]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge ath-next from git://git.kernel.org/pub/scm/linux/kernel/git/kvalo/ath.git
[linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/types.h>
32 #include <linux/notifier.h>
33 #include <linux/reboot.h>
34 #include <asm/byteorder.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc.h>
38 #include <drm/drm_crtc_helper.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include "intel_drv.h"
43 #include <drm/i915_drm.h>
44 #include "i915_drv.h"
45
46 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
47 #define DP_DPRX_ESI_LEN 14
48
49 /* Compliance test status bits  */
50 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
51 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
52 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
53 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
54
55 struct dp_link_dpll {
56         int clock;
57         struct dpll dpll;
58 };
59
60 static const struct dp_link_dpll gen4_dpll[] = {
61         { 162000,
62                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
63         { 270000,
64                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
65 };
66
67 static const struct dp_link_dpll pch_dpll[] = {
68         { 162000,
69                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
70         { 270000,
71                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
72 };
73
74 static const struct dp_link_dpll vlv_dpll[] = {
75         { 162000,
76                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
77         { 270000,
78                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
79 };
80
81 /*
82  * CHV supports eDP 1.4 that have  more link rates.
83  * Below only provides the fixed rate but exclude variable rate.
84  */
85 static const struct dp_link_dpll chv_dpll[] = {
86         /*
87          * CHV requires to program fractional division for m2.
88          * m2 is stored in fixed point format using formula below
89          * (m2_int << 22) | m2_fraction
90          */
91         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
92                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
93         { 270000,       /* m2_int = 27, m2_fraction = 0 */
94                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
95         { 540000,       /* m2_int = 27, m2_fraction = 0 */
96                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
97 };
98
99 /**
100  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
101  * @intel_dp: DP struct
102  *
103  * If a CPU or PCH DP output is attached to an eDP panel, this function
104  * will return true, and false otherwise.
105  */
106 bool intel_dp_is_edp(struct intel_dp *intel_dp)
107 {
108         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
109
110         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
111 }
112
113 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
114 {
115         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
116
117         return intel_dig_port->base.base.dev;
118 }
119
120 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
121 {
122         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
123 }
124
125 static void intel_dp_link_down(struct intel_encoder *encoder,
126                                const struct intel_crtc_state *old_crtc_state);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
130                                            const struct intel_crtc_state *crtc_state);
131 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
132                                       enum pipe pipe);
133 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
134
135 /* update sink rates from dpcd */
136 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
137 {
138         static const int dp_rates[] = {
139                 162000, 270000, 540000, 810000
140         };
141         int i, max_rate;
142
143         max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
144
145         for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
146                 if (dp_rates[i] > max_rate)
147                         break;
148                 intel_dp->sink_rates[i] = dp_rates[i];
149         }
150
151         intel_dp->num_sink_rates = i;
152 }
153
154 /* Get length of rates array potentially limited by max_rate. */
155 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
156 {
157         int i;
158
159         /* Limit results by potentially reduced max rate */
160         for (i = 0; i < len; i++) {
161                 if (rates[len - i - 1] <= max_rate)
162                         return len - i;
163         }
164
165         return 0;
166 }
167
168 /* Get length of common rates array potentially limited by max_rate. */
169 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
170                                           int max_rate)
171 {
172         return intel_dp_rate_limit_len(intel_dp->common_rates,
173                                        intel_dp->num_common_rates, max_rate);
174 }
175
176 /* Theoretical max between source and sink */
177 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
178 {
179         return intel_dp->common_rates[intel_dp->num_common_rates - 1];
180 }
181
182 /* Theoretical max between source and sink */
183 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
184 {
185         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
186         int source_max = intel_dig_port->max_lanes;
187         int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
188
189         return min(source_max, sink_max);
190 }
191
192 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
193 {
194         return intel_dp->max_link_lane_count;
195 }
196
197 int
198 intel_dp_link_required(int pixel_clock, int bpp)
199 {
200         /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
201         return DIV_ROUND_UP(pixel_clock * bpp, 8);
202 }
203
204 int
205 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
206 {
207         /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
208          * link rate that is generally expressed in Gbps. Since, 8 bits of data
209          * is transmitted every LS_Clk per lane, there is no need to account for
210          * the channel encoding that is done in the PHY layer here.
211          */
212
213         return max_link_clock * max_lanes;
214 }
215
216 static int
217 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
218 {
219         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
220         struct intel_encoder *encoder = &intel_dig_port->base;
221         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
222         int max_dotclk = dev_priv->max_dotclk_freq;
223         int ds_max_dotclk;
224
225         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
226
227         if (type != DP_DS_PORT_TYPE_VGA)
228                 return max_dotclk;
229
230         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
231                                                     intel_dp->downstream_ports);
232
233         if (ds_max_dotclk != 0)
234                 max_dotclk = min(max_dotclk, ds_max_dotclk);
235
236         return max_dotclk;
237 }
238
239 static int cnl_max_source_rate(struct intel_dp *intel_dp)
240 {
241         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
242         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
243         enum port port = dig_port->base.port;
244
245         u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
246
247         /* Low voltage SKUs are limited to max of 5.4G */
248         if (voltage == VOLTAGE_INFO_0_85V)
249                 return 540000;
250
251         /* For this SKU 8.1G is supported in all ports */
252         if (IS_CNL_WITH_PORT_F(dev_priv))
253                 return 810000;
254
255         /* For other SKUs, max rate on ports A and D is 5.4G */
256         if (port == PORT_A || port == PORT_D)
257                 return 540000;
258
259         return 810000;
260 }
261
262 static void
263 intel_dp_set_source_rates(struct intel_dp *intel_dp)
264 {
265         /* The values must be in increasing order */
266         static const int cnl_rates[] = {
267                 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
268         };
269         static const int bxt_rates[] = {
270                 162000, 216000, 243000, 270000, 324000, 432000, 540000
271         };
272         static const int skl_rates[] = {
273                 162000, 216000, 270000, 324000, 432000, 540000
274         };
275         static const int hsw_rates[] = {
276                 162000, 270000, 540000
277         };
278         static const int g4x_rates[] = {
279                 162000, 270000
280         };
281         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
282         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
283         const struct ddi_vbt_port_info *info =
284                 &dev_priv->vbt.ddi_port_info[dig_port->base.port];
285         const int *source_rates;
286         int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
287
288         /* This should only be done once */
289         WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
290
291         if (IS_CANNONLAKE(dev_priv)) {
292                 source_rates = cnl_rates;
293                 size = ARRAY_SIZE(cnl_rates);
294                 max_rate = cnl_max_source_rate(intel_dp);
295         } else if (IS_GEN9_LP(dev_priv)) {
296                 source_rates = bxt_rates;
297                 size = ARRAY_SIZE(bxt_rates);
298         } else if (IS_GEN9_BC(dev_priv)) {
299                 source_rates = skl_rates;
300                 size = ARRAY_SIZE(skl_rates);
301         } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
302                    IS_BROADWELL(dev_priv)) {
303                 source_rates = hsw_rates;
304                 size = ARRAY_SIZE(hsw_rates);
305         } else {
306                 source_rates = g4x_rates;
307                 size = ARRAY_SIZE(g4x_rates);
308         }
309
310         if (max_rate && vbt_max_rate)
311                 max_rate = min(max_rate, vbt_max_rate);
312         else if (vbt_max_rate)
313                 max_rate = vbt_max_rate;
314
315         if (max_rate)
316                 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
317
318         intel_dp->source_rates = source_rates;
319         intel_dp->num_source_rates = size;
320 }
321
322 static int intersect_rates(const int *source_rates, int source_len,
323                            const int *sink_rates, int sink_len,
324                            int *common_rates)
325 {
326         int i = 0, j = 0, k = 0;
327
328         while (i < source_len && j < sink_len) {
329                 if (source_rates[i] == sink_rates[j]) {
330                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
331                                 return k;
332                         common_rates[k] = source_rates[i];
333                         ++k;
334                         ++i;
335                         ++j;
336                 } else if (source_rates[i] < sink_rates[j]) {
337                         ++i;
338                 } else {
339                         ++j;
340                 }
341         }
342         return k;
343 }
344
345 /* return index of rate in rates array, or -1 if not found */
346 static int intel_dp_rate_index(const int *rates, int len, int rate)
347 {
348         int i;
349
350         for (i = 0; i < len; i++)
351                 if (rate == rates[i])
352                         return i;
353
354         return -1;
355 }
356
357 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
358 {
359         WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
360
361         intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
362                                                      intel_dp->num_source_rates,
363                                                      intel_dp->sink_rates,
364                                                      intel_dp->num_sink_rates,
365                                                      intel_dp->common_rates);
366
367         /* Paranoia, there should always be something in common. */
368         if (WARN_ON(intel_dp->num_common_rates == 0)) {
369                 intel_dp->common_rates[0] = 162000;
370                 intel_dp->num_common_rates = 1;
371         }
372 }
373
374 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
375                                        uint8_t lane_count)
376 {
377         /*
378          * FIXME: we need to synchronize the current link parameters with
379          * hardware readout. Currently fast link training doesn't work on
380          * boot-up.
381          */
382         if (link_rate == 0 ||
383             link_rate > intel_dp->max_link_rate)
384                 return false;
385
386         if (lane_count == 0 ||
387             lane_count > intel_dp_max_lane_count(intel_dp))
388                 return false;
389
390         return true;
391 }
392
393 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
394                                             int link_rate, uint8_t lane_count)
395 {
396         int index;
397
398         index = intel_dp_rate_index(intel_dp->common_rates,
399                                     intel_dp->num_common_rates,
400                                     link_rate);
401         if (index > 0) {
402                 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
403                 intel_dp->max_link_lane_count = lane_count;
404         } else if (lane_count > 1) {
405                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
406                 intel_dp->max_link_lane_count = lane_count >> 1;
407         } else {
408                 DRM_ERROR("Link Training Unsuccessful\n");
409                 return -1;
410         }
411
412         return 0;
413 }
414
415 static enum drm_mode_status
416 intel_dp_mode_valid(struct drm_connector *connector,
417                     struct drm_display_mode *mode)
418 {
419         struct intel_dp *intel_dp = intel_attached_dp(connector);
420         struct intel_connector *intel_connector = to_intel_connector(connector);
421         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
422         int target_clock = mode->clock;
423         int max_rate, mode_rate, max_lanes, max_link_clock;
424         int max_dotclk;
425
426         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
427
428         if (intel_dp_is_edp(intel_dp) && fixed_mode) {
429                 if (mode->hdisplay > fixed_mode->hdisplay)
430                         return MODE_PANEL;
431
432                 if (mode->vdisplay > fixed_mode->vdisplay)
433                         return MODE_PANEL;
434
435                 target_clock = fixed_mode->clock;
436         }
437
438         max_link_clock = intel_dp_max_link_rate(intel_dp);
439         max_lanes = intel_dp_max_lane_count(intel_dp);
440
441         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
442         mode_rate = intel_dp_link_required(target_clock, 18);
443
444         if (mode_rate > max_rate || target_clock > max_dotclk)
445                 return MODE_CLOCK_HIGH;
446
447         if (mode->clock < 10000)
448                 return MODE_CLOCK_LOW;
449
450         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
451                 return MODE_H_ILLEGAL;
452
453         return MODE_OK;
454 }
455
456 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
457 {
458         int     i;
459         uint32_t v = 0;
460
461         if (src_bytes > 4)
462                 src_bytes = 4;
463         for (i = 0; i < src_bytes; i++)
464                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
465         return v;
466 }
467
468 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
469 {
470         int i;
471         if (dst_bytes > 4)
472                 dst_bytes = 4;
473         for (i = 0; i < dst_bytes; i++)
474                 dst[i] = src >> ((3-i) * 8);
475 }
476
477 static void
478 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
479 static void
480 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
481                                               bool force_disable_vdd);
482 static void
483 intel_dp_pps_init(struct intel_dp *intel_dp);
484
485 static void pps_lock(struct intel_dp *intel_dp)
486 {
487         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
488
489         /*
490          * See intel_power_sequencer_reset() why we need
491          * a power domain reference here.
492          */
493         intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
494
495         mutex_lock(&dev_priv->pps_mutex);
496 }
497
498 static void pps_unlock(struct intel_dp *intel_dp)
499 {
500         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
501
502         mutex_unlock(&dev_priv->pps_mutex);
503
504         intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
505 }
506
507 static void
508 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
509 {
510         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
511         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
512         enum pipe pipe = intel_dp->pps_pipe;
513         bool pll_enabled, release_cl_override = false;
514         enum dpio_phy phy = DPIO_PHY(pipe);
515         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
516         uint32_t DP;
517
518         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
519                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
520                  pipe_name(pipe), port_name(intel_dig_port->base.port)))
521                 return;
522
523         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
524                       pipe_name(pipe), port_name(intel_dig_port->base.port));
525
526         /* Preserve the BIOS-computed detected bit. This is
527          * supposed to be read-only.
528          */
529         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
530         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
531         DP |= DP_PORT_WIDTH(1);
532         DP |= DP_LINK_TRAIN_PAT_1;
533
534         if (IS_CHERRYVIEW(dev_priv))
535                 DP |= DP_PIPE_SELECT_CHV(pipe);
536         else if (pipe == PIPE_B)
537                 DP |= DP_PIPEB_SELECT;
538
539         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
540
541         /*
542          * The DPLL for the pipe must be enabled for this to work.
543          * So enable temporarily it if it's not already enabled.
544          */
545         if (!pll_enabled) {
546                 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
547                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
548
549                 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
550                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
551                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
552                                   pipe_name(pipe));
553                         return;
554                 }
555         }
556
557         /*
558          * Similar magic as in intel_dp_enable_port().
559          * We _must_ do this port enable + disable trick
560          * to make this power seqeuencer lock onto the port.
561          * Otherwise even VDD force bit won't work.
562          */
563         I915_WRITE(intel_dp->output_reg, DP);
564         POSTING_READ(intel_dp->output_reg);
565
566         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
567         POSTING_READ(intel_dp->output_reg);
568
569         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
570         POSTING_READ(intel_dp->output_reg);
571
572         if (!pll_enabled) {
573                 vlv_force_pll_off(dev_priv, pipe);
574
575                 if (release_cl_override)
576                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
577         }
578 }
579
580 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
581 {
582         struct intel_encoder *encoder;
583         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
584
585         /*
586          * We don't have power sequencer currently.
587          * Pick one that's not used by other ports.
588          */
589         for_each_intel_encoder(&dev_priv->drm, encoder) {
590                 struct intel_dp *intel_dp;
591
592                 if (encoder->type != INTEL_OUTPUT_DP &&
593                     encoder->type != INTEL_OUTPUT_EDP)
594                         continue;
595
596                 intel_dp = enc_to_intel_dp(&encoder->base);
597
598                 if (encoder->type == INTEL_OUTPUT_EDP) {
599                         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
600                                 intel_dp->active_pipe != intel_dp->pps_pipe);
601
602                         if (intel_dp->pps_pipe != INVALID_PIPE)
603                                 pipes &= ~(1 << intel_dp->pps_pipe);
604                 } else {
605                         WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
606
607                         if (intel_dp->active_pipe != INVALID_PIPE)
608                                 pipes &= ~(1 << intel_dp->active_pipe);
609                 }
610         }
611
612         if (pipes == 0)
613                 return INVALID_PIPE;
614
615         return ffs(pipes) - 1;
616 }
617
618 static enum pipe
619 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
620 {
621         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
622         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
623         enum pipe pipe;
624
625         lockdep_assert_held(&dev_priv->pps_mutex);
626
627         /* We should never land here with regular DP ports */
628         WARN_ON(!intel_dp_is_edp(intel_dp));
629
630         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
631                 intel_dp->active_pipe != intel_dp->pps_pipe);
632
633         if (intel_dp->pps_pipe != INVALID_PIPE)
634                 return intel_dp->pps_pipe;
635
636         pipe = vlv_find_free_pps(dev_priv);
637
638         /*
639          * Didn't find one. This should not happen since there
640          * are two power sequencers and up to two eDP ports.
641          */
642         if (WARN_ON(pipe == INVALID_PIPE))
643                 pipe = PIPE_A;
644
645         vlv_steal_power_sequencer(dev_priv, pipe);
646         intel_dp->pps_pipe = pipe;
647
648         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
649                       pipe_name(intel_dp->pps_pipe),
650                       port_name(intel_dig_port->base.port));
651
652         /* init power sequencer on this pipe and port */
653         intel_dp_init_panel_power_sequencer(intel_dp);
654         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
655
656         /*
657          * Even vdd force doesn't work until we've made
658          * the power sequencer lock in on the port.
659          */
660         vlv_power_sequencer_kick(intel_dp);
661
662         return intel_dp->pps_pipe;
663 }
664
665 static int
666 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
667 {
668         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
669         int backlight_controller = dev_priv->vbt.backlight.controller;
670
671         lockdep_assert_held(&dev_priv->pps_mutex);
672
673         /* We should never land here with regular DP ports */
674         WARN_ON(!intel_dp_is_edp(intel_dp));
675
676         if (!intel_dp->pps_reset)
677                 return backlight_controller;
678
679         intel_dp->pps_reset = false;
680
681         /*
682          * Only the HW needs to be reprogrammed, the SW state is fixed and
683          * has been setup during connector init.
684          */
685         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
686
687         return backlight_controller;
688 }
689
690 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
691                                enum pipe pipe);
692
693 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
694                                enum pipe pipe)
695 {
696         return I915_READ(PP_STATUS(pipe)) & PP_ON;
697 }
698
699 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
700                                 enum pipe pipe)
701 {
702         return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
703 }
704
705 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
706                          enum pipe pipe)
707 {
708         return true;
709 }
710
711 static enum pipe
712 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
713                      enum port port,
714                      vlv_pipe_check pipe_check)
715 {
716         enum pipe pipe;
717
718         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
719                 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
720                         PANEL_PORT_SELECT_MASK;
721
722                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
723                         continue;
724
725                 if (!pipe_check(dev_priv, pipe))
726                         continue;
727
728                 return pipe;
729         }
730
731         return INVALID_PIPE;
732 }
733
734 static void
735 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
736 {
737         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
738         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
739         enum port port = intel_dig_port->base.port;
740
741         lockdep_assert_held(&dev_priv->pps_mutex);
742
743         /* try to find a pipe with this port selected */
744         /* first pick one where the panel is on */
745         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
746                                                   vlv_pipe_has_pp_on);
747         /* didn't find one? pick one where vdd is on */
748         if (intel_dp->pps_pipe == INVALID_PIPE)
749                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
750                                                           vlv_pipe_has_vdd_on);
751         /* didn't find one? pick one with just the correct port */
752         if (intel_dp->pps_pipe == INVALID_PIPE)
753                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
754                                                           vlv_pipe_any);
755
756         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
757         if (intel_dp->pps_pipe == INVALID_PIPE) {
758                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
759                               port_name(port));
760                 return;
761         }
762
763         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
764                       port_name(port), pipe_name(intel_dp->pps_pipe));
765
766         intel_dp_init_panel_power_sequencer(intel_dp);
767         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
768 }
769
770 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
771 {
772         struct intel_encoder *encoder;
773
774         if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
775                     !IS_GEN9_LP(dev_priv)))
776                 return;
777
778         /*
779          * We can't grab pps_mutex here due to deadlock with power_domain
780          * mutex when power_domain functions are called while holding pps_mutex.
781          * That also means that in order to use pps_pipe the code needs to
782          * hold both a power domain reference and pps_mutex, and the power domain
783          * reference get/put must be done while _not_ holding pps_mutex.
784          * pps_{lock,unlock}() do these steps in the correct order, so one
785          * should use them always.
786          */
787
788         for_each_intel_encoder(&dev_priv->drm, encoder) {
789                 struct intel_dp *intel_dp;
790
791                 if (encoder->type != INTEL_OUTPUT_DP &&
792                     encoder->type != INTEL_OUTPUT_EDP &&
793                     encoder->type != INTEL_OUTPUT_DDI)
794                         continue;
795
796                 intel_dp = enc_to_intel_dp(&encoder->base);
797
798                 /* Skip pure DVI/HDMI DDI encoders */
799                 if (!i915_mmio_reg_valid(intel_dp->output_reg))
800                         continue;
801
802                 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
803
804                 if (encoder->type != INTEL_OUTPUT_EDP)
805                         continue;
806
807                 if (IS_GEN9_LP(dev_priv))
808                         intel_dp->pps_reset = true;
809                 else
810                         intel_dp->pps_pipe = INVALID_PIPE;
811         }
812 }
813
814 struct pps_registers {
815         i915_reg_t pp_ctrl;
816         i915_reg_t pp_stat;
817         i915_reg_t pp_on;
818         i915_reg_t pp_off;
819         i915_reg_t pp_div;
820 };
821
822 static void intel_pps_get_registers(struct intel_dp *intel_dp,
823                                     struct pps_registers *regs)
824 {
825         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
826         int pps_idx = 0;
827
828         memset(regs, 0, sizeof(*regs));
829
830         if (IS_GEN9_LP(dev_priv))
831                 pps_idx = bxt_power_sequencer_idx(intel_dp);
832         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
833                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
834
835         regs->pp_ctrl = PP_CONTROL(pps_idx);
836         regs->pp_stat = PP_STATUS(pps_idx);
837         regs->pp_on = PP_ON_DELAYS(pps_idx);
838         regs->pp_off = PP_OFF_DELAYS(pps_idx);
839         if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
840             !HAS_PCH_ICP(dev_priv))
841                 regs->pp_div = PP_DIVISOR(pps_idx);
842 }
843
844 static i915_reg_t
845 _pp_ctrl_reg(struct intel_dp *intel_dp)
846 {
847         struct pps_registers regs;
848
849         intel_pps_get_registers(intel_dp, &regs);
850
851         return regs.pp_ctrl;
852 }
853
854 static i915_reg_t
855 _pp_stat_reg(struct intel_dp *intel_dp)
856 {
857         struct pps_registers regs;
858
859         intel_pps_get_registers(intel_dp, &regs);
860
861         return regs.pp_stat;
862 }
863
864 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
865    This function only applicable when panel PM state is not to be tracked */
866 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
867                               void *unused)
868 {
869         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
870                                                  edp_notifier);
871         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
872
873         if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
874                 return 0;
875
876         pps_lock(intel_dp);
877
878         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
879                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
880                 i915_reg_t pp_ctrl_reg, pp_div_reg;
881                 u32 pp_div;
882
883                 pp_ctrl_reg = PP_CONTROL(pipe);
884                 pp_div_reg  = PP_DIVISOR(pipe);
885                 pp_div = I915_READ(pp_div_reg);
886                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
887
888                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
889                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
890                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
891                 msleep(intel_dp->panel_power_cycle_delay);
892         }
893
894         pps_unlock(intel_dp);
895
896         return 0;
897 }
898
899 static bool edp_have_panel_power(struct intel_dp *intel_dp)
900 {
901         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
902
903         lockdep_assert_held(&dev_priv->pps_mutex);
904
905         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
906             intel_dp->pps_pipe == INVALID_PIPE)
907                 return false;
908
909         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
910 }
911
912 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
913 {
914         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
915
916         lockdep_assert_held(&dev_priv->pps_mutex);
917
918         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
919             intel_dp->pps_pipe == INVALID_PIPE)
920                 return false;
921
922         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
923 }
924
925 static void
926 intel_dp_check_edp(struct intel_dp *intel_dp)
927 {
928         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
929
930         if (!intel_dp_is_edp(intel_dp))
931                 return;
932
933         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
934                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
935                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
936                               I915_READ(_pp_stat_reg(intel_dp)),
937                               I915_READ(_pp_ctrl_reg(intel_dp)));
938         }
939 }
940
941 static uint32_t
942 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
943 {
944         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
945         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
946         uint32_t status;
947         bool done;
948
949 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
950         if (has_aux_irq)
951                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
952                                           msecs_to_jiffies_timeout(10));
953         else
954                 done = wait_for(C, 10) == 0;
955         if (!done)
956                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
957                           has_aux_irq);
958 #undef C
959
960         return status;
961 }
962
963 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
964 {
965         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
966
967         if (index)
968                 return 0;
969
970         /*
971          * The clock divider is based off the hrawclk, and would like to run at
972          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
973          */
974         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
975 }
976
977 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
978 {
979         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
980
981         if (index)
982                 return 0;
983
984         /*
985          * The clock divider is based off the cdclk or PCH rawclk, and would
986          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
987          * divide by 2000 and use that
988          */
989         if (intel_dp->aux_ch == AUX_CH_A)
990                 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
991         else
992                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
993 }
994
995 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
996 {
997         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
998
999         if (intel_dp->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1000                 /* Workaround for non-ULT HSW */
1001                 switch (index) {
1002                 case 0: return 63;
1003                 case 1: return 72;
1004                 default: return 0;
1005                 }
1006         }
1007
1008         return ilk_get_aux_clock_divider(intel_dp, index);
1009 }
1010
1011 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1012 {
1013         /*
1014          * SKL doesn't need us to program the AUX clock divider (Hardware will
1015          * derive the clock from CDCLK automatically). We still implement the
1016          * get_aux_clock_divider vfunc to plug-in into the existing code.
