]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge back earlier cpufreq changes for v4.11.
[linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "intel_dsi.h"
41 #include "i915_trace.h"
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_dp_helper.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_plane_helper.h>
47 #include <drm/drm_rect.h>
48 #include <linux/dma_remapping.h>
49 #include <linux/reservation.h>
50
51 static bool is_mmio_work(struct intel_flip_work *work)
52 {
53         return work->mmio_work.func;
54 }
55
56 /* Primary plane formats for gen <= 3 */
57 static const uint32_t i8xx_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB1555,
61         DRM_FORMAT_XRGB8888,
62 };
63
64 /* Primary plane formats for gen >= 4 */
65 static const uint32_t i965_primary_formats[] = {
66         DRM_FORMAT_C8,
67         DRM_FORMAT_RGB565,
68         DRM_FORMAT_XRGB8888,
69         DRM_FORMAT_XBGR8888,
70         DRM_FORMAT_XRGB2101010,
71         DRM_FORMAT_XBGR2101010,
72 };
73
74 static const uint32_t skl_primary_formats[] = {
75         DRM_FORMAT_C8,
76         DRM_FORMAT_RGB565,
77         DRM_FORMAT_XRGB8888,
78         DRM_FORMAT_XBGR8888,
79         DRM_FORMAT_ARGB8888,
80         DRM_FORMAT_ABGR8888,
81         DRM_FORMAT_XRGB2101010,
82         DRM_FORMAT_XBGR2101010,
83         DRM_FORMAT_YUYV,
84         DRM_FORMAT_YVYU,
85         DRM_FORMAT_UYVY,
86         DRM_FORMAT_VYUY,
87 };
88
89 /* Cursor formats */
90 static const uint32_t intel_cursor_formats[] = {
91         DRM_FORMAT_ARGB8888,
92 };
93
94 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
95                                 struct intel_crtc_state *pipe_config);
96 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
97                                    struct intel_crtc_state *pipe_config);
98
99 static int intel_framebuffer_init(struct drm_device *dev,
100                                   struct intel_framebuffer *ifb,
101                                   struct drm_mode_fb_cmd2 *mode_cmd,
102                                   struct drm_i915_gem_object *obj);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107                                          struct intel_link_m_n *m_n,
108                                          struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113                             const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115                             const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void skl_init_scalers(struct drm_i915_private *dev_priv,
119                              struct intel_crtc *crtc,
120                              struct intel_crtc_state *crtc_state);
121 static void skylake_pfit_enable(struct intel_crtc *crtc);
122 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
123 static void ironlake_pfit_enable(struct intel_crtc *crtc);
124 static void intel_modeset_setup_hw_state(struct drm_device *dev);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
127 static int bxt_calc_cdclk(int max_pixclk);
128
129 struct intel_limit {
130         struct {
131                 int min, max;
132         } dot, vco, n, m, m1, m2, p, p1;
133
134         struct {
135                 int dot_limit;
136                 int p2_slow, p2_fast;
137         } p2;
138 };
139
140 /* returns HPLL frequency in kHz */
141 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142 {
143         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144
145         /* Obtain SKU information */
146         mutex_lock(&dev_priv->sb_lock);
147         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148                 CCK_FUSE_HPLL_FREQ_MASK;
149         mutex_unlock(&dev_priv->sb_lock);
150
151         return vco_freq[hpll_freq] * 1000;
152 }
153
154 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155                       const char *name, u32 reg, int ref_freq)
156 {
157         u32 val;
158         int divider;
159
160         mutex_lock(&dev_priv->sb_lock);
161         val = vlv_cck_read(dev_priv, reg);
162         mutex_unlock(&dev_priv->sb_lock);
163
164         divider = val & CCK_FREQUENCY_VALUES;
165
166         WARN((val & CCK_FREQUENCY_STATUS) !=
167              (divider << CCK_FREQUENCY_STATUS_SHIFT),
168              "%s change in progress\n", name);
169
170         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171 }
172
173 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174                                   const char *name, u32 reg)
175 {
176         if (dev_priv->hpll_freq == 0)
177                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178
179         return vlv_get_cck_clock(dev_priv, name, reg,
180                                  dev_priv->hpll_freq);
181 }
182
183 static int
184 intel_pch_rawclk(struct drm_i915_private *dev_priv)
185 {
186         return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187 }
188
189 static int
190 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191 {
192         /* RAWCLK_FREQ_VLV register updated from power well code */
193         return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194                                       CCK_DISPLAY_REF_CLOCK_CONTROL);
195 }
196
197 static int
198 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
199 {
200         uint32_t clkcfg;
201
202         /* hrawclock is 1/4 the FSB frequency */
203         clkcfg = I915_READ(CLKCFG);
204         switch (clkcfg & CLKCFG_FSB_MASK) {
205         case CLKCFG_FSB_400:
206                 return 100000;
207         case CLKCFG_FSB_533:
208                 return 133333;
209         case CLKCFG_FSB_667:
210                 return 166667;
211         case CLKCFG_FSB_800:
212                 return 200000;
213         case CLKCFG_FSB_1067:
214                 return 266667;
215         case CLKCFG_FSB_1333:
216                 return 333333;
217         /* these two are just a guess; one of them might be right */
218         case CLKCFG_FSB_1600:
219         case CLKCFG_FSB_1600_ALT:
220                 return 400000;
221         default:
222                 return 133333;
223         }
224 }
225
226 void intel_update_rawclk(struct drm_i915_private *dev_priv)
227 {
228         if (HAS_PCH_SPLIT(dev_priv))
229                 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231                 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232         else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233                 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234         else
235                 return; /* no rawclk on other platforms, or no need to know it */
236
237         DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238 }
239
240 static void intel_update_czclk(struct drm_i915_private *dev_priv)
241 {
242         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
243                 return;
244
245         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246                                                       CCK_CZ_CLOCK_CONTROL);
247
248         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249 }
250
251 static inline u32 /* units of 100MHz */
252 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253                     const struct intel_crtc_state *pipe_config)
254 {
255         if (HAS_DDI(dev_priv))
256                 return pipe_config->port_clock; /* SPLL */
257         else if (IS_GEN5(dev_priv))
258                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
259         else
260                 return 270000;
261 }
262
263 static const struct intel_limit intel_limits_i8xx_dac = {
264         .dot = { .min = 25000, .max = 350000 },
265         .vco = { .min = 908000, .max = 1512000 },
266         .n = { .min = 2, .max = 16 },
267         .m = { .min = 96, .max = 140 },
268         .m1 = { .min = 18, .max = 26 },
269         .m2 = { .min = 6, .max = 16 },
270         .p = { .min = 4, .max = 128 },
271         .p1 = { .min = 2, .max = 33 },
272         .p2 = { .dot_limit = 165000,
273                 .p2_slow = 4, .p2_fast = 2 },
274 };
275
276 static const struct intel_limit intel_limits_i8xx_dvo = {
277         .dot = { .min = 25000, .max = 350000 },
278         .vco = { .min = 908000, .max = 1512000 },
279         .n = { .min = 2, .max = 16 },
280         .m = { .min = 96, .max = 140 },
281         .m1 = { .min = 18, .max = 26 },
282         .m2 = { .min = 6, .max = 16 },
283         .p = { .min = 4, .max = 128 },
284         .p1 = { .min = 2, .max = 33 },
285         .p2 = { .dot_limit = 165000,
286                 .p2_slow = 4, .p2_fast = 4 },
287 };
288
289 static const struct intel_limit intel_limits_i8xx_lvds = {
290         .dot = { .min = 25000, .max = 350000 },
291         .vco = { .min = 908000, .max = 1512000 },
292         .n = { .min = 2, .max = 16 },
293         .m = { .min = 96, .max = 140 },
294         .m1 = { .min = 18, .max = 26 },
295         .m2 = { .min = 6, .max = 16 },
296         .p = { .min = 4, .max = 128 },
297         .p1 = { .min = 1, .max = 6 },
298         .p2 = { .dot_limit = 165000,
299                 .p2_slow = 14, .p2_fast = 7 },
300 };
301
302 static const struct intel_limit intel_limits_i9xx_sdvo = {
303         .dot = { .min = 20000, .max = 400000 },
304         .vco = { .min = 1400000, .max = 2800000 },
305         .n = { .min = 1, .max = 6 },
306         .m = { .min = 70, .max = 120 },
307         .m1 = { .min = 8, .max = 18 },
308         .m2 = { .min = 3, .max = 7 },
309         .p = { .min = 5, .max = 80 },
310         .p1 = { .min = 1, .max = 8 },
311         .p2 = { .dot_limit = 200000,
312                 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const struct intel_limit intel_limits_i9xx_lvds = {
316         .dot = { .min = 20000, .max = 400000 },
317         .vco = { .min = 1400000, .max = 2800000 },
318         .n = { .min = 1, .max = 6 },
319         .m = { .min = 70, .max = 120 },
320         .m1 = { .min = 8, .max = 18 },
321         .m2 = { .min = 3, .max = 7 },
322         .p = { .min = 7, .max = 98 },
323         .p1 = { .min = 1, .max = 8 },
324         .p2 = { .dot_limit = 112000,
325                 .p2_slow = 14, .p2_fast = 7 },
326 };
327
328
329 static const struct intel_limit intel_limits_g4x_sdvo = {
330         .dot = { .min = 25000, .max = 270000 },
331         .vco = { .min = 1750000, .max = 3500000},
332         .n = { .min = 1, .max = 4 },
333         .m = { .min = 104, .max = 138 },
334         .m1 = { .min = 17, .max = 23 },
335         .m2 = { .min = 5, .max = 11 },
336         .p = { .min = 10, .max = 30 },
337         .p1 = { .min = 1, .max = 3},
338         .p2 = { .dot_limit = 270000,
339                 .p2_slow = 10,
340                 .p2_fast = 10
341         },
342 };
343
344 static const struct intel_limit intel_limits_g4x_hdmi = {
345         .dot = { .min = 22000, .max = 400000 },
346         .vco = { .min = 1750000, .max = 3500000},
347         .n = { .min = 1, .max = 4 },
348         .m = { .min = 104, .max = 138 },
349         .m1 = { .min = 16, .max = 23 },
350         .m2 = { .min = 5, .max = 11 },
351         .p = { .min = 5, .max = 80 },
352         .p1 = { .min = 1, .max = 8},
353         .p2 = { .dot_limit = 165000,
354                 .p2_slow = 10, .p2_fast = 5 },
355 };
356
357 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
358         .dot = { .min = 20000, .max = 115000 },
359         .vco = { .min = 1750000, .max = 3500000 },
360         .n = { .min = 1, .max = 3 },
361         .m = { .min = 104, .max = 138 },
362         .m1 = { .min = 17, .max = 23 },
363         .m2 = { .min = 5, .max = 11 },
364         .p = { .min = 28, .max = 112 },
365         .p1 = { .min = 2, .max = 8 },
366         .p2 = { .dot_limit = 0,
367                 .p2_slow = 14, .p2_fast = 14
368         },
369 };
370
371 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
372         .dot = { .min = 80000, .max = 224000 },
373         .vco = { .min = 1750000, .max = 3500000 },
374         .n = { .min = 1, .max = 3 },
375         .m = { .min = 104, .max = 138 },
376         .m1 = { .min = 17, .max = 23 },
377         .m2 = { .min = 5, .max = 11 },
378         .p = { .min = 14, .max = 42 },
379         .p1 = { .min = 2, .max = 6 },
380         .p2 = { .dot_limit = 0,
381                 .p2_slow = 7, .p2_fast = 7
382         },
383 };
384
385 static const struct intel_limit intel_limits_pineview_sdvo = {
386         .dot = { .min = 20000, .max = 400000},
387         .vco = { .min = 1700000, .max = 3500000 },
388         /* Pineview's Ncounter is a ring counter */
389         .n = { .min = 3, .max = 6 },
390         .m = { .min = 2, .max = 256 },
391         /* Pineview only has one combined m divider, which we treat as m2. */
392         .m1 = { .min = 0, .max = 0 },
393         .m2 = { .min = 0, .max = 254 },
394         .p = { .min = 5, .max = 80 },
395         .p1 = { .min = 1, .max = 8 },
396         .p2 = { .dot_limit = 200000,
397                 .p2_slow = 10, .p2_fast = 5 },
398 };
399
400 static const struct intel_limit intel_limits_pineview_lvds = {
401         .dot = { .min = 20000, .max = 400000 },
402         .vco = { .min = 1700000, .max = 3500000 },
403         .n = { .min = 3, .max = 6 },
404         .m = { .min = 2, .max = 256 },
405         .m1 = { .min = 0, .max = 0 },
406         .m2 = { .min = 0, .max = 254 },
407         .p = { .min = 7, .max = 112 },
408         .p1 = { .min = 1, .max = 8 },
409         .p2 = { .dot_limit = 112000,
410                 .p2_slow = 14, .p2_fast = 14 },
411 };
412
413 /* Ironlake / Sandybridge
414  *
415  * We calculate clock using (register_value + 2) for N/M1/M2, so here
416  * the range value for them is (actual_value - 2).
417  */
418 static const struct intel_limit intel_limits_ironlake_dac = {
419         .dot = { .min = 25000, .max = 350000 },
420         .vco = { .min = 1760000, .max = 3510000 },
421         .n = { .min = 1, .max = 5 },
422         .m = { .min = 79, .max = 127 },
423         .m1 = { .min = 12, .max = 22 },
424         .m2 = { .min = 5, .max = 9 },
425         .p = { .min = 5, .max = 80 },
426         .p1 = { .min = 1, .max = 8 },
427         .p2 = { .dot_limit = 225000,
428                 .p2_slow = 10, .p2_fast = 5 },
429 };
430
431 static const struct intel_limit intel_limits_ironlake_single_lvds = {
432         .dot = { .min = 25000, .max = 350000 },
433         .vco = { .min = 1760000, .max = 3510000 },
434         .n = { .min = 1, .max = 3 },
435         .m = { .min = 79, .max = 118 },
436         .m1 = { .min = 12, .max = 22 },
437         .m2 = { .min = 5, .max = 9 },
438         .p = { .min = 28, .max = 112 },
439         .p1 = { .min = 2, .max = 8 },
440         .p2 = { .dot_limit = 225000,
441                 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
445         .dot = { .min = 25000, .max = 350000 },
446         .vco = { .min = 1760000, .max = 3510000 },
447         .n = { .min = 1, .max = 3 },
448         .m = { .min = 79, .max = 127 },
449         .m1 = { .min = 12, .max = 22 },
450         .m2 = { .min = 5, .max = 9 },
451         .p = { .min = 14, .max = 56 },
452         .p1 = { .min = 2, .max = 8 },
453         .p2 = { .dot_limit = 225000,
454                 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 /* LVDS 100mhz refclk limits. */
458 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
459         .dot = { .min = 25000, .max = 350000 },
460         .vco = { .min = 1760000, .max = 3510000 },
461         .n = { .min = 1, .max = 2 },
462         .m = { .min = 79, .max = 126 },
463         .m1 = { .min = 12, .max = 22 },
464         .m2 = { .min = 5, .max = 9 },
465         .p = { .min = 28, .max = 112 },
466         .p1 = { .min = 2, .max = 8 },
467         .p2 = { .dot_limit = 225000,
468                 .p2_slow = 14, .p2_fast = 14 },
469 };
470
471 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
472         .dot = { .min = 25000, .max = 350000 },
473         .vco = { .min = 1760000, .max = 3510000 },
474         .n = { .min = 1, .max = 3 },
475         .m = { .min = 79, .max = 126 },
476         .m1 = { .min = 12, .max = 22 },
477         .m2 = { .min = 5, .max = 9 },
478         .p = { .min = 14, .max = 42 },
479         .p1 = { .min = 2, .max = 6 },
480         .p2 = { .dot_limit = 225000,
481                 .p2_slow = 7, .p2_fast = 7 },
482 };
483
484 static const struct intel_limit intel_limits_vlv = {
485          /*
486           * These are the data rate limits (measured in fast clocks)
487           * since those are the strictest limits we have. The fast
488           * clock and actual rate limits are more relaxed, so checking
489           * them would make no difference.
490           */
491         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
492         .vco = { .min = 4000000, .max = 6000000 },
493         .n = { .min = 1, .max = 7 },
494         .m1 = { .min = 2, .max = 3 },
495         .m2 = { .min = 11, .max = 156 },
496         .p1 = { .min = 2, .max = 3 },
497         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
498 };
499
500 static const struct intel_limit intel_limits_chv = {
501         /*
502          * These are the data rate limits (measured in fast clocks)
503          * since those are the strictest limits we have.  The fast
504          * clock and actual rate limits are more relaxed, so checking
505          * them would make no difference.
506          */
507         .dot = { .min = 25000 * 5, .max = 540000 * 5},
508         .vco = { .min = 4800000, .max = 6480000 },
509         .n = { .min = 1, .max = 1 },
510         .m1 = { .min = 2, .max = 2 },
511         .m2 = { .min = 24 << 22, .max = 175 << 22 },
512         .p1 = { .min = 2, .max = 4 },
513         .p2 = { .p2_slow = 1, .p2_fast = 14 },
514 };
515
516 static const struct intel_limit intel_limits_bxt = {
517         /* FIXME: find real dot limits */
518         .dot = { .min = 0, .max = INT_MAX },
519         .vco = { .min = 4800000, .max = 6700000 },
520         .n = { .min = 1, .max = 1 },
521         .m1 = { .min = 2, .max = 2 },
522         /* FIXME: find real m2 limits */
523         .m2 = { .min = 2 << 22, .max = 255 << 22 },
524         .p1 = { .min = 2, .max = 4 },
525         .p2 = { .p2_slow = 1, .p2_fast = 20 },
526 };
527
528 static bool
529 needs_modeset(struct drm_crtc_state *state)
530 {
531         return drm_atomic_crtc_needs_modeset(state);
532 }
533
534 /*
535  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538  * The helpers' return value is the rate of the clock that is fed to the
539  * display engine's pipe which can be the above fast dot clock rate or a
540  * divided-down version of it.
541  */
542 /* m1 is reserved as 0 in Pineview, n is a ring counter */
543 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
544 {
545         clock->m = clock->m2 + 2;
546         clock->p = clock->p1 * clock->p2;
547         if (WARN_ON(clock->n == 0 || clock->p == 0))
548                 return 0;
549         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
551
552         return clock->dot;
553 }
554
555 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556 {
557         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558 }
559
560 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
561 {
562         clock->m = i9xx_dpll_compute_m(clock);
563         clock->p = clock->p1 * clock->p2;
564         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
565                 return 0;
566         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568
569         return clock->dot;
570 }
571
572 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
573 {
574         clock->m = clock->m1 * clock->m2;
575         clock->p = clock->p1 * clock->p2;
576         if (WARN_ON(clock->n == 0 || clock->p == 0))
577                 return 0;
578         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
580
581         return clock->dot / 5;
582 }
583
584 int chv_calc_dpll_params(int refclk, struct dpll *clock)
585 {
586         clock->m = clock->m1 * clock->m2;
587         clock->p = clock->p1 * clock->p2;
588         if (WARN_ON(clock->n == 0 || clock->p == 0))
589                 return 0;
590         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591                         clock->n << 22);
592         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593
594         return clock->dot / 5;
595 }
596
597 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
598 /**
599  * Returns whether the given set of divisors are valid for a given refclk with
600  * the given connectors.
601  */
602
603 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
604                                const struct intel_limit *limit,
605                                const struct dpll *clock)
606 {
607         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
608                 INTELPllInvalid("n out of range\n");
609         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
610                 INTELPllInvalid("p1 out of range\n");
611         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
612                 INTELPllInvalid("m2 out of range\n");
613         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
614                 INTELPllInvalid("m1 out of range\n");
615
616         if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
617             !IS_CHERRYVIEW(dev_priv) && !IS_BROXTON(dev_priv))
618                 if (clock->m1 <= clock->m2)
619                         INTELPllInvalid("m1 <= m2\n");
620
621         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
622             !IS_BROXTON(dev_priv)) {
623                 if (clock->p < limit->p.min || limit->p.max < clock->p)
624                         INTELPllInvalid("p out of range\n");
625                 if (clock->m < limit->m.min || limit->m.max < clock->m)
626                         INTELPllInvalid("m out of range\n");
627         }
628
629         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
630                 INTELPllInvalid("vco out of range\n");
631         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
632          * connector, etc., rather than just a single range.
633          */
634         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
635                 INTELPllInvalid("dot out of range\n");
636
637         return true;
638 }
639
640 static int
641 i9xx_select_p2_div(const struct intel_limit *limit,
642                    const struct intel_crtc_state *crtc_state,
643                    int target)
644 {
645         struct drm_device *dev = crtc_state->base.crtc->dev;
646
647         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
648                 /*
649                  * For LVDS just rely on its current settings for dual-channel.
650                  * We haven't figured out how to reliably set up different
651                  * single/dual channel state, if we even can.
652                  */
653                 if (intel_is_dual_link_lvds(dev))
654                         return limit->p2.p2_fast;
655                 else
656                         return limit->p2.p2_slow;
657         } else {
658                 if (target < limit->p2.dot_limit)
659                         return limit->p2.p2_slow;
660                 else
661                         return limit->p2.p2_fast;
662         }
663 }
664
665 /*
666  * Returns a set of divisors for the desired target clock with the given
667  * refclk, or FALSE.  The returned values represent the clock equation:
668  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
669  *
670  * Target and reference clocks are specified in kHz.
671  *
672  * If match_clock is provided, then best_clock P divider must match the P
673  * divider from @match_clock used for LVDS downclocking.
674  */
675 static bool
676 i9xx_find_best_dpll(const struct intel_limit *limit,
677                     struct intel_crtc_state *crtc_state,
678                     int target, int refclk, struct dpll *match_clock,
679                     struct dpll *best_clock)
680 {
681         struct drm_device *dev = crtc_state->base.crtc->dev;
682         struct dpll clock;
683         int err = target;
684
685         memset(best_clock, 0, sizeof(*best_clock));
686
687         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
688
689         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
690              clock.m1++) {
691                 for (clock.m2 = limit->m2.min;
692                      clock.m2 <= limit->m2.max; clock.m2++) {
693                         if (clock.m2 >= clock.m1)
694                                 break;
695                         for (clock.n = limit->n.min;
696                              clock.n <= limit->n.max; clock.n++) {
697                                 for (clock.p1 = limit->p1.min;
698                                         clock.p1 <= limit->p1.max; clock.p1++) {
699                                         int this_err;
700
701                                         i9xx_calc_dpll_params(refclk, &clock);
702                                         if (!intel_PLL_is_valid(to_i915(dev),
703                                                                 limit,
704                                                                 &clock))
705                                                 continue;
706                                         if (match_clock &&
707                                             clock.p != match_clock->p)
708                                                 continue;
709
710                                         this_err = abs(clock.dot - target);
711                                         if (this_err < err) {
712                                                 *best_clock = clock;
713                                                 err = this_err;
714                                         }
715                                 }
716                         }
717                 }
718         }
719
720         return (err != target);
721 }
722
723 /*
724  * Returns a set of divisors for the desired target clock with the given
725  * refclk, or FALSE.  The returned values represent the clock equation:
726  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
727  *
728  * Target and reference clocks are specified in kHz.
729  *
730  * If match_clock is provided, then best_clock P divider must match the P
731  * divider from @match_clock used for LVDS downclocking.
732  */
733 static bool
734 pnv_find_best_dpll(const struct intel_limit *limit,
735                    struct intel_crtc_state *crtc_state,
736                    int target, int refclk, struct dpll *match_clock,
737                    struct dpll *best_clock)
738 {
739         struct drm_device *dev = crtc_state->base.crtc->dev;
740         struct dpll clock;
741         int err = target;
742
743         memset(best_clock, 0, sizeof(*best_clock));
744
745         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746
747         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
748              clock.m1++) {
749                 for (clock.m2 = limit->m2.min;
750                      clock.m2 <= limit->m2.max; clock.m2++) {
751                         for (clock.n = limit->n.min;
752                              clock.n <= limit->n.max; clock.n++) {
753                                 for (clock.p1 = limit->p1.min;
754                                         clock.p1 <= limit->p1.max; clock.p1++) {
755                                         int this_err;
756
757                                         pnv_calc_dpll_params(refclk, &clock);
758                                         if (!intel_PLL_is_valid(to_i915(dev),
759                                                                 limit,
760                                                                 &clock))
761                                                 continue;
762                                         if (match_clock &&
763                                             clock.p != match_clock->p)
764                                                 continue;
765
766                                         this_err = abs(clock.dot - target);
767                                         if (this_err < err) {
768                                                 *best_clock = clock;
769                                                 err = this_err;
770                                         }
771                                 }
772                         }
773                 }
774         }
775
776         return (err != target);
777 }
778
779 /*
780  * Returns a set of divisors for the desired target clock with the given
781  * refclk, or FALSE.  The returned values represent the clock equation:
782  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
783  *
784  * Target and reference clocks are specified in kHz.
785  *
786  * If match_clock is provided, then best_clock P divider must match the P
787  * divider from @match_clock used for LVDS downclocking.
788  */
789 static bool
790 g4x_find_best_dpll(const struct intel_limit *limit,
791                    struct intel_crtc_state *crtc_state,
792                    int target, int refclk, struct dpll *match_clock,
793                    struct dpll *best_clock)
794 {
795         struct drm_device *dev = crtc_state->base.crtc->dev;
796         struct dpll clock;
797         int max_n;
798         bool found = false;
799         /* approximately equals target * 0.00585 */
800         int err_most = (target >> 8) + (target >> 9);
801
802         memset(best_clock, 0, sizeof(*best_clock));
803
804         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
805
806         max_n = limit->n.max;
807         /* based on hardware requirement, prefer smaller n to precision */
808         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809                 /* based on hardware requirement, prefere larger m1,m2 */
810                 for (clock.m1 = limit->m1.max;
811                      clock.m1 >= limit->m1.min; clock.m1--) {
812                         for (clock.m2 = limit->m2.max;
813                              clock.m2 >= limit->m2.min; clock.m2--) {
814                                 for (clock.p1 = limit->p1.max;
815                                      clock.p1 >= limit->p1.min; clock.p1--) {
816                                         int this_err;
817
818                                         i9xx_calc_dpll_params(refclk, &clock);
819                                         if (!intel_PLL_is_valid(to_i915(dev),
820                                                                 limit,
821                                                                 &clock))
822                                                 continue;
823
824                                         this_err = abs(clock.dot - target);
825                                         if (this_err < err_most) {
826                                                 *best_clock = clock;
827                                                 err_most = this_err;
828                                                 max_n = clock.n;
829                                                 found = true;
830                                         }
831                                 }
832                         }
833                 }
834         }
835         return found;
836 }
837
838 /*
839  * Check if the calculated PLL configuration is more optimal compared to the
840  * best configuration and error found so far. Return the calculated error.
841  */
842 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
843                                const struct dpll *calculated_clock,
844                                const struct dpll *best_clock,
845                                unsigned int best_error_ppm,
846                                unsigned int *error_ppm)
847 {
848         /*
849          * For CHV ignore the error and consider only the P value.
850          * Prefer a bigger P value based on HW requirements.
851          */
852         if (IS_CHERRYVIEW(to_i915(dev))) {
853                 *error_ppm = 0;
854
855                 return calculated_clock->p > best_clock->p;
856         }
857
858         if (WARN_ON_ONCE(!target_freq))
859                 return false;
860
861         *error_ppm = div_u64(1000000ULL *
862                                 abs(target_freq - calculated_clock->dot),
863                              target_freq);
864         /*
865          * Prefer a better P value over a better (smaller) error if the error
866          * is small. Ensure this preference for future configurations too by
867          * setting the error to 0.
868          */
869         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
870                 *error_ppm = 0;
871
872                 return true;
873         }
874
875         return *error_ppm + 10 < best_error_ppm;
876 }
877
878 /*
879  * Returns a set of divisors for the desired target clock with the given
880  * refclk, or FALSE.  The returned values represent the clock equation:
881  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
882  */
883 static bool
884 vlv_find_best_dpll(const struct intel_limit *limit,
885                    struct intel_crtc_state *crtc_state,
886                    int target, int refclk, struct dpll *match_clock,
887                    struct dpll *best_clock)
888 {
889         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
890         struct drm_device *dev = crtc->base.dev;
891         struct dpll clock;
892         unsigned int bestppm = 1000000;
893         /* min update 19.2 MHz */
894         int max_n = min(limit->n.max, refclk / 19200);
895         bool found = false;
896
897         target *= 5; /* fast clock */
898
899         memset(best_clock, 0, sizeof(*best_clock));
900
901         /* based on hardware requirement, prefer smaller n to precision */
902         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
903                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
904                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
905                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
906                                 clock.p = clock.p1 * clock.p2;
907                                 /* based on hardware requirement, prefer bigger m1,m2 values */
908                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
909                                         unsigned int ppm;
910
911                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
912                                                                      refclk * clock.m1);
913
914                                         vlv_calc_dpll_params(refclk, &clock);
915
916                                         if (!intel_PLL_is_valid(to_i915(dev),
917                                                                 limit,
918                                                                 &clock))
919                                                 continue;
920
921                                         if (!vlv_PLL_is_optimal(dev, target,
922                                                                 &clock,
923                                                                 best_clock,
924                                                                 bestppm, &ppm))
925                                                 continue;
926
927                                         *best_clock = clock;
928                                         bestppm = ppm;
929                                         found = true;
930                                 }
931                         }
932                 }
933         }
934
935         return found;
936 }
937
938 /*
939  * Returns a set of divisors for the desired target clock with the given
940  * refclk, or FALSE.  The returned values represent the clock equation:
941  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
942  */
943 static bool
944 chv_find_best_dpll(const struct intel_limit *limit,
945                    struct intel_crtc_state *crtc_state,
946                    int target, int refclk, struct dpll *match_clock,
947                    struct dpll *best_clock)
948 {
949         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
950         struct drm_device *dev = crtc->base.dev;
951         unsigned int best_error_ppm;
952         struct dpll clock;
953         uint64_t m2;
954         int found = false;
955
956         memset(best_clock, 0, sizeof(*best_clock));
957         best_error_ppm = 1000000;
958
959         /*
960          * Based on hardware doc, the n always set to 1, and m1 always
961          * set to 2.  If requires to support 200Mhz refclk, we need to
962          * revisit this because n may not 1 anymore.
963          */
964         clock.n = 1, clock.m1 = 2;
965         target *= 5;    /* fast clock */
966
967         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
968                 for (clock.p2 = limit->p2.p2_fast;
969                                 clock.p2 >= limit->p2.p2_slow;
970                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
971                         unsigned int error_ppm;
972
973                         clock.p = clock.p1 * clock.p2;
974
975                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
976                                         clock.n) << 22, refclk * clock.m1);
977
978                         if (m2 > INT_MAX/clock.m1)
979                                 continue;
980
981                         clock.m2 = m2;
982
983                         chv_calc_dpll_params(refclk, &clock);
984
985                         if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
986                                 continue;
987
988                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
989                                                 best_error_ppm, &error_ppm))
990                                 continue;
991
992                         *best_clock = clock;
993                         best_error_ppm = error_ppm;
994                         found = true;
995                 }
996         }
997
998         return found;
999 }
1000
1001 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1002                         struct dpll *best_clock)
1003 {
1004         int refclk = 100000;
1005         const struct intel_limit *limit = &intel_limits_bxt;
1006
1007         return chv_find_best_dpll(limit, crtc_state,
1008                                   target_clock, refclk, NULL, best_clock);
1009 }
1010
1011 bool intel_crtc_active(struct intel_crtc *crtc)
1012 {
1013         /* Be paranoid as we can arrive here with only partial
1014          * state retrieved from the hardware during setup.
1015          *
1016          * We can ditch the adjusted_mode.crtc_clock check as soon
1017          * as Haswell has gained clock readout/fastboot support.
1018          *
1019          * We can ditch the crtc->primary->fb check as soon as we can
1020          * properly reconstruct framebuffers.
1021          *
1022          * FIXME: The intel_crtc->active here should be switched to
1023          * crtc->state->active once we have proper CRTC states wired up
1024          * for atomic.
1025          */
1026         return crtc->active && crtc->base.primary->state->fb &&
1027                 crtc->config->base.adjusted_mode.crtc_clock;
1028 }
1029
1030 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1031                                              enum pipe pipe)
1032 {
1033         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1034
1035         return crtc->config->cpu_transcoder;
1036 }
1037
1038 static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
1039 {
1040         i915_reg_t reg = PIPEDSL(pipe);
1041         u32 line1, line2;
1042         u32 line_mask;
1043
1044         if (IS_GEN2(dev_priv))
1045                 line_mask = DSL_LINEMASK_GEN2;
1046         else
1047                 line_mask = DSL_LINEMASK_GEN3;
1048
1049         line1 = I915_READ(reg) & line_mask;
1050         msleep(5);
1051         line2 = I915_READ(reg) & line_mask;
1052
1053         return line1 == line2;
1054 }
1055
1056 /*
1057  * intel_wait_for_pipe_off - wait for pipe to turn off
1058  * @crtc: crtc whose pipe to wait for
1059  *
1060  * After disabling a pipe, we can't wait for vblank in the usual way,
1061  * spinning on the vblank interrupt status bit, since we won't actually
1062  * see an interrupt when the pipe is disabled.
1063  *
1064  * On Gen4 and above:
1065  *   wait for the pipe register state bit to turn off
1066  *
1067  * Otherwise:
1068  *   wait for the display line value to settle (it usually
1069  *   ends up stopping at the start of the next frame).
1070  *
1071  */
1072 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1073 {
1074         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1075         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1076         enum pipe pipe = crtc->pipe;
1077
1078         if (INTEL_GEN(dev_priv) >= 4) {
1079                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1080
1081                 /* Wait for the Pipe State to go off */
1082                 if (intel_wait_for_register(dev_priv,
1083                                             reg, I965_PIPECONF_ACTIVE, 0,
1084                                             100))
1085                         WARN(1, "pipe_off wait timed out\n");
1086         } else {
1087                 /* Wait for the display line to settle */
1088                 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1089                         WARN(1, "pipe_off wait timed out\n");
1090         }
1091 }
1092
1093 /* Only for pre-ILK configs */
1094 void assert_pll(struct drm_i915_private *dev_priv,
1095                 enum pipe pipe, bool state)
1096 {
1097         u32 val;
1098         bool cur_state;
1099
1100         val = I915_READ(DPLL(pipe));
1101         cur_state = !!(val & DPLL_VCO_ENABLE);
1102         I915_STATE_WARN(cur_state != state,
1103              "PLL state assertion failure (expected %s, current %s)\n",
1104                         onoff(state), onoff(cur_state));
1105 }
1106
1107 /* XXX: the dsi pll is shared between MIPI DSI ports */
1108 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1109 {
1110         u32 val;
1111         bool cur_state;
1112
1113         mutex_lock(&dev_priv->sb_lock);
1114         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1115         mutex_unlock(&dev_priv->sb_lock);
1116
1117         cur_state = val & DSI_PLL_VCO_EN;
1118         I915_STATE_WARN(cur_state != state,
1119              "DSI PLL state assertion failure (expected %s, current %s)\n",
1120                         onoff(state), onoff(cur_state));
1121 }
1122
1123 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1124                           enum pipe pipe, bool state)
1125 {
1126         bool cur_state;
1127         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128                                                                       pipe);
1129
1130         if (HAS_DDI(dev_priv)) {
1131                 /* DDI does not have a specific FDI_TX register */
1132                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1133                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1134         } else {
1135                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1136                 cur_state = !!(val & FDI_TX_ENABLE);
1137         }
1138         I915_STATE_WARN(cur_state != state,
1139              "FDI TX state assertion failure (expected %s, current %s)\n",
1140                         onoff(state), onoff(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146                           enum pipe pipe, bool state)
1147 {
1148         u32 val;
1149         bool cur_state;
1150
1151         val = I915_READ(FDI_RX_CTL(pipe));
1152         cur_state = !!(val & FDI_RX_ENABLE);
1153         I915_STATE_WARN(cur_state != state,
1154              "FDI RX state assertion failure (expected %s, current %s)\n",
1155                         onoff(state), onoff(cur_state));
1156 }
1157 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1159
1160 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1161                                       enum pipe pipe)
1162 {
1163         u32 val;
1164
1165         /* ILK FDI PLL is always enabled */
1166         if (IS_GEN5(dev_priv))
1167                 return;
1168
1169         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170         if (HAS_DDI(dev_priv))
1171                 return;
1172
1173         val = I915_READ(FDI_TX_CTL(pipe));
1174         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178                        enum pipe pipe, bool state)
1179 {
1180         u32 val;
1181         bool cur_state;
1182
1183         val = I915_READ(FDI_RX_CTL(pipe));
1184         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1185         I915_STATE_WARN(cur_state != state,
1186              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1187                         onoff(state), onoff(cur_state));
1188 }
1189
1190 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1191 {
1192         i915_reg_t pp_reg;
1193         u32 val;
1194         enum pipe panel_pipe = PIPE_A;
1195         bool locked = true;
1196
1197         if (WARN_ON(HAS_DDI(dev_priv)))
1198                 return;
1199
1200         if (HAS_PCH_SPLIT(dev_priv)) {
1201                 u32 port_sel;
1202
1203                 pp_reg = PP_CONTROL(0);
1204                 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1205
1206                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1207                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1208                         panel_pipe = PIPE_B;
1209                 /* XXX: else fix for eDP */
1210         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1211                 /* presumably write lock depends on pipe, not port select */
1212                 pp_reg = PP_CONTROL(pipe);
1213                 panel_pipe = pipe;
1214         } else {
1215                 pp_reg = PP_CONTROL(0);
1216                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1217                         panel_pipe = PIPE_B;
1218         }
1219
1220         val = I915_READ(pp_reg);
1221         if (!(val & PANEL_POWER_ON) ||
1222             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1223                 locked = false;
1224
1225         I915_STATE_WARN(panel_pipe == pipe && locked,
1226              "panel assertion failure, pipe %c regs locked\n",
1227              pipe_name(pipe));
1228 }
1229
1230 static void assert_cursor(struct drm_i915_private *dev_priv,
1231                           enum pipe pipe, bool state)
1232 {
1233         bool cur_state;
1234
1235         if (IS_845G(dev_priv) || IS_I865G(dev_priv))
1236                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1237         else
1238                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1239
1240         I915_STATE_WARN(cur_state != state,
1241              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1242                         pipe_name(pipe), onoff(state), onoff(cur_state));
1243 }
1244 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1245 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1246
1247 void assert_pipe(struct drm_i915_private *dev_priv,
1248                  enum pipe pipe, bool state)
1249 {
1250         bool cur_state;
1251         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1252                                                                       pipe);
1253         enum intel_display_power_domain power_domain;
1254
1255         /* if we need the pipe quirk it must be always on */
1256         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1257             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1258                 state = true;
1259
1260         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1261         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1262                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1263                 cur_state = !!(val & PIPECONF_ENABLE);
1264
1265                 intel_display_power_put(dev_priv, power_domain);
1266         } else {
1267                 cur_state = false;
1268         }
1269
1270         I915_STATE_WARN(cur_state != state,
1271              "pipe %c assertion failure (expected %s, current %s)\n",
1272                         pipe_name(pipe), onoff(state), onoff(cur_state));
1273 }
1274
1275 static void assert_plane(struct drm_i915_private *dev_priv,
1276                          enum plane plane, bool state)
1277 {
1278         u32 val;
1279         bool cur_state;
1280
1281         val = I915_READ(DSPCNTR(plane));
1282         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1283         I915_STATE_WARN(cur_state != state,
1284              "plane %c assertion failure (expected %s, current %s)\n",
1285                         plane_name(plane), onoff(state), onoff(cur_state));
1286 }
1287
1288 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1289 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1290
1291 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1292                                    enum pipe pipe)
1293 {
1294         int i;
1295
1296         /* Primary planes are fixed to pipes on gen4+ */
1297         if (INTEL_GEN(dev_priv) >= 4) {
1298                 u32 val = I915_READ(DSPCNTR(pipe));
1299                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1300                      "plane %c assertion failure, should be disabled but not\n",
1301                      plane_name(pipe));
1302                 return;
1303         }
1304
1305         /* Need to check both planes against the pipe */
1306         for_each_pipe(dev_priv, i) {
1307                 u32 val = I915_READ(DSPCNTR(i));
1308                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1309                         DISPPLANE_SEL_PIPE_SHIFT;
1310                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1311                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1312                      plane_name(i), pipe_name(pipe));
1313         }
1314 }
1315
1316 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1317                                     enum pipe pipe)
1318 {
1319         int sprite;
1320
1321         if (INTEL_GEN(dev_priv) >= 9) {
1322                 for_each_sprite(dev_priv, pipe, sprite) {
1323                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1324                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1325                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1326                              sprite, pipe_name(pipe));
1327                 }
1328         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1329                 for_each_sprite(dev_priv, pipe, sprite) {
1330                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1331                         I915_STATE_WARN(val & SP_ENABLE,
1332                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1333                              sprite_name(pipe, sprite), pipe_name(pipe));
1334                 }
1335         } else if (INTEL_GEN(dev_priv) >= 7) {
1336                 u32 val = I915_READ(SPRCTL(pipe));
1337                 I915_STATE_WARN(val & SPRITE_ENABLE,
1338                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1339                      plane_name(pipe), pipe_name(pipe));
1340         } else if (INTEL_GEN(dev_priv) >= 5) {
1341                 u32 val = I915_READ(DVSCNTR(pipe));
1342                 I915_STATE_WARN(val & DVS_ENABLE,
1343                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344                      plane_name(pipe), pipe_name(pipe));
1345         }
1346 }
1347
1348 static void assert_vblank_disabled(struct drm_crtc *crtc)
1349 {
1350         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1351                 drm_crtc_vblank_put(crtc);
1352 }
1353
1354 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355                                     enum pipe pipe)
1356 {
1357         u32 val;
1358         bool enabled;
1359
1360         val = I915_READ(PCH_TRANSCONF(pipe));
1361         enabled = !!(val & TRANS_ENABLE);
1362         I915_STATE_WARN(enabled,
1363              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1364              pipe_name(pipe));
1365 }
1366
1367 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1368                             enum pipe pipe, u32 port_sel, u32 val)
1369 {
1370         if ((val & DP_PORT_EN) == 0)
1371                 return false;
1372
1373         if (HAS_PCH_CPT(dev_priv)) {
1374                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1375                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1376                         return false;
1377         } else if (IS_CHERRYVIEW(dev_priv)) {
1378                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1379                         return false;
1380         } else {
1381                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1382                         return false;
1383         }
1384         return true;
1385 }
1386
1387 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1388                               enum pipe pipe, u32 val)
1389 {
1390         if ((val & SDVO_ENABLE) == 0)
1391                 return false;
1392
1393         if (HAS_PCH_CPT(dev_priv)) {
1394                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1395                         return false;
1396         } else if (IS_CHERRYVIEW(dev_priv)) {
1397                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1398                         return false;
1399         } else {
1400                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1401                         return false;
1402         }
1403         return true;
1404 }
1405
1406 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1407                               enum pipe pipe, u32 val)
1408 {
1409         if ((val & LVDS_PORT_EN) == 0)
1410                 return false;
1411
1412         if (HAS_PCH_CPT(dev_priv)) {
1413                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1414                         return false;
1415         } else {
1416                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1417                         return false;
1418         }
1419         return true;
1420 }
1421
1422 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1423                               enum pipe pipe, u32 val)
1424 {
1425         if ((val & ADPA_DAC_ENABLE) == 0)
1426                 return false;
1427         if (HAS_PCH_CPT(dev_priv)) {
1428                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1429                         return false;
1430         } else {
1431                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1432                         return false;
1433         }
1434         return true;
1435 }
1436
1437 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1438                                    enum pipe pipe, i915_reg_t reg,
1439                                    u32 port_sel)
1440 {
1441         u32 val = I915_READ(reg);
1442         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1443              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1444              i915_mmio_reg_offset(reg), pipe_name(pipe));
1445
1446         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1447              && (val & DP_PIPEB_SELECT),
1448              "IBX PCH dp port still using transcoder B\n");
1449 }
1450
1451 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1452                                      enum pipe pipe, i915_reg_t reg)
1453 {
1454         u32 val = I915_READ(reg);
1455         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1456              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1457              i915_mmio_reg_offset(reg), pipe_name(pipe));
1458
1459         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1460              && (val & SDVO_PIPE_B_SELECT),
1461              "IBX PCH hdmi port still using transcoder B\n");
1462 }
1463
1464 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1465                                       enum pipe pipe)
1466 {
1467         u32 val;
1468
1469         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1470         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1471         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1472
1473         val = I915_READ(PCH_ADPA);
1474         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1475              "PCH VGA enabled on transcoder %c, should be disabled\n",
1476              pipe_name(pipe));
1477
1478         val = I915_READ(PCH_LVDS);
1479         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1480              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1481              pipe_name(pipe));
1482
1483         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1484         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1485         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1486 }
1487
1488 static void _vlv_enable_pll(struct intel_crtc *crtc,
1489                             const struct intel_crtc_state *pipe_config)
1490 {
1491         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1492         enum pipe pipe = crtc->pipe;
1493
1494         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1495         POSTING_READ(DPLL(pipe));
1496         udelay(150);
1497
1498         if (intel_wait_for_register(dev_priv,
1499                                     DPLL(pipe),
1500                                     DPLL_LOCK_VLV,
1501                                     DPLL_LOCK_VLV,
1502                                     1))
1503                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1504 }
1505
1506 static void vlv_enable_pll(struct intel_crtc *crtc,
1507                            const struct intel_crtc_state *pipe_config)
1508 {
1509         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1510         enum pipe pipe = crtc->pipe;
1511
1512         assert_pipe_disabled(dev_priv, pipe);
1513
1514         /* PLL is protected by panel, make sure we can write it */
1515         assert_panel_unlocked(dev_priv, pipe);
1516
1517         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1518                 _vlv_enable_pll(crtc, pipe_config);
1519
1520         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1521         POSTING_READ(DPLL_MD(pipe));
1522 }
1523
1524
1525 static void _chv_enable_pll(struct intel_crtc *crtc,
1526                             const struct intel_crtc_state *pipe_config)
1527 {
1528         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1529         enum pipe pipe = crtc->pipe;
1530         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1531         u32 tmp;
1532
1533         mutex_lock(&dev_priv->sb_lock);
1534
1535         /* Enable back the 10bit clock to display controller */
1536         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1537         tmp |= DPIO_DCLKP_EN;
1538         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1539
1540         mutex_unlock(&dev_priv->sb_lock);
1541
1542         /*
1543          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1544          */
1545         udelay(1);
1546
1547         /* Enable PLL */
1548         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1549
1550         /* Check PLL is locked */
1551         if (intel_wait_for_register(dev_priv,
1552                                     DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1553                                     1))
1554                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1555 }
1556
1557 static void chv_enable_pll(struct intel_crtc *crtc,
1558                            const struct intel_crtc_state *pipe_config)
1559 {
1560         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1561         enum pipe pipe = crtc->pipe;
1562
1563         assert_pipe_disabled(dev_priv, pipe);
1564
1565         /* PLL is protected by panel, make sure we can write it */
1566         assert_panel_unlocked(dev_priv, pipe);
1567
1568         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1569                 _chv_enable_pll(crtc, pipe_config);
1570
1571         if (pipe != PIPE_A) {
1572                 /*
1573                  * WaPixelRepeatModeFixForC0:chv
1574                  *
1575                  * DPLLCMD is AWOL. Use chicken bits to propagate
1576                  * the value from DPLLBMD to either pipe B or C.
1577                  */
1578                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1579                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1580                 I915_WRITE(CBR4_VLV, 0);
1581                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1582
1583                 /*
1584                  * DPLLB VGA mode also seems to cause problems.
1585                  * We should always have it disabled.
1586                  */
1587                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1588         } else {
1589                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1590                 POSTING_READ(DPLL_MD(pipe));
1591         }
1592 }
1593
1594 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1595 {
1596         struct intel_crtc *crtc;
1597         int count = 0;
1598
1599         for_each_intel_crtc(&dev_priv->drm, crtc) {
1600                 count += crtc->base.state->active &&
1601                         intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1602         }
1603
1604         return count;
1605 }
1606
1607 static void i9xx_enable_pll(struct intel_crtc *crtc)
1608 {
1609         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1610         i915_reg_t reg = DPLL(crtc->pipe);
1611         u32 dpll = crtc->config->dpll_hw_state.dpll;
1612
1613         assert_pipe_disabled(dev_priv, crtc->pipe);
1614
1615         /* PLL is protected by panel, make sure we can write it */
1616         if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1617                 assert_panel_unlocked(dev_priv, crtc->pipe);
1618
1619         /* Enable DVO 2x clock on both PLLs if necessary */
1620         if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1621                 /*
1622                  * It appears to be important that we don't enable this
1623                  * for the current pipe before otherwise configuring the
1624                  * PLL. No idea how this should be handled if multiple
1625                  * DVO outputs are enabled simultaneosly.
1626                  */
1627                 dpll |= DPLL_DVO_2X_MODE;
1628                 I915_WRITE(DPLL(!crtc->pipe),
1629                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1630         }
1631
1632         /*
1633          * Apparently we need to have VGA mode enabled prior to changing
1634          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1635          * dividers, even though the register value does change.
1636          */
1637         I915_WRITE(reg, 0);
1638
1639         I915_WRITE(reg, dpll);
1640
1641         /* Wait for the clocks to stabilize. */
1642         POSTING_READ(reg);
1643         udelay(150);
1644
1645         if (INTEL_GEN(dev_priv) >= 4) {
1646                 I915_WRITE(DPLL_MD(crtc->pipe),
1647                            crtc->config->dpll_hw_state.dpll_md);
1648         } else {
1649                 /* The pixel multiplier can only be updated once the
1650                  * DPLL is enabled and the clocks are stable.
1651                  *
1652                  * So write it again.
1653                  */
1654                 I915_WRITE(reg, dpll);
1655         }
1656
1657         /* We do this three times for luck */
1658         I915_WRITE(reg, dpll);
1659         POSTING_READ(reg);
1660         udelay(150); /* wait for warmup */
1661         I915_WRITE(reg, dpll);
1662         POSTING_READ(reg);
1663         udelay(150); /* wait for warmup */
1664         I915_WRITE(reg, dpll);
1665         POSTING_READ(reg);
1666         udelay(150); /* wait for warmup */
1667 }
1668
1669 /**
1670  * i9xx_disable_pll - disable a PLL
1671  * @dev_priv: i915 private structure
1672  * @pipe: pipe PLL to disable
1673  *
1674  * Disable the PLL for @pipe, making sure the pipe is off first.
1675  *
1676  * Note!  This is for pre-ILK only.
1677  */
1678 static void i9xx_disable_pll(struct intel_crtc *crtc)
1679 {
1680         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1681         enum pipe pipe = crtc->pipe;
1682
1683         /* Disable DVO 2x clock on both PLLs if necessary */
1684         if (IS_I830(dev_priv) &&
1685             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1686             !intel_num_dvo_pipes(dev_priv)) {
1687                 I915_WRITE(DPLL(PIPE_B),
1688                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1689                 I915_WRITE(DPLL(PIPE_A),
1690                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1691         }
1692
1693         /* Don't disable pipe or pipe PLLs if needed */
1694         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1695             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1696                 return;
1697
1698         /* Make sure the pipe isn't still relying on us */
1699         assert_pipe_disabled(dev_priv, pipe);
1700
1701         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1702         POSTING_READ(DPLL(pipe));
1703 }
1704
1705 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1706 {
1707         u32 val;
1708
1709         /* Make sure the pipe isn't still relying on us */
1710         assert_pipe_disabled(dev_priv, pipe);
1711
1712         val = DPLL_INTEGRATED_REF_CLK_VLV |
1713                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1714         if (pipe != PIPE_A)
1715                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1716
1717         I915_WRITE(DPLL(pipe), val);
1718         POSTING_READ(DPLL(pipe));
1719 }
1720
1721 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1722 {
1723         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1724         u32 val;
1725
1726         /* Make sure the pipe isn't still relying on us */
1727         assert_pipe_disabled(dev_priv, pipe);
1728
1729         val = DPLL_SSC_REF_CLK_CHV |
1730                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1731         if (pipe != PIPE_A)
1732                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1733
1734         I915_WRITE(DPLL(pipe), val);
1735         POSTING_READ(DPLL(pipe));
1736
1737         mutex_lock(&dev_priv->sb_lock);
1738
1739         /* Disable 10bit clock to display controller */
1740         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1741         val &= ~DPIO_DCLKP_EN;
1742         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1743
1744         mutex_unlock(&dev_priv->sb_lock);
1745 }
1746
1747 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1748                          struct intel_digital_port *dport,
1749                          unsigned int expected_mask)
1750 {
1751         u32 port_mask;
1752         i915_reg_t dpll_reg;
1753
1754         switch (dport->port) {
1755         case PORT_B:
1756                 port_mask = DPLL_PORTB_READY_MASK;
1757                 dpll_reg = DPLL(0);
1758                 break;
1759         case PORT_C:
1760                 port_mask = DPLL_PORTC_READY_MASK;
1761                 dpll_reg = DPLL(0);
1762                 expected_mask <<= 4;
1763                 break;
1764         case PORT_D:
1765                 port_mask = DPLL_PORTD_READY_MASK;
1766                 dpll_reg = DPIO_PHY_STATUS;
1767                 break;
1768         default:
1769                 BUG();
1770         }
1771
1772         if (intel_wait_for_register(dev_priv,
1773                                     dpll_reg, port_mask, expected_mask,
1774                                     1000))
1775                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1776                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1777 }
1778
1779 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1780                                            enum pipe pipe)
1781 {
1782         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1783                                                                 pipe);
1784         i915_reg_t reg;
1785         uint32_t val, pipeconf_val;
1786
1787         /* Make sure PCH DPLL is enabled */
1788         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1789
1790         /* FDI must be feeding us bits for PCH ports */
1791         assert_fdi_tx_enabled(dev_priv, pipe);
1792         assert_fdi_rx_enabled(dev_priv, pipe);
1793
1794         if (HAS_PCH_CPT(dev_priv)) {
1795                 /* Workaround: Set the timing override bit before enabling the
1796                  * pch transcoder. */
1797                 reg = TRANS_CHICKEN2(pipe);
1798                 val = I915_READ(reg);
1799                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1800                 I915_WRITE(reg, val);
1801         }
1802
1803         reg = PCH_TRANSCONF(pipe);
1804         val = I915_READ(reg);
1805         pipeconf_val = I915_READ(PIPECONF(pipe));
1806
1807         if (HAS_PCH_IBX(dev_priv)) {
1808                 /*
1809                  * Make the BPC in transcoder be consistent with
1810                  * that in pipeconf reg. For HDMI we must use 8bpc
1811                  * here for both 8bpc and 12bpc.
1812                  */
1813                 val &= ~PIPECONF_BPC_MASK;
1814                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1815                         val |= PIPECONF_8BPC;
1816                 else
1817                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1818         }
1819
1820         val &= ~TRANS_INTERLACE_MASK;
1821         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1822                 if (HAS_PCH_IBX(dev_priv) &&
1823                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1824                         val |= TRANS_LEGACY_INTERLACED_ILK;
1825                 else
1826                         val |= TRANS_INTERLACED;
1827         else
1828                 val |= TRANS_PROGRESSIVE;
1829
1830         I915_WRITE(reg, val | TRANS_ENABLE);
1831         if (intel_wait_for_register(dev_priv,
1832                                     reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1833                                     100))
1834                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1835 }
1836
1837 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1838                                       enum transcoder cpu_transcoder)
1839 {
1840         u32 val, pipeconf_val;
1841
1842         /* FDI must be feeding us bits for PCH ports */
1843         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1844         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1845
1846         /* Workaround: set timing override bit. */
1847         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1848         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1849         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1850
1851         val = TRANS_ENABLE;
1852         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1853
1854         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1855             PIPECONF_INTERLACED_ILK)
1856                 val |= TRANS_INTERLACED;
1857         else
1858                 val |= TRANS_PROGRESSIVE;
1859
1860         I915_WRITE(LPT_TRANSCONF, val);
1861         if (intel_wait_for_register(dev_priv,
1862                                     LPT_TRANSCONF,
1863                                     TRANS_STATE_ENABLE,
1864                                     TRANS_STATE_ENABLE,
1865                                     100))
1866                 DRM_ERROR("Failed to enable PCH transcoder\n");
1867 }
1868
1869 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1870                                             enum pipe pipe)
1871 {
1872         i915_reg_t reg;
1873         uint32_t val;
1874
1875         /* FDI relies on the transcoder */
1876         assert_fdi_tx_disabled(dev_priv, pipe);
1877         assert_fdi_rx_disabled(dev_priv, pipe);
1878
1879         /* Ports must be off as well */
1880         assert_pch_ports_disabled(dev_priv, pipe);
1881
1882         reg = PCH_TRANSCONF(pipe);
1883         val = I915_READ(reg);
1884         val &= ~TRANS_ENABLE;
1885         I915_WRITE(reg, val);
1886         /* wait for PCH transcoder off, transcoder state */
1887         if (intel_wait_for_register(dev_priv,
1888                                     reg, TRANS_STATE_ENABLE, 0,
1889                                     50))
1890                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1891
1892         if (HAS_PCH_CPT(dev_priv)) {
1893                 /* Workaround: Clear the timing override chicken bit again. */
1894                 reg = TRANS_CHICKEN2(pipe);
1895                 val = I915_READ(reg);
1896                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1897                 I915_WRITE(reg, val);
1898         }
1899 }
1900
1901 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1902 {
1903         u32 val;
1904
1905         val = I915_READ(LPT_TRANSCONF);
1906         val &= ~TRANS_ENABLE;
1907         I915_WRITE(LPT_TRANSCONF, val);
1908         /* wait for PCH transcoder off, transcoder state */
1909         if (intel_wait_for_register(dev_priv,
1910                                     LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1911                                     50))
1912                 DRM_ERROR("Failed to disable PCH transcoder\n");
1913
1914         /* Workaround: clear timing override bit. */
1915         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1916         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1917         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1918 }
1919
1920 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1921 {
1922         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1923
1924         WARN_ON(!crtc->config->has_pch_encoder);
1925
1926         if (HAS_PCH_LPT(dev_priv))
1927                 return TRANSCODER_A;
1928         else
1929                 return (enum transcoder) crtc->pipe;
1930 }
1931
1932 /**
1933  * intel_enable_pipe - enable a pipe, asserting requirements
1934  * @crtc: crtc responsible for the pipe
1935  *
1936  * Enable @crtc's pipe, making sure that various hardware specific requirements
1937  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1938  */
1939 static void intel_enable_pipe(struct intel_crtc *crtc)
1940 {
1941         struct drm_device *dev = crtc->base.dev;
1942         struct drm_i915_private *dev_priv = to_i915(dev);
1943         enum pipe pipe = crtc->pipe;
1944         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1945         i915_reg_t reg;
1946         u32 val;
1947
1948         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1949
1950         assert_planes_disabled(dev_priv, pipe);
1951         assert_cursor_disabled(dev_priv, pipe);
1952         assert_sprites_disabled(dev_priv, pipe);
1953
1954         /*
1955          * A pipe without a PLL won't actually be able to drive bits from
1956          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1957          * need the check.
1958          */
1959         if (HAS_GMCH_DISPLAY(dev_priv)) {
1960                 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1961                         assert_dsi_pll_enabled(dev_priv);
1962                 else
1963                         assert_pll_enabled(dev_priv, pipe);
1964         } else {
1965                 if (crtc->config->has_pch_encoder) {
1966                         /* if driving the PCH, we need FDI enabled */
1967                         assert_fdi_rx_pll_enabled(dev_priv,
1968                                                   (enum pipe) intel_crtc_pch_transcoder(crtc));
1969                         assert_fdi_tx_pll_enabled(dev_priv,
1970                                                   (enum pipe) cpu_transcoder);
1971                 }
1972                 /* FIXME: assert CPU port conditions for SNB+ */
1973         }
1974
1975         reg = PIPECONF(cpu_transcoder);
1976         val = I915_READ(reg);
1977         if (val & PIPECONF_ENABLE) {
1978                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1979                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1980                 return;
1981         }
1982
1983         I915_WRITE(reg, val | PIPECONF_ENABLE);
1984         POSTING_READ(reg);
1985
1986         /*
1987          * Until the pipe starts DSL will read as 0, which would cause
1988          * an apparent vblank timestamp jump, which messes up also the
1989          * frame count when it's derived from the timestamps. So let's
1990          * wait for the pipe to start properly before we call
1991          * drm_crtc_vblank_on()
1992          */
1993         if (dev->max_vblank_count == 0 &&
1994             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1995                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1996 }
1997
1998 /**
1999  * intel_disable_pipe - disable a pipe, asserting requirements
2000  * @crtc: crtc whose pipes is to be disabled
2001  *
2002  * Disable the pipe of @crtc, making sure that various hardware
2003  * specific requirements are met, if applicable, e.g. plane
2004  * disabled, panel fitter off, etc.
2005  *
2006  * Will wait until the pipe has shut down before returning.
2007  */
2008 static void intel_disable_pipe(struct intel_crtc *crtc)
2009 {
2010         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2011         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2012         enum pipe pipe = crtc->pipe;
2013         i915_reg_t reg;
2014         u32 val;
2015
2016         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2017
2018         /*
2019          * Make sure planes won't keep trying to pump pixels to us,
2020          * or we might hang the display.
2021          */
2022         assert_planes_disabled(dev_priv, pipe);
2023         assert_cursor_disabled(dev_priv, pipe);
2024         assert_sprites_disabled(dev_priv, pipe);
2025
2026         reg = PIPECONF(cpu_transcoder);
2027         val = I915_READ(reg);
2028         if ((val & PIPECONF_ENABLE) == 0)
2029                 return;
2030
2031         /*
2032          * Double wide has implications for planes
2033          * so best keep it disabled when not needed.
2034          */
2035         if (crtc->config->double_wide)
2036                 val &= ~PIPECONF_DOUBLE_WIDE;
2037
2038         /* Don't disable pipe or pipe PLLs if needed */
2039         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2040             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2041                 val &= ~PIPECONF_ENABLE;
2042
2043         I915_WRITE(reg, val);
2044         if ((val & PIPECONF_ENABLE) == 0)
2045                 intel_wait_for_pipe_off(crtc);
2046 }
2047
2048 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2049 {
2050         return IS_GEN2(dev_priv) ? 2048 : 4096;
2051 }
2052
2053 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2054                                            uint64_t fb_modifier, unsigned int cpp)
2055 {
2056         switch (fb_modifier) {
2057         case DRM_FORMAT_MOD_NONE:
2058                 return cpp;
2059         case I915_FORMAT_MOD_X_TILED:
2060                 if (IS_GEN2(dev_priv))
2061                         return 128;
2062                 else
2063                         return 512;
2064         case I915_FORMAT_MOD_Y_TILED:
2065                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2066                         return 128;
2067                 else
2068                         return 512;
2069         case I915_FORMAT_MOD_Yf_TILED:
2070                 switch (cpp) {
2071                 case 1:
2072                         return 64;
2073                 case 2:
2074                 case 4:
2075                         return 128;
2076                 case 8:
2077                 case 16:
2078                         return 256;
2079                 default:
2080                         MISSING_CASE(cpp);
2081                         return cpp;
2082                 }
2083                 break;
2084         default:
2085                 MISSING_CASE(fb_modifier);
2086                 return cpp;
2087         }
2088 }
2089
2090 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2091                                uint64_t fb_modifier, unsigned int cpp)
2092 {
2093         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2094                 return 1;
2095         else
2096                 return intel_tile_size(dev_priv) /
2097                         intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2098 }
2099
2100 /* Return the tile dimensions in pixel units */
2101 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2102                             unsigned int *tile_width,
2103                             unsigned int *tile_height,
2104                             uint64_t fb_modifier,
2105                             unsigned int cpp)
2106 {
2107         unsigned int tile_width_bytes =
2108                 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2109
2110         *tile_width = tile_width_bytes / cpp;
2111         *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2112 }
2113
2114 unsigned int
2115 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2116                       uint32_t pixel_format, uint64_t fb_modifier)
2117 {
2118         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2119         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2120
2121         return ALIGN(height, tile_height);
2122 }
2123
2124 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2125 {
2126         unsigned int size = 0;
2127         int i;
2128
2129         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2130                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2131
2132         return size;
2133 }
2134
2135 static void
2136 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2137                         const struct drm_framebuffer *fb,
2138                         unsigned int rotation)
2139 {
2140         if (drm_rotation_90_or_270(rotation)) {
2141                 *view = i915_ggtt_view_rotated;
2142                 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2143         } else {
2144                 *view = i915_ggtt_view_normal;
2145         }
2146 }
2147
2148 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2149 {
2150         if (INTEL_INFO(dev_priv)->gen >= 9)
2151                 return 256 * 1024;
2152         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2153                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2154                 return 128 * 1024;
2155         else if (INTEL_INFO(dev_priv)->gen >= 4)
2156                 return 4 * 1024;
2157         else
2158                 return 0;
2159 }
2160
2161 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2162                                          uint64_t fb_modifier)
2163 {
2164         switch (fb_modifier) {
2165         case DRM_FORMAT_MOD_NONE:
2166                 return intel_linear_alignment(dev_priv);
2167         case I915_FORMAT_MOD_X_TILED:
2168                 if (INTEL_INFO(dev_priv)->gen >= 9)
2169                         return 256 * 1024;
2170                 return 0;
2171         case I915_FORMAT_MOD_Y_TILED:
2172         case I915_FORMAT_MOD_Yf_TILED:
2173                 return 1 * 1024 * 1024;
2174         default:
2175                 MISSING_CASE(fb_modifier);
2176                 return 0;
2177         }
2178 }
2179
2180 struct i915_vma *
2181 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2182 {
2183         struct drm_device *dev = fb->dev;
2184         struct drm_i915_private *dev_priv = to_i915(dev);
2185         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2186         struct i915_ggtt_view view;
2187         struct i915_vma *vma;
2188         u32 alignment;
2189
2190         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2191
2192         alignment = intel_surf_alignment(dev_priv, fb->modifier);
2193
2194         intel_fill_fb_ggtt_view(&view, fb, rotation);
2195
2196         /* Note that the w/a also requires 64 PTE of padding following the
2197          * bo. We currently fill all unused PTE with the shadow page and so
2198          * we should always have valid PTE following the scanout preventing
2199          * the VT-d warning.
2200          */
2201         if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2202                 alignment = 256 * 1024;
2203
2204         /*
2205          * Global gtt pte registers are special registers which actually forward
2206          * writes to a chunk of system memory. Which means that there is no risk
2207          * that the register values disappear as soon as we call
2208          * intel_runtime_pm_put(), so it is correct to wrap only the
2209          * pin/unpin/fence and not more.
2210          */
2211         intel_runtime_pm_get(dev_priv);
2212
2213         vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2214         if (IS_ERR(vma))
2215                 goto err;
2216
2217         if (i915_vma_is_map_and_fenceable(vma)) {
2218                 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2219                  * fence, whereas 965+ only requires a fence if using
2220                  * framebuffer compression.  For simplicity, we always, when
2221                  * possible, install a fence as the cost is not that onerous.
