init(dev, PORT_D);
15509                 /*
15510                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15511                  */
15512                 if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
15513                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15514                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15515                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15516                         intel_ddi_init(dev, PORT_E);
15517
15518         } else if (HAS_PCH_SPLIT(dev_priv)) {
15519                 int found;
15520                 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
15521
15522                 if (has_edp_a(dev_priv))
15523                         intel_dp_init(dev, DP_A, PORT_A);
15524
15525                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15526                         /* PCH SDVOB multiplex with HDMIB */
15527                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
15528                         if (!found)
15529                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
15530                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15531                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
15532                 }
15533
15534                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15535                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
15536
15537                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15538                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
15539
15540                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
15541                         intel_dp_init(dev, PCH_DP_C, PORT_C);
15542
15543                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
15544                         intel_dp_init(dev, PCH_DP_D, PORT_D);
15545         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15546                 bool has_edp, has_port;
15547
15548                 /*
15549                  * The DP_DETECTED bit is the latched state of the DDC
15550                  * SDA pin at boot. However since eDP doesn't require DDC
15551                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
15552                  * eDP ports may have been muxed to an alternate function.
15553                  * Thus we can't rely on the DP_DETECTED bit alone to detect
15554                  * eDP ports. Consult the VBT as well as DP_DETECTED to
15555                  * detect eDP ports.
15556                  *
15557                  * Sadly the straps seem to be missing sometimes even for HDMI
15558                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15559                  * and VBT for the presence of the port. Additionally we can't
15560                  * trust the port type the VBT declares as we've seen at least
15561                  * HDMI ports that the VBT claim are DP or eDP.
15562                  */
15563                 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
15564                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15565                 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15566                         has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
15567                 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15568                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
15569
15570                 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
15571                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15572                 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15573                         has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
15574                 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15575                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
15576
15577                 if (IS_CHERRYVIEW(dev_priv)) {
15578                         /*
15579                          * eDP not supported on port D,
15580                          * so no need to worry about it
15581                          */
15582                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15583                         if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15584                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
15585                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15586                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
15587                 }
15588
15589                 intel_dsi_init(dev);
15590         } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
15591                 bool found = false;
15592
15593                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15594                         DRM_DEBUG_KMS("probing SDVOB\n");
15595                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
15596                         if (!found && IS_G4X(dev_priv)) {
15597                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15598                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
15599                         }
15600
15601                         if (!found && IS_G4X(dev_priv))
15602                                 intel_dp_init(dev, DP_B, PORT_B);
15603                 }
15604
15605                 /* Before G4X SDVOC doesn't have its own detect register */
15606
15607                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15608                         DRM_DEBUG_KMS("probing SDVOC\n");
15609                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
15610                 }
15611
15612                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15613
15614                         if (IS_G4X(dev_priv)) {
15615                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15616                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
15617                         }
15618                         if (IS_G4X(dev_priv))
15619                                 intel_dp_init(dev, DP_C, PORT_C);
15620                 }
15621
15622                 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
15623                         intel_dp_init(dev, DP_D, PORT_D);
15624         } else if (IS_GEN2(dev_priv))
15625                 intel_dvo_init(dev);
15626
15627         if (SUPPORTS_TV(dev_priv))
15628                 intel_tv_init(dev);
15629
15630         intel_psr_init(dev);
15631
15632         for_each_intel_encoder(dev, encoder) {
15633                 encoder->base.possible_crtcs = encoder->crtc_mask;
15634                 encoder->base.possible_clones =
15635                         intel_encoder_clones(encoder);
15636         }
15637
15638         intel_init_pch_refclk(dev);
15639
15640         drm_helper_move_panel_connectors_to_head(dev);
15641 }
15642
15643 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15644 {
15645         struct drm_device *dev = fb->dev;
15646         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15647
15648         drm_framebuffer_cleanup(fb);
15649         mutex_lock(&dev->struct_mutex);
15650         WARN_ON(!intel_fb->obj->framebuffer_references--);
15651         i915_gem_object_put(intel_fb->obj);
15652         mutex_unlock(&dev->struct_mutex);
15653         kfree(intel_fb);
15654 }
15655
15656 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15657                                                 struct drm_file *file,
15658                                                 unsigned int *handle)
15659 {
15660         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15661         struct drm_i915_gem_object *obj = intel_fb->obj;
15662
15663         if (obj->userptr.mm) {
15664                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15665                 return -EINVAL;
15666         }
15667
15668         return drm_gem_handle_create(file, &obj->base, handle);
15669 }
15670
15671 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15672                                         struct drm_file *file,
15673                                         unsigned flags, unsigned color,
15674                                         struct drm_clip_rect *clips,
15675                                         unsigned num_clips)
15676 {
15677         struct drm_device *dev = fb->dev;
15678         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15679         struct drm_i915_gem_object *obj = intel_fb->obj;
15680
15681         mutex_lock(&dev->struct_mutex);
15682         if (obj->pin_display && obj->cache_dirty)
15683                 i915_gem_clflush_object(obj, true);
15684         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
15685         mutex_unlock(&dev->struct_mutex);
15686
15687         return 0;
15688 }
15689
15690 static const struct drm_framebuffer_funcs intel_fb_funcs = {
15691         .destroy = intel_user_framebuffer_destroy,
15692         .create_handle = intel_user_framebuffer_create_handle,
15693         .dirty = intel_user_framebuffer_dirty,
15694 };
15695
15696 static
15697 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
15698                          uint64_t fb_modifier, uint32_t pixel_format)
15699 {
15700         u32 gen = INTEL_INFO(dev_priv)->gen;
15701
15702         if (gen >= 9) {
15703                 int cpp = drm_format_plane_cpp(pixel_format, 0);
15704
15705                 /* "The stride in bytes must not exceed the of the size of 8K
15706                  *  pixels and 32K bytes."
15707                  */
15708                 return min(8192 * cpp, 32768);
15709         } else if (gen >= 5 && !IS_VALLEYVIEW(dev_priv) &&
15710                    !IS_CHERRYVIEW(dev_priv)) {
15711                 return 32*1024;
15712         } else if (gen >= 4) {
15713                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15714                         return 16*1024;
15715                 else
15716                         return 32*1024;
15717         } else if (gen >= 3) {
15718                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15719                         return 8*1024;
15720                 else
15721                         return 16*1024;
15722         } else {
15723                 /* XXX DSPC is limited to 4k tiled */
15724                 return 8*1024;
15725         }
15726 }
15727
15728 static int intel_framebuffer_init(struct drm_device *dev,
15729                                   struct intel_framebuffer *intel_fb,
15730                                   struct drm_mode_fb_cmd2 *mode_cmd,
15731                                   struct drm_i915_gem_object *obj)
15732 {
15733         struct drm_i915_private *dev_priv = to_i915(dev);
15734         unsigned int tiling = i915_gem_object_get_tiling(obj);
15735         int ret;
15736         u32 pitch_limit, stride_alignment;
15737         struct drm_format_name_buf format_name;
15738
15739         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15740
15741         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15742                 /*
15743                  * If there's a fence, enforce that
15744                  * the fb modifier and tiling mode match.