1017          */
1018         return index ? 0 : 1;
1019 }
1020
1021 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1022                                      bool has_aux_irq,
1023                                      int send_bytes,
1024                                      uint32_t aux_clock_divider)
1025 {
1026         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1027         struct drm_i915_private *dev_priv =
1028                         to_i915(intel_dig_port->base.base.dev);
1029         uint32_t precharge, timeout;
1030
1031         if (IS_GEN6(dev_priv))
1032                 precharge = 3;
1033         else
1034                 precharge = 5;
1035
1036         if (IS_BROADWELL(dev_priv))
1037                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1038         else
1039                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1040
1041         return DP_AUX_CH_CTL_SEND_BUSY |
1042                DP_AUX_CH_CTL_DONE |
1043                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
1044                DP_AUX_CH_CTL_TIME_OUT_ERROR |
1045                timeout |
1046                DP_AUX_CH_CTL_RECEIVE_ERROR |
1047                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1048                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1049                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1050 }
1051
1052 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1053                                       bool has_aux_irq,
1054                                       int send_bytes,
1055                                       uint32_t unused)
1056 {
1057         return DP_AUX_CH_CTL_SEND_BUSY |
1058                DP_AUX_CH_CTL_DONE |
1059                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
1060                DP_AUX_CH_CTL_TIME_OUT_ERROR |
1061                DP_AUX_CH_CTL_TIME_OUT_MAX |
1062                DP_AUX_CH_CTL_RECEIVE_ERROR |
1063                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1064                DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1065                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1066 }
1067
1068 static int
1069 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1070                   const uint8_t *send, int send_bytes,
1071                   uint8_t *recv, int recv_size,
1072                   u32 aux_send_ctl_flags)
1073 {
1074         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1075         struct drm_i915_private *dev_priv =
1076                         to_i915(intel_dig_port->base.base.dev);
1077         i915_reg_t ch_ctl, ch_data[5];
1078         uint32_t aux_clock_divider;
1079         int i, ret, recv_bytes;
1080         uint32_t status;
1081         int try, clock = 0;
1082         bool has_aux_irq = HAS_AUX_IRQ(dev_priv);
1083         bool vdd;
1084
1085         ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1086         for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1087                 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1088
1089         pps_lock(intel_dp);
1090
1091         /*
1092          * We will be called with VDD already enabled for dpcd/edid/oui reads.
1093          * In such cases we want to leave VDD enabled and it's up to upper layers
1094          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1095          * ourselves.
1096          */
1097         vdd = edp_panel_vdd_on(intel_dp);
1098
1099         /* dp aux is extremely sensitive to irq latency, hence request the
1100          * lowest possible wakeup latency and so prevent the cpu from going into
1101          * deep sleep states.
1102          */
1103         pm_qos_update_request(&dev_priv->pm_qos, 0);
1104
1105         intel_dp_check_edp(intel_dp);
1106
1107         /* Try to wait for any previous AUX channel activity */
1108         for (try = 0; try < 3; try++) {
1109                 status = I915_READ_NOTRACE(ch_ctl);
1110                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1111                         break;
1112                 msleep(1);
1113         }
1114
1115         if (try == 3) {
1116                 static u32 last_status = -1;
1117                 const u32 status = I915_READ(ch_ctl);
1118
1119                 if (status != last_status) {
1120                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
1121                              status);
1122                         last_status = status;
1123                 }
1124
1125                 ret = -EBUSY;
1126                 goto out;
1127         }
1128
1129         /* Only 5 data registers! */
1130         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1131                 ret = -E2BIG;
1132                 goto out;
1133         }
1134
1135         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1136                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1137                                                           has_aux_irq,
1138                                                           send_bytes,
1139                                                           aux_clock_divider);
1140
1141                 send_ctl |= aux_send_ctl_flags;
1142
1143                 /* Must try at least 3 times according to DP spec */
1144                 for (try = 0; try < 5; try++) {
1145                         /* Load the send data into the aux channel data registers */
1146                         for (i = 0; i < send_bytes; i += 4)
1147                                 I915_WRITE(ch_data[i >> 2],
1148                                            intel_dp_pack_aux(send + i,
1149                                                              send_bytes - i));
1150
1151                         /* Send the command and wait for it to complete */
1152                         I915_WRITE(ch_ctl, send_ctl);
1153
1154                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
1155
1156                         /* Clear done status and any errors */
1157                         I915_WRITE(ch_ctl,
1158                                    status |
1159                                    DP_AUX_CH_CTL_DONE |
1160                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
1161                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
1162
1163                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1164                          *   400us delay required for errors and timeouts
1165                          *   Timeout errors from the HW already meet this
1166                          *   requirement so skip to next iteration
1167                          */
1168                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1169                                 continue;
1170
1171                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1172                                 usleep_range(400, 500);
1173                                 continue;
1174                         }
1175                         if (status & DP_AUX_CH_CTL_DONE)
1176                                 goto done;
1177                 }
1178         }
1179
1180         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1181                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1182                 ret = -EBUSY;
1183                 goto out;
1184         }
1185
1186 done:
1187         /* Check for timeout or receive error.
1188          * Timeouts occur when the sink is not connected
1189          */
1190         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1191                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1192                 ret = -EIO;
1193                 goto out;
1194         }
1195
1196         /* Timeouts occur when the device isn't connected, so they're
1197          * "normal" -- don't fill the kernel log with these */
1198         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1199                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1200                 ret = -ETIMEDOUT;
1201                 goto out;
1202         }
1203
1204         /* Unload any bytes sent back from the other side */
1205         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1206                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1207
1208         /*
1209          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1210          * We have no idea of what happened so we return -EBUSY so
1211          * drm layer takes care for the necessary retries.
1212          */
1213         if (recv_bytes == 0 || recv_bytes > 20) {
1214                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1215                               recv_bytes);
1216                 ret = -EBUSY;
1217                 goto out;
1218         }
1219
1220         if (recv_bytes > recv_size)
1221                 recv_bytes = recv_size;
1222
1223         for (i = 0; i < recv_bytes; i += 4)
1224                 intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
1225                                     recv + i, recv_bytes - i);
1226
1227         ret = recv_bytes;
1228 out:
1229         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1230
1231         if (vdd)
1232                 edp_panel_vdd_off(intel_dp, false);
1233
1234         pps_unlock(intel_dp);
1235
1236         return ret;
1237 }
1238
1239 #define BARE_ADDRESS_SIZE       3
1240 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1241
1242 static void
1243 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1244                     const struct drm_dp_aux_msg *msg)
1245 {
1246         txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1247         txbuf[1] = (msg->address >> 8) & 0xff;
1248         txbuf[2] = msg->address & 0xff;
1249         txbuf[3] = msg->size - 1;
1250 }
1251
1252 static ssize_t
1253 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1254 {
1255         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1256         uint8_t txbuf[20], rxbuf[20];
1257         size_t txsize, rxsize;
1258         int ret;
1259
1260         intel_dp_aux_header(txbuf, msg);
1261
1262         switch (msg->request & ~DP_AUX_I2C_MOT) {
1263         case DP_AUX_NATIVE_WRITE:
1264         case DP_AUX_I2C_WRITE:
1265         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1266                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1267                 rxsize = 2; /* 0 or 1 data bytes */
1268
1269                 if (WARN_ON(txsize > 20))
1270                         return -E2BIG;
1271
1272                 WARN_ON(!msg->buffer != !msg->size);
1273
1274                 if (msg->buffer)
1275                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1276
1277                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1278                                         rxbuf, rxsize, 0);
1279                 if (ret > 0) {
1280                         msg->reply = rxbuf[0] >> 4;
1281
1282                         if (ret > 1) {
1283                                 /* Number of bytes written in a short write. */
1284                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1285                         } else {
1286                                 /* Return payload size. */
1287                                 ret = msg->size;
1288                         }
1289                 }
1290                 break;
1291
1292         case DP_AUX_NATIVE_READ:
1293         case DP_AUX_I2C_READ:
1294                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1295                 rxsize = msg->size + 1;
1296
1297                 if (WARN_ON(rxsize > 20))
1298                         return -E2BIG;
1299
1300                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1301                                         rxbuf, rxsize, 0);
1302                 if (ret > 0) {
1303                         msg->reply = rxbuf[0] >> 4;
1304                         /*
1305                          * Assume happy day, and copy the data. The caller is
1306                          * expected to check msg->reply before touching it.
1307                          *
1308                          * Return payload size.
1309                          */
1310                         ret--;
1311                         memcpy(msg->buffer, rxbuf + 1, ret);
1312                 }
1313                 break;
1314
1315         default:
1316                 ret = -EINVAL;
1317                 break;
1318         }
1319
1320         return ret;
1321 }
1322
1323 static enum aux_ch intel_aux_ch(struct intel_dp *intel_dp)
1324 {
1325         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1326         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1327         enum port port = encoder->port;
1328         const struct ddi_vbt_port_info *info =
1329                 &dev_priv->vbt.ddi_port_info[port];
1330         enum aux_ch aux_ch;
1331
1332         if (!info->alternate_aux_channel) {
1333                 aux_ch = (enum aux_ch) port;
1334
1335                 DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1336                               aux_ch_name(aux_ch), port_name(port));
1337                 return aux_ch;
1338         }
1339
1340         switch (info->alternate_aux_channel) {
1341         case DP_AUX_A:
1342                 aux_ch = AUX_CH_A;
1343                 break;
1344         case DP_AUX_B:
1345                 aux_ch = AUX_CH_B;
1346                 break;
1347         case DP_AUX_C:
1348                 aux_ch = AUX_CH_C;
1349                 break;
1350         case DP_AUX_D:
1351                 aux_ch = AUX_CH_D;
1352                 break;
1353         case DP_AUX_F:
1354                 aux_ch = AUX_CH_F;
1355                 break;
1356         default:
1357                 MISSING_CASE(info->alternate_aux_channel);
1358                 aux_ch = AUX_CH_A;
1359                 break;
1360         }
1361
1362         DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1363                       aux_ch_name(aux_ch), port_name(port));
1364
1365         return aux_ch;
1366 }
1367
1368 static enum intel_display_power_domain
1369 intel_aux_power_domain(struct intel_dp *intel_dp)
1370 {
1371         switch (intel_dp->aux_ch) {
1372         case AUX_CH_A:
1373                 return POWER_DOMAIN_AUX_A;
1374         case AUX_CH_B:
1375                 return POWER_DOMAIN_AUX_B;
1376         case AUX_CH_C:
1377                 return POWER_DOMAIN_AUX_C;
1378         case AUX_CH_D:
1379                 return POWER_DOMAIN_AUX_D;
1380         case AUX_CH_F:
1381                 return POWER_DOMAIN_AUX_F;
1382         default:
1383                 MISSING_CASE(intel_dp->aux_ch);
1384                 return POWER_DOMAIN_AUX_A;
1385         }
1386 }
1387
1388 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1389 {
1390         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1391         enum aux_ch aux_ch = intel_dp->aux_ch;
1392
1393         switch (aux_ch) {
1394         case AUX_CH_B:
1395         case AUX_CH_C:
1396         case AUX_CH_D:
1397                 return DP_AUX_CH_CTL(aux_ch);
1398         default:
1399                 MISSING_CASE(aux_ch);
1400                 return DP_AUX_CH_CTL(AUX_CH_B);
1401         }
1402 }
1403
1404 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1405 {
1406         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1407         enum aux_ch aux_ch = intel_dp->aux_ch;
1408
1409         switch (aux_ch) {
1410         case AUX_CH_B:
1411         case AUX_CH_C:
1412         case AUX_CH_D:
1413                 return DP_AUX_CH_DATA(aux_ch, index);
1414         default:
1415                 MISSING_CASE(aux_ch);
1416                 return DP_AUX_CH_DATA(AUX_CH_B, index);
1417         }
1418 }
1419
1420 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1421 {
1422         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1423         enum aux_ch aux_ch = intel_dp->aux_ch;
1424
1425         switch (aux_ch) {
1426         case AUX_CH_A:
1427                 return DP_AUX_CH_CTL(aux_ch);
1428         case AUX_CH_B:
1429         case AUX_CH_C:
1430         case AUX_CH_D:
1431                 return PCH_DP_AUX_CH_CTL(aux_ch);
1432         default:
1433                 MISSING_CASE(aux_ch);
1434                 return DP_AUX_CH_CTL(AUX_CH_A);
1435         }
1436 }
1437
1438 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1439 {
1440         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1441         enum aux_ch aux_ch = intel_dp->aux_ch;
1442
1443         switch (aux_ch) {
1444         case AUX_CH_A:
1445                 return DP_AUX_CH_DATA(aux_ch, index);
1446         case AUX_CH_B:
1447         case AUX_CH_C:
1448         case AUX_CH_D:
1449                 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1450         default:
1451                 MISSING_CASE(aux_ch);
1452                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1453         }
1454 }
1455
1456 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1457 {
1458         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1459         enum aux_ch aux_ch = intel_dp->aux_ch;
1460
1461         switch (aux_ch) {
1462         case AUX_CH_A:
1463         case AUX_CH_B:
1464         case AUX_CH_C:
1465         case AUX_CH_D:
1466         case AUX_CH_F:
1467                 return DP_AUX_CH_CTL(aux_ch);
1468         default:
1469                 MISSING_CASE(aux_ch);
1470                 return DP_AUX_CH_CTL(AUX_CH_A);
1471         }
1472 }
1473
1474 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1475 {
1476         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1477         enum aux_ch aux_ch = intel_dp->aux_ch;
1478
1479         switch (aux_ch) {
1480         case AUX_CH_A:
1481         case AUX_CH_B:
1482         case AUX_CH_C:
1483         case AUX_CH_D:
1484         case AUX_CH_F:
1485                 return DP_AUX_CH_DATA(aux_ch, index);
1486         default:
1487                 MISSING_CASE(aux_ch);
1488                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1489         }
1490 }
1491
1492 static void
1493 intel_dp_aux_fini(struct intel_dp *intel_dp)
1494 {
1495         kfree(intel_dp->aux.name);
1496 }
1497
1498 static void
1499 intel_dp_aux_init(struct intel_dp *intel_dp)
1500 {
1501         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1502         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1503
1504         intel_dp->aux_ch = intel_aux_ch(intel_dp);
1505         intel_dp->aux_power_domain = intel_aux_power_domain(intel_dp);
1506
1507         if (INTEL_GEN(dev_priv) >= 9) {
1508                 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1509                 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1510         } else if (HAS_PCH_SPLIT(dev_priv)) {
1511                 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1512                 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1513         } else {
1514                 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1515                 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1516         }
1517
1518         if (INTEL_GEN(dev_priv) >= 9)
1519                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1520         else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1521                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1522         else if (HAS_PCH_SPLIT(dev_priv))
1523                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1524         else
1525                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1526
1527         if (INTEL_GEN(dev_priv) >= 9)
1528                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1529         else
1530                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1531
1532         drm_dp_aux_init(&intel_dp->aux);
1533
1534         /* Failure to allocate our preferred name is not critical */
1535         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1536                                        port_name(encoder->port));
1537         intel_dp->aux.transfer = intel_dp_aux_transfer;
1538 }
1539
1540 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1541 {
1542         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1543
1544         return max_rate >= 540000;
1545 }
1546
1547 static void
1548 intel_dp_set_clock(struct intel_encoder *encoder,
1549                    struct intel_crtc_state *pipe_config)
1550 {
1551         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1552         const struct dp_link_dpll *divisor = NULL;
1553         int i, count = 0;
1554
1555         if (IS_G4X(dev_priv)) {
1556                 divisor = gen4_dpll;
1557                 count = ARRAY_SIZE(gen4_dpll);
1558         } else if (HAS_PCH_SPLIT(dev_priv)) {
1559                 divisor = pch_dpll;
1560                 count = ARRAY_SIZE(pch_dpll);
1561         } else if (IS_CHERRYVIEW(dev_priv)) {
1562                 divisor = chv_dpll;
1563                 count = ARRAY_SIZE(chv_dpll);
1564         } else if (IS_VALLEYVIEW(dev_priv)) {
1565                 divisor = vlv_dpll;
1566                 count = ARRAY_SIZE(vlv_dpll);
1567         }
1568
1569         if (divisor && count) {
1570                 for (i = 0; i < count; i++) {
1571                         if (pipe_config->port_clock == divisor[i].clock) {
1572                                 pipe_config->dpll = divisor[i].dpll;
1573                                 pipe_config->clock_set = true;
1574                                 break;
1575                         }
1576                 }
1577         }
1578 }
1579
1580 static void snprintf_int_array(char *str, size_t len,
1581                                const int *array, int nelem)
1582 {
1583         int i;
1584
1585         str[0] = '\0';
1586
1587         for (i = 0; i < nelem; i++) {
1588                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1589                 if (r >= len)
1590                         return;
1591                 str += r;
1592                 len -= r;
1593         }
1594 }
1595
1596 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1597 {
1598         char str[128]; /* FIXME: too big for stack? */
1599
1600         if ((drm_debug & DRM_UT_KMS) == 0)
1601                 return;
1602
1603         snprintf_int_array(str, sizeof(str),
1604                            intel_dp->source_rates, intel_dp->num_source_rates);
1605         DRM_DEBUG_KMS("source rates: %s\n", str);
1606
1607         snprintf_int_array(str, sizeof(str),
1608                            intel_dp->sink_rates, intel_dp->num_sink_rates);
1609         DRM_DEBUG_KMS("sink rates: %s\n", str);
1610
1611         snprintf_int_array(str, sizeof(str),
1612                            intel_dp->common_rates, intel_dp->num_common_rates);
1613         DRM_DEBUG_KMS("common rates: %s\n", str);
1614 }
1615
1616 int
1617 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1618 {
1619         int len;
1620
1621         len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1622         if (WARN_ON(len <= 0))
1623                 return 162000;
1624
1625         return intel_dp->common_rates[len - 1];
1626 }
1627
1628 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1629 {
1630         int i = intel_dp_rate_index(intel_dp->sink_rates,
1631                                     intel_dp->num_sink_rates, rate);
1632
1633         if (WARN_ON(i < 0))
1634                 i = 0;
1635
1636         return i;
1637 }
1638
1639 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1640                            uint8_t *link_bw, uint8_t *rate_select)
1641 {
1642         /* eDP 1.4 rate select method. */
1643         if (intel_dp->use_rate_select) {
1644                 *link_bw = 0;
1645                 *rate_select =
1646                         intel_dp_rate_select(intel_dp, port_clock);
1647         } else {
1648                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1649                 *rate_select = 0;
1650         }
1651 }
1652
1653 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1654                                 struct intel_crtc_state *pipe_config)
1655 {
1656         int bpp, bpc;
1657
1658         bpp = pipe_config->pipe_bpp;
1659         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1660
1661         if (bpc > 0)
1662                 bpp = min(bpp, 3*bpc);
1663
1664         /* For DP Compliance we override the computed bpp for the pipe */
1665         if (intel_dp->compliance.test_data.bpc != 0) {
1666                 pipe_config->pipe_bpp = 3*intel_dp->compliance.test_data.bpc;
1667                 pipe_config->dither_force_disable = pipe_config->pipe_bpp == 6*3;
1668                 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n",
1669                               pipe_config->pipe_bpp);
1670         }
1671         return bpp;
1672 }
1673
1674 static bool intel_edp_compare_alt_mode(struct drm_display_mode *m1,
1675                                        struct drm_display_mode *m2)
1676 {
1677         bool bres = false;
1678
1679         if (m1 && m2)
1680                 bres = (m1->hdisplay == m2->hdisplay &&
1681                         m1->hsync_start == m2->hsync_start &&
1682                         m1->hsync_end == m2->hsync_end &&
1683                         m1->htotal == m2->htotal &&
1684                         m1->vdisplay == m2->vdisplay &&
1685                         m1->vsync_start == m2->vsync_start &&
1686                         m1->vsync_end == m2->vsync_end &&
1687                         m1->vtotal == m2->vtotal);
1688         return bres;
1689 }
1690
1691 bool
1692 intel_dp_compute_config(struct intel_encoder *encoder,
1693                         struct intel_crtc_state *pipe_config,
1694                         struct drm_connector_state *conn_state)
1695 {
1696         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1697         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1698         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1699         enum port port = encoder->port;
1700         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1701         struct intel_connector *intel_connector = intel_dp->attached_connector;
1702         struct intel_digital_connector_state *intel_conn_state =
1703                 to_intel_digital_connector_state(conn_state);
1704         int lane_count, clock;
1705         int min_lane_count = 1;
1706         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1707         /* Conveniently, the link BW constants become indices with a shift...*/
1708         int min_clock = 0;
1709         int max_clock;
1710         int bpp, mode_rate;
1711         int link_avail, link_clock;
1712         int common_len;
1713         uint8_t link_bw, rate_select;
1714         bool reduce_m_n = drm_dp_has_quirk(&intel_dp->desc,
1715                                            DP_DPCD_QUIRK_LIMITED_M_N);
1716
1717         common_len = intel_dp_common_len_rate_limit(intel_dp,
1718                                                     intel_dp->max_link_rate);
1719
1720         /* No common link rates between source and sink */
1721         WARN_ON(common_len <= 0);
1722
1723         max_clock = common_len - 1;
1724
1725         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
1726                 pipe_config->has_pch_encoder = true;
1727
1728         pipe_config->has_drrs = false;
1729         if (IS_G4X(dev_priv) || port == PORT_A)
1730                 pipe_config->has_audio = false;
1731         else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
1732                 pipe_config->has_audio = intel_dp->has_audio;
1733         else
1734                 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
1735
1736         if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1737                 struct drm_display_mode *panel_mode =
1738                         intel_connector->panel.alt_fixed_mode;
1739                 struct drm_display_mode *req_mode = &pipe_config->base.mode;
1740
1741                 if (!intel_edp_compare_alt_mode(req_mode, panel_mode))
1742                         panel_mode = intel_connector->panel.fixed_mode;
1743
1744                 drm_mode_debug_printmodeline(panel_mode);
1745
1746                 intel_fixed_panel_mode(panel_mode, adjusted_mode);
1747
1748                 if (INTEL_GEN(dev_priv) >= 9) {
1749                         int ret;
1750                         ret = skl_update_scaler_crtc(pipe_config);
1751                         if (ret)
1752                                 return ret;
1753                 }
1754
1755                 if (HAS_GMCH_DISPLAY(dev_priv))
1756                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1757                                                  conn_state->scaling_mode);
1758                 else
1759                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1760                                                 conn_state->scaling_mode);
1761         }
1762
1763         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1764             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
1765                 return false;
1766
1767         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1768                 return false;
1769
1770         /* Use values requested by Compliance Test Request */
1771         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1772                 int index;
1773
1774                 /* Validate the compliance test data since max values
1775                  * might have changed due to link train fallback.