2222                  *
2223                  * If we fail to fence the tiled scanout, then either the
2224                  * modeset will reject the change (which is highly unlikely as
2225                  * the affected systems, all but one, do not have unmappable
2226                  * space) or we will not be able to enable full powersaving
2227                  * techniques (also likely not to apply due to various limits
2228                  * FBC and the like impose on the size of the buffer, which
2229                  * presumably we violated anyway with this unmappable buffer).
2230                  * Anyway, it is presumably better to stumble onwards with
2231                  * something and try to run the system in a "less than optimal"
2232                  * mode that matches the user configuration.
2233                  */
2234                 if (i915_vma_get_fence(vma) == 0)
2235                         i915_vma_pin_fence(vma);
2236         }
2237
2238 err:
2239         intel_runtime_pm_put(dev_priv);
2240         return vma;
2241 }
2242
2243 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2244 {
2245         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2246         struct i915_ggtt_view view;
2247         struct i915_vma *vma;
2248
2249         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2250
2251         intel_fill_fb_ggtt_view(&view, fb, rotation);
2252         vma = i915_gem_object_to_ggtt(obj, &view);
2253
2254         if (WARN_ON_ONCE(!vma))
2255                 return;
2256
2257         i915_vma_unpin_fence(vma);
2258         i915_gem_object_unpin_from_display_plane(vma);
2259 }
2260
2261 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2262                           unsigned int rotation)
2263 {
2264         if (drm_rotation_90_or_270(rotation))
2265                 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2266         else
2267                 return fb->pitches[plane];
2268 }
2269
2270 /*
2271  * Convert the x/y offsets into a linear offset.
2272  * Only valid with 0/180 degree rotation, which is fine since linear
2273  * offset is only used with linear buffers on pre-hsw and tiled buffers
2274  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2275  */
2276 u32 intel_fb_xy_to_linear(int x, int y,
2277                           const struct intel_plane_state *state,
2278                           int plane)
2279 {
2280         const struct drm_framebuffer *fb = state->base.fb;
2281         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2282         unsigned int pitch = fb->pitches[plane];
2283
2284         return y * pitch + x * cpp;
2285 }
2286
2287 /*
2288  * Add the x/y offsets derived from fb->offsets[] to the user
2289  * specified plane src x/y offsets. The resulting x/y offsets
2290  * specify the start of scanout from the beginning of the gtt mapping.
2291  */
2292 void intel_add_fb_offsets(int *x, int *y,
2293                           const struct intel_plane_state *state,
2294                           int plane)
2295
2296 {
2297         const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2298         unsigned int rotation = state->base.rotation;
2299
2300         if (drm_rotation_90_or_270(rotation)) {
2301                 *x += intel_fb->rotated[plane].x;
2302                 *y += intel_fb->rotated[plane].y;
2303         } else {
2304                 *x += intel_fb->normal[plane].x;
2305                 *y += intel_fb->normal[plane].y;
2306         }
2307 }
2308
2309 /*
2310  * Input tile dimensions and pitch must already be
2311  * rotated to match x and y, and in pixel units.
2312  */
2313 static u32 _intel_adjust_tile_offset(int *x, int *y,
2314                                      unsigned int tile_width,
2315                                      unsigned int tile_height,
2316                                      unsigned int tile_size,
2317                                      unsigned int pitch_tiles,
2318                                      u32 old_offset,
2319                                      u32 new_offset)
2320 {
2321         unsigned int pitch_pixels = pitch_tiles * tile_width;
2322         unsigned int tiles;
2323
2324         WARN_ON(old_offset & (tile_size - 1));
2325         WARN_ON(new_offset & (tile_size - 1));
2326         WARN_ON(new_offset > old_offset);
2327
2328         tiles = (old_offset - new_offset) / tile_size;
2329
2330         *y += tiles / pitch_tiles * tile_height;
2331         *x += tiles % pitch_tiles * tile_width;
2332
2333         /* minimize x in case it got needlessly big */
2334         *y += *x / pitch_pixels * tile_height;
2335         *x %= pitch_pixels;
2336
2337         return new_offset;
2338 }
2339
2340 /*
2341  * Adjust the tile offset by moving the difference into
2342  * the x/y offsets.
2343  */
2344 static u32 intel_adjust_tile_offset(int *x, int *y,
2345                                     const struct intel_plane_state *state, int plane,
2346                                     u32 old_offset, u32 new_offset)
2347 {
2348         const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2349         const struct drm_framebuffer *fb = state->base.fb;
2350         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2351         unsigned int rotation = state->base.rotation;
2352         unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2353
2354         WARN_ON(new_offset > old_offset);
2355
2356         if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2357                 unsigned int tile_size, tile_width, tile_height;
2358                 unsigned int pitch_tiles;
2359
2360                 tile_size = intel_tile_size(dev_priv);
2361                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2362                                 fb->modifier, cpp);
2363
2364                 if (drm_rotation_90_or_270(rotation)) {
2365                         pitch_tiles = pitch / tile_height;
2366                         swap(tile_width, tile_height);
2367                 } else {
2368                         pitch_tiles = pitch / (tile_width * cpp);
2369                 }
2370
2371                 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2372                                           tile_size, pitch_tiles,
2373                                           old_offset, new_offset);
2374         } else {
2375                 old_offset += *y * pitch + *x * cpp;
2376
2377                 *y = (old_offset - new_offset) / pitch;
2378                 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2379         }
2380
2381         return new_offset;
2382 }
2383
2384 /*
2385  * Computes the linear offset to the base tile and adjusts
2386  * x, y. bytes per pixel is assumed to be a power-of-two.
2387  *
2388  * In the 90/270 rotated case, x and y are assumed
2389  * to be already rotated to match the rotated GTT view, and
2390  * pitch is the tile_height aligned framebuffer height.
2391  *
2392  * This function is used when computing the derived information
2393  * under intel_framebuffer, so using any of that information
2394  * here is not allowed. Anything under drm_framebuffer can be
2395  * used. This is why the user has to pass in the pitch since it
2396  * is specified in the rotated orientation.
2397  */
2398 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2399                                       int *x, int *y,
2400                                       const struct drm_framebuffer *fb, int plane,
2401                                       unsigned int pitch,
2402                                       unsigned int rotation,
2403                                       u32 alignment)
2404 {
2405         uint64_t fb_modifier = fb->modifier;
2406         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2407         u32 offset, offset_aligned;
2408
2409         if (alignment)
2410                 alignment--;
2411
2412         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2413                 unsigned int tile_size, tile_width, tile_height;
2414                 unsigned int tile_rows, tiles, pitch_tiles;
2415
2416                 tile_size = intel_tile_size(dev_priv);
2417                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2418                                 fb_modifier, cpp);
2419
2420                 if (drm_rotation_90_or_270(rotation)) {
2421                         pitch_tiles = pitch / tile_height;
2422                         swap(tile_width, tile_height);
2423                 } else {
2424                         pitch_tiles = pitch / (tile_width * cpp);
2425                 }
2426
2427                 tile_rows = *y / tile_height;
2428                 *y %= tile_height;
2429
2430                 tiles = *x / tile_width;
2431                 *x %= tile_width;
2432
2433                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2434                 offset_aligned = offset & ~alignment;
2435
2436                 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2437                                           tile_size, pitch_tiles,
2438                                           offset, offset_aligned);
2439         } else {
2440                 offset = *y * pitch + *x * cpp;
2441                 offset_aligned = offset & ~alignment;
2442
2443                 *y = (offset & alignment) / pitch;
2444                 *x = ((offset & alignment) - *y * pitch) / cpp;
2445         }
2446
2447         return offset_aligned;
2448 }
2449
2450 u32 intel_compute_tile_offset(int *x, int *y,
2451                               const struct intel_plane_state *state,
2452                               int plane)
2453 {
2454         const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2455         const struct drm_framebuffer *fb = state->base.fb;
2456         unsigned int rotation = state->base.rotation;
2457         int pitch = intel_fb_pitch(fb, plane, rotation);
2458         u32 alignment;
2459
2460         /* AUX_DIST needs only 4K alignment */
2461         if (fb->pixel_format == DRM_FORMAT_NV12 && plane == 1)
2462                 alignment = 4096;
2463         else
2464                 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2465
2466         return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2467                                           rotation, alignment);
2468 }
2469
2470 /* Convert the fb->offset[] linear offset into x/y offsets */
2471 static void intel_fb_offset_to_xy(int *x, int *y,
2472                                   const struct drm_framebuffer *fb, int plane)
2473 {
2474         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2475         unsigned int pitch = fb->pitches[plane];
2476         u32 linear_offset = fb->offsets[plane];
2477
2478         *y = linear_offset / pitch;
2479         *x = linear_offset % pitch / cpp;
2480 }
2481
2482 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2483 {
2484         switch (fb_modifier) {
2485         case I915_FORMAT_MOD_X_TILED:
2486                 return I915_TILING_X;
2487         case I915_FORMAT_MOD_Y_TILED:
2488                 return I915_TILING_Y;
2489         default:
2490                 return I915_TILING_NONE;
2491         }
2492 }
2493
2494 static int
2495 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2496                    struct drm_framebuffer *fb)
2497 {
2498         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2499         struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2500         u32 gtt_offset_rotated = 0;
2501         unsigned int max_size = 0;
2502         uint32_t format = fb->pixel_format;
2503         int i, num_planes = drm_format_num_planes(format);
2504         unsigned int tile_size = intel_tile_size(dev_priv);
2505
2506         for (i = 0; i < num_planes; i++) {
2507                 unsigned int width, height;
2508                 unsigned int cpp, size;
2509                 u32 offset;
2510                 int x, y;
2511
2512                 cpp = drm_format_plane_cpp(format, i);
2513                 width = drm_format_plane_width(fb->width, format, i);
2514                 height = drm_format_plane_height(fb->height, format, i);
2515
2516                 intel_fb_offset_to_xy(&x, &y, fb, i);
2517
2518                 /*
2519                  * The fence (if used) is aligned to the start of the object
2520                  * so having the framebuffer wrap around across the edge of the
2521                  * fenced region doesn't really work. We have no API to configure
2522                  * the fence start offset within the object (nor could we probably
2523                  * on gen2/3). So it's just easier if we just require that the
2524                  * fb layout agrees with the fence layout. We already check that the
2525                  * fb stride matches the fence stride elsewhere.
2526                  */
2527                 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2528                     (x + width) * cpp > fb->pitches[i]) {
2529                         DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2530                                   i, fb->offsets[i]);
2531                         return -EINVAL;
2532                 }
2533
2534                 /*
2535                  * First pixel of the framebuffer from
2536                  * the start of the normal gtt mapping.
2537                  */
2538                 intel_fb->normal[i].x = x;
2539                 intel_fb->normal[i].y = y;
2540
2541                 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2542                                                     fb, 0, fb->pitches[i],
2543                                                     DRM_ROTATE_0, tile_size);
2544                 offset /= tile_size;
2545
2546                 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2547                         unsigned int tile_width, tile_height;
2548                         unsigned int pitch_tiles;
2549                         struct drm_rect r;
2550
2551                         intel_tile_dims(dev_priv, &tile_width, &tile_height,
2552                                         fb->modifier, cpp);
2553
2554                         rot_info->plane[i].offset = offset;
2555                         rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2556                         rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2557                         rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2558
2559                         intel_fb->rotated[i].pitch =
2560                                 rot_info->plane[i].height * tile_height;
2561
2562                         /* how many tiles does this plane need */
2563                         size = rot_info->plane[i].stride * rot_info->plane[i].height;
2564                         /*
2565                          * If the plane isn't horizontally tile aligned,
2566                          * we need one more tile.
2567                          */
2568                         if (x != 0)
2569                                 size++;
2570
2571                         /* rotate the x/y offsets to match the GTT view */
2572                         r.x1 = x;
2573                         r.y1 = y;
2574                         r.x2 = x + width;
2575                         r.y2 = y + height;
2576                         drm_rect_rotate(&r,
2577                                         rot_info->plane[i].width * tile_width,
2578                                         rot_info->plane[i].height * tile_height,
2579                                         DRM_ROTATE_270);
2580                         x = r.x1;
2581                         y = r.y1;
2582
2583                         /* rotate the tile dimensions to match the GTT view */
2584                         pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2585                         swap(tile_width, tile_height);
2586
2587                         /*
2588                          * We only keep the x/y offsets, so push all of the
2589                          * gtt offset into the x/y offsets.
2590                          */
2591                         _intel_adjust_tile_offset(&x, &y,
2592                                                   tile_width, tile_height,
2593                                                   tile_size, pitch_tiles,
2594                                                   gtt_offset_rotated * tile_size, 0);
2595
2596                         gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2597
2598                         /*
2599                          * First pixel of the framebuffer from
2600                          * the start of the rotated gtt mapping.
2601                          */
2602                         intel_fb->rotated[i].x = x;
2603                         intel_fb->rotated[i].y = y;
2604                 } else {
2605                         size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2606                                             x * cpp, tile_size);
2607                 }
2608
2609                 /* how many tiles in total needed in the bo */
2610                 max_size = max(max_size, offset + size);
2611         }
2612
2613         if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2614                 DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2615                           max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2616                 return -EINVAL;
2617         }
2618
2619         return 0;
2620 }
2621
2622 static int i9xx_format_to_fourcc(int format)
2623 {
2624         switch (format) {
2625         case DISPPLANE_8BPP:
2626                 return DRM_FORMAT_C8;
2627         case DISPPLANE_BGRX555:
2628                 return DRM_FORMAT_XRGB1555;
2629         case DISPPLANE_BGRX565:
2630                 return DRM_FORMAT_RGB565;
2631         default:
2632         case DISPPLANE_BGRX888:
2633                 return DRM_FORMAT_XRGB8888;
2634         case DISPPLANE_RGBX888:
2635                 return DRM_FORMAT_XBGR8888;
2636         case DISPPLANE_BGRX101010:
2637                 return DRM_FORMAT_XRGB2101010;
2638         case DISPPLANE_RGBX101010:
2639                 return DRM_FORMAT_XBGR2101010;
2640         }
2641 }
2642
2643 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2644 {
2645         switch (format) {
2646         case PLANE_CTL_FORMAT_RGB_565:
2647                 return DRM_FORMAT_RGB565;
2648         default:
2649         case PLANE_CTL_FORMAT_XRGB_8888:
2650                 if (rgb_order) {
2651                         if (alpha)
2652                                 return DRM_FORMAT_ABGR8888;
2653                         else
2654                                 return DRM_FORMAT_XBGR8888;
2655                 } else {
2656                         if (alpha)
2657                                 return DRM_FORMAT_ARGB8888;
2658                         else
2659                                 return DRM_FORMAT_XRGB8888;
2660                 }
2661         case PLANE_CTL_FORMAT_XRGB_2101010:
2662                 if (rgb_order)
2663                         return DRM_FORMAT_XBGR2101010;
2664                 else
2665                         return DRM_FORMAT_XRGB2101010;
2666         }
2667 }
2668
2669 static bool
2670 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2671                               struct intel_initial_plane_config *plane_config)
2672 {
2673         struct drm_device *dev = crtc->base.dev;
2674         struct drm_i915_private *dev_priv = to_i915(dev);
2675         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2676         struct drm_i915_gem_object *obj = NULL;
2677         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2678         struct drm_framebuffer *fb = &plane_config->fb->base;
2679         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2680         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2681                                     PAGE_SIZE);
2682
2683         size_aligned -= base_aligned;
2684
2685         if (plane_config->size == 0)
2686                 return false;
2687
2688         /* If the FB is too big, just don't use it since fbdev is not very
2689          * important and we should probably use that space with FBC or other
2690          * features. */
2691         if (size_aligned * 2 > ggtt->stolen_usable_size)
2692                 return false;
2693
2694         mutex_lock(&dev->struct_mutex);
2695
2696         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2697                                                              base_aligned,
2698                                                              base_aligned,
2699                                                              size_aligned);
2700         if (!obj) {
2701                 mutex_unlock(&dev->struct_mutex);
2702                 return false;
2703         }
2704
2705         if (plane_config->tiling == I915_TILING_X)
2706                 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2707
2708         mode_cmd.pixel_format = fb->pixel_format;
2709         mode_cmd.width = fb->width;
2710         mode_cmd.height = fb->height;
2711         mode_cmd.pitches[0] = fb->pitches[0];
2712         mode_cmd.modifier[0] = fb->modifier;
2713         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2714
2715         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2716                                    &mode_cmd, obj)) {
2717                 DRM_DEBUG_KMS("intel fb init failed\n");
2718                 goto out_unref_obj;
2719         }
2720
2721         mutex_unlock(&dev->struct_mutex);
2722
2723         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2724         return true;
2725
2726 out_unref_obj:
2727         i915_gem_object_put(obj);
2728         mutex_unlock(&dev->struct_mutex);
2729         return false;
2730 }
2731
2732 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2733 static void
2734 update_state_fb(struct drm_plane *plane)
2735 {
2736         if (plane->fb == plane->state->fb)
2737                 return;
2738
2739         if (plane->state->fb)
2740                 drm_framebuffer_unreference(plane->state->fb);
2741         plane->state->fb = plane->fb;
2742         if (plane->state->fb)
2743                 drm_framebuffer_reference(plane->state->fb);
2744 }
2745
2746 static void
2747 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2748                              struct intel_initial_plane_config *plane_config)
2749 {
2750         struct drm_device *dev = intel_crtc->base.dev;
2751         struct drm_i915_private *dev_priv = to_i915(dev);
2752         struct drm_crtc *c;
2753         struct intel_crtc *i;
2754         struct drm_i915_gem_object *obj;
2755         struct drm_plane *primary = intel_crtc->base.primary;
2756         struct drm_plane_state *plane_state = primary->state;
2757         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2758         struct intel_plane *intel_plane = to_intel_plane(primary);
2759         struct intel_plane_state *intel_state =
2760                 to_intel_plane_state(plane_state);
2761         struct drm_framebuffer *fb;
2762
2763         if (!plane_config->fb)
2764                 return;
2765
2766         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2767                 fb = &plane_config->fb->base;
2768                 goto valid_fb;
2769         }
2770
2771         kfree(plane_config->fb);
2772
2773         /*
2774          * Failed to alloc the obj, check to see if we should share
2775          * an fb with another CRTC instead
2776          */
2777         for_each_crtc(dev, c) {
2778                 i = to_intel_crtc(c);
2779
2780                 if (c == &intel_crtc->base)
2781                         continue;
2782
2783                 if (!i->active)
2784                         continue;
2785
2786                 fb = c->primary->fb;
2787                 if (!fb)
2788                         continue;
2789
2790                 obj = intel_fb_obj(fb);
2791                 if (i915_gem_object_ggtt_offset(obj, NULL) == plane_config->base) {
2792                         drm_framebuffer_reference(fb);
2793                         goto valid_fb;
2794                 }
2795         }
2796
2797         /*
2798          * We've failed to reconstruct the BIOS FB.  Current display state
2799          * indicates that the primary plane is visible, but has a NULL FB,
2800          * which will lead to problems later if we don't fix it up.  The
2801          * simplest solution is to just disable the primary plane now and
2802          * pretend the BIOS never had it enabled.
2803          */
2804         to_intel_plane_state(plane_state)->base.visible = false;
2805         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2806         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2807         intel_plane->disable_plane(primary, &intel_crtc->base);
2808
2809         return;
2810
2811 valid_fb:
2812         plane_state->src_x = 0;
2813         plane_state->src_y = 0;
2814         plane_state->src_w = fb->width << 16;
2815         plane_state->src_h = fb->height << 16;
2816
2817         plane_state->crtc_x = 0;
2818         plane_state->crtc_y = 0;
2819         plane_state->crtc_w = fb->width;
2820         plane_state->crtc_h = fb->height;
2821
2822         intel_state->base.src = drm_plane_state_src(plane_state);
2823         intel_state->base.dst = drm_plane_state_dest(plane_state);
2824
2825         obj = intel_fb_obj(fb);
2826         if (i915_gem_object_is_tiled(obj))
2827                 dev_priv->preserve_bios_swizzle = true;
2828
2829         drm_framebuffer_reference(fb);
2830         primary->fb = primary->state->fb = fb;
2831         primary->crtc = primary->state->crtc = &intel_crtc->base;
2832         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2833         atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2834                   &obj->frontbuffer_bits);
2835 }
2836
2837 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2838                                unsigned int rotation)
2839 {
2840         int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2841
2842         switch (fb->modifier) {
2843         case DRM_FORMAT_MOD_NONE:
2844         case I915_FORMAT_MOD_X_TILED:
2845                 switch (cpp) {
2846                 case 8:
2847                         return 4096;
2848                 case 4:
2849                 case 2:
2850                 case 1:
2851                         return 8192;
2852                 default:
2853                         MISSING_CASE(cpp);
2854                         break;
2855                 }
2856                 break;
2857         case I915_FORMAT_MOD_Y_TILED:
2858         case I915_FORMAT_MOD_Yf_TILED:
2859                 switch (cpp) {
2860                 case 8:
2861                         return 2048;
2862                 case 4:
2863                         return 4096;
2864                 case 2:
2865                 case 1:
2866                         return 8192;
2867                 default:
2868                         MISSING_CASE(cpp);
2869                         break;
2870                 }
2871                 break;
2872         default:
2873                 MISSING_CASE(fb->modifier);
2874         }
2875
2876         return 2048;
2877 }
2878
2879 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2880 {
2881         const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2882         const struct drm_framebuffer *fb = plane_state->base.fb;
2883         unsigned int rotation = plane_state->base.rotation;
2884         int x = plane_state->base.src.x1 >> 16;
2885         int y = plane_state->base.src.y1 >> 16;
2886         int w = drm_rect_width(&plane_state->base.src) >> 16;
2887         int h = drm_rect_height(&plane_state->base.src) >> 16;
2888         int max_width = skl_max_plane_width(fb, 0, rotation);
2889         int max_height = 4096;
2890         u32 alignment, offset, aux_offset = plane_state->aux.offset;
2891
2892         if (w > max_width || h > max_height) {
2893                 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2894                               w, h, max_width, max_height);
2895                 return -EINVAL;
2896         }
2897
2898         intel_add_fb_offsets(&x, &y, plane_state, 0);
2899         offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2900
2901         alignment = intel_surf_alignment(dev_priv, fb->modifier);
2902
2903         /*
2904          * AUX surface offset is specified as the distance from the
2905          * main surface offset, and it must be non-negative. Make
2906          * sure that is what we will get.
2907          */
2908         if (offset > aux_offset)
2909                 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2910                                                   offset, aux_offset & ~(alignment - 1));
2911
2912         /*
2913          * When using an X-tiled surface, the plane blows up
2914          * if the x offset + width exceed the stride.
2915          *
2916          * TODO: linear and Y-tiled seem fine, Yf untested,
2917          */
2918         if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2919                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2920
2921                 while ((x + w) * cpp > fb->pitches[0]) {
2922                         if (offset == 0) {
2923                                 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2924                                 return -EINVAL;
2925                         }
2926
2927                         offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2928                                                           offset, offset - alignment);
2929                 }
2930         }
2931
2932         plane_state->main.offset = offset;
2933         plane_state->main.x = x;
2934         plane_state->main.y = y;
2935
2936         return 0;
2937 }
2938
2939 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2940 {
2941         const struct drm_framebuffer *fb = plane_state->base.fb;
2942         unsigned int rotation = plane_state->base.rotation;
2943         int max_width = skl_max_plane_width(fb, 1, rotation);
2944         int max_height = 4096;
2945         int x = plane_state->base.src.x1 >> 17;
2946         int y = plane_state->base.src.y1 >> 17;
2947         int w = drm_rect_width(&plane_state->base.src) >> 17;
2948         int h = drm_rect_height(&plane_state->base.src) >> 17;
2949         u32 offset;
2950
2951         intel_add_fb_offsets(&x, &y, plane_state, 1);
2952         offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2953
2954         /* FIXME not quite sure how/if these apply to the chroma plane */
2955         if (w > max_width || h > max_height) {
2956                 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2957                               w, h, max_width, max_height);
2958                 return -EINVAL;
2959         }
2960
2961         plane_state->aux.offset = offset;
2962         plane_state->aux.x = x;
2963         plane_state->aux.y = y;
2964
2965         return 0;
2966 }
2967
2968 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2969 {
2970         const struct drm_framebuffer *fb = plane_state->base.fb;
2971         unsigned int rotation = plane_state->base.rotation;
2972         int ret;
2973
2974         if (!plane_state->base.visible)
2975                 return 0;
2976
2977         /* Rotate src coordinates to match rotated GTT view */
2978         if (drm_rotation_90_or_270(rotation))
2979                 drm_rect_rotate(&plane_state->base.src,
2980                                 fb->width << 16, fb->height << 16,
2981                                 DRM_ROTATE_270);
2982
2983         /*
2984          * Handle the AUX surface first since
2985          * the main surface setup depends on it.
2986          */
2987         if (fb->pixel_format == DRM_FORMAT_NV12) {
2988                 ret = skl_check_nv12_aux_surface(plane_state);
2989                 if (ret)
2990                         return ret;
2991         } else {
2992                 plane_state->aux.offset = ~0xfff;
2993                 plane_state->aux.x = 0;
2994                 plane_state->aux.y = 0;
2995         }
2996
2997         ret = skl_check_main_surface(plane_state);
2998         if (ret)
2999                 return ret;
3000
3001         return 0;
3002 }
3003
3004 static void i9xx_update_primary_plane(struct drm_plane *primary,
3005                                       const struct intel_crtc_state *crtc_state,
3006                                       const struct intel_plane_state *plane_state)
3007 {
3008         struct drm_i915_private *dev_priv = to_i915(primary->dev);
3009         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3010         struct drm_framebuffer *fb = plane_state->base.fb;
3011         int plane = intel_crtc->plane;
3012         u32 linear_offset;
3013         u32 dspcntr;
3014         i915_reg_t reg = DSPCNTR(plane);
3015         unsigned int rotation = plane_state->base.rotation;
3016         int x = plane_state->base.src.x1 >> 16;
3017         int y = plane_state->base.src.y1 >> 16;
3018
3019         dspcntr = DISPPLANE_GAMMA_ENABLE;
3020
3021         dspcntr |= DISPLAY_PLANE_ENABLE;
3022
3023         if (INTEL_GEN(dev_priv) < 4) {
3024                 if (intel_crtc->pipe == PIPE_B)
3025                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3026
3027                 /* pipesrc and dspsize control the size that is scaled from,
3028                  * which should always be the user's requested size.
3029                  */
3030                 I915_WRITE(DSPSIZE(plane),
3031                            ((crtc_state->pipe_src_h - 1) << 16) |
3032                            (crtc_state->pipe_src_w - 1));
3033                 I915_WRITE(DSPPOS(plane), 0);
3034         } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3035                 I915_WRITE(PRIMSIZE(plane),
3036                            ((crtc_state->pipe_src_h - 1) << 16) |
3037                            (crtc_state->pipe_src_w - 1));
3038                 I915_WRITE(PRIMPOS(plane), 0);
3039                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
3040         }
3041
3042         switch (fb->pixel_format) {
3043         case DRM_FORMAT_C8:
3044                 dspcntr |= DISPPLANE_8BPP;
3045                 break;
3046         case DRM_FORMAT_XRGB1555:
3047                 dspcntr |= DISPPLANE_BGRX555;
3048                 break;
3049         case DRM_FORMAT_RGB565:
3050                 dspcntr |= DISPPLANE_BGRX565;
3051                 break;
3052         case DRM_FORMAT_XRGB8888:
3053                 dspcntr |= DISPPLANE_BGRX888;
3054                 break;
3055         case DRM_FORMAT_XBGR8888:
3056                 dspcntr |= DISPPLANE_RGBX888;
3057                 break;
3058         case DRM_FORMAT_XRGB2101010:
3059                 dspcntr |= DISPPLANE_BGRX101010;
3060                 break;
3061         case DRM_FORMAT_XBGR2101010:
3062                 dspcntr |= DISPPLANE_RGBX101010;
3063                 break;
3064         default:
3065                 BUG();
3066         }
3067
3068         if (INTEL_GEN(dev_priv) >= 4 &&
3069             fb->modifier == I915_FORMAT_MOD_X_TILED)
3070                 dspcntr |= DISPPLANE_TILED;
3071
3072         if (rotation & DRM_ROTATE_180)
3073                 dspcntr |= DISPPLANE_ROTATE_180;
3074
3075         if (rotation & DRM_REFLECT_X)
3076                 dspcntr |= DISPPLANE_MIRROR;
3077
3078         if (IS_G4X(dev_priv))
3079                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3080
3081         intel_add_fb_offsets(&x, &y, plane_state, 0);
3082
3083         if (INTEL_GEN(dev_priv) >= 4)
3084                 intel_crtc->dspaddr_offset =
3085                         intel_compute_tile_offset(&x, &y, plane_state, 0);
3086
3087         if (rotation & DRM_ROTATE_180) {
3088                 x += crtc_state->pipe_src_w - 1;
3089                 y += crtc_state->pipe_src_h - 1;
3090         } else if (rotation & DRM_REFLECT_X) {
3091                 x += crtc_state->pipe_src_w - 1;
3092         }
3093
3094         linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3095
3096         if (INTEL_GEN(dev_priv) < 4)
3097                 intel_crtc->dspaddr_offset = linear_offset;
3098
3099         intel_crtc->adjusted_x = x;
3100         intel_crtc->adjusted_y = y;
3101
3102         I915_WRITE(reg, dspcntr);
3103
3104         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3105         if (INTEL_GEN(dev_priv) >= 4) {
3106                 I915_WRITE(DSPSURF(plane),
3107                            intel_fb_gtt_offset(fb, rotation) +
3108                            intel_crtc->dspaddr_offset);
3109                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3110                 I915_WRITE(DSPLINOFF(plane), linear_offset);
3111         } else {
3112                 I915_WRITE(DSPADDR(plane),
3113                            intel_fb_gtt_offset(fb, rotation) +
3114                            intel_crtc->dspaddr_offset);
3115         }
3116         POSTING_READ(reg);
3117 }
3118
3119 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3120                                        struct drm_crtc *crtc)
3121 {
3122         struct drm_device *dev = crtc->dev;
3123         struct drm_i915_private *dev_priv = to_i915(dev);
3124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3125         int plane = intel_crtc->plane;
3126
3127         I915_WRITE(DSPCNTR(plane), 0);
3128         if (INTEL_INFO(dev_priv)->gen >= 4)
3129                 I915_WRITE(DSPSURF(plane), 0);
3130         else
3131                 I915_WRITE(DSPADDR(plane), 0);
3132         POSTING_READ(DSPCNTR(plane));
3133 }
3134
3135 static void ironlake_update_primary_plane(struct drm_plane *primary,
3136                                           const struct intel_crtc_state *crtc_state,
3137                                           const struct intel_plane_state *plane_state)
3138 {
3139         struct drm_device *dev = primary->dev;
3140         struct drm_i915_private *dev_priv = to_i915(dev);
3141         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3142         struct drm_framebuffer *fb = plane_state->base.fb;
3143         int plane = intel_crtc->plane;
3144         u32 linear_offset;
3145         u32 dspcntr;
3146         i915_reg_t reg = DSPCNTR(plane);
3147         unsigned int rotation = plane_state->base.rotation;
3148         int x = plane_state->base.src.x1 >> 16;
3149         int y = plane_state->base.src.y1 >> 16;
3150
3151         dspcntr = DISPPLANE_GAMMA_ENABLE;
3152         dspcntr |= DISPLAY_PLANE_ENABLE;
3153
3154         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3155                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3156
3157         switch (fb->pixel_format) {
3158         case DRM_FORMAT_C8:
3159                 dspcntr |= DISPPLANE_8BPP;
3160                 break;
3161         case DRM_FORMAT_RGB565:
3162                 dspcntr |= DISPPLANE_BGRX565;
3163                 break;
3164         case DRM_FORMAT_XRGB8888:
3165                 dspcntr |= DISPPLANE_BGRX888;
3166                 break;
3167         case DRM_FORMAT_XBGR8888:
3168                 dspcntr |= DISPPLANE_RGBX888;
3169                 break;
3170         case DRM_FORMAT_XRGB2101010:
3171                 dspcntr |= DISPPLANE_BGRX101010;
3172                 break;
3173         case DRM_FORMAT_XBGR2101010:
3174                 dspcntr |= DISPPLANE_RGBX101010;
3175                 break;
3176         default:
3177                 BUG();
3178         }
3179
3180         if (fb->modifier == I915_FORMAT_MOD_X_TILED)
3181                 dspcntr |= DISPPLANE_TILED;
3182
3183         if (rotation & DRM_ROTATE_180)
3184                 dspcntr |= DISPPLANE_ROTATE_180;
3185
3186         if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv))
3187                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3188
3189         intel_add_fb_offsets(&x, &y, plane_state, 0);
3190
3191         intel_crtc->dspaddr_offset =
3192                 intel_compute_tile_offset(&x, &y, plane_state, 0);
3193
3194         /* HSW+ does this automagically in hardware */
3195         if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv) &&
3196             rotation & DRM_ROTATE_180) {
3197                 x += crtc_state->pipe_src_w - 1;
3198                 y += crtc_state->pipe_src_h - 1;
3199         }
3200
3201         linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3202
3203         intel_crtc->adjusted_x = x;
3204         intel_crtc->adjusted_y = y;
3205
3206         I915_WRITE(reg, dspcntr);
3207
3208         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3209         I915_WRITE(DSPSURF(plane),
3210                    intel_fb_gtt_offset(fb, rotation) +
3211                    intel_crtc->dspaddr_offset);
3212         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3213                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3214         } else {
3215                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3216                 I915_WRITE(DSPLINOFF(plane), linear_offset);
3217         }
3218         POSTING_READ(reg);
3219 }
3220
3221 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3222                               uint64_t fb_modifier, uint32_t pixel_format)
3223 {
3224         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
3225                 return 64;
3226         } else {
3227                 int cpp = drm_format_plane_cpp(pixel_format, 0);
3228
3229                 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
3230         }
3231 }
3232
3233 u32 intel_fb_gtt_offset(struct drm_framebuffer *fb,
3234                         unsigned int rotation)
3235 {
3236         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3237         struct i915_ggtt_view view;
3238         struct i915_vma *vma;
3239
3240         intel_fill_fb_ggtt_view(&view, fb, rotation);
3241
3242         vma = i915_gem_object_to_ggtt(obj, &view);
3243         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
3244                  view.type))
3245                 return -1;
3246
3247         return i915_ggtt_offset(vma);
3248 }
3249
3250 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3251 {
3252         struct drm_device *dev = intel_crtc->base.dev;
3253         struct drm_i915_private *dev_priv = to_i915(dev);
3254
3255         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3256         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3257         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3258 }
3259
3260 /*
3261  * This function detaches (aka. unbinds) unused scalers in hardware
3262  */
3263 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3264 {
3265         struct intel_crtc_scaler_state *scaler_state;
3266         int i;
3267
3268         scaler_state = &intel_crtc->config->scaler_state;
3269
3270         /* loop through and disable scalers that aren't in use */
3271         for (i = 0; i < intel_crtc->num_scalers; i++) {
3272                 if (!scaler_state->scalers[i].in_use)
3273                         skl_detach_scaler(intel_crtc, i);
3274         }
3275 }
3276
3277 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3278                      unsigned int rotation)
3279 {
3280         const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3281         u32 stride = intel_fb_pitch(fb, plane, rotation);
3282
3283         /*
3284          * The stride is either expressed as a multiple of 64 bytes chunks for
3285          * linear buffers or in number of tiles for tiled buffers.
3286          */
3287         if (drm_rotation_90_or_270(rotation)) {
3288                 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
3289
3290                 stride /= intel_tile_height(dev_priv, fb->modifier, cpp);
3291         } else {
3292                 stride /= intel_fb_stride_alignment(dev_priv, fb->modifier,
3293                                                     fb->pixel_format);
3294         }
3295
3296         return stride;
3297 }
3298
3299 u32 skl_plane_ctl_format(uint32_t pixel_format)
3300 {
3301         switch (pixel_format) {
3302         case DRM_FORMAT_C8:
3303                 return PLANE_CTL_FORMAT_INDEXED;
3304         case DRM_FORMAT_RGB565:
3305                 return PLANE_CTL_FORMAT_RGB_565;
3306         case DRM_FORMAT_XBGR8888:
3307                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3308         case DRM_FORMAT_XRGB8888:
3309                 return PLANE_CTL_FORMAT_XRGB_8888;
3310         /*
3311          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3312          * to be already pre-multiplied. We need to add a knob (or a different
3313          * DRM_FORMAT) for user-space to configure that.
3314          */
3315         case DRM_FORMAT_ABGR8888:
3316                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3317                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3318         case DRM_FORMAT_ARGB8888:
3319                 return PLANE_CTL_FORMAT_XRGB_8888 |
3320                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3321         case DRM_FORMAT_XRGB2101010:
3322                 return PLANE_CTL_FORMAT_XRGB_2101010;
3323         case DRM_FORMAT_XBGR2101010:
3324                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3325         case DRM_FORMAT_YUYV:
3326                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3327         case DRM_FORMAT_YVYU:
3328                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3329         case DRM_FORMAT_UYVY:
3330                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3331         case DRM_FORMAT_VYUY:
3332                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3333         default:
3334                 MISSING_CASE(pixel_format);
3335         }
3336
3337         return 0;
3338 }
3339
3340 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3341 {
3342         switch (fb_modifier) {
3343         case DRM_FORMAT_MOD_NONE:
3344                 break;
3345         case I915_FORMAT_MOD_X_TILED:
3346                 return PLANE_CTL_TILED_X;
3347         case I915_FORMAT_MOD_Y_TILED:
3348                 return PLANE_CTL_TILED_Y;
3349         case I915_FORMAT_MOD_Yf_TILED:
3350                 return PLANE_CTL_TILED_YF;
3351         default:
3352                 MISSING_CASE(fb_modifier);
3353         }
3354
3355         return 0;
3356 }
3357
3358 u32 skl_plane_ctl_rotation(unsigned int rotation)
3359 {
3360         switch (rotation) {
3361         case DRM_ROTATE_0:
3362                 break;
3363         /*
3364          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3365          * while i915 HW rotation is clockwise, thats why this swapping.
3366          */
3367         case DRM_ROTATE_90:
3368                 return PLANE_CTL_ROTATE_270;
3369         case DRM_ROTATE_180:
3370                 return PLANE_CTL_ROTATE_180;
3371         case DRM_ROTATE_270:
3372                 return PLANE_CTL_ROTATE_90;
3373         default:
3374                 MISSING_CASE(rotation);
3375         }
3376
3377         return 0;
3378 }
3379
3380 static void skylake_update_primary_plane(struct drm_plane *plane,
3381                                          const struct intel_crtc_state *crtc_state,
3382                                          const struct intel_plane_state *plane_state)
3383 {
3384         struct drm_device *dev = plane->dev;
3385         struct drm_i915_private *dev_priv = to_i915(dev);
3386         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3387         struct drm_framebuffer *fb = plane_state->base.fb;
3388         int pipe = intel_crtc->pipe;
3389         u32 plane_ctl;
3390         unsigned int rotation = plane_state->base.rotation;
3391         u32 stride = skl_plane_stride(fb, 0, rotation);
3392         u32 surf_addr = plane_state->main.offset;
3393         int scaler_id = plane_state->scaler_id;
3394         int src_x = plane_state->main.x;
3395         int src_y = plane_state->main.y;
3396         int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3397         int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3398         int dst_x = plane_state->base.dst.x1;
3399         int dst_y = plane_state->base.dst.y1;
3400         int dst_w = drm_rect_width(&plane_state->base.dst);
3401         int dst_h = drm_rect_height(&plane_state->base.dst);
3402
3403         plane_ctl = PLANE_CTL_ENABLE |
3404                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3405                     PLANE_CTL_PIPE_CSC_ENABLE;
3406
3407         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3408         plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3409         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3410         plane_ctl |= skl_plane_ctl_rotation(rotation);
3411
3412         /* Sizes are 0 based */
3413         src_w--;
3414         src_h--;
3415         dst_w--;
3416         dst_h--;
3417
3418         intel_crtc->dspaddr_offset = surf_addr;
3419
3420         intel_crtc->adjusted_x = src_x;
3421         intel_crtc->adjusted_y = src_y;
3422
3423         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3424         I915_WRITE(PLANE_OFFSET(pipe, 0), (src_y << 16) | src_x);
3425         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3426         I915_WRITE(PLANE_SIZE(pipe, 0), (src_h << 16) | src_w);
3427
3428         if (scaler_id >= 0) {
3429                 uint32_t ps_ctrl = 0;
3430
3431                 WARN_ON(!dst_w || !dst_h);
3432                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3433                         crtc_state->scaler_state.scalers[scaler_id].mode;
3434                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3435                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3436                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3437                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3438                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3439         } else {
3440                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3441         }
3442
3443         I915_WRITE(PLANE_SURF(pipe, 0),
3444                    intel_fb_gtt_offset(fb, rotation) + surf_addr);
3445
3446         POSTING_READ(PLANE_SURF(pipe, 0));
3447 }
3448
3449 static void skylake_disable_primary_plane(struct drm_plane *primary,
3450                                           struct drm_crtc *crtc)
3451 {
3452         struct drm_device *dev = crtc->dev;
3453         struct drm_i915_private *dev_priv = to_i915(dev);
3454         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3455         int pipe = intel_crtc->pipe;
3456
3457         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3458         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3459         POSTING_READ(PLANE_SURF(pipe, 0));
3460 }
3461
3462 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3463 static int
3464 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3465                            int x, int y, enum mode_set_atomic state)
3466 {
3467         /* Support for kgdboc is disabled, this needs a major rework. */
3468         DRM_ERROR("legacy panic handler not supported any more.\n");
3469
3470         return -ENODEV;
3471 }
3472
3473 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3474 {
3475         struct intel_crtc *crtc;
3476
3477         for_each_intel_crtc(&dev_priv->drm, crtc)
3478                 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3479 }
3480
3481 static void intel_update_primary_planes(struct drm_device *dev)
3482 {
3483         struct drm_crtc *crtc;
3484
3485         for_each_crtc(dev, crtc) {
3486                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3487                 struct intel_plane_state *plane_state =
3488                         to_intel_plane_state(plane->base.state);
3489
3490                 if (plane_state->base.visible)
3491                         plane->update_plane(&plane->base,
3492                                             to_intel_crtc_state(crtc->state),
3493                                             plane_state);
3494         }
3495 }
3496
3497 static int
3498 __intel_display_resume(struct drm_device *dev,
3499                        struct drm_atomic_state *state)
3500 {
3501         struct drm_crtc_state *crtc_state;
3502         struct drm_crtc *crtc;
3503         int i, ret;
3504
3505         intel_modeset_setup_hw_state(dev);
3506         i915_redisable_vga(to_i915(dev));
3507
3508         if (!state)
3509                 return 0;
3510
3511         for_each_crtc_in_state(state, crtc, crtc_state, i) {
3512                 /*
3513                  * Force recalculation even if we restore
3514                  * current state. With fast modeset this may not result
3515                  * in a modeset when the state is compatible.
3516                  */
3517                 crtc_state->mode_changed = true;
3518         }
3519
3520         /* ignore any reset values/BIOS leftovers in the WM registers */
3521         to_intel_atomic_state(state)->skip_intermediate_wm = true;
3522
3523         ret = drm_atomic_commit(state);
3524
3525         WARN_ON(ret == -EDEADLK);
3526         return ret;
3527 }
3528
3529 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3530 {
3531         return intel_has_gpu_reset(dev_priv) &&
3532                 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3533 }
3534
3535 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3536 {
3537         struct drm_device *dev = &dev_priv->drm;
3538         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3539         struct drm_atomic_state *state;
3540         int ret;
3541
3542         /*
3543          * Need mode_config.mutex so that we don't
3544          * trample ongoing ->detect() and whatnot.
3545          */
3546         mutex_lock(&dev->mode_config.mutex);
3547         drm_modeset_acquire_init(ctx, 0);
3548         while (1) {
3549                 ret = drm_modeset_lock_all_ctx(dev, ctx);
3550                 if (ret != -EDEADLK)
3551                         break;
3552
3553                 drm_modeset_backoff(ctx);
3554         }
3555
3556         /* reset doesn't touch the display, but flips might get nuked anyway, */
3557         if (!i915.force_reset_modeset_test &&
3558             !gpu_reset_clobbers_display(dev_priv))
3559                 return;
3560
3561         /*
3562          * Disabling the crtcs gracefully seems nicer. Also the
3563          * g33 docs say we should at least disable all the planes.
3564          */
3565         state = drm_atomic_helper_duplicate_state(dev, ctx);
3566         if (IS_ERR(state)) {
3567                 ret = PTR_ERR(state);
3568                 state = NULL;
3569                 DRM_ERROR("Duplicating state failed with %i\n", ret);
3570                 goto err;
3571         }
3572
3573         ret = drm_atomic_helper_disable_all(dev, ctx);
3574         if (ret) {
3575                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3576                 goto err;
3577         }
3578
3579         dev_priv->modeset_restore_state = state;
3580         state->acquire_ctx = ctx;
3581         return;
3582
3583 err:
3584         drm_atomic_state_put(state);
3585 }
3586
3587 void intel_finish_reset(struct drm_i915_private *dev_priv)
3588 {
3589         struct drm_device *dev = &dev_priv->drm;
3590         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3591         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3592         int ret;
3593
3594         /*
3595          * Flips in the rings will be nuked by the reset,
3596          * so complete all pending flips so that user space
3597          * will get its events and not get stuck.
3598          */
3599         intel_complete_page_flips(dev_priv);
3600
3601         dev_priv->modeset_restore_state = NULL;
3602
3603         /* reset doesn't touch the display */
3604         if (!gpu_reset_clobbers_display(dev_priv)) {
3605                 if (!state) {
3606                         /*
3607                          * Flips in the rings have been nuked by the reset,
3608                          * so update the base address of all primary
3609                          * planes to the the last fb to make sure we're
3610                          * showing the correct fb after a reset.
3611                          *
3612                          * FIXME: Atomic will make this obsolete since we won't schedule
3613                          * CS-based flips (which might get lost in gpu resets) any more.
3614                          */
3615                         intel_update_primary_planes(dev);
3616                 } else {
3617                         ret = __intel_display_resume(dev, state);
3618                         if (ret)
3619                                 DRM_ERROR("Restoring old state failed with %i\n", ret);
3620                 }
3621         } else {
3622                 /*
3623                  * The display has been reset as well,
3624                  * so need a full re-initialization.
3625                  */
3626                 intel_runtime_pm_disable_interrupts(dev_priv);
3627                 intel_runtime_pm_enable_interrupts(dev_priv);
3628
3629                 intel_pps_unlock_regs_wa(dev_priv);
3630                 intel_modeset_init_hw(dev);
3631
3632                 spin_lock_irq(&dev_priv->irq_lock);
3633                 if (dev_priv->display.hpd_irq_setup)
3634                         dev_priv->display.hpd_irq_setup(dev_priv);
3635                 spin_unlock_irq(&dev_priv->irq_lock);
3636
3637                 ret = __intel_display_resume(dev, state);
3638                 if (ret)
3639                         DRM_ERROR("Restoring old state failed with %i\n", ret);
3640
3641                 intel_hpd_init(dev_priv);
3642         }
3643
3644         if (state)
3645                 drm_atomic_state_put(state);
3646         drm_modeset_drop_locks(ctx);
3647         drm_modeset_acquire_fini(ctx);
3648         mutex_unlock(&dev->mode_config.mutex);
3649 }
3650
3651 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3652 {
3653         struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3654
3655         if (i915_reset_in_progress(error))
3656                 return true;
3657
3658         if (crtc->reset_count != i915_reset_count(error))
3659                 return true;
3660
3661         return false;
3662 }
3663
3664 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3665 {
3666         struct drm_device *dev = crtc->dev;
3667         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3668         bool pending;
3669
3670         if (abort_flip_on_reset(intel_crtc))
3671                 return false;
3672
3673         spin_lock_irq(&dev->event_lock);
3674         pending = to_intel_crtc(crtc)->flip_work != NULL;
3675         spin_unlock_irq(&dev->event_lock);
3676
3677         return pending;
3678 }
3679
3680 static void intel_update_pipe_config(struct intel_crtc *crtc,
3681                                      struct intel_crtc_state *old_crtc_state)
3682 {
3683         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3684         struct intel_crtc_state *pipe_config =
3685                 to_intel_crtc_state(crtc->base.state);
3686
3687         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3688         crtc->base.mode = crtc->base.state->mode;
3689
3690         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3691                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3692                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3693
3694         /*
3695          * Update pipe size and adjust fitter if needed: the reason for this is
3696          * that in compute_mode_changes we check the native mode (not the pfit
3697          * mode) to see if we can flip rather than do a full mode set. In the
3698          * fastboot case, we'll flip, but if we don't update the pipesrc and
3699          * pfit state, we'll end up with a big fb scanned out into the wrong
3700          * sized surface.
3701          */
3702
3703         I915_WRITE(PIPESRC(crtc->pipe),
3704                    ((pipe_config->pipe_src_w - 1) << 16) |
3705                    (pipe_config->pipe_src_h - 1));
3706
3707         /* on skylake this is done by detaching scalers */
3708         if (INTEL_GEN(dev_priv) >= 9) {
3709                 skl_detach_scalers(crtc);
3710
3711                 if (pipe_config->pch_pfit.enabled)
3712                         skylake_pfit_enable(crtc);
3713         } else if (HAS_PCH_SPLIT(dev_priv)) {
3714                 if (pipe_config->pch_pfit.enabled)
3715                         ironlake_pfit_enable(crtc);
3716                 else if (old_crtc_state->pch_pfit.enabled)
3717                         ironlake_pfit_disable(crtc, true);
3718         }
3719 }
3720
3721 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3722 {
3723         struct drm_device *dev = crtc->dev;
3724         struct drm_i915_private *dev_priv = to_i915(dev);
3725         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3726         int pipe = intel_crtc->pipe;
3727         i915_reg_t reg;
3728         u32 temp;
3729
3730         /* enable normal train */
3731         reg = FDI_TX_CTL(pipe);
3732         temp = I915_READ(reg);
3733         if (IS_IVYBRIDGE(dev_priv)) {
3734                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3735                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3736         } else {
3737                 temp &= ~FDI_LINK_TRAIN_NONE;
3738                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3739         }
3740         I915_WRITE(reg, temp);
3741
3742         reg = FDI_RX_CTL(pipe);
3743         temp = I915_READ(reg);
3744         if (HAS_PCH_CPT(dev_priv)) {
3745                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3746                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3747         } else {
3748                 temp &= ~FDI_LINK_TRAIN_NONE;
3749                 temp |= FDI_LINK_TRAIN_NONE;
3750         }
3751         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3752
3753         /* wait one idle pattern time */
3754         POSTING_READ(reg);
3755         udelay(1000);
3756
3757         /* IVB wants error correction enabled */
3758         if (IS_IVYBRIDGE(dev_priv))
3759                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3760                            FDI_FE_ERRC_ENABLE);
3761 }
3762
3763 /* The FDI link training functions for ILK/Ibexpeak. */
3764 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3765 {
3766         struct drm_device *dev = crtc->dev;
3767         struct drm_i915_private *dev_priv = to_i915(dev);
3768         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3769         int pipe = intel_crtc->pipe;
3770         i915_reg_t reg;
3771         u32 temp, tries;
3772
3773         /* FDI needs bits from pipe first */
3774         assert_pipe_enabled(dev_priv, pipe);
3775
3776         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3777            for train result */
3778         reg = FDI_RX_IMR(pipe);
3779         temp = I915_READ(reg);
3780         temp &= ~FDI_RX_SYMBOL_LOCK;
3781         temp &= ~FDI_RX_BIT_LOCK;
3782         I915_WRITE(reg, temp);
3783         I915_READ(reg);
3784         udelay(150);
3785
3786         /* enable CPU FDI TX and PCH FDI RX */
3787         reg = FDI_TX_CTL(pipe);
3788         temp = I915_READ(reg);
3789         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3790         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3791         temp &= ~FDI_LINK_TRAIN_NONE;
3792         temp |= FDI_LINK_TRAIN_PATTERN_1;
3793         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3794
3795         reg = FDI_RX_CTL(pipe);
3796         temp = I915_READ(reg);
3797         temp &= ~FDI_LINK_TRAIN_NONE;
3798         temp |= FDI_LINK_TRAIN_PATTERN_1;
3799         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3800
3801         POSTING_READ(reg);
3802         udelay(150);
3803
3804         /* Ironlake workaround, enable clock pointer after FDI enable*/
3805         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3806         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3807                    FDI_RX_PHASE_SYNC_POINTER_EN);
3808
3809         reg = FDI_RX_IIR(pipe);
3810         for (tries = 0; tries < 5; tries++) {
3811                 temp = I915_READ(reg);
3812                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3813
3814                 if ((temp & FDI_RX_BIT_LOCK)) {
3815                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3816                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3817                         break;
3818                 }
3819         }
3820         if (tries == 5)
3821                 DRM_ERROR("FDI train 1 fail!\n");
3822
3823         /* Train 2 */
3824         reg = FDI_TX_CTL(pipe);
3825         temp = I915_READ(reg);
3826         temp &= ~FDI_LINK_TRAIN_NONE;
3827         temp |= FDI_LINK_TRAIN_PATTERN_2;
3828         I915_WRITE(reg, temp);
3829
3830         reg = FDI_RX_CTL(pipe);
3831         temp = I915_READ(reg);
3832         temp &= ~FDI_LINK_TRAIN_NONE;
3833         temp |= FDI_LINK_TRAIN_PATTERN_2;
3834         I915_WRITE(reg, temp);
3835
3836         POSTING_READ(reg);
3837         udelay(150);
3838
3839         reg = FDI_RX_IIR(pipe);
3840         for (tries = 0; tries < 5; tries++) {
3841                 temp = I915_READ(reg);
3842                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3843
3844                 if (temp & FDI_RX_SYMBOL_LOCK) {
3845                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3846                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3847                         break;
3848                 }
3849         }
3850         if (tries == 5)
3851                 DRM_ERROR("FDI train 2 fail!\n");
3852
3853         DRM_DEBUG_KMS("FDI train done\n");
3854
3855 }
3856
3857 static const int snb_b_fdi_train_param[] = {
3858         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3859         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3860         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3861         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3862 };
3863
3864 /* The FDI link training functions for SNB/Cougarpoint. */
3865 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3866 {
3867         struct drm_device *dev = crtc->dev;
3868         struct drm_i915_private *dev_priv = to_i915(dev);
3869         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3870         int pipe = intel_crtc->pipe;
3871         i915_reg_t reg;
3872         u32 temp, i, retry;
3873
3874         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3875            for train result */
3876         reg = FDI_RX_IMR(pipe);
3877         temp = I915_READ(reg);
3878         temp &= ~FDI_RX_SYMBOL_LOCK;
3879         temp &= ~FDI_RX_BIT_LOCK;
3880         I915_WRITE(reg, temp);
3881
3882         POSTING_READ(reg);
3883         udelay(150);
3884
3885         /* enable CPU FDI TX and PCH FDI RX */
3886         reg = FDI_TX_CTL(pipe);
3887         temp = I915_READ(reg);
3888         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3889         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3890         temp &= ~FDI_LINK_TRAIN_NONE;
3891         temp |= FDI_LINK_TRAIN_PATTERN_1;
3892         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3893         /* SNB-B */
3894         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3895         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3896
3897         I915_WRITE(FDI_RX_MISC(pipe),
3898                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3899
3900         reg = FDI_RX_CTL(pipe);
3901         temp = I915_READ(reg);
3902         if (HAS_PCH_CPT(dev_priv)) {
3903                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3904                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3905         } else {
3906                 temp &= ~FDI_LINK_TRAIN_NONE;
3907                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3908         }
3909         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3910
3911         POSTING_READ(reg);
3912         udelay(150);
3913
3914         for (i = 0; i < 4; i++) {
3915                 reg = FDI_TX_CTL(pipe);
3916                 temp = I915_READ(reg);
3917                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3918                 temp |= snb_b_fdi_train_param[i];
3919                 I915_WRITE(reg, temp);
3920
3921                 POSTING_READ(reg);
3922                 udelay(500);
3923
3924                 for (retry = 0; retry < 5; retry++) {
3925                         reg = FDI_RX_IIR(pipe);
3926                         temp = I915_READ(reg);
3927                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3928                         if (temp & FDI_RX_BIT_LOCK) {
3929                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3930                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3931                                 break;
3932                         }
3933                         udelay(50);
3934                 }
3935                 if (retry < 5)
3936                         break;
3937         }
3938         if (i == 4)
3939                 DRM_ERROR("FDI train 1 fail!\n");
3940
3941         /* Train 2 */
3942         reg = FDI_TX_CTL(pipe);
3943         temp = I915_READ(reg);
3944         temp &= ~FDI_LINK_TRAIN_NONE;
3945         temp |= FDI_LINK_TRAIN_PATTERN_2;
3946         if (IS_GEN6(dev_priv)) {
3947                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3948                 /* SNB-B */
3949                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3950         }
3951         I915_WRITE(reg, temp);
3952
3953         reg = FDI_RX_CTL(pipe);
3954         temp = I915_READ(reg);
3955         if (HAS_PCH_CPT(dev_priv)) {
3956                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3957                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3958         } else {
3959                 temp &= ~FDI_LINK_TRAIN_NONE;
3960                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3961         }
3962         I915_WRITE(reg, temp);
3963
3964         POSTING_READ(reg);
3965         udelay(150);
3966
3967         for (i = 0; i < 4; i++) {
3968                 reg = FDI_TX_CTL(pipe);
3969                 temp = I915_READ(reg);
3970                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3971                 temp |= snb_b_fdi_train_param[i];
3972                 I915_WRITE(reg, temp);
3973
3974                 POSTING_READ(reg);
3975                 udelay(500);
3976
3977                 for (retry = 0; retry < 5; retry++) {
3978                         reg = FDI_RX_IIR(pipe);
3979                         temp = I915_READ(reg);
3980                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3981                         if (temp & FDI_RX_SYMBOL_LOCK) {
3982                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3983                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3984                                 break;
3985                         }
3986                         udelay(50);
3987                 }
3988                 if (retry < 5)
3989                         break;
3990         }
3991         if (i == 4)
3992                 DRM_ERROR("FDI train 2 fail!\n");
3993
3994         DRM_DEBUG_KMS("FDI train done.\n");
3995 }
3996
3997 /* Manual link training for Ivy Bridge A0 parts */
3998 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3999 {
4000         struct drm_device *dev = crtc->dev;
4001         struct drm_i915_private *dev_priv = to_i915(dev);
4002         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4003         int pipe = intel_crtc->pipe;
4004         i915_reg_t reg;
4005         u32 temp, i, j;
4006
4007         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4008            for train result */
4009         reg = FDI_RX_IMR(pipe);
4010         temp = I915_READ(reg);
4011         temp &= ~FDI_RX_SYMBOL_LOCK;
4012         temp &= ~FDI_RX_BIT_LOCK;
4013         I915_WRITE(reg, temp);
4014
4015         POSTING_READ(reg);
4016         udelay(150);
4017
4018         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4019                       I915_READ(FDI_RX_IIR(pipe)));
4020
4021         /* Try each vswing and preemphasis setting twice before moving on */
4022         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4023                 /* disable first in case we need to retry */
4024                 reg = FDI_TX_CTL(pipe);
4025                 temp = I915_READ(reg);
4026                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4027                 temp &= ~FDI_TX_ENABLE;
4028                 I915_WRITE(reg, temp);
4029
4030                 reg = FDI_RX_CTL(pipe);
4031                 temp = I915_READ(reg);
4032                 temp &= ~FDI_LINK_TRAIN_AUTO;
4033                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4034                 temp &= ~FDI_RX_ENABLE;
4035                 I915_WRITE(reg, temp);
4036
4037                 /* enable CPU FDI TX and PCH FDI RX */
4038                 reg = FDI_TX_CTL(pipe);
4039                 temp = I915_READ(reg);
4040                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4041                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4042                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4043                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4044                 temp |= snb_b_fdi_train_param[j/2];
4045                 temp |= FDI_COMPOSITE_SYNC;
4046                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4047
4048                 I915_WRITE(FDI_RX_MISC(pipe),
4049                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4050
4051                 reg = FDI_RX_CTL(pipe);
4052                 temp = I915_READ(reg);
4053                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4054                 temp |= FDI_COMPOSITE_SYNC;
4055                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4056
4057                 POSTING_READ(reg);
4058                 udelay(1); /* should be 0.5us */
4059
4060                 for (i = 0; i < 4; i++) {
4061                         reg = FDI_RX_IIR(pipe);
4062                         temp = I915_READ(reg);
4063                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4064
4065                         if (temp & FDI_RX_BIT_LOCK ||
4066                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4067                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4068                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4069                                               i);
4070                                 break;
4071                         }
4072                         udelay(1); /* should be 0.5us */
4073                 }
4074                 if (i == 4) {
4075                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4076                         continue;
4077                 }
4078
4079                 /* Train 2 */
4080                 reg = FDI_TX_CTL(pipe);
4081                 temp = I915_READ(reg);
4082                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4083                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4084                 I915_WRITE(reg, temp);
4085
4086                 reg = FDI_RX_CTL(pipe);
4087                 temp = I915_READ(reg);
4088                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4089                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4090                 I915_WRITE(reg, temp);
4091
4092                 POSTING_READ(reg);
4093                 udelay(2); /* should be 1.5us */
4094
4095                 for (i = 0; i < 4; i++) {
4096                         reg = FDI_RX_IIR(pipe);
4097                         temp = I915_READ(reg);
4098                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4099
4100                         if (temp & FDI_RX_SYMBOL_LOCK ||
4101                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4102                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4103                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4104                                               i);
4105                                 goto train_done;
4106                         }
4107                         udelay(2); /* should be 1.5us */
4108                 }
4109                 if (i == 4)
4110                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4111         }
4112
4113 train_done:
4114         DRM_DEBUG_KMS("FDI train done.\n");
4115 }
4116
4117 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4118 {
4119         struct drm_device *dev = intel_crtc->base.dev;
4120         struct drm_i915_private *dev_priv = to_i915(dev);
4121         int pipe = intel_crtc->pipe;
4122         i915_reg_t reg;
4123         u32 temp;
4124
4125         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4126         reg = FDI_RX_CTL(pipe);
4127         temp = I915_READ(reg);
4128         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4129         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4130         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4131         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4132
4133         POSTING_READ(reg);
4134         udelay(200);
4135
4136         /* Switch from Rawclk to PCDclk */
4137         temp = I915_READ(reg);
4138         I915_WRITE(reg, temp | FDI_PCDCLK);
4139
4140         POSTING_READ(reg);
4141         udelay(200);
4142
4143         /* Enable CPU FDI TX PLL, always on for Ironlake */
4144         reg = FDI_TX_CTL(pipe);
4145         temp = I915_READ(reg);
4146         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4147                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4148
4149                 POSTING_READ(reg);
4150                 udelay(100);
4151         }
4152 }
4153
4154 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4155 {
4156         struct drm_device *dev = intel_crtc->base.dev;
4157         struct drm_i915_private *dev_priv = to_i915(dev);
4158         int pipe = intel_crtc->pipe;
4159         i915_reg_t reg;
4160         u32 temp;
4161
4162         /* Switch from PCDclk to Rawclk */
4163         reg = FDI_RX_CTL(pipe);
4164         temp = I915_READ(reg);
4165         I915_WRITE(reg, temp & ~FDI_PCDCLK);
4166
4167         /* Disable CPU FDI TX PLL */
4168         reg = FDI_TX_CTL(pipe);
4169         temp = I915_READ(reg);
4170         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4171
4172         POSTING_READ(reg);
4173         udelay(100);
4174
4175         reg = FDI_RX_CTL(pipe);
4176         temp = I915_READ(reg);
4177         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4178
4179         /* Wait for the clocks to turn off. */
4180         POSTING_READ(reg);
4181         udelay(100);
4182 }
4183
4184 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4185 {
4186         struct drm_device *dev = crtc->dev;
4187         struct drm_i915_private *dev_priv = to_i915(dev);
4188         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4189         int pipe = intel_crtc->pipe;
4190         i915_reg_t reg;
4191         u32 temp;
4192
4193         /* disable CPU FDI tx and PCH FDI rx */
4194         reg = FDI_TX_CTL(pipe);
4195         temp = I915_READ(reg);
4196         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4197         POSTING_READ(reg);
4198
4199         reg = FDI_RX_CTL(pipe);
4200         temp = I915_READ(reg);
4201         temp &= ~(0x7 << 16);
4202         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4203         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4204
4205         POSTING_READ(reg);
4206         udelay(100);
4207
4208         /* Ironlake workaround, disable clock pointer after downing FDI */
4209         if (HAS_PCH_IBX(dev_priv))
4210                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4211
4212         /* still set train pattern 1 */
4213         reg = FDI_TX_CTL(pipe);
4214         temp = I915_READ(reg);
4215         temp &= ~FDI_LINK_TRAIN_NONE;
4216         temp |= FDI_LINK_TRAIN_PATTERN_1;
4217         I915_WRITE(reg, temp);
4218
4219         reg = FDI_RX_CTL(pipe);
4220         temp = I915_READ(reg);
4221         if (HAS_PCH_CPT(dev_priv)) {
4222                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4223                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4224         } else {
4225                 temp &= ~FDI_LINK_TRAIN_NONE;
4226                 temp |= FDI_LINK_TRAIN_PATTERN_1;
4227         }
4228         /* BPC in FDI rx is consistent with that in PIPECONF */
4229         temp &= ~(0x07 << 16);
4230         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4231         I915_WRITE(reg, temp);
4232
4233         POSTING_READ(reg);
4234         udelay(100);
4235 }
4236
4237 bool intel_has_pending_fb_unpin(struct drm_device *dev)
4238 {
4239         struct drm_i915_private *dev_priv = to_i915(dev);
4240         struct intel_crtc *crtc;
4241
4242         /* Note that we don't need to be called with mode_config.lock here
4243          * as our list of CRTC objects is static for the lifetime of the
4244          * device and so cannot disappear as we iterate. Similarly, we can
4245          * happily treat the predicates as racy, atomic checks as userspace
4246          * cannot claim and pin a new fb without at least acquring the
4247          * struct_mutex and so serialising with us.