15745                  */
15746                 if (tiling != I915_TILING_NONE &&
15747                     tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15748                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15749                         return -EINVAL;
15750                 }
15751         } else {
15752                 if (tiling == I915_TILING_X) {
15753                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15754                 } else if (tiling == I915_TILING_Y) {
15755                         DRM_DEBUG("No Y tiling for legacy addfb\n");
15756                         return -EINVAL;
15757                 }
15758         }
15759
15760         /* Passed in modifier sanity checking. */
15761         switch (mode_cmd->modifier[0]) {
15762         case I915_FORMAT_MOD_Y_TILED:
15763         case I915_FORMAT_MOD_Yf_TILED:
15764                 if (INTEL_GEN(dev_priv) < 9) {
15765                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15766                                   mode_cmd->modifier[0]);
15767                         return -EINVAL;
15768                 }
15769         case DRM_FORMAT_MOD_NONE:
15770         case I915_FORMAT_MOD_X_TILED:
15771                 break;
15772         default:
15773                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15774                           mode_cmd->modifier[0]);
15775                 return -EINVAL;
15776         }
15777
15778         /*
15779          * gen2/3 display engine uses the fence if present,
15780          * so the tiling mode must match the fb modifier exactly.
15781          */
15782         if (INTEL_INFO(dev_priv)->gen < 4 &&
15783             tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15784                 DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15785                 return -EINVAL;
15786         }
15787
15788         stride_alignment = intel_fb_stride_alignment(dev_priv,
15789                                                      mode_cmd->modifier[0],
15790                                                      mode_cmd->pixel_format);
15791         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15792                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15793                           mode_cmd->pitches[0], stride_alignment);
15794                 return -EINVAL;
15795         }
15796
15797         pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
15798                                            mode_cmd->pixel_format);
15799         if (mode_cmd->pitches[0] > pitch_limit) {
15800                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15801                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15802                           "tiled" : "linear",
15803                           mode_cmd->pitches[0], pitch_limit);
15804                 return -EINVAL;
15805         }
15806
15807         /*
15808          * If there's a fence, enforce that
15809          * the fb pitch and fence stride match.
15810          */
15811         if (tiling != I915_TILING_NONE &&
15812             mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
15813                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15814                           mode_cmd->pitches[0],
15815                           i915_gem_object_get_stride(obj));
15816                 return -EINVAL;
15817         }
15818
15819         /* Reject formats not supported by any plane early. */
15820         switch (mode_cmd->pixel_format) {
15821         case DRM_FORMAT_C8:
15822         case DRM_FORMAT_RGB565:
15823         case DRM_FORMAT_XRGB8888:
15824         case DRM_FORMAT_ARGB8888:
15825                 break;
15826         case DRM_FORMAT_XRGB1555:
15827                 if (INTEL_GEN(dev_priv) > 3) {
15828                         DRM_DEBUG("unsupported pixel format: %s\n",
15829                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
15830                         return -EINVAL;
15831                 }
15832                 break;
15833         case DRM_FORMAT_ABGR8888:
15834                 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
15835                     INTEL_GEN(dev_priv) < 9) {
15836                         DRM_DEBUG("unsupported pixel format: %s\n",
15837                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
15838                         return -EINVAL;
15839                 }
15840                 break;
15841         case DRM_FORMAT_XBGR8888:
15842         case DRM_FORMAT_XRGB2101010:
15843         case DRM_FORMAT_XBGR2101010:
15844                 if (INTEL_GEN(dev_priv) < 4) {
15845                         DRM_DEBUG("unsupported pixel format: %s\n",
15846                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
15847                         return -EINVAL;
15848                 }
15849                 break;
15850         case DRM_FORMAT_ABGR2101010:
15851                 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
15852                         DRM_DEBUG("unsupported pixel format: %s\n",
15853                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
15854                         return -EINVAL;
15855                 }
15856                 break;
15857         case DRM_FORMAT_YUYV:
15858         case DRM_FORMAT_UYVY:
15859         case DRM_FORMAT_YVYU:
15860         case DRM_FORMAT_VYUY:
15861                 if (INTEL_GEN(dev_priv) < 5) {
15862                         DRM_DEBUG("unsupported pixel format: %s\n",
15863                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
15864                         return -EINVAL;
15865                 }
15866                 break;
15867         default:
15868                 DRM_DEBUG("unsupported pixel format: %s\n",
15869                           drm_get_format_name(mode_cmd->pixel_format, &format_name));
15870                 return -EINVAL;
15871         }
15872
15873         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15874         if (mode_cmd->offsets[0] != 0)
15875                 return -EINVAL;
15876
15877         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15878         intel_fb->obj = obj;
15879
15880         ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
15881         if (ret)
15882                 return ret;
15883
15884         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15885         if (ret) {
15886                 DRM_ERROR("framebuffer init failed %d\n", ret);
15887                 return ret;
15888         }
15889
15890         intel_fb->obj->framebuffer_references++;
15891
15892         return 0;
15893 }
15894
15895 static struct drm_framebuffer *
15896 intel_user_framebuffer_create(struct drm_device *dev,
15897                               struct drm_file *filp,
15898                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
15899 {
15900         struct drm_framebuffer *fb;
15901         struct drm_i915_gem_object *obj;
15902         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15903
15904         obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15905         if (!obj)
15906                 return ERR_PTR(-ENOENT);
15907
15908         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15909         if (IS_ERR(fb))
15910                 i915_gem_object_put(obj);
15911
15912         return fb;
15913 }
15914
15915 static const struct drm_mode_config_funcs intel_mode_funcs = {
15916         .fb_create = intel_user_framebuffer_create,
15917         .output_poll_changed = intel_fbdev_output_poll_changed,
15918         .atomic_check = intel_atomic_check,
15919         .atomic_commit = intel_atomic_commit,
15920         .atomic_state_alloc = intel_atomic_state_alloc,
15921         .atomic_state_clear = intel_atomic_state_clear,
15922 };
15923
15924 /**
15925  * intel_init_display_hooks - initialize the display modesetting hooks
15926  * @dev_priv: device private
15927  */
15928 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15929 {
15930         if (INTEL_INFO(dev_priv)->gen >= 9) {
15931                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15932                 dev_priv->display.get_initial_plane_config =
15933                         skylake_get_initial_plane_config;
15934                 dev_priv->display.crtc_compute_clock =
15935                         haswell_crtc_compute_clock;
15936                 dev_priv->display.crtc_enable = haswell_crtc_enable;
15937                 dev_priv->display.crtc_disable = haswell_crtc_disable;
15938         } else if (HAS_DDI(dev_priv)) {
15939                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15940                 dev_priv->display.get_initial_plane_config =
15941                         ironlake_get_initial_plane_config;
15942                 dev_priv->display.crtc_compute_clock =
15943                         haswell_crtc_compute_clock;
15944                 dev_priv->display.crtc_enable = haswell_crtc_enable;
15945                 dev_priv->display.crtc_disable = haswell_crtc_disable;
15946         } else if (HAS_PCH_SPLIT(dev_priv)) {
15947                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15948                 dev_priv->display.get_initial_plane_config =
15949                         ironlake_get_initial_plane_config;
15950                 dev_priv->display.crtc_compute_clock =
15951                         ironlake_crtc_compute_clock;