1776                  */
1777                 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1778                                                intel_dp->compliance.test_lane_count)) {
1779                         index = intel_dp_rate_index(intel_dp->common_rates,
1780                                                     intel_dp->num_common_rates,
1781                                                     intel_dp->compliance.test_link_rate);
1782                         if (index >= 0)
1783                                 min_clock = max_clock = index;
1784                         min_lane_count = max_lane_count = intel_dp->compliance.test_lane_count;
1785                 }
1786         }
1787         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1788                       "max bw %d pixel clock %iKHz\n",
1789                       max_lane_count, intel_dp->common_rates[max_clock],
1790                       adjusted_mode->crtc_clock);
1791
1792         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1793          * bpc in between. */
1794         bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1795         if (intel_dp_is_edp(intel_dp)) {
1796
1797                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1798                 if (intel_connector->base.display_info.bpc == 0 &&
1799                         (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1800                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1801                                       dev_priv->vbt.edp.bpp);
1802                         bpp = dev_priv->vbt.edp.bpp;
1803                 }
1804
1805                 /*
1806                  * Use the maximum clock and number of lanes the eDP panel
1807                  * advertizes being capable of. The panels are generally
1808                  * designed to support only a single clock and lane
1809                  * configuration, and typically these values correspond to the
1810                  * native resolution of the panel.
1811                  */
1812                 min_lane_count = max_lane_count;
1813                 min_clock = max_clock;
1814         }
1815
1816         for (; bpp >= 6*3; bpp -= 2*3) {
1817                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1818                                                    bpp);
1819
1820                 for (clock = min_clock; clock <= max_clock; clock++) {
1821                         for (lane_count = min_lane_count;
1822                                 lane_count <= max_lane_count;
1823                                 lane_count <<= 1) {
1824
1825                                 link_clock = intel_dp->common_rates[clock];
1826                                 link_avail = intel_dp_max_data_rate(link_clock,
1827                                                                     lane_count);
1828
1829                                 if (mode_rate <= link_avail) {
1830                                         goto found;
1831                                 }
1832                         }
1833                 }
1834         }
1835
1836         return false;
1837
1838 found:
1839         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
1840                 /*
1841                  * See:
1842                  * CEA-861-E - 5.1 Default Encoding Parameters
1843                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1844                  */
1845                 pipe_config->limited_color_range =
1846                         bpp != 18 &&
1847                         drm_default_rgb_quant_range(adjusted_mode) ==
1848                         HDMI_QUANTIZATION_RANGE_LIMITED;
1849         } else {
1850                 pipe_config->limited_color_range =
1851                         intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
1852         }
1853
1854         pipe_config->lane_count = lane_count;
1855
1856         pipe_config->pipe_bpp = bpp;
1857         pipe_config->port_clock = intel_dp->common_rates[clock];
1858
1859         intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1860                               &link_bw, &rate_select);
1861
1862         DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1863                       link_bw, rate_select, pipe_config->lane_count,
1864                       pipe_config->port_clock, bpp);
1865         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1866                       mode_rate, link_avail);
1867
1868         intel_link_compute_m_n(bpp, lane_count,
1869                                adjusted_mode->crtc_clock,
1870                                pipe_config->port_clock,
1871                                &pipe_config->dp_m_n,
1872                                reduce_m_n);
1873
1874         if (intel_connector->panel.downclock_mode != NULL &&
1875                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1876                         pipe_config->has_drrs = true;
1877                         intel_link_compute_m_n(bpp, lane_count,
1878                                 intel_connector->panel.downclock_mode->clock,
1879                                 pipe_config->port_clock,
1880                                 &pipe_config->dp_m2_n2,
1881                                 reduce_m_n);
1882         }
1883
1884         if (!HAS_DDI(dev_priv))
1885                 intel_dp_set_clock(encoder, pipe_config);
1886
1887         intel_psr_compute_config(intel_dp, pipe_config);
1888
1889         return true;
1890 }
1891
1892 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1893                               int link_rate, uint8_t lane_count,
1894                               bool link_mst)
1895 {
1896         intel_dp->link_trained = false;
1897         intel_dp->link_rate = link_rate;
1898         intel_dp->lane_count = lane_count;
1899         intel_dp->link_mst = link_mst;
1900 }
1901
1902 static void intel_dp_prepare(struct intel_encoder *encoder,
1903                              const struct intel_crtc_state *pipe_config)
1904 {
1905         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1906         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1907         enum port port = encoder->port;
1908         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
1909         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1910
1911         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1912                                  pipe_config->lane_count,
1913                                  intel_crtc_has_type(pipe_config,
1914                                                      INTEL_OUTPUT_DP_MST));
1915
1916         /*
1917          * There are four kinds of DP registers:
1918          *
1919          *      IBX PCH
1920          *      SNB CPU
1921          *      IVB CPU
1922          *      CPT PCH
1923          *
1924          * IBX PCH and CPU are the same for almost everything,
1925          * except that the CPU DP PLL is configured in this
1926          * register
1927          *
1928          * CPT PCH is quite different, having many bits moved
1929          * to the TRANS_DP_CTL register instead. That
1930          * configuration happens (oddly) in ironlake_pch_enable
1931          */
1932
1933         /* Preserve the BIOS-computed detected bit. This is
1934          * supposed to be read-only.
1935          */
1936         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1937
1938         /* Handle DP bits in common between all three register formats */
1939         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1940         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1941
1942         /* Split out the IBX/CPU vs CPT settings */
1943
1944         if (IS_GEN7(dev_priv) && port == PORT_A) {
1945                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1946                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1947                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1948                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1949                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1950
1951                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1952                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1953
1954                 intel_dp->DP |= crtc->pipe << 29;
1955         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
1956                 u32 trans_dp;
1957
1958                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1959
1960                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1961                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1962                         trans_dp |= TRANS_DP_ENH_FRAMING;
1963                 else
1964                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
1965                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1966         } else {
1967                 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
1968                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
1969
1970                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1971                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1972                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1973                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1974                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1975
1976                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1977                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1978
1979                 if (IS_CHERRYVIEW(dev_priv))
1980                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1981                 else if (crtc->pipe == PIPE_B)
1982                         intel_dp->DP |= DP_PIPEB_SELECT;
1983         }
1984 }
1985
1986 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1987 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1988
1989 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1990 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1991
1992 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1993 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1994
1995 static void intel_pps_verify_state(struct intel_dp *intel_dp);
1996
1997 static void wait_panel_status(struct intel_dp *intel_dp,
1998                                        u32 mask,
1999                                        u32 value)
2000 {
2001         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2002         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2003
2004         lockdep_assert_held(&dev_priv->pps_mutex);
2005
2006         intel_pps_verify_state(intel_dp);
2007
2008         pp_stat_reg = _pp_stat_reg(intel_dp);
2009         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2010
2011         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2012                         mask, value,
2013                         I915_READ(pp_stat_reg),
2014                         I915_READ(pp_ctrl_reg));
2015
2016         if (intel_wait_for_register(dev_priv,
2017                                     pp_stat_reg, mask, value,
2018                                     5000))
2019                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2020                                 I915_READ(pp_stat_reg),
2021                                 I915_READ(pp_ctrl_reg));
2022
2023         DRM_DEBUG_KMS("Wait complete\n");
2024 }
2025
2026 static void wait_panel_on(struct intel_dp *intel_dp)
2027 {
2028         DRM_DEBUG_KMS("Wait for panel power on\n");
2029         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2030 }
2031
2032 static void wait_panel_off(struct intel_dp *intel_dp)
2033 {
2034         DRM_DEBUG_KMS("Wait for panel power off time\n");
2035         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2036 }
2037
2038 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2039 {
2040         ktime_t panel_power_on_time;
2041         s64 panel_power_off_duration;
2042
2043         DRM_DEBUG_KMS("Wait for panel power cycle\n");
2044
2045         /* take the difference of currrent time and panel power off time
2046          * and then make panel wait for t11_t12 if needed. */
2047         panel_power_on_time = ktime_get_boottime();
2048         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2049
2050         /* When we disable the VDD override bit last we have to do the manual
2051          * wait. */
2052         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2053                 wait_remaining_ms_from_jiffies(jiffies,
2054                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2055
2056         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2057 }
2058
2059 static void wait_backlight_on(struct intel_dp *intel_dp)
2060 {
2061         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2062                                        intel_dp->backlight_on_delay);
2063 }
2064
2065 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2066 {
2067         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2068                                        intel_dp->backlight_off_delay);
2069 }
2070
2071 /* Read the current pp_control value, unlocking the register if it
2072  * is locked
2073  */
2074
2075 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2076 {
2077         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2078         u32 control;
2079
2080         lockdep_assert_held(&dev_priv->pps_mutex);
2081
2082         control = I915_READ(_pp_ctrl_reg(intel_dp));
2083         if (WARN_ON(!HAS_DDI(dev_priv) &&
2084                     (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2085                 control &= ~PANEL_UNLOCK_MASK;
2086                 control |= PANEL_UNLOCK_REGS;
2087         }
2088         return control;
2089 }
2090
2091 /*
2092  * Must be paired with edp_panel_vdd_off().
2093  * Must hold pps_mutex around the whole on/off sequence.
2094  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2095  */
2096 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2097 {
2098         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2099         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2100         u32 pp;
2101         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2102         bool need_to_disable = !intel_dp->want_panel_vdd;
2103
2104         lockdep_assert_held(&dev_priv->pps_mutex);
2105
2106         if (!intel_dp_is_edp(intel_dp))
2107                 return false;
2108
2109         cancel_delayed_work(&intel_dp->panel_vdd_work);
2110         intel_dp->want_panel_vdd = true;
2111
2112         if (edp_have_panel_vdd(intel_dp))
2113                 return need_to_disable;
2114
2115         intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
2116
2117         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2118                       port_name(intel_dig_port->base.port));
2119
2120         if (!edp_have_panel_power(intel_dp))
2121                 wait_panel_power_cycle(intel_dp);
2122
2123         pp = ironlake_get_pp_control(intel_dp);
2124         pp |= EDP_FORCE_VDD;
2125
2126         pp_stat_reg = _pp_stat_reg(intel_dp);
2127         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2128
2129         I915_WRITE(pp_ctrl_reg, pp);
2130         POSTING_READ(pp_ctrl_reg);
2131         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2132                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2133         /*
2134          * If the panel wasn't on, delay before accessing aux channel
2135          */
2136         if (!edp_have_panel_power(intel_dp)) {
2137                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2138                               port_name(intel_dig_port->base.port));
2139                 msleep(intel_dp->panel_power_up_delay);
2140         }
2141
2142         return need_to_disable;
2143 }
2144
2145 /*
2146  * Must be paired with intel_edp_panel_vdd_off() or
2147  * intel_edp_panel_off().
2148  * Nested calls to these functions are not allowed since
2149  * we drop the lock. Caller must use some higher level
2150  * locking to prevent nested calls from other threads.
2151  */
2152 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2153 {
2154         bool vdd;
2155
2156         if (!intel_dp_is_edp(intel_dp))
2157                 return;
2158
2159         pps_lock(intel_dp);
2160         vdd = edp_panel_vdd_on(intel_dp);
2161         pps_unlock(intel_dp);
2162
2163         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2164              port_name(dp_to_dig_port(intel_dp)->base.port));
2165 }
2166
2167 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2168 {
2169         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2170         struct intel_digital_port *intel_dig_port =
2171                 dp_to_dig_port(intel_dp);
2172         u32 pp;
2173         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2174
2175         lockdep_assert_held(&dev_priv->pps_mutex);
2176
2177         WARN_ON(intel_dp->want_panel_vdd);
2178
2179         if (!edp_have_panel_vdd(intel_dp))
2180                 return;
2181
2182         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2183                       port_name(intel_dig_port->base.port));
2184
2185         pp = ironlake_get_pp_control(intel_dp);
2186         pp &= ~EDP_FORCE_VDD;
2187
2188         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2189         pp_stat_reg = _pp_stat_reg(intel_dp);
2190
2191         I915_WRITE(pp_ctrl_reg, pp);
2192         POSTING_READ(pp_ctrl_reg);
2193
2194         /* Make sure sequencer is idle before allowing subsequent activity */
2195         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2196         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2197
2198         if ((pp & PANEL_POWER_ON) == 0)
2199                 intel_dp->panel_power_off_time = ktime_get_boottime();
2200
2201         intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2202 }
2203
2204 static void edp_panel_vdd_work(struct work_struct *__work)
2205 {
2206         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2207                                                  struct intel_dp, panel_vdd_work);
2208
2209         pps_lock(intel_dp);
2210         if (!intel_dp->want_panel_vdd)
2211                 edp_panel_vdd_off_sync(intel_dp);
2212         pps_unlock(intel_dp);
2213 }
2214
2215 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2216 {
2217         unsigned long delay;
2218
2219         /*
2220          * Queue the timer to fire a long time from now (relative to the power
2221          * down delay) to keep the panel power up across a sequence of
2222          * operations.
2223          */
2224         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2225         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2226 }
2227
2228 /*
2229  * Must be paired with edp_panel_vdd_on().
2230  * Must hold pps_mutex around the whole on/off sequence.
2231  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2232  */
2233 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2234 {
2235         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2236
2237         lockdep_assert_held(&dev_priv->pps_mutex);
2238
2239         if (!intel_dp_is_edp(intel_dp))
2240                 return;
2241
2242         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2243              port_name(dp_to_dig_port(intel_dp)->base.port));
2244
2245         intel_dp->want_panel_vdd = false;
2246
2247         if (sync)
2248                 edp_panel_vdd_off_sync(intel_dp);
2249         else
2250                 edp_panel_vdd_schedule_off(intel_dp);
2251 }
2252
2253 static void edp_panel_on(struct intel_dp *intel_dp)
2254 {
2255         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2256         u32 pp;
2257         i915_reg_t pp_ctrl_reg;
2258
2259         lockdep_assert_held(&dev_priv->pps_mutex);
2260
2261         if (!intel_dp_is_edp(intel_dp))
2262                 return;
2263
2264         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2265                       port_name(dp_to_dig_port(intel_dp)->base.port));
2266
2267         if (WARN(edp_have_panel_power(intel_dp),
2268                  "eDP port %c panel power already on\n",
2269                  port_name(dp_to_dig_port(intel_dp)->base.port)))
2270                 return;
2271
2272         wait_panel_power_cycle(intel_dp);
2273
2274         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2275         pp = ironlake_get_pp_control(intel_dp);
2276         if (IS_GEN5(dev_priv)) {
2277                 /* ILK workaround: disable reset around power sequence */
2278                 pp &= ~PANEL_POWER_RESET;
2279                 I915_WRITE(pp_ctrl_reg, pp);
2280                 POSTING_READ(pp_ctrl_reg);
2281         }
2282
2283         pp |= PANEL_POWER_ON;
2284         if (!IS_GEN5(dev_priv))
2285                 pp |= PANEL_POWER_RESET;
2286
2287         I915_WRITE(pp_ctrl_reg, pp);
2288         POSTING_READ(pp_ctrl_reg);
2289
2290         wait_panel_on(intel_dp);
2291         intel_dp->last_power_on = jiffies;
2292
2293         if (IS_GEN5(dev_priv)) {
2294                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2295                 I915_WRITE(pp_ctrl_reg, pp);
2296                 POSTING_READ(pp_ctrl_reg);
2297         }
2298 }
2299
2300 void intel_edp_panel_on(struct intel_dp *intel_dp)
2301 {
2302         if (!intel_dp_is_edp(intel_dp))
2303                 return;
2304
2305         pps_lock(intel_dp);
2306         edp_panel_on(intel_dp);
2307         pps_unlock(intel_dp);
2308 }
2309
2310
2311 static void edp_panel_off(struct intel_dp *intel_dp)
2312 {
2313         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2314         u32 pp;
2315         i915_reg_t pp_ctrl_reg;
2316
2317         lockdep_assert_held(&dev_priv->pps_mutex);
2318
2319         if (!intel_dp_is_edp(intel_dp))
2320                 return;
2321
2322         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2323                       port_name(dp_to_dig_port(intel_dp)->base.port));
2324
2325         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2326              port_name(dp_to_dig_port(intel_dp)->base.port));
2327
2328         pp = ironlake_get_pp_control(intel_dp);
2329         /* We need to switch off panel power _and_ force vdd, for otherwise some
2330          * panels get very unhappy and cease to work. */
2331         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2332                 EDP_BLC_ENABLE);
2333
2334         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2335
2336         intel_dp->want_panel_vdd = false;
2337
2338         I915_WRITE(pp_ctrl_reg, pp);
2339         POSTING_READ(pp_ctrl_reg);
2340
2341         wait_panel_off(intel_dp);
2342         intel_dp->panel_power_off_time = ktime_get_boottime();
2343
2344         /* We got a reference when we enabled the VDD. */
2345         intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2346 }
2347
2348 void intel_edp_panel_off(struct intel_dp *intel_dp)
2349 {
2350         if (!intel_dp_is_edp(intel_dp))
2351                 return;
2352
2353         pps_lock(intel_dp);
2354         edp_panel_off(intel_dp);
2355         pps_unlock(intel_dp);
2356 }
2357
2358 /* Enable backlight in the panel power control. */
2359 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2360 {
2361         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2362         u32 pp;
2363         i915_reg_t pp_ctrl_reg;
2364
2365         /*
2366          * If we enable the backlight right away following a panel power
2367          * on, we may see slight flicker as the panel syncs with the eDP
2368          * link.  So delay a bit to make sure the image is solid before
2369          * allowing it to appear.
2370          */
2371         wait_backlight_on(intel_dp);
2372
2373         pps_lock(intel_dp);
2374
2375         pp = ironlake_get_pp_control(intel_dp);
2376         pp |= EDP_BLC_ENABLE;
2377
2378         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2379
2380         I915_WRITE(pp_ctrl_reg, pp);
2381         POSTING_READ(pp_ctrl_reg);
2382
2383         pps_unlock(intel_dp);
2384 }
2385
2386 /* Enable backlight PWM and backlight PP control. */
2387 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2388                             const struct drm_connector_state *conn_state)
2389 {
2390         struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2391
2392         if (!intel_dp_is_edp(intel_dp))
2393                 return;
2394
2395         DRM_DEBUG_KMS("\n");
2396
2397         intel_panel_enable_backlight(crtc_state, conn_state);
2398         _intel_edp_backlight_on(intel_dp);
2399 }
2400
2401 /* Disable backlight in the panel power control. */
2402 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2403 {
2404         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2405         u32 pp;
2406         i915_reg_t pp_ctrl_reg;
2407
2408         if (!intel_dp_is_edp(intel_dp))
2409                 return;
2410
2411         pps_lock(intel_dp);
2412
2413         pp = ironlake_get_pp_control(intel_dp);
2414         pp &= ~EDP_BLC_ENABLE;
2415
2416         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2417
2418         I915_WRITE(pp_ctrl_reg, pp);
2419         POSTING_READ(pp_ctrl_reg);
2420
2421         pps_unlock(intel_dp);
2422
2423         intel_dp->last_backlight_off = jiffies;
2424         edp_wait_backlight_off(intel_dp);
2425 }
2426
2427 /* Disable backlight PP control and backlight PWM. */
2428 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2429 {
2430         struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2431
2432         if (!intel_dp_is_edp(intel_dp))
2433                 return;
2434
2435         DRM_DEBUG_KMS("\n");
2436
2437         _intel_edp_backlight_off(intel_dp);
2438         intel_panel_disable_backlight(old_conn_state);
2439 }
2440
2441 /*
2442  * Hook for controlling the panel power control backlight through the bl_power
2443  * sysfs attribute. Take care to handle multiple calls.
2444  */
2445 static void intel_edp_backlight_power(struct intel_connector *connector,
2446                                       bool enable)
2447 {
2448         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2449         bool is_enabled;
2450
2451         pps_lock(intel_dp);
2452         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2453         pps_unlock(intel_dp);
2454
2455         if (is_enabled == enable)
2456                 return;
2457
2458         DRM_DEBUG_KMS("panel power control backlight %s\n",
2459                       enable ? "enable" : "disable");
2460
2461         if (enable)
2462                 _intel_edp_backlight_on(intel_dp);
2463         else
2464                 _intel_edp_backlight_off(intel_dp);
2465 }
2466
2467 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2468 {
2469         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2470         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2471         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2472
2473         I915_STATE_WARN(cur_state != state,
2474                         "DP port %c state assertion failure (expected %s, current %s)\n",
2475                         port_name(dig_port->base.port),
2476                         onoff(state), onoff(cur_state));
2477 }
2478 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2479
2480 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2481 {
2482         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2483
2484         I915_STATE_WARN(cur_state != state,
2485                         "eDP PLL state assertion failure (expected %s, current %s)\n",
2486                         onoff(state), onoff(cur_state));
2487 }
2488 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2489 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2490
2491 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2492                                 const struct intel_crtc_state *pipe_config)
2493 {
2494         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2495         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2496
2497         assert_pipe_disabled(dev_priv, crtc->pipe);
2498         assert_dp_port_disabled(intel_dp);
2499         assert_edp_pll_disabled(dev_priv);
2500
2501         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2502                       pipe_config->port_clock);
2503
2504         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2505
2506         if (pipe_config->port_clock == 162000)
2507                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2508         else
2509                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2510
2511         I915_WRITE(DP_A, intel_dp->DP);
2512         POSTING_READ(DP_A);
2513         udelay(500);
2514
2515         /*
2516          * [DevILK] Work around required when enabling DP PLL
2517          * while a pipe is enabled going to FDI:
2518          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2519          * 2. Program DP PLL enable
2520          */
2521         if (IS_GEN5(dev_priv))
2522                 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2523
2524         intel_dp->DP |= DP_PLL_ENABLE;
2525
2526         I915_WRITE(DP_A, intel_dp->DP);
2527         POSTING_READ(DP_A);
2528         udelay(200);
2529 }
2530
2531 static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
2532                                  const struct intel_crtc_state *old_crtc_state)
2533 {
2534         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2535         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2536
2537         assert_pipe_disabled(dev_priv, crtc->pipe);
2538         assert_dp_port_disabled(intel_dp);
2539         assert_edp_pll_enabled(dev_priv);
2540
2541         DRM_DEBUG_KMS("disabling eDP PLL\n");
2542
2543         intel_dp->DP &= ~DP_PLL_ENABLE;
2544
2545         I915_WRITE(DP_A, intel_dp->DP);
2546         POSTING_READ(DP_A);
2547         udelay(200);
2548 }
2549
2550 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
2551 {
2552         /*
2553          * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
2554          * be capable of signalling downstream hpd with a long pulse.