4248          */
4249         for_each_intel_crtc(dev, crtc) {
4250                 if (atomic_read(&crtc->unpin_work_count) == 0)
4251                         continue;
4252
4253                 if (crtc->flip_work)
4254                         intel_wait_for_vblank(dev_priv, crtc->pipe);
4255
4256                 return true;
4257         }
4258
4259         return false;
4260 }
4261
4262 static void page_flip_completed(struct intel_crtc *intel_crtc)
4263 {
4264         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4265         struct intel_flip_work *work = intel_crtc->flip_work;
4266
4267         intel_crtc->flip_work = NULL;
4268
4269         if (work->event)
4270                 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4271
4272         drm_crtc_vblank_put(&intel_crtc->base);
4273
4274         wake_up_all(&dev_priv->pending_flip_queue);
4275         queue_work(dev_priv->wq, &work->unpin_work);
4276
4277         trace_i915_flip_complete(intel_crtc->plane,
4278                                  work->pending_flip_obj);
4279 }
4280
4281 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4282 {
4283         struct drm_device *dev = crtc->dev;
4284         struct drm_i915_private *dev_priv = to_i915(dev);
4285         long ret;
4286
4287         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4288
4289         ret = wait_event_interruptible_timeout(
4290                                         dev_priv->pending_flip_queue,
4291                                         !intel_crtc_has_pending_flip(crtc),
4292                                         60*HZ);
4293
4294         if (ret < 0)
4295                 return ret;
4296
4297         if (ret == 0) {
4298                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4299                 struct intel_flip_work *work;
4300
4301                 spin_lock_irq(&dev->event_lock);
4302                 work = intel_crtc->flip_work;
4303                 if (work && !is_mmio_work(work)) {
4304                         WARN_ONCE(1, "Removing stuck page flip\n");
4305                         page_flip_completed(intel_crtc);
4306                 }
4307                 spin_unlock_irq(&dev->event_lock);
4308         }
4309
4310         return 0;
4311 }
4312
4313 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4314 {
4315         u32 temp;
4316
4317         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4318
4319         mutex_lock(&dev_priv->sb_lock);
4320
4321         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4322         temp |= SBI_SSCCTL_DISABLE;
4323         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4324
4325         mutex_unlock(&dev_priv->sb_lock);
4326 }
4327
4328 /* Program iCLKIP clock to the desired frequency */
4329 static void lpt_program_iclkip(struct drm_crtc *crtc)
4330 {
4331         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4332         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
4333         u32 divsel, phaseinc, auxdiv, phasedir = 0;
4334         u32 temp;
4335
4336         lpt_disable_iclkip(dev_priv);
4337
4338         /* The iCLK virtual clock root frequency is in MHz,
4339          * but the adjusted_mode->crtc_clock in in KHz. To get the
4340          * divisors, it is necessary to divide one by another, so we
4341          * convert the virtual clock precision to KHz here for higher
4342          * precision.
4343          */
4344         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4345                 u32 iclk_virtual_root_freq = 172800 * 1000;
4346                 u32 iclk_pi_range = 64;
4347                 u32 desired_divisor;
4348
4349                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4350                                                     clock << auxdiv);
4351                 divsel = (desired_divisor / iclk_pi_range) - 2;
4352                 phaseinc = desired_divisor % iclk_pi_range;
4353
4354                 /*
4355                  * Near 20MHz is a corner case which is
4356                  * out of range for the 7-bit divisor
4357                  */
4358                 if (divsel <= 0x7f)
4359                         break;
4360         }
4361
4362         /* This should not happen with any sane values */
4363         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4364                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4365         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4366                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4367
4368         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4369                         clock,
4370                         auxdiv,
4371                         divsel,
4372                         phasedir,
4373                         phaseinc);
4374
4375         mutex_lock(&dev_priv->sb_lock);
4376
4377         /* Program SSCDIVINTPHASE6 */
4378         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4379         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4380         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4381         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4382         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4383         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4384         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4385         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4386
4387         /* Program SSCAUXDIV */
4388         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4389         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4390         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4391         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4392
4393         /* Enable modulator and associated divider */
4394         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4395         temp &= ~SBI_SSCCTL_DISABLE;
4396         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4397
4398         mutex_unlock(&dev_priv->sb_lock);
4399
4400         /* Wait for initialization time */
4401         udelay(24);
4402
4403         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4404 }
4405
4406 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4407 {
4408         u32 divsel, phaseinc, auxdiv;
4409         u32 iclk_virtual_root_freq = 172800 * 1000;
4410         u32 iclk_pi_range = 64;
4411         u32 desired_divisor;
4412         u32 temp;
4413
4414         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4415                 return 0;
4416
4417         mutex_lock(&dev_priv->sb_lock);
4418
4419         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4420         if (temp & SBI_SSCCTL_DISABLE) {
4421                 mutex_unlock(&dev_priv->sb_lock);
4422                 return 0;
4423         }
4424
4425         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4426         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4427                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4428         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4429                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4430
4431         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4432         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4433                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4434
4435         mutex_unlock(&dev_priv->sb_lock);
4436
4437         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4438
4439         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4440                                  desired_divisor << auxdiv);
4441 }
4442
4443 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4444                                                 enum pipe pch_transcoder)
4445 {
4446         struct drm_device *dev = crtc->base.dev;
4447         struct drm_i915_private *dev_priv = to_i915(dev);
4448         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4449
4450         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4451                    I915_READ(HTOTAL(cpu_transcoder)));
4452         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4453                    I915_READ(HBLANK(cpu_transcoder)));
4454         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4455                    I915_READ(HSYNC(cpu_transcoder)));
4456
4457         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4458                    I915_READ(VTOTAL(cpu_transcoder)));
4459         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4460                    I915_READ(VBLANK(cpu_transcoder)));
4461         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4462                    I915_READ(VSYNC(cpu_transcoder)));
4463         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4464                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4465 }
4466
4467 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4468 {
4469         struct drm_i915_private *dev_priv = to_i915(dev);
4470         uint32_t temp;
4471
4472         temp = I915_READ(SOUTH_CHICKEN1);
4473         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4474                 return;
4475
4476         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4477         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4478
4479         temp &= ~FDI_BC_BIFURCATION_SELECT;
4480         if (enable)
4481                 temp |= FDI_BC_BIFURCATION_SELECT;
4482
4483         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4484         I915_WRITE(SOUTH_CHICKEN1, temp);
4485         POSTING_READ(SOUTH_CHICKEN1);
4486 }
4487
4488 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4489 {
4490         struct drm_device *dev = intel_crtc->base.dev;
4491
4492         switch (intel_crtc->pipe) {
4493         case PIPE_A:
4494                 break;
4495         case PIPE_B:
4496                 if (intel_crtc->config->fdi_lanes > 2)
4497                         cpt_set_fdi_bc_bifurcation(dev, false);
4498                 else
4499                         cpt_set_fdi_bc_bifurcation(dev, true);
4500
4501                 break;
4502         case PIPE_C:
4503                 cpt_set_fdi_bc_bifurcation(dev, true);
4504
4505                 break;
4506         default:
4507                 BUG();
4508         }
4509 }
4510
4511 /* Return which DP Port should be selected for Transcoder DP control */
4512 static enum port
4513 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4514 {
4515         struct drm_device *dev = crtc->dev;
4516         struct intel_encoder *encoder;
4517
4518         for_each_encoder_on_crtc(dev, crtc, encoder) {
4519                 if (encoder->type == INTEL_OUTPUT_DP ||
4520                     encoder->type == INTEL_OUTPUT_EDP)
4521                         return enc_to_dig_port(&encoder->base)->port;
4522         }
4523
4524         return -1;
4525 }
4526
4527 /*
4528  * Enable PCH resources required for PCH ports:
4529  *   - PCH PLLs
4530  *   - FDI training & RX/TX
4531  *   - update transcoder timings
4532  *   - DP transcoding bits
4533  *   - transcoder
4534  */
4535 static void ironlake_pch_enable(struct drm_crtc *crtc)
4536 {
4537         struct drm_device *dev = crtc->dev;
4538         struct drm_i915_private *dev_priv = to_i915(dev);
4539         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4540         int pipe = intel_crtc->pipe;
4541         u32 temp;
4542
4543         assert_pch_transcoder_disabled(dev_priv, pipe);
4544
4545         if (IS_IVYBRIDGE(dev_priv))
4546                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4547
4548         /* Write the TU size bits before fdi link training, so that error
4549          * detection works. */
4550         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4551                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4552
4553         /* For PCH output, training FDI link */
4554         dev_priv->display.fdi_link_train(crtc);
4555
4556         /* We need to program the right clock selection before writing the pixel
4557          * mutliplier into the DPLL. */
4558         if (HAS_PCH_CPT(dev_priv)) {
4559                 u32 sel;
4560
4561                 temp = I915_READ(PCH_DPLL_SEL);
4562                 temp |= TRANS_DPLL_ENABLE(pipe);
4563                 sel = TRANS_DPLLB_SEL(pipe);
4564                 if (intel_crtc->config->shared_dpll ==
4565                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4566                         temp |= sel;
4567                 else
4568                         temp &= ~sel;
4569                 I915_WRITE(PCH_DPLL_SEL, temp);
4570         }
4571
4572         /* XXX: pch pll's can be enabled any time before we enable the PCH
4573          * transcoder, and we actually should do this to not upset any PCH
4574          * transcoder that already use the clock when we share it.
4575          *
4576          * Note that enable_shared_dpll tries to do the right thing, but
4577          * get_shared_dpll unconditionally resets the pll - we need that to have
4578          * the right LVDS enable sequence. */
4579         intel_enable_shared_dpll(intel_crtc);
4580
4581         /* set transcoder timing, panel must allow it */
4582         assert_panel_unlocked(dev_priv, pipe);
4583         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4584
4585         intel_fdi_normal_train(crtc);
4586
4587         /* For PCH DP, enable TRANS_DP_CTL */
4588         if (HAS_PCH_CPT(dev_priv) &&
4589             intel_crtc_has_dp_encoder(intel_crtc->config)) {
4590                 const struct drm_display_mode *adjusted_mode =
4591                         &intel_crtc->config->base.adjusted_mode;
4592                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4593                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4594                 temp = I915_READ(reg);
4595                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4596                           TRANS_DP_SYNC_MASK |
4597                           TRANS_DP_BPC_MASK);
4598                 temp |= TRANS_DP_OUTPUT_ENABLE;
4599                 temp |= bpc << 9; /* same format but at 11:9 */
4600
4601                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4602                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4603                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4604                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4605
4606                 switch (intel_trans_dp_port_sel(crtc)) {
4607                 case PORT_B:
4608                         temp |= TRANS_DP_PORT_SEL_B;
4609                         break;
4610                 case PORT_C:
4611                         temp |= TRANS_DP_PORT_SEL_C;
4612                         break;
4613                 case PORT_D:
4614                         temp |= TRANS_DP_PORT_SEL_D;
4615                         break;
4616                 default:
4617                         BUG();
4618                 }
4619
4620                 I915_WRITE(reg, temp);
4621         }
4622
4623         ironlake_enable_pch_transcoder(dev_priv, pipe);
4624 }
4625
4626 static void lpt_pch_enable(struct drm_crtc *crtc)
4627 {
4628         struct drm_device *dev = crtc->dev;
4629         struct drm_i915_private *dev_priv = to_i915(dev);
4630         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4631         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4632
4633         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4634
4635         lpt_program_iclkip(crtc);
4636
4637         /* Set transcoder timing. */
4638         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4639
4640         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4641 }
4642
4643 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4644 {
4645         struct drm_i915_private *dev_priv = to_i915(dev);
4646         i915_reg_t dslreg = PIPEDSL(pipe);
4647         u32 temp;
4648
4649         temp = I915_READ(dslreg);
4650         udelay(500);
4651         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4652                 if (wait_for(I915_READ(dslreg) != temp, 5))
4653                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4654         }
4655 }
4656
4657 static int
4658 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4659                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4660                   int src_w, int src_h, int dst_w, int dst_h)
4661 {
4662         struct intel_crtc_scaler_state *scaler_state =
4663                 &crtc_state->scaler_state;
4664         struct intel_crtc *intel_crtc =
4665                 to_intel_crtc(crtc_state->base.crtc);
4666         int need_scaling;
4667
4668         need_scaling = drm_rotation_90_or_270(rotation) ?
4669                 (src_h != dst_w || src_w != dst_h):
4670                 (src_w != dst_w || src_h != dst_h);
4671
4672         /*
4673          * if plane is being disabled or scaler is no more required or force detach
4674          *  - free scaler binded to this plane/crtc
4675          *  - in order to do this, update crtc->scaler_usage
4676          *
4677          * Here scaler state in crtc_state is set free so that
4678          * scaler can be assigned to other user. Actual register
4679          * update to free the scaler is done in plane/panel-fit programming.
4680          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4681          */
4682         if (force_detach || !need_scaling) {
4683                 if (*scaler_id >= 0) {
4684                         scaler_state->scaler_users &= ~(1 << scaler_user);
4685                         scaler_state->scalers[*scaler_id].in_use = 0;
4686
4687                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4688                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4689                                 intel_crtc->pipe, scaler_user, *scaler_id,
4690                                 scaler_state->scaler_users);
4691                         *scaler_id = -1;
4692                 }
4693                 return 0;
4694         }
4695
4696         /* range checks */
4697         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4698                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4699
4700                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4701                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4702                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4703                         "size is out of scaler range\n",
4704                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4705                 return -EINVAL;
4706         }
4707
4708         /* mark this plane as a scaler user in crtc_state */
4709         scaler_state->scaler_users |= (1 << scaler_user);
4710         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4711                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4712                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4713                 scaler_state->scaler_users);
4714
4715         return 0;
4716 }
4717
4718 /**
4719  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4720  *
4721  * @state: crtc's scaler state
4722  *
4723  * Return
4724  *     0 - scaler_usage updated successfully
4725  *    error - requested scaling cannot be supported or other error condition
4726  */
4727 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4728 {
4729         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4730
4731         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4732                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4733                 state->pipe_src_w, state->pipe_src_h,
4734                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4735 }
4736
4737 /**
4738  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4739  *
4740  * @state: crtc's scaler state
4741  * @plane_state: atomic plane state to update
4742  *
4743  * Return
4744  *     0 - scaler_usage updated successfully
4745  *    error - requested scaling cannot be supported or other error condition
4746  */
4747 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4748                                    struct intel_plane_state *plane_state)
4749 {
4750
4751         struct intel_plane *intel_plane =
4752                 to_intel_plane(plane_state->base.plane);
4753         struct drm_framebuffer *fb = plane_state->base.fb;
4754         int ret;
4755
4756         bool force_detach = !fb || !plane_state->base.visible;
4757
4758         ret = skl_update_scaler(crtc_state, force_detach,
4759                                 drm_plane_index(&intel_plane->base),
4760                                 &plane_state->scaler_id,
4761                                 plane_state->base.rotation,
4762                                 drm_rect_width(&plane_state->base.src) >> 16,
4763                                 drm_rect_height(&plane_state->base.src) >> 16,
4764                                 drm_rect_width(&plane_state->base.dst),
4765                                 drm_rect_height(&plane_state->base.dst));
4766
4767         if (ret || plane_state->scaler_id < 0)
4768                 return ret;
4769
4770         /* check colorkey */
4771         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4772                 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4773                               intel_plane->base.base.id,
4774                               intel_plane->base.name);
4775                 return -EINVAL;
4776         }
4777
4778         /* Check src format */
4779         switch (fb->pixel_format) {
4780         case DRM_FORMAT_RGB565:
4781         case DRM_FORMAT_XBGR8888:
4782         case DRM_FORMAT_XRGB8888:
4783         case DRM_FORMAT_ABGR8888:
4784         case DRM_FORMAT_ARGB8888:
4785         case DRM_FORMAT_XRGB2101010:
4786         case DRM_FORMAT_XBGR2101010:
4787         case DRM_FORMAT_YUYV:
4788         case DRM_FORMAT_YVYU:
4789         case DRM_FORMAT_UYVY:
4790         case DRM_FORMAT_VYUY:
4791                 break;
4792         default:
4793                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4794                               intel_plane->base.base.id, intel_plane->base.name,
4795                               fb->base.id, fb->pixel_format);
4796                 return -EINVAL;
4797         }
4798
4799         return 0;
4800 }
4801
4802 static void skylake_scaler_disable(struct intel_crtc *crtc)
4803 {
4804         int i;
4805
4806         for (i = 0; i < crtc->num_scalers; i++)
4807                 skl_detach_scaler(crtc, i);
4808 }
4809
4810 static void skylake_pfit_enable(struct intel_crtc *crtc)
4811 {
4812         struct drm_device *dev = crtc->base.dev;
4813         struct drm_i915_private *dev_priv = to_i915(dev);
4814         int pipe = crtc->pipe;
4815         struct intel_crtc_scaler_state *scaler_state =
4816                 &crtc->config->scaler_state;
4817
4818         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4819
4820         if (crtc->config->pch_pfit.enabled) {
4821                 int id;
4822
4823                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4824                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4825                         return;
4826                 }
4827
4828                 id = scaler_state->scaler_id;
4829                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4830                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4831                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4832                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4833
4834                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4835         }
4836 }
4837
4838 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4839 {
4840         struct drm_device *dev = crtc->base.dev;
4841         struct drm_i915_private *dev_priv = to_i915(dev);
4842         int pipe = crtc->pipe;
4843
4844         if (crtc->config->pch_pfit.enabled) {
4845                 /* Force use of hard-coded filter coefficients
4846                  * as some pre-programmed values are broken,
4847                  * e.g. x201.
4848                  */
4849                 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4850                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4851                                                  PF_PIPE_SEL_IVB(pipe));
4852                 else
4853                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4854                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4855                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4856         }
4857 }
4858
4859 void hsw_enable_ips(struct intel_crtc *crtc)
4860 {
4861         struct drm_device *dev = crtc->base.dev;
4862         struct drm_i915_private *dev_priv = to_i915(dev);
4863
4864         if (!crtc->config->ips_enabled)
4865                 return;
4866
4867         /*
4868          * We can only enable IPS after we enable a plane and wait for a vblank
4869          * This function is called from post_plane_update, which is run after
4870          * a vblank wait.
4871          */
4872
4873         assert_plane_enabled(dev_priv, crtc->plane);
4874         if (IS_BROADWELL(dev_priv)) {
4875                 mutex_lock(&dev_priv->rps.hw_lock);
4876                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4877                 mutex_unlock(&dev_priv->rps.hw_lock);
4878                 /* Quoting Art Runyan: "its not safe to expect any particular
4879                  * value in IPS_CTL bit 31 after enabling IPS through the
4880                  * mailbox." Moreover, the mailbox may return a bogus state,
4881                  * so we need to just enable it and continue on.
4882                  */
4883         } else {
4884                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4885                 /* The bit only becomes 1 in the next vblank, so this wait here
4886                  * is essentially intel_wait_for_vblank. If we don't have this
4887                  * and don't wait for vblanks until the end of crtc_enable, then
4888                  * the HW state readout code will complain that the expected
4889                  * IPS_CTL value is not the one we read. */
4890                 if (intel_wait_for_register(dev_priv,
4891                                             IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4892                                             50))
4893                         DRM_ERROR("Timed out waiting for IPS enable\n");
4894         }
4895 }
4896
4897 void hsw_disable_ips(struct intel_crtc *crtc)
4898 {
4899         struct drm_device *dev = crtc->base.dev;
4900         struct drm_i915_private *dev_priv = to_i915(dev);
4901
4902         if (!crtc->config->ips_enabled)
4903                 return;
4904
4905         assert_plane_enabled(dev_priv, crtc->plane);
4906         if (IS_BROADWELL(dev_priv)) {
4907                 mutex_lock(&dev_priv->rps.hw_lock);
4908                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4909                 mutex_unlock(&dev_priv->rps.hw_lock);
4910                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4911                 if (intel_wait_for_register(dev_priv,
4912                                             IPS_CTL, IPS_ENABLE, 0,
4913                                             42))
4914                         DRM_ERROR("Timed out waiting for IPS disable\n");
4915         } else {
4916                 I915_WRITE(IPS_CTL, 0);
4917                 POSTING_READ(IPS_CTL);
4918         }
4919
4920         /* We need to wait for a vblank before we can disable the plane. */
4921         intel_wait_for_vblank(dev_priv, crtc->pipe);
4922 }
4923
4924 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4925 {
4926         if (intel_crtc->overlay) {
4927                 struct drm_device *dev = intel_crtc->base.dev;
4928                 struct drm_i915_private *dev_priv = to_i915(dev);
4929
4930                 mutex_lock(&dev->struct_mutex);
4931                 dev_priv->mm.interruptible = false;
4932                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4933                 dev_priv->mm.interruptible = true;
4934                 mutex_unlock(&dev->struct_mutex);
4935         }
4936
4937         /* Let userspace switch the overlay on again. In most cases userspace
4938          * has to recompute where to put it anyway.
4939          */
4940 }
4941
4942 /**
4943  * intel_post_enable_primary - Perform operations after enabling primary plane
4944  * @crtc: the CRTC whose primary plane was just enabled
4945  *
4946  * Performs potentially sleeping operations that must be done after the primary
4947  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4948  * called due to an explicit primary plane update, or due to an implicit
4949  * re-enable that is caused when a sprite plane is updated to no longer
4950  * completely hide the primary plane.
4951  */
4952 static void
4953 intel_post_enable_primary(struct drm_crtc *crtc)
4954 {
4955         struct drm_device *dev = crtc->dev;
4956         struct drm_i915_private *dev_priv = to_i915(dev);
4957         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4958         int pipe = intel_crtc->pipe;
4959
4960         /*
4961          * FIXME IPS should be fine as long as one plane is
4962          * enabled, but in practice it seems to have problems
4963          * when going from primary only to sprite only and vice
4964          * versa.
4965          */
4966         hsw_enable_ips(intel_crtc);
4967
4968         /*
4969          * Gen2 reports pipe underruns whenever all planes are disabled.
4970          * So don't enable underrun reporting before at least some planes
4971          * are enabled.
4972          * FIXME: Need to fix the logic to work when we turn off all planes
4973          * but leave the pipe running.
4974          */
4975         if (IS_GEN2(dev_priv))
4976                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4977
4978         /* Underruns don't always raise interrupts, so check manually. */
4979         intel_check_cpu_fifo_underruns(dev_priv);
4980         intel_check_pch_fifo_underruns(dev_priv);
4981 }
4982
4983 /* FIXME move all this to pre_plane_update() with proper state tracking */
4984 static void
4985 intel_pre_disable_primary(struct drm_crtc *crtc)
4986 {
4987         struct drm_device *dev = crtc->dev;
4988         struct drm_i915_private *dev_priv = to_i915(dev);
4989         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4990         int pipe = intel_crtc->pipe;
4991
4992         /*
4993          * Gen2 reports pipe underruns whenever all planes are disabled.
4994          * So diasble underrun reporting before all the planes get disabled.
4995          * FIXME: Need to fix the logic to work when we turn off all planes
4996          * but leave the pipe running.
4997          */
4998         if (IS_GEN2(dev_priv))
4999                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5000
5001         /*
5002          * FIXME IPS should be fine as long as one plane is
5003          * enabled, but in practice it seems to have problems
5004          * when going from primary only to sprite only and vice
5005          * versa.
5006          */
5007         hsw_disable_ips(intel_crtc);
5008 }
5009
5010 /* FIXME get rid of this and use pre_plane_update */
5011 static void
5012 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5013 {
5014         struct drm_device *dev = crtc->dev;
5015         struct drm_i915_private *dev_priv = to_i915(dev);
5016         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5017         int pipe = intel_crtc->pipe;
5018
5019         intel_pre_disable_primary(crtc);
5020
5021         /*
5022          * Vblank time updates from the shadow to live plane control register
5023          * are blocked if the memory self-refresh mode is active at that
5024          * moment. So to make sure the plane gets truly disabled, disable
5025          * first the self-refresh mode. The self-refresh enable bit in turn
5026          * will be checked/applied by the HW only at the next frame start
5027          * event which is after the vblank start event, so we need to have a
5028          * wait-for-vblank between disabling the plane and the pipe.
5029          */
5030         if (HAS_GMCH_DISPLAY(dev_priv)) {
5031                 intel_set_memory_cxsr(dev_priv, false);
5032                 dev_priv->wm.vlv.cxsr = false;
5033                 intel_wait_for_vblank(dev_priv, pipe);
5034         }
5035 }
5036
5037 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5038 {
5039         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5040         struct drm_atomic_state *old_state = old_crtc_state->base.state;
5041         struct intel_crtc_state *pipe_config =
5042                 to_intel_crtc_state(crtc->base.state);
5043         struct drm_plane *primary = crtc->base.primary;
5044         struct drm_plane_state *old_pri_state =
5045                 drm_atomic_get_existing_plane_state(old_state, primary);
5046
5047         intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5048
5049         crtc->wm.cxsr_allowed = true;
5050
5051         if (pipe_config->update_wm_post && pipe_config->base.active)
5052                 intel_update_watermarks(crtc);
5053
5054         if (old_pri_state) {
5055                 struct intel_plane_state *primary_state =
5056                         to_intel_plane_state(primary->state);
5057                 struct intel_plane_state *old_primary_state =
5058                         to_intel_plane_state(old_pri_state);
5059
5060                 intel_fbc_post_update(crtc);
5061
5062                 if (primary_state->base.visible &&
5063                     (needs_modeset(&pipe_config->base) ||
5064                      !old_primary_state->base.visible))
5065                         intel_post_enable_primary(&crtc->base);
5066         }
5067 }
5068
5069 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
5070 {
5071         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5072         struct drm_device *dev = crtc->base.dev;
5073         struct drm_i915_private *dev_priv = to_i915(dev);
5074         struct intel_crtc_state *pipe_config =
5075                 to_intel_crtc_state(crtc->base.state);
5076         struct drm_atomic_state *old_state = old_crtc_state->base.state;
5077         struct drm_plane *primary = crtc->base.primary;
5078         struct drm_plane_state *old_pri_state =
5079                 drm_atomic_get_existing_plane_state(old_state, primary);
5080         bool modeset = needs_modeset(&pipe_config->base);
5081         struct intel_atomic_state *old_intel_state =
5082                 to_intel_atomic_state(old_state);
5083
5084         if (old_pri_state) {
5085                 struct intel_plane_state *primary_state =
5086                         to_intel_plane_state(primary->state);
5087                 struct intel_plane_state *old_primary_state =
5088                         to_intel_plane_state(old_pri_state);
5089
5090                 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5091
5092                 if (old_primary_state->base.visible &&
5093                     (modeset || !primary_state->base.visible))
5094                         intel_pre_disable_primary(&crtc->base);
5095         }
5096
5097         if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev_priv)) {
5098                 crtc->wm.cxsr_allowed = false;
5099
5100                 /*
5101                  * Vblank time updates from the shadow to live plane control register
5102                  * are blocked if the memory self-refresh mode is active at that
5103                  * moment. So to make sure the plane gets truly disabled, disable
5104                  * first the self-refresh mode. The self-refresh enable bit in turn
5105                  * will be checked/applied by the HW only at the next frame start
5106                  * event which is after the vblank start event, so we need to have a
5107                  * wait-for-vblank between disabling the plane and the pipe.
5108                  */
5109                 if (old_crtc_state->base.active) {
5110                         intel_set_memory_cxsr(dev_priv, false);
5111                         dev_priv->wm.vlv.cxsr = false;
5112                         intel_wait_for_vblank(dev_priv, crtc->pipe);
5113                 }
5114         }
5115
5116         /*
5117          * IVB workaround: must disable low power watermarks for at least
5118          * one frame before enabling scaling.  LP watermarks can be re-enabled
5119          * when scaling is disabled.
5120          *
5121          * WaCxSRDisabledForSpriteScaling:ivb
5122          */
5123         if (pipe_config->disable_lp_wm) {
5124                 ilk_disable_lp_wm(dev);
5125                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5126         }
5127
5128         /*
5129          * If we're doing a modeset, we're done.  No need to do any pre-vblank
5130          * watermark programming here.
5131          */
5132         if (needs_modeset(&pipe_config->base))
5133                 return;
5134
5135         /*
5136          * For platforms that support atomic watermarks, program the
5137          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
5138          * will be the intermediate values that are safe for both pre- and
5139          * post- vblank; when vblank happens, the 'active' values will be set
5140          * to the final 'target' values and we'll do this again to get the
5141          * optimal watermarks.  For gen9+ platforms, the values we program here
5142          * will be the final target values which will get automatically latched
5143          * at vblank time; no further programming will be necessary.
5144          *
5145          * If a platform hasn't been transitioned to atomic watermarks yet,
5146          * we'll continue to update watermarks the old way, if flags tell
5147          * us to.
5148          */
5149         if (dev_priv->display.initial_watermarks != NULL)
5150                 dev_priv->display.initial_watermarks(old_intel_state,
5151                                                      pipe_config);
5152         else if (pipe_config->update_wm_pre)
5153                 intel_update_watermarks(crtc);
5154 }
5155
5156 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5157 {
5158         struct drm_device *dev = crtc->dev;
5159         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5160         struct drm_plane *p;
5161         int pipe = intel_crtc->pipe;
5162
5163         intel_crtc_dpms_overlay_disable(intel_crtc);
5164
5165         drm_for_each_plane_mask(p, dev, plane_mask)
5166                 to_intel_plane(p)->disable_plane(p, crtc);
5167
5168         /*
5169          * FIXME: Once we grow proper nuclear flip support out of this we need
5170          * to compute the mask of flip planes precisely. For the time being
5171          * consider this a flip to a NULL plane.
5172          */
5173         intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5174 }
5175
5176 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5177                                           struct intel_crtc_state *crtc_state,
5178                                           struct drm_atomic_state *old_state)
5179 {
5180         struct drm_connector_state *old_conn_state;
5181         struct drm_connector *conn;
5182         int i;
5183
5184         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5185                 struct drm_connector_state *conn_state = conn->state;
5186                 struct intel_encoder *encoder =
5187                         to_intel_encoder(conn_state->best_encoder);
5188
5189                 if (conn_state->crtc != crtc)
5190                         continue;
5191
5192                 if (encoder->pre_pll_enable)
5193                         encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5194         }
5195 }
5196
5197 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5198                                       struct intel_crtc_state *crtc_state,
5199                                       struct drm_atomic_state *old_state)
5200 {
5201         struct drm_connector_state *old_conn_state;
5202         struct drm_connector *conn;
5203         int i;
5204
5205         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5206                 struct drm_connector_state *conn_state = conn->state;
5207                 struct intel_encoder *encoder =
5208                         to_intel_encoder(conn_state->best_encoder);
5209
5210                 if (conn_state->crtc != crtc)
5211                         continue;
5212
5213                 if (encoder->pre_enable)
5214                         encoder->pre_enable(encoder, crtc_state, conn_state);
5215         }
5216 }
5217
5218 static void intel_encoders_enable(struct drm_crtc *crtc,
5219                                   struct intel_crtc_state *crtc_state,
5220                                   struct drm_atomic_state *old_state)
5221 {
5222         struct drm_connector_state *old_conn_state;
5223         struct drm_connector *conn;
5224         int i;
5225
5226         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5227                 struct drm_connector_state *conn_state = conn->state;
5228                 struct intel_encoder *encoder =
5229                         to_intel_encoder(conn_state->best_encoder);
5230
5231                 if (conn_state->crtc != crtc)
5232                         continue;
5233
5234                 encoder->enable(encoder, crtc_state, conn_state);
5235                 intel_opregion_notify_encoder(encoder, true);
5236         }
5237 }
5238
5239 static void intel_encoders_disable(struct drm_crtc *crtc,
5240                                    struct intel_crtc_state *old_crtc_state,
5241                                    struct drm_atomic_state *old_state)
5242 {
5243         struct drm_connector_state *old_conn_state;
5244         struct drm_connector *conn;
5245         int i;
5246
5247         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5248                 struct intel_encoder *encoder =
5249                         to_intel_encoder(old_conn_state->best_encoder);
5250
5251                 if (old_conn_state->crtc != crtc)
5252                         continue;
5253
5254                 intel_opregion_notify_encoder(encoder, false);
5255                 encoder->disable(encoder, old_crtc_state, old_conn_state);
5256         }
5257 }
5258
5259 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5260                                         struct intel_crtc_state *old_crtc_state,
5261                                         struct drm_atomic_state *old_state)
5262 {
5263         struct drm_connector_state *old_conn_state;
5264         struct drm_connector *conn;
5265         int i;
5266
5267         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5268                 struct intel_encoder *encoder =
5269                         to_intel_encoder(old_conn_state->best_encoder);
5270
5271                 if (old_conn_state->crtc != crtc)
5272                         continue;
5273
5274                 if (encoder->post_disable)
5275                         encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5276         }
5277 }
5278
5279 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5280                                             struct intel_crtc_state *old_crtc_state,
5281                                             struct drm_atomic_state *old_state)
5282 {
5283         struct drm_connector_state *old_conn_state;
5284         struct drm_connector *conn;
5285         int i;
5286
5287         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5288                 struct intel_encoder *encoder =
5289                         to_intel_encoder(old_conn_state->best_encoder);
5290
5291                 if (old_conn_state->crtc != crtc)
5292                         continue;
5293
5294                 if (encoder->post_pll_disable)
5295                         encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5296         }
5297 }
5298
5299 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5300                                  struct drm_atomic_state *old_state)
5301 {
5302         struct drm_crtc *crtc = pipe_config->base.crtc;
5303         struct drm_device *dev = crtc->dev;
5304         struct drm_i915_private *dev_priv = to_i915(dev);
5305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5306         int pipe = intel_crtc->pipe;
5307         struct intel_atomic_state *old_intel_state =
5308                 to_intel_atomic_state(old_state);
5309
5310         if (WARN_ON(intel_crtc->active))
5311                 return;
5312
5313         /*
5314          * Sometimes spurious CPU pipe underruns happen during FDI
5315          * training, at least with VGA+HDMI cloning. Suppress them.
5316          *
5317          * On ILK we get an occasional spurious CPU pipe underruns
5318          * between eDP port A enable and vdd enable. Also PCH port
5319          * enable seems to result in the occasional CPU pipe underrun.
5320          *
5321          * Spurious PCH underruns also occur during PCH enabling.
5322          */
5323         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5324                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5325         if (intel_crtc->config->has_pch_encoder)
5326                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5327
5328         if (intel_crtc->config->has_pch_encoder)
5329                 intel_prepare_shared_dpll(intel_crtc);
5330
5331         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5332                 intel_dp_set_m_n(intel_crtc, M1_N1);
5333
5334         intel_set_pipe_timings(intel_crtc);
5335         intel_set_pipe_src_size(intel_crtc);
5336
5337         if (intel_crtc->config->has_pch_encoder) {
5338                 intel_cpu_transcoder_set_m_n(intel_crtc,
5339                                      &intel_crtc->config->fdi_m_n, NULL);
5340         }
5341
5342         ironlake_set_pipeconf(crtc);
5343
5344         intel_crtc->active = true;
5345
5346         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5347
5348         if (intel_crtc->config->has_pch_encoder) {
5349                 /* Note: FDI PLL enabling _must_ be done before we enable the
5350                  * cpu pipes, hence this is separate from all the other fdi/pch
5351                  * enabling. */
5352                 ironlake_fdi_pll_enable(intel_crtc);
5353         } else {
5354                 assert_fdi_tx_disabled(dev_priv, pipe);
5355                 assert_fdi_rx_disabled(dev_priv, pipe);
5356         }
5357
5358         ironlake_pfit_enable(intel_crtc);
5359
5360         /*
5361          * On ILK+ LUT must be loaded before the pipe is running but with
5362          * clocks enabled
5363          */
5364         intel_color_load_luts(&pipe_config->base);
5365
5366         if (dev_priv->display.initial_watermarks != NULL)
5367                 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5368         intel_enable_pipe(intel_crtc);
5369
5370         if (intel_crtc->config->has_pch_encoder)
5371                 ironlake_pch_enable(crtc);
5372
5373         assert_vblank_disabled(crtc);
5374         drm_crtc_vblank_on(crtc);
5375
5376         intel_encoders_enable(crtc, pipe_config, old_state);
5377
5378         if (HAS_PCH_CPT(dev_priv))
5379                 cpt_verify_modeset(dev, intel_crtc->pipe);
5380
5381         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5382         if (intel_crtc->config->has_pch_encoder)
5383                 intel_wait_for_vblank(dev_priv, pipe);
5384         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5385         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5386 }
5387
5388 /* IPS only exists on ULT machines and is tied to pipe A. */
5389 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5390 {
5391         return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5392 }
5393
5394 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5395                                 struct drm_atomic_state *old_state)
5396 {
5397         struct drm_crtc *crtc = pipe_config->base.crtc;
5398         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5399         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5400         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5401         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5402         struct intel_atomic_state *old_intel_state =
5403                 to_intel_atomic_state(old_state);
5404
5405         if (WARN_ON(intel_crtc->active))
5406                 return;
5407
5408         if (intel_crtc->config->has_pch_encoder)
5409                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5410                                                       false);
5411
5412         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5413
5414         if (intel_crtc->config->shared_dpll)
5415                 intel_enable_shared_dpll(intel_crtc);
5416
5417         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5418                 intel_dp_set_m_n(intel_crtc, M1_N1);
5419
5420         if (!transcoder_is_dsi(cpu_transcoder))
5421                 intel_set_pipe_timings(intel_crtc);
5422
5423         intel_set_pipe_src_size(intel_crtc);
5424
5425         if (cpu_transcoder != TRANSCODER_EDP &&
5426             !transcoder_is_dsi(cpu_transcoder)) {
5427                 I915_WRITE(PIPE_MULT(cpu_transcoder),
5428                            intel_crtc->config->pixel_multiplier - 1);
5429         }
5430
5431         if (intel_crtc->config->has_pch_encoder) {
5432                 intel_cpu_transcoder_set_m_n(intel_crtc,
5433                                      &intel_crtc->config->fdi_m_n, NULL);
5434         }
5435
5436         if (!transcoder_is_dsi(cpu_transcoder))
5437                 haswell_set_pipeconf(crtc);
5438
5439         haswell_set_pipemisc(crtc);
5440
5441         intel_color_set_csc(&pipe_config->base);
5442
5443         intel_crtc->active = true;
5444
5445         if (intel_crtc->config->has_pch_encoder)
5446                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5447         else
5448                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5449
5450         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5451
5452         if (intel_crtc->config->has_pch_encoder)
5453                 dev_priv->display.fdi_link_train(crtc);
5454
5455         if (!transcoder_is_dsi(cpu_transcoder))
5456                 intel_ddi_enable_pipe_clock(intel_crtc);
5457
5458         if (INTEL_GEN(dev_priv) >= 9)
5459                 skylake_pfit_enable(intel_crtc);
5460         else
5461                 ironlake_pfit_enable(intel_crtc);
5462
5463         /*
5464          * On ILK+ LUT must be loaded before the pipe is running but with
5465          * clocks enabled
5466          */
5467         intel_color_load_luts(&pipe_config->base);
5468
5469         intel_ddi_set_pipe_settings(crtc);
5470         if (!transcoder_is_dsi(cpu_transcoder))
5471                 intel_ddi_enable_transcoder_func(crtc);
5472
5473         if (dev_priv->display.initial_watermarks != NULL)
5474                 dev_priv->display.initial_watermarks(old_intel_state,
5475                                                      pipe_config);
5476         else
5477                 intel_update_watermarks(intel_crtc);
5478
5479         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5480         if (!transcoder_is_dsi(cpu_transcoder))
5481                 intel_enable_pipe(intel_crtc);
5482
5483         if (intel_crtc->config->has_pch_encoder)
5484                 lpt_pch_enable(crtc);
5485
5486         if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5487                 intel_ddi_set_vc_payload_alloc(crtc, true);
5488
5489         assert_vblank_disabled(crtc);
5490         drm_crtc_vblank_on(crtc);
5491
5492         intel_encoders_enable(crtc, pipe_config, old_state);
5493
5494         if (intel_crtc->config->has_pch_encoder) {
5495                 intel_wait_for_vblank(dev_priv, pipe);
5496                 intel_wait_for_vblank(dev_priv, pipe);
5497                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5498                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5499                                                       true);
5500         }
5501
5502         /* If we change the relative order between pipe/planes enabling, we need
5503          * to change the workaround. */
5504         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5505         if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5506                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5507                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5508         }
5509 }
5510
5511 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5512 {
5513         struct drm_device *dev = crtc->base.dev;
5514         struct drm_i915_private *dev_priv = to_i915(dev);
5515         int pipe = crtc->pipe;
5516
5517         /* To avoid upsetting the power well on haswell only disable the pfit if
5518          * it's in use. The hw state code will make sure we get this right. */
5519         if (force || crtc->config->pch_pfit.enabled) {
5520                 I915_WRITE(PF_CTL(pipe), 0);
5521                 I915_WRITE(PF_WIN_POS(pipe), 0);
5522                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5523         }
5524 }
5525
5526 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5527                                   struct drm_atomic_state *old_state)
5528 {
5529         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5530         struct drm_device *dev = crtc->dev;
5531         struct drm_i915_private *dev_priv = to_i915(dev);
5532         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5533         int pipe = intel_crtc->pipe;
5534
5535         /*
5536          * Sometimes spurious CPU pipe underruns happen when the
5537          * pipe is already disabled, but FDI RX/TX is still enabled.
5538          * Happens at least with VGA+HDMI cloning. Suppress them.
5539          */
5540         if (intel_crtc->config->has_pch_encoder) {
5541                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5542                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5543         }
5544
5545         intel_encoders_disable(crtc, old_crtc_state, old_state);
5546
5547         drm_crtc_vblank_off(crtc);
5548         assert_vblank_disabled(crtc);
5549
5550         intel_disable_pipe(intel_crtc);
5551
5552         ironlake_pfit_disable(intel_crtc, false);
5553
5554         if (intel_crtc->config->has_pch_encoder)
5555                 ironlake_fdi_disable(crtc);
5556
5557         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5558
5559         if (intel_crtc->config->has_pch_encoder) {
5560                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5561
5562                 if (HAS_PCH_CPT(dev_priv)) {
5563                         i915_reg_t reg;
5564                         u32 temp;
5565
5566                         /* disable TRANS_DP_CTL */
5567                         reg = TRANS_DP_CTL(pipe);
5568                         temp = I915_READ(reg);
5569                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5570                                   TRANS_DP_PORT_SEL_MASK);
5571                         temp |= TRANS_DP_PORT_SEL_NONE;
5572                         I915_WRITE(reg, temp);
5573
5574                         /* disable DPLL_SEL */
5575                         temp = I915_READ(PCH_DPLL_SEL);
5576                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5577                         I915_WRITE(PCH_DPLL_SEL, temp);
5578                 }
5579
5580                 ironlake_fdi_pll_disable(intel_crtc);
5581         }
5582
5583         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5584         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5585 }
5586
5587 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5588                                  struct drm_atomic_state *old_state)
5589 {
5590         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5591         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5592         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5593         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5594
5595         if (intel_crtc->config->has_pch_encoder)
5596                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5597                                                       false);
5598
5599         intel_encoders_disable(crtc, old_crtc_state, old_state);
5600
5601         drm_crtc_vblank_off(crtc);
5602         assert_vblank_disabled(crtc);
5603
5604         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5605         if (!transcoder_is_dsi(cpu_transcoder))
5606                 intel_disable_pipe(intel_crtc);
5607
5608         if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5609                 intel_ddi_set_vc_payload_alloc(crtc, false);
5610
5611         if (!transcoder_is_dsi(cpu_transcoder))
5612                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5613
5614         if (INTEL_GEN(dev_priv) >= 9)
5615                 skylake_scaler_disable(intel_crtc);
5616         else
5617                 ironlake_pfit_disable(intel_crtc, false);
5618
5619         if (!transcoder_is_dsi(cpu_transcoder))
5620                 intel_ddi_disable_pipe_clock(intel_crtc);
5621
5622         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5623
5624         if (old_crtc_state->has_pch_encoder)
5625                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5626                                                       true);
5627 }
5628
5629 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5630 {
5631         struct drm_device *dev = crtc->base.dev;
5632         struct drm_i915_private *dev_priv = to_i915(dev);
5633         struct intel_crtc_state *pipe_config = crtc->config;
5634
5635         if (!pipe_config->gmch_pfit.control)
5636                 return;
5637
5638         /*
5639          * The panel fitter should only be adjusted whilst the pipe is disabled,
5640          * according to register description and PRM.
5641          */
5642         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5643         assert_pipe_disabled(dev_priv, crtc->pipe);
5644
5645         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5646         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5647
5648         /* Border color in case we don't scale up to the full screen. Black by
5649          * default, change to something else for debugging. */
5650         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5651 }
5652
5653 static enum intel_display_power_domain port_to_power_domain(enum port port)
5654 {
5655         switch (port) {
5656         case PORT_A:
5657                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5658         case PORT_B:
5659                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5660         case PORT_C:
5661                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5662         case PORT_D:
5663                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5664         case PORT_E:
5665                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5666         default:
5667                 MISSING_CASE(port);
5668                 return POWER_DOMAIN_PORT_OTHER;
5669         }
5670 }
5671
5672 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5673 {
5674         switch (port) {
5675         case PORT_A:
5676                 return POWER_DOMAIN_AUX_A;
5677         case PORT_B:
5678                 return POWER_DOMAIN_AUX_B;
5679         case PORT_C:
5680                 return POWER_DOMAIN_AUX_C;
5681         case PORT_D:
5682                 return POWER_DOMAIN_AUX_D;
5683         case PORT_E:
5684                 /* FIXME: Check VBT for actual wiring of PORT E */
5685                 return POWER_DOMAIN_AUX_D;
5686         default:
5687                 MISSING_CASE(port);
5688                 return POWER_DOMAIN_AUX_A;
5689         }
5690 }
5691
5692 enum intel_display_power_domain
5693 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5694 {
5695         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5696         struct intel_digital_port *intel_dig_port;
5697
5698         switch (intel_encoder->type) {
5699         case INTEL_OUTPUT_UNKNOWN:
5700                 /* Only DDI platforms should ever use this output type */
5701                 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5702         case INTEL_OUTPUT_DP:
5703         case INTEL_OUTPUT_HDMI:
5704         case INTEL_OUTPUT_EDP:
5705                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5706                 return port_to_power_domain(intel_dig_port->port);
5707         case INTEL_OUTPUT_DP_MST:
5708                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5709                 return port_to_power_domain(intel_dig_port->port);
5710         case INTEL_OUTPUT_ANALOG:
5711                 return POWER_DOMAIN_PORT_CRT;
5712         case INTEL_OUTPUT_DSI:
5713                 return POWER_DOMAIN_PORT_DSI;
5714         default:
5715                 return POWER_DOMAIN_PORT_OTHER;
5716         }
5717 }
5718
5719 enum intel_display_power_domain
5720 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5721 {
5722         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5723         struct intel_digital_port *intel_dig_port;
5724
5725         switch (intel_encoder->type) {
5726         case INTEL_OUTPUT_UNKNOWN:
5727         case INTEL_OUTPUT_HDMI:
5728                 /*
5729                  * Only DDI platforms should ever use these output types.
5730                  * We can get here after the HDMI detect code has already set
5731                  * the type of the shared encoder. Since we can't be sure
5732                  * what's the status of the given connectors, play safe and
5733                  * run the DP detection too.
5734                  */
5735                 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5736         case INTEL_OUTPUT_DP:
5737         case INTEL_OUTPUT_EDP:
5738                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5739                 return port_to_aux_power_domain(intel_dig_port->port);
5740         case INTEL_OUTPUT_DP_MST:
5741                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5742                 return port_to_aux_power_domain(intel_dig_port->port);
5743         default:
5744                 MISSING_CASE(intel_encoder->type);
5745                 return POWER_DOMAIN_AUX_A;
5746         }
5747 }
5748
5749 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5750                                             struct intel_crtc_state *crtc_state)
5751 {
5752         struct drm_device *dev = crtc->dev;
5753         struct drm_encoder *encoder;
5754         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5755         enum pipe pipe = intel_crtc->pipe;
5756         unsigned long mask;
5757         enum transcoder transcoder = crtc_state->cpu_transcoder;
5758
5759         if (!crtc_state->base.active)
5760                 return 0;
5761
5762         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5763         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5764         if (crtc_state->pch_pfit.enabled ||
5765             crtc_state->pch_pfit.force_thru)
5766                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5767
5768         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5769                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5770
5771                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5772         }
5773
5774         if (crtc_state->shared_dpll)
5775                 mask |= BIT(POWER_DOMAIN_PLLS);
5776
5777         return mask;
5778 }
5779
5780 static unsigned long
5781 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5782                                struct intel_crtc_state *crtc_state)
5783 {
5784         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5785         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5786         enum intel_display_power_domain domain;
5787         unsigned long domains, new_domains, old_domains;
5788
5789         old_domains = intel_crtc->enabled_power_domains;
5790         intel_crtc->enabled_power_domains = new_domains =
5791                 get_crtc_power_domains(crtc, crtc_state);
5792
5793         domains = new_domains & ~old_domains;
5794
5795         for_each_power_domain(domain, domains)
5796                 intel_display_power_get(dev_priv, domain);
5797
5798         return old_domains & ~new_domains;
5799 }
5800
5801 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5802                                       unsigned long domains)
5803 {
5804         enum intel_display_power_domain domain;
5805
5806         for_each_power_domain(domain, domains)
5807                 intel_display_power_put(dev_priv, domain);
5808 }
5809
5810 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5811 {
5812         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5813
5814         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5815             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5816                 return max_cdclk_freq;
5817         else if (IS_CHERRYVIEW(dev_priv))
5818                 return max_cdclk_freq*95/100;
5819         else if (INTEL_INFO(dev_priv)->gen < 4)
5820                 return 2*max_cdclk_freq*90/100;
5821         else
5822                 return max_cdclk_freq*90/100;
5823 }
5824
5825 static int skl_calc_cdclk(int max_pixclk, int vco);
5826
5827 static void intel_update_max_cdclk(struct drm_i915_private *dev_priv)
5828 {
5829         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5830                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5831                 int max_cdclk, vco;
5832
5833                 vco = dev_priv->skl_preferred_vco_freq;
5834                 WARN_ON(vco != 8100000 && vco != 8640000);
5835
5836                 /*
5837                  * Use the lower (vco 8640) cdclk values as a
5838                  * first guess. skl_calc_cdclk() will correct it
5839                  * if the preferred vco is 8100 instead.
5840                  */
5841                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5842                         max_cdclk = 617143;
5843                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5844                         max_cdclk = 540000;
5845                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5846                         max_cdclk = 432000;
5847                 else
5848                         max_cdclk = 308571;
5849
5850                 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5851         } else if (IS_BROXTON(dev_priv)) {
5852                 dev_priv->max_cdclk_freq = 624000;
5853         } else if (IS_BROADWELL(dev_priv))  {
5854                 /*
5855                  * FIXME with extra cooling we can allow
5856                  * 540 MHz for ULX and 675 Mhz for ULT.
5857                  * How can we know if extra cooling is
5858                  * available? PCI ID, VTB, something else?
5859                  */
5860                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5861                         dev_priv->max_cdclk_freq = 450000;
5862                 else if (IS_BDW_ULX(dev_priv))
5863                         dev_priv->max_cdclk_freq = 450000;
5864                 else if (IS_BDW_ULT(dev_priv))
5865                         dev_priv->max_cdclk_freq = 540000;
5866                 else
5867                         dev_priv->max_cdclk_freq = 675000;
5868         } else if (IS_CHERRYVIEW(dev_priv)) {
5869                 dev_priv->max_cdclk_freq = 320000;
5870         } else if (IS_VALLEYVIEW(dev_priv)) {
5871                 dev_priv->max_cdclk_freq = 400000;
5872         } else {
5873                 /* otherwise assume cdclk is fixed */
5874                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5875         }
5876
5877         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5878
5879         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5880                          dev_priv->max_cdclk_freq);
5881
5882         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5883                          dev_priv->max_dotclk_freq);
5884 }
5885
5886 static void intel_update_cdclk(struct drm_i915_private *dev_priv)
5887 {
5888         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev_priv);
5889
5890         if (INTEL_GEN(dev_priv) >= 9)
5891                 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5892                                  dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5893                                  dev_priv->cdclk_pll.ref);
5894         else
5895                 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5896                                  dev_priv->cdclk_freq);
5897
5898         /*
5899          * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5900          * Programmng [sic] note: bit[9:2] should be programmed to the number
5901          * of cdclk that generates 4MHz reference clock freq which is used to
5902          * generate GMBus clock. This will vary with the cdclk freq.
5903          */
5904         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5905                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5906 }
5907
5908 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5909 static int skl_cdclk_decimal(int cdclk)
5910 {
5911         return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5912 }
5913
5914 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5915 {
5916         int ratio;
5917
5918         if (cdclk == dev_priv->cdclk_pll.ref)
5919                 return 0;
5920
5921         switch (cdclk) {
5922         default:
5923                 MISSING_CASE(cdclk);
5924         case 144000:
5925         case 288000:
5926         case 384000:
5927         case 576000:
5928                 ratio = 60;
5929                 break;
5930         case 624000:
5931                 ratio = 65;
5932                 break;
5933         }
5934
5935         return dev_priv->cdclk_pll.ref * ratio;
5936 }
5937
5938 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5939 {
5940         I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5941
5942         /* Timeout 200us */
5943         if (intel_wait_for_register(dev_priv,
5944                                     BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5945                                     1))
5946                 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5947
5948         dev_priv->cdclk_pll.vco = 0;
5949 }
5950
5951 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5952 {
5953         int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5954         u32 val;
5955
5956         val = I915_READ(BXT_DE_PLL_CTL);
5957         val &= ~BXT_DE_PLL_RATIO_MASK;
5958         val |= BXT_DE_PLL_RATIO(ratio);
5959         I915_WRITE(BXT_DE_PLL_CTL, val);
5960
5961         I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5962
5963         /* Timeout 200us */
5964         if (intel_wait_for_register(dev_priv,
5965                                     BXT_DE_PLL_ENABLE,
5966                                     BXT_DE_PLL_LOCK,
5967                                     BXT_DE_PLL_LOCK,
5968                                     1))
5969                 DRM_ERROR("timeout waiting for DE PLL lock\n");
5970
5971         dev_priv->cdclk_pll.vco = vco;
5972 }
5973
5974 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5975 {
5976         u32 val, divider;
5977         int vco, ret;
5978
5979         vco = bxt_de_pll_vco(dev_priv, cdclk);
5980
5981         DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5982
5983         /* cdclk = vco / 2 / div{1,1.5,2,4} */
5984         switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5985         case 8:
5986                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5987                 break;
5988         case 4:
5989                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5990                 break;
5991         case 3:
5992                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5993                 break;
5994         case 2:
5995                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5996                 break;
5997         default:
5998                 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5999                 WARN_ON(vco != 0);
6000
6001                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6002                 break;
6003         }
6004
6005         /* Inform power controller of upcoming frequency change */
6006         mutex_lock(&dev_priv->rps.hw_lock);
6007         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6008                                       0x80000000);
6009         mutex_unlock(&dev_priv->rps.hw_lock);
6010
6011         if (ret) {
6012                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
6013                           ret, cdclk);
6014                 return;
6015         }
6016
6017         if (dev_priv->cdclk_pll.vco != 0 &&
6018             dev_priv->cdclk_pll.vco != vco)
6019                 bxt_de_pll_disable(dev_priv);
6020
6021         if (dev_priv->cdclk_pll.vco != vco)
6022                 bxt_de_pll_enable(dev_priv, vco);
6023
6024         val = divider | skl_cdclk_decimal(cdclk);
6025         /*
6026          * FIXME if only the cd2x divider needs changing, it could be done
6027          * without shutting off the pipe (if only one pipe is active).
6028          */
6029         val |= BXT_CDCLK_CD2X_PIPE_NONE;
6030         /*
6031          * Disable SSA Precharge when CD clock frequency < 500 MHz,
6032          * enable otherwise.
6033          */
6034         if (cdclk >= 500000)
6035                 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6036         I915_WRITE(CDCLK_CTL, val);
6037
6038         mutex_lock(&dev_priv->rps.hw_lock);
6039         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6040                                       DIV_ROUND_UP(cdclk, 25000));
6041         mutex_unlock(&dev_priv->rps.hw_lock);
6042
6043         if (ret) {
6044                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
6045                           ret, cdclk);
6046                 return;
6047         }
6048
6049         intel_update_cdclk(dev_priv);
6050 }
6051
6052 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
6053 {
6054         u32 cdctl, expected;
6055
6056         intel_update_cdclk(dev_priv);
6057
6058         if (dev_priv->cdclk_pll.vco == 0 ||
6059             dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6060                 goto sanitize;
6061
6062         /* DPLL okay; verify the cdclock
6063          *
6064          * Some BIOS versions leave an incorrect decimal frequency value and
6065          * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6066          * so sanitize this register.
6067          */
6068         cdctl = I915_READ(CDCLK_CTL);
6069         /*
6070          * Let's ignore the pipe field, since BIOS could have configured the
6071          * dividers both synching to an active pipe, or asynchronously
6072          * (PIPE_NONE).
6073          */
6074         cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
6075
6076         expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
6077                    skl_cdclk_decimal(dev_priv->cdclk_freq);
6078         /*
6079          * Disable SSA Precharge when CD clock frequency < 500 MHz,
6080          * enable otherwise.
6081          */
6082         if (dev_priv->cdclk_freq >= 500000)
6083                 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6084
6085         if (cdctl == expected)
6086                 /* All well; nothing to sanitize */
6087                 return;
6088
6089 sanitize:
6090         DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6091
6092         /* force cdclk programming */
6093         dev_priv->cdclk_freq = 0;
6094
6095         /* force full PLL disable + enable */
6096         dev_priv->cdclk_pll.vco = -1;
6097 }
6098
6099 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
6100 {
6101         bxt_sanitize_cdclk(dev_priv);
6102
6103         if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
6104                 return;
6105
6106         /*
6107          * FIXME:
6108          * - The initial CDCLK needs to be read from VBT.
6109          *   Need to make this change after VBT has changes for BXT.
6110          */
6111         bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
6112 }
6113
6114 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
6115 {
6116         bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
6117 }
6118
6119 static int skl_calc_cdclk(int max_pixclk, int vco)
6120 {
6121         if (vco == 8640000) {
6122                 if (max_pixclk > 540000)
6123                         return 617143;
6124                 else if (max_pixclk > 432000)
6125                         return 540000;
6126                 else if (max_pixclk > 308571)
6127                         return 432000;
6128                 else
6129                         return 308571;
6130         } else {
6131                 if (max_pixclk > 540000)
6132                         return 675000;
6133                 else if (max_pixclk > 450000)
6134                         return 540000;
6135                 else if (max_pixclk > 337500)
6136                         return 450000;
6137                 else
6138                         return 337500;
6139         }
6140 }
6141
6142 static void
6143 skl_dpll0_update(struct drm_i915_private *dev_priv)
6144 {
6145         u32 val;
6146
6147         dev_priv->cdclk_pll.ref = 24000;
6148         dev_priv->cdclk_pll.vco = 0;
6149
6150         val = I915_READ(LCPLL1_CTL);
6151         if ((val & LCPLL_PLL_ENABLE) == 0)
6152                 return;
6153
6154         if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6155                 return;
6156
6157         val = I915_READ(DPLL_CTRL1);
6158
6159         if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6160                             DPLL_CTRL1_SSC(SKL_DPLL0) |
6161                             DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6162                     DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6163                 return;
6164
6165         switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6166         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6167         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6168         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6169         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
6170                 dev_priv->cdclk_pll.vco = 8100000;
6171                 break;
6172         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6173         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
6174                 dev_priv->cdclk_pll.vco = 8640000;
6175                 break;
6176         default:
6177                 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6178                 break;
6179         }
6180 }
6181
6182 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6183 {
6184         bool changed = dev_priv->skl_preferred_vco_freq != vco;
6185
6186         dev_priv->skl_preferred_vco_freq = vco;
6187
6188         if (changed)
6189                 intel_update_max_cdclk(dev_priv);
6190 }
6191
6192 static void
6193 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
6194 {
6195         int min_cdclk = skl_calc_cdclk(0, vco);
6196         u32 val;
6197
6198         WARN_ON(vco != 8100000 && vco != 8640000);
6199
6200         /* select the minimum CDCLK before enabling DPLL 0 */
6201         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
6202         I915_WRITE(CDCLK_CTL, val);
6203         POSTING_READ(CDCLK_CTL);
6204
6205         /*
6206          * We always enable DPLL0 with the lowest link rate possible, but still
6207          * taking into account the VCO required to operate the eDP panel at the
6208          * desired frequency. The usual DP link rates operate with a VCO of
6209          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6210          * The modeset code is responsible for the selection of the exact link
6211          * rate later on, with the constraint of choosing a frequency that
6212          * works with vco.
6213          */
6214         val = I915_READ(DPLL_CTRL1);
6215
6216         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6217                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6218         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
6219         if (vco == 8640000)
6220                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6221                                             SKL_DPLL0);
6222         else
6223                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6224                                             SKL_DPLL0);
6225
6226         I915_WRITE(DPLL_CTRL1, val);
6227         POSTING_READ(DPLL_CTRL1);
6228
6229         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6230
6231         if (intel_wait_for_register(dev_priv,
6232                                     LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6233                                     5))
6234                 DRM_ERROR("DPLL0 not locked\n");
6235
6236         dev_priv->cdclk_pll.vco = vco;
6237
6238         /* We'll want to keep using the current vco from now on. */
6239         skl_set_preferred_cdclk_vco(dev_priv, vco);
6240 }
6241
6242 static void
6243 skl_dpll0_disable(struct drm_i915_private *dev_priv)
6244 {
6245         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
6246         if (intel_wait_for_register(dev_priv,
6247                                    LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6248                                    1))
6249                 DRM_ERROR("Couldn't disable DPLL0\n");
6250
6251         dev_priv->cdclk_pll.vco = 0;
6252 }
6253
6254 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
6255 {
6256         u32 freq_select, pcu_ack;
6257         int ret;
6258
6259         WARN_ON((cdclk == 24000) != (vco == 0));
6260
6261         DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6262
6263         mutex_lock(&dev_priv->rps.hw_lock);
6264         ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL,
6265                                 SKL_CDCLK_PREPARE_FOR_CHANGE,
6266                                 SKL_CDCLK_READY_FOR_CHANGE,
6267                                 SKL_CDCLK_READY_FOR_CHANGE, 3);
6268         mutex_unlock(&dev_priv->rps.hw_lock);
6269         if (ret) {
6270                 DRM_ERROR("Failed to inform PCU about cdclk change (%d)\n",
6271                           ret);
6272                 return;
6273         }
6274
6275         /* set CDCLK_CTL */
6276         switch (cdclk) {
6277         case 450000:
6278         case 432000:
6279                 freq_select = CDCLK_FREQ_450_432;
6280                 pcu_ack = 1;
6281                 break;
6282         case 540000:
6283                 freq_select = CDCLK_FREQ_540;
6284                 pcu_ack = 2;
6285                 break;
6286         case 308571:
6287         case 337500:
6288         default:
6289                 freq_select = CDCLK_FREQ_337_308;
6290                 pcu_ack = 0;
6291                 break;
6292         case 617143:
6293         case 675000:
6294                 freq_select = CDCLK_FREQ_675_617;
6295                 pcu_ack = 3;
6296                 break;
6297         }
6298
6299         if (dev_priv->cdclk_pll.vco != 0 &&
6300             dev_priv->cdclk_pll.vco != vco)
6301                 skl_dpll0_disable(dev_priv);
6302
6303         if (dev_priv->cdclk_pll.vco != vco)
6304                 skl_dpll0_enable(dev_priv, vco);
6305
6306         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
6307         POSTING_READ(CDCLK_CTL);
6308
6309         /* inform PCU of the change */
6310         mutex_lock(&dev_priv->rps.hw_lock);
6311         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6312         mutex_unlock(&dev_priv->rps.hw_lock);
6313
6314         intel_update_cdclk(dev_priv);
6315 }
6316
6317 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6318
6319 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6320 {
6321         skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
6322 }
6323
6324 void skl_init_cdclk(struct drm_i915_private *dev_priv)
6325 {
6326         int cdclk, vco;
6327
6328         skl_sanitize_cdclk(dev_priv);
6329
6330         if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
6331                 /*
6332                  * Use the current vco as our initial
6333                  * guess as to what the preferred vco is.
6334                  */
6335                 if (dev_priv->skl_preferred_vco_freq == 0)
6336                         skl_set_preferred_cdclk_vco(dev_priv,
6337                                                     dev_priv->cdclk_pll.vco);
6338                 return;
6339         }
6340
6341         vco = dev_priv->skl_preferred_vco_freq;
6342         if (vco == 0)
6343                 vco = 8100000;
6344         cdclk = skl_calc_cdclk(0, vco);
6345
6346         skl_set_cdclk(dev_priv, cdclk, vco);
6347 }
6348
6349 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
6350 {
6351         uint32_t cdctl, expected;
6352
6353         /*
6354          * check if the pre-os intialized the display
6355          * There is SWF18 scratchpad register defined which is set by the
6356          * pre-os which can be used by the OS drivers to check the status
6357          */
6358         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6359                 goto sanitize;
6360
6361         intel_update_cdclk(dev_priv);
6362         /* Is PLL enabled and locked ? */
6363         if (dev_priv->cdclk_pll.vco == 0 ||
6364             dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6365                 goto sanitize;
6366
6367         /* DPLL okay; verify the cdclock
6368          *
6369          * Noticed in some instances that the freq selection is correct but
6370          * decimal part is programmed wrong from BIOS where pre-os does not
6371          * enable display. Verify the same as well.
6372          */
6373         cdctl = I915_READ(CDCLK_CTL);
6374         expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6375                 skl_cdclk_decimal(dev_priv->cdclk_freq);
6376         if (cdctl == expected)
6377                 /* All well; nothing to sanitize */
6378                 return;
6379
6380 sanitize:
6381         DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6382
6383         /* force cdclk programming */
6384         dev_priv->cdclk_freq = 0;
6385         /* force full PLL disable + enable */
6386         dev_priv->cdclk_pll.vco = -1;
6387 }
6388
6389 /* Adjust CDclk dividers to allow high res or save power if possible */
6390 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6391 {
6392         struct drm_i915_private *dev_priv = to_i915(dev);
6393         u32 val, cmd;
6394
6395         WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6396                                         != dev_priv->cdclk_freq);
6397
6398         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
6399                 cmd = 2;
6400         else if (cdclk == 266667)
6401                 cmd = 1;
6402         else
6403                 cmd = 0;
6404
6405         mutex_lock(&dev_priv->rps.hw_lock);
6406         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6407         val &= ~DSPFREQGUAR_MASK;
6408         val |= (cmd << DSPFREQGUAR_SHIFT);
6409         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6410         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6411                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6412                      50)) {
6413                 DRM_ERROR("timed out waiting for CDclk change\n");
6414         }
6415         mutex_unlock(&dev_priv->rps.hw_lock);
6416
6417         mutex_lock(&dev_priv->sb_lock);
6418
6419         if (cdclk == 400000) {
6420                 u32 divider;
6421
6422                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6423
6424                 /* adjust cdclk divider */
6425                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6426                 val &= ~CCK_FREQUENCY_VALUES;
6427                 val |= divider;
6428                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
6429
6430                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6431                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
6432                              50))
6433                         DRM_ERROR("timed out waiting for CDclk change\n");
6434         }
6435
6436         /* adjust self-refresh exit latency value */
6437         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6438         val &= ~0x7f;
6439
6440         /*
6441          * For high bandwidth configs, we set a higher latency in the bunit
6442          * so that the core display fetch happens in time to avoid underruns.