15952                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15953                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
15954         } else if (IS_CHERRYVIEW(dev_priv)) {
15955                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15956                 dev_priv->display.get_initial_plane_config =
15957                         i9xx_get_initial_plane_config;
15958                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15959                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15960                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15961         } else if (IS_VALLEYVIEW(dev_priv)) {
15962                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15963                 dev_priv->display.get_initial_plane_config =
15964                         i9xx_get_initial_plane_config;
15965                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15966                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15967                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15968         } else if (IS_G4X(dev_priv)) {
15969                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15970                 dev_priv->display.get_initial_plane_config =
15971                         i9xx_get_initial_plane_config;
15972                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15973                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15974                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15975         } else if (IS_PINEVIEW(dev_priv)) {
15976                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15977                 dev_priv->display.get_initial_plane_config =
15978                         i9xx_get_initial_plane_config;
15979                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15980                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15981                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15982         } else if (!IS_GEN2(dev_priv)) {
15983                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15984                 dev_priv->display.get_initial_plane_config =
15985                         i9xx_get_initial_plane_config;
15986                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15987                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15988                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15989         } else {
15990                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15991                 dev_priv->display.get_initial_plane_config =
15992                         i9xx_get_initial_plane_config;
15993                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15994                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15995                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15996         }
15997
15998         /* Returns the core display clock speed */
15999         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
16000                 dev_priv->display.get_display_clock_speed =
16001                         skylake_get_display_clock_speed;
16002         else if (IS_BROXTON(dev_priv))
16003                 dev_priv->display.get_display_clock_speed =
16004                         broxton_get_display_clock_speed;
16005         else if (IS_BROADWELL(dev_priv))
16006                 dev_priv->display.get_display_clock_speed =
16007                         broadwell_get_display_clock_speed;
16008         else if (IS_HASWELL(dev_priv))
16009                 dev_priv->display.get_display_clock_speed =
16010                         haswell_get_display_clock_speed;
16011         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16012                 dev_priv->display.get_display_clock_speed =
16013                         valleyview_get_display_clock_speed;
16014         else if (IS_GEN5(dev_priv))
16015                 dev_priv->display.get_display_clock_speed =
16016                         ilk_get_display_clock_speed;
16017         else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
16018                  IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
16019                 dev_priv->display.get_display_clock_speed =
16020                         i945_get_display_clock_speed;
16021         else if (IS_GM45(dev_priv))
16022                 dev_priv->display.get_display_clock_speed =
16023                         gm45_get_display_clock_speed;
16024         else if (IS_CRESTLINE(dev_priv))
16025                 dev_priv->display.get_display_clock_speed =
16026                         i965gm_get_display_clock_speed;
16027         else if (IS_PINEVIEW(dev_priv))
16028                 dev_priv->display.get_display_clock_speed =
16029                         pnv_get_display_clock_speed;
16030         else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
16031                 dev_priv->display.get_display_clock_speed =
16032                         g33_get_display_clock_speed;
16033         else if (IS_I915G(dev_priv))
16034                 dev_priv->display.get_display_clock_speed =
16035                         i915_get_display_clock_speed;
16036         else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
16037                 dev_priv->display.get_display_clock_speed =
16038                         i9xx_misc_get_display_clock_speed;
16039         else if (IS_I915GM(dev_priv))
16040                 dev_priv->display.get_display_clock_speed =
16041                         i915gm_get_display_clock_speed;
16042         else if (IS_I865G(dev_priv))
16043                 dev_priv->display.get_display_clock_speed =
16044                         i865_get_display_clock_speed;
16045         else if (IS_I85X(dev_priv))
16046                 dev_priv->display.get_display_clock_speed =
16047                         i85x_get_display_clock_speed;
16048         else { /* 830 */
16049                 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
16050                 dev_priv->display.get_display_clock_speed =
16051                         i830_get_display_clock_speed;
16052         }
16053
16054         if (IS_GEN5(dev_priv)) {
16055                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16056         } else if (IS_GEN6(dev_priv)) {
16057                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16058         } else if (IS_IVYBRIDGE(dev_priv)) {
16059                 /* FIXME: detect B0+ stepping and use auto training */
16060                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16061         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
16062                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
16063         }
16064
16065         if (IS_BROADWELL(dev_priv)) {
16066                 dev_priv->display.modeset_commit_cdclk =
16067                         broadwell_modeset_commit_cdclk;
16068                 dev_priv->display.modeset_calc_cdclk =
16069                         broadwell_modeset_calc_cdclk;
16070         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16071                 dev_priv->display.modeset_commit_cdclk =
16072                         valleyview_modeset_commit_cdclk;
16073                 dev_priv->display.modeset_calc_cdclk =
16074                         valleyview_modeset_calc_cdclk;
16075         } else if (IS_BROXTON(dev_priv)) {
16076                 dev_priv->display.modeset_commit_cdclk =
16077                         bxt_modeset_commit_cdclk;
16078                 dev_priv->display.modeset_calc_cdclk =
16079                         bxt_modeset_calc_cdclk;
16080         } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
16081                 dev_priv->display.modeset_commit_cdclk =
16082                         skl_modeset_commit_cdclk;
16083                 dev_priv->display.modeset_calc_cdclk =
16084                         skl_modeset_calc_cdclk;
16085         }
16086
16087         if (dev_priv->info.gen >= 9)
16088                 dev_priv->display.update_crtcs = skl_update_crtcs;
16089         else
16090                 dev_priv->display.update_crtcs = intel_update_crtcs;
16091
16092         switch (INTEL_INFO(dev_priv)->gen) {
16093         case 2:
16094                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
16095                 break;
16096
16097         case 3:
16098                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
16099                 break;
16100
16101         case 4:
16102         case 5:
16103                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
16104                 break;
16105
16106         case 6:
16107                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
16108                 break;
16109         case 7:
16110         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16111                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
16112                 break;
16113         case 9:
16114                 /* Drop through - unsupported since execlist only. */
16115         default:
16116                 /* Default just returns -ENODEV to indicate unsupported */
16117                 dev_priv->display.queue_flip = intel_default_queue_flip;
16118         }
16119 }
16120
16121 /*
16122  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16123  * resume, or other times.  This quirk makes sure that's the case for
16124  * affected systems.