2555          * Whether or not that means D3 is safe to use is not clear,
2556          * but let's assume so until proven otherwise.
2557          *
2558          * FIXME should really check all downstream ports...
2559          */
2560         return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
2561                 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
2562                 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
2563 }
2564
2565 /* If the sink supports it, try to set the power state appropriately */
2566 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2567 {
2568         int ret, i;
2569
2570         /* Should have a valid DPCD by this point */
2571         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2572                 return;
2573
2574         if (mode != DRM_MODE_DPMS_ON) {
2575                 if (downstream_hpd_needs_d0(intel_dp))
2576                         return;
2577
2578                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2579                                          DP_SET_POWER_D3);
2580         } else {
2581                 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
2582
2583                 /*
2584                  * When turning on, we need to retry for 1ms to give the sink
2585                  * time to wake up.
2586                  */
2587                 for (i = 0; i < 3; i++) {
2588                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2589                                                  DP_SET_POWER_D0);
2590                         if (ret == 1)
2591                                 break;
2592                         msleep(1);
2593                 }
2594
2595                 if (ret == 1 && lspcon->active)
2596                         lspcon_wait_pcon_mode(lspcon);
2597         }
2598
2599         if (ret != 1)
2600                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2601                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2602 }
2603
2604 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2605                                   enum pipe *pipe)
2606 {
2607         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2608         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2609         enum port port = encoder->port;
2610         u32 tmp;
2611         bool ret;
2612
2613         if (!intel_display_power_get_if_enabled(dev_priv,
2614                                                 encoder->power_domain))
2615                 return false;
2616
2617         ret = false;
2618
2619         tmp = I915_READ(intel_dp->output_reg);
2620
2621         if (!(tmp & DP_PORT_EN))
2622                 goto out;
2623
2624         if (IS_GEN7(dev_priv) && port == PORT_A) {
2625                 *pipe = PORT_TO_PIPE_CPT(tmp);
2626         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2627                 enum pipe p;
2628
2629                 for_each_pipe(dev_priv, p) {
2630                         u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2631                         if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2632                                 *pipe = p;
2633                                 ret = true;
2634
2635                                 goto out;
2636                         }
2637                 }
2638
2639                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2640                               i915_mmio_reg_offset(intel_dp->output_reg));
2641         } else if (IS_CHERRYVIEW(dev_priv)) {
2642                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2643         } else {
2644                 *pipe = PORT_TO_PIPE(tmp);
2645         }
2646
2647         ret = true;
2648
2649 out:
2650         intel_display_power_put(dev_priv, encoder->power_domain);
2651
2652         return ret;
2653 }
2654
2655 static void intel_dp_get_config(struct intel_encoder *encoder,
2656                                 struct intel_crtc_state *pipe_config)
2657 {
2658         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2659         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2660         u32 tmp, flags = 0;
2661         enum port port = encoder->port;
2662         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2663
2664         if (encoder->type == INTEL_OUTPUT_EDP)
2665                 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
2666         else
2667                 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
2668
2669         tmp = I915_READ(intel_dp->output_reg);
2670
2671         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2672
2673         if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2674                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2675
2676                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2677                         flags |= DRM_MODE_FLAG_PHSYNC;
2678                 else
2679                         flags |= DRM_MODE_FLAG_NHSYNC;
2680
2681                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2682                         flags |= DRM_MODE_FLAG_PVSYNC;
2683                 else
2684                         flags |= DRM_MODE_FLAG_NVSYNC;
2685         } else {
2686                 if (tmp & DP_SYNC_HS_HIGH)
2687                         flags |= DRM_MODE_FLAG_PHSYNC;
2688                 else
2689                         flags |= DRM_MODE_FLAG_NHSYNC;
2690
2691                 if (tmp & DP_SYNC_VS_HIGH)
2692                         flags |= DRM_MODE_FLAG_PVSYNC;
2693                 else
2694                         flags |= DRM_MODE_FLAG_NVSYNC;
2695         }
2696
2697         pipe_config->base.adjusted_mode.flags |= flags;
2698
2699         if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2700                 pipe_config->limited_color_range = true;
2701
2702         pipe_config->lane_count =
2703                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2704
2705         intel_dp_get_m_n(crtc, pipe_config);
2706
2707         if (port == PORT_A) {
2708                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2709                         pipe_config->port_clock = 162000;
2710                 else
2711                         pipe_config->port_clock = 270000;
2712         }
2713
2714         pipe_config->base.adjusted_mode.crtc_clock =
2715                 intel_dotclock_calculate(pipe_config->port_clock,
2716                                          &pipe_config->dp_m_n);
2717
2718         if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2719             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2720                 /*
2721                  * This is a big fat ugly hack.
2722                  *
2723                  * Some machines in UEFI boot mode provide us a VBT that has 18
2724                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2725                  * unknown we fail to light up. Yet the same BIOS boots up with
2726                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2727                  * max, not what it tells us to use.
2728                  *
2729                  * Note: This will still be broken if the eDP panel is not lit
2730                  * up by the BIOS, and thus we can't get the mode at module
2731                  * load.
2732                  */
2733                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2734                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2735                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2736         }
2737 }
2738
2739 static void intel_disable_dp(struct intel_encoder *encoder,
2740                              const struct intel_crtc_state *old_crtc_state,
2741                              const struct drm_connector_state *old_conn_state)
2742 {
2743         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2744
2745         intel_dp->link_trained = false;
2746
2747         if (old_crtc_state->has_audio)
2748                 intel_audio_codec_disable(encoder,
2749                                           old_crtc_state, old_conn_state);
2750
2751         /* Make sure the panel is off before trying to change the mode. But also
2752          * ensure that we have vdd while we switch off the panel. */
2753         intel_edp_panel_vdd_on(intel_dp);
2754         intel_edp_backlight_off(old_conn_state);
2755         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2756         intel_edp_panel_off(intel_dp);
2757 }
2758
2759 static void g4x_disable_dp(struct intel_encoder *encoder,
2760                            const struct intel_crtc_state *old_crtc_state,
2761                            const struct drm_connector_state *old_conn_state)
2762 {
2763         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
2764
2765         /* disable the port before the pipe on g4x */
2766         intel_dp_link_down(encoder, old_crtc_state);
2767 }
2768
2769 static void ilk_disable_dp(struct intel_encoder *encoder,
2770                            const struct intel_crtc_state *old_crtc_state,
2771                            const struct drm_connector_state *old_conn_state)
2772 {
2773         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
2774 }
2775
2776 static void vlv_disable_dp(struct intel_encoder *encoder,
2777                            const struct intel_crtc_state *old_crtc_state,
2778                            const struct drm_connector_state *old_conn_state)
2779 {
2780         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2781
2782         intel_psr_disable(intel_dp, old_crtc_state);
2783
2784         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
2785 }
2786
2787 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2788                                 const struct intel_crtc_state *old_crtc_state,
2789                                 const struct drm_connector_state *old_conn_state)
2790 {
2791         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2792         enum port port = encoder->port;
2793
2794         intel_dp_link_down(encoder, old_crtc_state);
2795
2796         /* Only ilk+ has port A */
2797         if (port == PORT_A)
2798                 ironlake_edp_pll_off(intel_dp, old_crtc_state);
2799 }
2800
2801 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2802                                 const struct intel_crtc_state *old_crtc_state,
2803                                 const struct drm_connector_state *old_conn_state)
2804 {
2805         intel_dp_link_down(encoder, old_crtc_state);
2806 }
2807
2808 static void chv_post_disable_dp(struct intel_encoder *encoder,
2809                                 const struct intel_crtc_state *old_crtc_state,
2810                                 const struct drm_connector_state *old_conn_state)
2811 {
2812         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2813
2814         intel_dp_link_down(encoder, old_crtc_state);
2815
2816         mutex_lock(&dev_priv->sb_lock);
2817
2818         /* Assert data lane reset */
2819         chv_data_lane_soft_reset(encoder, old_crtc_state, true);
2820
2821         mutex_unlock(&dev_priv->sb_lock);
2822 }
2823
2824 static void
2825 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2826                          uint32_t *DP,
2827                          uint8_t dp_train_pat)
2828 {
2829         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2830         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2831         enum port port = intel_dig_port->base.port;
2832
2833         if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2834                 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2835                               dp_train_pat & DP_TRAINING_PATTERN_MASK);
2836
2837         if (HAS_DDI(dev_priv)) {
2838                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2839
2840                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2841                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2842                 else
2843                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2844
2845                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2846                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2847                 case DP_TRAINING_PATTERN_DISABLE:
2848                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2849
2850                         break;
2851                 case DP_TRAINING_PATTERN_1:
2852                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2853                         break;
2854                 case DP_TRAINING_PATTERN_2:
2855                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2856                         break;
2857                 case DP_TRAINING_PATTERN_3:
2858                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2859                         break;
2860                 }
2861                 I915_WRITE(DP_TP_CTL(port), temp);
2862
2863         } else if ((IS_GEN7(dev_priv) && port == PORT_A) ||
2864                    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
2865                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2866
2867                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2868                 case DP_TRAINING_PATTERN_DISABLE:
2869                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2870                         break;
2871                 case DP_TRAINING_PATTERN_1:
2872                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2873                         break;
2874                 case DP_TRAINING_PATTERN_2:
2875                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2876                         break;
2877                 case DP_TRAINING_PATTERN_3:
2878                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2879                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2880                         break;
2881                 }
2882
2883         } else {
2884                 if (IS_CHERRYVIEW(dev_priv))
2885                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2886                 else
2887                         *DP &= ~DP_LINK_TRAIN_MASK;
2888
2889                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2890                 case DP_TRAINING_PATTERN_DISABLE:
2891                         *DP |= DP_LINK_TRAIN_OFF;
2892                         break;
2893                 case DP_TRAINING_PATTERN_1:
2894                         *DP |= DP_LINK_TRAIN_PAT_1;
2895                         break;
2896                 case DP_TRAINING_PATTERN_2:
2897                         *DP |= DP_LINK_TRAIN_PAT_2;
2898                         break;
2899                 case DP_TRAINING_PATTERN_3:
2900                         if (IS_CHERRYVIEW(dev_priv)) {
2901                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2902                         } else {
2903                                 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2904                                 *DP |= DP_LINK_TRAIN_PAT_2;
2905                         }
2906                         break;
2907                 }
2908         }
2909 }
2910
2911 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2912                                  const struct intel_crtc_state *old_crtc_state)
2913 {
2914         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2915
2916         /* enable with pattern 1 (as per spec) */
2917
2918         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2919
2920         /*
2921          * Magic for VLV/CHV. We _must_ first set up the register
2922          * without actually enabling the port, and then do another
2923          * write to enable the port. Otherwise link training will
2924          * fail when the power sequencer is freshly used for this port.
2925          */
2926         intel_dp->DP |= DP_PORT_EN;
2927         if (old_crtc_state->has_audio)
2928                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2929
2930         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2931         POSTING_READ(intel_dp->output_reg);
2932 }
2933
2934 static void intel_enable_dp(struct intel_encoder *encoder,
2935                             const struct intel_crtc_state *pipe_config,
2936                             const struct drm_connector_state *conn_state)
2937 {
2938         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2939         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2940         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2941         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2942         enum pipe pipe = crtc->pipe;
2943
2944         if (WARN_ON(dp_reg & DP_PORT_EN))
2945                 return;
2946
2947         pps_lock(intel_dp);
2948
2949         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2950                 vlv_init_panel_power_sequencer(encoder, pipe_config);
2951
2952         intel_dp_enable_port(intel_dp, pipe_config);
2953
2954         edp_panel_vdd_on(intel_dp);
2955         edp_panel_on(intel_dp);
2956         edp_panel_vdd_off(intel_dp, true);
2957
2958         pps_unlock(intel_dp);
2959
2960         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2961                 unsigned int lane_mask = 0x0;
2962
2963                 if (IS_CHERRYVIEW(dev_priv))
2964                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2965
2966                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2967                                     lane_mask);
2968         }
2969
2970         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2971         intel_dp_start_link_train(intel_dp);
2972         intel_dp_stop_link_train(intel_dp);
2973
2974         if (pipe_config->has_audio) {
2975                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2976                                  pipe_name(pipe));
2977                 intel_audio_codec_enable(encoder, pipe_config, conn_state);
2978         }
2979 }
2980
2981 static void g4x_enable_dp(struct intel_encoder *encoder,
2982                           const struct intel_crtc_state *pipe_config,
2983                           const struct drm_connector_state *conn_state)
2984 {
2985         intel_enable_dp(encoder, pipe_config, conn_state);
2986         intel_edp_backlight_on(pipe_config, conn_state);
2987 }
2988
2989 static void vlv_enable_dp(struct intel_encoder *encoder,
2990                           const struct intel_crtc_state *pipe_config,
2991                           const struct drm_connector_state *conn_state)
2992 {
2993         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2994
2995         intel_edp_backlight_on(pipe_config, conn_state);
2996         intel_psr_enable(intel_dp, pipe_config);
2997 }
2998
2999 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3000                               const struct intel_crtc_state *pipe_config,
3001                               const struct drm_connector_state *conn_state)
3002 {
3003         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3004         enum port port = encoder->port;
3005
3006         intel_dp_prepare(encoder, pipe_config);
3007
3008         /* Only ilk+ has port A */
3009         if (port == PORT_A)
3010                 ironlake_edp_pll_on(intel_dp, pipe_config);
3011 }
3012
3013 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3014 {
3015         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3016         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3017         enum pipe pipe = intel_dp->pps_pipe;
3018         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3019
3020         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3021
3022         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3023                 return;
3024
3025         edp_panel_vdd_off_sync(intel_dp);
3026
3027         /*
3028          * VLV seems to get confused when multiple power seqeuencers
3029          * have the same port selected (even if only one has power/vdd
3030          * enabled). The failure manifests as vlv_wait_port_ready() failing
3031          * CHV on the other hand doesn't seem to mind having the same port
3032          * selected in multiple power seqeuencers, but let's clear the
3033          * port select always when logically disconnecting a power sequencer
3034          * from a port.
3035          */
3036         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3037                       pipe_name(pipe), port_name(intel_dig_port->base.port));
3038         I915_WRITE(pp_on_reg, 0);
3039         POSTING_READ(pp_on_reg);
3040
3041         intel_dp->pps_pipe = INVALID_PIPE;
3042 }
3043
3044 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3045                                       enum pipe pipe)
3046 {
3047         struct intel_encoder *encoder;
3048
3049         lockdep_assert_held(&dev_priv->pps_mutex);
3050
3051         for_each_intel_encoder(&dev_priv->drm, encoder) {
3052                 struct intel_dp *intel_dp;
3053                 enum port port;
3054
3055                 if (encoder->type != INTEL_OUTPUT_DP &&
3056                     encoder->type != INTEL_OUTPUT_EDP)
3057                         continue;
3058
3059                 intel_dp = enc_to_intel_dp(&encoder->base);
3060                 port = dp_to_dig_port(intel_dp)->base.port;
3061
3062                 WARN(intel_dp->active_pipe == pipe,
3063                      "stealing pipe %c power sequencer from active (e)DP port %c\n",
3064                      pipe_name(pipe), port_name(port));
3065
3066                 if (intel_dp->pps_pipe != pipe)
3067                         continue;
3068
3069                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3070                               pipe_name(pipe), port_name(port));
3071
3072                 /* make sure vdd is off before we steal it */
3073                 vlv_detach_power_sequencer(intel_dp);
3074         }
3075 }
3076
3077 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3078                                            const struct intel_crtc_state *crtc_state)
3079 {
3080         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3081         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3082         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3083
3084         lockdep_assert_held(&dev_priv->pps_mutex);
3085
3086         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3087
3088         if (intel_dp->pps_pipe != INVALID_PIPE &&
3089             intel_dp->pps_pipe != crtc->pipe) {
3090                 /*
3091                  * If another power sequencer was being used on this
3092                  * port previously make sure to turn off vdd there while
3093                  * we still have control of it.
3094                  */
3095                 vlv_detach_power_sequencer(intel_dp);
3096         }
3097
3098         /*
3099          * We may be stealing the power
3100          * sequencer from another port.