6443          */
6444         if (cdclk == 400000)
6445                 val |= 4500 / 250; /* 4.5 usec */
6446         else
6447                 val |= 3000 / 250; /* 3.0 usec */
6448         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
6449
6450         mutex_unlock(&dev_priv->sb_lock);
6451
6452         intel_update_cdclk(dev_priv);
6453 }
6454
6455 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6456 {
6457         struct drm_i915_private *dev_priv = to_i915(dev);
6458         u32 val, cmd;
6459
6460         WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6461                                                 != dev_priv->cdclk_freq);
6462
6463         switch (cdclk) {
6464         case 333333:
6465         case 320000:
6466         case 266667:
6467         case 200000:
6468                 break;
6469         default:
6470                 MISSING_CASE(cdclk);
6471                 return;
6472         }
6473
6474         /*
6475          * Specs are full of misinformation, but testing on actual
6476          * hardware has shown that we just need to write the desired
6477          * CCK divider into the Punit register.
6478          */
6479         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6480
6481         mutex_lock(&dev_priv->rps.hw_lock);
6482         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6483         val &= ~DSPFREQGUAR_MASK_CHV;
6484         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6485         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6486         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6487                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6488                      50)) {
6489                 DRM_ERROR("timed out waiting for CDclk change\n");
6490         }
6491         mutex_unlock(&dev_priv->rps.hw_lock);
6492
6493         intel_update_cdclk(dev_priv);
6494 }
6495
6496 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6497                                  int max_pixclk)
6498 {
6499         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
6500         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6501
6502         /*
6503          * Really only a few cases to deal with, as only 4 CDclks are supported:
6504          *   200MHz
6505          *   267MHz
6506          *   320/333MHz (depends on HPLL freq)
6507          *   400MHz (VLV only)
6508          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6509          * of the lower bin and adjust if needed.
6510          *
6511          * We seem to get an unstable or solid color picture at 200MHz.
6512          * Not sure what's wrong. For now use 200MHz only when all pipes
6513          * are off.
6514          */
6515         if (!IS_CHERRYVIEW(dev_priv) &&
6516             max_pixclk > freq_320*limit/100)
6517                 return 400000;
6518         else if (max_pixclk > 266667*limit/100)
6519                 return freq_320;
6520         else if (max_pixclk > 0)
6521                 return 266667;
6522         else
6523                 return 200000;
6524 }
6525
6526 static int bxt_calc_cdclk(int max_pixclk)
6527 {
6528         if (max_pixclk > 576000)
6529                 return 624000;
6530         else if (max_pixclk > 384000)
6531                 return 576000;
6532         else if (max_pixclk > 288000)
6533                 return 384000;
6534         else if (max_pixclk > 144000)
6535                 return 288000;
6536         else
6537                 return 144000;
6538 }
6539
6540 /* Compute the max pixel clock for new configuration. */
6541 static int intel_mode_max_pixclk(struct drm_device *dev,
6542                                  struct drm_atomic_state *state)
6543 {
6544         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6545         struct drm_i915_private *dev_priv = to_i915(dev);
6546         struct drm_crtc *crtc;
6547         struct drm_crtc_state *crtc_state;
6548         unsigned max_pixclk = 0, i;
6549         enum pipe pipe;
6550
6551         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6552                sizeof(intel_state->min_pixclk));
6553
6554         for_each_crtc_in_state(state, crtc, crtc_state, i) {
6555                 int pixclk = 0;
6556
6557                 if (crtc_state->enable)
6558                         pixclk = crtc_state->adjusted_mode.crtc_clock;
6559
6560                 intel_state->min_pixclk[i] = pixclk;
6561         }
6562
6563         for_each_pipe(dev_priv, pipe)
6564                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6565
6566         return max_pixclk;
6567 }
6568
6569 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6570 {
6571         struct drm_device *dev = state->dev;
6572         struct drm_i915_private *dev_priv = to_i915(dev);
6573         int max_pixclk = intel_mode_max_pixclk(dev, state);
6574         struct intel_atomic_state *intel_state =
6575                 to_intel_atomic_state(state);
6576
6577         intel_state->cdclk = intel_state->dev_cdclk =
6578                 valleyview_calc_cdclk(dev_priv, max_pixclk);
6579
6580         if (!intel_state->active_crtcs)
6581                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6582
6583         return 0;
6584 }
6585
6586 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6587 {
6588         int max_pixclk = ilk_max_pixel_rate(state);
6589         struct intel_atomic_state *intel_state =
6590                 to_intel_atomic_state(state);
6591
6592         intel_state->cdclk = intel_state->dev_cdclk =
6593                 bxt_calc_cdclk(max_pixclk);
6594
6595         if (!intel_state->active_crtcs)
6596                 intel_state->dev_cdclk = bxt_calc_cdclk(0);
6597
6598         return 0;
6599 }
6600
6601 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6602 {
6603         unsigned int credits, default_credits;
6604
6605         if (IS_CHERRYVIEW(dev_priv))
6606                 default_credits = PFI_CREDIT(12);
6607         else
6608                 default_credits = PFI_CREDIT(8);
6609
6610         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6611                 /* CHV suggested value is 31 or 63 */
6612                 if (IS_CHERRYVIEW(dev_priv))
6613                         credits = PFI_CREDIT_63;
6614                 else
6615                         credits = PFI_CREDIT(15);
6616         } else {
6617                 credits = default_credits;
6618         }
6619
6620         /*
6621          * WA - write default credits before re-programming
6622          * FIXME: should we also set the resend bit here?
6623          */
6624         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6625                    default_credits);
6626
6627         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6628                    credits | PFI_CREDIT_RESEND);
6629
6630         /*
6631          * FIXME is this guaranteed to clear
6632          * immediately or should we poll for it?
6633          */
6634         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6635 }
6636
6637 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6638 {
6639         struct drm_device *dev = old_state->dev;
6640         struct drm_i915_private *dev_priv = to_i915(dev);
6641         struct intel_atomic_state *old_intel_state =
6642                 to_intel_atomic_state(old_state);
6643         unsigned req_cdclk = old_intel_state->dev_cdclk;
6644
6645         /*
6646          * FIXME: We can end up here with all power domains off, yet
6647          * with a CDCLK frequency other than the minimum. To account
6648          * for this take the PIPE-A power domain, which covers the HW
6649          * blocks needed for the following programming. This can be
6650          * removed once it's guaranteed that we get here either with
6651          * the minimum CDCLK set, or the required power domains
6652          * enabled.
6653          */
6654         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6655
6656         if (IS_CHERRYVIEW(dev_priv))
6657                 cherryview_set_cdclk(dev, req_cdclk);
6658         else
6659                 valleyview_set_cdclk(dev, req_cdclk);
6660
6661         vlv_program_pfi_credits(dev_priv);
6662
6663         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6664 }
6665
6666 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6667                                    struct drm_atomic_state *old_state)
6668 {
6669         struct drm_crtc *crtc = pipe_config->base.crtc;
6670         struct drm_device *dev = crtc->dev;
6671         struct drm_i915_private *dev_priv = to_i915(dev);
6672         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6673         int pipe = intel_crtc->pipe;
6674
6675         if (WARN_ON(intel_crtc->active))
6676                 return;
6677
6678         if (intel_crtc_has_dp_encoder(intel_crtc->config))
6679                 intel_dp_set_m_n(intel_crtc, M1_N1);
6680
6681         intel_set_pipe_timings(intel_crtc);
6682         intel_set_pipe_src_size(intel_crtc);
6683
6684         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
6685                 struct drm_i915_private *dev_priv = to_i915(dev);
6686
6687                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6688                 I915_WRITE(CHV_CANVAS(pipe), 0);
6689         }
6690
6691         i9xx_set_pipeconf(intel_crtc);
6692
6693         intel_crtc->active = true;
6694
6695         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6696
6697         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
6698
6699         if (IS_CHERRYVIEW(dev_priv)) {
6700                 chv_prepare_pll(intel_crtc, intel_crtc->config);
6701                 chv_enable_pll(intel_crtc, intel_crtc->config);
6702         } else {
6703                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6704                 vlv_enable_pll(intel_crtc, intel_crtc->config);
6705         }
6706
6707         intel_encoders_pre_enable(crtc, pipe_config, old_state);
6708
6709         i9xx_pfit_enable(intel_crtc);
6710
6711         intel_color_load_luts(&pipe_config->base);
6712
6713         intel_update_watermarks(intel_crtc);
6714         intel_enable_pipe(intel_crtc);
6715
6716         assert_vblank_disabled(crtc);
6717         drm_crtc_vblank_on(crtc);
6718
6719         intel_encoders_enable(crtc, pipe_config, old_state);
6720 }
6721
6722 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6723 {
6724         struct drm_device *dev = crtc->base.dev;
6725         struct drm_i915_private *dev_priv = to_i915(dev);
6726
6727         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6728         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6729 }
6730
6731 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6732                              struct drm_atomic_state *old_state)
6733 {
6734         struct drm_crtc *crtc = pipe_config->base.crtc;
6735         struct drm_device *dev = crtc->dev;
6736         struct drm_i915_private *dev_priv = to_i915(dev);
6737         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6738         enum pipe pipe = intel_crtc->pipe;
6739
6740         if (WARN_ON(intel_crtc->active))
6741                 return;
6742
6743         i9xx_set_pll_dividers(intel_crtc);
6744
6745         if (intel_crtc_has_dp_encoder(intel_crtc->config))
6746                 intel_dp_set_m_n(intel_crtc, M1_N1);
6747
6748         intel_set_pipe_timings(intel_crtc);
6749         intel_set_pipe_src_size(intel_crtc);
6750
6751         i9xx_set_pipeconf(intel_crtc);
6752
6753         intel_crtc->active = true;
6754
6755         if (!IS_GEN2(dev_priv))
6756                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6757
6758         intel_encoders_pre_enable(crtc, pipe_config, old_state);
6759
6760         i9xx_enable_pll(intel_crtc);
6761
6762         i9xx_pfit_enable(intel_crtc);
6763
6764         intel_color_load_luts(&pipe_config->base);
6765
6766         intel_update_watermarks(intel_crtc);
6767         intel_enable_pipe(intel_crtc);
6768
6769         assert_vblank_disabled(crtc);
6770         drm_crtc_vblank_on(crtc);
6771
6772         intel_encoders_enable(crtc, pipe_config, old_state);
6773 }
6774
6775 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6776 {
6777         struct drm_device *dev = crtc->base.dev;
6778         struct drm_i915_private *dev_priv = to_i915(dev);
6779
6780         if (!crtc->config->gmch_pfit.control)
6781                 return;
6782
6783         assert_pipe_disabled(dev_priv, crtc->pipe);
6784
6785         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6786                          I915_READ(PFIT_CONTROL));
6787         I915_WRITE(PFIT_CONTROL, 0);
6788 }
6789
6790 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6791                               struct drm_atomic_state *old_state)
6792 {
6793         struct drm_crtc *crtc = old_crtc_state->base.crtc;
6794         struct drm_device *dev = crtc->dev;
6795         struct drm_i915_private *dev_priv = to_i915(dev);
6796         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6797         int pipe = intel_crtc->pipe;
6798
6799         /*
6800          * On gen2 planes are double buffered but the pipe isn't, so we must
6801          * wait for planes to fully turn off before disabling the pipe.
6802          */
6803         if (IS_GEN2(dev_priv))
6804                 intel_wait_for_vblank(dev_priv, pipe);
6805
6806         intel_encoders_disable(crtc, old_crtc_state, old_state);
6807
6808         drm_crtc_vblank_off(crtc);
6809         assert_vblank_disabled(crtc);
6810
6811         intel_disable_pipe(intel_crtc);
6812
6813         i9xx_pfit_disable(intel_crtc);
6814
6815         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6816
6817         if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6818                 if (IS_CHERRYVIEW(dev_priv))
6819                         chv_disable_pll(dev_priv, pipe);
6820                 else if (IS_VALLEYVIEW(dev_priv))
6821                         vlv_disable_pll(dev_priv, pipe);
6822                 else
6823                         i9xx_disable_pll(intel_crtc);
6824         }
6825
6826         intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
6827
6828         if (!IS_GEN2(dev_priv))
6829                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6830 }
6831
6832 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6833 {
6834         struct intel_encoder *encoder;
6835         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6836         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6837         enum intel_display_power_domain domain;
6838         unsigned long domains;
6839         struct drm_atomic_state *state;
6840         struct intel_crtc_state *crtc_state;
6841         int ret;
6842
6843         if (!intel_crtc->active)
6844                 return;
6845
6846         if (to_intel_plane_state(crtc->primary->state)->base.visible) {
6847                 WARN_ON(intel_crtc->flip_work);
6848
6849                 intel_pre_disable_primary_noatomic(crtc);
6850
6851                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6852                 to_intel_plane_state(crtc->primary->state)->base.visible = false;
6853         }
6854
6855         state = drm_atomic_state_alloc(crtc->dev);
6856         if (!state) {
6857                 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
6858                               crtc->base.id, crtc->name);
6859                 return;
6860         }
6861
6862         state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
6863
6864         /* Everything's already locked, -EDEADLK can't happen. */
6865         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6866         ret = drm_atomic_add_affected_connectors(state, crtc);
6867
6868         WARN_ON(IS_ERR(crtc_state) || ret);
6869
6870         dev_priv->display.crtc_disable(crtc_state, state);
6871
6872         drm_atomic_state_put(state);
6873
6874         DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6875                       crtc->base.id, crtc->name);
6876
6877         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6878         crtc->state->active = false;
6879         intel_crtc->active = false;
6880         crtc->enabled = false;
6881         crtc->state->connector_mask = 0;
6882         crtc->state->encoder_mask = 0;
6883
6884         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6885                 encoder->base.crtc = NULL;
6886
6887         intel_fbc_disable(intel_crtc);
6888         intel_update_watermarks(intel_crtc);
6889         intel_disable_shared_dpll(intel_crtc);
6890
6891         domains = intel_crtc->enabled_power_domains;
6892         for_each_power_domain(domain, domains)
6893                 intel_display_power_put(dev_priv, domain);
6894         intel_crtc->enabled_power_domains = 0;
6895
6896         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6897         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6898 }
6899
6900 /*
6901  * turn all crtc's off, but do not adjust state
6902  * This has to be paired with a call to intel_modeset_setup_hw_state.
6903  */
6904 int intel_display_suspend(struct drm_device *dev)
6905 {
6906         struct drm_i915_private *dev_priv = to_i915(dev);
6907         struct drm_atomic_state *state;
6908         int ret;
6909
6910         state = drm_atomic_helper_suspend(dev);
6911         ret = PTR_ERR_OR_ZERO(state);
6912         if (ret)
6913                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6914         else
6915                 dev_priv->modeset_restore_state = state;
6916         return ret;
6917 }
6918
6919 void intel_encoder_destroy(struct drm_encoder *encoder)
6920 {
6921         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6922
6923         drm_encoder_cleanup(encoder);
6924         kfree(intel_encoder);
6925 }
6926
6927 /* Cross check the actual hw state with our own modeset state tracking (and it's
6928  * internal consistency). */
6929 static void intel_connector_verify_state(struct intel_connector *connector)
6930 {
6931         struct drm_crtc *crtc = connector->base.state->crtc;
6932
6933         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6934                       connector->base.base.id,
6935                       connector->base.name);
6936
6937         if (connector->get_hw_state(connector)) {
6938                 struct intel_encoder *encoder = connector->encoder;
6939                 struct drm_connector_state *conn_state = connector->base.state;
6940
6941                 I915_STATE_WARN(!crtc,
6942                          "connector enabled without attached crtc\n");
6943
6944                 if (!crtc)
6945                         return;
6946
6947                 I915_STATE_WARN(!crtc->state->active,
6948                       "connector is active, but attached crtc isn't\n");
6949
6950                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6951                         return;
6952
6953                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6954                         "atomic encoder doesn't match attached encoder\n");
6955
6956                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6957                         "attached encoder crtc differs from connector crtc\n");
6958         } else {
6959                 I915_STATE_WARN(crtc && crtc->state->active,
6960                         "attached crtc is active, but connector isn't\n");
6961                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6962                         "best encoder set without crtc!\n");
6963         }
6964 }
6965
6966 int intel_connector_init(struct intel_connector *connector)
6967 {
6968         drm_atomic_helper_connector_reset(&connector->base);
6969
6970         if (!connector->base.state)
6971                 return -ENOMEM;
6972
6973         return 0;
6974 }
6975
6976 struct intel_connector *intel_connector_alloc(void)
6977 {
6978         struct intel_connector *connector;
6979
6980         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6981         if (!connector)
6982                 return NULL;
6983
6984         if (intel_connector_init(connector) < 0) {
6985                 kfree(connector);
6986                 return NULL;
6987         }
6988
6989         return connector;
6990 }
6991
6992 /* Simple connector->get_hw_state implementation for encoders that support only
6993  * one connector and no cloning and hence the encoder state determines the state
6994  * of the connector. */
6995 bool intel_connector_get_hw_state(struct intel_connector *connector)
6996 {
6997         enum pipe pipe = 0;
6998         struct intel_encoder *encoder = connector->encoder;
6999
7000         return encoder->get_hw_state(encoder, &pipe);
7001 }
7002
7003 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7004 {
7005         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
7006                 return crtc_state->fdi_lanes;
7007
7008         return 0;
7009 }
7010
7011 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7012                                      struct intel_crtc_state *pipe_config)
7013 {
7014         struct drm_i915_private *dev_priv = to_i915(dev);
7015         struct drm_atomic_state *state = pipe_config->base.state;
7016         struct intel_crtc *other_crtc;
7017         struct intel_crtc_state *other_crtc_state;
7018
7019         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7020                       pipe_name(pipe), pipe_config->fdi_lanes);
7021         if (pipe_config->fdi_lanes > 4) {
7022                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7023                               pipe_name(pipe), pipe_config->fdi_lanes);
7024                 return -EINVAL;
7025         }
7026
7027         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7028                 if (pipe_config->fdi_lanes > 2) {
7029                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7030                                       pipe_config->fdi_lanes);
7031                         return -EINVAL;
7032                 } else {
7033                         return 0;
7034                 }
7035         }
7036
7037         if (INTEL_INFO(dev_priv)->num_pipes == 2)
7038                 return 0;
7039
7040         /* Ivybridge 3 pipe is really complicated */
7041         switch (pipe) {
7042         case PIPE_A:
7043                 return 0;
7044         case PIPE_B:
7045                 if (pipe_config->fdi_lanes <= 2)
7046                         return 0;
7047
7048                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7049                 other_crtc_state =
7050                         intel_atomic_get_crtc_state(state, other_crtc);
7051                 if (IS_ERR(other_crtc_state))
7052                         return PTR_ERR(other_crtc_state);
7053
7054                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7055                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7056                                       pipe_name(pipe), pipe_config->fdi_lanes);
7057                         return -EINVAL;
7058                 }
7059                 return 0;
7060         case PIPE_C:
7061                 if (pipe_config->fdi_lanes > 2) {
7062                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7063                                       pipe_name(pipe), pipe_config->fdi_lanes);
7064                         return -EINVAL;
7065                 }
7066
7067                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7068                 other_crtc_state =
7069                         intel_atomic_get_crtc_state(state, other_crtc);
7070                 if (IS_ERR(other_crtc_state))
7071                         return PTR_ERR(other_crtc_state);
7072
7073                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7074                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7075                         return -EINVAL;
7076                 }
7077                 return 0;
7078         default:
7079                 BUG();
7080         }
7081 }
7082
7083 #define RETRY 1
7084 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7085                                        struct intel_crtc_state *pipe_config)
7086 {
7087         struct drm_device *dev = intel_crtc->base.dev;
7088         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7089         int lane, link_bw, fdi_dotclock, ret;
7090         bool needs_recompute = false;
7091
7092 retry:
7093         /* FDI is a binary signal running at ~2.7GHz, encoding
7094          * each output octet as 10 bits. The actual frequency
7095          * is stored as a divider into a 100MHz clock, and the
7096          * mode pixel clock is stored in units of 1KHz.
7097          * Hence the bw of each lane in terms of the mode signal
7098          * is:
7099          */
7100         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7101
7102         fdi_dotclock = adjusted_mode->crtc_clock;
7103
7104         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7105                                            pipe_config->pipe_bpp);
7106
7107         pipe_config->fdi_lanes = lane;
7108
7109         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7110                                link_bw, &pipe_config->fdi_m_n);
7111
7112         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7113         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7114                 pipe_config->pipe_bpp -= 2*3;
7115                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7116                               pipe_config->pipe_bpp);
7117                 needs_recompute = true;
7118                 pipe_config->bw_constrained = true;
7119
7120                 goto retry;
7121         }
7122
7123         if (needs_recompute)
7124                 return RETRY;
7125
7126         return ret;
7127 }
7128
7129 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7130                                      struct intel_crtc_state *pipe_config)
7131 {
7132         if (pipe_config->pipe_bpp > 24)
7133                 return false;
7134
7135         /* HSW can handle pixel rate up to cdclk? */
7136         if (IS_HASWELL(dev_priv))
7137                 return true;
7138
7139         /*
7140          * We compare against max which means we must take
7141          * the increased cdclk requirement into account when
7142          * calculating the new cdclk.
7143          *
7144          * Should measure whether using a lower cdclk w/o IPS
7145          */
7146         return ilk_pipe_pixel_rate(pipe_config) <=
7147                 dev_priv->max_cdclk_freq * 95 / 100;
7148 }
7149
7150 static void hsw_compute_ips_config(struct intel_crtc *crtc,
7151                                    struct intel_crtc_state *pipe_config)
7152 {
7153         struct drm_device *dev = crtc->base.dev;
7154         struct drm_i915_private *dev_priv = to_i915(dev);
7155
7156         pipe_config->ips_enabled = i915.enable_ips &&
7157                 hsw_crtc_supports_ips(crtc) &&
7158                 pipe_config_supports_ips(dev_priv, pipe_config);
7159 }
7160
7161 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7162 {
7163         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7164
7165         /* GDG double wide on either pipe, otherwise pipe A only */
7166         return INTEL_INFO(dev_priv)->gen < 4 &&
7167                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7168 }
7169
7170 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7171                                      struct intel_crtc_state *pipe_config)
7172 {
7173         struct drm_device *dev = crtc->base.dev;
7174         struct drm_i915_private *dev_priv = to_i915(dev);
7175         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7176         int clock_limit = dev_priv->max_dotclk_freq;
7177
7178         if (INTEL_GEN(dev_priv) < 4) {
7179                 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7180
7181                 /*
7182                  * Enable double wide mode when the dot clock
7183                  * is > 90% of the (display) core speed.
7184                  */
7185                 if (intel_crtc_supports_double_wide(crtc) &&
7186                     adjusted_mode->crtc_clock > clock_limit) {
7187                         clock_limit = dev_priv->max_dotclk_freq;
7188                         pipe_config->double_wide = true;
7189                 }
7190         }
7191
7192         if (adjusted_mode->crtc_clock > clock_limit) {
7193                 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7194                               adjusted_mode->crtc_clock, clock_limit,
7195                               yesno(pipe_config->double_wide));
7196                 return -EINVAL;
7197         }
7198
7199         /*
7200          * Pipe horizontal size must be even in:
7201          * - DVO ganged mode
7202          * - LVDS dual channel mode
7203          * - Double wide pipe
7204          */
7205         if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7206              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7207                 pipe_config->pipe_src_w &= ~1;
7208
7209         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7210          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7211          */
7212         if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7213                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7214                 return -EINVAL;
7215
7216         if (HAS_IPS(dev_priv))
7217                 hsw_compute_ips_config(crtc, pipe_config);
7218
7219         if (pipe_config->has_pch_encoder)
7220                 return ironlake_fdi_compute_config(crtc, pipe_config);
7221
7222         return 0;
7223 }
7224
7225 static int skylake_get_display_clock_speed(struct drm_i915_private *dev_priv)
7226 {
7227         u32 cdctl;
7228
7229         skl_dpll0_update(dev_priv);
7230
7231         if (dev_priv->cdclk_pll.vco == 0)
7232                 return dev_priv->cdclk_pll.ref;
7233
7234         cdctl = I915_READ(CDCLK_CTL);
7235
7236         if (dev_priv->cdclk_pll.vco == 8640000) {
7237                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7238                 case CDCLK_FREQ_450_432:
7239                         return 432000;
7240                 case CDCLK_FREQ_337_308:
7241                         return 308571;
7242                 case CDCLK_FREQ_540:
7243                         return 540000;
7244                 case CDCLK_FREQ_675_617:
7245                         return 617143;
7246                 default:
7247                         MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7248                 }
7249         } else {
7250                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7251                 case CDCLK_FREQ_450_432:
7252                         return 450000;
7253                 case CDCLK_FREQ_337_308:
7254                         return 337500;
7255                 case CDCLK_FREQ_540:
7256                         return 540000;
7257                 case CDCLK_FREQ_675_617:
7258                         return 675000;
7259                 default:
7260                         MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7261                 }
7262         }
7263
7264         return dev_priv->cdclk_pll.ref;
7265 }
7266
7267 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7268 {
7269         u32 val;
7270
7271         dev_priv->cdclk_pll.ref = 19200;
7272         dev_priv->cdclk_pll.vco = 0;
7273
7274         val = I915_READ(BXT_DE_PLL_ENABLE);
7275         if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
7276                 return;
7277
7278         if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7279                 return;
7280
7281         val = I915_READ(BXT_DE_PLL_CTL);
7282         dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7283                 dev_priv->cdclk_pll.ref;
7284 }
7285
7286 static int broxton_get_display_clock_speed(struct drm_i915_private *dev_priv)
7287 {
7288         u32 divider;
7289         int div, vco;
7290
7291         bxt_de_pll_update(dev_priv);
7292
7293         vco = dev_priv->cdclk_pll.vco;
7294         if (vco == 0)
7295                 return dev_priv->cdclk_pll.ref;
7296
7297         divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
7298
7299         switch (divider) {
7300         case BXT_CDCLK_CD2X_DIV_SEL_1:
7301                 div = 2;
7302                 break;
7303         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
7304                 div = 3;
7305                 break;
7306         case BXT_CDCLK_CD2X_DIV_SEL_2:
7307                 div = 4;
7308                 break;
7309         case BXT_CDCLK_CD2X_DIV_SEL_4:
7310                 div = 8;
7311                 break;
7312         default:
7313                 MISSING_CASE(divider);
7314                 return dev_priv->cdclk_pll.ref;
7315         }
7316
7317         return DIV_ROUND_CLOSEST(vco, div);
7318 }
7319
7320 static int broadwell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7321 {
7322         uint32_t lcpll = I915_READ(LCPLL_CTL);
7323         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7324
7325         if (lcpll & LCPLL_CD_SOURCE_FCLK)
7326                 return 800000;
7327         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7328                 return 450000;
7329         else if (freq == LCPLL_CLK_FREQ_450)
7330                 return 450000;
7331         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7332                 return 540000;
7333         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7334                 return 337500;
7335         else
7336                 return 675000;
7337 }
7338
7339 static int haswell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7340 {
7341         uint32_t lcpll = I915_READ(LCPLL_CTL);
7342         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7343
7344         if (lcpll & LCPLL_CD_SOURCE_FCLK)
7345                 return 800000;
7346         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7347                 return 450000;
7348         else if (freq == LCPLL_CLK_FREQ_450)
7349                 return 450000;
7350         else if (IS_HSW_ULT(dev_priv))
7351                 return 337500;
7352         else
7353                 return 540000;
7354 }
7355
7356 static int valleyview_get_display_clock_speed(struct drm_i915_private *dev_priv)
7357 {
7358         return vlv_get_cck_clock_hpll(dev_priv, "cdclk",
7359                                       CCK_DISPLAY_CLOCK_CONTROL);
7360 }
7361
7362 static int ilk_get_display_clock_speed(struct drm_i915_private *dev_priv)
7363 {
7364         return 450000;
7365 }
7366
7367 static int i945_get_display_clock_speed(struct drm_i915_private *dev_priv)
7368 {
7369         return 400000;
7370 }
7371
7372 static int i915_get_display_clock_speed(struct drm_i915_private *dev_priv)
7373 {
7374         return 333333;
7375 }
7376
7377 static int i9xx_misc_get_display_clock_speed(struct drm_i915_private *dev_priv)
7378 {
7379         return 200000;
7380 }
7381
7382 static int pnv_get_display_clock_speed(struct drm_i915_private *dev_priv)
7383 {
7384         struct pci_dev *pdev = dev_priv->drm.pdev;
7385         u16 gcfgc = 0;
7386
7387         pci_read_config_word(pdev, GCFGC, &gcfgc);
7388
7389         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7390         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
7391                 return 266667;
7392         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
7393                 return 333333;
7394         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
7395                 return 444444;
7396         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7397                 return 200000;
7398         default:
7399                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7400         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
7401                 return 133333;
7402         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
7403                 return 166667;
7404         }
7405 }
7406
7407 static int i915gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7408 {
7409         struct pci_dev *pdev = dev_priv->drm.pdev;
7410         u16 gcfgc = 0;
7411
7412         pci_read_config_word(pdev, GCFGC, &gcfgc);
7413
7414         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
7415                 return 133333;
7416         else {
7417                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7418                 case GC_DISPLAY_CLOCK_333_MHZ:
7419                         return 333333;
7420                 default:
7421                 case GC_DISPLAY_CLOCK_190_200_MHZ:
7422                         return 190000;
7423                 }
7424         }
7425 }
7426
7427 static int i865_get_display_clock_speed(struct drm_i915_private *dev_priv)
7428 {
7429         return 266667;
7430 }
7431
7432 static int i85x_get_display_clock_speed(struct drm_i915_private *dev_priv)
7433 {
7434         struct pci_dev *pdev = dev_priv->drm.pdev;
7435         u16 hpllcc = 0;
7436
7437         /*
7438          * 852GM/852GMV only supports 133 MHz and the HPLLCC
7439          * encoding is different :(
7440          * FIXME is this the right way to detect 852GM/852GMV?
7441          */
7442         if (pdev->revision == 0x1)
7443                 return 133333;
7444
7445         pci_bus_read_config_word(pdev->bus,
7446                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7447
7448         /* Assume that the hardware is in the high speed state.  This
7449          * should be the default.
7450          */
7451         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7452         case GC_CLOCK_133_200:
7453         case GC_CLOCK_133_200_2:
7454         case GC_CLOCK_100_200:
7455                 return 200000;
7456         case GC_CLOCK_166_250:
7457                 return 250000;
7458         case GC_CLOCK_100_133:
7459                 return 133333;
7460         case GC_CLOCK_133_266:
7461         case GC_CLOCK_133_266_2:
7462         case GC_CLOCK_166_266:
7463                 return 266667;
7464         }
7465
7466         /* Shouldn't happen */
7467         return 0;
7468 }
7469
7470 static int i830_get_display_clock_speed(struct drm_i915_private *dev_priv)
7471 {
7472         return 133333;
7473 }
7474
7475 static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv)
7476 {
7477         static const unsigned int blb_vco[8] = {
7478                 [0] = 3200000,
7479                 [1] = 4000000,
7480                 [2] = 5333333,
7481                 [3] = 4800000,
7482                 [4] = 6400000,
7483         };
7484         static const unsigned int pnv_vco[8] = {
7485                 [0] = 3200000,
7486                 [1] = 4000000,
7487                 [2] = 5333333,
7488                 [3] = 4800000,
7489                 [4] = 2666667,
7490         };
7491         static const unsigned int cl_vco[8] = {
7492                 [0] = 3200000,
7493                 [1] = 4000000,
7494                 [2] = 5333333,
7495                 [3] = 6400000,
7496                 [4] = 3333333,
7497                 [5] = 3566667,
7498                 [6] = 4266667,
7499         };
7500         static const unsigned int elk_vco[8] = {
7501                 [0] = 3200000,
7502                 [1] = 4000000,
7503                 [2] = 5333333,
7504                 [3] = 4800000,
7505         };
7506         static const unsigned int ctg_vco[8] = {
7507                 [0] = 3200000,
7508                 [1] = 4000000,
7509                 [2] = 5333333,
7510                 [3] = 6400000,
7511                 [4] = 2666667,
7512                 [5] = 4266667,
7513         };
7514         const unsigned int *vco_table;
7515         unsigned int vco;
7516         uint8_t tmp = 0;
7517
7518         /* FIXME other chipsets? */
7519         if (IS_GM45(dev_priv))
7520                 vco_table = ctg_vco;
7521         else if (IS_G4X(dev_priv))
7522                 vco_table = elk_vco;
7523         else if (IS_CRESTLINE(dev_priv))
7524                 vco_table = cl_vco;
7525         else if (IS_PINEVIEW(dev_priv))
7526                 vco_table = pnv_vco;
7527         else if (IS_G33(dev_priv))
7528                 vco_table = blb_vco;
7529         else
7530                 return 0;
7531
7532         tmp = I915_READ(IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO);
7533
7534         vco = vco_table[tmp & 0x7];
7535         if (vco == 0)
7536                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7537         else
7538                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7539
7540         return vco;
7541 }
7542
7543 static int gm45_get_display_clock_speed(struct drm_i915_private *dev_priv)
7544 {
7545         struct pci_dev *pdev = dev_priv->drm.pdev;
7546         unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7547         uint16_t tmp = 0;
7548
7549         pci_read_config_word(pdev, GCFGC, &tmp);
7550
7551         cdclk_sel = (tmp >> 12) & 0x1;
7552
7553         switch (vco) {
7554         case 2666667:
7555         case 4000000:
7556         case 5333333:
7557                 return cdclk_sel ? 333333 : 222222;
7558         case 3200000:
7559                 return cdclk_sel ? 320000 : 228571;
7560         default:
7561                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7562                 return 222222;
7563         }
7564 }
7565
7566 static int i965gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7567 {
7568         struct pci_dev *pdev = dev_priv->drm.pdev;
7569         static const uint8_t div_3200[] = { 16, 10,  8 };
7570         static const uint8_t div_4000[] = { 20, 12, 10 };
7571         static const uint8_t div_5333[] = { 24, 16, 14 };
7572         const uint8_t *div_table;
7573         unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7574         uint16_t tmp = 0;
7575
7576         pci_read_config_word(pdev, GCFGC, &tmp);
7577
7578         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7579
7580         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7581                 goto fail;
7582
7583         switch (vco) {
7584         case 3200000:
7585                 div_table = div_3200;
7586                 break;
7587         case 4000000:
7588                 div_table = div_4000;
7589                 break;
7590         case 5333333:
7591                 div_table = div_5333;
7592                 break;
7593         default:
7594                 goto fail;
7595         }
7596
7597         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7598
7599 fail:
7600         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7601         return 200000;
7602 }
7603
7604 static int g33_get_display_clock_speed(struct drm_i915_private *dev_priv)
7605 {
7606         struct pci_dev *pdev = dev_priv->drm.pdev;
7607         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7608         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7609         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7610         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7611         const uint8_t *div_table;
7612         unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7613         uint16_t tmp = 0;
7614
7615         pci_read_config_word(pdev, GCFGC, &tmp);
7616
7617         cdclk_sel = (tmp >> 4) & 0x7;
7618
7619         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7620                 goto fail;
7621
7622         switch (vco) {
7623         case 3200000:
7624                 div_table = div_3200;
7625                 break;
7626         case 4000000:
7627                 div_table = div_4000;
7628                 break;
7629         case 4800000:
7630                 div_table = div_4800;
7631                 break;
7632         case 5333333:
7633                 div_table = div_5333;
7634                 break;
7635         default:
7636                 goto fail;
7637         }
7638
7639         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7640
7641 fail:
7642         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7643         return 190476;
7644 }
7645
7646 static void
7647 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7648 {
7649         while (*num > DATA_LINK_M_N_MASK ||
7650                *den > DATA_LINK_M_N_MASK) {
7651                 *num >>= 1;
7652                 *den >>= 1;
7653         }
7654 }
7655
7656 static void compute_m_n(unsigned int m, unsigned int n,
7657                         uint32_t *ret_m, uint32_t *ret_n)
7658 {
7659         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7660         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7661         intel_reduce_m_n_ratio(ret_m, ret_n);
7662 }
7663
7664 void
7665 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7666                        int pixel_clock, int link_clock,
7667                        struct intel_link_m_n *m_n)
7668 {
7669         m_n->tu = 64;
7670
7671         compute_m_n(bits_per_pixel * pixel_clock,
7672                     link_clock * nlanes * 8,
7673                     &m_n->gmch_m, &m_n->gmch_n);
7674
7675         compute_m_n(pixel_clock, link_clock,
7676                     &m_n->link_m, &m_n->link_n);
7677 }
7678
7679 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7680 {
7681         if (i915.panel_use_ssc >= 0)
7682                 return i915.panel_use_ssc != 0;
7683         return dev_priv->vbt.lvds_use_ssc
7684                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7685 }
7686
7687 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7688 {
7689         return (1 << dpll->n) << 16 | dpll->m2;
7690 }
7691
7692 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7693 {
7694         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7695 }
7696
7697 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7698                                      struct intel_crtc_state *crtc_state,
7699                                      struct dpll *reduced_clock)
7700 {
7701         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7702         u32 fp, fp2 = 0;
7703
7704         if (IS_PINEVIEW(dev_priv)) {
7705                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7706                 if (reduced_clock)
7707                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7708         } else {
7709                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7710                 if (reduced_clock)
7711                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7712         }
7713
7714         crtc_state->dpll_hw_state.fp0 = fp;
7715
7716         crtc->lowfreq_avail = false;
7717         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7718             reduced_clock) {
7719                 crtc_state->dpll_hw_state.fp1 = fp2;
7720                 crtc->lowfreq_avail = true;
7721         } else {
7722                 crtc_state->dpll_hw_state.fp1 = fp;
7723         }
7724 }
7725
7726 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7727                 pipe)
7728 {
7729         u32 reg_val;
7730
7731         /*
7732          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7733          * and set it to a reasonable value instead.
7734          */
7735         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7736         reg_val &= 0xffffff00;
7737         reg_val |= 0x00000030;
7738         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7739
7740         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7741         reg_val &= 0x8cffffff;
7742         reg_val = 0x8c000000;
7743         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7744
7745         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7746         reg_val &= 0xffffff00;
7747         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7748
7749         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7750         reg_val &= 0x00ffffff;
7751         reg_val |= 0xb0000000;
7752         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7753 }
7754
7755 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7756                                          struct intel_link_m_n *m_n)
7757 {
7758         struct drm_device *dev = crtc->base.dev;
7759         struct drm_i915_private *dev_priv = to_i915(dev);
7760         int pipe = crtc->pipe;
7761
7762         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7763         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7764         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7765         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7766 }
7767
7768 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7769                                          struct intel_link_m_n *m_n,
7770                                          struct intel_link_m_n *m2_n2)
7771 {
7772         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7773         int pipe = crtc->pipe;
7774         enum transcoder transcoder = crtc->config->cpu_transcoder;
7775
7776         if (INTEL_GEN(dev_priv) >= 5) {
7777                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7778                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7779                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7780                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7781                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7782                  * for gen < 8) and if DRRS is supported (to make sure the
7783                  * registers are not unnecessarily accessed).
7784                  */
7785                 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
7786                     INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
7787                         I915_WRITE(PIPE_DATA_M2(transcoder),
7788                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7789                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7790                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7791                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7792                 }
7793         } else {
7794                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7795                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7796                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7797                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7798         }
7799 }
7800
7801 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7802 {
7803         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7804
7805         if (m_n == M1_N1) {
7806                 dp_m_n = &crtc->config->dp_m_n;
7807                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7808         } else if (m_n == M2_N2) {
7809
7810                 /*
7811                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7812                  * needs to be programmed into M1_N1.
7813                  */
7814                 dp_m_n = &crtc->config->dp_m2_n2;
7815         } else {
7816                 DRM_ERROR("Unsupported divider value\n");
7817                 return;
7818         }
7819
7820         if (crtc->config->has_pch_encoder)
7821                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7822         else
7823                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7824 }
7825
7826 static void vlv_compute_dpll(struct intel_crtc *crtc,
7827                              struct intel_crtc_state *pipe_config)
7828 {
7829         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7830                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7831         if (crtc->pipe != PIPE_A)
7832                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7833
7834         /* DPLL not used with DSI, but still need the rest set up */
7835         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7836                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7837                         DPLL_EXT_BUFFER_ENABLE_VLV;
7838
7839         pipe_config->dpll_hw_state.dpll_md =
7840                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7841 }
7842
7843 static void chv_compute_dpll(struct intel_crtc *crtc,
7844                              struct intel_crtc_state *pipe_config)
7845 {
7846         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7847                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7848         if (crtc->pipe != PIPE_A)
7849                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7850
7851         /* DPLL not used with DSI, but still need the rest set up */
7852         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7853                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7854
7855         pipe_config->dpll_hw_state.dpll_md =
7856                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7857 }
7858
7859 static void vlv_prepare_pll(struct intel_crtc *crtc,
7860                             const struct intel_crtc_state *pipe_config)
7861 {
7862         struct drm_device *dev = crtc->base.dev;
7863         struct drm_i915_private *dev_priv = to_i915(dev);
7864         enum pipe pipe = crtc->pipe;
7865         u32 mdiv;
7866         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7867         u32 coreclk, reg_val;
7868
7869         /* Enable Refclk */
7870         I915_WRITE(DPLL(pipe),
7871                    pipe_config->dpll_hw_state.dpll &
7872                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7873
7874         /* No need to actually set up the DPLL with DSI */
7875         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7876                 return;
7877
7878         mutex_lock(&dev_priv->sb_lock);
7879
7880         bestn = pipe_config->dpll.n;
7881         bestm1 = pipe_config->dpll.m1;
7882         bestm2 = pipe_config->dpll.m2;
7883         bestp1 = pipe_config->dpll.p1;
7884         bestp2 = pipe_config->dpll.p2;
7885
7886         /* See eDP HDMI DPIO driver vbios notes doc */
7887
7888         /* PLL B needs special handling */
7889         if (pipe == PIPE_B)
7890                 vlv_pllb_recal_opamp(dev_priv, pipe);
7891
7892         /* Set up Tx target for periodic Rcomp update */
7893         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7894
7895         /* Disable target IRef on PLL */
7896         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7897         reg_val &= 0x00ffffff;
7898         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7899
7900         /* Disable fast lock */
7901         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7902
7903         /* Set idtafcrecal before PLL is enabled */
7904         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7905         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7906         mdiv |= ((bestn << DPIO_N_SHIFT));
7907         mdiv |= (1 << DPIO_K_SHIFT);
7908
7909         /*
7910          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7911          * but we don't support that).
7912          * Note: don't use the DAC post divider as it seems unstable.
7913          */
7914         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7915         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7916
7917         mdiv |= DPIO_ENABLE_CALIBRATION;
7918         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7919
7920         /* Set HBR and RBR LPF coefficients */
7921         if (pipe_config->port_clock == 162000 ||
7922             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7923             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7924                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7925                                  0x009f0003);
7926         else
7927                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7928                                  0x00d0000f);
7929
7930         if (intel_crtc_has_dp_encoder(pipe_config)) {
7931                 /* Use SSC source */
7932                 if (pipe == PIPE_A)
7933                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7934                                          0x0df40000);
7935                 else
7936                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7937                                          0x0df70000);
7938         } else { /* HDMI or VGA */
7939                 /* Use bend source */
7940                 if (pipe == PIPE_A)
7941                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7942                                          0x0df70000);
7943                 else
7944                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7945                                          0x0df40000);
7946         }
7947
7948         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7949         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7950         if (intel_crtc_has_dp_encoder(crtc->config))
7951                 coreclk |= 0x01000000;
7952         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7953
7954         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7955         mutex_unlock(&dev_priv->sb_lock);
7956 }
7957
7958 static void chv_prepare_pll(struct intel_crtc *crtc,
7959                             const struct intel_crtc_state *pipe_config)
7960 {
7961         struct drm_device *dev = crtc->base.dev;
7962         struct drm_i915_private *dev_priv = to_i915(dev);
7963         enum pipe pipe = crtc->pipe;
7964         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7965         u32 loopfilter, tribuf_calcntr;
7966         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7967         u32 dpio_val;
7968         int vco;
7969
7970         /* Enable Refclk and SSC */
7971         I915_WRITE(DPLL(pipe),
7972                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7973
7974         /* No need to actually set up the DPLL with DSI */
7975         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7976                 return;
7977
7978         bestn = pipe_config->dpll.n;
7979         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7980         bestm1 = pipe_config->dpll.m1;
7981         bestm2 = pipe_config->dpll.m2 >> 22;
7982         bestp1 = pipe_config->dpll.p1;
7983         bestp2 = pipe_config->dpll.p2;
7984         vco = pipe_config->dpll.vco;
7985         dpio_val = 0;
7986         loopfilter = 0;
7987
7988         mutex_lock(&dev_priv->sb_lock);
7989
7990         /* p1 and p2 divider */
7991         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7992                         5 << DPIO_CHV_S1_DIV_SHIFT |
7993                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7994                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7995                         1 << DPIO_CHV_K_DIV_SHIFT);
7996
7997         /* Feedback post-divider - m2 */
7998         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7999
8000         /* Feedback refclk divider - n and m1 */
8001         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8002                         DPIO_CHV_M1_DIV_BY_2 |
8003                         1 << DPIO_CHV_N_DIV_SHIFT);
8004
8005         /* M2 fraction division */
8006         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8007
8008         /* M2 fraction division enable */
8009         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8010         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8011         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8012         if (bestm2_frac)
8013                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8014         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8015
8016         /* Program digital lock detect threshold */
8017         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8018         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8019                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8020         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8021         if (!bestm2_frac)
8022                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8023         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8024
8025         /* Loop filter */
8026         if (vco == 5400000) {
8027                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8028                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8029                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8030                 tribuf_calcntr = 0x9;
8031         } else if (vco <= 6200000) {
8032                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8033                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8034                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8035                 tribuf_calcntr = 0x9;
8036         } else if (vco <= 6480000) {
8037                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8038                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8039                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8040                 tribuf_calcntr = 0x8;
8041         } else {
8042                 /* Not supported. Apply the same limits as in the max case */
8043                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8044                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8045                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8046                 tribuf_calcntr = 0;
8047         }
8048         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8049
8050         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8051         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8052         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8053         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8054
8055         /* AFC Recal */
8056         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8057                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8058                         DPIO_AFC_RECAL);
8059
8060         mutex_unlock(&dev_priv->sb_lock);
8061 }
8062
8063 /**
8064  * vlv_force_pll_on - forcibly enable just the PLL
8065  * @dev_priv: i915 private structure
8066  * @pipe: pipe PLL to enable
8067  * @dpll: PLL configuration
8068  *
8069  * Enable the PLL for @pipe using the supplied @dpll config. To be used
8070  * in cases where we need the PLL enabled even when @pipe is not going to
8071  * be enabled.
8072  */
8073 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8074                      const struct dpll *dpll)
8075 {
8076         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8077         struct intel_crtc_state *pipe_config;
8078
8079         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8080         if (!pipe_config)
8081                 return -ENOMEM;
8082
8083         pipe_config->base.crtc = &crtc->base;
8084         pipe_config->pixel_multiplier = 1;
8085         pipe_config->dpll = *dpll;
8086
8087         if (IS_CHERRYVIEW(dev_priv)) {
8088                 chv_compute_dpll(crtc, pipe_config);
8089                 chv_prepare_pll(crtc, pipe_config);
8090                 chv_enable_pll(crtc, pipe_config);
8091         } else {
8092                 vlv_compute_dpll(crtc, pipe_config);
8093                 vlv_prepare_pll(crtc, pipe_config);
8094                 vlv_enable_pll(crtc, pipe_config);
8095         }
8096
8097         kfree(pipe_config);
8098
8099         return 0;
8100 }
8101
8102 /**
8103  * vlv_force_pll_off - forcibly disable just the PLL
8104  * @dev_priv: i915 private structure
8105  * @pipe: pipe PLL to disable
8106  *
8107  * Disable the PLL for @pipe. To be used in cases where we need
8108  * the PLL enabled even when @pipe is not going to be enabled.
8109  */
8110 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8111 {
8112         if (IS_CHERRYVIEW(dev_priv))
8113                 chv_disable_pll(dev_priv, pipe);
8114         else
8115                 vlv_disable_pll(dev_priv, pipe);
8116 }
8117
8118 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8119                               struct intel_crtc_state *crtc_state,
8120                               struct dpll *reduced_clock)
8121 {
8122         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8123         u32 dpll;
8124         struct dpll *clock = &crtc_state->dpll;
8125
8126         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8127
8128         dpll = DPLL_VGA_MODE_DIS;
8129
8130         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8131                 dpll |= DPLLB_MODE_LVDS;
8132         else
8133                 dpll |= DPLLB_MODE_DAC_SERIAL;
8134
8135         if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || IS_G33(dev_priv)) {
8136                 dpll |= (crtc_state->pixel_multiplier - 1)
8137                         << SDVO_MULTIPLIER_SHIFT_HIRES;
8138         }
8139
8140         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8141             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8142                 dpll |= DPLL_SDVO_HIGH_SPEED;
8143
8144         if (intel_crtc_has_dp_encoder(crtc_state))
8145                 dpll |= DPLL_SDVO_HIGH_SPEED;
8146
8147         /* compute bitmask from p1 value */
8148         if (IS_PINEVIEW(dev_priv))
8149                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8150         else {
8151                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8152                 if (IS_G4X(dev_priv) && reduced_clock)
8153                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8154         }
8155         switch (clock->p2) {
8156         case 5:
8157                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8158                 break;
8159         case 7:
8160                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8161                 break;
8162         case 10:
8163                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8164                 break;
8165         case 14:
8166                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8167                 break;
8168         }
8169         if (INTEL_GEN(dev_priv) >= 4)
8170                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8171
8172         if (crtc_state->sdvo_tv_clock)
8173                 dpll |= PLL_REF_INPUT_TVCLKINBC;
8174         else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8175                  intel_panel_use_ssc(dev_priv))
8176                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8177         else
8178                 dpll |= PLL_REF_INPUT_DREFCLK;
8179
8180         dpll |= DPLL_VCO_ENABLE;
8181         crtc_state->dpll_hw_state.dpll = dpll;
8182
8183         if (INTEL_GEN(dev_priv) >= 4) {
8184                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8185                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8186                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8187         }
8188 }
8189
8190 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8191                               struct intel_crtc_state *crtc_state,
8192                               struct dpll *reduced_clock)
8193 {
8194         struct drm_device *dev = crtc->base.dev;
8195         struct drm_i915_private *dev_priv = to_i915(dev);
8196         u32 dpll;
8197         struct dpll *clock = &crtc_state->dpll;
8198
8199         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8200
8201         dpll = DPLL_VGA_MODE_DIS;
8202
8203         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8204                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8205         } else {
8206                 if (clock->p1 == 2)
8207                         dpll |= PLL_P1_DIVIDE_BY_TWO;
8208                 else
8209                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8210                 if (clock->p2 == 4)
8211                         dpll |= PLL_P2_DIVIDE_BY_4;
8212         }
8213
8214         if (!IS_I830(dev_priv) &&
8215             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8216                 dpll |= DPLL_DVO_2X_MODE;
8217
8218         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8219             intel_panel_use_ssc(dev_priv))
8220                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8221         else
8222                 dpll |= PLL_REF_INPUT_DREFCLK;
8223
8224         dpll |= DPLL_VCO_ENABLE;
8225         crtc_state->dpll_hw_state.dpll = dpll;
8226 }
8227
8228 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
8229 {
8230         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8231         enum pipe pipe = intel_crtc->pipe;
8232         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8233         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
8234         uint32_t crtc_vtotal, crtc_vblank_end;
8235         int vsyncshift = 0;
8236
8237         /* We need to be careful not to changed the adjusted mode, for otherwise
8238          * the hw state checker will get angry at the mismatch. */
8239         crtc_vtotal = adjusted_mode->crtc_vtotal;
8240         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8241
8242         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8243                 /* the chip adds 2 halflines automatically */
8244                 crtc_vtotal -= 1;
8245                 crtc_vblank_end -= 1;
8246
8247                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8248                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8249                 else
8250                         vsyncshift = adjusted_mode->crtc_hsync_start -
8251                                 adjusted_mode->crtc_htotal / 2;
8252                 if (vsyncshift < 0)
8253                         vsyncshift += adjusted_mode->crtc_htotal;
8254         }
8255
8256         if (INTEL_GEN(dev_priv) > 3)
8257                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8258
8259         I915_WRITE(HTOTAL(cpu_transcoder),
8260                    (adjusted_mode->crtc_hdisplay - 1) |
8261                    ((adjusted_mode->crtc_htotal - 1) << 16));
8262         I915_WRITE(HBLANK(cpu_transcoder),
8263                    (adjusted_mode->crtc_hblank_start - 1) |
8264                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
8265         I915_WRITE(HSYNC(cpu_transcoder),
8266                    (adjusted_mode->crtc_hsync_start - 1) |
8267                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
8268
8269         I915_WRITE(VTOTAL(cpu_transcoder),
8270                    (adjusted_mode->crtc_vdisplay - 1) |
8271                    ((crtc_vtotal - 1) << 16));
8272         I915_WRITE(VBLANK(cpu_transcoder),
8273                    (adjusted_mode->crtc_vblank_start - 1) |
8274                    ((crtc_vblank_end - 1) << 16));
8275         I915_WRITE(VSYNC(cpu_transcoder),
8276                    (adjusted_mode->crtc_vsync_start - 1) |
8277                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
8278
8279         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8280          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8281          * documented on the DDI_FUNC_CTL register description, EDP Input Select
8282          * bits. */
8283         if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8284             (pipe == PIPE_B || pipe == PIPE_C))
8285                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8286
8287 }
8288
8289 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8290 {
8291         struct drm_device *dev = intel_crtc->base.dev;
8292         struct drm_i915_private *dev_priv = to_i915(dev);
8293         enum pipe pipe = intel_crtc->pipe;
8294
8295         /* pipesrc controls the size that is scaled from, which should
8296          * always be the user's requested size.
8297          */
8298         I915_WRITE(PIPESRC(pipe),
8299                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
8300                    (intel_crtc->config->pipe_src_h - 1));
8301 }
8302
8303 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8304                                    struct intel_crtc_state *pipe_config)
8305 {
8306         struct drm_device *dev = crtc->base.dev;
8307         struct drm_i915_private *dev_priv = to_i915(dev);
8308         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8309         uint32_t tmp;
8310
8311         tmp = I915_READ(HTOTAL(cpu_transcoder));
8312         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8313         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8314         tmp = I915_READ(HBLANK(cpu_transcoder));
8315         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8316         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
8317         tmp = I915_READ(HSYNC(cpu_transcoder));
8318         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8319         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8320
8321         tmp = I915_READ(VTOTAL(cpu_transcoder));
8322         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8323         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8324         tmp = I915_READ(VBLANK(cpu_transcoder));
8325         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8326         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
8327         tmp = I915_READ(VSYNC(cpu_transcoder));
8328         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8329         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8330
8331         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8332                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8333                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8334                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8335         }
8336 }
8337
8338 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8339                                     struct intel_crtc_state *pipe_config)
8340 {
8341         struct drm_device *dev = crtc->base.dev;
8342         struct drm_i915_private *dev_priv = to_i915(dev);
8343         u32 tmp;
8344
8345         tmp = I915_READ(PIPESRC(crtc->pipe));
8346         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8347         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8348
8349         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8350         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8351 }
8352
8353 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8354                                  struct intel_crtc_state *pipe_config)
8355 {
8356         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8357         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8358         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8359         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8360
8361         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8362         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8363         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8364         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8365
8366         mode->flags = pipe_config->base.adjusted_mode.flags;
8367         mode->type = DRM_MODE_TYPE_DRIVER;
8368
8369         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8370         mode->flags |= pipe_config->base.adjusted_mode.flags;
8371
8372         mode->hsync = drm_mode_hsync(mode);
8373         mode->vrefresh = drm_mode_vrefresh(mode);
8374         drm_mode_set_name(mode);
8375 }
8376
8377 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8378 {
8379         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8380         uint32_t pipeconf;
8381
8382         pipeconf = 0;
8383
8384         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8385             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8386                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
8387
8388         if (intel_crtc->config->double_wide)
8389                 pipeconf |= PIPECONF_DOUBLE_WIDE;
8390
8391         /* only g4x and later have fancy bpc/dither controls */
8392         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8393             IS_CHERRYVIEW(dev_priv)) {
8394                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8395                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
8396                         pipeconf |= PIPECONF_DITHER_EN |
8397                                     PIPECONF_DITHER_TYPE_SP;
8398
8399                 switch (intel_crtc->config->pipe_bpp) {
8400                 case 18:
8401                         pipeconf |= PIPECONF_6BPC;
8402                         break;
8403                 case 24:
8404                         pipeconf |= PIPECONF_8BPC;
8405                         break;
8406                 case 30:
8407                         pipeconf |= PIPECONF_10BPC;
8408                         break;
8409                 default:
8410                         /* Case prevented by intel_choose_pipe_bpp_dither. */
8411                         BUG();
8412                 }
8413         }
8414
8415         if (HAS_PIPE_CXSR(dev_priv)) {
8416                 if (intel_crtc->lowfreq_avail) {
8417                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8418                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8419                 } else {
8420                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
8421                 }
8422         }
8423
8424         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8425                 if (INTEL_GEN(dev_priv) < 4 ||
8426                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8427                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8428                 else
8429                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8430         } else
8431                 pipeconf |= PIPECONF_PROGRESSIVE;
8432
8433         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8434              intel_crtc->config->limited_color_range)
8435                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8436
8437         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8438         POSTING_READ(PIPECONF(intel_crtc->pipe));
8439 }
8440
8441 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8442                                    struct intel_crtc_state *crtc_state)
8443 {
8444         struct drm_device *dev = crtc->base.dev;
8445         struct drm_i915_private *dev_priv = to_i915(dev);
8446         const struct intel_limit *limit;
8447         int refclk = 48000;
8448
8449         memset(&crtc_state->dpll_hw_state, 0,
8450                sizeof(crtc_state->dpll_hw_state));
8451
8452         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8453                 if (intel_panel_use_ssc(dev_priv)) {
8454                         refclk = dev_priv->vbt.lvds_ssc_freq;
8455                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8456                 }
8457
8458                 limit = &intel_limits_i8xx_lvds;
8459         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8460                 limit = &intel_limits_i8xx_dvo;
8461         } else {
8462                 limit = &intel_limits_i8xx_dac;
8463         }
8464
8465         if (!crtc_state->clock_set &&
8466             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8467                                  refclk, NULL, &crtc_state->dpll)) {
8468                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8469                 return -EINVAL;
8470         }
8471
8472         i8xx_compute_dpll(crtc, crtc_state, NULL);
8473
8474         return 0;
8475 }
8476
8477 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8478                                   struct intel_crtc_state *crtc_state)
8479 {
8480         struct drm_device *dev = crtc->base.dev;
8481         struct drm_i915_private *dev_priv = to_i915(dev);
8482         const struct intel_limit *limit;
8483         int refclk = 96000;
8484
8485         memset(&crtc_state->dpll_hw_state, 0,
8486                sizeof(crtc_state->dpll_hw_state));
8487
8488         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8489                 if (intel_panel_use_ssc(dev_priv)) {
8490                         refclk = dev_priv->vbt.lvds_ssc_freq;
8491                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8492                 }
8493
8494                 if (intel_is_dual_link_lvds(dev))
8495                         limit = &intel_limits_g4x_dual_channel_lvds;
8496                 else
8497                         limit = &intel_limits_g4x_single_channel_lvds;
8498         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8499                    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8500                 limit = &intel_limits_g4x_hdmi;
8501         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8502                 limit = &intel_limits_g4x_sdvo;
8503         } else {
8504                 /* The option is for other outputs */
8505                 limit = &intel_limits_i9xx_sdvo;
8506         }
8507
8508         if (!crtc_state->clock_set &&
8509             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8510                                 refclk, NULL, &crtc_state->dpll)) {
8511                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8512                 return -EINVAL;
8513         }
8514
8515         i9xx_compute_dpll(crtc, crtc_state, NULL);
8516
8517         return 0;
8518 }
8519
8520 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8521                                   struct intel_crtc_state *crtc_state)
8522 {
8523         struct drm_device *dev = crtc->base.dev;
8524         struct drm_i915_private *dev_priv = to_i915(dev);
8525         const struct intel_limit *limit;
8526         int refclk = 96000;
8527
8528         memset(&crtc_state->dpll_hw_state, 0,
8529                sizeof(crtc_state->dpll_hw_state));
8530
8531         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8532                 if (intel_panel_use_ssc(dev_priv)) {
8533                         refclk = dev_priv->vbt.lvds_ssc_freq;
8534                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8535                 }
8536
8537                 limit = &intel_limits_pineview_lvds;
8538         } else {
8539                 limit = &intel_limits_pineview_sdvo;
8540         }
8541
8542         if (!crtc_state->clock_set &&
8543             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8544                                 refclk, NULL, &crtc_state->dpll)) {
8545                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8546                 return -EINVAL;
8547         }
8548
8549         i9xx_compute_dpll(crtc, crtc_state, NULL);
8550
8551         return 0;
8552 }
8553
8554 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8555                                    struct intel_crtc_state *crtc_state)
8556 {
8557         struct drm_device *dev = crtc->base.dev;
8558         struct drm_i915_private *dev_priv = to_i915(dev);
8559         const struct intel_limit *limit;
8560         int refclk = 96000;
8561
8562         memset(&crtc_state->dpll_hw_state, 0,
8563                sizeof(crtc_state->dpll_hw_state));
8564
8565         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8566                 if (intel_panel_use_ssc(dev_priv)) {
8567                         refclk = dev_priv->vbt.lvds_ssc_freq;
8568                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8569                 }
8570
8571                 limit = &intel_limits_i9xx_lvds;
8572         } else {
8573                 limit = &intel_limits_i9xx_sdvo;
8574         }
8575
8576         if (!crtc_state->clock_set &&
8577             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8578                                  refclk, NULL, &crtc_state->dpll)) {
8579                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8580                 return -EINVAL;
8581         }
8582
8583         i9xx_compute_dpll(crtc, crtc_state, NULL);
8584
8585         return 0;
8586 }
8587
8588 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8589                                   struct intel_crtc_state *crtc_state)
8590 {
8591         int refclk = 100000;
8592         const struct intel_limit *limit = &intel_limits_chv;
8593
8594         memset(&crtc_state->dpll_hw_state, 0,
8595                sizeof(crtc_state->dpll_hw_state));
8596
8597         if (!crtc_state->clock_set &&
8598             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8599                                 refclk, NULL, &crtc_state->dpll)) {
8600                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8601                 return -EINVAL;
8602         }
8603
8604         chv_compute_dpll(crtc, crtc_state);
8605
8606         return 0;
8607 }
8608
8609 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8610                                   struct intel_crtc_state *crtc_state)
8611 {
8612         int refclk = 100000;
8613         const struct intel_limit *limit = &intel_limits_vlv;
8614
8615         memset(&crtc_state->dpll_hw_state, 0,
8616                sizeof(crtc_state->dpll_hw_state));
8617
8618         if (!crtc_state->clock_set &&
8619             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8620                                 refclk, NULL, &crtc_state->dpll)) {
8621                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8622                 return -EINVAL;
8623         }
8624
8625         vlv_compute_dpll(crtc, crtc_state);
8626
8627         return 0;
8628 }
8629
8630 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8631                                  struct intel_crtc_state *pipe_config)
8632 {
8633         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8634         uint32_t tmp;
8635
8636         if (INTEL_GEN(dev_priv) <= 3 &&
8637             (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
8638                 return;
8639
8640         tmp = I915_READ(PFIT_CONTROL);
8641         if (!(tmp & PFIT_ENABLE))
8642                 return;
8643
8644         /* Check whether the pfit is attached to our pipe. */
8645         if (INTEL_GEN(dev_priv) < 4) {
8646                 if (crtc->pipe != PIPE_B)
8647                         return;
8648         } else {
8649                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8650                         return;
8651         }
8652
8653         pipe_config->gmch_pfit.control = tmp;
8654         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8655 }
8656
8657 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8658                                struct intel_crtc_state *pipe_config)
8659 {
8660         struct drm_device *dev = crtc->base.dev;
8661         struct drm_i915_private *dev_priv = to_i915(dev);
8662         int pipe = pipe_config->cpu_transcoder;
8663         struct dpll clock;
8664         u32 mdiv;
8665         int refclk = 100000;
8666
8667         /* In case of DSI, DPLL will not be used */
8668         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8669                 return;
8670
8671         mutex_lock(&dev_priv->sb_lock);
8672         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8673         mutex_unlock(&dev_priv->sb_lock);
8674
8675         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8676         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8677         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8678         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8679         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8680
8681         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8682 }
8683
8684 static void
8685 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8686                               struct intel_initial_plane_config *plane_config)
8687 {
8688         struct drm_device *dev = crtc->base.dev;
8689         struct drm_i915_private *dev_priv = to_i915(dev);
8690         u32 val, base, offset;
8691         int pipe = crtc->pipe, plane = crtc->plane;
8692         int fourcc, pixel_format;
8693         unsigned int aligned_height;
8694         struct drm_framebuffer *fb;
8695         struct intel_framebuffer *intel_fb;
8696
8697         val = I915_READ(DSPCNTR(plane));
8698         if (!(val & DISPLAY_PLANE_ENABLE))
8699                 return;
8700
8701         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8702         if (!intel_fb) {
8703                 DRM_DEBUG_KMS("failed to alloc fb\n");
8704                 return;
8705         }
8706
8707         fb = &intel_fb->base;
8708
8709         if (INTEL_GEN(dev_priv) >= 4) {
8710                 if (val & DISPPLANE_TILED) {
8711                         plane_config->tiling = I915_TILING_X;
8712                         fb->modifier = I915_FORMAT_MOD_X_TILED;
8713                 }
8714         }
8715
8716         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8717         fourcc = i9xx_format_to_fourcc(pixel_format);
8718         fb->pixel_format = fourcc;
8719         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8720
8721         if (INTEL_GEN(dev_priv) >= 4) {
8722                 if (plane_config->tiling)
8723                         offset = I915_READ(DSPTILEOFF(plane));
8724                 else
8725                         offset = I915_READ(DSPLINOFF(plane));
8726                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8727         } else {
8728                 base = I915_READ(DSPADDR(plane));
8729         }
8730         plane_config->base = base;
8731
8732         val = I915_READ(PIPESRC(pipe));
8733         fb->width = ((val >> 16) & 0xfff) + 1;
8734         fb->height = ((val >> 0) & 0xfff) + 1;
8735
8736         val = I915_READ(DSPSTRIDE(pipe));
8737         fb->pitches[0] = val & 0xffffffc0;
8738
8739         aligned_height = intel_fb_align_height(dev, fb->height,
8740                                                fb->pixel_format,
8741                                                fb->modifier);
8742
8743         plane_config->size = fb->pitches[0] * aligned_height;
8744
8745         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8746                       pipe_name(pipe), plane, fb->width, fb->height,
8747                       fb->bits_per_pixel, base, fb->pitches[0],
8748                       plane_config->size);
8749
8750         plane_config->fb = intel_fb;
8751 }
8752
8753 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8754                                struct intel_crtc_state *pipe_config)
8755 {
8756         struct drm_device *dev = crtc->base.dev;
8757         struct drm_i915_private *dev_priv = to_i915(dev);
8758         int pipe = pipe_config->cpu_transcoder;
8759         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8760         struct dpll clock;
8761         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8762         int refclk = 100000;
8763
8764         /* In case of DSI, DPLL will not be used */
8765         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8766                 return;
8767
8768         mutex_lock(&dev_priv->sb_lock);
8769         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8770         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8771         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8772         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8773         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8774         mutex_unlock(&dev_priv->sb_lock);
8775
8776         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8777         clock.m2 = (pll_dw0 & 0xff) << 22;
8778         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8779                 clock.m2 |= pll_dw2 & 0x3fffff;
8780         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8781         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8782         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8783
8784         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8785 }
8786
8787 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8788                                  struct intel_crtc_state *pipe_config)
8789 {
8790         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8791         enum intel_display_power_domain power_domain;
8792         uint32_t tmp;
8793         bool ret;
8794
8795         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8796         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8797                 return false;
8798
8799         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8800         pipe_config->shared_dpll = NULL;
8801
8802         ret = false;
8803
8804         tmp = I915_READ(PIPECONF(crtc->pipe));
8805         if (!(tmp & PIPECONF_ENABLE))
8806                 goto out;
8807
8808         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8809             IS_CHERRYVIEW(dev_priv)) {
8810                 switch (tmp & PIPECONF_BPC_MASK) {
8811                 case PIPECONF_6BPC:
8812                         pipe_config->pipe_bpp = 18;
8813                         break;
8814                 case PIPECONF_8BPC:
8815                         pipe_config->pipe_bpp = 24;
8816                         break;
8817                 case PIPECONF_10BPC:
8818                         pipe_config->pipe_bpp = 30;
8819                         break;
8820                 default:
8821                         break;
8822                 }
8823         }
8824
8825         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8826             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8827                 pipe_config->limited_color_range = true;
8828
8829         if (INTEL_GEN(dev_priv) < 4)
8830                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8831
8832         intel_get_pipe_timings(crtc, pipe_config);
8833         intel_get_pipe_src_size(crtc, pipe_config);
8834
8835         i9xx_get_pfit_config(crtc, pipe_config);
8836
8837         if (INTEL_GEN(dev_priv) >= 4) {
8838                 /* No way to read it out on pipes B and C */
8839                 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
8840                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
8841                 else
8842                         tmp = I915_READ(DPLL_MD(crtc->pipe));
8843                 pipe_config->pixel_multiplier =
8844                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8845                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8846                 pipe_config->dpll_hw_state.dpll_md = tmp;
8847         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8848                    IS_G33(dev_priv)) {
8849                 tmp = I915_READ(DPLL(crtc->pipe));
8850                 pipe_config->pixel_multiplier =
8851                         ((tmp & SDVO_MULTIPLIER_MASK)
8852                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8853         } else {
8854                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8855                  * port and will be fixed up in the encoder->get_config
8856                  * function. */
8857                 pipe_config->pixel_multiplier = 1;
8858         }
8859         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8860         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
8861                 /*
8862                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8863                  * on 830. Filter it out here so that we don't
8864                  * report errors due to that.