16125  */
16126 static void quirk_pipea_force(struct drm_device *dev)
16127 {
16128         struct drm_i915_private *dev_priv = to_i915(dev);
16129
16130         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
16131         DRM_INFO("applying pipe a force quirk\n");
16132 }
16133
16134 static void quirk_pipeb_force(struct drm_device *dev)
16135 {
16136         struct drm_i915_private *dev_priv = to_i915(dev);
16137
16138         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16139         DRM_INFO("applying pipe b force quirk\n");
16140 }
16141
16142 /*
16143  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16144  */
16145 static void quirk_ssc_force_disable(struct drm_device *dev)
16146 {
16147         struct drm_i915_private *dev_priv = to_i915(dev);
16148         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
16149         DRM_INFO("applying lvds SSC disable quirk\n");
16150 }
16151
16152 /*
16153  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16154  * brightness value
16155  */
16156 static void quirk_invert_brightness(struct drm_device *dev)
16157 {
16158         struct drm_i915_private *dev_priv = to_i915(dev);
16159         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
16160         DRM_INFO("applying inverted panel brightness quirk\n");
16161 }
16162
16163 /* Some VBT's incorrectly indicate no backlight is present */
16164 static void quirk_backlight_present(struct drm_device *dev)
16165 {
16166         struct drm_i915_private *dev_priv = to_i915(dev);
16167         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16168         DRM_INFO("applying backlight present quirk\n");
16169 }
16170
16171 struct intel_quirk {
16172         int device;
16173         int subsystem_vendor;
16174         int subsystem_device;
16175         void (*hook)(struct drm_device *dev);
16176 };
16177
16178 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16179 struct intel_dmi_quirk {
16180         void (*hook)(struct drm_device *dev);
16181         const struct dmi_system_id (*dmi_id_list)[];
16182 };
16183
16184 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16185 {
16186         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16187         return 1;
16188 }
16189
16190 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16191         {
16192                 .dmi_id_list = &(const struct dmi_system_id[]) {
16193                         {
16194                                 .callback = intel_dmi_reverse_brightness,
16195                                 .ident = "NCR Corporation",
16196                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16197                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
16198                                 },
16199                         },
16200                         { }  /* terminating entry */
16201                 },
16202                 .hook = quirk_invert_brightness,
16203         },
16204 };
16205
16206 static struct intel_quirk intel_quirks[] = {
16207         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16208         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16209
16210         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16211         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16212
16213         /* 830 needs to leave pipe A & dpll A up */
16214         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16215
16216         /* 830 needs to leave pipe B & dpll B up */
16217         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16218
16219         /* Lenovo U160 cannot use SSC on LVDS */
16220         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
16221
16222         /* Sony Vaio Y cannot use SSC on LVDS */
16223         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
16224
16225         /* Acer Aspire 5734Z must invert backlight brightness */
16226         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16227
16228         /* Acer/eMachines G725 */
16229         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16230
16231         /* Acer/eMachines e725 */
16232         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16233
16234         /* Acer/Packard Bell NCL20 */
16235         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16236
16237         /* Acer Aspire 4736Z */
16238         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
16239
16240         /* Acer Aspire 5336 */
16241         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
16242
16243         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16244         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
16245
16246         /* Acer C720 Chromebook (Core i3 4005U) */
16247         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16248
16249         /* Apple Macbook 2,1 (Core 2 T7400) */
16250         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16251
16252         /* Apple Macbook 4,1 */
16253         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16254
16255         /* Toshiba CB35 Chromebook (Celeron 2955U) */
16256         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
16257
16258         /* HP Chromebook 14 (Celeron 2955U) */
16259         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
16260
16261         /* Dell Chromebook 11 */
16262         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
16263
16264         /* Dell Chromebook 11 (2015 version) */
16265         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
16266 };
16267
16268 static void intel_init_quirks(struct drm_device *dev)
16269 {
16270         struct pci_dev *d = dev->pdev;
16271         int i;
16272
16273         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16274                 struct intel_quirk *q = &intel_quirks[i];
16275
16276                 if (d->device == q->device &&
16277                     (d->subsystem_vendor == q->subsystem_vendor ||
16278                      q->subsystem_vendor == PCI_ANY_ID) &&
16279                     (d->subsystem_device == q->subsystem_device ||
16280                      q->subsystem_device == PCI_ANY_ID))
16281                         q->hook(dev);
16282         }
16283         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16284                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16285                         intel_dmi_quirks[i].hook(dev);
16286         }
16287 }
16288
16289 /* Disable the VGA plane that we never use */
16290 static void i915_disable_vga(struct drm_i915_private *dev_priv)
16291 {
16292         struct pci_dev *pdev = dev_priv->drm.pdev;
16293         u8 sr1;
16294         i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16295
16296         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
16297         vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
16298         outb(SR01, VGA_SR_INDEX);
16299         sr1 = inb(VGA_SR_DATA);
16300         outb(sr1 | 1<<5, VGA_SR_DATA);
16301         vga_put(pdev, VGA_RSRC_LEGACY_IO);
16302         udelay(300);
16303
16304         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
16305         POSTING_READ(vga_reg);
16306 }
16307
16308 void intel_modeset_init_hw(struct drm_device *dev)
16309 {
16310         struct drm_i915_private *dev_priv = to_i915(dev);
16311
16312         intel_update_cdclk(dev_priv);
16313
16314         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16315
16316         intel_init_clock_gating(dev_priv);
16317 }
16318
16319 /*
16320  * Calculate what we think the watermarks should be for the state we've read
16321  * out of the hardware and then immediately program those watermarks so that
16322  * we ensure the hardware settings match our internal state.
16323  *
16324  * We can calculate what we think WM's should be by creating a duplicate of the
16325  * current state (which was constructed during hardware readout) and running it
16326  * through the atomic check code to calculate new watermark values in the
16327  * state object.
16328  */
16329 static void sanitize_watermarks(struct drm_device *dev)
16330 {
16331         struct drm_i915_private *dev_priv = to_i915(dev);
16332         struct drm_atomic_state *state;
16333         struct intel_atomic_state *intel_state;
16334         struct drm_crtc *crtc;
16335         struct drm_crtc_state *cstate;
16336         struct drm_modeset_acquire_ctx ctx;
16337         int ret;
16338         int i;
16339
16340         /* Only supported on platforms that use atomic watermark design */
16341         if (!dev_priv->display.optimize_watermarks)
16342                 return;
16343
16344         /*
16345          * We need to hold connection_mutex before calling duplicate_state so
16346          * that the connector loop is protected.
16347          */
16348         drm_modeset_acquire_init(&ctx, 0);
16349 retry:
16350         ret = drm_modeset_lock_all_ctx(dev, &ctx);
16351         if (ret == -EDEADLK) {
16352                 drm_modeset_backoff(&ctx);
16353                 goto retry;
16354         } else if (WARN_ON(ret)) {
16355                 goto fail;
16356         }
16357
16358         state = drm_atomic_helper_duplicate_state(dev, &ctx);
16359         if (WARN_ON(IS_ERR(state)))
16360                 goto fail;
16361
16362         intel_state = to_intel_atomic_state(state);
16363
16364         /*
16365          * Hardware readout is the only time we don't want to calculate
16366          * intermediate watermarks (since we don't trust the current
16367          * watermarks).
16368          */
16369         intel_state->skip_intermediate_wm = true;
16370
16371         ret = intel_atomic_check(dev, state);
16372         if (ret) {
16373                 /*
16374                  * If we fail here, it means that the hardware appears to be
16375                  * programmed in a way that shouldn't be possible, given our
16376                  * understanding of watermark requirements.  This might mean a
16377                  * mistake in the hardware readout code or a mistake in the
16378                  * watermark calculations for a given platform.  Raise a WARN
16379                  * so that this is noticeable.
16380                  *
16381                  * If this actually happens, we'll have to just leave the
16382                  * BIOS-programmed watermarks untouched and hope for the best.