3101          */
3102         vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3103
3104         intel_dp->active_pipe = crtc->pipe;
3105
3106         if (!intel_dp_is_edp(intel_dp))
3107                 return;
3108
3109         /* now it's all ours */
3110         intel_dp->pps_pipe = crtc->pipe;
3111
3112         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3113                       pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3114
3115         /* init power sequencer on this pipe and port */
3116         intel_dp_init_panel_power_sequencer(intel_dp);
3117         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3118 }
3119
3120 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3121                               const struct intel_crtc_state *pipe_config,
3122                               const struct drm_connector_state *conn_state)
3123 {
3124         vlv_phy_pre_encoder_enable(encoder, pipe_config);
3125
3126         intel_enable_dp(encoder, pipe_config, conn_state);
3127 }
3128
3129 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3130                                   const struct intel_crtc_state *pipe_config,
3131                                   const struct drm_connector_state *conn_state)
3132 {
3133         intel_dp_prepare(encoder, pipe_config);
3134
3135         vlv_phy_pre_pll_enable(encoder, pipe_config);
3136 }
3137
3138 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3139                               const struct intel_crtc_state *pipe_config,
3140                               const struct drm_connector_state *conn_state)
3141 {
3142         chv_phy_pre_encoder_enable(encoder, pipe_config);
3143
3144         intel_enable_dp(encoder, pipe_config, conn_state);
3145
3146         /* Second common lane will stay alive on its own now */
3147         chv_phy_release_cl2_override(encoder);
3148 }
3149
3150 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3151                                   const struct intel_crtc_state *pipe_config,
3152                                   const struct drm_connector_state *conn_state)
3153 {
3154         intel_dp_prepare(encoder, pipe_config);
3155
3156         chv_phy_pre_pll_enable(encoder, pipe_config);
3157 }
3158
3159 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3160                                     const struct intel_crtc_state *old_crtc_state,
3161                                     const struct drm_connector_state *old_conn_state)
3162 {
3163         chv_phy_post_pll_disable(encoder, old_crtc_state);
3164 }
3165
3166 /*
3167  * Fetch AUX CH registers 0x202 - 0x207 which contain
3168  * link status information
3169  */
3170 bool
3171 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3172 {
3173         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3174                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3175 }
3176
3177 /* These are source-specific values. */
3178 uint8_t
3179 intel_dp_voltage_max(struct intel_dp *intel_dp)
3180 {
3181         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3182         enum port port = dp_to_dig_port(intel_dp)->base.port;
3183
3184         if (INTEL_GEN(dev_priv) >= 9) {
3185                 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3186                 return intel_ddi_dp_voltage_max(encoder);
3187         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3188                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3189         else if (IS_GEN7(dev_priv) && port == PORT_A)
3190                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3191         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3192                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3193         else
3194                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3195 }
3196
3197 uint8_t
3198 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3199 {
3200         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3201         enum port port = dp_to_dig_port(intel_dp)->base.port;
3202
3203         if (INTEL_GEN(dev_priv) >= 9) {
3204                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3205                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3206                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3207                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3208                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3209                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3210                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3211                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3212                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3213                 default:
3214                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3215                 }
3216         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3217                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3218                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3219                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3220                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3221                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3222                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3223                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3224                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3225                 default:
3226                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3227                 }
3228         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3229                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3230                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3231                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3232                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3233                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3234                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3235                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3236                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3237                 default:
3238                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3239                 }
3240         } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3241                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3242                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3243                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3244                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3245                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3246                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3247                 default:
3248                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3249                 }
3250         } else {
3251                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3252                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3253                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3254                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3255                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3256                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3257                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3258                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3259                 default:
3260                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3261                 }
3262         }
3263 }
3264
3265 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3266 {
3267         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3268         unsigned long demph_reg_value, preemph_reg_value,
3269                 uniqtranscale_reg_value;
3270         uint8_t train_set = intel_dp->train_set[0];
3271
3272         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3273         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3274                 preemph_reg_value = 0x0004000;
3275                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3276                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3277                         demph_reg_value = 0x2B405555;
3278                         uniqtranscale_reg_value = 0x552AB83A;
3279                         break;
3280                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3281                         demph_reg_value = 0x2B404040;
3282                         uniqtranscale_reg_value = 0x5548B83A;
3283                         break;
3284                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3285                         demph_reg_value = 0x2B245555;
3286                         uniqtranscale_reg_value = 0x5560B83A;
3287                         break;
3288                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3289                         demph_reg_value = 0x2B405555;
3290                         uniqtranscale_reg_value = 0x5598DA3A;
3291                         break;
3292                 default:
3293                         return 0;
3294                 }
3295                 break;
3296         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3297                 preemph_reg_value = 0x0002000;
3298                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3299                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3300                         demph_reg_value = 0x2B404040;
3301                         uniqtranscale_reg_value = 0x5552B83A;
3302                         break;
3303                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3304                         demph_reg_value = 0x2B404848;
3305                         uniqtranscale_reg_value = 0x5580B83A;
3306                         break;
3307                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3308                         demph_reg_value = 0x2B404040;
3309                         uniqtranscale_reg_value = 0x55ADDA3A;
3310                         break;
3311                 default:
3312                         return 0;
3313                 }
3314                 break;
3315         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3316                 preemph_reg_value = 0x0000000;
3317                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3318                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3319                         demph_reg_value = 0x2B305555;
3320                         uniqtranscale_reg_value = 0x5570B83A;
3321                         break;
3322                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3323                         demph_reg_value = 0x2B2B4040;
3324                         uniqtranscale_reg_value = 0x55ADDA3A;
3325                         break;
3326                 default:
3327                         return 0;
3328                 }
3329                 break;
3330         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3331                 preemph_reg_value = 0x0006000;
3332                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3333                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3334                         demph_reg_value = 0x1B405555;
3335                         uniqtranscale_reg_value = 0x55ADDA3A;
3336                         break;
3337                 default:
3338                         return 0;
3339                 }
3340                 break;
3341         default:
3342                 return 0;
3343         }
3344
3345         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3346                                  uniqtranscale_reg_value, 0);
3347
3348         return 0;
3349 }
3350
3351 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3352 {
3353         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3354         u32 deemph_reg_value, margin_reg_value;
3355         bool uniq_trans_scale = false;
3356         uint8_t train_set = intel_dp->train_set[0];
3357
3358         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3359         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3360                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3361                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3362                         deemph_reg_value = 128;
3363                         margin_reg_value = 52;
3364                         break;
3365                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3366                         deemph_reg_value = 128;
3367                         margin_reg_value = 77;
3368                         break;
3369                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3370                         deemph_reg_value = 128;
3371                         margin_reg_value = 102;
3372                         break;
3373                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3374                         deemph_reg_value = 128;
3375                         margin_reg_value = 154;
3376                         uniq_trans_scale = true;
3377                         break;
3378                 default:
3379                         return 0;
3380                 }
3381                 break;
3382         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3383                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3384                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3385                         deemph_reg_value = 85;
3386                         margin_reg_value = 78;
3387                         break;
3388                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3389                         deemph_reg_value = 85;
3390                         margin_reg_value = 116;
3391                         break;
3392                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3393                         deemph_reg_value = 85;
3394                         margin_reg_value = 154;
3395                         break;
3396                 default:
3397                         return 0;
3398                 }
3399                 break;
3400         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3401                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3402                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3403                         deemph_reg_value = 64;
3404                         margin_reg_value = 104;
3405                         break;
3406                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3407                         deemph_reg_value = 64;
3408                         margin_reg_value = 154;
3409                         break;
3410                 default:
3411                         return 0;
3412                 }
3413                 break;
3414         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3415                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3416                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3417                         deemph_reg_value = 43;
3418                         margin_reg_value = 154;
3419                         break;
3420                 default:
3421                         return 0;
3422                 }
3423                 break;
3424         default:
3425                 return 0;
3426         }
3427
3428         chv_set_phy_signal_level(encoder, deemph_reg_value,
3429                                  margin_reg_value, uniq_trans_scale);
3430
3431         return 0;
3432 }
3433
3434 static uint32_t
3435 gen4_signal_levels(uint8_t train_set)
3436 {
3437         uint32_t        signal_levels = 0;
3438
3439         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3440         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3441         default:
3442                 signal_levels |= DP_VOLTAGE_0_4;
3443                 break;
3444         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3445                 signal_levels |= DP_VOLTAGE_0_6;
3446                 break;
3447         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3448                 signal_levels |= DP_VOLTAGE_0_8;
3449                 break;
3450         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3451                 signal_levels |= DP_VOLTAGE_1_2;
3452                 break;
3453         }
3454         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3455         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3456         default:
3457                 signal_levels |= DP_PRE_EMPHASIS_0;
3458                 break;
3459         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3460                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3461                 break;
3462         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3463                 signal_levels |= DP_PRE_EMPHASIS_6;
3464                 break;
3465         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3466                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3467                 break;
3468         }
3469         return signal_levels;
3470 }
3471
3472 /* Gen6's DP voltage swing and pre-emphasis control */
3473 static uint32_t
3474 gen6_edp_signal_levels(uint8_t train_set)
3475 {
3476         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3477                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3478         switch (signal_levels) {
3479         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3480         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3481                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3482         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3483                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3484         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3485         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3486                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3487         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3488         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3489                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3490         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3491         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3492                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3493         default:
3494                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3495                               "0x%x\n", signal_levels);
3496                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3497         }
3498 }
3499
3500 /* Gen7's DP voltage swing and pre-emphasis control */
3501 static uint32_t
3502 gen7_edp_signal_levels(uint8_t train_set)
3503 {
3504         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3505                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3506         switch (signal_levels) {
3507         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3508                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3509         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3510                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3511         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3512                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3513
3514         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3515                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3516         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3517                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3518
3519         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3520                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3521         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3522                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3523
3524         default:
3525                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3526                               "0x%x\n", signal_levels);
3527                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3528         }
3529 }
3530
3531 void
3532 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3533 {
3534         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3535         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3536         enum port port = intel_dig_port->base.port;
3537         uint32_t signal_levels, mask = 0;
3538         uint8_t train_set = intel_dp->train_set[0];
3539
3540         if (IS_GEN9_LP(dev_priv) || IS_CANNONLAKE(dev_priv)) {
3541                 signal_levels = bxt_signal_levels(intel_dp);
3542         } else if (HAS_DDI(dev_priv)) {
3543                 signal_levels = ddi_signal_levels(intel_dp);
3544                 mask = DDI_BUF_EMP_MASK;
3545         } else if (IS_CHERRYVIEW(dev_priv)) {
3546                 signal_levels = chv_signal_levels(intel_dp);
3547         } else if (IS_VALLEYVIEW(dev_priv)) {
3548                 signal_levels = vlv_signal_levels(intel_dp);
3549         } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3550                 signal_levels = gen7_edp_signal_levels(train_set);
3551                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3552         } else if (IS_GEN6(dev_priv) && port == PORT_A) {
3553                 signal_levels = gen6_edp_signal_levels(train_set);
3554                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3555         } else {
3556                 signal_levels = gen4_signal_levels(train_set);
3557                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3558         }
3559
3560         if (mask)
3561                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3562
3563         DRM_DEBUG_KMS("Using vswing level %d\n",
3564                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3565         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3566                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3567                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3568
3569         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3570
3571         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3572         POSTING_READ(intel_dp->output_reg);
3573 }
3574
3575 void
3576 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3577                                        uint8_t dp_train_pat)
3578 {
3579         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3580         struct drm_i915_private *dev_priv =
3581                 to_i915(intel_dig_port->base.base.dev);
3582
3583         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3584
3585         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3586         POSTING_READ(intel_dp->output_reg);
3587 }
3588
3589 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3590 {
3591         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3592         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3593         enum port port = intel_dig_port->base.port;
3594         uint32_t val;
3595
3596         if (!HAS_DDI(dev_priv))
3597                 return;
3598
3599         val = I915_READ(DP_TP_CTL(port));
3600         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3601         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3602         I915_WRITE(DP_TP_CTL(port), val);
3603
3604         /*
3605          * On PORT_A we can have only eDP in SST mode. There the only reason
3606          * we need to set idle transmission mode is to work around a HW issue
3607          * where we enable the pipe while not in idle link-training mode.
3608          * In this case there is requirement to wait for a minimum number of
3609          * idle patterns to be sent.
3610          */
3611         if (port == PORT_A)
3612                 return;
3613
3614         if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3615                                     DP_TP_STATUS_IDLE_DONE,
3616                                     DP_TP_STATUS_IDLE_DONE,
3617                                     1))
3618                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3619 }
3620
3621 static void
3622 intel_dp_link_down(struct intel_encoder *encoder,
3623                    const struct intel_crtc_state *old_crtc_state)
3624 {
3625         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3626         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3627         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
3628         enum port port = encoder->port;
3629         uint32_t DP = intel_dp->DP;
3630
3631         if (WARN_ON(HAS_DDI(dev_priv)))
3632                 return;
3633
3634         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3635                 return;
3636
3637         DRM_DEBUG_KMS("\n");
3638
3639         if ((IS_GEN7(dev_priv) && port == PORT_A) ||
3640             (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3641                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3642                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3643         } else {
3644                 if (IS_CHERRYVIEW(dev_priv))
3645                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3646                 else
3647                         DP &= ~DP_LINK_TRAIN_MASK;
3648                 DP |= DP_LINK_TRAIN_PAT_IDLE;
3649         }
3650         I915_WRITE(intel_dp->output_reg, DP);
3651         POSTING_READ(intel_dp->output_reg);
3652
3653         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3654         I915_WRITE(intel_dp->output_reg, DP);
3655         POSTING_READ(intel_dp->output_reg);
3656
3657         /*
3658          * HW workaround for IBX, we need to move the port
3659          * to transcoder A after disabling it to allow the
3660          * matching HDMI port to be enabled on transcoder A.
3661          */
3662         if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3663                 /*
3664                  * We get CPU/PCH FIFO underruns on the other pipe when
3665                  * doing the workaround. Sweep them under the rug.
3666                  */
3667                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3668                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3669
3670                 /* always enable with pattern 1 (as per spec) */
3671                 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3672                 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3673                 I915_WRITE(intel_dp->output_reg, DP);
3674                 POSTING_READ(intel_dp->output_reg);
3675
3676                 DP &= ~DP_PORT_EN;
3677                 I915_WRITE(intel_dp->output_reg, DP);
3678                 POSTING_READ(intel_dp->output_reg);
3679
3680                 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3681                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3682                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3683         }
3684
3685         msleep(intel_dp->panel_power_down_delay);
3686
3687         intel_dp->DP = DP;
3688
3689         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3690                 pps_lock(intel_dp);
3691                 intel_dp->active_pipe = INVALID_PIPE;
3692                 pps_unlock(intel_dp);
3693         }
3694 }
3695
3696 bool
3697 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3698 {
3699         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3700                              sizeof(intel_dp->dpcd)) < 0)
3701                 return false; /* aux transfer failed */
3702
3703         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3704
3705         return intel_dp->dpcd[DP_DPCD_REV] != 0;
3706 }
3707
3708 static bool
3709 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3710 {
3711         struct drm_i915_private *dev_priv =
3712                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3713
3714         /* this function is meant to be called only once */
3715         WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3716
3717         if (!intel_dp_read_dpcd(intel_dp))
3718                 return false;
3719
3720         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
3721                          drm_dp_is_branch(intel_dp->dpcd));
3722
3723         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3724                 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3725                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3726
3727         intel_psr_init_dpcd(intel_dp);
3728
3729         /*
3730          * Read the eDP display control registers.
3731          *
3732          * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
3733          * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
3734          * set, but require eDP 1.4+ detection (e.g. for supported link rates
3735          * method). The display control registers should read zero if they're
3736          * not supported anyway.
3737          */
3738         if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3739                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3740                              sizeof(intel_dp->edp_dpcd))
3741                 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3742                               intel_dp->edp_dpcd);
3743
3744         /* Read the eDP 1.4+ supported link rates. */
3745         if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
3746                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3747                 int i;
3748
3749                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3750                                 sink_rates, sizeof(sink_rates));
3751
3752                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3753                         int val = le16_to_cpu(sink_rates[i]);
3754
3755                         if (val == 0)
3756                                 break;
3757
3758                         /* Value read multiplied by 200kHz gives the per-lane
3759                          * link rate in kHz. The source rates are, however,
3760                          * stored in terms of LS_Clk kHz. The full conversion
3761                          * back to symbols is
3762                          * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
3763                          */
3764                         intel_dp->sink_rates[i] = (val * 200) / 10;
3765                 }
3766                 intel_dp->num_sink_rates = i;
3767         }
3768
3769         /*
3770          * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
3771          * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
3772          */
3773         if (intel_dp->num_sink_rates)
3774                 intel_dp->use_rate_select = true;
3775         else
3776                 intel_dp_set_sink_rates(intel_dp);
3777
3778         intel_dp_set_common_rates(intel_dp);
3779
3780         return true;
3781 }
3782
3783
3784 static bool
3785 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3786 {
3787         u8 sink_count;
3788
3789         if (!intel_dp_read_dpcd(intel_dp))
3790                 return false;
3791
3792         /* Don't clobber cached eDP rates. */
3793         if (!intel_dp_is_edp(intel_dp)) {
3794                 intel_dp_set_sink_rates(intel_dp);
3795                 intel_dp_set_common_rates(intel_dp);
3796         }
3797
3798         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &sink_count) <= 0)
3799                 return false;
3800
3801         /*
3802          * Sink count can change between short pulse hpd hence
3803          * a member variable in intel_dp will track any changes
3804          * between short pulse interrupts.
3805          */
3806         intel_dp->sink_count = DP_GET_SINK_COUNT(sink_count);
3807
3808         /*
3809          * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3810          * a dongle is present but no display. Unless we require to know
3811          * if a dongle is present or not, we don't need to update
3812          * downstream port information. So, an early return here saves
3813          * time from performing other operations which are not required.
3814          */
3815         if (!intel_dp_is_edp(intel_dp) && !intel_dp->sink_count)
3816                 return false;
3817
3818         if (!drm_dp_is_branch(intel_dp->dpcd))
3819                 return true; /* native DP sink */
3820
3821         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3822                 return true; /* no per-port downstream info */
3823
3824         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3825                              intel_dp->downstream_ports,
3826                              DP_MAX_DOWNSTREAM_PORTS) < 0)
3827                 return false; /* downstream port status fetch failed */
3828
3829         return true;
3830 }
3831
3832 static bool
3833 intel_dp_can_mst(struct intel_dp *intel_dp)
3834 {
3835         u8 mstm_cap;
3836
3837         if (!i915_modparams.enable_dp_mst)
3838                 return false;
3839
3840         if (!intel_dp->can_mst)
3841                 return false;
3842
3843         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3844                 return false;
3845
3846         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
3847                 return false;
3848
3849         return mstm_cap & DP_MST_CAP;
3850 }
3851
3852 static void
3853 intel_dp_configure_mst(struct intel_dp *intel_dp)
3854 {
3855         if (!i915_modparams.enable_dp_mst)
3856                 return;
3857
3858         if (!intel_dp->can_mst)
3859                 return;
3860
3861         intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3862
3863         if (intel_dp->is_mst)
3864                 DRM_DEBUG_KMS("Sink is MST capable\n");
3865         else
3866                 DRM_DEBUG_KMS("Sink is not MST capable\n");
3867
3868         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3869                                         intel_dp->is_mst);
3870 }
3871
3872 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp,
3873                                   struct intel_crtc_state *crtc_state, bool disable_wa)
3874 {
3875         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3876         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3877         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3878         u8 buf;
3879         int ret = 0;
3880         int count = 0;
3881         int attempts = 10;
3882
3883         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3884                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3885                 ret = -EIO;
3886                 goto out;
3887         }
3888
3889         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3890                                buf & ~DP_TEST_SINK_START) < 0) {
3891                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3892                 ret = -EIO;
3893                 goto out;
3894         }
3895
3896         do {
3897                 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3898
3899                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3900                                       DP_TEST_SINK_MISC, &buf) < 0) {
3901                         ret = -EIO;
3902                         goto out;
3903                 }
3904                 count = buf & DP_TEST_COUNT_MASK;
3905         } while (--attempts && count);
3906
3907         if (attempts == 0) {
3908                 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3909                 ret = -ETIMEDOUT;
3910         }
3911
3912  out:
3913         if (disable_wa)
3914                 hsw_enable_ips(crtc_state);
3915         return ret;
3916 }
3917
3918 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp,
3919                                    struct intel_crtc_state *crtc_state)
3920 {
3921         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3922         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3923         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3924         u8 buf;
3925         int ret;
3926
3927         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3928                 return -EIO;
3929
3930         if (!(buf & DP_TEST_CRC_SUPPORTED))
3931                 return -ENOTTY;
3932
3933         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3934                 return -EIO;
3935
3936         if (buf & DP_TEST_SINK_START) {
3937                 ret = intel_dp_sink_crc_stop(intel_dp, crtc_state, false);
3938                 if (ret)
3939                         return ret;
3940         }
3941
3942         hsw_disable_ips(crtc_state);
3943
3944         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3945                                buf | DP_TEST_SINK_START) < 0) {
3946                 hsw_enable_ips(crtc_state);
3947                 return -EIO;
3948         }
3949
3950         intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3951         return 0;
3952 }
3953
3954 int intel_dp_sink_crc(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state, u8 *crc)
3955 {
3956         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3957         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3958         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3959         u8 buf;
3960         int count, ret;
3961         int attempts = 6;
3962
3963         ret = intel_dp_sink_crc_start(intel_dp, crtc_state);
3964         if (ret)
3965                 return ret;
3966
3967         do {
3968                 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3969
3970                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3971                                       DP_TEST_SINK_MISC, &buf) < 0) {
3972                         ret = -EIO;
3973                         goto stop;
3974                 }
3975                 count = buf & DP_TEST_COUNT_MASK;
3976
3977         } while (--attempts && count == 0);
3978
3979         if (attempts == 0) {
3980                 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3981                 ret = -ETIMEDOUT;
3982                 goto stop;
3983         }
3984
3985         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3986                 ret = -EIO;
3987                 goto stop;
3988         }
3989
3990 stop:
3991         intel_dp_sink_crc_stop(intel_dp, crtc_state, true);
3992         return ret;
3993 }
3994
3995 static bool
3996 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3997 {
3998         return drm_dp_dpcd_readb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
3999                                  sink_irq_vector) == 1;
4000 }
4001
4002 static bool
4003 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4004 {
4005         return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4006                                 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4007                 DP_DPRX_ESI_LEN;
4008 }
4009
4010 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4011 {
4012         int status = 0;
4013         int test_link_rate;
4014         uint8_t test_lane_count, test_link_bw;
4015         /* (DP CTS 1.2)
4016          * 4.3.1.11
4017          */
4018         /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4019         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4020                                    &test_lane_count);
4021
4022         if (status <= 0) {
4023                 DRM_DEBUG_KMS("Lane count read failed\n");
4024                 return DP_TEST_NAK;
4025         }
4026         test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4027
4028         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4029                                    &test_link_bw);
4030         if (status <= 0) {
4031                 DRM_DEBUG_KMS("Link Rate read failed\n");
4032                 return DP_TEST_NAK;
4033         }
4034         test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4035
4036         /* Validate the requested link rate and lane count */
4037         if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4038                                         test_lane_count))
4039                 return DP_TEST_NAK;
4040
4041         intel_dp->compliance.test_lane_count = test_lane_count;
4042         intel_dp->compliance.test_link_rate = test_link_rate;
4043
4044         return DP_TEST_ACK;
4045 }
4046
4047 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4048 {
4049         uint8_t test_pattern;
4050         uint8_t test_misc;
4051         __be16 h_width, v_height;
4052         int status = 0;
4053
4054         /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4055         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4056                                    &test_pattern);
4057         if (status <= 0) {
4058                 DRM_DEBUG_KMS("Test pattern read failed\n");
4059                 return DP_TEST_NAK;
4060         }
4061         if (test_pattern != DP_COLOR_RAMP)
4062                 return DP_TEST_NAK;
4063
4064         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4065                                   &h_width, 2);
4066         if (status <= 0) {
4067                 DRM_DEBUG_KMS("H Width read failed\n");
4068                 return DP_TEST_NAK;
4069         }
4070
4071         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4072                                   &v_height, 2);
4073         if (status <= 0) {
4074                 DRM_DEBUG_KMS("V Height read failed\n");
4075                 return DP_TEST_NAK;
4076         }
4077
4078         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4079                                    &test_misc);
4080         if (status <= 0) {
4081                 DRM_DEBUG_KMS("TEST MISC read failed\n");
4082                 return DP_TEST_NAK;
4083         }
4084         if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4085                 return DP_TEST_NAK;
4086         if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4087                 return DP_TEST_NAK;
4088         switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4089         case DP_TEST_BIT_DEPTH_6:
4090                 intel_dp->compliance.test_data.bpc = 6;
4091                 break;
4092         case DP_TEST_BIT_DEPTH_8:
4093                 intel_dp->compliance.test_data.bpc = 8;
4094                 break;
4095         default:
4096                 return DP_TEST_NAK;
4097         }
4098
4099         intel_dp->compliance.test_data.video_pattern = test_pattern;
4100         intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4101         intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4102         /* Set test active flag here so userspace doesn't interrupt things */
4103         intel_dp->compliance.test_active = 1;
4104
4105         return DP_TEST_ACK;
4106 }
4107
4108 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4109 {
4110         uint8_t test_result = DP_TEST_ACK;
4111         struct intel_connector *intel_connector = intel_dp->attached_connector;
4112         struct drm_connector *connector = &intel_connector->base;
4113
4114         if (intel_connector->detect_edid == NULL ||
4115             connector->edid_corrupt ||
4116             intel_dp->aux.i2c_defer_count > 6) {
4117                 /* Check EDID read for NACKs, DEFERs and corruption
4118                  * (DP CTS 1.2 Core r1.1)
4119                  *    4.2.2.4 : Failed EDID read, I2C_NAK
4120                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
4121                  *    4.2.2.6 : EDID corruption detected
4122                  * Use failsafe mode for all cases
4123                  */
4124                 if (intel_dp->aux.i2c_nack_count > 0 ||
4125                         intel_dp->aux.i2c_defer_count > 0)
4126                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4127                                       intel_dp->aux.i2c_nack_count,
4128                                       intel_dp->aux.i2c_defer_count);
4129                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4130         } else {
4131                 struct edid *block = intel_connector->detect_edid;
4132
4133                 /* We have to write the checksum
4134                  * of the last block read
4135                  */
4136                 block += intel_connector->detect_edid->extensions;
4137
4138                 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4139                                        block->checksum) <= 0)
4140                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4141
4142                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4143                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4144         }
4145
4146         /* Set test active flag here so userspace doesn't interrupt things */
4147         intel_dp->compliance.test_active = 1;
4148
4149         return test_result;
4150 }
4151
4152 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4153 {
4154         uint8_t test_result = DP_TEST_NAK;
4155         return test_result;
4156 }
4157
4158 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4159 {
4160         uint8_t response = DP_TEST_NAK;
4161         uint8_t request = 0;
4162         int status;
4163
4164         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4165         if (status <= 0) {
4166                 DRM_DEBUG_KMS("Could not read test request from sink\n");
4167                 goto update_status;
4168         }
4169
4170         switch (request) {
4171         case DP_TEST_LINK_TRAINING:
4172                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4173                 response = intel_dp_autotest_link_training(intel_dp);
4174                 break;
4175         case DP_TEST_LINK_VIDEO_PATTERN:
4176                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4177                 response = intel_dp_autotest_video_pattern(intel_dp);
4178                 break;
4179         case DP_TEST_LINK_EDID_READ:
4180                 DRM_DEBUG_KMS("EDID test requested\n");
4181                 response = intel_dp_autotest_edid(intel_dp);
4182                 break;
4183         case DP_TEST_LINK_PHY_TEST_PATTERN:
4184                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4185                 response = intel_dp_autotest_phy_pattern(intel_dp);
4186                 break;
4187         default:
4188                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4189                 break;
4190         }
4191
4192         if (response & DP_TEST_ACK)
4193                 intel_dp->compliance.test_type = request;
4194
4195 update_status:
4196         status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4197         if (status <= 0)
4198                 DRM_DEBUG_KMS("Could not write test response to sink\n");
4199 }
4200
4201 static int
4202 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4203 {
4204         bool bret;
4205
4206         if (intel_dp->is_mst) {
4207                 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4208                 int ret = 0;
4209                 int retry;
4210                 bool handled;
4211                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4212 go_again:
4213                 if (bret == true) {
4214
4215                         /* check link status - esi[10] = 0x200c */
4216                         if (intel_dp->active_mst_links &&
4217                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4218                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4219                                 intel_dp_start_link_train(intel_dp);
4220                                 intel_dp_stop_link_train(intel_dp);
4221                         }
4222
4223                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
4224                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4225
4226                         if (handled) {
4227                                 for (retry = 0; retry < 3; retry++) {
4228                                         int wret;
4229                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
4230                                                                  DP_SINK_COUNT_ESI+1,
4231                                                                  &esi[1], 3);
4232                                         if (wret == 3) {
4233                                                 break;
4234                                         }
4235                                 }
4236
4237                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4238                                 if (bret == true) {
4239                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4240                                         goto go_again;
4241                                 }
4242                         } else
4243                                 ret = 0;
4244
4245                         return ret;
4246                 } else {
4247                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4248                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4249                         intel_dp->is_mst = false;
4250                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4251                         /* send a hotplug event */
4252                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4253                 }
4254         }
4255         return -EINVAL;
4256 }
4257
4258 static bool
4259 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
4260 {
4261         u8 link_status[DP_LINK_STATUS_SIZE];
4262
4263         if (!intel_dp->link_trained)
4264                 return false;
4265
4266         if (!intel_dp_get_link_status(intel_dp, link_status))
4267                 return false;
4268
4269         /*
4270          * Validate the cached values of intel_dp->link_rate and
4271          * intel_dp->lane_count before attempting to retrain.