8865                  */
8866                 if (IS_I830(dev_priv))
8867                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8868
8869                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8870                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8871         } else {
8872                 /* Mask out read-only status bits. */
8873                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8874                                                      DPLL_PORTC_READY_MASK |
8875                                                      DPLL_PORTB_READY_MASK);
8876         }
8877
8878         if (IS_CHERRYVIEW(dev_priv))
8879                 chv_crtc_clock_get(crtc, pipe_config);
8880         else if (IS_VALLEYVIEW(dev_priv))
8881                 vlv_crtc_clock_get(crtc, pipe_config);
8882         else
8883                 i9xx_crtc_clock_get(crtc, pipe_config);
8884
8885         /*
8886          * Normally the dotclock is filled in by the encoder .get_config()
8887          * but in case the pipe is enabled w/o any ports we need a sane
8888          * default.
8889          */
8890         pipe_config->base.adjusted_mode.crtc_clock =
8891                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8892
8893         ret = true;
8894
8895 out:
8896         intel_display_power_put(dev_priv, power_domain);
8897
8898         return ret;
8899 }
8900
8901 static void ironlake_init_pch_refclk(struct drm_device *dev)
8902 {
8903         struct drm_i915_private *dev_priv = to_i915(dev);
8904         struct intel_encoder *encoder;
8905         int i;
8906         u32 val, final;
8907         bool has_lvds = false;
8908         bool has_cpu_edp = false;
8909         bool has_panel = false;
8910         bool has_ck505 = false;
8911         bool can_ssc = false;
8912         bool using_ssc_source = false;
8913
8914         /* We need to take the global config into account */
8915         for_each_intel_encoder(dev, encoder) {
8916                 switch (encoder->type) {
8917                 case INTEL_OUTPUT_LVDS:
8918                         has_panel = true;
8919                         has_lvds = true;
8920                         break;
8921                 case INTEL_OUTPUT_EDP:
8922                         has_panel = true;
8923                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8924                                 has_cpu_edp = true;
8925                         break;
8926                 default:
8927                         break;
8928                 }
8929         }
8930
8931         if (HAS_PCH_IBX(dev_priv)) {
8932                 has_ck505 = dev_priv->vbt.display_clock_mode;
8933                 can_ssc = has_ck505;
8934         } else {
8935                 has_ck505 = false;
8936                 can_ssc = true;
8937         }
8938
8939         /* Check if any DPLLs are using the SSC source */
8940         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8941                 u32 temp = I915_READ(PCH_DPLL(i));
8942
8943                 if (!(temp & DPLL_VCO_ENABLE))
8944                         continue;
8945
8946                 if ((temp & PLL_REF_INPUT_MASK) ==
8947                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8948                         using_ssc_source = true;
8949                         break;
8950                 }
8951         }
8952
8953         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8954                       has_panel, has_lvds, has_ck505, using_ssc_source);
8955
8956         /* Ironlake: try to setup display ref clock before DPLL
8957          * enabling. This is only under driver's control after
8958          * PCH B stepping, previous chipset stepping should be
8959          * ignoring this setting.
8960          */
8961         val = I915_READ(PCH_DREF_CONTROL);
8962
8963         /* As we must carefully and slowly disable/enable each source in turn,
8964          * compute the final state we want first and check if we need to
8965          * make any changes at all.
8966          */
8967         final = val;
8968         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8969         if (has_ck505)
8970                 final |= DREF_NONSPREAD_CK505_ENABLE;
8971         else
8972                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8973
8974         final &= ~DREF_SSC_SOURCE_MASK;
8975         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8976         final &= ~DREF_SSC1_ENABLE;
8977
8978         if (has_panel) {
8979                 final |= DREF_SSC_SOURCE_ENABLE;
8980
8981                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8982                         final |= DREF_SSC1_ENABLE;
8983
8984                 if (has_cpu_edp) {
8985                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8986                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8987                         else
8988                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8989                 } else
8990                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8991         } else if (using_ssc_source) {
8992                 final |= DREF_SSC_SOURCE_ENABLE;
8993                 final |= DREF_SSC1_ENABLE;
8994         }
8995
8996         if (final == val)
8997                 return;
8998
8999         /* Always enable nonspread source */
9000         val &= ~DREF_NONSPREAD_SOURCE_MASK;
9001
9002         if (has_ck505)
9003                 val |= DREF_NONSPREAD_CK505_ENABLE;
9004         else
9005                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
9006
9007         if (has_panel) {
9008                 val &= ~DREF_SSC_SOURCE_MASK;
9009                 val |= DREF_SSC_SOURCE_ENABLE;
9010
9011                 /* SSC must be turned on before enabling the CPU output  */
9012                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9013                         DRM_DEBUG_KMS("Using SSC on panel\n");
9014                         val |= DREF_SSC1_ENABLE;
9015                 } else
9016                         val &= ~DREF_SSC1_ENABLE;
9017
9018                 /* Get SSC going before enabling the outputs */
9019                 I915_WRITE(PCH_DREF_CONTROL, val);
9020                 POSTING_READ(PCH_DREF_CONTROL);
9021                 udelay(200);
9022
9023                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9024
9025                 /* Enable CPU source on CPU attached eDP */
9026                 if (has_cpu_edp) {
9027                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9028                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
9029                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9030                         } else
9031                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9032                 } else
9033                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9034
9035                 I915_WRITE(PCH_DREF_CONTROL, val);
9036                 POSTING_READ(PCH_DREF_CONTROL);
9037                 udelay(200);
9038         } else {
9039                 DRM_DEBUG_KMS("Disabling CPU source output\n");
9040
9041                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9042
9043                 /* Turn off CPU output */
9044                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9045
9046                 I915_WRITE(PCH_DREF_CONTROL, val);
9047                 POSTING_READ(PCH_DREF_CONTROL);
9048                 udelay(200);
9049
9050                 if (!using_ssc_source) {
9051                         DRM_DEBUG_KMS("Disabling SSC source\n");
9052
9053                         /* Turn off the SSC source */
9054                         val &= ~DREF_SSC_SOURCE_MASK;
9055                         val |= DREF_SSC_SOURCE_DISABLE;
9056
9057                         /* Turn off SSC1 */
9058                         val &= ~DREF_SSC1_ENABLE;
9059
9060                         I915_WRITE(PCH_DREF_CONTROL, val);
9061                         POSTING_READ(PCH_DREF_CONTROL);
9062                         udelay(200);
9063                 }
9064         }
9065
9066         BUG_ON(val != final);
9067 }
9068
9069 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9070 {
9071         uint32_t tmp;
9072
9073         tmp = I915_READ(SOUTH_CHICKEN2);
9074         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9075         I915_WRITE(SOUTH_CHICKEN2, tmp);
9076
9077         if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9078                         FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9079                 DRM_ERROR("FDI mPHY reset assert timeout\n");
9080
9081         tmp = I915_READ(SOUTH_CHICKEN2);
9082         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9083         I915_WRITE(SOUTH_CHICKEN2, tmp);
9084
9085         if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9086                          FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9087                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9088 }
9089
9090 /* WaMPhyProgramming:hsw */
9091 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9092 {
9093         uint32_t tmp;
9094
9095         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9096         tmp &= ~(0xFF << 24);
9097         tmp |= (0x12 << 24);
9098         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9099
9100         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9101         tmp |= (1 << 11);
9102         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9103
9104         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9105         tmp |= (1 << 11);
9106         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9107
9108         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9109         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9110         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9111
9112         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9113         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9114         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9115
9116         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9117         tmp &= ~(7 << 13);
9118         tmp |= (5 << 13);
9119         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9120
9121         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9122         tmp &= ~(7 << 13);
9123         tmp |= (5 << 13);
9124         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9125
9126         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9127         tmp &= ~0xFF;
9128         tmp |= 0x1C;
9129         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9130
9131         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9132         tmp &= ~0xFF;
9133         tmp |= 0x1C;
9134         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9135
9136         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9137         tmp &= ~(0xFF << 16);
9138         tmp |= (0x1C << 16);
9139         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9140
9141         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9142         tmp &= ~(0xFF << 16);
9143         tmp |= (0x1C << 16);
9144         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9145
9146         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9147         tmp |= (1 << 27);
9148         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9149
9150         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9151         tmp |= (1 << 27);
9152         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9153
9154         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9155         tmp &= ~(0xF << 28);
9156         tmp |= (4 << 28);
9157         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9158
9159         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9160         tmp &= ~(0xF << 28);
9161         tmp |= (4 << 28);
9162         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9163 }
9164
9165 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9166  * Programming" based on the parameters passed:
9167  * - Sequence to enable CLKOUT_DP
9168  * - Sequence to enable CLKOUT_DP without spread
9169  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9170  */
9171 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
9172                                  bool with_fdi)
9173 {
9174         struct drm_i915_private *dev_priv = to_i915(dev);
9175         uint32_t reg, tmp;
9176
9177         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9178                 with_spread = true;
9179         if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9180             with_fdi, "LP PCH doesn't have FDI\n"))
9181                 with_fdi = false;
9182
9183         mutex_lock(&dev_priv->sb_lock);
9184
9185         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9186         tmp &= ~SBI_SSCCTL_DISABLE;
9187         tmp |= SBI_SSCCTL_PATHALT;
9188         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9189
9190         udelay(24);
9191
9192         if (with_spread) {
9193                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9194                 tmp &= ~SBI_SSCCTL_PATHALT;
9195                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9196
9197                 if (with_fdi) {
9198                         lpt_reset_fdi_mphy(dev_priv);
9199                         lpt_program_fdi_mphy(dev_priv);
9200                 }
9201         }
9202
9203         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9204         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9205         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9206         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9207
9208         mutex_unlock(&dev_priv->sb_lock);
9209 }
9210
9211 /* Sequence to disable CLKOUT_DP */
9212 static void lpt_disable_clkout_dp(struct drm_device *dev)
9213 {
9214         struct drm_i915_private *dev_priv = to_i915(dev);
9215         uint32_t reg, tmp;
9216
9217         mutex_lock(&dev_priv->sb_lock);
9218
9219         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9220         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9221         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9222         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9223
9224         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9225         if (!(tmp & SBI_SSCCTL_DISABLE)) {
9226                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9227                         tmp |= SBI_SSCCTL_PATHALT;
9228                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9229                         udelay(32);
9230                 }
9231                 tmp |= SBI_SSCCTL_DISABLE;
9232                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9233         }
9234
9235         mutex_unlock(&dev_priv->sb_lock);
9236 }
9237
9238 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9239
9240 static const uint16_t sscdivintphase[] = {
9241         [BEND_IDX( 50)] = 0x3B23,
9242         [BEND_IDX( 45)] = 0x3B23,
9243         [BEND_IDX( 40)] = 0x3C23,
9244         [BEND_IDX( 35)] = 0x3C23,
9245         [BEND_IDX( 30)] = 0x3D23,
9246         [BEND_IDX( 25)] = 0x3D23,
9247         [BEND_IDX( 20)] = 0x3E23,
9248         [BEND_IDX( 15)] = 0x3E23,
9249         [BEND_IDX( 10)] = 0x3F23,
9250         [BEND_IDX(  5)] = 0x3F23,
9251         [BEND_IDX(  0)] = 0x0025,
9252         [BEND_IDX( -5)] = 0x0025,
9253         [BEND_IDX(-10)] = 0x0125,
9254         [BEND_IDX(-15)] = 0x0125,
9255         [BEND_IDX(-20)] = 0x0225,
9256         [BEND_IDX(-25)] = 0x0225,
9257         [BEND_IDX(-30)] = 0x0325,
9258         [BEND_IDX(-35)] = 0x0325,
9259         [BEND_IDX(-40)] = 0x0425,
9260         [BEND_IDX(-45)] = 0x0425,
9261         [BEND_IDX(-50)] = 0x0525,
9262 };
9263
9264 /*
9265  * Bend CLKOUT_DP
9266  * steps -50 to 50 inclusive, in steps of 5
9267  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9268  * change in clock period = -(steps / 10) * 5.787 ps
9269  */
9270 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9271 {
9272         uint32_t tmp;
9273         int idx = BEND_IDX(steps);
9274
9275         if (WARN_ON(steps % 5 != 0))
9276                 return;
9277
9278         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9279                 return;
9280
9281         mutex_lock(&dev_priv->sb_lock);
9282
9283         if (steps % 10 != 0)
9284                 tmp = 0xAAAAAAAB;
9285         else
9286                 tmp = 0x00000000;
9287         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9288
9289         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9290         tmp &= 0xffff0000;
9291         tmp |= sscdivintphase[idx];
9292         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9293
9294         mutex_unlock(&dev_priv->sb_lock);
9295 }
9296
9297 #undef BEND_IDX
9298
9299 static void lpt_init_pch_refclk(struct drm_device *dev)
9300 {
9301         struct intel_encoder *encoder;
9302         bool has_vga = false;
9303
9304         for_each_intel_encoder(dev, encoder) {
9305                 switch (encoder->type) {
9306                 case INTEL_OUTPUT_ANALOG:
9307                         has_vga = true;
9308                         break;
9309                 default:
9310                         break;
9311                 }
9312         }
9313
9314         if (has_vga) {
9315                 lpt_bend_clkout_dp(to_i915(dev), 0);
9316                 lpt_enable_clkout_dp(dev, true, true);
9317         } else {
9318                 lpt_disable_clkout_dp(dev);
9319         }
9320 }
9321
9322 /*
9323  * Initialize reference clocks when the driver loads
9324  */
9325 void intel_init_pch_refclk(struct drm_device *dev)
9326 {
9327         struct drm_i915_private *dev_priv = to_i915(dev);
9328
9329         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9330                 ironlake_init_pch_refclk(dev);
9331         else if (HAS_PCH_LPT(dev_priv))
9332                 lpt_init_pch_refclk(dev);
9333 }
9334
9335 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
9336 {
9337         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9338         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9339         int pipe = intel_crtc->pipe;
9340         uint32_t val;
9341
9342         val = 0;
9343
9344         switch (intel_crtc->config->pipe_bpp) {
9345         case 18:
9346                 val |= PIPECONF_6BPC;
9347                 break;
9348         case 24:
9349                 val |= PIPECONF_8BPC;
9350                 break;
9351         case 30:
9352                 val |= PIPECONF_10BPC;
9353                 break;
9354         case 36:
9355                 val |= PIPECONF_12BPC;
9356                 break;
9357         default:
9358                 /* Case prevented by intel_choose_pipe_bpp_dither. */
9359                 BUG();
9360         }
9361
9362         if (intel_crtc->config->dither)
9363                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9364
9365         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9366                 val |= PIPECONF_INTERLACED_ILK;
9367         else
9368                 val |= PIPECONF_PROGRESSIVE;
9369
9370         if (intel_crtc->config->limited_color_range)
9371                 val |= PIPECONF_COLOR_RANGE_SELECT;
9372
9373         I915_WRITE(PIPECONF(pipe), val);
9374         POSTING_READ(PIPECONF(pipe));
9375 }
9376
9377 static void haswell_set_pipeconf(struct drm_crtc *crtc)
9378 {
9379         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9380         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9381         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9382         u32 val = 0;
9383
9384         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
9385                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9386
9387         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9388                 val |= PIPECONF_INTERLACED_ILK;
9389         else
9390                 val |= PIPECONF_PROGRESSIVE;
9391
9392         I915_WRITE(PIPECONF(cpu_transcoder), val);
9393         POSTING_READ(PIPECONF(cpu_transcoder));
9394 }
9395
9396 static void haswell_set_pipemisc(struct drm_crtc *crtc)
9397 {
9398         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9399         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9400
9401         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9402                 u32 val = 0;
9403
9404                 switch (intel_crtc->config->pipe_bpp) {
9405                 case 18:
9406                         val |= PIPEMISC_DITHER_6_BPC;
9407                         break;
9408                 case 24:
9409                         val |= PIPEMISC_DITHER_8_BPC;
9410                         break;
9411                 case 30:
9412                         val |= PIPEMISC_DITHER_10_BPC;
9413                         break;
9414                 case 36:
9415                         val |= PIPEMISC_DITHER_12_BPC;
9416                         break;
9417                 default:
9418                         /* Case prevented by pipe_config_set_bpp. */
9419                         BUG();
9420                 }
9421
9422                 if (intel_crtc->config->dither)
9423                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9424
9425                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
9426         }
9427 }
9428
9429 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9430 {
9431         /*
9432          * Account for spread spectrum to avoid
9433          * oversubscribing the link. Max center spread
9434          * is 2.5%; use 5% for safety's sake.
9435          */
9436         u32 bps = target_clock * bpp * 21 / 20;
9437         return DIV_ROUND_UP(bps, link_bw * 8);
9438 }
9439
9440 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9441 {
9442         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9443 }
9444
9445 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9446                                   struct intel_crtc_state *crtc_state,
9447                                   struct dpll *reduced_clock)
9448 {
9449         struct drm_crtc *crtc = &intel_crtc->base;
9450         struct drm_device *dev = crtc->dev;
9451         struct drm_i915_private *dev_priv = to_i915(dev);
9452         u32 dpll, fp, fp2;
9453         int factor;
9454
9455         /* Enable autotuning of the PLL clock (if permissible) */
9456         factor = 21;
9457         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9458                 if ((intel_panel_use_ssc(dev_priv) &&
9459                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
9460                     (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
9461                         factor = 25;
9462         } else if (crtc_state->sdvo_tv_clock)
9463                 factor = 20;
9464
9465         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9466
9467         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9468                 fp |= FP_CB_TUNE;
9469
9470         if (reduced_clock) {
9471                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
9472
9473                 if (reduced_clock->m < factor * reduced_clock->n)
9474                         fp2 |= FP_CB_TUNE;
9475         } else {
9476                 fp2 = fp;
9477         }
9478
9479         dpll = 0;
9480
9481         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9482                 dpll |= DPLLB_MODE_LVDS;
9483         else
9484                 dpll |= DPLLB_MODE_DAC_SERIAL;
9485
9486         dpll |= (crtc_state->pixel_multiplier - 1)
9487                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9488
9489         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9490             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9491                 dpll |= DPLL_SDVO_HIGH_SPEED;
9492
9493         if (intel_crtc_has_dp_encoder(crtc_state))
9494                 dpll |= DPLL_SDVO_HIGH_SPEED;
9495
9496         /*
9497          * The high speed IO clock is only really required for
9498          * SDVO/HDMI/DP, but we also enable it for CRT to make it
9499          * possible to share the DPLL between CRT and HDMI. Enabling
9500          * the clock needlessly does no real harm, except use up a
9501          * bit of power potentially.
9502          *
9503          * We'll limit this to IVB with 3 pipes, since it has only two
9504          * DPLLs and so DPLL sharing is the only way to get three pipes
9505          * driving PCH ports at the same time. On SNB we could do this,
9506          * and potentially avoid enabling the second DPLL, but it's not
9507          * clear if it''s a win or loss power wise. No point in doing
9508          * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9509          */
9510         if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
9511             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9512                 dpll |= DPLL_SDVO_HIGH_SPEED;
9513
9514         /* compute bitmask from p1 value */
9515         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9516         /* also FPA1 */
9517         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9518
9519         switch (crtc_state->dpll.p2) {
9520         case 5:
9521                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9522                 break;
9523         case 7:
9524                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9525                 break;
9526         case 10:
9527                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9528                 break;
9529         case 14:
9530                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9531                 break;
9532         }
9533
9534         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9535             intel_panel_use_ssc(dev_priv))
9536                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9537         else
9538                 dpll |= PLL_REF_INPUT_DREFCLK;
9539
9540         dpll |= DPLL_VCO_ENABLE;
9541
9542         crtc_state->dpll_hw_state.dpll = dpll;
9543         crtc_state->dpll_hw_state.fp0 = fp;
9544         crtc_state->dpll_hw_state.fp1 = fp2;
9545 }
9546
9547 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9548                                        struct intel_crtc_state *crtc_state)
9549 {
9550         struct drm_device *dev = crtc->base.dev;
9551         struct drm_i915_private *dev_priv = to_i915(dev);
9552         struct dpll reduced_clock;
9553         bool has_reduced_clock = false;
9554         struct intel_shared_dpll *pll;
9555         const struct intel_limit *limit;
9556         int refclk = 120000;
9557
9558         memset(&crtc_state->dpll_hw_state, 0,
9559                sizeof(crtc_state->dpll_hw_state));
9560
9561         crtc->lowfreq_avail = false;
9562
9563         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9564         if (!crtc_state->has_pch_encoder)
9565                 return 0;
9566
9567         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9568                 if (intel_panel_use_ssc(dev_priv)) {
9569                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9570                                       dev_priv->vbt.lvds_ssc_freq);
9571                         refclk = dev_priv->vbt.lvds_ssc_freq;
9572                 }
9573
9574                 if (intel_is_dual_link_lvds(dev)) {
9575                         if (refclk == 100000)
9576                                 limit = &intel_limits_ironlake_dual_lvds_100m;
9577                         else
9578                                 limit = &intel_limits_ironlake_dual_lvds;
9579                 } else {
9580                         if (refclk == 100000)
9581                                 limit = &intel_limits_ironlake_single_lvds_100m;
9582                         else
9583                                 limit = &intel_limits_ironlake_single_lvds;
9584                 }
9585         } else {
9586                 limit = &intel_limits_ironlake_dac;
9587         }
9588
9589         if (!crtc_state->clock_set &&
9590             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9591                                 refclk, NULL, &crtc_state->dpll)) {
9592                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9593                 return -EINVAL;
9594         }
9595
9596         ironlake_compute_dpll(crtc, crtc_state,
9597                               has_reduced_clock ? &reduced_clock : NULL);
9598
9599         pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9600         if (pll == NULL) {
9601                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9602                                  pipe_name(crtc->pipe));
9603                 return -EINVAL;
9604         }
9605
9606         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9607             has_reduced_clock)
9608                 crtc->lowfreq_avail = true;
9609
9610         return 0;
9611 }
9612
9613 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9614                                          struct intel_link_m_n *m_n)
9615 {
9616         struct drm_device *dev = crtc->base.dev;
9617         struct drm_i915_private *dev_priv = to_i915(dev);
9618         enum pipe pipe = crtc->pipe;
9619
9620         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9621         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9622         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9623                 & ~TU_SIZE_MASK;
9624         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9625         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9626                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9627 }
9628
9629 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9630                                          enum transcoder transcoder,
9631                                          struct intel_link_m_n *m_n,
9632                                          struct intel_link_m_n *m2_n2)
9633 {
9634         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9635         enum pipe pipe = crtc->pipe;
9636
9637         if (INTEL_GEN(dev_priv) >= 5) {
9638                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9639                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9640                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9641                         & ~TU_SIZE_MASK;
9642                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9643                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9644                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9645                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9646                  * gen < 8) and if DRRS is supported (to make sure the
9647                  * registers are not unnecessarily read).
9648                  */
9649                 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
9650                         crtc->config->has_drrs) {
9651                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9652                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9653                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9654                                         & ~TU_SIZE_MASK;
9655                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9656                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9657                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9658                 }
9659         } else {
9660                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9661                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9662                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9663                         & ~TU_SIZE_MASK;
9664                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9665                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9666                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9667         }
9668 }
9669
9670 void intel_dp_get_m_n(struct intel_crtc *crtc,
9671                       struct intel_crtc_state *pipe_config)
9672 {
9673         if (pipe_config->has_pch_encoder)
9674                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9675         else
9676                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9677                                              &pipe_config->dp_m_n,
9678                                              &pipe_config->dp_m2_n2);
9679 }
9680
9681 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9682                                         struct intel_crtc_state *pipe_config)
9683 {
9684         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9685                                      &pipe_config->fdi_m_n, NULL);
9686 }
9687
9688 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9689                                     struct intel_crtc_state *pipe_config)
9690 {
9691         struct drm_device *dev = crtc->base.dev;
9692         struct drm_i915_private *dev_priv = to_i915(dev);
9693         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9694         uint32_t ps_ctrl = 0;
9695         int id = -1;
9696         int i;
9697
9698         /* find scaler attached to this pipe */
9699         for (i = 0; i < crtc->num_scalers; i++) {
9700                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9701                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9702                         id = i;
9703                         pipe_config->pch_pfit.enabled = true;
9704                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9705                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9706                         break;
9707                 }
9708         }
9709
9710         scaler_state->scaler_id = id;
9711         if (id >= 0) {
9712                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9713         } else {
9714                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9715         }
9716 }
9717
9718 static void
9719 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9720                                  struct intel_initial_plane_config *plane_config)
9721 {
9722         struct drm_device *dev = crtc->base.dev;
9723         struct drm_i915_private *dev_priv = to_i915(dev);
9724         u32 val, base, offset, stride_mult, tiling;
9725         int pipe = crtc->pipe;
9726         int fourcc, pixel_format;
9727         unsigned int aligned_height;
9728         struct drm_framebuffer *fb;
9729         struct intel_framebuffer *intel_fb;
9730
9731         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9732         if (!intel_fb) {
9733                 DRM_DEBUG_KMS("failed to alloc fb\n");
9734                 return;
9735         }
9736
9737         fb = &intel_fb->base;
9738
9739         val = I915_READ(PLANE_CTL(pipe, 0));
9740         if (!(val & PLANE_CTL_ENABLE))
9741                 goto error;
9742
9743         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9744         fourcc = skl_format_to_fourcc(pixel_format,
9745                                       val & PLANE_CTL_ORDER_RGBX,
9746                                       val & PLANE_CTL_ALPHA_MASK);
9747         fb->pixel_format = fourcc;
9748         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9749
9750         tiling = val & PLANE_CTL_TILED_MASK;
9751         switch (tiling) {
9752         case PLANE_CTL_TILED_LINEAR:
9753                 fb->modifier = DRM_FORMAT_MOD_NONE;
9754                 break;
9755         case PLANE_CTL_TILED_X:
9756                 plane_config->tiling = I915_TILING_X;
9757                 fb->modifier = I915_FORMAT_MOD_X_TILED;
9758                 break;
9759         case PLANE_CTL_TILED_Y:
9760                 fb->modifier = I915_FORMAT_MOD_Y_TILED;
9761                 break;
9762         case PLANE_CTL_TILED_YF:
9763                 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
9764                 break;
9765         default:
9766                 MISSING_CASE(tiling);
9767                 goto error;
9768         }
9769
9770         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9771         plane_config->base = base;
9772
9773         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9774
9775         val = I915_READ(PLANE_SIZE(pipe, 0));
9776         fb->height = ((val >> 16) & 0xfff) + 1;
9777         fb->width = ((val >> 0) & 0x1fff) + 1;
9778
9779         val = I915_READ(PLANE_STRIDE(pipe, 0));
9780         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier,
9781                                                 fb->pixel_format);
9782         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9783
9784         aligned_height = intel_fb_align_height(dev, fb->height,
9785                                                fb->pixel_format,
9786                                                fb->modifier);
9787
9788         plane_config->size = fb->pitches[0] * aligned_height;
9789
9790         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9791                       pipe_name(pipe), fb->width, fb->height,
9792                       fb->bits_per_pixel, base, fb->pitches[0],
9793                       plane_config->size);
9794
9795         plane_config->fb = intel_fb;
9796         return;
9797
9798 error:
9799         kfree(intel_fb);
9800 }
9801
9802 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9803                                      struct intel_crtc_state *pipe_config)
9804 {
9805         struct drm_device *dev = crtc->base.dev;
9806         struct drm_i915_private *dev_priv = to_i915(dev);
9807         uint32_t tmp;
9808
9809         tmp = I915_READ(PF_CTL(crtc->pipe));
9810
9811         if (tmp & PF_ENABLE) {
9812                 pipe_config->pch_pfit.enabled = true;
9813                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9814                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9815
9816                 /* We currently do not free assignements of panel fitters on
9817                  * ivb/hsw (since we don't use the higher upscaling modes which
9818                  * differentiates them) so just WARN about this case for now. */
9819                 if (IS_GEN7(dev_priv)) {
9820                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9821                                 PF_PIPE_SEL_IVB(crtc->pipe));
9822                 }
9823         }
9824 }
9825
9826 static void
9827 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9828                                   struct intel_initial_plane_config *plane_config)
9829 {
9830         struct drm_device *dev = crtc->base.dev;
9831         struct drm_i915_private *dev_priv = to_i915(dev);
9832         u32 val, base, offset;
9833         int pipe = crtc->pipe;
9834         int fourcc, pixel_format;
9835         unsigned int aligned_height;
9836         struct drm_framebuffer *fb;
9837         struct intel_framebuffer *intel_fb;
9838
9839         val = I915_READ(DSPCNTR(pipe));
9840         if (!(val & DISPLAY_PLANE_ENABLE))
9841                 return;
9842
9843         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9844         if (!intel_fb) {
9845                 DRM_DEBUG_KMS("failed to alloc fb\n");
9846                 return;
9847         }
9848
9849         fb = &intel_fb->base;
9850
9851         if (INTEL_GEN(dev_priv) >= 4) {
9852                 if (val & DISPPLANE_TILED) {
9853                         plane_config->tiling = I915_TILING_X;
9854                         fb->modifier = I915_FORMAT_MOD_X_TILED;
9855                 }
9856         }
9857
9858         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9859         fourcc = i9xx_format_to_fourcc(pixel_format);
9860         fb->pixel_format = fourcc;
9861         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9862
9863         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9864         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9865                 offset = I915_READ(DSPOFFSET(pipe));
9866         } else {
9867                 if (plane_config->tiling)
9868                         offset = I915_READ(DSPTILEOFF(pipe));
9869                 else
9870                         offset = I915_READ(DSPLINOFF(pipe));
9871         }
9872         plane_config->base = base;
9873
9874         val = I915_READ(PIPESRC(pipe));
9875         fb->width = ((val >> 16) & 0xfff) + 1;
9876         fb->height = ((val >> 0) & 0xfff) + 1;
9877
9878         val = I915_READ(DSPSTRIDE(pipe));
9879         fb->pitches[0] = val & 0xffffffc0;
9880
9881         aligned_height = intel_fb_align_height(dev, fb->height,
9882                                                fb->pixel_format,
9883                                                fb->modifier);
9884
9885         plane_config->size = fb->pitches[0] * aligned_height;
9886
9887         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9888                       pipe_name(pipe), fb->width, fb->height,
9889                       fb->bits_per_pixel, base, fb->pitches[0],
9890                       plane_config->size);
9891
9892         plane_config->fb = intel_fb;
9893 }
9894
9895 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9896                                      struct intel_crtc_state *pipe_config)
9897 {
9898         struct drm_device *dev = crtc->base.dev;
9899         struct drm_i915_private *dev_priv = to_i915(dev);
9900         enum intel_display_power_domain power_domain;
9901         uint32_t tmp;
9902         bool ret;
9903
9904         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9905         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9906                 return false;
9907
9908         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9909         pipe_config->shared_dpll = NULL;
9910
9911         ret = false;
9912         tmp = I915_READ(PIPECONF(crtc->pipe));
9913         if (!(tmp & PIPECONF_ENABLE))
9914                 goto out;
9915
9916         switch (tmp & PIPECONF_BPC_MASK) {
9917         case PIPECONF_6BPC:
9918                 pipe_config->pipe_bpp = 18;
9919                 break;
9920         case PIPECONF_8BPC:
9921                 pipe_config->pipe_bpp = 24;
9922                 break;
9923         case PIPECONF_10BPC:
9924                 pipe_config->pipe_bpp = 30;
9925                 break;
9926         case PIPECONF_12BPC:
9927                 pipe_config->pipe_bpp = 36;
9928                 break;
9929         default:
9930                 break;
9931         }
9932
9933         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9934                 pipe_config->limited_color_range = true;
9935
9936         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9937                 struct intel_shared_dpll *pll;
9938                 enum intel_dpll_id pll_id;
9939
9940                 pipe_config->has_pch_encoder = true;
9941
9942                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9943                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9944                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9945
9946                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9947
9948                 if (HAS_PCH_IBX(dev_priv)) {
9949                         /*
9950                          * The pipe->pch transcoder and pch transcoder->pll
9951                          * mapping is fixed.
9952                          */
9953                         pll_id = (enum intel_dpll_id) crtc->pipe;
9954                 } else {
9955                         tmp = I915_READ(PCH_DPLL_SEL);
9956                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9957                                 pll_id = DPLL_ID_PCH_PLL_B;
9958                         else
9959                                 pll_id= DPLL_ID_PCH_PLL_A;
9960                 }
9961
9962                 pipe_config->shared_dpll =
9963                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
9964                 pll = pipe_config->shared_dpll;
9965
9966                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9967                                                  &pipe_config->dpll_hw_state));
9968
9969                 tmp = pipe_config->dpll_hw_state.dpll;
9970                 pipe_config->pixel_multiplier =
9971                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9972                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9973
9974                 ironlake_pch_clock_get(crtc, pipe_config);
9975         } else {
9976                 pipe_config->pixel_multiplier = 1;
9977         }
9978
9979         intel_get_pipe_timings(crtc, pipe_config);
9980         intel_get_pipe_src_size(crtc, pipe_config);
9981
9982         ironlake_get_pfit_config(crtc, pipe_config);
9983
9984         ret = true;
9985
9986 out:
9987         intel_display_power_put(dev_priv, power_domain);
9988
9989         return ret;
9990 }
9991
9992 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9993 {
9994         struct drm_device *dev = &dev_priv->drm;
9995         struct intel_crtc *crtc;
9996
9997         for_each_intel_crtc(dev, crtc)
9998                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9999                      pipe_name(crtc->pipe));
10000
10001         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
10002         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
10003         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
10004         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
10005         I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
10006         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
10007              "CPU PWM1 enabled\n");
10008         if (IS_HASWELL(dev_priv))
10009                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
10010                      "CPU PWM2 enabled\n");
10011         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
10012              "PCH PWM1 enabled\n");
10013         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
10014              "Utility pin enabled\n");
10015         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
10016
10017         /*
10018          * In theory we can still leave IRQs enabled, as long as only the HPD
10019          * interrupts remain enabled. We used to check for that, but since it's
10020          * gen-specific and since we only disable LCPLL after we fully disable
10021          * the interrupts, the check below should be enough.
10022          */
10023         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
10024 }
10025
10026 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10027 {
10028         if (IS_HASWELL(dev_priv))
10029                 return I915_READ(D_COMP_HSW);
10030         else
10031                 return I915_READ(D_COMP_BDW);
10032 }
10033
10034 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10035 {
10036         if (IS_HASWELL(dev_priv)) {
10037                 mutex_lock(&dev_priv->rps.hw_lock);
10038                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10039                                             val))
10040                         DRM_DEBUG_KMS("Failed to write to D_COMP\n");
10041                 mutex_unlock(&dev_priv->rps.hw_lock);
10042         } else {
10043                 I915_WRITE(D_COMP_BDW, val);
10044                 POSTING_READ(D_COMP_BDW);
10045         }
10046 }
10047
10048 /*
10049  * This function implements pieces of two sequences from BSpec:
10050  * - Sequence for display software to disable LCPLL
10051  * - Sequence for display software to allow package C8+
10052  * The steps implemented here are just the steps that actually touch the LCPLL
10053  * register. Callers should take care of disabling all the display engine
10054  * functions, doing the mode unset, fixing interrupts, etc.
10055  */
10056 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10057                               bool switch_to_fclk, bool allow_power_down)
10058 {
10059         uint32_t val;
10060
10061         assert_can_disable_lcpll(dev_priv);
10062
10063         val = I915_READ(LCPLL_CTL);
10064
10065         if (switch_to_fclk) {
10066                 val |= LCPLL_CD_SOURCE_FCLK;
10067                 I915_WRITE(LCPLL_CTL, val);
10068
10069                 if (wait_for_us(I915_READ(LCPLL_CTL) &
10070                                 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10071                         DRM_ERROR("Switching to FCLK failed\n");
10072
10073                 val = I915_READ(LCPLL_CTL);
10074         }
10075
10076         val |= LCPLL_PLL_DISABLE;
10077         I915_WRITE(LCPLL_CTL, val);
10078         POSTING_READ(LCPLL_CTL);
10079
10080         if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
10081                 DRM_ERROR("LCPLL still locked\n");
10082
10083         val = hsw_read_dcomp(dev_priv);
10084         val |= D_COMP_COMP_DISABLE;
10085         hsw_write_dcomp(dev_priv, val);
10086         ndelay(100);
10087
10088         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10089                      1))
10090                 DRM_ERROR("D_COMP RCOMP still in progress\n");
10091
10092         if (allow_power_down) {
10093                 val = I915_READ(LCPLL_CTL);
10094                 val |= LCPLL_POWER_DOWN_ALLOW;
10095                 I915_WRITE(LCPLL_CTL, val);
10096                 POSTING_READ(LCPLL_CTL);
10097         }
10098 }
10099
10100 /*
10101  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10102  * source.
10103  */
10104 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
10105 {
10106         uint32_t val;
10107
10108         val = I915_READ(LCPLL_CTL);
10109
10110         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10111                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10112                 return;
10113
10114         /*
10115          * Make sure we're not on PC8 state before disabling PC8, otherwise
10116          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
10117          */
10118         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
10119
10120         if (val & LCPLL_POWER_DOWN_ALLOW) {
10121                 val &= ~LCPLL_POWER_DOWN_ALLOW;
10122                 I915_WRITE(LCPLL_CTL, val);
10123                 POSTING_READ(LCPLL_CTL);
10124         }
10125
10126         val = hsw_read_dcomp(dev_priv);
10127         val |= D_COMP_COMP_FORCE;
10128         val &= ~D_COMP_COMP_DISABLE;
10129         hsw_write_dcomp(dev_priv, val);
10130
10131         val = I915_READ(LCPLL_CTL);
10132         val &= ~LCPLL_PLL_DISABLE;
10133         I915_WRITE(LCPLL_CTL, val);
10134
10135         if (intel_wait_for_register(dev_priv,
10136                                     LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10137                                     5))
10138                 DRM_ERROR("LCPLL not locked yet\n");
10139
10140         if (val & LCPLL_CD_SOURCE_FCLK) {
10141                 val = I915_READ(LCPLL_CTL);
10142                 val &= ~LCPLL_CD_SOURCE_FCLK;
10143                 I915_WRITE(LCPLL_CTL, val);
10144
10145                 if (wait_for_us((I915_READ(LCPLL_CTL) &
10146                                  LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10147                         DRM_ERROR("Switching back to LCPLL failed\n");
10148         }
10149
10150         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10151         intel_update_cdclk(dev_priv);
10152 }
10153
10154 /*
10155  * Package states C8 and deeper are really deep PC states that can only be
10156  * reached when all the devices on the system allow it, so even if the graphics
10157  * device allows PC8+, it doesn't mean the system will actually get to these
10158  * states. Our driver only allows PC8+ when going into runtime PM.
10159  *
10160  * The requirements for PC8+ are that all the outputs are disabled, the power
10161  * well is disabled and most interrupts are disabled, and these are also
10162  * requirements for runtime PM. When these conditions are met, we manually do
10163  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10164  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10165  * hang the machine.
10166  *
10167  * When we really reach PC8 or deeper states (not just when we allow it) we lose
10168  * the state of some registers, so when we come back from PC8+ we need to
10169  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10170  * need to take care of the registers kept by RC6. Notice that this happens even
10171  * if we don't put the device in PCI D3 state (which is what currently happens
10172  * because of the runtime PM support).
10173  *
10174  * For more, read "Display Sequences for Package C8" on the hardware
10175  * documentation.
10176  */
10177 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
10178 {
10179         struct drm_device *dev = &dev_priv->drm;
10180         uint32_t val;
10181
10182         DRM_DEBUG_KMS("Enabling package C8+\n");
10183
10184         if (HAS_PCH_LPT_LP(dev_priv)) {
10185                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10186                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10187                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10188         }
10189
10190         lpt_disable_clkout_dp(dev);
10191         hsw_disable_lcpll(dev_priv, true, true);
10192 }
10193
10194 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
10195 {
10196         struct drm_device *dev = &dev_priv->drm;
10197         uint32_t val;
10198
10199         DRM_DEBUG_KMS("Disabling package C8+\n");
10200
10201         hsw_restore_lcpll(dev_priv);
10202         lpt_init_pch_refclk(dev);
10203
10204         if (HAS_PCH_LPT_LP(dev_priv)) {
10205                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10206                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10207                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10208         }
10209 }
10210
10211 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10212 {
10213         struct drm_device *dev = old_state->dev;
10214         struct intel_atomic_state *old_intel_state =
10215                 to_intel_atomic_state(old_state);
10216         unsigned int req_cdclk = old_intel_state->dev_cdclk;
10217
10218         bxt_set_cdclk(to_i915(dev), req_cdclk);
10219 }
10220
10221 static int bdw_adjust_min_pipe_pixel_rate(struct intel_crtc_state *crtc_state,
10222                                           int pixel_rate)
10223 {
10224         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
10225
10226         /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10227         if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
10228                 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10229
10230         /* BSpec says "Do not use DisplayPort with CDCLK less than
10231          * 432 MHz, audio enabled, port width x4, and link rate
10232          * HBR2 (5.4 GHz), or else there may be audio corruption or
10233          * screen corruption."
10234          */
10235         if (intel_crtc_has_dp_encoder(crtc_state) &&
10236             crtc_state->has_audio &&
10237             crtc_state->port_clock >= 540000 &&
10238             crtc_state->lane_count == 4)
10239                 pixel_rate = max(432000, pixel_rate);
10240
10241         return pixel_rate;
10242 }
10243
10244 /* compute the max rate for new configuration */
10245 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
10246 {
10247         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10248         struct drm_i915_private *dev_priv = to_i915(state->dev);
10249         struct drm_crtc *crtc;
10250         struct drm_crtc_state *cstate;
10251         struct intel_crtc_state *crtc_state;
10252         unsigned max_pixel_rate = 0, i;
10253         enum pipe pipe;
10254
10255         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10256                sizeof(intel_state->min_pixclk));
10257
10258         for_each_crtc_in_state(state, crtc, cstate, i) {
10259                 int pixel_rate;
10260
10261                 crtc_state = to_intel_crtc_state(cstate);
10262                 if (!crtc_state->base.enable) {
10263                         intel_state->min_pixclk[i] = 0;
10264                         continue;
10265                 }
10266
10267                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
10268
10269                 if (IS_BROADWELL(dev_priv) || IS_GEN9(dev_priv))
10270                         pixel_rate = bdw_adjust_min_pipe_pixel_rate(crtc_state,
10271                                                                     pixel_rate);
10272
10273                 intel_state->min_pixclk[i] = pixel_rate;
10274         }
10275
10276         for_each_pipe(dev_priv, pipe)
10277                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10278
10279         return max_pixel_rate;
10280 }
10281
10282 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10283 {
10284         struct drm_i915_private *dev_priv = to_i915(dev);
10285         uint32_t val, data;
10286         int ret;
10287
10288         if (WARN((I915_READ(LCPLL_CTL) &
10289                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10290                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10291                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10292                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10293                  "trying to change cdclk frequency with cdclk not enabled\n"))
10294                 return;
10295
10296         mutex_lock(&dev_priv->rps.hw_lock);
10297         ret = sandybridge_pcode_write(dev_priv,
10298                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10299         mutex_unlock(&dev_priv->rps.hw_lock);
10300         if (ret) {
10301                 DRM_ERROR("failed to inform pcode about cdclk change\n");
10302                 return;
10303         }
10304
10305         val = I915_READ(LCPLL_CTL);
10306         val |= LCPLL_CD_SOURCE_FCLK;
10307         I915_WRITE(LCPLL_CTL, val);
10308
10309         if (wait_for_us(I915_READ(LCPLL_CTL) &
10310                         LCPLL_CD_SOURCE_FCLK_DONE, 1))
10311                 DRM_ERROR("Switching to FCLK failed\n");
10312
10313         val = I915_READ(LCPLL_CTL);
10314         val &= ~LCPLL_CLK_FREQ_MASK;
10315
10316         switch (cdclk) {
10317         case 450000:
10318                 val |= LCPLL_CLK_FREQ_450;
10319                 data = 0;
10320                 break;
10321         case 540000:
10322                 val |= LCPLL_CLK_FREQ_54O_BDW;
10323                 data = 1;
10324                 break;
10325         case 337500:
10326                 val |= LCPLL_CLK_FREQ_337_5_BDW;
10327                 data = 2;
10328                 break;
10329         case 675000:
10330                 val |= LCPLL_CLK_FREQ_675_BDW;
10331                 data = 3;
10332                 break;
10333         default:
10334                 WARN(1, "invalid cdclk frequency\n");
10335                 return;
10336         }
10337
10338         I915_WRITE(LCPLL_CTL, val);
10339
10340         val = I915_READ(LCPLL_CTL);
10341         val &= ~LCPLL_CD_SOURCE_FCLK;
10342         I915_WRITE(LCPLL_CTL, val);
10343
10344         if (wait_for_us((I915_READ(LCPLL_CTL) &
10345                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10346                 DRM_ERROR("Switching back to LCPLL failed\n");
10347
10348         mutex_lock(&dev_priv->rps.hw_lock);
10349         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10350         mutex_unlock(&dev_priv->rps.hw_lock);
10351
10352         I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10353
10354         intel_update_cdclk(dev_priv);
10355
10356         WARN(cdclk != dev_priv->cdclk_freq,
10357              "cdclk requested %d kHz but got %d kHz\n",
10358              cdclk, dev_priv->cdclk_freq);
10359 }
10360
10361 static int broadwell_calc_cdclk(int max_pixclk)
10362 {
10363         if (max_pixclk > 540000)
10364                 return 675000;
10365         else if (max_pixclk > 450000)
10366                 return 540000;
10367         else if (max_pixclk > 337500)
10368                 return 450000;
10369         else
10370                 return 337500;
10371 }
10372
10373 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
10374 {
10375         struct drm_i915_private *dev_priv = to_i915(state->dev);
10376         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10377         int max_pixclk = ilk_max_pixel_rate(state);
10378         int cdclk;
10379
10380         /*
10381          * FIXME should also account for plane ratio
10382          * once 64bpp pixel formats are supported.
10383          */
10384         cdclk = broadwell_calc_cdclk(max_pixclk);
10385
10386         if (cdclk > dev_priv->max_cdclk_freq) {
10387                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10388                               cdclk, dev_priv->max_cdclk_freq);
10389                 return -EINVAL;
10390         }
10391
10392         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10393         if (!intel_state->active_crtcs)
10394                 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
10395
10396         return 0;
10397 }
10398
10399 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10400 {
10401         struct drm_device *dev = old_state->dev;
10402         struct intel_atomic_state *old_intel_state =
10403                 to_intel_atomic_state(old_state);
10404         unsigned req_cdclk = old_intel_state->dev_cdclk;
10405
10406         broadwell_set_cdclk(dev, req_cdclk);
10407 }
10408
10409 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10410 {
10411         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10412         struct drm_i915_private *dev_priv = to_i915(state->dev);
10413         const int max_pixclk = ilk_max_pixel_rate(state);
10414         int vco = intel_state->cdclk_pll_vco;
10415         int cdclk;
10416
10417         /*
10418          * FIXME should also account for plane ratio
10419          * once 64bpp pixel formats are supported.
10420          */
10421         cdclk = skl_calc_cdclk(max_pixclk, vco);
10422
10423         /*
10424          * FIXME move the cdclk caclulation to
10425          * compute_config() so we can fail gracegully.
10426          */
10427         if (cdclk > dev_priv->max_cdclk_freq) {
10428                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10429                           cdclk, dev_priv->max_cdclk_freq);
10430                 cdclk = dev_priv->max_cdclk_freq;
10431         }
10432
10433         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10434         if (!intel_state->active_crtcs)
10435                 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
10436
10437         return 0;
10438 }
10439
10440 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10441 {
10442         struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10443         struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10444         unsigned int req_cdclk = intel_state->dev_cdclk;
10445         unsigned int req_vco = intel_state->cdclk_pll_vco;
10446
10447         skl_set_cdclk(dev_priv, req_cdclk, req_vco);
10448 }
10449
10450 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10451                                       struct intel_crtc_state *crtc_state)
10452 {
10453         if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
10454                 if (!intel_ddi_pll_select(crtc, crtc_state))
10455                         return -EINVAL;
10456         }
10457
10458         crtc->lowfreq_avail = false;
10459
10460         return 0;
10461 }
10462
10463 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10464                                 enum port port,
10465                                 struct intel_crtc_state *pipe_config)
10466 {
10467         enum intel_dpll_id id;
10468
10469         switch (port) {
10470         case PORT_A:
10471                 id = DPLL_ID_SKL_DPLL0;
10472                 break;
10473         case PORT_B:
10474                 id = DPLL_ID_SKL_DPLL1;
10475                 break;
10476         case PORT_C:
10477                 id = DPLL_ID_SKL_DPLL2;
10478                 break;
10479         default:
10480                 DRM_ERROR("Incorrect port type\n");
10481                 return;
10482         }
10483
10484         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10485 }
10486
10487 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10488                                 enum port port,
10489                                 struct intel_crtc_state *pipe_config)
10490 {
10491         enum intel_dpll_id id;
10492         u32 temp;
10493
10494         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10495         id = temp >> (port * 3 + 1);
10496
10497         if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10498                 return;
10499
10500         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10501 }
10502
10503 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10504                                 enum port port,
10505                                 struct intel_crtc_state *pipe_config)
10506 {
10507         enum intel_dpll_id id;
10508         uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10509
10510         switch (ddi_pll_sel) {
10511         case PORT_CLK_SEL_WRPLL1:
10512                 id = DPLL_ID_WRPLL1;
10513                 break;
10514         case PORT_CLK_SEL_WRPLL2:
10515                 id = DPLL_ID_WRPLL2;
10516                 break;
10517         case PORT_CLK_SEL_SPLL:
10518                 id = DPLL_ID_SPLL;
10519                 break;
10520         case PORT_CLK_SEL_LCPLL_810:
10521                 id = DPLL_ID_LCPLL_810;
10522                 break;
10523         case PORT_CLK_SEL_LCPLL_1350:
10524                 id = DPLL_ID_LCPLL_1350;
10525                 break;
10526         case PORT_CLK_SEL_LCPLL_2700:
10527                 id = DPLL_ID_LCPLL_2700;
10528                 break;
10529         default:
10530                 MISSING_CASE(ddi_pll_sel);
10531                 /* fall through */
10532         case PORT_CLK_SEL_NONE:
10533                 return;
10534         }
10535
10536         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10537 }
10538
10539 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10540                                      struct intel_crtc_state *pipe_config,
10541                                      unsigned long *power_domain_mask)
10542 {
10543         struct drm_device *dev = crtc->base.dev;
10544         struct drm_i915_private *dev_priv = to_i915(dev);
10545         enum intel_display_power_domain power_domain;
10546         u32 tmp;
10547
10548         /*
10549          * The pipe->transcoder mapping is fixed with the exception of the eDP
10550          * transcoder handled below.
10551          */
10552         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10553
10554         /*
10555          * XXX: Do intel_display_power_get_if_enabled before reading this (for
10556          * consistency and less surprising code; it's in always on power).
10557          */
10558         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10559         if (tmp & TRANS_DDI_FUNC_ENABLE) {
10560                 enum pipe trans_edp_pipe;
10561                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10562                 default:
10563                         WARN(1, "unknown pipe linked to edp transcoder\n");
10564                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10565                 case TRANS_DDI_EDP_INPUT_A_ON:
10566                         trans_edp_pipe = PIPE_A;
10567                         break;
10568                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10569                         trans_edp_pipe = PIPE_B;
10570                         break;
10571                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10572                         trans_edp_pipe = PIPE_C;
10573                         break;
10574                 }
10575
10576                 if (trans_edp_pipe == crtc->pipe)
10577                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
10578         }
10579
10580         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10581         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10582                 return false;
10583         *power_domain_mask |= BIT(power_domain);
10584
10585         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10586
10587         return tmp & PIPECONF_ENABLE;
10588 }
10589
10590 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10591                                          struct intel_crtc_state *pipe_config,
10592                                          unsigned long *power_domain_mask)
10593 {
10594         struct drm_device *dev = crtc->base.dev;
10595         struct drm_i915_private *dev_priv = to_i915(dev);
10596         enum intel_display_power_domain power_domain;
10597         enum port port;
10598         enum transcoder cpu_transcoder;
10599         u32 tmp;
10600
10601         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10602                 if (port == PORT_A)
10603                         cpu_transcoder = TRANSCODER_DSI_A;
10604                 else
10605                         cpu_transcoder = TRANSCODER_DSI_C;
10606
10607                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10608                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10609                         continue;
10610                 *power_domain_mask |= BIT(power_domain);
10611
10612                 /*
10613                  * The PLL needs to be enabled with a valid divider
10614                  * configuration, otherwise accessing DSI registers will hang
10615                  * the machine. See BSpec North Display Engine
10616                  * registers/MIPI[BXT]. We can break out here early, since we
10617                  * need the same DSI PLL to be enabled for both DSI ports.
10618                  */
10619                 if (!intel_dsi_pll_is_enabled(dev_priv))
10620                         break;
10621
10622                 /* XXX: this works for video mode only */
10623                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10624                 if (!(tmp & DPI_ENABLE))
10625                         continue;
10626
10627                 tmp = I915_READ(MIPI_CTRL(port));
10628                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10629                         continue;
10630
10631                 pipe_config->cpu_transcoder = cpu_transcoder;
10632                 break;
10633         }
10634
10635         return transcoder_is_dsi(pipe_config->cpu_transcoder);
10636 }
10637
10638 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10639                                        struct intel_crtc_state *pipe_config)
10640 {
10641         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10642         struct intel_shared_dpll *pll;
10643         enum port port;
10644         uint32_t tmp;
10645
10646         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10647
10648         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10649
10650         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
10651                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10652         else if (IS_BROXTON(dev_priv))
10653                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10654         else
10655                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10656
10657         pll = pipe_config->shared_dpll;
10658         if (pll) {
10659                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10660                                                  &pipe_config->dpll_hw_state));
10661         }
10662
10663         /*
10664          * Haswell has only FDI/PCH transcoder A. It is which is connected to
10665          * DDI E. So just check whether this pipe is wired to DDI E and whether
10666          * the PCH transcoder is on.
10667          */
10668         if (INTEL_GEN(dev_priv) < 9 &&
10669             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10670                 pipe_config->has_pch_encoder = true;
10671
10672                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10673                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10674                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
10675
10676                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10677         }
10678 }
10679
10680 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10681                                     struct intel_crtc_state *pipe_config)
10682 {
10683         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10684         enum intel_display_power_domain power_domain;
10685         unsigned long power_domain_mask;
10686         bool active;
10687
10688         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10689         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10690                 return false;
10691         power_domain_mask = BIT(power_domain);
10692
10693         pipe_config->shared_dpll = NULL;
10694
10695         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10696
10697         if (IS_BROXTON(dev_priv) &&
10698             bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10699                 WARN_ON(active);
10700                 active = true;
10701         }
10702
10703         if (!active)
10704                 goto out;
10705
10706         if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10707                 haswell_get_ddi_port_state(crtc, pipe_config);
10708                 intel_get_pipe_timings(crtc, pipe_config);
10709         }
10710
10711         intel_get_pipe_src_size(crtc, pipe_config);
10712
10713         pipe_config->gamma_mode =
10714                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10715
10716         if (INTEL_GEN(dev_priv) >= 9) {
10717                 skl_init_scalers(dev_priv, crtc, pipe_config);
10718
10719                 pipe_config->scaler_state.scaler_id = -1;
10720                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10721         }
10722
10723         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10724         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10725                 power_domain_mask |= BIT(power_domain);
10726                 if (INTEL_GEN(dev_priv) >= 9)
10727                         skylake_get_pfit_config(crtc, pipe_config);
10728                 else
10729                         ironlake_get_pfit_config(crtc, pipe_config);
10730         }
10731
10732         if (IS_HASWELL(dev_priv))
10733                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10734                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10735
10736         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10737             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10738                 pipe_config->pixel_multiplier =
10739                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10740         } else {
10741                 pipe_config->pixel_multiplier = 1;
10742         }
10743
10744 out:
10745         for_each_power_domain(power_domain, power_domain_mask)
10746                 intel_display_power_put(dev_priv, power_domain);
10747
10748         return active;
10749 }
10750
10751 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10752                                const struct intel_plane_state *plane_state)
10753 {
10754         struct drm_device *dev = crtc->dev;
10755         struct drm_i915_private *dev_priv = to_i915(dev);
10756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10757         uint32_t cntl = 0, size = 0;
10758
10759         if (plane_state && plane_state->base.visible) {
10760                 unsigned int width = plane_state->base.crtc_w;
10761                 unsigned int height = plane_state->base.crtc_h;
10762                 unsigned int stride = roundup_pow_of_two(width) * 4;
10763
10764                 switch (stride) {
10765                 default:
10766                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10767                                   width, stride);
10768                         stride = 256;
10769                         /* fallthrough */
10770                 case 256:
10771                 case 512:
10772                 case 1024:
10773                 case 2048:
10774                         break;
10775                 }
10776
10777                 cntl |= CURSOR_ENABLE |
10778                         CURSOR_GAMMA_ENABLE |
10779                         CURSOR_FORMAT_ARGB |
10780                         CURSOR_STRIDE(stride);
10781
10782                 size = (height << 12) | width;
10783         }
10784
10785         if (intel_crtc->cursor_cntl != 0 &&
10786             (intel_crtc->cursor_base != base ||
10787              intel_crtc->cursor_size != size ||
10788              intel_crtc->cursor_cntl != cntl)) {
10789                 /* On these chipsets we can only modify the base/size/stride
10790                  * whilst the cursor is disabled.
10791                  */
10792                 I915_WRITE(CURCNTR(PIPE_A), 0);
10793                 POSTING_READ(CURCNTR(PIPE_A));
10794                 intel_crtc->cursor_cntl = 0;
10795         }
10796
10797         if (intel_crtc->cursor_base != base) {
10798                 I915_WRITE(CURBASE(PIPE_A), base);
10799                 intel_crtc->cursor_base = base;
10800         }
10801
10802         if (intel_crtc->cursor_size != size) {
10803                 I915_WRITE(CURSIZE, size);
10804                 intel_crtc->cursor_size = size;
10805         }
10806
10807         if (intel_crtc->cursor_cntl != cntl) {
10808                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10809                 POSTING_READ(CURCNTR(PIPE_A));
10810                 intel_crtc->cursor_cntl = cntl;
10811         }
10812 }
10813
10814 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10815                                const struct intel_plane_state *plane_state)
10816 {
10817         struct drm_device *dev = crtc->dev;
10818         struct drm_i915_private *dev_priv = to_i915(dev);
10819         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10820         int pipe = intel_crtc->pipe;
10821         uint32_t cntl = 0;
10822
10823         if (plane_state && plane_state->base.visible) {
10824                 cntl = MCURSOR_GAMMA_ENABLE;
10825                 switch (plane_state->base.crtc_w) {
10826                         case 64:
10827                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10828                                 break;
10829                         case 128:
10830                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10831                                 break;
10832                         case 256:
10833                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10834                                 break;
10835                         default:
10836                                 MISSING_CASE(plane_state->base.crtc_w);
10837                                 return;
10838                 }
10839                 cntl |= pipe << 28; /* Connect to correct pipe */
10840
10841                 if (HAS_DDI(dev_priv))
10842                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10843
10844                 if (plane_state->base.rotation & DRM_ROTATE_180)
10845                         cntl |= CURSOR_ROTATE_180;
10846         }
10847
10848         if (intel_crtc->cursor_cntl != cntl) {
10849                 I915_WRITE(CURCNTR(pipe), cntl);
10850                 POSTING_READ(CURCNTR(pipe));
10851                 intel_crtc->cursor_cntl = cntl;
10852         }
10853
10854         /* and commit changes on next vblank */
10855         I915_WRITE(CURBASE(pipe), base);
10856         POSTING_READ(CURBASE(pipe));
10857
10858         intel_crtc->cursor_base = base;
10859 }
10860
10861 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10862 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10863                                      const struct intel_plane_state *plane_state)
10864 {
10865         struct drm_device *dev = crtc->dev;
10866         struct drm_i915_private *dev_priv = to_i915(dev);
10867         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10868         int pipe = intel_crtc->pipe;
10869         u32 base = intel_crtc->cursor_addr;
10870         u32 pos = 0;
10871
10872         if (plane_state) {
10873                 int x = plane_state->base.crtc_x;
10874                 int y = plane_state->base.crtc_y;
10875
10876                 if (x < 0) {
10877                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10878                         x = -x;
10879                 }
10880                 pos |= x << CURSOR_X_SHIFT;
10881
10882                 if (y < 0) {
10883                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10884                         y = -y;
10885                 }
10886                 pos |= y << CURSOR_Y_SHIFT;
10887
10888                 /* ILK+ do this automagically */
10889                 if (HAS_GMCH_DISPLAY(dev_priv) &&
10890                     plane_state->base.rotation & DRM_ROTATE_180) {
10891                         base += (plane_state->base.crtc_h *
10892                                  plane_state->base.crtc_w - 1) * 4;
10893                 }
10894         }
10895
10896         I915_WRITE(CURPOS(pipe), pos);
10897
10898         if (IS_845G(dev_priv) || IS_I865G(dev_priv))
10899                 i845_update_cursor(crtc, base, plane_state);
10900         else
10901                 i9xx_update_cursor(crtc, base, plane_state);
10902 }
10903
10904 static bool cursor_size_ok(struct drm_i915_private *dev_priv,
10905                            uint32_t width, uint32_t height)
10906 {
10907         if (width == 0 || height == 0)
10908                 return false;
10909
10910         /*
10911          * 845g/865g are special in that they are only limited by
10912          * the width of their cursors, the height is arbitrary up to
10913          * the precision of the register. Everything else requires
10914          * square cursors, limited to a few power-of-two sizes.