16383                  */
16384                 WARN(true, "Could not determine valid watermarks for inherited state\n");
16385                 goto put_state;
16386         }
16387
16388         /* Write calculated watermark values back */
16389         for_each_crtc_in_state(state, crtc, cstate, i) {
16390                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16391
16392                 cs->wm.need_postvbl_update = true;
16393                 dev_priv->display.optimize_watermarks(intel_state, cs);
16394         }
16395
16396 put_state:
16397         drm_atomic_state_put(state);
16398 fail:
16399         drm_modeset_drop_locks(&ctx);
16400         drm_modeset_acquire_fini(&ctx);
16401 }
16402
16403 static void intel_atomic_helper_free_state(struct work_struct *work)
16404 {
16405         struct drm_i915_private *dev_priv =
16406                 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
16407         struct intel_atomic_state *state, *next;
16408         struct llist_node *freed;
16409
16410         freed = llist_del_all(&dev_priv->atomic_helper.free_list);
16411         llist_for_each_entry_safe(state, next, freed, freed)
16412                 drm_atomic_state_put(&state->base);
16413 }
16414
16415 int intel_modeset_init(struct drm_device *dev)
16416 {
16417         struct drm_i915_private *dev_priv = to_i915(dev);
16418         struct i915_ggtt *ggtt = &dev_priv->ggtt;
16419         enum pipe pipe;
16420         struct intel_crtc *crtc;
16421
16422         drm_mode_config_init(dev);
16423
16424         dev->mode_config.min_width = 0;
16425         dev->mode_config.min_height = 0;
16426
16427         dev->mode_config.preferred_depth = 24;
16428         dev->mode_config.prefer_shadow = 1;
16429
16430         dev->mode_config.allow_fb_modifiers = true;
16431
16432         dev->mode_config.funcs = &intel_mode_funcs;
16433
16434         INIT_WORK(&dev_priv->atomic_helper.free_work,
16435                   intel_atomic_helper_free_state);
16436
16437         intel_init_quirks(dev);
16438
16439         intel_init_pm(dev_priv);
16440
16441         if (INTEL_INFO(dev_priv)->num_pipes == 0)
16442                 return 0;
16443
16444         /*
16445          * There may be no VBT; and if the BIOS enabled SSC we can
16446          * just keep using it to avoid unnecessary flicker.  Whereas if the
16447          * BIOS isn't using it, don't assume it will work even if the VBT
16448          * indicates as much.
16449          */
16450         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
16451                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16452                                             DREF_SSC1_ENABLE);
16453
16454                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16455                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16456                                      bios_lvds_use_ssc ? "en" : "dis",
16457                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16458                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16459                 }
16460         }
16461
16462         if (IS_GEN2(dev_priv)) {
16463                 dev->mode_config.max_width = 2048;
16464                 dev->mode_config.max_height = 2048;
16465         } else if (IS_GEN3(dev_priv)) {
16466                 dev->mode_config.max_width = 4096;
16467                 dev->mode_config.max_height = 4096;
16468         } else {
16469                 dev->mode_config.max_width = 8192;
16470                 dev->mode_config.max_height = 8192;
16471         }
16472
16473         if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
16474                 dev->mode_config.cursor_width = IS_845G(dev_priv) ? 64 : 512;
16475                 dev->mode_config.cursor_height = 1023;
16476         } else if (IS_GEN2(dev_priv)) {
16477                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16478                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16479         } else {
16480                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16481                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16482         }
16483
16484         dev->mode_config.fb_base = ggtt->mappable_base;
16485
16486         DRM_DEBUG_KMS("%d display pipe%s available.\n",
16487                       INTEL_INFO(dev_priv)->num_pipes,
16488                       INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
16489
16490         for_each_pipe(dev_priv, pipe) {
16491                 int ret;
16492
16493                 ret = intel_crtc_init(dev_priv, pipe);
16494                 if (ret) {
16495                         drm_mode_config_cleanup(dev);
16496                         return ret;
16497                 }
16498         }
16499
16500         intel_update_czclk(dev_priv);
16501         intel_update_cdclk(dev_priv);
16502         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16503
16504         intel_shared_dpll_init(dev);
16505
16506         if (dev_priv->max_cdclk_freq == 0)
16507                 intel_update_max_cdclk(dev_priv);
16508
16509         /* Just disable it once at startup */
16510         i915_disable_vga(dev_priv);
16511         intel_setup_outputs(dev);
16512
16513         drm_modeset_lock_all(dev);
16514         intel_modeset_setup_hw_state(dev);
16515         drm_modeset_unlock_all(dev);
16516
16517         for_each_intel_crtc(dev, crtc) {
16518                 struct intel_initial_plane_config plane_config = {};
16519
16520                 if (!crtc->active)
16521                         continue;
16522
16523                 /*
16524                  * Note that reserving the BIOS fb up front prevents us
16525                  * from stuffing other stolen allocations like the ring
16526                  * on top.  This prevents some ugliness at boot time, and
16527                  * can even allow for smooth boot transitions if the BIOS
16528                  * fb is large enough for the active pipe configuration.
16529                  */
16530                 dev_priv->display.get_initial_plane_config(crtc,
16531                                                            &plane_config);
16532
16533                 /*
16534                  * If the fb is shared between multiple heads, we'll
16535                  * just get the first one.
16536                  */
16537                 intel_find_initial_plane_obj(crtc, &plane_config);
16538         }
16539
16540         /*
16541          * Make sure hardware watermarks really match the state we read out.
16542          * Note that we need to do this after reconstructing the BIOS fb's
16543          * since the watermark calculation done here will use pstate->fb.
16544          */
16545         sanitize_watermarks(dev);
16546
16547         return 0;
16548 }
16549
16550 static void intel_enable_pipe_a(struct drm_device *dev)
16551 {
16552         struct intel_connector *connector;
16553         struct drm_connector *crt = NULL;
16554         struct intel_load_detect_pipe load_detect_temp;
16555         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
16556
16557         /* We can't just switch on the pipe A, we need to set things up with a
16558          * proper mode and output configuration. As a gross hack, enable pipe A
16559          * by enabling the load detect pipe once. */
16560         for_each_intel_connector(dev, connector) {
16561                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16562                         crt = &connector->base;
16563                         break;
16564                 }
16565         }
16566
16567         if (!crt)
16568                 return;
16569
16570         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
16571                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
16572 }
16573
16574 static bool
16575 intel_check_plane_mapping(struct intel_crtc *crtc)
16576 {
16577         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
16578         u32 val;
16579
16580         if (INTEL_INFO(dev_priv)->num_pipes == 1)
16581                 return true;
16582
16583         val = I915_READ(DSPCNTR(!crtc->plane));
16584
16585         if ((val & DISPLAY_PLANE_ENABLE) &&
16586             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16587                 return false;
16588
16589         return true;
16590 }
16591
16592 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16593 {
16594         struct drm_device *dev = crtc->base.dev;
16595         struct intel_encoder *encoder;
16596
16597         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16598                 return true;
16599
16600         return false;
16601 }
16602
16603 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16604 {
16605         struct drm_device *dev = encoder->base.dev;
16606         struct intel_connector *connector;
16607
16608         for_each_connector_on_encoder(dev, &encoder->base, connector)
16609                 return connector;
16610
16611         return NULL;
16612 }
16613
16614 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16615                               enum transcoder pch_transcoder)
16616 {
16617         return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16618                 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16619 }
16620
16621 static void intel_sanitize_crtc(struct intel_crtc *crtc)
16622 {
16623         struct drm_device *dev = crtc->base.dev;
16624         struct drm_i915_private *dev_priv = to_i915(dev);
16625         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
16626
16627         /* Clear any frame start delays used for debugging left by the BIOS */
16628         if (!transcoder_is_dsi(cpu_transcoder)) {
16629                 i915_reg_t reg = PIPECONF(cpu_transcoder);
16630
16631                 I915_WRITE(reg,
16632                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16633         }
16634
16635         /* restore vblank interrupts to correct state */
16636         drm_crtc_vblank_reset(&crtc->base);
16637         if (crtc->active) {
16638                 struct intel_plane *plane;
16639
16640                 drm_crtc_vblank_on(&crtc->base);
16641
16642                 /* Disable everything but the primary plane */
16643                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
16644                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16645                                 continue;
16646
16647                         plane->disable_plane(&plane->base, &crtc->base);
16648                 }
16649         }
16650
16651         /* We need to sanitize the plane -> pipe mapping first because this will
16652          * disable the crtc (and hence change the state) if it is wrong. Note
16653          * that gen4+ has a fixed plane -> pipe mapping.  */
16654         if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
16655                 bool plane;
16656
16657                 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16658                               crtc->base.base.id, crtc->base.name);
16659
16660                 /* Pipe has the wrong plane attached and the plane is active.