4272          */
4273         if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
4274                                         intel_dp->lane_count))
4275                 return false;
4276
4277         /* Retrain if Channel EQ or CR not ok */
4278         return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
4279 }
4280
4281 /*
4282  * If display is now connected check links status,
4283  * there has been known issues of link loss triggering
4284  * long pulse.
4285  *
4286  * Some sinks (eg. ASUS PB287Q) seem to perform some
4287  * weird HPD ping pong during modesets. So we can apparently
4288  * end up with HPD going low during a modeset, and then
4289  * going back up soon after. And once that happens we must
4290  * retrain the link to get a picture. That's in case no
4291  * userspace component reacted to intermittent HPD dip.
4292  */
4293 int intel_dp_retrain_link(struct intel_encoder *encoder,
4294                           struct drm_modeset_acquire_ctx *ctx)
4295 {
4296         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4297         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4298         struct intel_connector *connector = intel_dp->attached_connector;
4299         struct drm_connector_state *conn_state;
4300         struct intel_crtc_state *crtc_state;
4301         struct intel_crtc *crtc;
4302         int ret;
4303
4304         /* FIXME handle the MST connectors as well */
4305
4306         if (!connector || connector->base.status != connector_status_connected)
4307                 return 0;
4308
4309         ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
4310                                ctx);
4311         if (ret)
4312                 return ret;
4313
4314         conn_state = connector->base.state;
4315
4316         crtc = to_intel_crtc(conn_state->crtc);
4317         if (!crtc)
4318                 return 0;
4319
4320         ret = drm_modeset_lock(&crtc->base.mutex, ctx);
4321         if (ret)
4322                 return ret;
4323
4324         crtc_state = to_intel_crtc_state(crtc->base.state);
4325
4326         WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
4327
4328         if (!crtc_state->base.active)
4329                 return 0;
4330
4331         if (conn_state->commit &&
4332             !try_wait_for_completion(&conn_state->commit->hw_done))
4333                 return 0;
4334
4335         if (!intel_dp_needs_link_retrain(intel_dp))
4336                 return 0;
4337
4338         /* Suppress underruns caused by re-training */
4339         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4340         if (crtc->config->has_pch_encoder)
4341                 intel_set_pch_fifo_underrun_reporting(dev_priv,
4342                                                       intel_crtc_pch_transcoder(crtc), false);
4343
4344         intel_dp_start_link_train(intel_dp);
4345         intel_dp_stop_link_train(intel_dp);
4346
4347         /* Keep underrun reporting disabled until things are stable */
4348         intel_wait_for_vblank(dev_priv, crtc->pipe);
4349
4350         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4351         if (crtc->config->has_pch_encoder)
4352                 intel_set_pch_fifo_underrun_reporting(dev_priv,
4353                                                       intel_crtc_pch_transcoder(crtc), true);
4354
4355         return 0;
4356 }
4357
4358 /*
4359  * If display is now connected check links status,
4360  * there has been known issues of link loss triggering
4361  * long pulse.
4362  *
4363  * Some sinks (eg. ASUS PB287Q) seem to perform some
4364  * weird HPD ping pong during modesets. So we can apparently
4365  * end up with HPD going low during a modeset, and then
4366  * going back up soon after. And once that happens we must
4367  * retrain the link to get a picture. That's in case no
4368  * userspace component reacted to intermittent HPD dip.
4369  */
4370 static bool intel_dp_hotplug(struct intel_encoder *encoder,
4371                              struct intel_connector *connector)
4372 {
4373         struct drm_modeset_acquire_ctx ctx;
4374         bool changed;
4375         int ret;
4376
4377         changed = intel_encoder_hotplug(encoder, connector);
4378
4379         drm_modeset_acquire_init(&ctx, 0);
4380
4381         for (;;) {
4382                 ret = intel_dp_retrain_link(encoder, &ctx);
4383
4384                 if (ret == -EDEADLK) {
4385                         drm_modeset_backoff(&ctx);
4386                         continue;
4387                 }
4388
4389                 break;
4390         }
4391
4392         drm_modeset_drop_locks(&ctx);
4393         drm_modeset_acquire_fini(&ctx);
4394         WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4395
4396         return changed;
4397 }
4398
4399 /*
4400  * According to DP spec
4401  * 5.1.2:
4402  *  1. Read DPCD
4403  *  2. Configure link according to Receiver Capabilities
4404  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4405  *  4. Check link status on receipt of hot-plug interrupt
4406  *
4407  * intel_dp_short_pulse -  handles short pulse interrupts
4408  * when full detection is not required.
4409  * Returns %true if short pulse is handled and full detection
4410  * is NOT required and %false otherwise.
4411  */
4412 static bool
4413 intel_dp_short_pulse(struct intel_dp *intel_dp)
4414 {
4415         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
4416         u8 sink_irq_vector = 0;
4417         u8 old_sink_count = intel_dp->sink_count;
4418         bool ret;
4419
4420         /*
4421          * Clearing compliance test variables to allow capturing
4422          * of values for next automated test request.
4423          */
4424         memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4425
4426         /*
4427          * Now read the DPCD to see if it's actually running
4428          * If the current value of sink count doesn't match with
4429          * the value that was stored earlier or dpcd read failed
4430          * we need to do full detection
4431          */
4432         ret = intel_dp_get_dpcd(intel_dp);
4433
4434         if ((old_sink_count != intel_dp->sink_count) || !ret) {
4435                 /* No need to proceed if we are going to do full detect */
4436                 return false;
4437         }
4438
4439         /* Try to read the source of the interrupt */
4440         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4441             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4442             sink_irq_vector != 0) {
4443                 /* Clear interrupt source */
4444                 drm_dp_dpcd_writeb(&intel_dp->aux,
4445                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4446                                    sink_irq_vector);
4447
4448                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4449                         intel_dp_handle_test_request(intel_dp);
4450                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4451                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4452         }
4453
4454         /* defer to the hotplug work for link retraining if needed */
4455         if (intel_dp_needs_link_retrain(intel_dp))
4456                 return false;
4457
4458         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
4459                 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
4460                 /* Send a Hotplug Uevent to userspace to start modeset */
4461                 drm_kms_helper_hotplug_event(&dev_priv->drm);
4462         }
4463
4464         return true;
4465 }
4466
4467 /* XXX this is probably wrong for multiple downstream ports */
4468 static enum drm_connector_status
4469 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4470 {
4471         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4472         uint8_t *dpcd = intel_dp->dpcd;
4473         uint8_t type;
4474
4475         if (lspcon->active)
4476                 lspcon_resume(lspcon);
4477
4478         if (!intel_dp_get_dpcd(intel_dp))
4479                 return connector_status_disconnected;
4480
4481         if (intel_dp_is_edp(intel_dp))
4482                 return connector_status_connected;
4483
4484         /* if there's no downstream port, we're done */
4485         if (!drm_dp_is_branch(dpcd))
4486                 return connector_status_connected;
4487
4488         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4489         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4490             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4491
4492                 return intel_dp->sink_count ?
4493                 connector_status_connected : connector_status_disconnected;
4494         }
4495
4496         if (intel_dp_can_mst(intel_dp))
4497                 return connector_status_connected;
4498
4499         /* If no HPD, poke DDC gently */
4500         if (drm_probe_ddc(&intel_dp->aux.ddc))
4501                 return connector_status_connected;
4502
4503         /* Well we tried, say unknown for unreliable port types */
4504         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4505                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4506                 if (type == DP_DS_PORT_TYPE_VGA ||
4507                     type == DP_DS_PORT_TYPE_NON_EDID)
4508                         return connector_status_unknown;
4509         } else {
4510                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4511                         DP_DWN_STRM_PORT_TYPE_MASK;
4512                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4513                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4514                         return connector_status_unknown;
4515         }
4516
4517         /* Anything else is out of spec, warn and ignore */
4518         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4519         return connector_status_disconnected;
4520 }
4521
4522 static enum drm_connector_status
4523 edp_detect(struct intel_dp *intel_dp)
4524 {
4525         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
4526         enum drm_connector_status status;
4527
4528         status = intel_panel_detect(dev_priv);
4529         if (status == connector_status_unknown)
4530                 status = connector_status_connected;
4531
4532         return status;
4533 }
4534
4535 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
4536 {
4537         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4538         u32 bit;
4539
4540         switch (encoder->hpd_pin) {
4541         case HPD_PORT_B:
4542                 bit = SDE_PORTB_HOTPLUG;
4543                 break;
4544         case HPD_PORT_C:
4545                 bit = SDE_PORTC_HOTPLUG;
4546                 break;
4547         case HPD_PORT_D:
4548                 bit = SDE_PORTD_HOTPLUG;
4549                 break;
4550         default:
4551                 MISSING_CASE(encoder->hpd_pin);
4552                 return false;
4553         }
4554
4555         return I915_READ(SDEISR) & bit;
4556 }
4557
4558 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
4559 {
4560         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4561         u32 bit;
4562
4563         switch (encoder->hpd_pin) {
4564         case HPD_PORT_B:
4565                 bit = SDE_PORTB_HOTPLUG_CPT;
4566                 break;
4567         case HPD_PORT_C:
4568                 bit = SDE_PORTC_HOTPLUG_CPT;
4569                 break;
4570         case HPD_PORT_D:
4571                 bit = SDE_PORTD_HOTPLUG_CPT;
4572                 break;
4573         default:
4574                 MISSING_CASE(encoder->hpd_pin);
4575                 return false;
4576         }
4577
4578         return I915_READ(SDEISR) & bit;
4579 }
4580
4581 static bool spt_digital_port_connected(struct intel_encoder *encoder)
4582 {
4583         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4584         u32 bit;
4585
4586         switch (encoder->hpd_pin) {
4587         case HPD_PORT_A:
4588                 bit = SDE_PORTA_HOTPLUG_SPT;
4589                 break;
4590         case HPD_PORT_E:
4591                 bit = SDE_PORTE_HOTPLUG_SPT;
4592                 break;
4593         default:
4594                 return cpt_digital_port_connected(encoder);
4595         }
4596
4597         return I915_READ(SDEISR) & bit;
4598 }
4599
4600 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
4601 {
4602         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4603         u32 bit;
4604
4605         switch (encoder->hpd_pin) {
4606         case HPD_PORT_B:
4607                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4608                 break;
4609         case HPD_PORT_C:
4610                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4611                 break;
4612         case HPD_PORT_D:
4613                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4614                 break;
4615         default:
4616                 MISSING_CASE(encoder->hpd_pin);
4617                 return false;
4618         }
4619
4620         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4621 }
4622
4623 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
4624 {
4625         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4626         u32 bit;
4627
4628         switch (encoder->hpd_pin) {
4629         case HPD_PORT_B:
4630                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4631                 break;
4632         case HPD_PORT_C:
4633                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4634                 break;
4635         case HPD_PORT_D:
4636                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4637                 break;
4638         default:
4639                 MISSING_CASE(encoder->hpd_pin);
4640                 return false;
4641         }
4642
4643         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4644 }
4645
4646 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
4647 {
4648         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4649
4650         if (encoder->hpd_pin == HPD_PORT_A)
4651                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
4652         else
4653                 return ibx_digital_port_connected(encoder);
4654 }
4655
4656 static bool snb_digital_port_connected(struct intel_encoder *encoder)
4657 {
4658         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4659
4660         if (encoder->hpd_pin == HPD_PORT_A)
4661                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
4662         else
4663                 return cpt_digital_port_connected(encoder);
4664 }
4665
4666 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
4667 {
4668         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4669
4670         if (encoder->hpd_pin == HPD_PORT_A)
4671                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
4672         else
4673                 return cpt_digital_port_connected(encoder);
4674 }
4675
4676 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
4677 {
4678         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4679
4680         if (encoder->hpd_pin == HPD_PORT_A)
4681                 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
4682         else
4683                 return cpt_digital_port_connected(encoder);
4684 }
4685
4686 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
4687 {
4688         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4689         u32 bit;
4690
4691         switch (encoder->hpd_pin) {
4692         case HPD_PORT_A:
4693                 bit = BXT_DE_PORT_HP_DDIA;
4694                 break;
4695         case HPD_PORT_B:
4696                 bit = BXT_DE_PORT_HP_DDIB;
4697                 break;
4698         case HPD_PORT_C:
4699                 bit = BXT_DE_PORT_HP_DDIC;
4700                 break;
4701         default:
4702                 MISSING_CASE(encoder->hpd_pin);
4703                 return false;
4704         }
4705
4706         return I915_READ(GEN8_DE_PORT_ISR) & bit;
4707 }
4708
4709 /*
4710  * intel_digital_port_connected - is the specified port connected?
4711  * @encoder: intel_encoder
4712  *
4713  * Return %true if port is connected, %false otherwise.
4714  */
4715 bool intel_digital_port_connected(struct intel_encoder *encoder)
4716 {
4717         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4718
4719         if (HAS_GMCH_DISPLAY(dev_priv)) {
4720                 if (IS_GM45(dev_priv))
4721                         return gm45_digital_port_connected(encoder);
4722                 else
4723                         return g4x_digital_port_connected(encoder);
4724         }
4725
4726         if (IS_GEN5(dev_priv))
4727                 return ilk_digital_port_connected(encoder);
4728         else if (IS_GEN6(dev_priv))
4729                 return snb_digital_port_connected(encoder);
4730         else if (IS_GEN7(dev_priv))
4731                 return ivb_digital_port_connected(encoder);
4732         else if (IS_GEN8(dev_priv))
4733                 return bdw_digital_port_connected(encoder);
4734         else if (IS_GEN9_LP(dev_priv))
4735                 return bxt_digital_port_connected(encoder);
4736         else
4737                 return spt_digital_port_connected(encoder);
4738 }
4739
4740 static struct edid *
4741 intel_dp_get_edid(struct intel_dp *intel_dp)
4742 {
4743         struct intel_connector *intel_connector = intel_dp->attached_connector;
4744
4745         /* use cached edid if we have one */
4746         if (intel_connector->edid) {
4747                 /* invalid edid */
4748                 if (IS_ERR(intel_connector->edid))
4749                         return NULL;
4750
4751                 return drm_edid_duplicate(intel_connector->edid);
4752         } else
4753                 return drm_get_edid(&intel_connector->base,
4754                                     &intel_dp->aux.ddc);
4755 }
4756
4757 static void
4758 intel_dp_set_edid(struct intel_dp *intel_dp)
4759 {
4760         struct intel_connector *intel_connector = intel_dp->attached_connector;
4761         struct edid *edid;
4762
4763         intel_dp_unset_edid(intel_dp);
4764         edid = intel_dp_get_edid(intel_dp);
4765         intel_connector->detect_edid = edid;
4766
4767         intel_dp->has_audio = drm_detect_monitor_audio(edid);
4768 }
4769
4770 static void
4771 intel_dp_unset_edid(struct intel_dp *intel_dp)
4772 {
4773         struct intel_connector *intel_connector = intel_dp->attached_connector;
4774
4775         kfree(intel_connector->detect_edid);
4776         intel_connector->detect_edid = NULL;
4777
4778         intel_dp->has_audio = false;
4779 }
4780
4781 static int
4782 intel_dp_long_pulse(struct intel_connector *connector)
4783 {
4784         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
4785         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
4786         enum drm_connector_status status;
4787         u8 sink_irq_vector = 0;
4788
4789         WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
4790
4791         intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
4792
4793         /* Can't disconnect eDP, but you can close the lid... */
4794         if (intel_dp_is_edp(intel_dp))
4795                 status = edp_detect(intel_dp);
4796         else if (intel_digital_port_connected(&dp_to_dig_port(intel_dp)->base))
4797                 status = intel_dp_detect_dpcd(intel_dp);
4798         else
4799                 status = connector_status_disconnected;
4800
4801         if (status == connector_status_disconnected) {
4802                 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4803
4804                 if (intel_dp->is_mst) {
4805                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4806                                       intel_dp->is_mst,
4807                                       intel_dp->mst_mgr.mst_state);
4808                         intel_dp->is_mst = false;
4809                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4810                                                         intel_dp->is_mst);
4811                 }
4812
4813                 goto out;
4814         }
4815
4816         if (intel_dp->reset_link_params) {
4817                 /* Initial max link lane count */
4818                 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
4819
4820                 /* Initial max link rate */
4821                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
4822
4823                 intel_dp->reset_link_params = false;
4824         }
4825
4826         intel_dp_print_rates(intel_dp);
4827
4828         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4829                          drm_dp_is_branch(intel_dp->dpcd));
4830
4831         intel_dp_configure_mst(intel_dp);
4832
4833         if (intel_dp->is_mst) {
4834                 /*
4835                  * If we are in MST mode then this connector
4836                  * won't appear connected or have anything
4837                  * with EDID on it
4838                  */
4839                 status = connector_status_disconnected;
4840                 goto out;
4841         }
4842
4843         /*
4844          * Clearing NACK and defer counts to get their exact values
4845          * while reading EDID which are required by Compliance tests
4846          * 4.2.2.4 and 4.2.2.5
4847          */
4848         intel_dp->aux.i2c_nack_count = 0;
4849         intel_dp->aux.i2c_defer_count = 0;
4850
4851         intel_dp_set_edid(intel_dp);
4852         if (intel_dp_is_edp(intel_dp) || connector->detect_edid)
4853                 status = connector_status_connected;
4854         intel_dp->detect_done = true;
4855
4856         /* Try to read the source of the interrupt */
4857         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4858             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4859             sink_irq_vector != 0) {
4860                 /* Clear interrupt source */
4861                 drm_dp_dpcd_writeb(&intel_dp->aux,
4862                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4863                                    sink_irq_vector);
4864
4865                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4866                         intel_dp_handle_test_request(intel_dp);
4867                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4868                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4869         }
4870
4871 out:
4872         if (status != connector_status_connected && !intel_dp->is_mst)
4873                 intel_dp_unset_edid(intel_dp);
4874
4875         intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
4876         return status;
4877 }
4878
4879 static int
4880 intel_dp_detect(struct drm_connector *connector,
4881                 struct drm_modeset_acquire_ctx *ctx,
4882                 bool force)
4883 {
4884         struct intel_dp *intel_dp = intel_attached_dp(connector);
4885         int status = connector->status;
4886
4887         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4888                       connector->base.id, connector->name);
4889
4890         /* If full detect is not performed yet, do a full detect */
4891         if (!intel_dp->detect_done) {
4892                 struct drm_crtc *crtc;
4893                 int ret;
4894
4895                 crtc = connector->state->crtc;
4896                 if (crtc) {
4897                         ret = drm_modeset_lock(&crtc->mutex, ctx);
4898                         if (ret)
4899                                 return ret;
4900                 }
4901
4902                 status = intel_dp_long_pulse(intel_dp->attached_connector);
4903         }
4904
4905         intel_dp->detect_done = false;
4906
4907         return status;
4908 }
4909
4910 static void
4911 intel_dp_force(struct drm_connector *connector)
4912 {
4913         struct intel_dp *intel_dp = intel_attached_dp(connector);
4914         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4915         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4916
4917         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4918                       connector->base.id, connector->name);
4919         intel_dp_unset_edid(intel_dp);
4920
4921         if (connector->status != connector_status_connected)
4922                 return;
4923
4924         intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
4925
4926         intel_dp_set_edid(intel_dp);
4927
4928         intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
4929 }
4930
4931 static int intel_dp_get_modes(struct drm_connector *connector)
4932 {
4933         struct intel_connector *intel_connector = to_intel_connector(connector);
4934         struct edid *edid;
4935
4936         edid = intel_connector->detect_edid;
4937         if (edid) {
4938                 int ret = intel_connector_update_modes(connector, edid);
4939                 if (ret)
4940                         return ret;
4941         }
4942
4943         /* if eDP has no EDID, fall back to fixed mode */
4944         if (intel_dp_is_edp(intel_attached_dp(connector)) &&
4945             intel_connector->panel.fixed_mode) {
4946                 struct drm_display_mode *mode;
4947
4948                 mode = drm_mode_duplicate(connector->dev,
4949                                           intel_connector->panel.fixed_mode);
4950                 if (mode) {
4951                         drm_mode_probed_add(connector, mode);
4952                         return 1;
4953                 }
4954         }
4955
4956         return 0;
4957 }
4958
4959 static int
4960 intel_dp_connector_register(struct drm_connector *connector)
4961 {
4962         struct intel_dp *intel_dp = intel_attached_dp(connector);
4963         int ret;
4964
4965         ret = intel_connector_register(connector);
4966         if (ret)
4967                 return ret;
4968
4969         i915_debugfs_connector_add(connector);
4970
4971         DRM_DEBUG_KMS("registering %s bus for %s\n",
4972                       intel_dp->aux.name, connector->kdev->kobj.name);
4973
4974         intel_dp->aux.dev = connector->kdev;
4975         return drm_dp_aux_register(&intel_dp->aux);
4976 }
4977
4978 static void
4979 intel_dp_connector_unregister(struct drm_connector *connector)
4980 {
4981         drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4982         intel_connector_unregister(connector);
4983 }
4984
4985 static void
4986 intel_dp_connector_destroy(struct drm_connector *connector)
4987 {
4988         struct intel_connector *intel_connector = to_intel_connector(connector);
4989
4990         kfree(intel_connector->detect_edid);
4991
4992         if (!IS_ERR_OR_NULL(intel_connector->edid))
4993                 kfree(intel_connector->edid);
4994
4995         /*
4996          * Can't call intel_dp_is_edp() since the encoder may have been
4997          * destroyed already.