10915          */
10916         if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
10917                 if ((width & 63) != 0)
10918                         return false;
10919
10920                 if (width > (IS_845G(dev_priv) ? 64 : 512))
10921                         return false;
10922
10923                 if (height > 1023)
10924                         return false;
10925         } else {
10926                 switch (width | height) {
10927                 case 256:
10928                 case 128:
10929                         if (IS_GEN2(dev_priv))
10930                                 return false;
10931                 case 64:
10932                         break;
10933                 default:
10934                         return false;
10935                 }
10936         }
10937
10938         return true;
10939 }
10940
10941 /* VESA 640x480x72Hz mode to set on the pipe */
10942 static struct drm_display_mode load_detect_mode = {
10943         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10944                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10945 };
10946
10947 struct drm_framebuffer *
10948 __intel_framebuffer_create(struct drm_device *dev,
10949                            struct drm_mode_fb_cmd2 *mode_cmd,
10950                            struct drm_i915_gem_object *obj)
10951 {
10952         struct intel_framebuffer *intel_fb;
10953         int ret;
10954
10955         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10956         if (!intel_fb)
10957                 return ERR_PTR(-ENOMEM);
10958
10959         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10960         if (ret)
10961                 goto err;
10962
10963         return &intel_fb->base;
10964
10965 err:
10966         kfree(intel_fb);
10967         return ERR_PTR(ret);
10968 }
10969
10970 static struct drm_framebuffer *
10971 intel_framebuffer_create(struct drm_device *dev,
10972                          struct drm_mode_fb_cmd2 *mode_cmd,
10973                          struct drm_i915_gem_object *obj)
10974 {
10975         struct drm_framebuffer *fb;
10976         int ret;
10977
10978         ret = i915_mutex_lock_interruptible(dev);
10979         if (ret)
10980                 return ERR_PTR(ret);
10981         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10982         mutex_unlock(&dev->struct_mutex);
10983
10984         return fb;
10985 }
10986
10987 static u32
10988 intel_framebuffer_pitch_for_width(int width, int bpp)
10989 {
10990         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10991         return ALIGN(pitch, 64);
10992 }
10993
10994 static u32
10995 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10996 {
10997         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10998         return PAGE_ALIGN(pitch * mode->vdisplay);
10999 }
11000
11001 static struct drm_framebuffer *
11002 intel_framebuffer_create_for_mode(struct drm_device *dev,
11003                                   struct drm_display_mode *mode,
11004                                   int depth, int bpp)
11005 {
11006         struct drm_framebuffer *fb;
11007         struct drm_i915_gem_object *obj;
11008         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
11009
11010         obj = i915_gem_object_create(dev,
11011                                     intel_framebuffer_size_for_mode(mode, bpp));
11012         if (IS_ERR(obj))
11013                 return ERR_CAST(obj);
11014
11015         mode_cmd.width = mode->hdisplay;
11016         mode_cmd.height = mode->vdisplay;
11017         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
11018                                                                 bpp);
11019         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
11020
11021         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11022         if (IS_ERR(fb))
11023                 i915_gem_object_put(obj);
11024
11025         return fb;
11026 }
11027
11028 static struct drm_framebuffer *
11029 mode_fits_in_fbdev(struct drm_device *dev,
11030                    struct drm_display_mode *mode)
11031 {
11032 #ifdef CONFIG_DRM_FBDEV_EMULATION
11033         struct drm_i915_private *dev_priv = to_i915(dev);
11034         struct drm_i915_gem_object *obj;
11035         struct drm_framebuffer *fb;
11036
11037         if (!dev_priv->fbdev)
11038                 return NULL;
11039
11040         if (!dev_priv->fbdev->fb)
11041                 return NULL;
11042
11043         obj = dev_priv->fbdev->fb->obj;
11044         BUG_ON(!obj);
11045
11046         fb = &dev_priv->fbdev->fb->base;
11047         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11048                                                                fb->bits_per_pixel))
11049                 return NULL;
11050
11051         if (obj->base.size < mode->vdisplay * fb->pitches[0])
11052                 return NULL;
11053
11054         drm_framebuffer_reference(fb);
11055         return fb;
11056 #else
11057         return NULL;
11058 #endif
11059 }
11060
11061 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11062                                            struct drm_crtc *crtc,
11063                                            struct drm_display_mode *mode,
11064                                            struct drm_framebuffer *fb,
11065                                            int x, int y)
11066 {
11067         struct drm_plane_state *plane_state;
11068         int hdisplay, vdisplay;
11069         int ret;
11070
11071         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11072         if (IS_ERR(plane_state))
11073                 return PTR_ERR(plane_state);
11074
11075         if (mode)
11076                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11077         else
11078                 hdisplay = vdisplay = 0;
11079
11080         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11081         if (ret)
11082                 return ret;
11083         drm_atomic_set_fb_for_plane(plane_state, fb);
11084         plane_state->crtc_x = 0;
11085         plane_state->crtc_y = 0;
11086         plane_state->crtc_w = hdisplay;
11087         plane_state->crtc_h = vdisplay;
11088         plane_state->src_x = x << 16;
11089         plane_state->src_y = y << 16;
11090         plane_state->src_w = hdisplay << 16;
11091         plane_state->src_h = vdisplay << 16;
11092
11093         return 0;
11094 }
11095
11096 bool intel_get_load_detect_pipe(struct drm_connector *connector,
11097                                 struct drm_display_mode *mode,
11098                                 struct intel_load_detect_pipe *old,
11099                                 struct drm_modeset_acquire_ctx *ctx)
11100 {
11101         struct intel_crtc *intel_crtc;
11102         struct intel_encoder *intel_encoder =
11103                 intel_attached_encoder(connector);
11104         struct drm_crtc *possible_crtc;
11105         struct drm_encoder *encoder = &intel_encoder->base;
11106         struct drm_crtc *crtc = NULL;
11107         struct drm_device *dev = encoder->dev;
11108         struct drm_i915_private *dev_priv = to_i915(dev);
11109         struct drm_framebuffer *fb;
11110         struct drm_mode_config *config = &dev->mode_config;
11111         struct drm_atomic_state *state = NULL, *restore_state = NULL;
11112         struct drm_connector_state *connector_state;
11113         struct intel_crtc_state *crtc_state;
11114         int ret, i = -1;
11115
11116         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11117                       connector->base.id, connector->name,
11118                       encoder->base.id, encoder->name);
11119
11120         old->restore_state = NULL;
11121
11122 retry:
11123         ret = drm_modeset_lock(&config->connection_mutex, ctx);
11124         if (ret)
11125                 goto fail;
11126
11127         /*
11128          * Algorithm gets a little messy:
11129          *
11130          *   - if the connector already has an assigned crtc, use it (but make
11131          *     sure it's on first)
11132          *
11133          *   - try to find the first unused crtc that can drive this connector,
11134          *     and use that if we find one
11135          */
11136
11137         /* See if we already have a CRTC for this connector */
11138         if (connector->state->crtc) {
11139                 crtc = connector->state->crtc;
11140
11141                 ret = drm_modeset_lock(&crtc->mutex, ctx);
11142                 if (ret)
11143                         goto fail;
11144
11145                 /* Make sure the crtc and connector are running */
11146                 goto found;
11147         }
11148
11149         /* Find an unused one (if possible) */
11150         for_each_crtc(dev, possible_crtc) {
11151                 i++;
11152                 if (!(encoder->possible_crtcs & (1 << i)))
11153                         continue;
11154
11155                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11156                 if (ret)
11157                         goto fail;
11158
11159                 if (possible_crtc->state->enable) {
11160                         drm_modeset_unlock(&possible_crtc->mutex);
11161                         continue;
11162                 }
11163
11164                 crtc = possible_crtc;
11165                 break;
11166         }
11167
11168         /*
11169          * If we didn't find an unused CRTC, don't use any.
11170          */
11171         if (!crtc) {
11172                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
11173                 goto fail;
11174         }
11175
11176 found:
11177         intel_crtc = to_intel_crtc(crtc);
11178
11179         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11180         if (ret)
11181                 goto fail;
11182
11183         state = drm_atomic_state_alloc(dev);
11184         restore_state = drm_atomic_state_alloc(dev);
11185         if (!state || !restore_state) {
11186                 ret = -ENOMEM;
11187                 goto fail;
11188         }
11189
11190         state->acquire_ctx = ctx;
11191         restore_state->acquire_ctx = ctx;
11192
11193         connector_state = drm_atomic_get_connector_state(state, connector);
11194         if (IS_ERR(connector_state)) {
11195                 ret = PTR_ERR(connector_state);
11196                 goto fail;
11197         }
11198
11199         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11200         if (ret)
11201                 goto fail;
11202
11203         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11204         if (IS_ERR(crtc_state)) {
11205                 ret = PTR_ERR(crtc_state);
11206                 goto fail;
11207         }
11208
11209         crtc_state->base.active = crtc_state->base.enable = true;
11210
11211         if (!mode)
11212                 mode = &load_detect_mode;
11213
11214         /* We need a framebuffer large enough to accommodate all accesses
11215          * that the plane may generate whilst we perform load detection.
11216          * We can not rely on the fbcon either being present (we get called
11217          * during its initialisation to detect all boot displays, or it may
11218          * not even exist) or that it is large enough to satisfy the
11219          * requested mode.
11220          */
11221         fb = mode_fits_in_fbdev(dev, mode);
11222         if (fb == NULL) {
11223                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11224                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
11225         } else
11226                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11227         if (IS_ERR(fb)) {
11228                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11229                 goto fail;
11230         }
11231
11232         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11233         if (ret)
11234                 goto fail;
11235
11236         drm_framebuffer_unreference(fb);
11237
11238         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11239         if (ret)
11240                 goto fail;
11241
11242         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11243         if (!ret)
11244                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11245         if (!ret)
11246                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11247         if (ret) {
11248                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11249                 goto fail;
11250         }
11251
11252         ret = drm_atomic_commit(state);
11253         if (ret) {
11254                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11255                 goto fail;
11256         }
11257
11258         old->restore_state = restore_state;
11259         drm_atomic_state_put(state);
11260
11261         /* let the connector get through one full cycle before testing */
11262         intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
11263         return true;
11264
11265 fail:
11266         if (state) {
11267                 drm_atomic_state_put(state);
11268                 state = NULL;
11269         }
11270         if (restore_state) {
11271                 drm_atomic_state_put(restore_state);
11272                 restore_state = NULL;
11273         }
11274
11275         if (ret == -EDEADLK) {
11276                 drm_modeset_backoff(ctx);
11277                 goto retry;
11278         }
11279
11280         return false;
11281 }
11282
11283 void intel_release_load_detect_pipe(struct drm_connector *connector,
11284                                     struct intel_load_detect_pipe *old,
11285                                     struct drm_modeset_acquire_ctx *ctx)
11286 {
11287         struct intel_encoder *intel_encoder =
11288                 intel_attached_encoder(connector);
11289         struct drm_encoder *encoder = &intel_encoder->base;
11290         struct drm_atomic_state *state = old->restore_state;
11291         int ret;
11292
11293         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11294                       connector->base.id, connector->name,
11295                       encoder->base.id, encoder->name);
11296
11297         if (!state)
11298                 return;
11299
11300         ret = drm_atomic_commit(state);
11301         if (ret)
11302                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11303         drm_atomic_state_put(state);
11304 }
11305
11306 static int i9xx_pll_refclk(struct drm_device *dev,
11307                            const struct intel_crtc_state *pipe_config)
11308 {
11309         struct drm_i915_private *dev_priv = to_i915(dev);
11310         u32 dpll = pipe_config->dpll_hw_state.dpll;
11311
11312         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11313                 return dev_priv->vbt.lvds_ssc_freq;
11314         else if (HAS_PCH_SPLIT(dev_priv))
11315                 return 120000;
11316         else if (!IS_GEN2(dev_priv))
11317                 return 96000;
11318         else
11319                 return 48000;
11320 }
11321
11322 /* Returns the clock of the currently programmed mode of the given pipe. */
11323 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11324                                 struct intel_crtc_state *pipe_config)
11325 {
11326         struct drm_device *dev = crtc->base.dev;
11327         struct drm_i915_private *dev_priv = to_i915(dev);
11328         int pipe = pipe_config->cpu_transcoder;
11329         u32 dpll = pipe_config->dpll_hw_state.dpll;
11330         u32 fp;
11331         struct dpll clock;
11332         int port_clock;
11333         int refclk = i9xx_pll_refclk(dev, pipe_config);
11334
11335         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11336                 fp = pipe_config->dpll_hw_state.fp0;
11337         else
11338                 fp = pipe_config->dpll_hw_state.fp1;
11339
11340         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11341         if (IS_PINEVIEW(dev_priv)) {
11342                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11343                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11344         } else {
11345                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11346                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11347         }
11348
11349         if (!IS_GEN2(dev_priv)) {
11350                 if (IS_PINEVIEW(dev_priv))
11351                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11352                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11353                 else
11354                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11355                                DPLL_FPA01_P1_POST_DIV_SHIFT);
11356
11357                 switch (dpll & DPLL_MODE_MASK) {
11358                 case DPLLB_MODE_DAC_SERIAL:
11359                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11360                                 5 : 10;
11361                         break;
11362                 case DPLLB_MODE_LVDS:
11363                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11364                                 7 : 14;
11365                         break;
11366                 default:
11367                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11368                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
11369                         return;
11370                 }
11371
11372                 if (IS_PINEVIEW(dev_priv))
11373                         port_clock = pnv_calc_dpll_params(refclk, &clock);
11374                 else
11375                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
11376         } else {
11377                 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11378                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11379
11380                 if (is_lvds) {
11381                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11382                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
11383
11384                         if (lvds & LVDS_CLKB_POWER_UP)
11385                                 clock.p2 = 7;
11386                         else
11387                                 clock.p2 = 14;
11388                 } else {
11389                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
11390                                 clock.p1 = 2;
11391                         else {
11392                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11393                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11394                         }
11395                         if (dpll & PLL_P2_DIVIDE_BY_4)
11396                                 clock.p2 = 4;
11397                         else
11398                                 clock.p2 = 2;
11399                 }
11400
11401                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11402         }
11403
11404         /*
11405          * This value includes pixel_multiplier. We will use
11406          * port_clock to compute adjusted_mode.crtc_clock in the
11407          * encoder's get_config() function.
11408          */
11409         pipe_config->port_clock = port_clock;
11410 }
11411
11412 int intel_dotclock_calculate(int link_freq,
11413                              const struct intel_link_m_n *m_n)
11414 {
11415         /*
11416          * The calculation for the data clock is:
11417          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11418          * But we want to avoid losing precison if possible, so:
11419          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11420          *
11421          * and the link clock is simpler:
11422          * link_clock = (m * link_clock) / n
11423          */
11424
11425         if (!m_n->link_n)
11426                 return 0;
11427
11428         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11429 }
11430
11431 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11432                                    struct intel_crtc_state *pipe_config)
11433 {
11434         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11435
11436         /* read out port_clock from the DPLL */
11437         i9xx_crtc_clock_get(crtc, pipe_config);
11438
11439         /*
11440          * In case there is an active pipe without active ports,
11441          * we may need some idea for the dotclock anyway.
11442          * Calculate one based on the FDI configuration.
11443          */
11444         pipe_config->base.adjusted_mode.crtc_clock =
11445                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11446                                          &pipe_config->fdi_m_n);
11447 }
11448
11449 /** Returns the currently programmed mode of the given pipe. */
11450 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11451                                              struct drm_crtc *crtc)
11452 {
11453         struct drm_i915_private *dev_priv = to_i915(dev);
11454         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11455         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
11456         struct drm_display_mode *mode;
11457         struct intel_crtc_state *pipe_config;
11458         int htot = I915_READ(HTOTAL(cpu_transcoder));
11459         int hsync = I915_READ(HSYNC(cpu_transcoder));
11460         int vtot = I915_READ(VTOTAL(cpu_transcoder));
11461         int vsync = I915_READ(VSYNC(cpu_transcoder));
11462         enum pipe pipe = intel_crtc->pipe;
11463
11464         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11465         if (!mode)
11466                 return NULL;
11467
11468         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11469         if (!pipe_config) {
11470                 kfree(mode);
11471                 return NULL;
11472         }
11473
11474         /*
11475          * Construct a pipe_config sufficient for getting the clock info
11476          * back out of crtc_clock_get.
11477          *
11478          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11479          * to use a real value here instead.
11480          */
11481         pipe_config->cpu_transcoder = (enum transcoder) pipe;
11482         pipe_config->pixel_multiplier = 1;
11483         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11484         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11485         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11486         i9xx_crtc_clock_get(intel_crtc, pipe_config);
11487
11488         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
11489         mode->hdisplay = (htot & 0xffff) + 1;
11490         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11491         mode->hsync_start = (hsync & 0xffff) + 1;
11492         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11493         mode->vdisplay = (vtot & 0xffff) + 1;
11494         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11495         mode->vsync_start = (vsync & 0xffff) + 1;
11496         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11497
11498         drm_mode_set_name(mode);
11499
11500         kfree(pipe_config);
11501
11502         return mode;
11503 }
11504
11505 static void intel_crtc_destroy(struct drm_crtc *crtc)
11506 {
11507         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11508         struct drm_device *dev = crtc->dev;
11509         struct intel_flip_work *work;
11510
11511         spin_lock_irq(&dev->event_lock);
11512         work = intel_crtc->flip_work;
11513         intel_crtc->flip_work = NULL;
11514         spin_unlock_irq(&dev->event_lock);
11515
11516         if (work) {
11517                 cancel_work_sync(&work->mmio_work);
11518                 cancel_work_sync(&work->unpin_work);
11519                 kfree(work);
11520         }
11521
11522         drm_crtc_cleanup(crtc);
11523
11524         kfree(intel_crtc);
11525 }
11526
11527 static void intel_unpin_work_fn(struct work_struct *__work)
11528 {
11529         struct intel_flip_work *work =
11530                 container_of(__work, struct intel_flip_work, unpin_work);
11531         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11532         struct drm_device *dev = crtc->base.dev;
11533         struct drm_plane *primary = crtc->base.primary;
11534
11535         if (is_mmio_work(work))
11536                 flush_work(&work->mmio_work);
11537
11538         mutex_lock(&dev->struct_mutex);
11539         intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
11540         i915_gem_object_put(work->pending_flip_obj);
11541         mutex_unlock(&dev->struct_mutex);
11542
11543         i915_gem_request_put(work->flip_queued_req);
11544
11545         intel_frontbuffer_flip_complete(to_i915(dev),
11546                                         to_intel_plane(primary)->frontbuffer_bit);
11547         intel_fbc_post_update(crtc);
11548         drm_framebuffer_unreference(work->old_fb);
11549
11550         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11551         atomic_dec(&crtc->unpin_work_count);
11552
11553         kfree(work);
11554 }
11555
11556 /* Is 'a' after or equal to 'b'? */
11557 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11558 {
11559         return !((a - b) & 0x80000000);
11560 }
11561
11562 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11563                                    struct intel_flip_work *work)
11564 {
11565         struct drm_device *dev = crtc->base.dev;
11566         struct drm_i915_private *dev_priv = to_i915(dev);
11567
11568         if (abort_flip_on_reset(crtc))
11569                 return true;
11570
11571         /*
11572          * The relevant registers doen't exist on pre-ctg.
11573          * As the flip done interrupt doesn't trigger for mmio
11574          * flips on gmch platforms, a flip count check isn't
11575          * really needed there. But since ctg has the registers,
11576          * include it in the check anyway.
11577          */
11578         if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11579                 return true;
11580
11581         /*
11582          * BDW signals flip done immediately if the plane
11583          * is disabled, even if the plane enable is already
11584          * armed to occur at the next vblank :(
11585          */
11586
11587         /*
11588          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11589          * used the same base address. In that case the mmio flip might
11590          * have completed, but the CS hasn't even executed the flip yet.
11591          *
11592          * A flip count check isn't enough as the CS might have updated
11593          * the base address just after start of vblank, but before we
11594          * managed to process the interrupt. This means we'd complete the
11595          * CS flip too soon.
11596          *
11597          * Combining both checks should get us a good enough result. It may
11598          * still happen that the CS flip has been executed, but has not
11599          * yet actually completed. But in case the base address is the same
11600          * anyway, we don't really care.
11601          */
11602         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11603                 crtc->flip_work->gtt_offset &&
11604                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11605                                     crtc->flip_work->flip_count);
11606 }
11607
11608 static bool
11609 __pageflip_finished_mmio(struct intel_crtc *crtc,
11610                                struct intel_flip_work *work)
11611 {
11612         /*
11613          * MMIO work completes when vblank is different from
11614          * flip_queued_vblank.
11615          *
11616          * Reset counter value doesn't matter, this is handled by
11617          * i915_wait_request finishing early, so no need to handle
11618          * reset here.
11619          */
11620         return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11621 }
11622
11623
11624 static bool pageflip_finished(struct intel_crtc *crtc,
11625                               struct intel_flip_work *work)
11626 {
11627         if (!atomic_read(&work->pending))
11628                 return false;
11629
11630         smp_rmb();
11631
11632         if (is_mmio_work(work))
11633                 return __pageflip_finished_mmio(crtc, work);
11634         else
11635                 return __pageflip_finished_cs(crtc, work);
11636 }
11637
11638 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11639 {
11640         struct drm_device *dev = &dev_priv->drm;
11641         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11642         struct intel_flip_work *work;
11643         unsigned long flags;
11644
11645         /* Ignore early vblank irqs */
11646         if (!crtc)
11647                 return;
11648
11649         /*
11650          * This is called both by irq handlers and the reset code (to complete
11651          * lost pageflips) so needs the full irqsave spinlocks.
11652          */
11653         spin_lock_irqsave(&dev->event_lock, flags);
11654         work = crtc->flip_work;
11655
11656         if (work != NULL &&
11657             !is_mmio_work(work) &&
11658             pageflip_finished(crtc, work))
11659                 page_flip_completed(crtc);
11660
11661         spin_unlock_irqrestore(&dev->event_lock, flags);
11662 }
11663
11664 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11665 {
11666         struct drm_device *dev = &dev_priv->drm;
11667         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11668         struct intel_flip_work *work;
11669         unsigned long flags;
11670
11671         /* Ignore early vblank irqs */
11672         if (!crtc)
11673                 return;
11674
11675         /*
11676          * This is called both by irq handlers and the reset code (to complete
11677          * lost pageflips) so needs the full irqsave spinlocks.
11678          */
11679         spin_lock_irqsave(&dev->event_lock, flags);
11680         work = crtc->flip_work;
11681
11682         if (work != NULL &&
11683             is_mmio_work(work) &&
11684             pageflip_finished(crtc, work))
11685                 page_flip_completed(crtc);
11686
11687         spin_unlock_irqrestore(&dev->event_lock, flags);
11688 }
11689
11690 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11691                                                struct intel_flip_work *work)
11692 {
11693         work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11694
11695         /* Ensure that the work item is consistent when activating it ... */
11696         smp_mb__before_atomic();
11697         atomic_set(&work->pending, 1);
11698 }
11699
11700 static int intel_gen2_queue_flip(struct drm_device *dev,
11701                                  struct drm_crtc *crtc,
11702                                  struct drm_framebuffer *fb,
11703                                  struct drm_i915_gem_object *obj,
11704                                  struct drm_i915_gem_request *req,
11705                                  uint32_t flags)
11706 {
11707         struct intel_ring *ring = req->ring;
11708         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11709         u32 flip_mask;
11710         int ret;
11711
11712         ret = intel_ring_begin(req, 6);
11713         if (ret)
11714                 return ret;
11715
11716         /* Can't queue multiple flips, so wait for the previous
11717          * one to finish before executing the next.
11718          */
11719         if (intel_crtc->plane)
11720                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11721         else
11722                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11723         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11724         intel_ring_emit(ring, MI_NOOP);
11725         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11726                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11727         intel_ring_emit(ring, fb->pitches[0]);
11728         intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11729         intel_ring_emit(ring, 0); /* aux display base address, unused */
11730
11731         return 0;
11732 }
11733
11734 static int intel_gen3_queue_flip(struct drm_device *dev,
11735                                  struct drm_crtc *crtc,
11736                                  struct drm_framebuffer *fb,
11737                                  struct drm_i915_gem_object *obj,
11738                                  struct drm_i915_gem_request *req,
11739                                  uint32_t flags)
11740 {
11741         struct intel_ring *ring = req->ring;
11742         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11743         u32 flip_mask;
11744         int ret;
11745
11746         ret = intel_ring_begin(req, 6);
11747         if (ret)
11748                 return ret;
11749
11750         if (intel_crtc->plane)
11751                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11752         else
11753                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11754         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11755         intel_ring_emit(ring, MI_NOOP);
11756         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11757                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11758         intel_ring_emit(ring, fb->pitches[0]);
11759         intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11760         intel_ring_emit(ring, MI_NOOP);
11761
11762         return 0;
11763 }
11764
11765 static int intel_gen4_queue_flip(struct drm_device *dev,
11766                                  struct drm_crtc *crtc,
11767                                  struct drm_framebuffer *fb,
11768                                  struct drm_i915_gem_object *obj,
11769                                  struct drm_i915_gem_request *req,
11770                                  uint32_t flags)
11771 {
11772         struct intel_ring *ring = req->ring;
11773         struct drm_i915_private *dev_priv = to_i915(dev);
11774         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11775         uint32_t pf, pipesrc;
11776         int ret;
11777
11778         ret = intel_ring_begin(req, 4);
11779         if (ret)
11780                 return ret;
11781
11782         /* i965+ uses the linear or tiled offsets from the
11783          * Display Registers (which do not change across a page-flip)
11784          * so we need only reprogram the base address.
11785          */
11786         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11787                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11788         intel_ring_emit(ring, fb->pitches[0]);
11789         intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11790                         intel_fb_modifier_to_tiling(fb->modifier));
11791
11792         /* XXX Enabling the panel-fitter across page-flip is so far
11793          * untested on non-native modes, so ignore it for now.
11794          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11795          */
11796         pf = 0;
11797         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11798         intel_ring_emit(ring, pf | pipesrc);
11799
11800         return 0;
11801 }
11802
11803 static int intel_gen6_queue_flip(struct drm_device *dev,
11804                                  struct drm_crtc *crtc,
11805                                  struct drm_framebuffer *fb,
11806                                  struct drm_i915_gem_object *obj,
11807                                  struct drm_i915_gem_request *req,
11808                                  uint32_t flags)
11809 {
11810         struct intel_ring *ring = req->ring;
11811         struct drm_i915_private *dev_priv = to_i915(dev);
11812         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11813         uint32_t pf, pipesrc;
11814         int ret;
11815
11816         ret = intel_ring_begin(req, 4);
11817         if (ret)
11818                 return ret;
11819
11820         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11821                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11822         intel_ring_emit(ring, fb->pitches[0] |
11823                         intel_fb_modifier_to_tiling(fb->modifier));
11824         intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11825
11826         /* Contrary to the suggestions in the documentation,
11827          * "Enable Panel Fitter" does not seem to be required when page
11828          * flipping with a non-native mode, and worse causes a normal
11829          * modeset to fail.
11830          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11831          */
11832         pf = 0;
11833         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11834         intel_ring_emit(ring, pf | pipesrc);
11835
11836         return 0;
11837 }
11838
11839 static int intel_gen7_queue_flip(struct drm_device *dev,
11840                                  struct drm_crtc *crtc,
11841                                  struct drm_framebuffer *fb,
11842                                  struct drm_i915_gem_object *obj,
11843                                  struct drm_i915_gem_request *req,
11844                                  uint32_t flags)
11845 {
11846         struct drm_i915_private *dev_priv = to_i915(dev);
11847         struct intel_ring *ring = req->ring;
11848         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11849         uint32_t plane_bit = 0;
11850         int len, ret;
11851
11852         switch (intel_crtc->plane) {
11853         case PLANE_A:
11854                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11855                 break;
11856         case PLANE_B:
11857                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11858                 break;
11859         case PLANE_C:
11860                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11861                 break;
11862         default:
11863                 WARN_ONCE(1, "unknown plane in flip command\n");
11864                 return -ENODEV;
11865         }
11866
11867         len = 4;
11868         if (req->engine->id == RCS) {
11869                 len += 6;
11870                 /*
11871                  * On Gen 8, SRM is now taking an extra dword to accommodate
11872                  * 48bits addresses, and we need a NOOP for the batch size to
11873                  * stay even.
11874                  */
11875                 if (IS_GEN8(dev_priv))
11876                         len += 2;
11877         }
11878
11879         /*
11880          * BSpec MI_DISPLAY_FLIP for IVB:
11881          * "The full packet must be contained within the same cache line."
11882          *
11883          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11884          * cacheline, if we ever start emitting more commands before
11885          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11886          * then do the cacheline alignment, and finally emit the
11887          * MI_DISPLAY_FLIP.
11888          */
11889         ret = intel_ring_cacheline_align(req);
11890         if (ret)
11891                 return ret;
11892
11893         ret = intel_ring_begin(req, len);
11894         if (ret)
11895                 return ret;
11896
11897         /* Unmask the flip-done completion message. Note that the bspec says that
11898          * we should do this for both the BCS and RCS, and that we must not unmask
11899          * more than one flip event at any time (or ensure that one flip message
11900          * can be sent by waiting for flip-done prior to queueing new flips).
11901          * Experimentation says that BCS works despite DERRMR masking all
11902          * flip-done completion events and that unmasking all planes at once
11903          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11904          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11905          */
11906         if (req->engine->id == RCS) {
11907                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11908                 intel_ring_emit_reg(ring, DERRMR);
11909                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11910                                           DERRMR_PIPEB_PRI_FLIP_DONE |
11911                                           DERRMR_PIPEC_PRI_FLIP_DONE));
11912                 if (IS_GEN8(dev_priv))
11913                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11914                                               MI_SRM_LRM_GLOBAL_GTT);
11915                 else
11916                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11917                                               MI_SRM_LRM_GLOBAL_GTT);
11918                 intel_ring_emit_reg(ring, DERRMR);
11919                 intel_ring_emit(ring,
11920                                 i915_ggtt_offset(req->engine->scratch) + 256);
11921                 if (IS_GEN8(dev_priv)) {
11922                         intel_ring_emit(ring, 0);
11923                         intel_ring_emit(ring, MI_NOOP);
11924                 }
11925         }
11926
11927         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11928         intel_ring_emit(ring, fb->pitches[0] |
11929                         intel_fb_modifier_to_tiling(fb->modifier));
11930         intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11931         intel_ring_emit(ring, (MI_NOOP));
11932
11933         return 0;
11934 }
11935
11936 static bool use_mmio_flip(struct intel_engine_cs *engine,
11937                           struct drm_i915_gem_object *obj)
11938 {
11939         /*
11940          * This is not being used for older platforms, because
11941          * non-availability of flip done interrupt forces us to use
11942          * CS flips. Older platforms derive flip done using some clever
11943          * tricks involving the flip_pending status bits and vblank irqs.
11944          * So using MMIO flips there would disrupt this mechanism.
11945          */
11946
11947         if (engine == NULL)
11948                 return true;
11949
11950         if (INTEL_GEN(engine->i915) < 5)
11951                 return false;
11952
11953         if (i915.use_mmio_flip < 0)
11954                 return false;
11955         else if (i915.use_mmio_flip > 0)
11956                 return true;
11957         else if (i915.enable_execlists)
11958                 return true;
11959
11960         return engine != i915_gem_object_last_write_engine(obj);
11961 }
11962
11963 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11964                              unsigned int rotation,
11965                              struct intel_flip_work *work)
11966 {
11967         struct drm_device *dev = intel_crtc->base.dev;
11968         struct drm_i915_private *dev_priv = to_i915(dev);
11969         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11970         const enum pipe pipe = intel_crtc->pipe;
11971         u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
11972
11973         ctl = I915_READ(PLANE_CTL(pipe, 0));
11974         ctl &= ~PLANE_CTL_TILED_MASK;
11975         switch (fb->modifier) {
11976         case DRM_FORMAT_MOD_NONE:
11977                 break;
11978         case I915_FORMAT_MOD_X_TILED:
11979                 ctl |= PLANE_CTL_TILED_X;
11980                 break;
11981         case I915_FORMAT_MOD_Y_TILED:
11982                 ctl |= PLANE_CTL_TILED_Y;
11983                 break;
11984         case I915_FORMAT_MOD_Yf_TILED:
11985                 ctl |= PLANE_CTL_TILED_YF;
11986                 break;
11987         default:
11988                 MISSING_CASE(fb->modifier);
11989         }
11990
11991         /*
11992          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11993          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11994          */
11995         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11996         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11997
11998         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11999         POSTING_READ(PLANE_SURF(pipe, 0));
12000 }
12001
12002 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
12003                              struct intel_flip_work *work)
12004 {
12005         struct drm_device *dev = intel_crtc->base.dev;
12006         struct drm_i915_private *dev_priv = to_i915(dev);
12007         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
12008         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
12009         u32 dspcntr;
12010
12011         dspcntr = I915_READ(reg);
12012
12013         if (fb->modifier == I915_FORMAT_MOD_X_TILED)
12014                 dspcntr |= DISPPLANE_TILED;
12015         else
12016                 dspcntr &= ~DISPPLANE_TILED;
12017
12018         I915_WRITE(reg, dspcntr);
12019
12020         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12021         POSTING_READ(DSPSURF(intel_crtc->plane));
12022 }
12023
12024 static void intel_mmio_flip_work_func(struct work_struct *w)
12025 {
12026         struct intel_flip_work *work =
12027                 container_of(w, struct intel_flip_work, mmio_work);
12028         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12029         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12030         struct intel_framebuffer *intel_fb =
12031                 to_intel_framebuffer(crtc->base.primary->fb);
12032         struct drm_i915_gem_object *obj = intel_fb->obj;
12033
12034         WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
12035
12036         intel_pipe_update_start(crtc);
12037
12038         if (INTEL_GEN(dev_priv) >= 9)
12039                 skl_do_mmio_flip(crtc, work->rotation, work);
12040         else
12041                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
12042                 ilk_do_mmio_flip(crtc, work);
12043
12044         intel_pipe_update_end(crtc, work);
12045 }
12046
12047 static int intel_default_queue_flip(struct drm_device *dev,
12048                                     struct drm_crtc *crtc,
12049                                     struct drm_framebuffer *fb,
12050                                     struct drm_i915_gem_object *obj,
12051                                     struct drm_i915_gem_request *req,
12052                                     uint32_t flags)
12053 {
12054         return -ENODEV;
12055 }
12056
12057 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12058                                       struct intel_crtc *intel_crtc,
12059                                       struct intel_flip_work *work)
12060 {
12061         u32 addr, vblank;
12062
12063         if (!atomic_read(&work->pending))
12064                 return false;
12065
12066         smp_rmb();
12067
12068         vblank = intel_crtc_get_vblank_counter(intel_crtc);
12069         if (work->flip_ready_vblank == 0) {
12070                 if (work->flip_queued_req &&
12071                     !i915_gem_request_completed(work->flip_queued_req))
12072                         return false;
12073
12074                 work->flip_ready_vblank = vblank;
12075         }
12076
12077         if (vblank - work->flip_ready_vblank < 3)
12078                 return false;
12079
12080         /* Potential stall - if we see that the flip has happened,
12081          * assume a missed interrupt. */
12082         if (INTEL_GEN(dev_priv) >= 4)
12083                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12084         else
12085                 addr = I915_READ(DSPADDR(intel_crtc->plane));
12086
12087         /* There is a potential issue here with a false positive after a flip
12088          * to the same address. We could address this by checking for a
12089          * non-incrementing frame counter.
12090          */
12091         return addr == work->gtt_offset;
12092 }
12093
12094 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12095 {
12096         struct drm_device *dev = &dev_priv->drm;
12097         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12098         struct intel_flip_work *work;
12099
12100         WARN_ON(!in_interrupt());
12101
12102         if (crtc == NULL)
12103                 return;
12104
12105         spin_lock(&dev->event_lock);
12106         work = crtc->flip_work;
12107
12108         if (work != NULL && !is_mmio_work(work) &&
12109             __pageflip_stall_check_cs(dev_priv, crtc, work)) {
12110                 WARN_ONCE(1,
12111                           "Kicking stuck page flip: queued at %d, now %d\n",
12112                         work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
12113                 page_flip_completed(crtc);
12114                 work = NULL;
12115         }
12116
12117         if (work != NULL && !is_mmio_work(work) &&
12118             intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
12119                 intel_queue_rps_boost_for_request(work->flip_queued_req);
12120         spin_unlock(&dev->event_lock);
12121 }
12122
12123 static int intel_crtc_page_flip(struct drm_crtc *crtc,
12124                                 struct drm_framebuffer *fb,
12125                                 struct drm_pending_vblank_event *event,
12126                                 uint32_t page_flip_flags)
12127 {
12128         struct drm_device *dev = crtc->dev;
12129         struct drm_i915_private *dev_priv = to_i915(dev);
12130         struct drm_framebuffer *old_fb = crtc->primary->fb;
12131         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12133         struct drm_plane *primary = crtc->primary;
12134         enum pipe pipe = intel_crtc->pipe;
12135         struct intel_flip_work *work;
12136         struct intel_engine_cs *engine;
12137         bool mmio_flip;
12138         struct drm_i915_gem_request *request;
12139         struct i915_vma *vma;
12140         int ret;
12141
12142         /*
12143          * drm_mode_page_flip_ioctl() should already catch this, but double
12144          * check to be safe.  In the future we may enable pageflipping from
12145          * a disabled primary plane.
12146          */
12147         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12148                 return -EBUSY;
12149
12150         /* Can't change pixel format via MI display flips. */
12151         if (fb->pixel_format != crtc->primary->fb->pixel_format)
12152                 return -EINVAL;
12153
12154         /*
12155          * TILEOFF/LINOFF registers can't be changed via MI display flips.
12156          * Note that pitch changes could also affect these register.
12157          */
12158         if (INTEL_GEN(dev_priv) > 3 &&
12159             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12160              fb->pitches[0] != crtc->primary->fb->pitches[0]))
12161                 return -EINVAL;
12162
12163         if (i915_terminally_wedged(&dev_priv->gpu_error))
12164                 goto out_hang;
12165
12166         work = kzalloc(sizeof(*work), GFP_KERNEL);
12167         if (work == NULL)
12168                 return -ENOMEM;
12169
12170         work->event = event;
12171         work->crtc = crtc;
12172         work->old_fb = old_fb;
12173         INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12174
12175         ret = drm_crtc_vblank_get(crtc);
12176         if (ret)
12177                 goto free_work;
12178
12179         /* We borrow the event spin lock for protecting flip_work */
12180         spin_lock_irq(&dev->event_lock);
12181         if (intel_crtc->flip_work) {
12182                 /* Before declaring the flip queue wedged, check if
12183                  * the hardware completed the operation behind our backs.
12184                  */
12185                 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12186                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12187                         page_flip_completed(intel_crtc);
12188                 } else {
12189                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12190                         spin_unlock_irq(&dev->event_lock);
12191
12192                         drm_crtc_vblank_put(crtc);
12193                         kfree(work);
12194                         return -EBUSY;
12195                 }
12196         }
12197         intel_crtc->flip_work = work;
12198         spin_unlock_irq(&dev->event_lock);
12199
12200         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12201                 flush_workqueue(dev_priv->wq);
12202
12203         /* Reference the objects for the scheduled work. */
12204         drm_framebuffer_reference(work->old_fb);
12205
12206         crtc->primary->fb = fb;
12207         update_state_fb(crtc->primary);
12208
12209         work->pending_flip_obj = i915_gem_object_get(obj);
12210
12211         ret = i915_mutex_lock_interruptible(dev);
12212         if (ret)
12213                 goto cleanup;
12214
12215         intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12216         if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
12217                 ret = -EIO;
12218                 goto unlock;
12219         }
12220
12221         atomic_inc(&intel_crtc->unpin_work_count);
12222
12223         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
12224                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12225
12226         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
12227                 engine = dev_priv->engine[BCS];
12228                 if (fb->modifier != old_fb->modifier)
12229                         /* vlv: DISPLAY_FLIP fails to change tiling */
12230                         engine = NULL;
12231         } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
12232                 engine = dev_priv->engine[BCS];
12233         } else if (INTEL_GEN(dev_priv) >= 7) {
12234                 engine = i915_gem_object_last_write_engine(obj);
12235                 if (engine == NULL || engine->id != RCS)
12236                         engine = dev_priv->engine[BCS];
12237         } else {
12238                 engine = dev_priv->engine[RCS];
12239         }
12240
12241         mmio_flip = use_mmio_flip(engine, obj);
12242
12243         vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12244         if (IS_ERR(vma)) {
12245                 ret = PTR_ERR(vma);
12246                 goto cleanup_pending;
12247         }
12248
12249         work->gtt_offset = intel_fb_gtt_offset(fb, primary->state->rotation);
12250         work->gtt_offset += intel_crtc->dspaddr_offset;
12251         work->rotation = crtc->primary->state->rotation;
12252
12253         /*
12254          * There's the potential that the next frame will not be compatible with
12255          * FBC, so we want to call pre_update() before the actual page flip.
12256          * The problem is that pre_update() caches some information about the fb
12257          * object, so we want to do this only after the object is pinned. Let's
12258          * be on the safe side and do this immediately before scheduling the
12259          * flip.
12260          */
12261         intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12262                              to_intel_plane_state(primary->state));
12263
12264         if (mmio_flip) {
12265                 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12266                 queue_work(system_unbound_wq, &work->mmio_work);
12267         } else {
12268                 request = i915_gem_request_alloc(engine, engine->last_context);
12269                 if (IS_ERR(request)) {
12270                         ret = PTR_ERR(request);
12271                         goto cleanup_unpin;
12272                 }
12273
12274                 ret = i915_gem_request_await_object(request, obj, false);
12275                 if (ret)
12276                         goto cleanup_request;
12277
12278                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12279                                                    page_flip_flags);
12280                 if (ret)
12281                         goto cleanup_request;
12282
12283                 intel_mark_page_flip_active(intel_crtc, work);
12284
12285                 work->flip_queued_req = i915_gem_request_get(request);
12286                 i915_add_request_no_flush(request);
12287         }
12288
12289         i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
12290         i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12291                           to_intel_plane(primary)->frontbuffer_bit);
12292         mutex_unlock(&dev->struct_mutex);
12293
12294         intel_frontbuffer_flip_prepare(to_i915(dev),
12295                                        to_intel_plane(primary)->frontbuffer_bit);
12296
12297         trace_i915_flip_request(intel_crtc->plane, obj);
12298
12299         return 0;
12300
12301 cleanup_request:
12302         i915_add_request_no_flush(request);
12303 cleanup_unpin:
12304         intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
12305 cleanup_pending:
12306         atomic_dec(&intel_crtc->unpin_work_count);
12307 unlock:
12308         mutex_unlock(&dev->struct_mutex);
12309 cleanup:
12310         crtc->primary->fb = old_fb;
12311         update_state_fb(crtc->primary);
12312
12313         i915_gem_object_put(obj);
12314         drm_framebuffer_unreference(work->old_fb);
12315
12316         spin_lock_irq(&dev->event_lock);
12317         intel_crtc->flip_work = NULL;
12318         spin_unlock_irq(&dev->event_lock);
12319
12320         drm_crtc_vblank_put(crtc);
12321 free_work:
12322         kfree(work);
12323
12324         if (ret == -EIO) {
12325                 struct drm_atomic_state *state;
12326                 struct drm_plane_state *plane_state;
12327
12328 out_hang:
12329                 state = drm_atomic_state_alloc(dev);
12330                 if (!state)
12331                         return -ENOMEM;
12332                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12333
12334 retry:
12335                 plane_state = drm_atomic_get_plane_state(state, primary);
12336                 ret = PTR_ERR_OR_ZERO(plane_state);
12337                 if (!ret) {
12338                         drm_atomic_set_fb_for_plane(plane_state, fb);
12339
12340                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12341                         if (!ret)
12342                                 ret = drm_atomic_commit(state);
12343                 }
12344
12345                 if (ret == -EDEADLK) {
12346                         drm_modeset_backoff(state->acquire_ctx);
12347                         drm_atomic_state_clear(state);
12348                         goto retry;
12349                 }
12350
12351                 drm_atomic_state_put(state);
12352
12353                 if (ret == 0 && event) {
12354                         spin_lock_irq(&dev->event_lock);
12355                         drm_crtc_send_vblank_event(crtc, event);
12356                         spin_unlock_irq(&dev->event_lock);
12357                 }
12358         }
12359         return ret;
12360 }
12361
12362
12363 /**
12364  * intel_wm_need_update - Check whether watermarks need updating
12365  * @plane: drm plane
12366  * @state: new plane state
12367  *
12368  * Check current plane state versus the new one to determine whether
12369  * watermarks need to be recalculated.
12370  *
12371  * Returns true or false.
12372  */
12373 static bool intel_wm_need_update(struct drm_plane *plane,
12374                                  struct drm_plane_state *state)
12375 {
12376         struct intel_plane_state *new = to_intel_plane_state(state);
12377         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12378
12379         /* Update watermarks on tiling or size changes. */
12380         if (new->base.visible != cur->base.visible)
12381                 return true;
12382
12383         if (!cur->base.fb || !new->base.fb)
12384                 return false;
12385
12386         if (cur->base.fb->modifier != new->base.fb->modifier ||
12387             cur->base.rotation != new->base.rotation ||
12388             drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12389             drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12390             drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12391             drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
12392                 return true;
12393
12394         return false;
12395 }
12396
12397 static bool needs_scaling(struct intel_plane_state *state)
12398 {
12399         int src_w = drm_rect_width(&state->base.src) >> 16;
12400         int src_h = drm_rect_height(&state->base.src) >> 16;
12401         int dst_w = drm_rect_width(&state->base.dst);
12402         int dst_h = drm_rect_height(&state->base.dst);
12403
12404         return (src_w != dst_w || src_h != dst_h);
12405 }
12406
12407 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12408                                     struct drm_plane_state *plane_state)
12409 {
12410         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
12411         struct drm_crtc *crtc = crtc_state->crtc;
12412         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12413         struct drm_plane *plane = plane_state->plane;
12414         struct drm_device *dev = crtc->dev;
12415         struct drm_i915_private *dev_priv = to_i915(dev);
12416         struct intel_plane_state *old_plane_state =
12417                 to_intel_plane_state(plane->state);
12418         bool mode_changed = needs_modeset(crtc_state);
12419         bool was_crtc_enabled = crtc->state->active;
12420         bool is_crtc_enabled = crtc_state->active;
12421         bool turn_off, turn_on, visible, was_visible;
12422         struct drm_framebuffer *fb = plane_state->fb;
12423         int ret;
12424
12425         if (INTEL_GEN(dev_priv) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
12426                 ret = skl_update_scaler_plane(
12427                         to_intel_crtc_state(crtc_state),
12428                         to_intel_plane_state(plane_state));
12429                 if (ret)
12430                         return ret;
12431         }
12432
12433         was_visible = old_plane_state->base.visible;
12434         visible = to_intel_plane_state(plane_state)->base.visible;
12435
12436         if (!was_crtc_enabled && WARN_ON(was_visible))
12437                 was_visible = false;
12438
12439         /*
12440          * Visibility is calculated as if the crtc was on, but
12441          * after scaler setup everything depends on it being off
12442          * when the crtc isn't active.
12443          *
12444          * FIXME this is wrong for watermarks. Watermarks should also
12445          * be computed as if the pipe would be active. Perhaps move
12446          * per-plane wm computation to the .check_plane() hook, and
12447          * only combine the results from all planes in the current place?
12448          */
12449         if (!is_crtc_enabled)
12450                 to_intel_plane_state(plane_state)->base.visible = visible = false;
12451
12452         if (!was_visible && !visible)
12453                 return 0;
12454
12455         if (fb != old_plane_state->base.fb)
12456                 pipe_config->fb_changed = true;
12457
12458         turn_off = was_visible && (!visible || mode_changed);
12459         turn_on = visible && (!was_visible || mode_changed);
12460
12461         DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12462                          intel_crtc->base.base.id,
12463                          intel_crtc->base.name,
12464                          plane->base.id, plane->name,
12465                          fb ? fb->base.id : -1);
12466
12467         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12468                          plane->base.id, plane->name,
12469                          was_visible, visible,
12470                          turn_off, turn_on, mode_changed);
12471
12472         if (turn_on) {
12473                 pipe_config->update_wm_pre = true;
12474
12475                 /* must disable cxsr around plane enable/disable */
12476                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12477                         pipe_config->disable_cxsr = true;
12478         } else if (turn_off) {
12479                 pipe_config->update_wm_post = true;
12480
12481                 /* must disable cxsr around plane enable/disable */
12482                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12483                         pipe_config->disable_cxsr = true;
12484         } else if (intel_wm_need_update(plane, plane_state)) {
12485                 /* FIXME bollocks */
12486                 pipe_config->update_wm_pre = true;
12487                 pipe_config->update_wm_post = true;
12488         }
12489
12490         /* Pre-gen9 platforms need two-step watermark updates */
12491         if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12492             INTEL_GEN(dev_priv) < 9 && dev_priv->display.optimize_watermarks)
12493                 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12494
12495         if (visible || was_visible)
12496                 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12497
12498         /*
12499          * WaCxSRDisabledForSpriteScaling:ivb
12500          *
12501          * cstate->update_wm was already set above, so this flag will
12502          * take effect when we commit and program watermarks.
12503          */
12504         if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev_priv) &&
12505             needs_scaling(to_intel_plane_state(plane_state)) &&
12506             !needs_scaling(old_plane_state))
12507                 pipe_config->disable_lp_wm = true;
12508
12509         return 0;
12510 }
12511
12512 static bool encoders_cloneable(const struct intel_encoder *a,
12513                                const struct intel_encoder *b)
12514 {
12515         /* masks could be asymmetric, so check both ways */
12516         return a == b || (a->cloneable & (1 << b->type) &&
12517                           b->cloneable & (1 << a->type));
12518 }
12519
12520 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12521                                          struct intel_crtc *crtc,
12522                                          struct intel_encoder *encoder)
12523 {
12524         struct intel_encoder *source_encoder;
12525         struct drm_connector *connector;
12526         struct drm_connector_state *connector_state;
12527         int i;
12528
12529         for_each_connector_in_state(state, connector, connector_state, i) {
12530                 if (connector_state->crtc != &crtc->base)
12531                         continue;
12532
12533                 source_encoder =
12534                         to_intel_encoder(connector_state->best_encoder);
12535                 if (!encoders_cloneable(encoder, source_encoder))
12536                         return false;
12537         }
12538
12539         return true;
12540 }
12541
12542 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12543                                    struct drm_crtc_state *crtc_state)
12544 {
12545         struct drm_device *dev = crtc->dev;
12546         struct drm_i915_private *dev_priv = to_i915(dev);
12547         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12548         struct intel_crtc_state *pipe_config =
12549                 to_intel_crtc_state(crtc_state);
12550         struct drm_atomic_state *state = crtc_state->state;
12551         int ret;
12552         bool mode_changed = needs_modeset(crtc_state);
12553
12554         if (mode_changed && !crtc_state->active)
12555                 pipe_config->update_wm_post = true;
12556
12557         if (mode_changed && crtc_state->enable &&
12558             dev_priv->display.crtc_compute_clock &&
12559             !WARN_ON(pipe_config->shared_dpll)) {
12560                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12561                                                            pipe_config);
12562                 if (ret)
12563                         return ret;
12564         }
12565
12566         if (crtc_state->color_mgmt_changed) {
12567                 ret = intel_color_check(crtc, crtc_state);
12568                 if (ret)
12569                         return ret;
12570
12571                 /*
12572                  * Changing color management on Intel hardware is
12573                  * handled as part of planes update.
12574                  */
12575                 crtc_state->planes_changed = true;
12576         }
12577
12578         ret = 0;
12579         if (dev_priv->display.compute_pipe_wm) {
12580                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12581                 if (ret) {
12582                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12583                         return ret;
12584                 }
12585         }
12586
12587         if (dev_priv->display.compute_intermediate_wm &&
12588             !to_intel_atomic_state(state)->skip_intermediate_wm) {
12589                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12590                         return 0;
12591
12592                 /*
12593                  * Calculate 'intermediate' watermarks that satisfy both the
12594                  * old state and the new state.  We can program these
12595                  * immediately.
12596                  */
12597                 ret = dev_priv->display.compute_intermediate_wm(dev,
12598                                                                 intel_crtc,
12599                                                                 pipe_config);
12600                 if (ret) {
12601                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12602                         return ret;
12603                 }
12604         } else if (dev_priv->display.compute_intermediate_wm) {
12605                 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12606                         pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12607         }
12608
12609         if (INTEL_GEN(dev_priv) >= 9) {
12610                 if (mode_changed)
12611                         ret = skl_update_scaler_crtc(pipe_config);
12612
12613                 if (!ret)
12614                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
12615                                                          pipe_config);
12616         }
12617
12618         return ret;
12619 }
12620
12621 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12622         .mode_set_base_atomic = intel_pipe_set_base_atomic,
12623         .atomic_begin = intel_begin_crtc_commit,
12624         .atomic_flush = intel_finish_crtc_commit,
12625         .atomic_check = intel_crtc_atomic_check,
12626 };
12627
12628 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12629 {
12630         struct intel_connector *connector;
12631
12632         for_each_intel_connector(dev, connector) {
12633                 if (connector->base.state->crtc)
12634                         drm_connector_unreference(&connector->base);
12635
12636                 if (connector->base.encoder) {
12637                         connector->base.state->best_encoder =
12638                                 connector->base.encoder;
12639                         connector->base.state->crtc =
12640                                 connector->base.encoder->crtc;
12641
12642                         drm_connector_reference(&connector->base);
12643                 } else {
12644                         connector->base.state->best_encoder = NULL;
12645                         connector->base.state->crtc = NULL;
12646                 }
12647         }
12648 }
12649
12650 static void
12651 connected_sink_compute_bpp(struct intel_connector *connector,
12652                            struct intel_crtc_state *pipe_config)
12653 {
12654         const struct drm_display_info *info = &connector->base.display_info;
12655         int bpp = pipe_config->pipe_bpp;
12656
12657         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12658                       connector->base.base.id,
12659                       connector->base.name);
12660
12661         /* Don't use an invalid EDID bpc value */
12662         if (info->bpc != 0 && info->bpc * 3 < bpp) {
12663                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12664                               bpp, info->bpc * 3);
12665                 pipe_config->pipe_bpp = info->bpc * 3;
12666         }
12667
12668         /* Clamp bpp to 8 on screens without EDID 1.4 */
12669         if (info->bpc == 0 && bpp > 24) {
12670                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12671                               bpp);
12672                 pipe_config->pipe_bpp = 24;
12673         }
12674 }
12675
12676 static int
12677 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12678                           struct intel_crtc_state *pipe_config)
12679 {
12680         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12681         struct drm_atomic_state *state;
12682         struct drm_connector *connector;
12683         struct drm_connector_state *connector_state;
12684         int bpp, i;
12685
12686         if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12687             IS_CHERRYVIEW(dev_priv)))
12688                 bpp = 10*3;
12689         else if (INTEL_GEN(dev_priv) >= 5)
12690                 bpp = 12*3;
12691         else
12692                 bpp = 8*3;
12693
12694
12695         pipe_config->pipe_bpp = bpp;
12696
12697         state = pipe_config->base.state;
12698
12699         /* Clamp display bpp to EDID value */
12700         for_each_connector_in_state(state, connector, connector_state, i) {
12701                 if (connector_state->crtc != &crtc->base)
12702                         continue;
12703
12704                 connected_sink_compute_bpp(to_intel_connector(connector),
12705                                            pipe_config);
12706         }
12707
12708         return bpp;
12709 }
12710
12711 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12712 {
12713         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12714                         "type: 0x%x flags: 0x%x\n",
12715                 mode->crtc_clock,
12716                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12717                 mode->crtc_hsync_end, mode->crtc_htotal,
12718                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12719                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12720 }
12721
12722 static inline void
12723 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
12724                       unsigned int lane_count, struct intel_link_m_n *m_n)
12725 {
12726         DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12727                       id, lane_count,
12728                       m_n->gmch_m, m_n->gmch_n,
12729                       m_n->link_m, m_n->link_n, m_n->tu);
12730 }
12731
12732 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12733                                    struct intel_crtc_state *pipe_config,
12734                                    const char *context)
12735 {
12736         struct drm_device *dev = crtc->base.dev;
12737         struct drm_i915_private *dev_priv = to_i915(dev);
12738         struct drm_plane *plane;
12739         struct intel_plane *intel_plane;
12740         struct intel_plane_state *state;
12741         struct drm_framebuffer *fb;
12742
12743         DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
12744                       crtc->base.base.id, crtc->base.name, context);
12745
12746         DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
12747                       transcoder_name(pipe_config->cpu_transcoder),
12748                       pipe_config->pipe_bpp, pipe_config->dither);
12749
12750         if (pipe_config->has_pch_encoder)
12751                 intel_dump_m_n_config(pipe_config, "fdi",
12752                                       pipe_config->fdi_lanes,
12753                                       &pipe_config->fdi_m_n);
12754
12755         if (intel_crtc_has_dp_encoder(pipe_config)) {
12756                 intel_dump_m_n_config(pipe_config, "dp m_n",
12757                                 pipe_config->lane_count, &pipe_config->dp_m_n);
12758                 if (pipe_config->has_drrs)
12759                         intel_dump_m_n_config(pipe_config, "dp m2_n2",
12760                                               pipe_config->lane_count,
12761                                               &pipe_config->dp_m2_n2);
12762         }
12763
12764         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12765                       pipe_config->has_audio, pipe_config->has_infoframe);
12766
12767         DRM_DEBUG_KMS("requested mode:\n");
12768         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12769         DRM_DEBUG_KMS("adjusted mode:\n");
12770         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12771         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12772         DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d\n",
12773                       pipe_config->port_clock,
12774                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12775
12776         if (INTEL_GEN(dev_priv) >= 9)
12777                 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12778                               crtc->num_scalers,
12779                               pipe_config->scaler_state.scaler_users,
12780                               pipe_config->scaler_state.scaler_id);
12781
12782         if (HAS_GMCH_DISPLAY(dev_priv))
12783                 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12784                               pipe_config->gmch_pfit.control,
12785                               pipe_config->gmch_pfit.pgm_ratios,
12786                               pipe_config->gmch_pfit.lvds_border_bits);
12787         else
12788                 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12789                               pipe_config->pch_pfit.pos,
12790                               pipe_config->pch_pfit.size,
12791                               enableddisabled(pipe_config->pch_pfit.enabled));
12792
12793         DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
12794                       pipe_config->ips_enabled, pipe_config->double_wide);
12795
12796         if (IS_BROXTON(dev_priv)) {
12797                 DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12798                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12799                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12800                               pipe_config->dpll_hw_state.ebb0,
12801                               pipe_config->dpll_hw_state.ebb4,
12802                               pipe_config->dpll_hw_state.pll0,
12803                               pipe_config->dpll_hw_state.pll1,
12804                               pipe_config->dpll_hw_state.pll2,
12805                               pipe_config->dpll_hw_state.pll3,
12806                               pipe_config->dpll_hw_state.pll6,
12807                               pipe_config->dpll_hw_state.pll8,
12808                               pipe_config->dpll_hw_state.pll9,
12809                               pipe_config->dpll_hw_state.pll10,
12810                               pipe_config->dpll_hw_state.pcsdw12);
12811         } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
12812                 DRM_DEBUG_KMS("dpll_hw_state: "
12813                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12814                               pipe_config->dpll_hw_state.ctrl1,
12815                               pipe_config->dpll_hw_state.cfgcr1,
12816                               pipe_config->dpll_hw_state.cfgcr2);
12817         } else if (HAS_DDI(dev_priv)) {
12818                 DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12819                               pipe_config->dpll_hw_state.wrpll,
12820                               pipe_config->dpll_hw_state.spll);
12821         } else {
12822                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12823                               "fp0: 0x%x, fp1: 0x%x\n",
12824                               pipe_config->dpll_hw_state.dpll,
12825                               pipe_config->dpll_hw_state.dpll_md,
12826                               pipe_config->dpll_hw_state.fp0,
12827                               pipe_config->dpll_hw_state.fp1);
12828         }
12829
12830         DRM_DEBUG_KMS("planes on this crtc\n");
12831         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12832                 struct drm_format_name_buf format_name;
12833                 intel_plane = to_intel_plane(plane);
12834                 if (intel_plane->pipe != crtc->pipe)
12835                         continue;
12836
12837                 state = to_intel_plane_state(plane->state);
12838                 fb = state->base.fb;
12839                 if (!fb) {
12840                         DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12841                                       plane->base.id, plane->name, state->scaler_id);
12842                         continue;
12843                 }
12844
12845                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
12846                               plane->base.id, plane->name,
12847                               fb->base.id, fb->width, fb->height,
12848                               drm_get_format_name(fb->pixel_format, &format_name));
12849                 if (INTEL_GEN(dev_priv) >= 9)
12850                         DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12851                                       state->scaler_id,
12852                                       state->base.src.x1 >> 16,
12853                                       state->base.src.y1 >> 16,
12854                                       drm_rect_width(&state->base.src) >> 16,
12855                                       drm_rect_height(&state->base.src) >> 16,
12856                                       state->base.dst.x1, state->base.dst.y1,
12857                                       drm_rect_width(&state->base.dst),
12858                                       drm_rect_height(&state->base.dst));
12859         }
12860 }
12861
12862 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12863 {
12864         struct drm_device *dev = state->dev;
12865         struct drm_connector *connector;
12866         unsigned int used_ports = 0;
12867         unsigned int used_mst_ports = 0;
12868
12869         /*
12870          * Walk the connector list instead of the encoder
12871          * list to detect the problem on ddi platforms
12872          * where there's just one encoder per digital port.
12873          */
12874         drm_for_each_connector(connector, dev) {
12875                 struct drm_connector_state *connector_state;
12876                 struct intel_encoder *encoder;
12877
12878                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12879                 if (!connector_state)
12880                         connector_state = connector->state;
12881
12882                 if (!connector_state->best_encoder)
12883                         continue;
12884
12885                 encoder = to_intel_encoder(connector_state->best_encoder);
12886
12887                 WARN_ON(!connector_state->crtc);
12888
12889                 switch (encoder->type) {
12890                         unsigned int port_mask;
12891                 case INTEL_OUTPUT_UNKNOWN:
12892                         if (WARN_ON(!HAS_DDI(to_i915(dev))))
12893                                 break;
12894                 case INTEL_OUTPUT_DP:
12895                 case INTEL_OUTPUT_HDMI:
12896                 case INTEL_OUTPUT_EDP:
12897                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12898
12899                         /* the same port mustn't appear more than once */
12900                         if (used_ports & port_mask)
12901                                 return false;
12902
12903                         used_ports |= port_mask;
12904                         break;
12905                 case INTEL_OUTPUT_DP_MST:
12906                         used_mst_ports |=
12907                                 1 << enc_to_mst(&encoder->base)->primary->port;
12908                         break;
12909                 default:
12910                         break;
12911                 }
12912         }
12913
12914         /* can't mix MST and SST/HDMI on the same port */
12915         if (used_ports & used_mst_ports)
12916                 return false;
12917
12918         return true;
12919 }
12920
12921 static void
12922 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12923 {
12924         struct drm_crtc_state tmp_state;
12925         struct intel_crtc_scaler_state scaler_state;
12926         struct intel_dpll_hw_state dpll_hw_state;
12927         struct intel_shared_dpll *shared_dpll;
12928         bool force_thru;
12929
12930         /* FIXME: before the switch to atomic started, a new pipe_config was
12931          * kzalloc'd. Code that depends on any field being zero should be
12932          * fixed, so that the crtc_state can be safely duplicated. For now,
12933          * only fields that are know to not cause problems are preserved. */
12934
12935         tmp_state = crtc_state->base;
12936         scaler_state = crtc_state->scaler_state;
12937         shared_dpll = crtc_state->shared_dpll;
12938         dpll_hw_state = crtc_state->dpll_hw_state;
12939         force_thru = crtc_state->pch_pfit.force_thru;
12940
12941         memset(crtc_state, 0, sizeof *crtc_state);
12942
12943         crtc_state->base = tmp_state;
12944         crtc_state->scaler_state = scaler_state;
12945         crtc_state->shared_dpll = shared_dpll;
12946         crtc_state->dpll_hw_state = dpll_hw_state;
12947         crtc_state->pch_pfit.force_thru = force_thru;
12948 }
12949
12950 static int
12951 intel_modeset_pipe_config(struct drm_crtc *crtc,
12952                           struct intel_crtc_state *pipe_config)
12953 {
12954         struct drm_atomic_state *state = pipe_config->base.state;
12955         struct intel_encoder *encoder;
12956         struct drm_connector *connector;
12957         struct drm_connector_state *connector_state;
12958         int base_bpp, ret = -EINVAL;
12959         int i;
12960         bool retry = true;
12961
12962         clear_intel_crtc_state(pipe_config);
12963
12964         pipe_config->cpu_transcoder =
12965                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12966
12967         /*
12968          * Sanitize sync polarity flags based on requested ones. If neither
12969          * positive or negative polarity is requested, treat this as meaning
12970          * negative polarity.
12971          */
12972         if (!(pipe_config->base.adjusted_mode.flags &
12973               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12974                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12975
12976         if (!(pipe_config->base.adjusted_mode.flags &
12977               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12978                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12979
12980         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12981                                              pipe_config);
12982         if (base_bpp < 0)
12983                 goto fail;
12984
12985         /*
12986          * Determine the real pipe dimensions. Note that stereo modes can
12987          * increase the actual pipe size due to the frame doubling and
12988          * insertion of additional space for blanks between the frame. This
12989          * is stored in the crtc timings. We use the requested mode to do this
12990          * computation to clearly distinguish it from the adjusted mode, which
12991          * can be changed by the connectors in the below retry loop.
12992          */
12993         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12994                                &pipe_config->pipe_src_w,
12995                                &pipe_config->pipe_src_h);
12996
12997         for_each_connector_in_state(state, connector, connector_state, i) {
12998                 if (connector_state->crtc != crtc)
12999                         continue;
13000
13001                 encoder = to_intel_encoder(connector_state->best_encoder);
13002
13003                 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13004                         DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
13005                         goto fail;
13006                 }
13007
13008                 /*
13009                  * Determine output_types before calling the .compute_config()
13010                  * hooks so that the hooks can use this information safely.
13011                  */
13012                 pipe_config->output_types |= 1 << encoder->type;
13013         }
13014
13015 encoder_retry:
13016         /* Ensure the port clock defaults are reset when retrying. */
13017         pipe_config->port_clock = 0;
13018         pipe_config->pixel_multiplier = 1;
13019
13020         /* Fill in default crtc timings, allow encoders to overwrite them. */
13021         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13022                               CRTC_STEREO_DOUBLE);
13023
13024         /* Pass our mode to the connectors and the CRTC to give them a chance to
13025          * adjust it according to limitations or connector properties, and also
13026          * a chance to reject the mode entirely.
13027          */
13028         for_each_connector_in_state(state, connector, connector_state, i) {
13029                 if (connector_state->crtc != crtc)
13030                         continue;
13031
13032                 encoder = to_intel_encoder(connector_state->best_encoder);
13033
13034                 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
13035                         DRM_DEBUG_KMS("Encoder config failure\n");
13036                         goto fail;
13037                 }
13038         }
13039
13040         /* Set default port clock if not overwritten by the encoder. Needs to be
13041          * done afterwards in case the encoder adjusts the mode. */
13042         if (!pipe_config->port_clock)
13043                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
13044                         * pipe_config->pixel_multiplier;
13045
13046         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13047         if (ret < 0) {
13048                 DRM_DEBUG_KMS("CRTC fixup failed\n");
13049                 goto fail;
13050         }
13051
13052         if (ret == RETRY) {
13053                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
13054                         ret = -EINVAL;
13055                         goto fail;
13056                 }
13057
13058                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13059                 retry = false;
13060                 goto encoder_retry;
13061         }
13062
13063         /* Dithering seems to not pass-through bits correctly when it should, so
13064          * only enable it on 6bpc panels. */
13065         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
13066         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13067                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13068
13069 fail:
13070         return ret;
13071 }
13072
13073 static void
13074 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
13075 {
13076         struct drm_crtc *crtc;
13077         struct drm_crtc_state *crtc_state;
13078         int i;
13079
13080         /* Double check state. */
13081         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13082                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
13083
13084                 /* Update hwmode for vblank functions */
13085                 if (crtc->state->active)
13086                         crtc->hwmode = crtc->state->adjusted_mode;
13087                 else
13088                         crtc->hwmode.crtc_clock = 0;
13089
13090                 /*
13091                  * Update legacy state to satisfy fbc code. This can
13092                  * be removed when fbc uses the atomic state.