16661                  * Temporarily change the plane mapping and disable everything
16662                  * ...  */
16663                 plane = crtc->plane;
16664                 to_intel_plane_state(crtc->base.primary->state)->base.visible = true;
16665                 crtc->plane = !plane;
16666                 intel_crtc_disable_noatomic(&crtc->base);
16667                 crtc->plane = plane;
16668         }
16669
16670         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16671             crtc->pipe == PIPE_A && !crtc->active) {
16672                 /* BIOS forgot to enable pipe A, this mostly happens after
16673                  * resume. Force-enable the pipe to fix this, the update_dpms
16674                  * call below we restore the pipe to the right state, but leave
16675                  * the required bits on. */
16676                 intel_enable_pipe_a(dev);
16677         }
16678
16679         /* Adjust the state of the output pipe according to whether we
16680          * have active connectors/encoders. */
16681         if (crtc->active && !intel_crtc_has_encoders(crtc))
16682                 intel_crtc_disable_noatomic(&crtc->base);
16683
16684         if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
16685                 /*
16686                  * We start out with underrun reporting disabled to avoid races.
16687                  * For correct bookkeeping mark this on active crtcs.
16688                  *
16689                  * Also on gmch platforms we dont have any hardware bits to
16690                  * disable the underrun reporting. Which means we need to start
16691                  * out with underrun reporting disabled also on inactive pipes,
16692                  * since otherwise we'll complain about the garbage we read when
16693                  * e.g. coming up after runtime pm.
16694                  *
16695                  * No protection against concurrent access is required - at
16696                  * worst a fifo underrun happens which also sets this to false.
16697                  */
16698                 crtc->cpu_fifo_underrun_disabled = true;
16699                 /*
16700                  * We track the PCH trancoder underrun reporting state
16701                  * within the crtc. With crtc for pipe A housing the underrun
16702                  * reporting state for PCH transcoder A, crtc for pipe B housing
16703                  * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16704                  * and marking underrun reporting as disabled for the non-existing
16705                  * PCH transcoders B and C would prevent enabling the south
16706                  * error interrupt (see cpt_can_enable_serr_int()).
16707                  */
16708                 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16709                         crtc->pch_fifo_underrun_disabled = true;
16710         }
16711 }
16712
16713 static void intel_sanitize_encoder(struct intel_encoder *encoder)
16714 {
16715         struct intel_connector *connector;
16716
16717         /* We need to check both for a crtc link (meaning that the
16718          * encoder is active and trying to read from a pipe) and the
16719          * pipe itself being active. */
16720         bool has_active_crtc = encoder->base.crtc &&
16721                 to_intel_crtc(encoder->base.crtc)->active;
16722
16723         connector = intel_encoder_find_connector(encoder);
16724         if (connector && !has_active_crtc) {
16725                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16726                               encoder->base.base.id,
16727                               encoder->base.name);
16728
16729                 /* Connector is active, but has no active pipe. This is
16730                  * fallout from our resume register restoring. Disable
16731                  * the encoder manually again. */
16732                 if (encoder->base.crtc) {
16733                         struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16734
16735                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16736                                       encoder->base.base.id,
16737                                       encoder->base.name);
16738                         encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16739                         if (encoder->post_disable)
16740                                 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16741                 }
16742                 encoder->base.crtc = NULL;
16743
16744                 /* Inconsistent output/port/pipe state happens presumably due to
16745                  * a bug in one of the get_hw_state functions. Or someplace else
16746                  * in our code, like the register restore mess on resume. Clamp
16747                  * things to off as a safer default. */
16748
16749                 connector->base.dpms = DRM_MODE_DPMS_OFF;
16750                 connector->base.encoder = NULL;
16751         }
16752         /* Enabled encoders without active connectors will be fixed in
16753          * the crtc fixup. */
16754 }
16755
16756 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
16757 {
16758         i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16759
16760         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16761                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16762                 i915_disable_vga(dev_priv);
16763         }
16764 }
16765
16766 void i915_redisable_vga(struct drm_i915_private *dev_priv)
16767 {
16768         /* This function can be called both from intel_modeset_setup_hw_state or
16769          * at a very early point in our resume sequence, where the power well
16770          * structures are not yet restored. Since this function is at a very
16771          * paranoid "someone might have enabled VGA while we were not looking"
16772          * level, just check if the power well is enabled instead of trying to
16773          * follow the "don't touch the power well if we don't need it" policy
16774          * the rest of the driver uses. */
16775         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16776                 return;
16777
16778         i915_redisable_vga_power_on(dev_priv);
16779
16780         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16781 }
16782
16783 static bool primary_get_hw_state(struct intel_plane *plane)
16784 {
16785         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16786
16787         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16788 }
16789
16790 /* FIXME read out full plane state for all planes */
16791 static void readout_plane_state(struct intel_crtc *crtc)
16792 {
16793         struct drm_plane *primary = crtc->base.primary;
16794         struct intel_plane_state *plane_state =
16795                 to_intel_plane_state(primary->state);
16796
16797         plane_state->base.visible = crtc->active &&
16798                 primary_get_hw_state(to_intel_plane(primary));
16799
16800         if (plane_state->base.visible)
16801                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16802 }
16803
16804 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16805 {
16806         struct drm_i915_private *dev_priv = to_i915(dev);
16807         enum pipe pipe;
16808         struct intel_crtc *crtc;
16809         struct intel_encoder *encoder;
16810         struct intel_connector *connector;
16811         int i;
16812
16813         dev_priv->active_crtcs = 0;
16814
16815         for_each_intel_crtc(dev, crtc) {
16816                 struct intel_crtc_state *crtc_state = crtc->config;
16817
16818                 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16819                 memset(crtc_state, 0, sizeof(*crtc_state));
16820                 crtc_state->base.crtc = &crtc->base;
16821
16822                 crtc_state->base.active = crtc_state->base.enable =
16823                         dev_priv->display.get_pipe_config(crtc, crtc_state);
16824
16825                 crtc->base.enabled = crtc_state->base.enable;
16826                 crtc->active = crtc_state->base.active;
16827
16828                 if (crtc_state->base.active)
16829                         dev_priv->active_crtcs |= 1 << crtc->pipe;
16830
16831                 readout_plane_state(crtc);
16832
16833                 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16834                               crtc->base.base.id, crtc->base.name,
16835                               enableddisabled(crtc->active));
16836         }
16837
16838         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16839                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16840
16841                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16842                                                   &pll->config.hw_state);
16843                 pll->config.crtc_mask = 0;
16844                 for_each_intel_crtc(dev, crtc) {
16845                         if (crtc->active && crtc->config->shared_dpll == pll)
16846                                 pll->config.crtc_mask |= 1 << crtc->pipe;
16847                 }
16848                 pll->active_mask = pll->config.crtc_mask;
16849
16850                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16851                               pll->name, pll->config.crtc_mask, pll->on);
16852         }
16853
16854         for_each_intel_encoder(dev, encoder) {
16855                 pipe = 0;
16856
16857                 if (encoder->get_hw_state(encoder, &pipe)) {
16858                         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16859
16860                         encoder->base.crtc = &crtc->base;
16861                         crtc->config->output_types |= 1 << encoder->type;
16862                         encoder->get_config(encoder, crtc->config);
16863                 } else {
16864                         encoder->base.crtc = NULL;
16865                 }
16866
16867                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16868                               encoder->base.base.id, encoder->base.name,
16869                               enableddisabled(encoder->base.crtc),
16870                               pipe_name(pipe));
16871         }
16872
16873         for_each_intel_connector(dev, connector) {
16874                 if (connector->get_hw_state(connector)) {
16875                         connector->base.dpms = DRM_MODE_DPMS_ON;
16876
16877                         encoder = connector->encoder;
16878                         connector->base.encoder = &encoder->base;
16879
16880                         if (encoder->base.crtc &&
16881                             encoder->base.crtc->state->active) {
16882                                 /*
16883                                  * This has to be done during hardware readout
16884                                  * because anything calling .crtc_disable may
16885                                  * rely on the connector_mask being accurate.