4998          */
4999         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5000                 intel_panel_fini(&intel_connector->panel);
5001
5002         drm_connector_cleanup(connector);
5003         kfree(connector);
5004 }
5005
5006 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5007 {
5008         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5009         struct intel_dp *intel_dp = &intel_dig_port->dp;
5010
5011         intel_dp_mst_encoder_cleanup(intel_dig_port);
5012         if (intel_dp_is_edp(intel_dp)) {
5013                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5014                 /*
5015                  * vdd might still be enabled do to the delayed vdd off.
5016                  * Make sure vdd is actually turned off here.
5017                  */
5018                 pps_lock(intel_dp);
5019                 edp_panel_vdd_off_sync(intel_dp);
5020                 pps_unlock(intel_dp);
5021
5022                 if (intel_dp->edp_notifier.notifier_call) {
5023                         unregister_reboot_notifier(&intel_dp->edp_notifier);
5024                         intel_dp->edp_notifier.notifier_call = NULL;
5025                 }
5026         }
5027
5028         intel_dp_aux_fini(intel_dp);
5029
5030         drm_encoder_cleanup(encoder);
5031         kfree(intel_dig_port);
5032 }
5033
5034 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5035 {
5036         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5037
5038         if (!intel_dp_is_edp(intel_dp))
5039                 return;
5040
5041         /*
5042          * vdd might still be enabled do to the delayed vdd off.
5043          * Make sure vdd is actually turned off here.
5044          */
5045         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5046         pps_lock(intel_dp);
5047         edp_panel_vdd_off_sync(intel_dp);
5048         pps_unlock(intel_dp);
5049 }
5050
5051 static
5052 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5053                                 u8 *an)
5054 {
5055         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5056         static const struct drm_dp_aux_msg msg = {
5057                 .request = DP_AUX_NATIVE_WRITE,
5058                 .address = DP_AUX_HDCP_AKSV,
5059                 .size = DRM_HDCP_KSV_LEN,
5060         };
5061         uint8_t txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5062         ssize_t dpcd_ret;
5063         int ret;
5064
5065         /* Output An first, that's easy */
5066         dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5067                                      an, DRM_HDCP_AN_LEN);
5068         if (dpcd_ret != DRM_HDCP_AN_LEN) {
5069                 DRM_ERROR("Failed to write An over DP/AUX (%zd)\n", dpcd_ret);
5070                 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5071         }
5072
5073         /*
5074          * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5075          * order to get it on the wire, we need to create the AUX header as if
5076          * we were writing the data, and then tickle the hardware to output the
5077          * data once the header is sent out.
5078          */
5079         intel_dp_aux_header(txbuf, &msg);
5080
5081         ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5082                                 rxbuf, sizeof(rxbuf),
5083                                 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5084         if (ret < 0) {
5085                 DRM_ERROR("Write Aksv over DP/AUX failed (%d)\n", ret);
5086                 return ret;
5087         } else if (ret == 0) {
5088                 DRM_ERROR("Aksv write over DP/AUX was empty\n");
5089                 return -EIO;
5090         }
5091
5092         reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5093         return reply == DP_AUX_NATIVE_REPLY_ACK ? 0 : -EIO;
5094 }
5095
5096 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5097                                    u8 *bksv)
5098 {
5099         ssize_t ret;
5100         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5101                                DRM_HDCP_KSV_LEN);
5102         if (ret != DRM_HDCP_KSV_LEN) {
5103                 DRM_ERROR("Read Bksv from DP/AUX failed (%zd)\n", ret);
5104                 return ret >= 0 ? -EIO : ret;
5105         }
5106         return 0;
5107 }
5108
5109 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5110                                       u8 *bstatus)
5111 {
5112         ssize_t ret;
5113         /*
5114          * For some reason the HDMI and DP HDCP specs call this register
5115          * definition by different names. In the HDMI spec, it's called BSTATUS,
5116          * but in DP it's called BINFO.
5117          */
5118         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5119                                bstatus, DRM_HDCP_BSTATUS_LEN);
5120         if (ret != DRM_HDCP_BSTATUS_LEN) {
5121                 DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
5122                 return ret >= 0 ? -EIO : ret;
5123         }
5124         return 0;
5125 }
5126
5127 static
5128 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5129                              u8 *bcaps)
5130 {
5131         ssize_t ret;
5132
5133         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5134                                bcaps, 1);
5135         if (ret != 1) {
5136                 DRM_ERROR("Read bcaps from DP/AUX failed (%zd)\n", ret);
5137                 return ret >= 0 ? -EIO : ret;
5138         }
5139
5140         return 0;
5141 }
5142
5143 static
5144 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
5145                                    bool *repeater_present)
5146 {
5147         ssize_t ret;
5148         u8 bcaps;
5149
5150         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5151         if (ret)
5152                 return ret;
5153
5154         *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
5155         return 0;
5156 }
5157
5158 static
5159 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
5160                                 u8 *ri_prime)
5161 {
5162         ssize_t ret;
5163         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
5164                                ri_prime, DRM_HDCP_RI_LEN);
5165         if (ret != DRM_HDCP_RI_LEN) {
5166                 DRM_ERROR("Read Ri' from DP/AUX failed (%zd)\n", ret);
5167                 return ret >= 0 ? -EIO : ret;
5168         }
5169         return 0;
5170 }
5171
5172 static
5173 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
5174                                  bool *ksv_ready)
5175 {
5176         ssize_t ret;
5177         u8 bstatus;
5178         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5179                                &bstatus, 1);
5180         if (ret != 1) {
5181                 DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
5182                 return ret >= 0 ? -EIO : ret;
5183         }
5184         *ksv_ready = bstatus & DP_BSTATUS_READY;
5185         return 0;
5186 }
5187
5188 static
5189 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
5190                                 int num_downstream, u8 *ksv_fifo)
5191 {
5192         ssize_t ret;
5193         int i;
5194
5195         /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
5196         for (i = 0; i < num_downstream; i += 3) {
5197                 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
5198                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5199                                        DP_AUX_HDCP_KSV_FIFO,
5200                                        ksv_fifo + i * DRM_HDCP_KSV_LEN,
5201                                        len);
5202                 if (ret != len) {
5203                         DRM_ERROR("Read ksv[%d] from DP/AUX failed (%zd)\n", i,
5204                                   ret);
5205                         return ret >= 0 ? -EIO : ret;
5206                 }
5207         }
5208         return 0;
5209 }
5210
5211 static
5212 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
5213                                     int i, u32 *part)
5214 {
5215         ssize_t ret;
5216
5217         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
5218                 return -EINVAL;
5219
5220         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5221                                DP_AUX_HDCP_V_PRIME(i), part,
5222                                DRM_HDCP_V_PRIME_PART_LEN);
5223         if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5224                 DRM_ERROR("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5225                 return ret >= 0 ? -EIO : ret;
5226         }
5227         return 0;
5228 }
5229
5230 static
5231 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
5232                                     bool enable)
5233 {
5234         /* Not used for single stream DisplayPort setups */
5235         return 0;
5236 }
5237
5238 static
5239 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
5240 {
5241         ssize_t ret;
5242         u8 bstatus;
5243
5244         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5245                                &bstatus, 1);
5246         if (ret != 1) {
5247                 DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
5248                 return false;
5249         }
5250
5251         return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
5252 }
5253
5254 static
5255 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
5256                           bool *hdcp_capable)
5257 {
5258         ssize_t ret;
5259         u8 bcaps;
5260
5261         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5262         if (ret)
5263                 return ret;
5264
5265         *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
5266         return 0;
5267 }
5268
5269 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
5270         .write_an_aksv = intel_dp_hdcp_write_an_aksv,
5271         .read_bksv = intel_dp_hdcp_read_bksv,
5272         .read_bstatus = intel_dp_hdcp_read_bstatus,
5273         .repeater_present = intel_dp_hdcp_repeater_present,
5274         .read_ri_prime = intel_dp_hdcp_read_ri_prime,
5275         .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
5276         .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
5277         .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
5278         .toggle_signalling = intel_dp_hdcp_toggle_signalling,
5279         .check_link = intel_dp_hdcp_check_link,
5280         .hdcp_capable = intel_dp_hdcp_capable,
5281 };
5282
5283 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
5284 {
5285         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5286
5287         lockdep_assert_held(&dev_priv->pps_mutex);
5288
5289         if (!edp_have_panel_vdd(intel_dp))
5290                 return;
5291
5292         /*
5293          * The VDD bit needs a power domain reference, so if the bit is
5294          * already enabled when we boot or resume, grab this reference and
5295          * schedule a vdd off, so we don't hold on to the reference
5296          * indefinitely.
5297          */
5298         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5299         intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5300
5301         edp_panel_vdd_schedule_off(intel_dp);
5302 }
5303
5304 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
5305 {
5306         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5307
5308         if ((intel_dp->DP & DP_PORT_EN) == 0)
5309                 return INVALID_PIPE;
5310
5311         if (IS_CHERRYVIEW(dev_priv))
5312                 return DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5313         else
5314                 return PORT_TO_PIPE(intel_dp->DP);
5315 }
5316
5317 void intel_dp_encoder_reset(struct drm_encoder *encoder)
5318 {
5319         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
5320         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5321         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5322
5323         if (!HAS_DDI(dev_priv))
5324                 intel_dp->DP = I915_READ(intel_dp->output_reg);
5325
5326         if (lspcon->active)
5327                 lspcon_resume(lspcon);
5328
5329         intel_dp->reset_link_params = true;
5330
5331         pps_lock(intel_dp);
5332
5333         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5334                 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
5335
5336         if (intel_dp_is_edp(intel_dp)) {
5337                 /* Reinit the power sequencer, in case BIOS did something with it. */
5338                 intel_dp_pps_init(intel_dp);
5339                 intel_edp_panel_vdd_sanitize(intel_dp);
5340         }
5341
5342         pps_unlock(intel_dp);
5343 }
5344
5345 static const struct drm_connector_funcs intel_dp_connector_funcs = {
5346         .force = intel_dp_force,
5347         .fill_modes = drm_helper_probe_single_connector_modes,
5348         .atomic_get_property = intel_digital_connector_atomic_get_property,
5349         .atomic_set_property = intel_digital_connector_atomic_set_property,
5350         .late_register = intel_dp_connector_register,
5351         .early_unregister = intel_dp_connector_unregister,
5352         .destroy = intel_dp_connector_destroy,
5353         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5354         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
5355 };
5356
5357 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5358         .detect_ctx = intel_dp_detect,
5359         .get_modes = intel_dp_get_modes,
5360         .mode_valid = intel_dp_mode_valid,
5361         .atomic_check = intel_digital_connector_atomic_check,
5362 };
5363
5364 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5365         .reset = intel_dp_encoder_reset,
5366         .destroy = intel_dp_encoder_destroy,
5367 };
5368
5369 enum irqreturn
5370 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
5371 {
5372         struct intel_dp *intel_dp = &intel_dig_port->dp;
5373         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5374         enum irqreturn ret = IRQ_NONE;
5375
5376         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
5377                 /*
5378                  * vdd off can generate a long pulse on eDP which
5379                  * would require vdd on to handle it, and thus we
5380                  * would end up in an endless cycle of
5381                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5382                  */
5383                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5384                               port_name(intel_dig_port->base.port));
5385                 return IRQ_HANDLED;
5386         }
5387
5388         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5389                       port_name(intel_dig_port->base.port),
5390                       long_hpd ? "long" : "short");
5391
5392         if (long_hpd) {
5393                 intel_dp->reset_link_params = true;
5394                 intel_dp->detect_done = false;
5395                 return IRQ_NONE;
5396         }
5397
5398         intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5399
5400         if (intel_dp->is_mst) {
5401                 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
5402                         /*
5403                          * If we were in MST mode, and device is not
5404                          * there, get out of MST mode
5405                          */
5406                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5407                                       intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5408                         intel_dp->is_mst = false;
5409                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5410                                                         intel_dp->is_mst);
5411                         intel_dp->detect_done = false;
5412                         goto put_power;
5413                 }
5414         }
5415
5416         if (!intel_dp->is_mst) {
5417                 bool handled;
5418
5419                 handled = intel_dp_short_pulse(intel_dp);
5420
5421                 /* Short pulse can signify loss of hdcp authentication */
5422                 intel_hdcp_check_link(intel_dp->attached_connector);
5423
5424                 if (!handled) {
5425                         intel_dp->detect_done = false;
5426                         goto put_power;
5427                 }
5428         }
5429
5430         ret = IRQ_HANDLED;
5431
5432 put_power:
5433         intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5434
5435         return ret;
5436 }
5437
5438 /* check the VBT to see whether the eDP is on another port */
5439 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
5440 {
5441         /*
5442          * eDP not supported on g4x. so bail out early just
5443          * for a bit extra safety in case the VBT is bonkers.
5444          */
5445         if (INTEL_GEN(dev_priv) < 5)
5446                 return false;
5447
5448         if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
5449                 return true;
5450
5451         return intel_bios_is_port_edp(dev_priv, port);
5452 }
5453
5454 static void
5455 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5456 {
5457         struct drm_i915_private *dev_priv = to_i915(connector->dev);
5458         enum port port = dp_to_dig_port(intel_dp)->base.port;
5459
5460         if (!IS_G4X(dev_priv) && port != PORT_A)
5461                 intel_attach_force_audio_property(connector);
5462
5463         intel_attach_broadcast_rgb_property(connector);
5464
5465         if (intel_dp_is_edp(intel_dp)) {
5466                 u32 allowed_scalers;
5467
5468                 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
5469                 if (!HAS_GMCH_DISPLAY(dev_priv))
5470                         allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
5471
5472                 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
5473
5474                 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
5475
5476         }
5477 }
5478
5479 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5480 {
5481         intel_dp->panel_power_off_time = ktime_get_boottime();
5482         intel_dp->last_power_on = jiffies;
5483         intel_dp->last_backlight_off = jiffies;
5484 }
5485
5486 static void
5487 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
5488 {
5489         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5490         u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5491         struct pps_registers regs;
5492
5493         intel_pps_get_registers(intel_dp, &regs);
5494
5495         /* Workaround: Need to write PP_CONTROL with the unlock key as
5496          * the very first thing. */
5497         pp_ctl = ironlake_get_pp_control(intel_dp);
5498
5499         pp_on = I915_READ(regs.pp_on);
5500         pp_off = I915_READ(regs.pp_off);
5501         if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
5502             !HAS_PCH_ICP(dev_priv)) {
5503                 I915_WRITE(regs.pp_ctrl, pp_ctl);
5504                 pp_div = I915_READ(regs.pp_div);
5505         }
5506
5507         /* Pull timing values out of registers */
5508         seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5509                      PANEL_POWER_UP_DELAY_SHIFT;
5510
5511         seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5512                   PANEL_LIGHT_ON_DELAY_SHIFT;
5513
5514         seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5515                   PANEL_LIGHT_OFF_DELAY_SHIFT;
5516
5517         seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5518                    PANEL_POWER_DOWN_DELAY_SHIFT;
5519
5520         if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
5521             HAS_PCH_ICP(dev_priv)) {
5522                 seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5523                                 BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
5524         } else {
5525                 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5526                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5527         }
5528 }
5529
5530 static void
5531 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
5532 {
5533         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5534                       state_name,
5535                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
5536 }
5537
5538 static void
5539 intel_pps_verify_state(struct intel_dp *intel_dp)
5540 {
5541         struct edp_power_seq hw;
5542         struct edp_power_seq *sw = &intel_dp->pps_delays;
5543
5544         intel_pps_readout_hw_state(intel_dp, &hw);
5545
5546         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
5547             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
5548                 DRM_ERROR("PPS state mismatch\n");
5549                 intel_pps_dump_state("sw", sw);
5550                 intel_pps_dump_state("hw", &hw);
5551         }
5552 }
5553
5554 static void
5555 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
5556 {
5557         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5558         struct edp_power_seq cur, vbt, spec,
5559                 *final = &intel_dp->pps_delays;
5560
5561         lockdep_assert_held(&dev_priv->pps_mutex);
5562
5563         /* already initialized? */
5564         if (final->t11_t12 != 0)
5565                 return;
5566
5567         intel_pps_readout_hw_state(intel_dp, &cur);
5568
5569         intel_pps_dump_state("cur", &cur);
5570
5571         vbt = dev_priv->vbt.edp.pps;
5572         /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
5573          * of 500ms appears to be too short. Ocassionally the panel
5574          * just fails to power back on. Increasing the delay to 800ms
5575          * seems sufficient to avoid this problem.
5576          */
5577         if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
5578                 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
5579                 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
5580                               vbt.t11_t12);
5581         }
5582         /* T11_T12 delay is special and actually in units of 100ms, but zero
5583          * based in the hw (so we need to add 100 ms). But the sw vbt
5584          * table multiplies it with 1000 to make it in units of 100usec,
5585          * too. */
5586         vbt.t11_t12 += 100 * 10;
5587
5588         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5589          * our hw here, which are all in 100usec. */
5590         spec.t1_t3 = 210 * 10;
5591         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5592         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5593         spec.t10 = 500 * 10;
5594         /* This one is special and actually in units of 100ms, but zero
5595          * based in the hw (so we need to add 100 ms). But the sw vbt
5596          * table multiplies it with 1000 to make it in units of 100usec,
5597          * too. */
5598         spec.t11_t12 = (510 + 100) * 10;
5599
5600         intel_pps_dump_state("vbt", &vbt);
5601
5602         /* Use the max of the register settings and vbt. If both are
5603          * unset, fall back to the spec limits. */
5604 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
5605                                        spec.field : \
5606                                        max(cur.field, vbt.field))
5607         assign_final(t1_t3);
5608         assign_final(t8);
5609         assign_final(t9);
5610         assign_final(t10);
5611         assign_final(t11_t12);
5612 #undef assign_final
5613
5614 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
5615         intel_dp->panel_power_up_delay = get_delay(t1_t3);
5616         intel_dp->backlight_on_delay = get_delay(t8);
5617         intel_dp->backlight_off_delay = get_delay(t9);
5618         intel_dp->panel_power_down_delay = get_delay(t10);
5619         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5620 #undef get_delay
5621
5622         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5623                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5624                       intel_dp->panel_power_cycle_delay);
5625
5626         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5627                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5628
5629         /*
5630          * We override the HW backlight delays to 1 because we do manual waits
5631          * on them. For T8, even BSpec recommends doing it. For T9, if we
5632          * don't do this, we'll end up waiting for the backlight off delay
5633          * twice: once when we do the manual sleep, and once when we disable
5634          * the panel and wait for the PP_STATUS bit to become zero.
5635          */
5636         final->t8 = 1;
5637         final->t9 = 1;
5638
5639         /*
5640          * HW has only a 100msec granularity for t11_t12 so round it up
5641          * accordingly.
5642          */
5643         final->t11_t12 = roundup(final->t11_t12, 100 * 10);
5644 }
5645
5646 static void
5647 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
5648                                               bool force_disable_vdd)
5649 {
5650         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5651         u32 pp_on, pp_off, pp_div, port_sel = 0;
5652         int div = dev_priv->rawclk_freq / 1000;
5653         struct pps_registers regs;
5654         enum port port = dp_to_dig_port(intel_dp)->base.port;
5655         const struct edp_power_seq *seq = &intel_dp->pps_delays;
5656
5657         lockdep_assert_held(&dev_priv->pps_mutex);
5658
5659         intel_pps_get_registers(intel_dp, &regs);
5660
5661         /*
5662          * On some VLV machines the BIOS can leave the VDD
5663          * enabled even on power seqeuencers which aren't
5664          * hooked up to any port. This would mess up the
5665          * power domain tracking the first time we pick
5666          * one of these power sequencers for use since
5667          * edp_panel_vdd_on() would notice that the VDD was
5668          * already on and therefore wouldn't grab the power
5669          * domain reference. Disable VDD first to avoid this.
5670          * This also avoids spuriously turning the VDD on as
5671          * soon as the new power seqeuencer gets initialized.
5672          */
5673         if (force_disable_vdd) {
5674                 u32 pp = ironlake_get_pp_control(intel_dp);
5675
5676                 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
5677
5678                 if (pp & EDP_FORCE_VDD)
5679                         DRM_DEBUG_KMS("VDD already on, disabling first\n");
5680
5681                 pp &= ~EDP_FORCE_VDD;
5682
5683                 I915_WRITE(regs.pp_ctrl, pp);
5684         }
5685
5686         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5687                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5688         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5689                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5690         /* Compute the divisor for the pp clock, simply match the Bspec
5691          * formula. */
5692         if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
5693             HAS_PCH_ICP(dev_priv)) {
5694                 pp_div = I915_READ(regs.pp_ctrl);
5695                 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5696                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5697                                 << BXT_POWER_CYCLE_DELAY_SHIFT);
5698         } else {
5699                 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5700                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5701                                 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5702         }
5703
5704         /* Haswell doesn't have any port selection bits for the panel
5705          * power sequencer any more. */
5706         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5707                 port_sel = PANEL_PORT_SELECT_VLV(port);
5708         } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5709                 if (port == PORT_A)
5710                         port_sel = PANEL_PORT_SELECT_DPA;
5711                 else
5712                         port_sel = PANEL_PORT_SELECT_DPD;
5713         }
5714
5715         pp_on |= port_sel;
5716
5717         I915_WRITE(regs.pp_on, pp_on);
5718         I915_WRITE(regs.pp_off, pp_off);
5719         if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
5720             HAS_PCH_ICP(dev_priv))
5721                 I915_WRITE(regs.pp_ctrl, pp_div);
5722         else
5723                 I915_WRITE(regs.pp_div, pp_div);
5724
5725         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5726                       I915_READ(regs.pp_on),
5727                       I915_READ(regs.pp_off),
5728                       (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)  ||
5729                        HAS_PCH_ICP(dev_priv)) ?
5730                       (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5731                       I915_READ(regs.pp_div));
5732 }
5733
5734 static void intel_dp_pps_init(struct intel_dp *intel_dp)
5735 {
5736         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5737
5738         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5739                 vlv_initial_power_sequencer_setup(intel_dp);
5740         } else {
5741                 intel_dp_init_panel_power_sequencer(intel_dp);
5742                 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
5743         }
5744 }
5745
5746 /**
5747  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5748  * @dev_priv: i915 device
5749  * @crtc_state: a pointer to the active intel_crtc_state
5750  * @refresh_rate: RR to be programmed
5751  *
5752  * This function gets called when refresh rate (RR) has to be changed from
5753  * one frequency to another. Switches can be between high and low RR
5754  * supported by the panel or to any other RR based on media playback (in
5755  * this case, RR value needs to be passed from user space).
5756  *
5757  * The caller of this function needs to take a lock on dev_priv->drrs.