13093                  */
13094                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13095                         struct drm_plane_state *plane_state = crtc->primary->state;
13096
13097                         crtc->primary->fb = plane_state->fb;
13098                         crtc->x = plane_state->src_x >> 16;
13099                         crtc->y = plane_state->src_y >> 16;
13100                 }
13101         }
13102 }
13103
13104 static bool intel_fuzzy_clock_check(int clock1, int clock2)
13105 {
13106         int diff;
13107
13108         if (clock1 == clock2)
13109                 return true;
13110
13111         if (!clock1 || !clock2)
13112                 return false;
13113
13114         diff = abs(clock1 - clock2);
13115
13116         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13117                 return true;
13118
13119         return false;
13120 }
13121
13122 static bool
13123 intel_compare_m_n(unsigned int m, unsigned int n,
13124                   unsigned int m2, unsigned int n2,
13125                   bool exact)
13126 {
13127         if (m == m2 && n == n2)
13128                 return true;
13129
13130         if (exact || !m || !n || !m2 || !n2)
13131                 return false;
13132
13133         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13134
13135         if (n > n2) {
13136                 while (n > n2) {
13137                         m2 <<= 1;
13138                         n2 <<= 1;
13139                 }
13140         } else if (n < n2) {
13141                 while (n < n2) {
13142                         m <<= 1;
13143                         n <<= 1;
13144                 }
13145         }
13146
13147         if (n != n2)
13148                 return false;
13149
13150         return intel_fuzzy_clock_check(m, m2);
13151 }
13152
13153 static bool
13154 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13155                        struct intel_link_m_n *m2_n2,
13156                        bool adjust)
13157 {
13158         if (m_n->tu == m2_n2->tu &&
13159             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13160                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13161             intel_compare_m_n(m_n->link_m, m_n->link_n,
13162                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
13163                 if (adjust)
13164                         *m2_n2 = *m_n;
13165
13166                 return true;
13167         }
13168
13169         return false;
13170 }
13171
13172 static bool
13173 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
13174                           struct intel_crtc_state *current_config,
13175                           struct intel_crtc_state *pipe_config,
13176                           bool adjust)
13177 {
13178         bool ret = true;
13179
13180 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
13181         do { \
13182                 if (!adjust) \
13183                         DRM_ERROR(fmt, ##__VA_ARGS__); \
13184                 else \
13185                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
13186         } while (0)
13187
13188 #define PIPE_CONF_CHECK_X(name) \
13189         if (current_config->name != pipe_config->name) { \
13190                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13191                           "(expected 0x%08x, found 0x%08x)\n", \
13192                           current_config->name, \
13193                           pipe_config->name); \
13194                 ret = false; \
13195         }
13196
13197 #define PIPE_CONF_CHECK_I(name) \
13198         if (current_config->name != pipe_config->name) { \
13199                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13200                           "(expected %i, found %i)\n", \
13201                           current_config->name, \
13202                           pipe_config->name); \
13203                 ret = false; \
13204         }
13205
13206 #define PIPE_CONF_CHECK_P(name) \
13207         if (current_config->name != pipe_config->name) { \
13208                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13209                           "(expected %p, found %p)\n", \
13210                           current_config->name, \
13211                           pipe_config->name); \
13212                 ret = false; \
13213         }
13214
13215 #define PIPE_CONF_CHECK_M_N(name) \
13216         if (!intel_compare_link_m_n(&current_config->name, \
13217                                     &pipe_config->name,\
13218                                     adjust)) { \
13219                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13220                           "(expected tu %i gmch %i/%i link %i/%i, " \
13221                           "found tu %i, gmch %i/%i link %i/%i)\n", \
13222                           current_config->name.tu, \
13223                           current_config->name.gmch_m, \
13224                           current_config->name.gmch_n, \
13225                           current_config->name.link_m, \
13226                           current_config->name.link_n, \
13227                           pipe_config->name.tu, \
13228                           pipe_config->name.gmch_m, \
13229                           pipe_config->name.gmch_n, \
13230                           pipe_config->name.link_m, \
13231                           pipe_config->name.link_n); \
13232                 ret = false; \
13233         }
13234
13235 /* This is required for BDW+ where there is only one set of registers for
13236  * switching between high and low RR.
13237  * This macro can be used whenever a comparison has to be made between one
13238  * hw state and multiple sw state variables.
13239  */
13240 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13241         if (!intel_compare_link_m_n(&current_config->name, \
13242                                     &pipe_config->name, adjust) && \
13243             !intel_compare_link_m_n(&current_config->alt_name, \
13244                                     &pipe_config->name, adjust)) { \
13245                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13246                           "(expected tu %i gmch %i/%i link %i/%i, " \
13247                           "or tu %i gmch %i/%i link %i/%i, " \
13248                           "found tu %i, gmch %i/%i link %i/%i)\n", \
13249                           current_config->name.tu, \
13250                           current_config->name.gmch_m, \
13251                           current_config->name.gmch_n, \
13252                           current_config->name.link_m, \
13253                           current_config->name.link_n, \
13254                           current_config->alt_name.tu, \
13255                           current_config->alt_name.gmch_m, \
13256                           current_config->alt_name.gmch_n, \
13257                           current_config->alt_name.link_m, \
13258                           current_config->alt_name.link_n, \
13259                           pipe_config->name.tu, \
13260                           pipe_config->name.gmch_m, \
13261                           pipe_config->name.gmch_n, \
13262                           pipe_config->name.link_m, \
13263                           pipe_config->name.link_n); \
13264                 ret = false; \
13265         }
13266
13267 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
13268         if ((current_config->name ^ pipe_config->name) & (mask)) { \
13269                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
13270                           "(expected %i, found %i)\n", \
13271                           current_config->name & (mask), \
13272                           pipe_config->name & (mask)); \
13273                 ret = false; \
13274         }
13275
13276 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13277         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13278                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13279                           "(expected %i, found %i)\n", \
13280                           current_config->name, \
13281                           pipe_config->name); \
13282                 ret = false; \
13283         }
13284
13285 #define PIPE_CONF_QUIRK(quirk)  \
13286         ((current_config->quirks | pipe_config->quirks) & (quirk))
13287
13288         PIPE_CONF_CHECK_I(cpu_transcoder);
13289
13290         PIPE_CONF_CHECK_I(has_pch_encoder);
13291         PIPE_CONF_CHECK_I(fdi_lanes);
13292         PIPE_CONF_CHECK_M_N(fdi_m_n);
13293
13294         PIPE_CONF_CHECK_I(lane_count);
13295         PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13296
13297         if (INTEL_GEN(dev_priv) < 8) {
13298                 PIPE_CONF_CHECK_M_N(dp_m_n);
13299
13300                 if (current_config->has_drrs)
13301                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
13302         } else
13303                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13304
13305         PIPE_CONF_CHECK_X(output_types);
13306
13307         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13308         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13309         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13310         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13311         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13312         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13313
13314         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13315         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13316         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13317         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13318         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13319         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13320
13321         PIPE_CONF_CHECK_I(pixel_multiplier);
13322         PIPE_CONF_CHECK_I(has_hdmi_sink);
13323         if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13324             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13325                 PIPE_CONF_CHECK_I(limited_color_range);
13326         PIPE_CONF_CHECK_I(has_infoframe);
13327
13328         PIPE_CONF_CHECK_I(has_audio);
13329
13330         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13331                               DRM_MODE_FLAG_INTERLACE);
13332
13333         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13334                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13335                                       DRM_MODE_FLAG_PHSYNC);
13336                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13337                                       DRM_MODE_FLAG_NHSYNC);
13338                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13339                                       DRM_MODE_FLAG_PVSYNC);
13340                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13341                                       DRM_MODE_FLAG_NVSYNC);
13342         }
13343
13344         PIPE_CONF_CHECK_X(gmch_pfit.control);
13345         /* pfit ratios are autocomputed by the hw on gen4+ */
13346         if (INTEL_GEN(dev_priv) < 4)
13347                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13348         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13349
13350         if (!adjust) {
13351                 PIPE_CONF_CHECK_I(pipe_src_w);
13352                 PIPE_CONF_CHECK_I(pipe_src_h);
13353
13354                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
13355                 if (current_config->pch_pfit.enabled) {
13356                         PIPE_CONF_CHECK_X(pch_pfit.pos);
13357                         PIPE_CONF_CHECK_X(pch_pfit.size);
13358                 }
13359
13360                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13361         }
13362
13363         /* BDW+ don't expose a synchronous way to read the state */
13364         if (IS_HASWELL(dev_priv))
13365                 PIPE_CONF_CHECK_I(ips_enabled);
13366
13367         PIPE_CONF_CHECK_I(double_wide);
13368
13369         PIPE_CONF_CHECK_P(shared_dpll);
13370         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13371         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13372         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13373         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13374         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13375         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13376         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13377         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13378         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13379
13380         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13381         PIPE_CONF_CHECK_X(dsi_pll.div);
13382
13383         if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13384                 PIPE_CONF_CHECK_I(pipe_bpp);
13385
13386         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13387         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13388
13389 #undef PIPE_CONF_CHECK_X
13390 #undef PIPE_CONF_CHECK_I
13391 #undef PIPE_CONF_CHECK_P
13392 #undef PIPE_CONF_CHECK_FLAGS
13393 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13394 #undef PIPE_CONF_QUIRK
13395 #undef INTEL_ERR_OR_DBG_KMS
13396
13397         return ret;
13398 }
13399
13400 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13401                                            const struct intel_crtc_state *pipe_config)
13402 {
13403         if (pipe_config->has_pch_encoder) {
13404                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13405                                                             &pipe_config->fdi_m_n);
13406                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13407
13408                 /*
13409                  * FDI already provided one idea for the dotclock.
13410                  * Yell if the encoder disagrees.
13411                  */
13412                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13413                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13414                      fdi_dotclock, dotclock);
13415         }
13416 }
13417
13418 static void verify_wm_state(struct drm_crtc *crtc,
13419                             struct drm_crtc_state *new_state)
13420 {
13421         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13422         struct skl_ddb_allocation hw_ddb, *sw_ddb;
13423         struct skl_pipe_wm hw_wm, *sw_wm;
13424         struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13425         struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
13426         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13427         const enum pipe pipe = intel_crtc->pipe;
13428         int plane, level, max_level = ilk_wm_max_level(dev_priv);
13429
13430         if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
13431                 return;
13432
13433         skl_pipe_wm_get_hw_state(crtc, &hw_wm);
13434         sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
13435
13436         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13437         sw_ddb = &dev_priv->wm.skl_hw.ddb;
13438
13439         /* planes */
13440         for_each_universal_plane(dev_priv, pipe, plane) {
13441                 hw_plane_wm = &hw_wm.planes[plane];
13442                 sw_plane_wm = &sw_wm->planes[plane];
13443
13444                 /* Watermarks */
13445                 for (level = 0; level <= max_level; level++) {
13446                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13447                                                 &sw_plane_wm->wm[level]))
13448                                 continue;
13449
13450                         DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13451                                   pipe_name(pipe), plane + 1, level,
13452                                   sw_plane_wm->wm[level].plane_en,
13453                                   sw_plane_wm->wm[level].plane_res_b,
13454                                   sw_plane_wm->wm[level].plane_res_l,
13455                                   hw_plane_wm->wm[level].plane_en,
13456                                   hw_plane_wm->wm[level].plane_res_b,
13457                                   hw_plane_wm->wm[level].plane_res_l);
13458                 }
13459
13460                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13461                                          &sw_plane_wm->trans_wm)) {
13462                         DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13463                                   pipe_name(pipe), plane + 1,
13464                                   sw_plane_wm->trans_wm.plane_en,
13465                                   sw_plane_wm->trans_wm.plane_res_b,
13466                                   sw_plane_wm->trans_wm.plane_res_l,
13467                                   hw_plane_wm->trans_wm.plane_en,
13468                                   hw_plane_wm->trans_wm.plane_res_b,
13469                                   hw_plane_wm->trans_wm.plane_res_l);
13470                 }
13471
13472                 /* DDB */
13473                 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
13474                 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
13475
13476                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13477                         DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13478                                   pipe_name(pipe), plane + 1,
13479                                   sw_ddb_entry->start, sw_ddb_entry->end,
13480                                   hw_ddb_entry->start, hw_ddb_entry->end);
13481                 }
13482         }
13483
13484         /*
13485          * cursor
13486          * If the cursor plane isn't active, we may not have updated it's ddb
13487          * allocation. In that case since the ddb allocation will be updated
13488          * once the plane becomes visible, we can skip this check
13489          */
13490         if (intel_crtc->cursor_addr) {
13491                 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
13492                 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
13493
13494                 /* Watermarks */
13495                 for (level = 0; level <= max_level; level++) {
13496                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13497                                                 &sw_plane_wm->wm[level]))
13498                                 continue;
13499
13500                         DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13501                                   pipe_name(pipe), level,
13502                                   sw_plane_wm->wm[level].plane_en,
13503                                   sw_plane_wm->wm[level].plane_res_b,
13504                                   sw_plane_wm->wm[level].plane_res_l,
13505                                   hw_plane_wm->wm[level].plane_en,
13506                                   hw_plane_wm->wm[level].plane_res_b,
13507                                   hw_plane_wm->wm[level].plane_res_l);
13508                 }
13509
13510                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13511                                          &sw_plane_wm->trans_wm)) {
13512                         DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13513                                   pipe_name(pipe),
13514                                   sw_plane_wm->trans_wm.plane_en,
13515                                   sw_plane_wm->trans_wm.plane_res_b,
13516                                   sw_plane_wm->trans_wm.plane_res_l,
13517                                   hw_plane_wm->trans_wm.plane_en,
13518                                   hw_plane_wm->trans_wm.plane_res_b,
13519                                   hw_plane_wm->trans_wm.plane_res_l);
13520                 }
13521
13522                 /* DDB */
13523                 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13524                 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13525
13526                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13527                         DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13528                                   pipe_name(pipe),
13529                                   sw_ddb_entry->start, sw_ddb_entry->end,
13530                                   hw_ddb_entry->start, hw_ddb_entry->end);
13531                 }
13532         }
13533 }
13534
13535 static void
13536 verify_connector_state(struct drm_device *dev,
13537                        struct drm_atomic_state *state,
13538                        struct drm_crtc *crtc)
13539 {
13540         struct drm_connector *connector;
13541         struct drm_connector_state *old_conn_state;
13542         int i;
13543
13544         for_each_connector_in_state(state, connector, old_conn_state, i) {
13545                 struct drm_encoder *encoder = connector->encoder;
13546                 struct drm_connector_state *state = connector->state;
13547
13548                 if (state->crtc != crtc)
13549                         continue;
13550
13551                 intel_connector_verify_state(to_intel_connector(connector));
13552
13553                 I915_STATE_WARN(state->best_encoder != encoder,
13554                      "connector's atomic encoder doesn't match legacy encoder\n");
13555         }
13556 }
13557
13558 static void
13559 verify_encoder_state(struct drm_device *dev)
13560 {
13561         struct intel_encoder *encoder;
13562         struct intel_connector *connector;
13563
13564         for_each_intel_encoder(dev, encoder) {
13565                 bool enabled = false;
13566                 enum pipe pipe;
13567
13568                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13569                               encoder->base.base.id,
13570                               encoder->base.name);
13571
13572                 for_each_intel_connector(dev, connector) {
13573                         if (connector->base.state->best_encoder != &encoder->base)
13574                                 continue;
13575                         enabled = true;
13576
13577                         I915_STATE_WARN(connector->base.state->crtc !=
13578                                         encoder->base.crtc,
13579                              "connector's crtc doesn't match encoder crtc\n");
13580                 }
13581
13582                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13583                      "encoder's enabled state mismatch "
13584                      "(expected %i, found %i)\n",
13585                      !!encoder->base.crtc, enabled);
13586
13587                 if (!encoder->base.crtc) {
13588                         bool active;
13589
13590                         active = encoder->get_hw_state(encoder, &pipe);
13591                         I915_STATE_WARN(active,
13592                              "encoder detached but still enabled on pipe %c.\n",
13593                              pipe_name(pipe));
13594                 }
13595         }
13596 }
13597
13598 static void
13599 verify_crtc_state(struct drm_crtc *crtc,
13600                   struct drm_crtc_state *old_crtc_state,
13601                   struct drm_crtc_state *new_crtc_state)
13602 {
13603         struct drm_device *dev = crtc->dev;
13604         struct drm_i915_private *dev_priv = to_i915(dev);
13605         struct intel_encoder *encoder;
13606         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13607         struct intel_crtc_state *pipe_config, *sw_config;
13608         struct drm_atomic_state *old_state;
13609         bool active;
13610
13611         old_state = old_crtc_state->state;
13612         __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13613         pipe_config = to_intel_crtc_state(old_crtc_state);
13614         memset(pipe_config, 0, sizeof(*pipe_config));
13615         pipe_config->base.crtc = crtc;
13616         pipe_config->base.state = old_state;
13617
13618         DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13619
13620         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13621
13622         /* hw state is inconsistent with the pipe quirk */
13623         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13624             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13625                 active = new_crtc_state->active;
13626
13627         I915_STATE_WARN(new_crtc_state->active != active,
13628              "crtc active state doesn't match with hw state "
13629              "(expected %i, found %i)\n", new_crtc_state->active, active);
13630
13631         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13632              "transitional active state does not match atomic hw state "
13633              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13634
13635         for_each_encoder_on_crtc(dev, crtc, encoder) {
13636                 enum pipe pipe;
13637
13638                 active = encoder->get_hw_state(encoder, &pipe);
13639                 I915_STATE_WARN(active != new_crtc_state->active,
13640                         "[ENCODER:%i] active %i with crtc active %i\n",
13641                         encoder->base.base.id, active, new_crtc_state->active);
13642
13643                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13644                                 "Encoder connected to wrong pipe %c\n",
13645                                 pipe_name(pipe));
13646
13647                 if (active) {
13648                         pipe_config->output_types |= 1 << encoder->type;
13649                         encoder->get_config(encoder, pipe_config);
13650                 }
13651         }
13652
13653         if (!new_crtc_state->active)
13654                 return;
13655
13656         intel_pipe_config_sanity_check(dev_priv, pipe_config);
13657
13658         sw_config = to_intel_crtc_state(crtc->state);
13659         if (!intel_pipe_config_compare(dev_priv, sw_config,
13660                                        pipe_config, false)) {
13661                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13662                 intel_dump_pipe_config(intel_crtc, pipe_config,
13663                                        "[hw state]");
13664                 intel_dump_pipe_config(intel_crtc, sw_config,
13665                                        "[sw state]");
13666         }
13667 }
13668
13669 static void
13670 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13671                          struct intel_shared_dpll *pll,
13672                          struct drm_crtc *crtc,
13673                          struct drm_crtc_state *new_state)
13674 {
13675         struct intel_dpll_hw_state dpll_hw_state;
13676         unsigned crtc_mask;
13677         bool active;
13678
13679         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13680
13681         DRM_DEBUG_KMS("%s\n", pll->name);
13682
13683         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13684
13685         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13686                 I915_STATE_WARN(!pll->on && pll->active_mask,
13687                      "pll in active use but not on in sw tracking\n");
13688                 I915_STATE_WARN(pll->on && !pll->active_mask,
13689                      "pll is on but not used by any active crtc\n");
13690                 I915_STATE_WARN(pll->on != active,
13691                      "pll on state mismatch (expected %i, found %i)\n",
13692                      pll->on, active);
13693         }
13694
13695         if (!crtc) {
13696                 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13697                                 "more active pll users than references: %x vs %x\n",
13698                                 pll->active_mask, pll->config.crtc_mask);
13699
13700                 return;
13701         }
13702
13703         crtc_mask = 1 << drm_crtc_index(crtc);
13704
13705         if (new_state->active)
13706                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13707                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13708                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13709         else
13710                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13711                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13712                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13713
13714         I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13715                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13716                         crtc_mask, pll->config.crtc_mask);
13717
13718         I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13719                                           &dpll_hw_state,
13720                                           sizeof(dpll_hw_state)),
13721                         "pll hw state mismatch\n");
13722 }
13723
13724 static void
13725 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13726                          struct drm_crtc_state *old_crtc_state,
13727                          struct drm_crtc_state *new_crtc_state)
13728 {
13729         struct drm_i915_private *dev_priv = to_i915(dev);
13730         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13731         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13732
13733         if (new_state->shared_dpll)
13734                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13735
13736         if (old_state->shared_dpll &&
13737             old_state->shared_dpll != new_state->shared_dpll) {
13738                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13739                 struct intel_shared_dpll *pll = old_state->shared_dpll;
13740
13741                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13742                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13743                                 pipe_name(drm_crtc_index(crtc)));
13744                 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13745                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13746                                 pipe_name(drm_crtc_index(crtc)));
13747         }
13748 }
13749
13750 static void
13751 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13752                           struct drm_atomic_state *state,
13753                           struct drm_crtc_state *old_state,
13754                           struct drm_crtc_state *new_state)
13755 {
13756         if (!needs_modeset(new_state) &&
13757             !to_intel_crtc_state(new_state)->update_pipe)
13758                 return;
13759
13760         verify_wm_state(crtc, new_state);
13761         verify_connector_state(crtc->dev, state, crtc);
13762         verify_crtc_state(crtc, old_state, new_state);
13763         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13764 }
13765
13766 static void
13767 verify_disabled_dpll_state(struct drm_device *dev)
13768 {
13769         struct drm_i915_private *dev_priv = to_i915(dev);
13770         int i;
13771
13772         for (i = 0; i < dev_priv->num_shared_dpll; i++)
13773                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13774 }
13775
13776 static void
13777 intel_modeset_verify_disabled(struct drm_device *dev,
13778                               struct drm_atomic_state *state)
13779 {
13780         verify_encoder_state(dev);
13781         verify_connector_state(dev, state, NULL);
13782         verify_disabled_dpll_state(dev);
13783 }
13784
13785 static void update_scanline_offset(struct intel_crtc *crtc)
13786 {
13787         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13788
13789         /*
13790          * The scanline counter increments at the leading edge of hsync.
13791          *
13792          * On most platforms it starts counting from vtotal-1 on the
13793          * first active line. That means the scanline counter value is
13794          * always one less than what we would expect. Ie. just after
13795          * start of vblank, which also occurs at start of hsync (on the
13796          * last active line), the scanline counter will read vblank_start-1.
13797          *
13798          * On gen2 the scanline counter starts counting from 1 instead
13799          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13800          * to keep the value positive), instead of adding one.
13801          *
13802          * On HSW+ the behaviour of the scanline counter depends on the output
13803          * type. For DP ports it behaves like most other platforms, but on HDMI
13804          * there's an extra 1 line difference. So we need to add two instead of
13805          * one to the value.
13806          */
13807         if (IS_GEN2(dev_priv)) {
13808                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13809                 int vtotal;
13810
13811                 vtotal = adjusted_mode->crtc_vtotal;
13812                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13813                         vtotal /= 2;
13814
13815                 crtc->scanline_offset = vtotal - 1;
13816         } else if (HAS_DDI(dev_priv) &&
13817                    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13818                 crtc->scanline_offset = 2;
13819         } else
13820                 crtc->scanline_offset = 1;
13821 }
13822
13823 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13824 {
13825         struct drm_device *dev = state->dev;
13826         struct drm_i915_private *dev_priv = to_i915(dev);
13827         struct intel_shared_dpll_config *shared_dpll = NULL;
13828         struct drm_crtc *crtc;
13829         struct drm_crtc_state *crtc_state;
13830         int i;
13831
13832         if (!dev_priv->display.crtc_compute_clock)
13833                 return;
13834
13835         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13836                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13837                 struct intel_shared_dpll *old_dpll =
13838                         to_intel_crtc_state(crtc->state)->shared_dpll;
13839
13840                 if (!needs_modeset(crtc_state))
13841                         continue;
13842
13843                 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13844
13845                 if (!old_dpll)
13846                         continue;
13847
13848                 if (!shared_dpll)
13849                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13850
13851                 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13852         }
13853 }
13854
13855 /*
13856  * This implements the workaround described in the "notes" section of the mode
13857  * set sequence documentation. When going from no pipes or single pipe to
13858  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13859  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13860  */
13861 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13862 {
13863         struct drm_crtc_state *crtc_state;
13864         struct intel_crtc *intel_crtc;
13865         struct drm_crtc *crtc;
13866         struct intel_crtc_state *first_crtc_state = NULL;
13867         struct intel_crtc_state *other_crtc_state = NULL;
13868         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13869         int i;
13870
13871         /* look at all crtc's that are going to be enabled in during modeset */
13872         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13873                 intel_crtc = to_intel_crtc(crtc);
13874
13875                 if (!crtc_state->active || !needs_modeset(crtc_state))
13876                         continue;
13877
13878                 if (first_crtc_state) {
13879                         other_crtc_state = to_intel_crtc_state(crtc_state);
13880                         break;
13881                 } else {
13882                         first_crtc_state = to_intel_crtc_state(crtc_state);
13883                         first_pipe = intel_crtc->pipe;
13884                 }
13885         }
13886
13887         /* No workaround needed? */
13888         if (!first_crtc_state)
13889                 return 0;
13890
13891         /* w/a possibly needed, check how many crtc's are already enabled. */
13892         for_each_intel_crtc(state->dev, intel_crtc) {
13893                 struct intel_crtc_state *pipe_config;
13894
13895                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13896                 if (IS_ERR(pipe_config))
13897                         return PTR_ERR(pipe_config);
13898
13899                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13900
13901                 if (!pipe_config->base.active ||
13902                     needs_modeset(&pipe_config->base))
13903                         continue;
13904
13905                 /* 2 or more enabled crtcs means no need for w/a */
13906                 if (enabled_pipe != INVALID_PIPE)
13907                         return 0;
13908
13909                 enabled_pipe = intel_crtc->pipe;
13910         }
13911
13912         if (enabled_pipe != INVALID_PIPE)
13913                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13914         else if (other_crtc_state)
13915                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13916
13917         return 0;
13918 }
13919
13920 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13921 {
13922         struct drm_crtc *crtc;
13923         struct drm_crtc_state *crtc_state;
13924         int ret = 0;
13925
13926         /* add all active pipes to the state */
13927         for_each_crtc(state->dev, crtc) {
13928                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13929                 if (IS_ERR(crtc_state))
13930                         return PTR_ERR(crtc_state);
13931
13932                 if (!crtc_state->active || needs_modeset(crtc_state))
13933                         continue;
13934
13935                 crtc_state->mode_changed = true;
13936
13937                 ret = drm_atomic_add_affected_connectors(state, crtc);
13938                 if (ret)
13939                         break;
13940
13941                 ret = drm_atomic_add_affected_planes(state, crtc);
13942                 if (ret)
13943                         break;
13944         }
13945
13946         return ret;
13947 }
13948
13949 static int intel_modeset_checks(struct drm_atomic_state *state)
13950 {
13951         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13952         struct drm_i915_private *dev_priv = to_i915(state->dev);
13953         struct drm_crtc *crtc;
13954         struct drm_crtc_state *crtc_state;
13955         int ret = 0, i;
13956
13957         if (!check_digital_port_conflicts(state)) {
13958                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13959                 return -EINVAL;
13960         }
13961
13962         intel_state->modeset = true;
13963         intel_state->active_crtcs = dev_priv->active_crtcs;
13964
13965         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13966                 if (crtc_state->active)
13967                         intel_state->active_crtcs |= 1 << i;
13968                 else
13969                         intel_state->active_crtcs &= ~(1 << i);
13970
13971                 if (crtc_state->active != crtc->state->active)
13972                         intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13973         }
13974
13975         /*
13976          * See if the config requires any additional preparation, e.g.
13977          * to adjust global state with pipes off.  We need to do this
13978          * here so we can get the modeset_pipe updated config for the new
13979          * mode set on this crtc.  For other crtcs we need to use the
13980          * adjusted_mode bits in the crtc directly.
13981          */
13982         if (dev_priv->display.modeset_calc_cdclk) {
13983                 if (!intel_state->cdclk_pll_vco)
13984                         intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13985                 if (!intel_state->cdclk_pll_vco)
13986                         intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13987
13988                 ret = dev_priv->display.modeset_calc_cdclk(state);
13989                 if (ret < 0)
13990                         return ret;
13991
13992                 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13993                     intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13994                         ret = intel_modeset_all_pipes(state);
13995
13996                 if (ret < 0)
13997                         return ret;
13998
13999                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
14000                               intel_state->cdclk, intel_state->dev_cdclk);
14001         } else {
14002                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
14003         }
14004
14005         intel_modeset_clear_plls(state);
14006
14007         if (IS_HASWELL(dev_priv))
14008                 return haswell_mode_set_planes_workaround(state);
14009
14010         return 0;
14011 }
14012
14013 /*
14014  * Handle calculation of various watermark data at the end of the atomic check
14015  * phase.  The code here should be run after the per-crtc and per-plane 'check'
14016  * handlers to ensure that all derived state has been updated.
14017  */
14018 static int calc_watermark_data(struct drm_atomic_state *state)
14019 {
14020         struct drm_device *dev = state->dev;
14021         struct drm_i915_private *dev_priv = to_i915(dev);
14022
14023         /* Is there platform-specific watermark information to calculate? */
14024         if (dev_priv->display.compute_global_watermarks)
14025                 return dev_priv->display.compute_global_watermarks(state);
14026
14027         return 0;
14028 }
14029
14030 /**
14031  * intel_atomic_check - validate state object
14032  * @dev: drm device
14033  * @state: state to validate
14034  */
14035 static int intel_atomic_check(struct drm_device *dev,
14036                               struct drm_atomic_state *state)
14037 {
14038         struct drm_i915_private *dev_priv = to_i915(dev);
14039         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14040         struct drm_crtc *crtc;
14041         struct drm_crtc_state *crtc_state;
14042         int ret, i;
14043         bool any_ms = false;
14044
14045         ret = drm_atomic_helper_check_modeset(dev, state);
14046         if (ret)
14047                 return ret;
14048
14049         for_each_crtc_in_state(state, crtc, crtc_state, i) {
14050                 struct intel_crtc_state *pipe_config =
14051                         to_intel_crtc_state(crtc_state);
14052
14053                 /* Catch I915_MODE_FLAG_INHERITED */
14054                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
14055                         crtc_state->mode_changed = true;
14056
14057                 if (!needs_modeset(crtc_state))
14058                         continue;
14059
14060                 if (!crtc_state->enable) {
14061                         any_ms = true;
14062                         continue;
14063                 }
14064
14065                 /* FIXME: For only active_changed we shouldn't need to do any
14066                  * state recomputation at all. */
14067
14068                 ret = drm_atomic_add_affected_connectors(state, crtc);
14069                 if (ret)
14070                         return ret;
14071
14072                 ret = intel_modeset_pipe_config(crtc, pipe_config);
14073                 if (ret) {
14074                         intel_dump_pipe_config(to_intel_crtc(crtc),
14075                                                pipe_config, "[failed]");
14076                         return ret;
14077                 }
14078
14079                 if (i915.fastboot &&
14080                     intel_pipe_config_compare(dev_priv,
14081                                         to_intel_crtc_state(crtc->state),
14082                                         pipe_config, true)) {
14083                         crtc_state->mode_changed = false;
14084                         to_intel_crtc_state(crtc_state)->update_pipe = true;
14085                 }
14086
14087                 if (needs_modeset(crtc_state))
14088                         any_ms = true;
14089
14090                 ret = drm_atomic_add_affected_planes(state, crtc);
14091                 if (ret)
14092                         return ret;
14093
14094                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14095                                        needs_modeset(crtc_state) ?
14096                                        "[modeset]" : "[fastset]");
14097         }
14098
14099         if (any_ms) {
14100                 ret = intel_modeset_checks(state);
14101
14102                 if (ret)
14103                         return ret;
14104         } else {
14105                 intel_state->cdclk = dev_priv->atomic_cdclk_freq;
14106         }
14107
14108         ret = drm_atomic_helper_check_planes(dev, state);
14109         if (ret)
14110                 return ret;
14111
14112         intel_fbc_choose_crtc(dev_priv, state);
14113         return calc_watermark_data(state);
14114 }
14115
14116 static int intel_atomic_prepare_commit(struct drm_device *dev,
14117                                        struct drm_atomic_state *state)
14118 {
14119         struct drm_i915_private *dev_priv = to_i915(dev);
14120         struct drm_crtc_state *crtc_state;
14121         struct drm_crtc *crtc;
14122         int i, ret;
14123
14124         for_each_crtc_in_state(state, crtc, crtc_state, i) {
14125                 if (state->legacy_cursor_update)
14126                         continue;
14127
14128                 ret = intel_crtc_wait_for_pending_flips(crtc);
14129                 if (ret)
14130                         return ret;
14131
14132                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14133                         flush_workqueue(dev_priv->wq);
14134         }
14135
14136         ret = mutex_lock_interruptible(&dev->struct_mutex);
14137         if (ret)
14138                 return ret;
14139
14140         ret = drm_atomic_helper_prepare_planes(dev, state);
14141         mutex_unlock(&dev->struct_mutex);
14142
14143         return ret;
14144 }
14145
14146 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14147 {
14148         struct drm_device *dev = crtc->base.dev;
14149
14150         if (!dev->max_vblank_count)
14151                 return drm_accurate_vblank_count(&crtc->base);
14152
14153         return dev->driver->get_vblank_counter(dev, crtc->pipe);
14154 }
14155
14156 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14157                                           struct drm_i915_private *dev_priv,
14158                                           unsigned crtc_mask)
14159 {
14160         unsigned last_vblank_count[I915_MAX_PIPES];
14161         enum pipe pipe;
14162         int ret;
14163
14164         if (!crtc_mask)
14165                 return;
14166
14167         for_each_pipe(dev_priv, pipe) {
14168                 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14169                                                                   pipe);
14170
14171                 if (!((1 << pipe) & crtc_mask))
14172                         continue;
14173
14174                 ret = drm_crtc_vblank_get(&crtc->base);
14175                 if (WARN_ON(ret != 0)) {
14176                         crtc_mask &= ~(1 << pipe);
14177                         continue;
14178                 }
14179
14180                 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
14181         }
14182
14183         for_each_pipe(dev_priv, pipe) {
14184                 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14185                                                                   pipe);
14186                 long lret;
14187
14188                 if (!((1 << pipe) & crtc_mask))
14189                         continue;
14190
14191                 lret = wait_event_timeout(dev->vblank[pipe].queue,
14192                                 last_vblank_count[pipe] !=
14193                                         drm_crtc_vblank_count(&crtc->base),
14194                                 msecs_to_jiffies(50));
14195
14196                 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
14197
14198                 drm_crtc_vblank_put(&crtc->base);
14199         }
14200 }
14201
14202 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
14203 {
14204         /* fb updated, need to unpin old fb */
14205         if (crtc_state->fb_changed)
14206                 return true;
14207
14208         /* wm changes, need vblank before final wm's */
14209         if (crtc_state->update_wm_post)
14210                 return true;
14211
14212         /*
14213          * cxsr is re-enabled after vblank.
14214          * This is already handled by crtc_state->update_wm_post,
14215          * but added for clarity.
14216          */
14217         if (crtc_state->disable_cxsr)
14218                 return true;
14219
14220         return false;
14221 }
14222
14223 static void intel_update_crtc(struct drm_crtc *crtc,
14224                               struct drm_atomic_state *state,
14225                               struct drm_crtc_state *old_crtc_state,
14226                               unsigned int *crtc_vblank_mask)
14227 {
14228         struct drm_device *dev = crtc->dev;
14229         struct drm_i915_private *dev_priv = to_i915(dev);
14230         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14231         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14232         bool modeset = needs_modeset(crtc->state);
14233
14234         if (modeset) {
14235                 update_scanline_offset(intel_crtc);
14236                 dev_priv->display.crtc_enable(pipe_config, state);
14237         } else {
14238                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14239         }
14240
14241         if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14242                 intel_fbc_enable(
14243                     intel_crtc, pipe_config,
14244                     to_intel_plane_state(crtc->primary->state));
14245         }
14246
14247         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14248
14249         if (needs_vblank_wait(pipe_config))
14250                 *crtc_vblank_mask |= drm_crtc_mask(crtc);
14251 }
14252
14253 static void intel_update_crtcs(struct drm_atomic_state *state,
14254                                unsigned int *crtc_vblank_mask)
14255 {
14256         struct drm_crtc *crtc;
14257         struct drm_crtc_state *old_crtc_state;
14258         int i;
14259
14260         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14261                 if (!crtc->state->active)
14262                         continue;
14263
14264                 intel_update_crtc(crtc, state, old_crtc_state,
14265                                   crtc_vblank_mask);
14266         }
14267 }
14268
14269 static void skl_update_crtcs(struct drm_atomic_state *state,
14270                              unsigned int *crtc_vblank_mask)
14271 {
14272         struct drm_i915_private *dev_priv = to_i915(state->dev);
14273         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14274         struct drm_crtc *crtc;
14275         struct intel_crtc *intel_crtc;
14276         struct drm_crtc_state *old_crtc_state;
14277         struct intel_crtc_state *cstate;
14278         unsigned int updated = 0;
14279         bool progress;
14280         enum pipe pipe;
14281         int i;
14282
14283         const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
14284
14285         for_each_crtc_in_state(state, crtc, old_crtc_state, i)
14286                 /* ignore allocations for crtc's that have been turned off. */
14287                 if (crtc->state->active)
14288                         entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
14289
14290         /*
14291          * Whenever the number of active pipes changes, we need to make sure we
14292          * update the pipes in the right order so that their ddb allocations
14293          * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14294          * cause pipe underruns and other bad stuff.
14295          */
14296         do {
14297                 progress = false;
14298
14299                 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14300                         bool vbl_wait = false;
14301                         unsigned int cmask = drm_crtc_mask(crtc);
14302
14303                         intel_crtc = to_intel_crtc(crtc);
14304                         cstate = to_intel_crtc_state(crtc->state);
14305                         pipe = intel_crtc->pipe;
14306
14307                         if (updated & cmask || !cstate->base.active)
14308                                 continue;
14309
14310                         if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
14311                                 continue;
14312
14313                         updated |= cmask;
14314                         entries[i] = &cstate->wm.skl.ddb;
14315
14316                         /*
14317                          * If this is an already active pipe, it's DDB changed,
14318                          * and this isn't the last pipe that needs updating
14319                          * then we need to wait for a vblank to pass for the
14320                          * new ddb allocation to take effect.
14321                          */
14322                         if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
14323                                                  &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
14324                             !crtc->state->active_changed &&
14325                             intel_state->wm_results.dirty_pipes != updated)
14326                                 vbl_wait = true;
14327
14328                         intel_update_crtc(crtc, state, old_crtc_state,
14329                                           crtc_vblank_mask);
14330
14331                         if (vbl_wait)
14332                                 intel_wait_for_vblank(dev_priv, pipe);
14333
14334                         progress = true;
14335                 }
14336         } while (progress);
14337 }
14338
14339 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
14340 {
14341         struct drm_device *dev = state->dev;
14342         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14343         struct drm_i915_private *dev_priv = to_i915(dev);
14344         struct drm_crtc_state *old_crtc_state;
14345         struct drm_crtc *crtc;
14346         struct intel_crtc_state *intel_cstate;
14347         bool hw_check = intel_state->modeset;
14348         unsigned long put_domains[I915_MAX_PIPES] = {};
14349         unsigned crtc_vblank_mask = 0;
14350         int i;
14351
14352         drm_atomic_helper_wait_for_dependencies(state);
14353
14354         if (intel_state->modeset)
14355                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14356
14357         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14358                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14359
14360                 if (needs_modeset(crtc->state) ||
14361                     to_intel_crtc_state(crtc->state)->update_pipe) {
14362                         hw_check = true;
14363
14364                         put_domains[to_intel_crtc(crtc)->pipe] =
14365                                 modeset_get_crtc_power_domains(crtc,
14366                                         to_intel_crtc_state(crtc->state));
14367                 }
14368
14369                 if (!needs_modeset(crtc->state))
14370                         continue;
14371
14372                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14373
14374                 if (old_crtc_state->active) {
14375                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
14376                         dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
14377                         intel_crtc->active = false;
14378                         intel_fbc_disable(intel_crtc);
14379                         intel_disable_shared_dpll(intel_crtc);
14380
14381                         /*
14382                          * Underruns don't always raise
14383                          * interrupts, so check manually.
14384                          */
14385                         intel_check_cpu_fifo_underruns(dev_priv);
14386                         intel_check_pch_fifo_underruns(dev_priv);
14387
14388                         if (!crtc->state->active) {
14389                                 /*
14390                                  * Make sure we don't call initial_watermarks
14391                                  * for ILK-style watermark updates.
14392                                  */
14393                                 if (dev_priv->display.atomic_update_watermarks)
14394                                         dev_priv->display.initial_watermarks(intel_state,
14395                                                                              to_intel_crtc_state(crtc->state));
14396                                 else
14397                                         intel_update_watermarks(intel_crtc);
14398                         }
14399                 }
14400         }
14401
14402         /* Only after disabling all output pipelines that will be changed can we
14403          * update the the output configuration. */
14404         intel_modeset_update_crtc_state(state);
14405
14406         if (intel_state->modeset) {
14407                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
14408
14409                 if (dev_priv->display.modeset_commit_cdclk &&
14410                     (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14411                      intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
14412                         dev_priv->display.modeset_commit_cdclk(state);
14413
14414                 /*
14415                  * SKL workaround: bspec recommends we disable the SAGV when we
14416                  * have more then one pipe enabled
14417                  */
14418                 if (!intel_can_enable_sagv(state))
14419                         intel_disable_sagv(dev_priv);
14420
14421                 intel_modeset_verify_disabled(dev, state);
14422         }
14423
14424         /* Complete the events for pipes that have now been disabled */
14425         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14426                 bool modeset = needs_modeset(crtc->state);
14427
14428                 /* Complete events for now disable pipes here. */
14429                 if (modeset && !crtc->state->active && crtc->state->event) {
14430                         spin_lock_irq(&dev->event_lock);
14431                         drm_crtc_send_vblank_event(crtc, crtc->state->event);
14432                         spin_unlock_irq(&dev->event_lock);
14433
14434                         crtc->state->event = NULL;
14435                 }
14436         }
14437
14438         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14439         dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14440
14441         /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14442          * already, but still need the state for the delayed optimization. To
14443          * fix this:
14444          * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14445          * - schedule that vblank worker _before_ calling hw_done
14446          * - at the start of commit_tail, cancel it _synchrously
14447          * - switch over to the vblank wait helper in the core after that since
14448          *   we don't need out special handling any more.
14449          */
14450         if (!state->legacy_cursor_update)
14451                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14452
14453         /*
14454          * Now that the vblank has passed, we can go ahead and program the
14455          * optimal watermarks on platforms that need two-step watermark
14456          * programming.
14457          *
14458          * TODO: Move this (and other cleanup) to an async worker eventually.
14459          */
14460         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14461                 intel_cstate = to_intel_crtc_state(crtc->state);
14462
14463                 if (dev_priv->display.optimize_watermarks)
14464                         dev_priv->display.optimize_watermarks(intel_state,
14465                                                               intel_cstate);
14466         }
14467
14468         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14469                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14470
14471                 if (put_domains[i])
14472                         modeset_put_power_domains(dev_priv, put_domains[i]);
14473
14474                 intel_modeset_verify_crtc(crtc, state, old_crtc_state, crtc->state);
14475         }
14476
14477         if (intel_state->modeset && intel_can_enable_sagv(state))
14478                 intel_enable_sagv(dev_priv);
14479
14480         drm_atomic_helper_commit_hw_done(state);
14481
14482         if (intel_state->modeset)
14483                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14484
14485         mutex_lock(&dev->struct_mutex);
14486         drm_atomic_helper_cleanup_planes(dev, state);
14487         mutex_unlock(&dev->struct_mutex);
14488
14489         drm_atomic_helper_commit_cleanup_done(state);
14490
14491         drm_atomic_state_put(state);
14492
14493         /* As one of the primary mmio accessors, KMS has a high likelihood
14494          * of triggering bugs in unclaimed access. After we finish
14495          * modesetting, see if an error has been flagged, and if so
14496          * enable debugging for the next modeset - and hope we catch
14497          * the culprit.
14498          *
14499          * XXX note that we assume display power is on at this point.
14500          * This might hold true now but we need to add pm helper to check
14501          * unclaimed only when the hardware is on, as atomic commits
14502          * can happen also when the device is completely off.
14503          */
14504         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
14505 }
14506
14507 static void intel_atomic_commit_work(struct work_struct *work)
14508 {
14509         struct drm_atomic_state *state =
14510                 container_of(work, struct drm_atomic_state, commit_work);
14511
14512         intel_atomic_commit_tail(state);
14513 }
14514
14515 static int __i915_sw_fence_call
14516 intel_atomic_commit_ready(struct i915_sw_fence *fence,
14517                           enum i915_sw_fence_notify notify)
14518 {
14519         struct intel_atomic_state *state =
14520                 container_of(fence, struct intel_atomic_state, commit_ready);
14521
14522         switch (notify) {
14523         case FENCE_COMPLETE:
14524                 if (state->base.commit_work.func)
14525                         queue_work(system_unbound_wq, &state->base.commit_work);
14526                 break;
14527
14528         case FENCE_FREE:
14529                 {
14530                         struct intel_atomic_helper *helper =
14531                                 &to_i915(state->base.dev)->atomic_helper;
14532
14533                         if (llist_add(&state->freed, &helper->free_list))
14534                                 schedule_work(&helper->free_work);
14535                         break;
14536                 }
14537         }
14538
14539         return NOTIFY_DONE;
14540 }
14541
14542 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14543 {
14544         struct drm_plane_state *old_plane_state;
14545         struct drm_plane *plane;
14546         int i;
14547
14548         for_each_plane_in_state(state, plane, old_plane_state, i)
14549                 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14550                                   intel_fb_obj(plane->state->fb),
14551                                   to_intel_plane(plane)->frontbuffer_bit);
14552 }
14553
14554 /**
14555  * intel_atomic_commit - commit validated state object
14556  * @dev: DRM device
14557  * @state: the top-level driver state object
14558  * @nonblock: nonblocking commit
14559  *
14560  * This function commits a top-level state object that has been validated
14561  * with drm_atomic_helper_check().
14562  *
14563  * RETURNS
14564  * Zero for success or -errno.
14565  */
14566 static int intel_atomic_commit(struct drm_device *dev,
14567                                struct drm_atomic_state *state,
14568                                bool nonblock)
14569 {
14570         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14571         struct drm_i915_private *dev_priv = to_i915(dev);
14572         int ret = 0;
14573
14574         ret = drm_atomic_helper_setup_commit(state, nonblock);
14575         if (ret)
14576                 return ret;
14577
14578         drm_atomic_state_get(state);
14579         i915_sw_fence_init(&intel_state->commit_ready,
14580                            intel_atomic_commit_ready);
14581
14582         ret = intel_atomic_prepare_commit(dev, state);
14583         if (ret) {
14584                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14585                 i915_sw_fence_commit(&intel_state->commit_ready);
14586                 return ret;
14587         }
14588
14589         drm_atomic_helper_swap_state(state, true);
14590         dev_priv->wm.distrust_bios_wm = false;
14591         intel_shared_dpll_commit(state);
14592         intel_atomic_track_fbs(state);
14593
14594         if (intel_state->modeset) {
14595                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14596                        sizeof(intel_state->min_pixclk));
14597                 dev_priv->active_crtcs = intel_state->active_crtcs;
14598                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
14599         }
14600
14601         drm_atomic_state_get(state);
14602         INIT_WORK(&state->commit_work,
14603                   nonblock ? intel_atomic_commit_work : NULL);
14604
14605         i915_sw_fence_commit(&intel_state->commit_ready);
14606         if (!nonblock) {
14607                 i915_sw_fence_wait(&intel_state->commit_ready);
14608                 intel_atomic_commit_tail(state);
14609         }
14610
14611         return 0;
14612 }
14613
14614 void intel_crtc_restore_mode(struct drm_crtc *crtc)
14615 {
14616         struct drm_device *dev = crtc->dev;
14617         struct drm_atomic_state *state;
14618         struct drm_crtc_state *crtc_state;
14619         int ret;
14620
14621         state = drm_atomic_state_alloc(dev);
14622         if (!state) {
14623                 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14624                               crtc->base.id, crtc->name);
14625                 return;
14626         }
14627
14628         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14629
14630 retry:
14631         crtc_state = drm_atomic_get_crtc_state(state, crtc);
14632         ret = PTR_ERR_OR_ZERO(crtc_state);
14633         if (!ret) {
14634                 if (!crtc_state->active)
14635                         goto out;
14636
14637                 crtc_state->mode_changed = true;
14638                 ret = drm_atomic_commit(state);
14639         }
14640
14641         if (ret == -EDEADLK) {
14642                 drm_atomic_state_clear(state);
14643                 drm_modeset_backoff(state->acquire_ctx);
14644                 goto retry;
14645         }
14646
14647 out:
14648         drm_atomic_state_put(state);
14649 }
14650
14651 /*
14652  * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14653  *        drm_atomic_helper_legacy_gamma_set() directly.
14654  */
14655 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14656                                          u16 *red, u16 *green, u16 *blue,
14657                                          uint32_t size)
14658 {
14659         struct drm_device *dev = crtc->dev;
14660         struct drm_mode_config *config = &dev->mode_config;
14661         struct drm_crtc_state *state;
14662         int ret;
14663
14664         ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14665         if (ret)
14666                 return ret;
14667
14668         /*
14669          * Make sure we update the legacy properties so this works when
14670          * atomic is not enabled.
14671          */
14672
14673         state = crtc->state;
14674
14675         drm_object_property_set_value(&crtc->base,
14676                                       config->degamma_lut_property,
14677                                       (state->degamma_lut) ?
14678                                       state->degamma_lut->base.id : 0);
14679
14680         drm_object_property_set_value(&crtc->base,
14681                                       config->ctm_property,
14682                                       (state->ctm) ?
14683                                       state->ctm->base.id : 0);
14684
14685         drm_object_property_set_value(&crtc->base,
14686                                       config->gamma_lut_property,
14687                                       (state->gamma_lut) ?
14688                                       state->gamma_lut->base.id : 0);
14689
14690         return 0;
14691 }
14692
14693 static const struct drm_crtc_funcs intel_crtc_funcs = {
14694         .gamma_set = intel_atomic_legacy_gamma_set,
14695         .set_config = drm_atomic_helper_set_config,
14696         .set_property = drm_atomic_helper_crtc_set_property,
14697         .destroy = intel_crtc_destroy,
14698         .page_flip = intel_crtc_page_flip,
14699         .atomic_duplicate_state = intel_crtc_duplicate_state,
14700         .atomic_destroy_state = intel_crtc_destroy_state,
14701 };
14702
14703 /**
14704  * intel_prepare_plane_fb - Prepare fb for usage on plane
14705  * @plane: drm plane to prepare for
14706  * @fb: framebuffer to prepare for presentation
14707  *
14708  * Prepares a framebuffer for usage on a display plane.  Generally this
14709  * involves pinning the underlying object and updating the frontbuffer tracking
14710  * bits.  Some older platforms need special physical address handling for
14711  * cursor planes.
14712  *
14713  * Must be called with struct_mutex held.
14714  *
14715  * Returns 0 on success, negative error code on failure.
14716  */
14717 int
14718 intel_prepare_plane_fb(struct drm_plane *plane,
14719                        struct drm_plane_state *new_state)
14720 {
14721         struct intel_atomic_state *intel_state =
14722                 to_intel_atomic_state(new_state->state);
14723         struct drm_i915_private *dev_priv = to_i915(plane->dev);
14724         struct drm_framebuffer *fb = new_state->fb;
14725         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14726         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14727         int ret;
14728
14729         if (!obj && !old_obj)
14730                 return 0;
14731
14732         if (old_obj) {
14733                 struct drm_crtc_state *crtc_state =
14734                         drm_atomic_get_existing_crtc_state(new_state->state,
14735                                                            plane->state->crtc);
14736
14737                 /* Big Hammer, we also need to ensure that any pending
14738                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14739                  * current scanout is retired before unpinning the old
14740                  * framebuffer. Note that we rely on userspace rendering
14741                  * into the buffer attached to the pipe they are waiting
14742                  * on. If not, userspace generates a GPU hang with IPEHR
14743                  * point to the MI_WAIT_FOR_EVENT.
14744                  *
14745                  * This should only fail upon a hung GPU, in which case we
14746                  * can safely continue.
14747                  */
14748                 if (needs_modeset(crtc_state)) {
14749                         ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14750                                                               old_obj->resv, NULL,
14751                                                               false, 0,
14752                                                               GFP_KERNEL);
14753                         if (ret < 0)
14754                                 return ret;
14755                 }
14756         }
14757
14758         if (new_state->fence) { /* explicit fencing */
14759                 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
14760                                                     new_state->fence,
14761                                                     I915_FENCE_TIMEOUT,
14762                                                     GFP_KERNEL);
14763                 if (ret < 0)
14764                         return ret;
14765         }
14766
14767         if (!obj)
14768                 return 0;
14769
14770         if (!new_state->fence) { /* implicit fencing */
14771                 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14772                                                       obj->resv, NULL,
14773                                                       false, I915_FENCE_TIMEOUT,
14774                                                       GFP_KERNEL);
14775                 if (ret < 0)
14776                         return ret;
14777
14778                 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
14779         }
14780
14781         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14782             INTEL_INFO(dev_priv)->cursor_needs_physical) {
14783                 int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
14784                 ret = i915_gem_object_attach_phys(obj, align);
14785                 if (ret) {
14786                         DRM_DEBUG_KMS("failed to attach phys object\n");
14787                         return ret;
14788                 }
14789         } else {
14790                 struct i915_vma *vma;
14791
14792                 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14793                 if (IS_ERR(vma)) {
14794                         DRM_DEBUG_KMS("failed to pin object\n");
14795                         return PTR_ERR(vma);
14796                 }
14797         }
14798
14799         return 0;
14800 }
14801
14802 /**
14803  * intel_cleanup_plane_fb - Cleans up an fb after plane use
14804  * @plane: drm plane to clean up for
14805  * @fb: old framebuffer that was on plane
14806  *
14807  * Cleans up a framebuffer that has just been removed from a plane.
14808  *
14809  * Must be called with struct_mutex held.
14810  */
14811 void
14812 intel_cleanup_plane_fb(struct drm_plane *plane,
14813                        struct drm_plane_state *old_state)
14814 {
14815         struct drm_i915_private *dev_priv = to_i915(plane->dev);
14816         struct intel_plane_state *old_intel_state;
14817         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14818         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14819
14820         old_intel_state = to_intel_plane_state(old_state);
14821
14822         if (!obj && !old_obj)
14823                 return;
14824
14825         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14826             !INTEL_INFO(dev_priv)->cursor_needs_physical))
14827                 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14828 }
14829
14830 int
14831 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14832 {
14833         int max_scale;
14834         int crtc_clock, cdclk;
14835
14836         if (!intel_crtc || !crtc_state->base.enable)
14837                 return DRM_PLANE_HELPER_NO_SCALING;
14838
14839         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14840         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14841
14842         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14843                 return DRM_PLANE_HELPER_NO_SCALING;
14844
14845         /*
14846          * skl max scale is lower of:
14847          *    close to 3 but not 3, -1 is for that purpose
14848          *            or
14849          *    cdclk/crtc_clock
14850          */
14851         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14852
14853         return max_scale;
14854 }
14855
14856 static int
14857 intel_check_primary_plane(struct drm_plane *plane,
14858                           struct intel_crtc_state *crtc_state,
14859                           struct intel_plane_state *state)
14860 {
14861         struct drm_i915_private *dev_priv = to_i915(plane->dev);
14862         struct drm_crtc *crtc = state->base.crtc;
14863         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14864         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14865         bool can_position = false;
14866         int ret;
14867
14868         if (INTEL_GEN(dev_priv) >= 9) {
14869                 /* use scaler when colorkey is not required */
14870                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14871                         min_scale = 1;
14872                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14873                 }
14874                 can_position = true;
14875         }
14876
14877         ret = drm_plane_helper_check_state(&state->base,
14878                                            &state->clip,
14879                                            min_scale, max_scale,
14880                                            can_position, true);
14881         if (ret)
14882                 return ret;
14883
14884         if (!state->base.fb)
14885                 return 0;
14886
14887         if (INTEL_GEN(dev_priv) >= 9) {
14888                 ret = skl_check_plane_surface(state);
14889                 if (ret)
14890                         return ret;
14891         }
14892
14893         return 0;
14894 }
14895
14896 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14897                                     struct drm_crtc_state *old_crtc_state)
14898 {
14899         struct drm_device *dev = crtc->dev;
14900         struct drm_i915_private *dev_priv = to_i915(dev);
14901         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14902         struct intel_crtc_state *intel_cstate =
14903                 to_intel_crtc_state(crtc->state);
14904         struct intel_crtc_state *old_intel_cstate =
14905                 to_intel_crtc_state(old_crtc_state);
14906         struct intel_atomic_state *old_intel_state =
14907                 to_intel_atomic_state(old_crtc_state->state);
14908         bool modeset = needs_modeset(crtc->state);
14909
14910         /* Perform vblank evasion around commit operation */
14911         intel_pipe_update_start(intel_crtc);
14912
14913         if (modeset)
14914                 goto out;
14915
14916         if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14917                 intel_color_set_csc(crtc->state);
14918                 intel_color_load_luts(crtc->state);
14919         }
14920
14921         if (intel_cstate->update_pipe)
14922                 intel_update_pipe_config(intel_crtc, old_intel_cstate);
14923         else if (INTEL_GEN(dev_priv) >= 9)
14924                 skl_detach_scalers(intel_crtc);
14925
14926 out:
14927         if (dev_priv->display.atomic_update_watermarks)
14928                 dev_priv->display.atomic_update_watermarks(old_intel_state,
14929                                                            intel_cstate);
14930 }
14931
14932 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14933                                      struct drm_crtc_state *old_crtc_state)
14934 {
14935         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14936
14937         intel_pipe_update_end(intel_crtc, NULL);
14938 }
14939
14940 /**
14941  * intel_plane_destroy - destroy a plane
14942  * @plane: plane to destroy
14943  *
14944  * Common destruction function for all types of planes (primary, cursor,
14945  * sprite).
14946  */
14947 void intel_plane_destroy(struct drm_plane *plane)
14948 {
14949         drm_plane_cleanup(plane);
14950         kfree(to_intel_plane(plane));
14951 }
14952
14953 const struct drm_plane_funcs intel_plane_funcs = {
14954         .update_plane = drm_atomic_helper_update_plane,
14955         .disable_plane = drm_atomic_helper_disable_plane,
14956         .destroy = intel_plane_destroy,
14957         .set_property = drm_atomic_helper_plane_set_property,
14958         .atomic_get_property = intel_plane_atomic_get_property,
14959         .atomic_set_property = intel_plane_atomic_set_property,
14960         .atomic_duplicate_state = intel_plane_duplicate_state,
14961         .atomic_destroy_state = intel_plane_destroy_state,
14962 };
14963
14964 static struct intel_plane *
14965 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
14966 {
14967         struct intel_plane *primary = NULL;
14968         struct intel_plane_state *state = NULL;
14969         const uint32_t *intel_primary_formats;
14970         unsigned int supported_rotations;
14971         unsigned int num_formats;
14972         int ret;
14973
14974         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14975         if (!primary) {
14976                 ret = -ENOMEM;
14977                 goto fail;
14978         }
14979
14980         state = intel_create_plane_state(&primary->base);
14981         if (!state) {
14982                 ret = -ENOMEM;
14983                 goto fail;
14984         }
14985
14986         primary->base.state = &state->base;
14987
14988         primary->can_scale = false;
14989         primary->max_downscale = 1;
14990         if (INTEL_GEN(dev_priv) >= 9) {
14991                 primary->can_scale = true;
14992                 state->scaler_id = -1;
14993         }
14994         primary->pipe = pipe;
14995         /*
14996          * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
14997          * port is hooked to pipe B. Hence we want plane A feeding pipe B.
14998          */
14999         if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
15000                 primary->plane = (enum plane) !pipe;
15001         else
15002                 primary->plane = (enum plane) pipe;
15003         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
15004         primary->check_plane = intel_check_primary_plane;
15005
15006         if (INTEL_GEN(dev_priv) >= 9) {
15007                 intel_primary_formats = skl_primary_formats;
15008                 num_formats = ARRAY_SIZE(skl_primary_formats);
15009
15010                 primary->update_plane = skylake_update_primary_plane;
15011                 primary->disable_plane = skylake_disable_primary_plane;
15012         } else if (HAS_PCH_SPLIT(dev_priv)) {
15013                 intel_primary_formats = i965_primary_formats;
15014                 num_formats = ARRAY_SIZE(i965_primary_formats);
15015
15016                 primary->update_plane = ironlake_update_primary_plane;
15017                 primary->disable_plane = i9xx_disable_primary_plane;
15018         } else if (INTEL_GEN(dev_priv) >= 4) {
15019                 intel_primary_formats = i965_primary_formats;
15020                 num_formats = ARRAY_SIZE(i965_primary_formats);
15021
15022                 primary->update_plane = i9xx_update_primary_plane;
15023                 primary->disable_plane = i9xx_disable_primary_plane;
15024         } else {
15025                 intel_primary_formats = i8xx_primary_formats;
15026                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
15027
15028                 primary->update_plane = i9xx_update_primary_plane;
15029                 primary->disable_plane = i9xx_disable_primary_plane;
15030         }
15031
15032         if (INTEL_GEN(dev_priv) >= 9)
15033                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15034                                                0, &intel_plane_funcs,
15035                                                intel_primary_formats, num_formats,
15036                                                DRM_PLANE_TYPE_PRIMARY,
15037                                                "plane 1%c", pipe_name(pipe));
15038         else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
15039                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15040                                                0, &intel_plane_funcs,
15041                                                intel_primary_formats, num_formats,
15042                                                DRM_PLANE_TYPE_PRIMARY,
15043                                                "primary %c", pipe_name(pipe));
15044         else
15045                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15046                                                0, &intel_plane_funcs,
15047                                                intel_primary_formats, num_formats,
15048                                                DRM_PLANE_TYPE_PRIMARY,
15049                                                "plane %c", plane_name(primary->plane));
15050         if (ret)
15051                 goto fail;
15052
15053         if (INTEL_GEN(dev_priv) >= 9) {
15054                 supported_rotations =
15055                         DRM_ROTATE_0 | DRM_ROTATE_90 |
15056                         DRM_ROTATE_180 | DRM_ROTATE_270;
15057         } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
15058                 supported_rotations =
15059                         DRM_ROTATE_0 | DRM_ROTATE_180 |
15060                         DRM_REFLECT_X;
15061         } else if (INTEL_GEN(dev_priv) >= 4) {
15062                 supported_rotations =
15063                         DRM_ROTATE_0 | DRM_ROTATE_180;
15064         } else {
15065                 supported_rotations = DRM_ROTATE_0;
15066         }
15067
15068         if (INTEL_GEN(dev_priv) >= 4)
15069                 drm_plane_create_rotation_property(&primary->base,
15070                                                    DRM_ROTATE_0,
15071                                                    supported_rotations);
15072
15073         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
15074
15075         return primary;
15076
15077 fail:
15078         kfree(state);
15079         kfree(primary);
15080
15081         return ERR_PTR(ret);
15082 }
15083
15084 static int
15085 intel_check_cursor_plane(struct drm_plane *plane,
15086                          struct intel_crtc_state *crtc_state,
15087                          struct intel_plane_state *state)
15088 {
15089         struct drm_framebuffer *fb = state->base.fb;
15090         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15091         enum pipe pipe = to_intel_plane(plane)->pipe;
15092         unsigned stride;
15093         int ret;
15094
15095         ret = drm_plane_helper_check_state(&state->base,
15096                                            &state->clip,
15097                                            DRM_PLANE_HELPER_NO_SCALING,
15098                                            DRM_PLANE_HELPER_NO_SCALING,
15099                                            true, true);
15100         if (ret)
15101                 return ret;
15102
15103         /* if we want to turn off the cursor ignore width and height */
15104         if (!obj)
15105                 return 0;
15106
15107         /* Check for which cursor types we support */
15108         if (!cursor_size_ok(to_i915(plane->dev), state->base.crtc_w,
15109                             state->base.crtc_h)) {
15110                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15111                           state->base.crtc_w, state->base.crtc_h);
15112                 return -EINVAL;
15113         }
15114
15115         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15116         if (obj->base.size < stride * state->base.crtc_h) {
15117                 DRM_DEBUG_KMS("buffer is too small\n");
15118                 return -ENOMEM;
15119         }
15120
15121         if (fb->modifier != DRM_FORMAT_MOD_NONE) {
15122                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
15123                 return -EINVAL;
15124         }
15125
15126         /*
15127          * There's something wrong with the cursor on CHV pipe C.
15128          * If it straddles the left edge of the screen then
15129          * moving it away from the edge or disabling it often
15130          * results in a pipe underrun, and often that can lead to
15131          * dead pipe (constant underrun reported, and it scans
15132          * out just a solid color). To recover from that, the
15133          * display power well must be turned off and on again.
15134          * Refuse the put the cursor into that compromised position.