16886                                  */
16887                                 encoder->base.crtc->state->connector_mask |=
16888                                         1 << drm_connector_index(&connector->base);
16889                                 encoder->base.crtc->state->encoder_mask |=
16890                                         1 << drm_encoder_index(&encoder->base);
16891                         }
16892
16893                 } else {
16894                         connector->base.dpms = DRM_MODE_DPMS_OFF;
16895                         connector->base.encoder = NULL;
16896                 }
16897                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16898                               connector->base.base.id, connector->base.name,
16899                               enableddisabled(connector->base.encoder));
16900         }
16901
16902         for_each_intel_crtc(dev, crtc) {
16903                 int pixclk = 0;
16904
16905                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16906
16907                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16908                 if (crtc->base.state->active) {
16909                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16910                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16911                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16912
16913                         /*
16914                          * The initial mode needs to be set in order to keep
16915                          * the atomic core happy. It wants a valid mode if the
16916                          * crtc's enabled, so we do the above call.
16917                          *
16918                          * At this point some state updated by the connectors
16919                          * in their ->detect() callback has not run yet, so
16920                          * no recalculation can be done yet.
16921                          *
16922                          * Even if we could do a recalculation and modeset
16923                          * right now it would cause a double modeset if
16924                          * fbdev or userspace chooses a different initial mode.
16925                          *
16926                          * If that happens, someone indicated they wanted a
16927                          * mode change, which means it's safe to do a full
16928                          * recalculation.
16929                          */
16930                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16931
16932                         if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16933                                 pixclk = ilk_pipe_pixel_rate(crtc->config);
16934                         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16935                                 pixclk = crtc->config->base.adjusted_mode.crtc_clock;
16936                         else
16937                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
16938
16939                         /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16940                         if (IS_BROADWELL(dev_priv) && crtc->config->ips_enabled)
16941                                 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16942
16943                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16944                         update_scanline_offset(crtc);
16945                 }
16946
16947                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
16948
16949                 intel_pipe_config_sanity_check(dev_priv, crtc->config);
16950         }
16951 }
16952
16953 /* Scan out the current hw modeset state,
16954  * and sanitizes it to the current state
16955  */
16956 static void
16957 intel_modeset_setup_hw_state(struct drm_device *dev)
16958 {
16959         struct drm_i915_private *dev_priv = to_i915(dev);
16960         enum pipe pipe;
16961         struct intel_crtc *crtc;
16962         struct intel_encoder *encoder;
16963         int i;
16964
16965         intel_modeset_readout_hw_state(dev);
16966
16967         /* HW state is read out, now we need to sanitize this mess. */
16968         for_each_intel_encoder(dev, encoder) {
16969                 intel_sanitize_encoder(encoder);
16970         }
16971
16972         for_each_pipe(dev_priv, pipe) {
16973                 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16974
16975                 intel_sanitize_crtc(crtc);
16976                 intel_dump_pipe_config(crtc, crtc->config,
16977                                        "[setup_hw_state]");
16978         }
16979
16980         intel_modeset_update_connector_atomic_state(dev);
16981
16982         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16983                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16984
16985                 if (!pll->on || pll->active_mask)
16986                         continue;
16987
16988                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16989
16990                 pll->funcs.disable(dev_priv, pll);
16991                 pll->on = false;
16992         }
16993
16994         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16995                 vlv_wm_get_hw_state(dev);
16996         else if (IS_GEN9(dev_priv))
16997                 skl_wm_get_hw_state(dev);
16998         else if (HAS_PCH_SPLIT(dev_priv))
16999                 ilk_wm_get_hw_state(dev);
17000
17001         for_each_intel_crtc(dev, crtc) {
17002                 unsigned long put_domains;
17003
17004                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
17005                 if (WARN_ON(put_domains))
17006                         modeset_put_power_domains(dev_priv, put_domains);
17007         }
17008         intel_display_set_init_power(dev_priv, false);
17009
17010         intel_fbc_init_pipe_state(dev_priv);
17011 }
17012
17013 void intel_display_resume(struct drm_device *dev)
17014 {
17015         struct drm_i915_private *dev_priv = to_i915(dev);
17016         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
17017         struct drm_modeset_acquire_ctx ctx;
17018         int ret;
17019
17020         dev_priv->modeset_restore_state = NULL;
17021         if (state)
17022                 state->acquire_ctx = &ctx;
17023
17024         /*
17025          * This is a cludge because with real atomic modeset mode_config.mutex
17026          * won't be taken. Unfortunately some probed state like
17027          * audio_codec_enable is still protected by mode_config.mutex, so lock
17028          * it here for now.
17029          */
17030         mutex_lock(&dev->mode_config.mutex);
17031         drm_modeset_acquire_init(&ctx, 0);
17032
17033         while (1) {
17034                 ret = drm_modeset_lock_all_ctx(dev, &ctx);
17035                 if (ret != -EDEADLK)
17036                         break;
17037
17038                 drm_modeset_backoff(&ctx);
17039         }
17040
17041         if (!ret)
17042                 ret = __intel_display_resume(dev, state);
17043
17044         drm_modeset_drop_locks(&ctx);
17045         drm_modeset_acquire_fini(&ctx);
17046         mutex_unlock(&dev->mode_config.mutex);
17047
17048         if (ret)
17049                 DRM_ERROR("Restoring old state failed with %i\n", ret);
17050         if (state)
17051                 drm_atomic_state_put(state);
17052 }
17053
17054 void intel_modeset_gem_init(struct drm_device *dev)
17055 {
17056         struct drm_i915_private *dev_priv = to_i915(dev);
17057
17058         intel_init_gt_powersave(dev_priv);
17059
17060         intel_modeset_init_hw(dev);
17061
17062         intel_setup_overlay(dev_priv);
17063 }
17064
17065 int intel_connector_register(struct drm_connector *connector)
17066 {
17067         struct intel_connector *intel_connector = to_intel_connector(connector);
17068         int ret;
17069
17070         ret = intel_backlight_device_register(intel_connector);
17071         if (ret)
17072                 goto err;
17073
17074         return 0;
17075
17076 err:
17077         return ret;
17078 }
17079
17080 void intel_connector_unregister(struct drm_connector *connector)
17081 {
17082         struct intel_connector *intel_connector = to_intel_connector(connector);
17083
17084         intel_backlight_device_unregister(intel_connector);
17085         intel_panel_destroy_backlight(connector);
17086 }
17087
17088 void intel_modeset_cleanup(struct drm_device *dev)
17089 {
17090         struct drm_i915_private *dev_priv = to_i915(dev);
17091
17092         flush_work(&dev_priv->atomic_helper.free_work);
17093         WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
17094
17095         intel_disable_gt_powersave(dev_priv);
17096
17097         /*
17098          * Interrupts and polling as the first thing to avoid creating havoc.