5758  */
5759 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5760                                     const struct intel_crtc_state *crtc_state,
5761                                     int refresh_rate)
5762 {
5763         struct intel_encoder *encoder;
5764         struct intel_digital_port *dig_port = NULL;
5765         struct intel_dp *intel_dp = dev_priv->drrs.dp;
5766         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5767         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5768
5769         if (refresh_rate <= 0) {
5770                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5771                 return;
5772         }
5773
5774         if (intel_dp == NULL) {
5775                 DRM_DEBUG_KMS("DRRS not supported.\n");
5776                 return;
5777         }
5778
5779         dig_port = dp_to_dig_port(intel_dp);
5780         encoder = &dig_port->base;
5781
5782         if (!intel_crtc) {
5783                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5784                 return;
5785         }
5786
5787         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5788                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5789                 return;
5790         }
5791
5792         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5793                         refresh_rate)
5794                 index = DRRS_LOW_RR;
5795
5796         if (index == dev_priv->drrs.refresh_rate_type) {
5797                 DRM_DEBUG_KMS(
5798                         "DRRS requested for previously set RR...ignoring\n");
5799                 return;
5800         }
5801
5802         if (!crtc_state->base.active) {
5803                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5804                 return;
5805         }
5806
5807         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5808                 switch (index) {
5809                 case DRRS_HIGH_RR:
5810                         intel_dp_set_m_n(intel_crtc, M1_N1);
5811                         break;
5812                 case DRRS_LOW_RR:
5813                         intel_dp_set_m_n(intel_crtc, M2_N2);
5814                         break;
5815                 case DRRS_MAX_RR:
5816                 default:
5817                         DRM_ERROR("Unsupported refreshrate type\n");
5818                 }
5819         } else if (INTEL_GEN(dev_priv) > 6) {
5820                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5821                 u32 val;
5822
5823                 val = I915_READ(reg);
5824                 if (index > DRRS_HIGH_RR) {
5825                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5826                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5827                         else
5828                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5829                 } else {
5830                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5831                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5832                         else
5833                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5834                 }
5835                 I915_WRITE(reg, val);
5836         }
5837
5838         dev_priv->drrs.refresh_rate_type = index;
5839
5840         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5841 }
5842
5843 /**
5844  * intel_edp_drrs_enable - init drrs struct if supported
5845  * @intel_dp: DP struct
5846  * @crtc_state: A pointer to the active crtc state.
5847  *
5848  * Initializes frontbuffer_bits and drrs.dp
5849  */
5850 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5851                            const struct intel_crtc_state *crtc_state)
5852 {
5853         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5854
5855         if (!crtc_state->has_drrs) {
5856                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5857                 return;
5858         }
5859
5860         if (dev_priv->psr.enabled) {
5861                 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
5862                 return;
5863         }
5864
5865         mutex_lock(&dev_priv->drrs.mutex);
5866         if (WARN_ON(dev_priv->drrs.dp)) {
5867                 DRM_ERROR("DRRS already enabled\n");
5868                 goto unlock;
5869         }
5870
5871         dev_priv->drrs.busy_frontbuffer_bits = 0;
5872
5873         dev_priv->drrs.dp = intel_dp;
5874
5875 unlock:
5876         mutex_unlock(&dev_priv->drrs.mutex);
5877 }
5878
5879 /**
5880  * intel_edp_drrs_disable - Disable DRRS
5881  * @intel_dp: DP struct
5882  * @old_crtc_state: Pointer to old crtc_state.
5883  *
5884  */
5885 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5886                             const struct intel_crtc_state *old_crtc_state)
5887 {
5888         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5889
5890         if (!old_crtc_state->has_drrs)
5891                 return;
5892
5893         mutex_lock(&dev_priv->drrs.mutex);
5894         if (!dev_priv->drrs.dp) {
5895                 mutex_unlock(&dev_priv->drrs.mutex);
5896                 return;
5897         }
5898
5899         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5900                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5901                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5902
5903         dev_priv->drrs.dp = NULL;
5904         mutex_unlock(&dev_priv->drrs.mutex);
5905
5906         cancel_delayed_work_sync(&dev_priv->drrs.work);
5907 }
5908
5909 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5910 {
5911         struct drm_i915_private *dev_priv =
5912                 container_of(work, typeof(*dev_priv), drrs.work.work);
5913         struct intel_dp *intel_dp;
5914
5915         mutex_lock(&dev_priv->drrs.mutex);
5916
5917         intel_dp = dev_priv->drrs.dp;
5918
5919         if (!intel_dp)
5920                 goto unlock;
5921
5922         /*
5923          * The delayed work can race with an invalidate hence we need to
5924          * recheck.
5925          */
5926
5927         if (dev_priv->drrs.busy_frontbuffer_bits)
5928                 goto unlock;
5929
5930         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5931                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5932
5933                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5934                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5935         }
5936
5937 unlock:
5938         mutex_unlock(&dev_priv->drrs.mutex);
5939 }
5940
5941 /**
5942  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5943  * @dev_priv: i915 device
5944  * @frontbuffer_bits: frontbuffer plane tracking bits
5945  *
5946  * This function gets called everytime rendering on the given planes start.
5947  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5948  *
5949  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5950  */
5951 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5952                                unsigned int frontbuffer_bits)
5953 {
5954         struct drm_crtc *crtc;
5955         enum pipe pipe;
5956
5957         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5958                 return;
5959
5960         cancel_delayed_work(&dev_priv->drrs.work);
5961
5962         mutex_lock(&dev_priv->drrs.mutex);
5963         if (!dev_priv->drrs.dp) {
5964                 mutex_unlock(&dev_priv->drrs.mutex);
5965                 return;
5966         }
5967
5968         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5969         pipe = to_intel_crtc(crtc)->pipe;
5970
5971         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5972         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5973
5974         /* invalidate means busy screen hence upclock */
5975         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5976                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5977                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5978
5979         mutex_unlock(&dev_priv->drrs.mutex);
5980 }
5981
5982 /**
5983  * intel_edp_drrs_flush - Restart Idleness DRRS
5984  * @dev_priv: i915 device
5985  * @frontbuffer_bits: frontbuffer plane tracking bits
5986  *
5987  * This function gets called every time rendering on the given planes has
5988  * completed or flip on a crtc is completed. So DRRS should be upclocked
5989  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5990  * if no other planes are dirty.
5991  *
5992  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5993  */
5994 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5995                           unsigned int frontbuffer_bits)
5996 {
5997         struct drm_crtc *crtc;
5998         enum pipe pipe;
5999
6000         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6001                 return;
6002
6003         cancel_delayed_work(&dev_priv->drrs.work);
6004
6005         mutex_lock(&dev_priv->drrs.mutex);
6006         if (!dev_priv->drrs.dp) {
6007                 mutex_unlock(&dev_priv->drrs.mutex);
6008                 return;
6009         }
6010
6011         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
6012         pipe = to_intel_crtc(crtc)->pipe;
6013
6014         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6015         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
6016
6017         /* flush means busy screen hence upclock */
6018         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6019                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6020                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6021
6022         /*
6023          * flush also means no more activity hence schedule downclock, if all
6024          * other fbs are quiescent too
6025          */
6026         if (!dev_priv->drrs.busy_frontbuffer_bits)
6027                 schedule_delayed_work(&dev_priv->drrs.work,
6028                                 msecs_to_jiffies(1000));
6029         mutex_unlock(&dev_priv->drrs.mutex);
6030 }
6031
6032 /**
6033  * DOC: Display Refresh Rate Switching (DRRS)
6034  *
6035  * Display Refresh Rate Switching (DRRS) is a power conservation feature
6036  * which enables swtching between low and high refresh rates,
6037  * dynamically, based on the usage scenario. This feature is applicable
6038  * for internal panels.
6039  *
6040  * Indication that the panel supports DRRS is given by the panel EDID, which
6041  * would list multiple refresh rates for one resolution.
6042  *
6043  * DRRS is of 2 types - static and seamless.
6044  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
6045  * (may appear as a blink on screen) and is used in dock-undock scenario.
6046  * Seamless DRRS involves changing RR without any visual effect to the user
6047  * and can be used during normal system usage. This is done by programming
6048  * certain registers.
6049  *
6050  * Support for static/seamless DRRS may be indicated in the VBT based on
6051  * inputs from the panel spec.
6052  *
6053  * DRRS saves power by switching to low RR based on usage scenarios.
6054  *
6055  * The implementation is based on frontbuffer tracking implementation.  When
6056  * there is a disturbance on the screen triggered by user activity or a periodic
6057  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
6058  * no movement on screen, after a timeout of 1 second, a switch to low RR is
6059  * made.
6060  *
6061  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
6062  * and intel_edp_drrs_flush() are called.
6063  *
6064  * DRRS can be further extended to support other internal panels and also
6065  * the scenario of video playback wherein RR is set based on the rate
6066  * requested by userspace.
6067  */
6068
6069 /**
6070  * intel_dp_drrs_init - Init basic DRRS work and mutex.
6071  * @connector: eDP connector
6072  * @fixed_mode: preferred mode of panel
6073  *
6074  * This function is  called only once at driver load to initialize basic
6075  * DRRS stuff.
6076  *
6077  * Returns:
6078  * Downclock mode if panel supports it, else return NULL.
6079  * DRRS support is determined by the presence of downclock mode (apart
6080  * from VBT setting).
6081  */
6082 static struct drm_display_mode *
6083 intel_dp_drrs_init(struct intel_connector *connector,
6084                    struct drm_display_mode *fixed_mode)
6085 {
6086         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
6087         struct drm_display_mode *downclock_mode = NULL;
6088
6089         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
6090         mutex_init(&dev_priv->drrs.mutex);
6091
6092         if (INTEL_GEN(dev_priv) <= 6) {
6093                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
6094                 return NULL;
6095         }
6096
6097         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
6098                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
6099                 return NULL;
6100         }
6101
6102         downclock_mode = intel_find_panel_downclock(dev_priv, fixed_mode,
6103                                                     &connector->base);
6104
6105         if (!downclock_mode) {
6106                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
6107                 return NULL;
6108         }
6109
6110         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
6111
6112         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
6113         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
6114         return downclock_mode;
6115 }
6116
6117 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
6118                                      struct intel_connector *intel_connector)
6119 {
6120         struct drm_device *dev = intel_dp_to_dev(intel_dp);
6121         struct drm_i915_private *dev_priv = to_i915(dev);
6122         struct drm_connector *connector = &intel_connector->base;
6123         struct drm_display_mode *fixed_mode = NULL;
6124         struct drm_display_mode *alt_fixed_mode = NULL;
6125         struct drm_display_mode *downclock_mode = NULL;
6126         bool has_dpcd;
6127         struct drm_display_mode *scan;
6128         struct edid *edid;
6129         enum pipe pipe = INVALID_PIPE;
6130
6131         if (!intel_dp_is_edp(intel_dp))
6132                 return true;
6133
6134         /*
6135          * On IBX/CPT we may get here with LVDS already registered. Since the
6136          * driver uses the only internal power sequencer available for both
6137          * eDP and LVDS bail out early in this case to prevent interfering
6138          * with an already powered-on LVDS power sequencer.
6139          */
6140         if (intel_get_lvds_encoder(&dev_priv->drm)) {
6141                 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
6142                 DRM_INFO("LVDS was detected, not registering eDP\n");
6143
6144                 return false;
6145         }
6146
6147         pps_lock(intel_dp);
6148
6149         intel_dp_init_panel_power_timestamps(intel_dp);
6150         intel_dp_pps_init(intel_dp);
6151         intel_edp_panel_vdd_sanitize(intel_dp);
6152
6153         pps_unlock(intel_dp);
6154
6155         /* Cache DPCD and EDID for edp. */
6156         has_dpcd = intel_edp_init_dpcd(intel_dp);
6157
6158         if (!has_dpcd) {
6159                 /* if this fails, presume the device is a ghost */
6160                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
6161                 goto out_vdd_off;
6162         }
6163
6164         mutex_lock(&dev->mode_config.mutex);
6165         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
6166         if (edid) {
6167                 if (drm_add_edid_modes(connector, edid)) {
6168                         drm_mode_connector_update_edid_property(connector,
6169                                                                 edid);
6170                 } else {
6171                         kfree(edid);
6172                         edid = ERR_PTR(-EINVAL);
6173                 }
6174         } else {
6175                 edid = ERR_PTR(-ENOENT);
6176         }
6177         intel_connector->edid = edid;
6178
6179         /* prefer fixed mode from EDID if available, save an alt mode also */
6180         list_for_each_entry(scan, &connector->probed_modes, head) {
6181                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
6182                         fixed_mode = drm_mode_duplicate(dev, scan);
6183                         downclock_mode = intel_dp_drrs_init(
6184                                                 intel_connector, fixed_mode);
6185                 } else if (!alt_fixed_mode) {
6186                         alt_fixed_mode = drm_mode_duplicate(dev, scan);
6187                 }
6188         }
6189
6190         /* fallback to VBT if available for eDP */
6191         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
6192                 fixed_mode = drm_mode_duplicate(dev,
6193                                         dev_priv->vbt.lfp_lvds_vbt_mode);
6194                 if (fixed_mode) {
6195                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
6196                         connector->display_info.width_mm = fixed_mode->width_mm;
6197                         connector->display_info.height_mm = fixed_mode->height_mm;
6198                 }
6199         }
6200         mutex_unlock(&dev->mode_config.mutex);
6201
6202         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6203                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
6204                 register_reboot_notifier(&intel_dp->edp_notifier);
6205
6206                 /*
6207                  * Figure out the current pipe for the initial backlight setup.
6208                  * If the current pipe isn't valid, try the PPS pipe, and if that
6209                  * fails just assume pipe A.
6210                  */
6211                 pipe = vlv_active_pipe(intel_dp);
6212
6213                 if (pipe != PIPE_A && pipe != PIPE_B)
6214                         pipe = intel_dp->pps_pipe;
6215
6216                 if (pipe != PIPE_A && pipe != PIPE_B)
6217                         pipe = PIPE_A;
6218
6219                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
6220                               pipe_name(pipe));
6221         }
6222
6223         intel_panel_init(&intel_connector->panel, fixed_mode, alt_fixed_mode,
6224                          downclock_mode);
6225         intel_connector->panel.backlight.power = intel_edp_backlight_power;
6226         intel_panel_setup_backlight(connector, pipe);
6227
6228         return true;
6229
6230 out_vdd_off:
6231         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6232         /*
6233          * vdd might still be enabled do to the delayed vdd off.
6234          * Make sure vdd is actually turned off here.
6235          */
6236         pps_lock(intel_dp);
6237         edp_panel_vdd_off_sync(intel_dp);
6238         pps_unlock(intel_dp);
6239
6240         return false;
6241 }
6242
6243 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
6244 {
6245         struct intel_connector *intel_connector;
6246         struct drm_connector *connector;
6247
6248         intel_connector = container_of(work, typeof(*intel_connector),
6249                                        modeset_retry_work);
6250         connector = &intel_connector->base;
6251         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
6252                       connector->name);
6253
6254         /* Grab the locks before changing connector property*/
6255         mutex_lock(&connector->dev->mode_config.mutex);
6256         /* Set connector link status to BAD and send a Uevent to notify
6257          * userspace to do a modeset.
6258          */
6259         drm_mode_connector_set_link_status_property(connector,
6260                                                     DRM_MODE_LINK_STATUS_BAD);
6261         mutex_unlock(&connector->dev->mode_config.mutex);
6262         /* Send Hotplug uevent so userspace can reprobe */
6263         drm_kms_helper_hotplug_event(connector->dev);
6264 }
6265
6266 bool
6267 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
6268                         struct intel_connector *intel_connector)
6269 {
6270         struct drm_connector *connector = &intel_connector->base;
6271         struct intel_dp *intel_dp = &intel_dig_port->dp;
6272         struct intel_encoder *intel_encoder = &intel_dig_port->base;
6273         struct drm_device *dev = intel_encoder->base.dev;
6274         struct drm_i915_private *dev_priv = to_i915(dev);
6275         enum port port = intel_encoder->port;
6276         int type;
6277
6278         /* Initialize the work for modeset in case of link train failure */
6279         INIT_WORK(&intel_connector->modeset_retry_work,
6280                   intel_dp_modeset_retry_work_fn);
6281
6282         if (WARN(intel_dig_port->max_lanes < 1,
6283                  "Not enough lanes (%d) for DP on port %c\n",
6284                  intel_dig_port->max_lanes, port_name(port)))
6285                 return false;
6286
6287         intel_dp_set_source_rates(intel_dp);
6288
6289         intel_dp->reset_link_params = true;
6290         intel_dp->pps_pipe = INVALID_PIPE;
6291         intel_dp->active_pipe = INVALID_PIPE;
6292
6293         /* intel_dp vfuncs */
6294         if (HAS_DDI(dev_priv))
6295                 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
6296
6297         /* Preserve the current hw state. */
6298         intel_dp->DP = I915_READ(intel_dp->output_reg);
6299         intel_dp->attached_connector = intel_connector;
6300
6301         if (intel_dp_is_port_edp(dev_priv, port))
6302                 type = DRM_MODE_CONNECTOR_eDP;
6303         else
6304                 type = DRM_MODE_CONNECTOR_DisplayPort;
6305
6306         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6307                 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6308
6309         /*
6310          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
6311          * for DP the encoder type can be set by the caller to
6312          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
6313          */
6314         if (type == DRM_MODE_CONNECTOR_eDP)
6315                 intel_encoder->type = INTEL_OUTPUT_EDP;
6316
6317         /* eDP only on port B and/or C on vlv/chv */
6318         if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
6319                     intel_dp_is_edp(intel_dp) &&
6320                     port != PORT_B && port != PORT_C))
6321                 return false;
6322
6323         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
6324                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
6325                         port_name(port));
6326
6327         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6328         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
6329
6330         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
6331                 connector->interlace_allowed = true;
6332         connector->doublescan_allowed = 0;
6333
6334         intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
6335
6336         intel_dp_aux_init(intel_dp);
6337
6338         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
6339                           edp_panel_vdd_work);
6340
6341         intel_connector_attach_encoder(intel_connector, intel_encoder);
6342
6343         if (HAS_DDI(dev_priv))
6344                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
6345         else
6346                 intel_connector->get_hw_state = intel_connector_get_hw_state;
6347
6348         /* init MST on ports that can support it */
6349         if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
6350             (port == PORT_B || port == PORT_C ||
6351              port == PORT_D || port == PORT_F))
6352                 intel_dp_mst_encoder_init(intel_dig_port,
6353                                           intel_connector->base.base.id);
6354
6355         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6356                 intel_dp_aux_fini(intel_dp);
6357                 intel_dp_mst_encoder_cleanup(intel_dig_port);
6358                 goto fail;
6359         }
6360
6361         intel_dp_add_properties(intel_dp, connector);
6362
6363         if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
6364                 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
6365                 if (ret)
6366                         DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
6367         }
6368
6369         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
6370          * 0xd.  Failure to do so will result in spurious interrupts being
6371          * generated on the port when a cable is not attached.
6372          */
6373         if (IS_G4X(dev_priv) && !IS_GM45(dev_priv)) {
6374                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
6375                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
6376         }
6377
6378         return true;
6379
6380 fail:
6381         drm_connector_cleanup(connector);
6382
6383         return false;
6384 }
6385
6386 bool intel_dp_init(struct drm_i915_private *dev_priv,
6387                    i915_reg_t output_reg,
6388                    enum port port)
6389 {
6390         struct intel_digital_port *intel_dig_port;
6391         struct intel_encoder *intel_encoder;
6392         struct drm_encoder *encoder;
6393         struct intel_connector *intel_connector;
6394
6395         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6396         if (!intel_dig_port)
6397                 return false;
6398
6399         intel_connector = intel_connector_alloc();
6400         if (!intel_connector)
6401                 goto err_connector_alloc;
6402
6403         intel_encoder = &intel_dig_port->base;
6404         encoder = &intel_encoder->base;
6405
6406         if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
6407                              &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
6408                              "DP %c", port_name(port)))
6409                 goto err_encoder_init;
6410
6411         intel_encoder->hotplug = intel_dp_hotplug;
6412         intel_encoder->compute_config = intel_dp_compute_config;
6413         intel_encoder->get_hw_state = intel_dp_get_hw_state;
6414         intel_encoder->get_config = intel_dp_get_config;
6415         intel_encoder->suspend = intel_dp_encoder_suspend;
6416         if (IS_CHERRYVIEW(dev_priv)) {
6417                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6418                 intel_encoder->pre_enable = chv_pre_enable_dp;
6419                 intel_encoder->enable = vlv_enable_dp;
6420                 intel_encoder->disable = vlv_disable_dp;
6421                 intel_encoder->post_disable = chv_post_disable_dp;
6422                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6423         } else if (IS_VALLEYVIEW(dev_priv)) {
6424                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6425                 intel_encoder->pre_enable = vlv_pre_enable_dp;
6426                 intel_encoder->enable = vlv_enable_dp;
6427                 intel_encoder->disable = vlv_disable_dp;
6428                 intel_encoder->post_disable = vlv_post_disable_dp;
6429         } else if (INTEL_GEN(dev_priv) >= 5) {
6430                 intel_encoder->pre_enable = g4x_pre_enable_dp;
6431                 intel_encoder->enable = g4x_enable_dp;
6432                 intel_encoder->disable = ilk_disable_dp;
6433                 intel_encoder->post_disable = ilk_post_disable_dp;
6434         } else {
6435                 intel_encoder->pre_enable = g4x_pre_enable_dp;
6436                 intel_encoder->enable = g4x_enable_dp;
6437                 intel_encoder->disable = g4x_disable_dp;
6438         }
6439
6440         intel_dig_port->dp.output_reg = output_reg;
6441         intel_dig_port->max_lanes = 4;
6442
6443         intel_encoder->type = INTEL_OUTPUT_DP;
6444         intel_encoder->power_domain = intel_port_to_power_domain(port);
6445         if (IS_CHERRYVIEW(dev_priv)) {
6446                 if (port == PORT_D)
6447                         intel_encoder->crtc_mask = 1 << 2;
6448                 else
6449                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6450         } else {
6451                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6452         }
6453         intel_encoder->cloneable = 0;
6454         intel_encoder->port = port;
6455
6456         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6457         dev_priv->hotplug.irq_port[port] = intel_dig_port;
6458
6459         if (port != PORT_A)
6460                 intel_infoframe_init(intel_dig_port);
6461
6462         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6463                 goto err_init_connector;
6464
6465         return true;
6466
6467 err_init_connector:
6468         drm_encoder_cleanup(encoder);
6469 err_encoder_init:
6470         kfree(intel_connector);
6471 err_connector_alloc:
6472         kfree(intel_dig_port);
6473         return false;
6474 }
6475
6476 void intel_dp_mst_suspend(struct drm_device *dev)
6477 {
6478         struct drm_i915_private *dev_priv = to_i915(dev);
6479         int i;
6480
6481         /* disable MST */
6482         for (i = 0; i < I915_MAX_PORTS; i++) {
6483                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6484
6485                 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
6486                         continue;
6487
6488                 if (intel_dig_port->dp.is_mst)
6489                         drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6490         }
6491 }
6492
6493 void intel_dp_mst_resume(struct drm_device *dev)
6494 {
6495         struct drm_i915_private *dev_priv = to_i915(dev);
6496         int i;
6497
6498         for (i = 0; i < I915_MAX_PORTS; i++) {
6499                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6500                 int ret;
6501
6502                 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
6503                         continue;
6504
6505                 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6506                 if (ret)
6507                         intel_dp_check_mst_status(&intel_dig_port->dp);
6508         }
6509 }