15135          */
15136         if (IS_CHERRYVIEW(to_i915(plane->dev)) && pipe == PIPE_C &&
15137             state->base.visible && state->base.crtc_x < 0) {
15138                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15139                 return -EINVAL;
15140         }
15141
15142         return 0;
15143 }
15144
15145 static void
15146 intel_disable_cursor_plane(struct drm_plane *plane,
15147                            struct drm_crtc *crtc)
15148 {
15149         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15150
15151         intel_crtc->cursor_addr = 0;
15152         intel_crtc_update_cursor(crtc, NULL);
15153 }
15154
15155 static void
15156 intel_update_cursor_plane(struct drm_plane *plane,
15157                           const struct intel_crtc_state *crtc_state,
15158                           const struct intel_plane_state *state)
15159 {
15160         struct drm_crtc *crtc = crtc_state->base.crtc;
15161         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15162         struct drm_i915_private *dev_priv = to_i915(plane->dev);
15163         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
15164         uint32_t addr;
15165
15166         if (!obj)
15167                 addr = 0;
15168         else if (!INTEL_INFO(dev_priv)->cursor_needs_physical)
15169                 addr = i915_gem_object_ggtt_offset(obj, NULL);
15170         else
15171                 addr = obj->phys_handle->busaddr;
15172
15173         intel_crtc->cursor_addr = addr;
15174         intel_crtc_update_cursor(crtc, state);
15175 }
15176
15177 static struct intel_plane *
15178 intel_cursor_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
15179 {
15180         struct intel_plane *cursor = NULL;
15181         struct intel_plane_state *state = NULL;
15182         int ret;
15183
15184         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
15185         if (!cursor) {
15186                 ret = -ENOMEM;
15187                 goto fail;
15188         }
15189
15190         state = intel_create_plane_state(&cursor->base);
15191         if (!state) {
15192                 ret = -ENOMEM;
15193                 goto fail;
15194         }
15195
15196         cursor->base.state = &state->base;
15197
15198         cursor->can_scale = false;
15199         cursor->max_downscale = 1;
15200         cursor->pipe = pipe;
15201         cursor->plane = pipe;
15202         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
15203         cursor->check_plane = intel_check_cursor_plane;
15204         cursor->update_plane = intel_update_cursor_plane;
15205         cursor->disable_plane = intel_disable_cursor_plane;
15206
15207         ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
15208                                        0, &intel_plane_funcs,
15209                                        intel_cursor_formats,
15210                                        ARRAY_SIZE(intel_cursor_formats),
15211                                        DRM_PLANE_TYPE_CURSOR,
15212                                        "cursor %c", pipe_name(pipe));
15213         if (ret)
15214                 goto fail;
15215
15216         if (INTEL_GEN(dev_priv) >= 4)
15217                 drm_plane_create_rotation_property(&cursor->base,
15218                                                    DRM_ROTATE_0,
15219                                                    DRM_ROTATE_0 |
15220                                                    DRM_ROTATE_180);
15221
15222         if (INTEL_GEN(dev_priv) >= 9)
15223                 state->scaler_id = -1;
15224
15225         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15226
15227         return cursor;
15228
15229 fail:
15230         kfree(state);
15231         kfree(cursor);
15232
15233         return ERR_PTR(ret);
15234 }
15235
15236 static void skl_init_scalers(struct drm_i915_private *dev_priv,
15237                              struct intel_crtc *crtc,
15238                              struct intel_crtc_state *crtc_state)
15239 {
15240         struct intel_crtc_scaler_state *scaler_state =
15241                 &crtc_state->scaler_state;
15242         int i;
15243
15244         for (i = 0; i < crtc->num_scalers; i++) {
15245                 struct intel_scaler *scaler = &scaler_state->scalers[i];
15246
15247                 scaler->in_use = 0;
15248                 scaler->mode = PS_SCALER_MODE_DYN;
15249         }
15250
15251         scaler_state->scaler_id = -1;
15252 }
15253
15254 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
15255 {
15256         struct intel_crtc *intel_crtc;
15257         struct intel_crtc_state *crtc_state = NULL;
15258         struct intel_plane *primary = NULL;
15259         struct intel_plane *cursor = NULL;
15260         int sprite, ret;
15261
15262         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15263         if (!intel_crtc)
15264                 return -ENOMEM;
15265
15266         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15267         if (!crtc_state) {
15268                 ret = -ENOMEM;
15269                 goto fail;
15270         }
15271         intel_crtc->config = crtc_state;
15272         intel_crtc->base.state = &crtc_state->base;
15273         crtc_state->base.crtc = &intel_crtc->base;
15274
15275         /* initialize shared scalers */
15276         if (INTEL_GEN(dev_priv) >= 9) {
15277                 if (pipe == PIPE_C)
15278                         intel_crtc->num_scalers = 1;
15279                 else
15280                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
15281
15282                 skl_init_scalers(dev_priv, intel_crtc, crtc_state);
15283         }
15284
15285         primary = intel_primary_plane_create(dev_priv, pipe);
15286         if (IS_ERR(primary)) {
15287                 ret = PTR_ERR(primary);
15288                 goto fail;
15289         }
15290
15291         for_each_sprite(dev_priv, pipe, sprite) {
15292                 struct intel_plane *plane;
15293
15294                 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
15295                 if (IS_ERR(plane)) {
15296                         ret = PTR_ERR(plane);
15297                         goto fail;
15298                 }
15299         }
15300
15301         cursor = intel_cursor_plane_create(dev_priv, pipe);
15302         if (IS_ERR(cursor)) {
15303                 ret = PTR_ERR(cursor);
15304                 goto fail;
15305         }
15306
15307         ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
15308                                         &primary->base, &cursor->base,
15309                                         &intel_crtc_funcs,
15310                                         "pipe %c", pipe_name(pipe));
15311         if (ret)
15312                 goto fail;
15313
15314         intel_crtc->pipe = pipe;
15315         intel_crtc->plane = primary->plane;
15316
15317         intel_crtc->cursor_base = ~0;
15318         intel_crtc->cursor_cntl = ~0;
15319         intel_crtc->cursor_size = ~0;
15320
15321         intel_crtc->wm.cxsr_allowed = true;
15322
15323         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15324                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15325         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
15326         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
15327
15328         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15329
15330         intel_color_init(&intel_crtc->base);
15331
15332         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15333
15334         return 0;
15335
15336 fail:
15337         /*
15338          * drm_mode_config_cleanup() will free up any
15339          * crtcs/planes already initialized.
15340          */
15341         kfree(crtc_state);
15342         kfree(intel_crtc);
15343
15344         return ret;
15345 }
15346
15347 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15348 {
15349         struct drm_encoder *encoder = connector->base.encoder;
15350         struct drm_device *dev = connector->base.dev;
15351
15352         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
15353
15354         if (!encoder || WARN_ON(!encoder->crtc))
15355                 return INVALID_PIPE;
15356
15357         return to_intel_crtc(encoder->crtc)->pipe;
15358 }
15359
15360 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
15361                                 struct drm_file *file)
15362 {
15363         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15364         struct drm_crtc *drmmode_crtc;
15365         struct intel_crtc *crtc;
15366
15367         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
15368         if (!drmmode_crtc)
15369                 return -ENOENT;
15370
15371         crtc = to_intel_crtc(drmmode_crtc);
15372         pipe_from_crtc_id->pipe = crtc->pipe;
15373
15374         return 0;
15375 }
15376
15377 static int intel_encoder_clones(struct intel_encoder *encoder)
15378 {
15379         struct drm_device *dev = encoder->base.dev;
15380         struct intel_encoder *source_encoder;
15381         int index_mask = 0;
15382         int entry = 0;
15383
15384         for_each_intel_encoder(dev, source_encoder) {
15385                 if (encoders_cloneable(encoder, source_encoder))
15386                         index_mask |= (1 << entry);
15387
15388                 entry++;
15389         }
15390
15391         return index_mask;
15392 }
15393
15394 static bool has_edp_a(struct drm_i915_private *dev_priv)
15395 {
15396         if (!IS_MOBILE(dev_priv))
15397                 return false;
15398
15399         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15400                 return false;
15401
15402         if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15403                 return false;
15404
15405         return true;
15406 }
15407
15408 static bool intel_crt_present(struct drm_i915_private *dev_priv)
15409 {
15410         if (INTEL_GEN(dev_priv) >= 9)
15411                 return false;
15412
15413         if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
15414                 return false;
15415
15416         if (IS_CHERRYVIEW(dev_priv))
15417                 return false;
15418
15419         if (HAS_PCH_LPT_H(dev_priv) &&
15420             I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15421                 return false;
15422
15423         /* DDI E can't be used if DDI A requires 4 lanes */
15424         if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15425                 return false;
15426
15427         if (!dev_priv->vbt.int_crt_support)
15428                 return false;
15429
15430         return true;
15431 }
15432
15433 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15434 {
15435         int pps_num;
15436         int pps_idx;
15437
15438         if (HAS_DDI(dev_priv))
15439                 return;
15440         /*
15441          * This w/a is needed at least on CPT/PPT, but to be sure apply it
15442          * everywhere where registers can be write protected.
15443          */
15444         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15445                 pps_num = 2;
15446         else
15447                 pps_num = 1;
15448
15449         for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15450                 u32 val = I915_READ(PP_CONTROL(pps_idx));
15451
15452                 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15453                 I915_WRITE(PP_CONTROL(pps_idx), val);
15454         }
15455 }
15456
15457 static void intel_pps_init(struct drm_i915_private *dev_priv)
15458 {
15459         if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv))
15460                 dev_priv->pps_mmio_base = PCH_PPS_BASE;
15461         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15462                 dev_priv->pps_mmio_base = VLV_PPS_BASE;
15463         else
15464                 dev_priv->pps_mmio_base = PPS_BASE;
15465
15466         intel_pps_unlock_regs_wa(dev_priv);
15467 }
15468
15469 static void intel_setup_outputs(struct drm_device *dev)
15470 {
15471         struct drm_i915_private *dev_priv = to_i915(dev);
15472         struct intel_encoder *encoder;
15473         bool dpd_is_edp = false;
15474
15475         intel_pps_init(dev_priv);
15476
15477         /*
15478          * intel_edp_init_connector() depends on this completing first, to
15479          * prevent the registeration of both eDP and LVDS and the incorrect
15480          * sharing of the PPS.
15481          */
15482         intel_lvds_init(dev);
15483
15484         if (intel_crt_present(dev_priv))
15485                 intel_crt_init(dev);
15486
15487         if (IS_BROXTON(dev_priv)) {
15488                 /*
15489                  * FIXME: Broxton doesn't support port detection via the
15490                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15491                  * detect the ports.
15492                  */
15493                 intel_ddi_init(dev, PORT_A);
15494                 intel_ddi_init(dev, PORT_B);
15495                 intel_ddi_init(dev, PORT_C);
15496
15497                 intel_dsi_init(dev);
15498         } else if (HAS_DDI(dev_priv)) {
15499                 int found;
15500
15501                 /*
15502                  * Haswell uses DDI functions to detect digital outputs.
15503                  * On SKL pre-D0 the strap isn't connected, so we assume
15504                  * it's there.
15505                  */
15506                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15507                 /* WaIgnoreDDIAStrap: skl */
15508                 if (found || IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15509                         intel_ddi_init(dev, PORT_A);
15510
15511                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
15512                  * register */
15513                 found = I915_READ(SFUSE_STRAP);
15514
15515                 if (found & SFUSE_STRAP_DDIB_DETECTED)
15516                         intel_ddi_init(dev, PORT_B);
15517                 if (found & SFUSE_STRAP_DDIC_DETECTED)
15518                         intel_ddi_init(dev, PORT_C);
15519                 if (found & SFUSE_STRAP_DDID_DETECTED)
15520                         intel_ddi_init(dev, PORT_D);
15521                 /*
15522                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15523                  */
15524                 if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
15525                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15526                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15527                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15528                         intel_ddi_init(dev, PORT_E);
15529
15530         } else if (HAS_PCH_SPLIT(dev_priv)) {
15531                 int found;
15532                 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
15533
15534                 if (has_edp_a(dev_priv))
15535                         intel_dp_init(dev, DP_A, PORT_A);
15536
15537                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15538                         /* PCH SDVOB multiplex with HDMIB */
15539                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
15540                         if (!found)
15541                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
15542                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15543                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
15544                 }
15545
15546                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15547                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
15548
15549                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15550                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
15551
15552                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
15553                         intel_dp_init(dev, PCH_DP_C, PORT_C);
15554
15555                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
15556                         intel_dp_init(dev, PCH_DP_D, PORT_D);
15557         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15558                 bool has_edp, has_port;
15559
15560                 /*
15561                  * The DP_DETECTED bit is the latched state of the DDC
15562                  * SDA pin at boot. However since eDP doesn't require DDC
15563                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
15564                  * eDP ports may have been muxed to an alternate function.
15565                  * Thus we can't rely on the DP_DETECTED bit alone to detect
15566                  * eDP ports. Consult the VBT as well as DP_DETECTED to
15567                  * detect eDP ports.
15568                  *
15569                  * Sadly the straps seem to be missing sometimes even for HDMI
15570                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15571                  * and VBT for the presence of the port. Additionally we can't
15572                  * trust the port type the VBT declares as we've seen at least
15573                  * HDMI ports that the VBT claim are DP or eDP.
15574                  */
15575                 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
15576                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15577                 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15578                         has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
15579                 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15580                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
15581
15582                 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
15583                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15584                 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15585                         has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
15586                 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15587                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
15588
15589                 if (IS_CHERRYVIEW(dev_priv)) {
15590                         /*
15591                          * eDP not supported on port D,
15592                          * so no need to worry about it
15593                          */
15594                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15595                         if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15596                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
15597                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15598                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
15599                 }
15600
15601                 intel_dsi_init(dev);
15602         } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
15603                 bool found = false;
15604
15605                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15606                         DRM_DEBUG_KMS("probing SDVOB\n");
15607                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
15608                         if (!found && IS_G4X(dev_priv)) {
15609                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15610                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
15611                         }
15612
15613                         if (!found && IS_G4X(dev_priv))
15614                                 intel_dp_init(dev, DP_B, PORT_B);
15615                 }
15616
15617                 /* Before G4X SDVOC doesn't have its own detect register */
15618
15619                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15620                         DRM_DEBUG_KMS("probing SDVOC\n");
15621                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
15622                 }
15623
15624                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15625
15626                         if (IS_G4X(dev_priv)) {
15627                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15628                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
15629                         }
15630                         if (IS_G4X(dev_priv))
15631                                 intel_dp_init(dev, DP_C, PORT_C);
15632                 }
15633
15634                 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
15635                         intel_dp_init(dev, DP_D, PORT_D);
15636         } else if (IS_GEN2(dev_priv))
15637                 intel_dvo_init(dev);
15638
15639         if (SUPPORTS_TV(dev_priv))
15640                 intel_tv_init(dev);
15641
15642         intel_psr_init(dev);
15643
15644         for_each_intel_encoder(dev, encoder) {
15645                 encoder->base.possible_crtcs = encoder->crtc_mask;
15646                 encoder->base.possible_clones =
15647                         intel_encoder_clones(encoder);
15648         }
15649
15650         intel_init_pch_refclk(dev);
15651
15652         drm_helper_move_panel_connectors_to_head(dev);
15653 }
15654
15655 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15656 {
15657         struct drm_device *dev = fb->dev;
15658         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15659
15660         drm_framebuffer_cleanup(fb);
15661         mutex_lock(&dev->struct_mutex);
15662         WARN_ON(!intel_fb->obj->framebuffer_references--);
15663         i915_gem_object_put(intel_fb->obj);
15664         mutex_unlock(&dev->struct_mutex);
15665         kfree(intel_fb);
15666 }
15667
15668 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15669                                                 struct drm_file *file,
15670                                                 unsigned int *handle)
15671 {
15672         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15673         struct drm_i915_gem_object *obj = intel_fb->obj;
15674
15675         if (obj->userptr.mm) {
15676                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15677                 return -EINVAL;
15678         }
15679
15680         return drm_gem_handle_create(file, &obj->base, handle);
15681 }
15682
15683 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15684                                         struct drm_file *file,
15685                                         unsigned flags, unsigned color,
15686                                         struct drm_clip_rect *clips,
15687                                         unsigned num_clips)
15688 {
15689         struct drm_device *dev = fb->dev;
15690         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15691         struct drm_i915_gem_object *obj = intel_fb->obj;
15692
15693         mutex_lock(&dev->struct_mutex);
15694         if (obj->pin_display && obj->cache_dirty)
15695                 i915_gem_clflush_object(obj, true);
15696         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
15697         mutex_unlock(&dev->struct_mutex);
15698
15699         return 0;
15700 }
15701
15702 static const struct drm_framebuffer_funcs intel_fb_funcs = {
15703         .destroy = intel_user_framebuffer_destroy,
15704         .create_handle = intel_user_framebuffer_create_handle,
15705         .dirty = intel_user_framebuffer_dirty,
15706 };
15707
15708 static
15709 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
15710                          uint64_t fb_modifier, uint32_t pixel_format)
15711 {
15712         u32 gen = INTEL_INFO(dev_priv)->gen;
15713
15714         if (gen >= 9) {
15715                 int cpp = drm_format_plane_cpp(pixel_format, 0);
15716
15717                 /* "The stride in bytes must not exceed the of the size of 8K
15718                  *  pixels and 32K bytes."
15719                  */
15720                 return min(8192 * cpp, 32768);
15721         } else if (gen >= 5 && !IS_VALLEYVIEW(dev_priv) &&
15722                    !IS_CHERRYVIEW(dev_priv)) {
15723                 return 32*1024;
15724         } else if (gen >= 4) {
15725                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15726                         return 16*1024;
15727                 else
15728                         return 32*1024;
15729         } else if (gen >= 3) {
15730                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15731                         return 8*1024;
15732                 else
15733                         return 16*1024;
15734         } else {
15735                 /* XXX DSPC is limited to 4k tiled */
15736                 return 8*1024;
15737         }
15738 }
15739
15740 static int intel_framebuffer_init(struct drm_device *dev,
15741                                   struct intel_framebuffer *intel_fb,
15742                                   struct drm_mode_fb_cmd2 *mode_cmd,
15743                                   struct drm_i915_gem_object *obj)
15744 {
15745         struct drm_i915_private *dev_priv = to_i915(dev);
15746         unsigned int tiling = i915_gem_object_get_tiling(obj);
15747         int ret;
15748         u32 pitch_limit, stride_alignment;
15749         struct drm_format_name_buf format_name;
15750
15751         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15752
15753         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15754                 /*
15755                  * If there's a fence, enforce that
15756                  * the fb modifier and tiling mode match.
15757                  */
15758                 if (tiling != I915_TILING_NONE &&
15759                     tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15760                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15761                         return -EINVAL;
15762                 }
15763         } else {
15764                 if (tiling == I915_TILING_X) {
15765                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15766                 } else if (tiling == I915_TILING_Y) {
15767                         DRM_DEBUG("No Y tiling for legacy addfb\n");
15768                         return -EINVAL;
15769                 }
15770         }
15771
15772         /* Passed in modifier sanity checking. */
15773         switch (mode_cmd->modifier[0]) {
15774         case I915_FORMAT_MOD_Y_TILED:
15775         case I915_FORMAT_MOD_Yf_TILED:
15776                 if (INTEL_GEN(dev_priv) < 9) {
15777                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15778                                   mode_cmd->modifier[0]);
15779                         return -EINVAL;
15780                 }
15781         case DRM_FORMAT_MOD_NONE:
15782         case I915_FORMAT_MOD_X_TILED:
15783                 break;
15784         default:
15785                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15786                           mode_cmd->modifier[0]);
15787                 return -EINVAL;
15788         }
15789
15790         /*
15791          * gen2/3 display engine uses the fence if present,
15792          * so the tiling mode must match the fb modifier exactly.
15793          */
15794         if (INTEL_INFO(dev_priv)->gen < 4 &&
15795             tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15796                 DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15797                 return -EINVAL;
15798         }
15799
15800         stride_alignment = intel_fb_stride_alignment(dev_priv,
15801                                                      mode_cmd->modifier[0],
15802                                                      mode_cmd->pixel_format);
15803         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15804                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15805                           mode_cmd->pitches[0], stride_alignment);
15806                 return -EINVAL;
15807         }
15808
15809         pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
15810                                            mode_cmd->pixel_format);
15811         if (mode_cmd->pitches[0] > pitch_limit) {
15812                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15813                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15814                           "tiled" : "linear",
15815                           mode_cmd->pitches[0], pitch_limit);
15816                 return -EINVAL;
15817         }
15818
15819         /*
15820          * If there's a fence, enforce that
15821          * the fb pitch and fence stride match.
15822          */
15823         if (tiling != I915_TILING_NONE &&
15824             mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
15825                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15826                           mode_cmd->pitches[0],
15827                           i915_gem_object_get_stride(obj));
15828                 return -EINVAL;
15829         }
15830
15831         /* Reject formats not supported by any plane early. */
15832         switch (mode_cmd->pixel_format) {
15833         case DRM_FORMAT_C8:
15834         case DRM_FORMAT_RGB565:
15835         case DRM_FORMAT_XRGB8888:
15836         case DRM_FORMAT_ARGB8888:
15837                 break;
15838         case DRM_FORMAT_XRGB1555:
15839                 if (INTEL_GEN(dev_priv) > 3) {
15840                         DRM_DEBUG("unsupported pixel format: %s\n",
15841                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
15842                         return -EINVAL;
15843                 }
15844                 break;
15845         case DRM_FORMAT_ABGR8888:
15846                 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
15847                     INTEL_GEN(dev_priv) < 9) {
15848                         DRM_DEBUG("unsupported pixel format: %s\n",
15849                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
15850                         return -EINVAL;
15851                 }
15852                 break;
15853         case DRM_FORMAT_XBGR8888:
15854         case DRM_FORMAT_XRGB2101010:
15855         case DRM_FORMAT_XBGR2101010:
15856                 if (INTEL_GEN(dev_priv) < 4) {
15857                         DRM_DEBUG("unsupported pixel format: %s\n",
15858                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
15859                         return -EINVAL;
15860                 }
15861                 break;
15862         case DRM_FORMAT_ABGR2101010:
15863                 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
15864                         DRM_DEBUG("unsupported pixel format: %s\n",
15865                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
15866                         return -EINVAL;
15867                 }
15868                 break;
15869         case DRM_FORMAT_YUYV:
15870         case DRM_FORMAT_UYVY:
15871         case DRM_FORMAT_YVYU:
15872         case DRM_FORMAT_VYUY:
15873                 if (INTEL_GEN(dev_priv) < 5) {
15874                         DRM_DEBUG("unsupported pixel format: %s\n",
15875                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
15876                         return -EINVAL;
15877                 }
15878                 break;
15879         default:
15880                 DRM_DEBUG("unsupported pixel format: %s\n",
15881                           drm_get_format_name(mode_cmd->pixel_format, &format_name));
15882                 return -EINVAL;
15883         }
15884
15885         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15886         if (mode_cmd->offsets[0] != 0)
15887                 return -EINVAL;
15888
15889         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15890         intel_fb->obj = obj;
15891
15892         ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
15893         if (ret)
15894                 return ret;
15895
15896         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15897         if (ret) {
15898                 DRM_ERROR("framebuffer init failed %d\n", ret);
15899                 return ret;
15900         }
15901
15902         intel_fb->obj->framebuffer_references++;
15903
15904         return 0;
15905 }
15906
15907 static struct drm_framebuffer *
15908 intel_user_framebuffer_create(struct drm_device *dev,
15909                               struct drm_file *filp,
15910                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
15911 {
15912         struct drm_framebuffer *fb;
15913         struct drm_i915_gem_object *obj;
15914         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15915
15916         obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15917         if (!obj)
15918                 return ERR_PTR(-ENOENT);
15919
15920         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15921         if (IS_ERR(fb))
15922                 i915_gem_object_put(obj);
15923
15924         return fb;
15925 }
15926
15927 static const struct drm_mode_config_funcs intel_mode_funcs = {
15928         .fb_create = intel_user_framebuffer_create,
15929         .output_poll_changed = intel_fbdev_output_poll_changed,
15930         .atomic_check = intel_atomic_check,
15931         .atomic_commit = intel_atomic_commit,
15932         .atomic_state_alloc = intel_atomic_state_alloc,
15933         .atomic_state_clear = intel_atomic_state_clear,
15934 };
15935
15936 /**
15937  * intel_init_display_hooks - initialize the display modesetting hooks
15938  * @dev_priv: device private
15939  */
15940 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15941 {
15942         if (INTEL_INFO(dev_priv)->gen >= 9) {
15943                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15944                 dev_priv->display.get_initial_plane_config =
15945                         skylake_get_initial_plane_config;
15946                 dev_priv->display.crtc_compute_clock =
15947                         haswell_crtc_compute_clock;
15948                 dev_priv->display.crtc_enable = haswell_crtc_enable;
15949                 dev_priv->display.crtc_disable = haswell_crtc_disable;
15950         } else if (HAS_DDI(dev_priv)) {
15951                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15952                 dev_priv->display.get_initial_plane_config =
15953                         ironlake_get_initial_plane_config;
15954                 dev_priv->display.crtc_compute_clock =
15955                         haswell_crtc_compute_clock;
15956                 dev_priv->display.crtc_enable = haswell_crtc_enable;
15957                 dev_priv->display.crtc_disable = haswell_crtc_disable;
15958         } else if (HAS_PCH_SPLIT(dev_priv)) {
15959                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15960                 dev_priv->display.get_initial_plane_config =
15961                         ironlake_get_initial_plane_config;
15962                 dev_priv->display.crtc_compute_clock =
15963                         ironlake_crtc_compute_clock;
15964                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15965                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
15966         } else if (IS_CHERRYVIEW(dev_priv)) {
15967                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15968                 dev_priv->display.get_initial_plane_config =
15969                         i9xx_get_initial_plane_config;
15970                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15971                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15972                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15973         } else if (IS_VALLEYVIEW(dev_priv)) {
15974                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15975                 dev_priv->display.get_initial_plane_config =
15976                         i9xx_get_initial_plane_config;
15977                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15978                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15979                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15980         } else if (IS_G4X(dev_priv)) {
15981                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15982                 dev_priv->display.get_initial_plane_config =
15983                         i9xx_get_initial_plane_config;
15984                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15985                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15986                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15987         } else if (IS_PINEVIEW(dev_priv)) {
15988                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15989                 dev_priv->display.get_initial_plane_config =
15990                         i9xx_get_initial_plane_config;
15991                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15992                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15993                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15994         } else if (!IS_GEN2(dev_priv)) {
15995                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15996                 dev_priv->display.get_initial_plane_config =
15997                         i9xx_get_initial_plane_config;
15998                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15999                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16000                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16001         } else {
16002                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16003                 dev_priv->display.get_initial_plane_config =
16004                         i9xx_get_initial_plane_config;
16005                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
16006                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16007                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16008         }
16009
16010         /* Returns the core display clock speed */
16011         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
16012                 dev_priv->display.get_display_clock_speed =
16013                         skylake_get_display_clock_speed;
16014         else if (IS_BROXTON(dev_priv))
16015                 dev_priv->display.get_display_clock_speed =
16016                         broxton_get_display_clock_speed;
16017         else if (IS_BROADWELL(dev_priv))
16018                 dev_priv->display.get_display_clock_speed =
16019                         broadwell_get_display_clock_speed;
16020         else if (IS_HASWELL(dev_priv))
16021                 dev_priv->display.get_display_clock_speed =
16022                         haswell_get_display_clock_speed;
16023         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16024                 dev_priv->display.get_display_clock_speed =
16025                         valleyview_get_display_clock_speed;
16026         else if (IS_GEN5(dev_priv))
16027                 dev_priv->display.get_display_clock_speed =
16028                         ilk_get_display_clock_speed;
16029         else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
16030                  IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
16031                 dev_priv->display.get_display_clock_speed =
16032                         i945_get_display_clock_speed;
16033         else if (IS_GM45(dev_priv))
16034                 dev_priv->display.get_display_clock_speed =
16035                         gm45_get_display_clock_speed;
16036         else if (IS_CRESTLINE(dev_priv))
16037                 dev_priv->display.get_display_clock_speed =
16038                         i965gm_get_display_clock_speed;
16039         else if (IS_PINEVIEW(dev_priv))
16040                 dev_priv->display.get_display_clock_speed =
16041                         pnv_get_display_clock_speed;
16042         else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
16043                 dev_priv->display.get_display_clock_speed =
16044                         g33_get_display_clock_speed;
16045         else if (IS_I915G(dev_priv))
16046                 dev_priv->display.get_display_clock_speed =
16047                         i915_get_display_clock_speed;
16048         else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
16049                 dev_priv->display.get_display_clock_speed =
16050                         i9xx_misc_get_display_clock_speed;
16051         else if (IS_I915GM(dev_priv))
16052                 dev_priv->display.get_display_clock_speed =
16053                         i915gm_get_display_clock_speed;
16054         else if (IS_I865G(dev_priv))
16055                 dev_priv->display.get_display_clock_speed =
16056                         i865_get_display_clock_speed;
16057         else if (IS_I85X(dev_priv))
16058                 dev_priv->display.get_display_clock_speed =
16059                         i85x_get_display_clock_speed;
16060         else { /* 830 */
16061                 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
16062                 dev_priv->display.get_display_clock_speed =
16063                         i830_get_display_clock_speed;
16064         }
16065
16066         if (IS_GEN5(dev_priv)) {
16067                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16068         } else if (IS_GEN6(dev_priv)) {
16069                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16070         } else if (IS_IVYBRIDGE(dev_priv)) {
16071                 /* FIXME: detect B0+ stepping and use auto training */
16072                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16073         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
16074                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
16075         }
16076
16077         if (IS_BROADWELL(dev_priv)) {
16078                 dev_priv->display.modeset_commit_cdclk =
16079                         broadwell_modeset_commit_cdclk;
16080                 dev_priv->display.modeset_calc_cdclk =
16081                         broadwell_modeset_calc_cdclk;
16082         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16083                 dev_priv->display.modeset_commit_cdclk =
16084                         valleyview_modeset_commit_cdclk;
16085                 dev_priv->display.modeset_calc_cdclk =
16086                         valleyview_modeset_calc_cdclk;
16087         } else if (IS_BROXTON(dev_priv)) {
16088                 dev_priv->display.modeset_commit_cdclk =
16089                         bxt_modeset_commit_cdclk;
16090                 dev_priv->display.modeset_calc_cdclk =
16091                         bxt_modeset_calc_cdclk;
16092         } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
16093                 dev_priv->display.modeset_commit_cdclk =
16094                         skl_modeset_commit_cdclk;
16095                 dev_priv->display.modeset_calc_cdclk =
16096                         skl_modeset_calc_cdclk;
16097         }
16098
16099         if (dev_priv->info.gen >= 9)
16100                 dev_priv->display.update_crtcs = skl_update_crtcs;
16101         else
16102                 dev_priv->display.update_crtcs = intel_update_crtcs;
16103
16104         switch (INTEL_INFO(dev_priv)->gen) {
16105         case 2:
16106                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
16107                 break;
16108
16109         case 3:
16110                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
16111                 break;
16112
16113         case 4:
16114         case 5:
16115                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
16116                 break;
16117
16118         case 6:
16119                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
16120                 break;
16121         case 7:
16122         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16123                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
16124                 break;
16125         case 9:
16126                 /* Drop through - unsupported since execlist only. */
16127         default:
16128                 /* Default just returns -ENODEV to indicate unsupported */
16129                 dev_priv->display.queue_flip = intel_default_queue_flip;
16130         }
16131 }
16132
16133 /*
16134  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16135  * resume, or other times.  This quirk makes sure that's the case for
16136  * affected systems.
16137  */
16138 static void quirk_pipea_force(struct drm_device *dev)
16139 {
16140         struct drm_i915_private *dev_priv = to_i915(dev);
16141
16142         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
16143         DRM_INFO("applying pipe a force quirk\n");
16144 }
16145
16146 static void quirk_pipeb_force(struct drm_device *dev)
16147 {
16148         struct drm_i915_private *dev_priv = to_i915(dev);
16149
16150         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16151         DRM_INFO("applying pipe b force quirk\n");
16152 }
16153
16154 /*
16155  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16156  */
16157 static void quirk_ssc_force_disable(struct drm_device *dev)
16158 {
16159         struct drm_i915_private *dev_priv = to_i915(dev);
16160         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
16161         DRM_INFO("applying lvds SSC disable quirk\n");
16162 }
16163
16164 /*
16165  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16166  * brightness value
16167  */
16168 static void quirk_invert_brightness(struct drm_device *dev)
16169 {
16170         struct drm_i915_private *dev_priv = to_i915(dev);
16171         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
16172         DRM_INFO("applying inverted panel brightness quirk\n");
16173 }
16174
16175 /* Some VBT's incorrectly indicate no backlight is present */
16176 static void quirk_backlight_present(struct drm_device *dev)
16177 {
16178         struct drm_i915_private *dev_priv = to_i915(dev);
16179         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16180         DRM_INFO("applying backlight present quirk\n");
16181 }
16182
16183 struct intel_quirk {
16184         int device;
16185         int subsystem_vendor;
16186         int subsystem_device;
16187         void (*hook)(struct drm_device *dev);
16188 };
16189
16190 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16191 struct intel_dmi_quirk {
16192         void (*hook)(struct drm_device *dev);
16193         const struct dmi_system_id (*dmi_id_list)[];
16194 };
16195
16196 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16197 {
16198         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16199         return 1;
16200 }
16201
16202 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16203         {
16204                 .dmi_id_list = &(const struct dmi_system_id[]) {
16205                         {
16206                                 .callback = intel_dmi_reverse_brightness,
16207                                 .ident = "NCR Corporation",
16208                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16209                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
16210                                 },
16211                         },
16212                         { }  /* terminating entry */
16213                 },
16214                 .hook = quirk_invert_brightness,
16215         },
16216 };
16217
16218 static struct intel_quirk intel_quirks[] = {
16219         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16220         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16221
16222         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16223         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16224
16225         /* 830 needs to leave pipe A & dpll A up */
16226         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16227
16228         /* 830 needs to leave pipe B & dpll B up */
16229         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16230
16231         /* Lenovo U160 cannot use SSC on LVDS */
16232         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
16233
16234         /* Sony Vaio Y cannot use SSC on LVDS */
16235         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
16236
16237         /* Acer Aspire 5734Z must invert backlight brightness */
16238         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16239
16240         /* Acer/eMachines G725 */
16241         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16242
16243         /* Acer/eMachines e725 */
16244         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16245
16246         /* Acer/Packard Bell NCL20 */
16247         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16248
16249         /* Acer Aspire 4736Z */
16250         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
16251
16252         /* Acer Aspire 5336 */
16253         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
16254
16255         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16256         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
16257
16258         /* Acer C720 Chromebook (Core i3 4005U) */
16259         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16260
16261         /* Apple Macbook 2,1 (Core 2 T7400) */
16262         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16263
16264         /* Apple Macbook 4,1 */
16265         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16266
16267         /* Toshiba CB35 Chromebook (Celeron 2955U) */
16268         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
16269
16270         /* HP Chromebook 14 (Celeron 2955U) */
16271         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
16272
16273         /* Dell Chromebook 11 */
16274         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
16275
16276         /* Dell Chromebook 11 (2015 version) */
16277         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
16278 };
16279
16280 static void intel_init_quirks(struct drm_device *dev)
16281 {
16282         struct pci_dev *d = dev->pdev;
16283         int i;
16284
16285         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16286                 struct intel_quirk *q = &intel_quirks[i];
16287
16288                 if (d->device == q->device &&
16289                     (d->subsystem_vendor == q->subsystem_vendor ||
16290                      q->subsystem_vendor == PCI_ANY_ID) &&
16291                     (d->subsystem_device == q->subsystem_device ||
16292                      q->subsystem_device == PCI_ANY_ID))
16293                         q->hook(dev);
16294         }
16295         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16296                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16297                         intel_dmi_quirks[i].hook(dev);
16298         }
16299 }
16300
16301 /* Disable the VGA plane that we never use */
16302 static void i915_disable_vga(struct drm_i915_private *dev_priv)
16303 {
16304         struct pci_dev *pdev = dev_priv->drm.pdev;
16305         u8 sr1;
16306         i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16307
16308         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
16309         vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
16310         outb(SR01, VGA_SR_INDEX);
16311         sr1 = inb(VGA_SR_DATA);
16312         outb(sr1 | 1<<5, VGA_SR_DATA);
16313         vga_put(pdev, VGA_RSRC_LEGACY_IO);
16314         udelay(300);
16315
16316         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
16317         POSTING_READ(vga_reg);
16318 }
16319
16320 void intel_modeset_init_hw(struct drm_device *dev)
16321 {
16322         struct drm_i915_private *dev_priv = to_i915(dev);
16323
16324         intel_update_cdclk(dev_priv);
16325
16326         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16327
16328         intel_init_clock_gating(dev_priv);
16329 }
16330
16331 /*
16332  * Calculate what we think the watermarks should be for the state we've read
16333  * out of the hardware and then immediately program those watermarks so that
16334  * we ensure the hardware settings match our internal state.
16335  *
16336  * We can calculate what we think WM's should be by creating a duplicate of the
16337  * current state (which was constructed during hardware readout) and running it
16338  * through the atomic check code to calculate new watermark values in the
16339  * state object.
16340  */
16341 static void sanitize_watermarks(struct drm_device *dev)
16342 {
16343         struct drm_i915_private *dev_priv = to_i915(dev);
16344         struct drm_atomic_state *state;
16345         struct intel_atomic_state *intel_state;
16346         struct drm_crtc *crtc;
16347         struct drm_crtc_state *cstate;
16348         struct drm_modeset_acquire_ctx ctx;
16349         int ret;
16350         int i;
16351
16352         /* Only supported on platforms that use atomic watermark design */
16353         if (!dev_priv->display.optimize_watermarks)
16354                 return;
16355
16356         /*
16357          * We need to hold connection_mutex before calling duplicate_state so
16358          * that the connector loop is protected.
16359          */
16360         drm_modeset_acquire_init(&ctx, 0);
16361 retry:
16362         ret = drm_modeset_lock_all_ctx(dev, &ctx);
16363         if (ret == -EDEADLK) {
16364                 drm_modeset_backoff(&ctx);
16365                 goto retry;
16366         } else if (WARN_ON(ret)) {
16367                 goto fail;
16368         }
16369
16370         state = drm_atomic_helper_duplicate_state(dev, &ctx);
16371         if (WARN_ON(IS_ERR(state)))
16372                 goto fail;
16373
16374         intel_state = to_intel_atomic_state(state);
16375
16376         /*
16377          * Hardware readout is the only time we don't want to calculate
16378          * intermediate watermarks (since we don't trust the current
16379          * watermarks).
16380          */
16381         intel_state->skip_intermediate_wm = true;
16382
16383         ret = intel_atomic_check(dev, state);
16384         if (ret) {
16385                 /*
16386                  * If we fail here, it means that the hardware appears to be
16387                  * programmed in a way that shouldn't be possible, given our
16388                  * understanding of watermark requirements.  This might mean a
16389                  * mistake in the hardware readout code or a mistake in the
16390                  * watermark calculations for a given platform.  Raise a WARN
16391                  * so that this is noticeable.
16392                  *
16393                  * If this actually happens, we'll have to just leave the
16394                  * BIOS-programmed watermarks untouched and hope for the best.
16395                  */
16396                 WARN(true, "Could not determine valid watermarks for inherited state\n");
16397                 goto put_state;
16398         }
16399
16400         /* Write calculated watermark values back */
16401         for_each_crtc_in_state(state, crtc, cstate, i) {
16402                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16403
16404                 cs->wm.need_postvbl_update = true;
16405                 dev_priv->display.optimize_watermarks(intel_state, cs);
16406         }
16407
16408 put_state:
16409         drm_atomic_state_put(state);
16410 fail:
16411         drm_modeset_drop_locks(&ctx);
16412         drm_modeset_acquire_fini(&ctx);
16413 }
16414
16415 static void intel_atomic_helper_free_state(struct work_struct *work)
16416 {
16417         struct drm_i915_private *dev_priv =
16418                 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
16419         struct intel_atomic_state *state, *next;
16420         struct llist_node *freed;
16421
16422         freed = llist_del_all(&dev_priv->atomic_helper.free_list);
16423         llist_for_each_entry_safe(state, next, freed, freed)
16424                 drm_atomic_state_put(&state->base);
16425 }
16426
16427 int intel_modeset_init(struct drm_device *dev)
16428 {
16429         struct drm_i915_private *dev_priv = to_i915(dev);
16430         struct i915_ggtt *ggtt = &dev_priv->ggtt;
16431         enum pipe pipe;
16432         struct intel_crtc *crtc;
16433
16434         drm_mode_config_init(dev);
16435
16436         dev->mode_config.min_width = 0;
16437         dev->mode_config.min_height = 0;
16438
16439         dev->mode_config.preferred_depth = 24;
16440         dev->mode_config.prefer_shadow = 1;
16441
16442         dev->mode_config.allow_fb_modifiers = true;
16443
16444         dev->mode_config.funcs = &intel_mode_funcs;
16445
16446         INIT_WORK(&dev_priv->atomic_helper.free_work,
16447                   intel_atomic_helper_free_state);
16448
16449         intel_init_quirks(dev);
16450
16451         intel_init_pm(dev_priv);
16452
16453         if (INTEL_INFO(dev_priv)->num_pipes == 0)
16454                 return 0;
16455
16456         /*
16457          * There may be no VBT; and if the BIOS enabled SSC we can
16458          * just keep using it to avoid unnecessary flicker.  Whereas if the
16459          * BIOS isn't using it, don't assume it will work even if the VBT
16460          * indicates as much.
16461          */
16462         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
16463                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16464                                             DREF_SSC1_ENABLE);
16465
16466                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16467                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16468                                      bios_lvds_use_ssc ? "en" : "dis",
16469                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16470                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16471                 }
16472         }
16473
16474         if (IS_GEN2(dev_priv)) {
16475                 dev->mode_config.max_width = 2048;
16476                 dev->mode_config.max_height = 2048;
16477         } else if (IS_GEN3(dev_priv)) {
16478                 dev->mode_config.max_width = 4096;
16479                 dev->mode_config.max_height = 4096;
16480         } else {
16481                 dev->mode_config.max_width = 8192;
16482                 dev->mode_config.max_height = 8192;
16483         }
16484
16485         if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
16486                 dev->mode_config.cursor_width = IS_845G(dev_priv) ? 64 : 512;
16487                 dev->mode_config.cursor_height = 1023;
16488         } else if (IS_GEN2(dev_priv)) {
16489                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16490                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16491         } else {
16492                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16493                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16494         }
16495
16496         dev->mode_config.fb_base = ggtt->mappable_base;
16497
16498         DRM_DEBUG_KMS("%d display pipe%s available.\n",
16499                       INTEL_INFO(dev_priv)->num_pipes,
16500                       INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
16501
16502         for_each_pipe(dev_priv, pipe) {
16503                 int ret;
16504
16505                 ret = intel_crtc_init(dev_priv, pipe);
16506                 if (ret) {
16507                         drm_mode_config_cleanup(dev);
16508                         return ret;
16509                 }
16510         }
16511
16512         intel_update_czclk(dev_priv);
16513         intel_update_cdclk(dev_priv);
16514         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16515
16516         intel_shared_dpll_init(dev);
16517
16518         if (dev_priv->max_cdclk_freq == 0)
16519                 intel_update_max_cdclk(dev_priv);
16520
16521         /* Just disable it once at startup */
16522         i915_disable_vga(dev_priv);
16523         intel_setup_outputs(dev);
16524
16525         drm_modeset_lock_all(dev);
16526         intel_modeset_setup_hw_state(dev);
16527         drm_modeset_unlock_all(dev);
16528
16529         for_each_intel_crtc(dev, crtc) {
16530                 struct intel_initial_plane_config plane_config = {};
16531
16532                 if (!crtc->active)
16533                         continue;
16534
16535                 /*
16536                  * Note that reserving the BIOS fb up front prevents us
16537                  * from stuffing other stolen allocations like the ring
16538                  * on top.  This prevents some ugliness at boot time, and
16539                  * can even allow for smooth boot transitions if the BIOS
16540                  * fb is large enough for the active pipe configuration.
16541                  */
16542                 dev_priv->display.get_initial_plane_config(crtc,
16543                                                            &plane_config);
16544
16545                 /*
16546                  * If the fb is shared between multiple heads, we'll
16547                  * just get the first one.
16548                  */
16549                 intel_find_initial_plane_obj(crtc, &plane_config);
16550         }
16551
16552         /*
16553          * Make sure hardware watermarks really match the state we read out.
16554          * Note that we need to do this after reconstructing the BIOS fb's
16555          * since the watermark calculation done here will use pstate->fb.
16556          */
16557         sanitize_watermarks(dev);
16558
16559         return 0;
16560 }
16561
16562 static void intel_enable_pipe_a(struct drm_device *dev)
16563 {
16564         struct intel_connector *connector;
16565         struct drm_connector *crt = NULL;
16566         struct intel_load_detect_pipe load_detect_temp;
16567         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
16568
16569         /* We can't just switch on the pipe A, we need to set things up with a
16570          * proper mode and output configuration. As a gross hack, enable pipe A
16571          * by enabling the load detect pipe once. */
16572         for_each_intel_connector(dev, connector) {
16573                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16574                         crt = &connector->base;
16575                         break;
16576                 }
16577         }
16578
16579         if (!crt)
16580                 return;
16581
16582         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
16583                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
16584 }
16585
16586 static bool
16587 intel_check_plane_mapping(struct intel_crtc *crtc)
16588 {
16589         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
16590         u32 val;
16591
16592         if (INTEL_INFO(dev_priv)->num_pipes == 1)
16593                 return true;
16594
16595         val = I915_READ(DSPCNTR(!crtc->plane));
16596
16597         if ((val & DISPLAY_PLANE_ENABLE) &&
16598             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16599                 return false;
16600
16601         return true;
16602 }
16603
16604 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16605 {
16606         struct drm_device *dev = crtc->base.dev;
16607         struct intel_encoder *encoder;
16608
16609         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16610                 return true;
16611
16612         return false;
16613 }
16614
16615 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16616 {
16617         struct drm_device *dev = encoder->base.dev;
16618         struct intel_connector *connector;
16619
16620         for_each_connector_on_encoder(dev, &encoder->base, connector)
16621                 return connector;
16622
16623         return NULL;
16624 }
16625
16626 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16627                               enum transcoder pch_transcoder)
16628 {
16629         return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16630                 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16631 }
16632
16633 static void intel_sanitize_crtc(struct intel_crtc *crtc)
16634 {
16635         struct drm_device *dev = crtc->base.dev;
16636         struct drm_i915_private *dev_priv = to_i915(dev);
16637         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
16638
16639         /* Clear any frame start delays used for debugging left by the BIOS */
16640         if (!transcoder_is_dsi(cpu_transcoder)) {
16641                 i915_reg_t reg = PIPECONF(cpu_transcoder);
16642
16643                 I915_WRITE(reg,
16644                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16645         }
16646
16647         /* restore vblank interrupts to correct state */
16648         drm_crtc_vblank_reset(&crtc->base);
16649         if (crtc->active) {
16650                 struct intel_plane *plane;
16651
16652                 drm_crtc_vblank_on(&crtc->base);
16653
16654                 /* Disable everything but the primary plane */
16655                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
16656                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16657                                 continue;
16658
16659                         plane->disable_plane(&plane->base, &crtc->base);
16660                 }
16661         }
16662
16663         /* We need to sanitize the plane -> pipe mapping first because this will
16664          * disable the crtc (and hence change the state) if it is wrong. Note
16665          * that gen4+ has a fixed plane -> pipe mapping.  */
16666         if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
16667                 bool plane;
16668
16669                 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16670                               crtc->base.base.id, crtc->base.name);
16671
16672                 /* Pipe has the wrong plane attached and the plane is active.
16673                  * Temporarily change the plane mapping and disable everything
16674                  * ...  */
16675                 plane = crtc->plane;
16676                 to_intel_plane_state(crtc->base.primary->state)->base.visible = true;
16677                 crtc->plane = !plane;
16678                 intel_crtc_disable_noatomic(&crtc->base);
16679                 crtc->plane = plane;
16680         }
16681
16682         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16683             crtc->pipe == PIPE_A && !crtc->active) {
16684                 /* BIOS forgot to enable pipe A, this mostly happens after
16685                  * resume. Force-enable the pipe to fix this, the update_dpms
16686                  * call below we restore the pipe to the right state, but leave
16687                  * the required bits on. */
16688                 intel_enable_pipe_a(dev);
16689         }
16690
16691         /* Adjust the state of the output pipe according to whether we
16692          * have active connectors/encoders. */
16693         if (crtc->active && !intel_crtc_has_encoders(crtc))
16694                 intel_crtc_disable_noatomic(&crtc->base);
16695
16696         if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
16697                 /*
16698                  * We start out with underrun reporting disabled to avoid races.
16699                  * For correct bookkeeping mark this on active crtcs.
16700                  *
16701                  * Also on gmch platforms we dont have any hardware bits to
16702                  * disable the underrun reporting. Which means we need to start
16703                  * out with underrun reporting disabled also on inactive pipes,
16704                  * since otherwise we'll complain about the garbage we read when
16705                  * e.g. coming up after runtime pm.
16706                  *
16707                  * No protection against concurrent access is required - at
16708                  * worst a fifo underrun happens which also sets this to false.
16709                  */
16710                 crtc->cpu_fifo_underrun_disabled = true;
16711                 /*
16712                  * We track the PCH trancoder underrun reporting state
16713                  * within the crtc. With crtc for pipe A housing the underrun
16714                  * reporting state for PCH transcoder A, crtc for pipe B housing
16715                  * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16716                  * and marking underrun reporting as disabled for the non-existing
16717                  * PCH transcoders B and C would prevent enabling the south
16718                  * error interrupt (see cpt_can_enable_serr_int()).
16719                  */
16720                 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16721                         crtc->pch_fifo_underrun_disabled = true;
16722         }
16723 }
16724
16725 static void intel_sanitize_encoder(struct intel_encoder *encoder)
16726 {
16727         struct intel_connector *connector;
16728
16729         /* We need to check both for a crtc link (meaning that the
16730          * encoder is active and trying to read from a pipe) and the
16731          * pipe itself being active. */
16732         bool has_active_crtc = encoder->base.crtc &&
16733                 to_intel_crtc(encoder->base.crtc)->active;
16734
16735         connector = intel_encoder_find_connector(encoder);
16736         if (connector && !has_active_crtc) {
16737                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16738                               encoder->base.base.id,
16739                               encoder->base.name);
16740
16741                 /* Connector is active, but has no active pipe. This is
16742                  * fallout from our resume register restoring. Disable
16743                  * the encoder manually again. */
16744                 if (encoder->base.crtc) {
16745                         struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16746
16747                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16748                                       encoder->base.base.id,
16749                                       encoder->base.name);
16750                         encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16751                         if (encoder->post_disable)
16752                                 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16753                 }
16754                 encoder->base.crtc = NULL;
16755
16756                 /* Inconsistent output/port/pipe state happens presumably due to
16757                  * a bug in one of the get_hw_state functions. Or someplace else
16758                  * in our code, like the register restore mess on resume. Clamp
16759                  * things to off as a safer default. */
16760
16761                 connector->base.dpms = DRM_MODE_DPMS_OFF;
16762                 connector->base.encoder = NULL;
16763         }
16764         /* Enabled encoders without active connectors will be fixed in
16765          * the crtc fixup. */
16766 }
16767
16768 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
16769 {
16770         i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16771
16772         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16773                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16774                 i915_disable_vga(dev_priv);
16775         }
16776 }
16777
16778 void i915_redisable_vga(struct drm_i915_private *dev_priv)
16779 {
16780         /* This function can be called both from intel_modeset_setup_hw_state or
16781          * at a very early point in our resume sequence, where the power well
16782          * structures are not yet restored. Since this function is at a very
16783          * paranoid "someone might have enabled VGA while we were not looking"
16784          * level, just check if the power well is enabled instead of trying to
16785          * follow the "don't touch the power well if we don't need it" policy
16786          * the rest of the driver uses. */
16787         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16788                 return;
16789
16790         i915_redisable_vga_power_on(dev_priv);
16791
16792         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16793 }
16794
16795 static bool primary_get_hw_state(struct intel_plane *plane)
16796 {
16797         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16798
16799         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16800 }
16801
16802 /* FIXME read out full plane state for all planes */
16803 static void readout_plane_state(struct intel_crtc *crtc)
16804 {
16805         struct drm_plane *primary = crtc->base.primary;
16806         struct intel_plane_state *plane_state =
16807                 to_intel_plane_state(primary->state);
16808
16809         plane_state->base.visible = crtc->active &&
16810                 primary_get_hw_state(to_intel_plane(primary));
16811
16812         if (plane_state->base.visible)
16813                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16814 }
16815
16816 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16817 {
16818         struct drm_i915_private *dev_priv = to_i915(dev);
16819         enum pipe pipe;
16820         struct intel_crtc *crtc;
16821         struct intel_encoder *encoder;
16822         struct intel_connector *connector;
16823         int i;
16824
16825         dev_priv->active_crtcs = 0;
16826
16827         for_each_intel_crtc(dev, crtc) {
16828                 struct intel_crtc_state *crtc_state = crtc->config;
16829
16830                 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16831                 memset(crtc_state, 0, sizeof(*crtc_state));
16832                 crtc_state->base.crtc = &crtc->base;
16833
16834                 crtc_state->base.active = crtc_state->base.enable =
16835                         dev_priv->display.get_pipe_config(crtc, crtc_state);
16836
16837                 crtc->base.enabled = crtc_state->base.enable;
16838                 crtc->active = crtc_state->base.active;
16839
16840                 if (crtc_state->base.active)
16841                         dev_priv->active_crtcs |= 1 << crtc->pipe;
16842
16843                 readout_plane_state(crtc);
16844
16845                 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16846                               crtc->base.base.id, crtc->base.name,
16847                               enableddisabled(crtc->active));
16848         }
16849
16850         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16851                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16852
16853                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16854                                                   &pll->config.hw_state);
16855                 pll->config.crtc_mask = 0;
16856                 for_each_intel_crtc(dev, crtc) {
16857                         if (crtc->active && crtc->config->shared_dpll == pll)
16858                                 pll->config.crtc_mask |= 1 << crtc->pipe;
16859                 }
16860                 pll->active_mask = pll->config.crtc_mask;
16861
16862                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16863                               pll->name, pll->config.crtc_mask, pll->on);
16864         }
16865
16866         for_each_intel_encoder(dev, encoder) {
16867                 pipe = 0;
16868
16869                 if (encoder->get_hw_state(encoder, &pipe)) {
16870                         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16871
16872                         encoder->base.crtc = &crtc->base;
16873                         crtc->config->output_types |= 1 << encoder->type;
16874                         encoder->get_config(encoder, crtc->config);
16875                 } else {
16876                         encoder->base.crtc = NULL;
16877                 }
16878
16879                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16880                               encoder->base.base.id, encoder->base.name,
16881                               enableddisabled(encoder->base.crtc),
16882                               pipe_name(pipe));
16883         }
16884
16885         for_each_intel_connector(dev, connector) {
16886                 if (connector->get_hw_state(connector)) {
16887                         connector->base.dpms = DRM_MODE_DPMS_ON;
16888
16889                         encoder = connector->encoder;
16890                         connector->base.encoder = &encoder->base;
16891
16892                         if (encoder->base.crtc &&
16893                             encoder->base.crtc->state->active) {
16894                                 /*
16895                                  * This has to be done during hardware readout
16896                                  * because anything calling .crtc_disable may
16897                                  * rely on the connector_mask being accurate.
16898                                  */
16899                                 encoder->base.crtc->state->connector_mask |=
16900                                         1 << drm_connector_index(&connector->base);
16901                                 encoder->base.crtc->state->encoder_mask |=
16902                                         1 << drm_encoder_index(&encoder->base);
16903                         }
16904
16905                 } else {
16906                         connector->base.dpms = DRM_MODE_DPMS_OFF;
16907                         connector->base.encoder = NULL;
16908                 }
16909                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16910                               connector->base.base.id, connector->base.name,
16911                               enableddisabled(connector->base.encoder));
16912         }
16913
16914         for_each_intel_crtc(dev, crtc) {
16915                 int pixclk = 0;
16916
16917                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16918
16919                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16920                 if (crtc->base.state->active) {
16921                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16922                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16923                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16924
16925                         /*
16926                          * The initial mode needs to be set in order to keep
16927                          * the atomic core happy. It wants a valid mode if the
16928                          * crtc's enabled, so we do the above call.
16929                          *
16930                          * At this point some state updated by the connectors
16931                          * in their ->detect() callback has not run yet, so
16932                          * no recalculation can be done yet.
16933                          *
16934                          * Even if we could do a recalculation and modeset
16935                          * right now it would cause a double modeset if
16936                          * fbdev or userspace chooses a different initial mode.
16937                          *
16938                          * If that happens, someone indicated they wanted a
16939                          * mode change, which means it's safe to do a full
16940                          * recalculation.
16941                          */
16942                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16943
16944                         if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16945                                 pixclk = ilk_pipe_pixel_rate(crtc->config);
16946                         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16947                                 pixclk = crtc->config->base.adjusted_mode.crtc_clock;
16948                         else
16949                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
16950
16951                         /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16952                         if (IS_BROADWELL(dev_priv) && crtc->config->ips_enabled)
16953                                 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16954
16955                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16956                         update_scanline_offset(crtc);
16957                 }
16958
16959                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
16960
16961                 intel_pipe_config_sanity_check(dev_priv, crtc->config);
16962         }
16963 }
16964
16965 /* Scan out the current hw modeset state,
16966  * and sanitizes it to the current state
16967  */
16968 static void
16969 intel_modeset_setup_hw_state(struct drm_device *dev)
16970 {
16971         struct drm_i915_private *dev_priv = to_i915(dev);
16972         enum pipe pipe;
16973         struct intel_crtc *crtc;
16974         struct intel_encoder *encoder;
16975         int i;
16976
16977         intel_modeset_readout_hw_state(dev);
16978
16979         /* HW state is read out, now we need to sanitize this mess. */
16980         for_each_intel_encoder(dev, encoder) {
16981                 intel_sanitize_encoder(encoder);
16982         }
16983
16984         for_each_pipe(dev_priv, pipe) {
16985                 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16986
16987                 intel_sanitize_crtc(crtc);
16988                 intel_dump_pipe_config(crtc, crtc->config,
16989                                        "[setup_hw_state]");
16990         }
16991
16992         intel_modeset_update_connector_atomic_state(dev);
16993
16994         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16995                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16996
16997                 if (!pll->on || pll->active_mask)
16998                         continue;
16999
17000                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
17001
17002                 pll->funcs.disable(dev_priv, pll);
17003                 pll->on = false;
17004         }
17005
17006         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
17007                 vlv_wm_get_hw_state(dev);
17008         else if (IS_GEN9(dev_priv))
17009                 skl_wm_get_hw_state(dev);
17010         else if (HAS_PCH_SPLIT(dev_priv))
17011                 ilk_wm_get_hw_state(dev);
17012
17013         for_each_intel_crtc(dev, crtc) {
17014                 unsigned long put_domains;
17015
17016                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
17017                 if (WARN_ON(put_domains))
17018                         modeset_put_power_domains(dev_priv, put_domains);
17019         }
17020         intel_display_set_init_power(dev_priv, false);
17021
17022         intel_fbc_init_pipe_state(dev_priv);
17023 }
17024
17025 void intel_display_resume(struct drm_device *dev)
17026 {
17027         struct drm_i915_private *dev_priv = to_i915(dev);
17028         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
17029         struct drm_modeset_acquire_ctx ctx;
17030         int ret;
17031
17032         dev_priv->modeset_restore_state = NULL;
17033         if (state)
17034                 state->acquire_ctx = &ctx;
17035
17036         /*
17037          * This is a cludge because with real atomic modeset mode_config.mutex
17038          * won't be taken. Unfortunately some probed state like
17039          * audio_codec_enable is still protected by mode_config.mutex, so lock
17040          * it here for now.
17041          */
17042         mutex_lock(&dev->mode_config.mutex);
17043         drm_modeset_acquire_init(&ctx, 0);
17044
17045         while (1) {
17046                 ret = drm_modeset_lock_all_ctx(dev, &ctx);
17047                 if (ret != -EDEADLK)
17048                         break;
17049
17050                 drm_modeset_backoff(&ctx);
17051         }
17052
17053         if (!ret)
17054                 ret = __intel_display_resume(dev, state);
17055
17056         drm_modeset_drop_locks(&ctx);
17057         drm_modeset_acquire_fini(&ctx);
17058         mutex_unlock(&dev->mode_config.mutex);
17059
17060         if (ret)
17061                 DRM_ERROR("Restoring old state failed with %i\n", ret);
17062         if (state)
17063                 drm_atomic_state_put(state);
17064 }
17065
17066 void intel_modeset_gem_init(struct drm_device *dev)
17067 {
17068         struct drm_i915_private *dev_priv = to_i915(dev);
17069         struct drm_crtc *c;
17070         struct drm_i915_gem_object *obj;
17071
17072         intel_init_gt_powersave(dev_priv);
17073
17074         intel_modeset_init_hw(dev);
17075
17076         intel_setup_overlay(dev_priv);
17077
17078         /*
17079          * Make sure any fbs we allocated at startup are properly
17080          * pinned & fenced.  When we do the allocation it's too early
17081          * for this.
17082          */
17083         for_each_crtc(dev, c) {
17084                 struct i915_vma *vma;
17085
17086                 obj = intel_fb_obj(c->primary->fb);
17087                 if (obj == NULL)
17088                         continue;
17089
17090                 mutex_lock(&dev->struct_mutex);
17091                 vma = intel_pin_and_fence_fb_obj(c->primary->fb,
17092                                                  c->primary->state->rotation);
17093                 mutex_unlock(&dev->struct_mutex);
17094                 if (IS_ERR(vma)) {
17095                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
17096                                   to_intel_crtc(c)->pipe);
17097                         drm_framebuffer_unreference(c->primary->fb);
17098                         c->primary->fb = NULL;
17099                         c->primary->crtc = c->primary->state->crtc = NULL;
17100                         update_state_fb(c->primary);
17101                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
17102                 }
17103         }
17104 }
17105
17106 int intel_connector_register(struct drm_connector *connector)
17107 {
17108         struct intel_connector *intel_connector = to_intel_connector(connector);
17109         int ret;
17110
17111         ret = intel_backlight_device_register(intel_connector);
17112         if (ret)
17113                 goto err;
17114
17115         return 0;
17116
17117 err:
17118         return ret;
17119 }
17120
17121 void intel_connector_unregister(struct drm_connector *connector)
17122 {
17123         struct intel_connector *intel_connector = to_intel_connector(connector);
17124
17125         intel_backlight_device_unregister(intel_connector);
17126         intel_panel_destroy_backlight(connector);
17127 }
17128
17129 void intel_modeset_cleanup(struct drm_device *dev)
17130 {
17131         struct drm_i915_private *dev_priv = to_i915(dev);
17132
17133         flush_work(&dev_priv->atomic_helper.free_work);
17134         WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
17135
17136         intel_disable_gt_powersave(dev_priv);
17137
17138         /*
17139          * Interrupts and polling as the first thing to avoid creating havoc.
17140          * Too much stuff here (turning of connectors, ...) would
17141          * experience fancy races otherwise.
17142          */
17143         intel_irq_uninstall(dev_priv);
17144
17145         /*
17146          * Due to the hpd irq storm handling the hotplug work can re-arm the
17147          * poll handlers. Hence disable polling after hpd handling is shut down.
17148          */
17149         drm_kms_helper_poll_fini(dev);
17150
17151         intel_unregister_dsm_handler();
17152
17153         intel_fbc_global_disable(dev_priv);
17154
17155         /* flush any delayed tasks or pending work */
17156         flush_scheduled_work();
17157
17158         drm_mode_config_cleanup(dev);
17159
17160         intel_cleanup_overlay(dev_priv);
17161
17162         intel_cleanup_gt_powersave(dev_priv);
17163
17164         intel_teardown_gmbus(dev);
17165 }
17166
17167 void intel_connector_attach_encoder(struct intel_connector *connector,
17168                                     struct intel_encoder *encoder)
17169 {
17170         connector->encoder = encoder;
17171         drm_mode_connector_attach_encoder(&connector->base,
17172                                           &encoder->base);
17173 }
17174
17175 /*
17176  * set vga decode state - true == enable VGA decode
17177  */
17178 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
17179 {
17180         unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
17181         u16 gmch_ctrl;
17182
17183         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17184                 DRM_ERROR("failed to read control word\n");
17185                 return -EIO;
17186         }
17187
17188         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17189                 return 0;
17190
17191         if (state)
17192                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17193         else
17194                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
17195
17196         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17197                 DRM_ERROR("failed to write control word\n");
17198                 return -EIO;
17199         }
17200
17201         return 0;
17202 }
17203
17204 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
17205
17206 struct intel_display_error_state {
17207
17208         u32 power_well_driver;
17209
17210         int num_transcoders;
17211
17212         struct intel_cursor_error_state {
17213                 u32 control;
17214                 u32 position;
17215                 u32 base;
17216                 u32 size;
17217         } cursor[I915_MAX_PIPES];
17218
17219         struct intel_pipe_error_state {
17220                 bool power_domain_on;
17221                 u32 source;
17222                 u32 stat;
17223         } pipe[I915_MAX_PIPES];
17224
17225         struct intel_plane_error_state {
17226                 u32 control;
17227                 u32 stride;
17228                 u32 size;
17229                 u32 pos;
17230                 u32 addr;
17231                 u32 surface;
17232                 u32 tile_offset;
17233         } plane[I915_MAX_PIPES];
17234
17235         struct intel_transcoder_error_state {
17236                 bool power_domain_on;
17237                 enum transcoder cpu_transcoder;
17238
17239                 u32 conf;
17240
17241                 u32 htotal;
17242                 u32 hblank;
17243                 u32 hsync;
17244                 u32 vtotal;
17245                 u32 vblank;
17246                 u32 vsync;
17247         } transcoder[4];
17248 };
17249
17250 struct intel_display_error_state *
17251 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17252 {
17253         struct intel_display_error_state *error;
17254         int transcoders[] = {
17255                 TRANSCODER_A,
17256                 TRANSCODER_B,
17257                 TRANSCODER_C,
17258                 TRANSCODER_EDP,
17259         };
17260         int i;
17261
17262         if (INTEL_INFO(dev_priv)->num_pipes == 0)
17263                 return NULL;
17264
17265         error = kzalloc(sizeof(*error), GFP_ATOMIC);
17266         if (error == NULL)
17267                 return NULL;
17268
17269         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17270                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17271
17272         for_each_pipe(dev_priv, i) {
17273                 error->pipe[i].power_domain_on =
17274                         __intel_display_power_is_enabled(dev_priv,
17275                                                          POWER_DOMAIN_PIPE(i));
17276                 if (!error->pipe[i].power_domain_on)
17277                         continue;
17278
17279                 error->cursor[i].control = I915_READ(CURCNTR(i));
17280                 error->cursor[i].position = I915_READ(CURPOS(i));
17281                 error->cursor[i].base = I915_READ(CURBASE(i));
17282
17283                 error->plane[i].control = I915_READ(DSPCNTR(i));
17284                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17285                 if (INTEL_GEN(dev_priv) <= 3) {
17286                         error->plane[i].size = I915_READ(DSPSIZE(i));
17287                         error->plane[i].pos = I915_READ(DSPPOS(i));
17288                 }
17289                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17290                         error->plane[i].addr = I915_READ(DSPADDR(i));
17291                 if (INTEL_GEN(dev_priv) >= 4) {
17292                         error->plane[i].surface = I915_READ(DSPSURF(i));
17293                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17294                 }
17295
17296                 error->pipe[i].source = I915_READ(PIPESRC(i));
17297
17298                 if (HAS_GMCH_DISPLAY(dev_priv))
17299                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
17300         }
17301
17302         /* Note: this does not include DSI transcoders. */
17303         error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
17304         if (HAS_DDI(dev_priv))
17305                 error->num_transcoders++; /* Account for eDP. */
17306
17307         for (i = 0; i < error->num_transcoders; i++) {
17308                 enum transcoder cpu_transcoder = transcoders[i];
17309
17310                 error->transcoder[i].power_domain_on =
17311                         __intel_display_power_is_enabled(dev_priv,
17312                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17313                 if (!error->transcoder[i].power_domain_on)
17314                         continue;
17315
17316                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
17317
17318                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17319                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17320                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17321                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17322                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17323                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17324                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17325         }
17326
17327         return error;
17328 }
17329
17330 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17331
17332 void
17333 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17334                                 struct drm_i915_private *dev_priv,
17335                                 struct intel_display_error_state *error)
17336 {
17337         int i;
17338
17339         if (!error)
17340                 return;
17341
17342         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
17343         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17344                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
17345                            error->power_well_driver);
17346         for_each_pipe(dev_priv, i) {
17347                 err_printf(m, "Pipe [%d]:\n", i);
17348                 err_printf(m, "  Power: %s\n",
17349                            onoff(error->pipe[i].power_domain_on));
17350                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
17351                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
17352
17353                 err_printf(m, "Plane [%d]:\n", i);
17354                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
17355                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
17356                 if (INTEL_GEN(dev_priv) <= 3) {
17357                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
17358                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
17359                 }
17360                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17361                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
17362                 if (INTEL_GEN(dev_priv) >= 4) {
17363                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
17364                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
17365                 }
17366
17367                 err_printf(m, "Cursor [%d]:\n", i);
17368                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
17369                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
17370                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
17371         }
17372
17373         for (i = 0; i < error->num_transcoders; i++) {
17374                 err_printf(m, "CPU transcoder: %s\n",
17375                            transcoder_name(error->transcoder[i].cpu_transcoder));
17376                 err_printf(m, "  Power: %s\n",
17377                            onoff(error->transcoder[i].power_domain_on));
17378                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
17379                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
17380                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
17381                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
17382                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
17383                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
17384                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
17385         }
17386 }
17387
17388 #endif