17099          * Too much stuff here (turning of connectors, ...) would
17100          * experience fancy races otherwise.
17101          */
17102         intel_irq_uninstall(dev_priv);
17103
17104         /*
17105          * Due to the hpd irq storm handling the hotplug work can re-arm the
17106          * poll handlers. Hence disable polling after hpd handling is shut down.
17107          */
17108         drm_kms_helper_poll_fini(dev);
17109
17110         intel_unregister_dsm_handler();
17111
17112         intel_fbc_global_disable(dev_priv);
17113
17114         /* flush any delayed tasks or pending work */
17115         flush_scheduled_work();
17116
17117         drm_mode_config_cleanup(dev);
17118
17119         intel_cleanup_overlay(dev_priv);
17120
17121         intel_cleanup_gt_powersave(dev_priv);
17122
17123         intel_teardown_gmbus(dev);
17124 }
17125
17126 void intel_connector_attach_encoder(struct intel_connector *connector,
17127                                     struct intel_encoder *encoder)
17128 {
17129         connector->encoder = encoder;
17130         drm_mode_connector_attach_encoder(&connector->base,
17131                                           &encoder->base);
17132 }
17133
17134 /*
17135  * set vga decode state - true == enable VGA decode
17136  */
17137 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
17138 {
17139         unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
17140         u16 gmch_ctrl;
17141
17142         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17143                 DRM_ERROR("failed to read control word\n");
17144                 return -EIO;
17145         }
17146
17147         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17148                 return 0;
17149
17150         if (state)
17151                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17152         else
17153                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
17154
17155         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17156                 DRM_ERROR("failed to write control word\n");
17157                 return -EIO;
17158         }
17159
17160         return 0;
17161 }
17162
17163 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
17164
17165 struct intel_display_error_state {
17166
17167         u32 power_well_driver;
17168
17169         int num_transcoders;
17170
17171         struct intel_cursor_error_state {
17172                 u32 control;
17173                 u32 position;
17174                 u32 base;
17175                 u32 size;
17176         } cursor[I915_MAX_PIPES];
17177
17178         struct intel_pipe_error_state {
17179                 bool power_domain_on;
17180                 u32 source;
17181                 u32 stat;
17182         } pipe[I915_MAX_PIPES];
17183
17184         struct intel_plane_error_state {
17185                 u32 control;
17186                 u32 stride;
17187                 u32 size;
17188                 u32 pos;
17189                 u32 addr;
17190                 u32 surface;
17191                 u32 tile_offset;
17192         } plane[I915_MAX_PIPES];
17193
17194         struct intel_transcoder_error_state {
17195                 bool power_domain_on;
17196                 enum transcoder cpu_transcoder;
17197
17198                 u32 conf;
17199
17200                 u32 htotal;
17201                 u32 hblank;
17202                 u32 hsync;
17203                 u32 vtotal;
17204                 u32 vblank;
17205                 u32 vsync;
17206         } transcoder[4];
17207 };
17208
17209 struct intel_display_error_state *
17210 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17211 {
17212         struct intel_display_error_state *error;
17213         int transcoders[] = {
17214                 TRANSCODER_A,
17215                 TRANSCODER_B,
17216                 TRANSCODER_C,
17217                 TRANSCODER_EDP,
17218         };
17219         int i;
17220
17221         if (INTEL_INFO(dev_priv)->num_pipes == 0)
17222                 return NULL;
17223
17224         error = kzalloc(sizeof(*error), GFP_ATOMIC);
17225         if (error == NULL)
17226                 return NULL;
17227
17228         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17229                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17230
17231         for_each_pipe(dev_priv, i) {
17232                 error->pipe[i].power_domain_on =
17233                         __intel_display_power_is_enabled(dev_priv,
17234                                                          POWER_DOMAIN_PIPE(i));
17235                 if (!error->pipe[i].power_domain_on)
17236                         continue;
17237
17238                 error->cursor[i].control = I915_READ(CURCNTR(i));
17239                 error->cursor[i].position = I915_READ(CURPOS(i));
17240                 error->cursor[i].base = I915_READ(CURBASE(i));
17241
17242                 error->plane[i].control = I915_READ(DSPCNTR(i));
17243                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17244                 if (INTEL_GEN(dev_priv) <= 3) {
17245                         error->plane[i].size = I915_READ(DSPSIZE(i));
17246                         error->plane[i].pos = I915_READ(DSPPOS(i));
17247                 }
17248                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17249                         error->plane[i].addr = I915_READ(DSPADDR(i));
17250                 if (INTEL_GEN(dev_priv) >= 4) {
17251                         error->plane[i].surface = I915_READ(DSPSURF(i));
17252                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17253                 }
17254
17255                 error->pipe[i].source = I915_READ(PIPESRC(i));
17256
17257                 if (HAS_GMCH_DISPLAY(dev_priv))
17258                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
17259         }
17260
17261         /* Note: this does not include DSI transcoders. */
17262         error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
17263         if (HAS_DDI(dev_priv))
17264                 error->num_transcoders++; /* Account for eDP. */
17265
17266         for (i = 0; i < error->num_transcoders; i++) {
17267                 enum transcoder cpu_transcoder = transcoders[i];
17268
17269                 error->transcoder[i].power_domain_on =
17270                         __intel_display_power_is_enabled(dev_priv,
17271                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17272                 if (!error->transcoder[i].power_domain_on)
17273                         continue;
17274
17275                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
17276
17277                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17278                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17279                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17280                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17281                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17282                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17283                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17284         }
17285
17286         return error;
17287 }
17288
17289 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17290
17291 void
17292 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17293                                 struct drm_i915_private *dev_priv,
17294                                 struct intel_display_error_state *error)
17295 {
17296         int i;
17297
17298         if (!error)
17299                 return;
17300
17301         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
17302         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17303                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
17304                            error->power_well_driver);
17305         for_each_pipe(dev_priv, i) {
17306                 err_printf(m, "Pipe [%d]:\n", i);
17307                 err_printf(m, "  Power: %s\n",
17308                            onoff(error->pipe[i].power_domain_on));
17309                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
17310                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
17311
17312                 err_printf(m, "Plane [%d]:\n", i);
17313                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
17314                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
17315                 if (INTEL_GEN(dev_priv) <= 3) {
17316                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
17317                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
17318                 }
17319                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17320                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
17321                 if (INTEL_GEN(dev_priv) >= 4) {
17322                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
17323                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
17324                 }
17325
17326                 err_printf(m, "Cursor [%d]:\n", i);
17327                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
17328                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
17329                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
17330         }
17331
17332         for (i = 0; i < error->num_transcoders; i++) {
17333                 err_printf(m, "CPU transcoder: %s\n",
17334                            transcoder_name(error->transcoder[i].cpu_transcoder));
17335                 err_printf(m, "  Power: %s\n",
17336                            onoff(error->transcoder[i].power_domain_on));
17337                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
17338                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
17339                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
17340                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
17341                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
17342                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
17343                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
17344         }
17345 }
17346
17347 #endif