]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
PM / QoS: Remove global notifiers
[linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160          (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161           GEN8_CTX_STATUS_PREEMPTED | \
162           GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
164 #define CTX_LRI_HEADER_0                0x01
165 #define CTX_CONTEXT_CONTROL             0x02
166 #define CTX_RING_HEAD                   0x04
167 #define CTX_RING_TAIL                   0x06
168 #define CTX_RING_BUFFER_START           0x08
169 #define CTX_RING_BUFFER_CONTROL         0x0a
170 #define CTX_BB_HEAD_U                   0x0c
171 #define CTX_BB_HEAD_L                   0x0e
172 #define CTX_BB_STATE                    0x10
173 #define CTX_SECOND_BB_HEAD_U            0x12
174 #define CTX_SECOND_BB_HEAD_L            0x14
175 #define CTX_SECOND_BB_STATE             0x16
176 #define CTX_BB_PER_CTX_PTR              0x18
177 #define CTX_RCS_INDIRECT_CTX            0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
179 #define CTX_LRI_HEADER_1                0x21
180 #define CTX_CTX_TIMESTAMP               0x22
181 #define CTX_PDP3_UDW                    0x24
182 #define CTX_PDP3_LDW                    0x26
183 #define CTX_PDP2_UDW                    0x28
184 #define CTX_PDP2_LDW                    0x2a
185 #define CTX_PDP1_UDW                    0x2c
186 #define CTX_PDP1_LDW                    0x2e
187 #define CTX_PDP0_UDW                    0x30
188 #define CTX_PDP0_LDW                    0x32
189 #define CTX_LRI_HEADER_2                0x41
190 #define CTX_R_PWR_CLK_STATE             0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
192
193 #define GEN8_CTX_VALID (1<<0)
194 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195 #define GEN8_CTX_FORCE_RESTORE (1<<2)
196 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
197 #define GEN8_CTX_PRIVILEGE (1<<8)
198
199 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201         (reg_state)[(pos)+1] = (val); \
202 } while (0)
203
204 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
205         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
206         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208 } while (0)
209
210 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213 } while (0)
214
215 enum {
216         FAULT_AND_HANG = 0,
217         FAULT_AND_HALT, /* Debug only */
218         FAULT_AND_STREAM,
219         FAULT_AND_CONTINUE /* Unsupported */
220 };
221 #define GEN8_CTX_ID_SHIFT 32
222 #define GEN8_CTX_ID_WIDTH 21
223 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
224 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
225
226 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
227 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
229 #define WA_TAIL_DWORDS 2
230
231 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232                                             struct intel_engine_cs *engine);
233 static int intel_lr_context_pin(struct i915_gem_context *ctx,
234                                 struct intel_engine_cs *engine);
235 static void execlists_init_reg_state(u32 *reg_state,
236                                      struct i915_gem_context *ctx,
237                                      struct intel_engine_cs *engine,
238                                      struct intel_ring *ring);
239
240 /**
241  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
242  * @dev_priv: i915 device private
243  * @enable_execlists: value of i915.enable_execlists module parameter.
244  *
245  * Only certain platforms support Execlists (the prerequisites being
246  * support for Logical Ring Contexts and Aliasing PPGTT or better).
247  *
248  * Return: 1 if Execlists is supported and has to be enabled.
249  */
250 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
251 {
252         /* On platforms with execlist available, vGPU will only
253          * support execlist mode, no ring buffer mode.
254          */
255         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
256                 return 1;
257
258         if (INTEL_GEN(dev_priv) >= 9)
259                 return 1;
260
261         if (enable_execlists == 0)
262                 return 0;
263
264         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
265             USES_PPGTT(dev_priv) &&
266             i915.use_mmio_flip >= 0)
267                 return 1;
268
269         return 0;
270 }
271
272 static void
273 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
274 {
275         struct drm_i915_private *dev_priv = engine->i915;
276
277         engine->disable_lite_restore_wa =
278                 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
279                 (engine->id == VCS || engine->id == VCS2);
280
281         engine->ctx_desc_template = GEN8_CTX_VALID;
282         if (IS_GEN8(dev_priv))
283                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
284         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
285
286         /* TODO: WaDisableLiteRestore when we start using semaphore
287          * signalling between Command Streamers */
288         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
289
290         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
291         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
292         if (engine->disable_lite_restore_wa)
293                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
294 }
295
296 /**
297  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
298  *                                        descriptor for a pinned context
299  * @ctx: Context to work on
300  * @engine: Engine the descriptor will be used with
301  *
302  * The context descriptor encodes various attributes of a context,
303  * including its GTT address and some flags. Because it's fairly
304  * expensive to calculate, we'll just do it once and cache the result,
305  * which remains valid until the context is unpinned.
306  *
307  * This is what a descriptor looks like, from LSB to MSB::
308  *
309  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
310  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
311  *      bits 32-52:    ctx ID, a globally unique tag
312  *      bits 53-54:    mbz, reserved for use by hardware
313  *      bits 55-63:    group ID, currently unused and set to 0
314  */
315 static void
316 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
317                                    struct intel_engine_cs *engine)
318 {
319         struct intel_context *ce = &ctx->engine[engine->id];
320         u64 desc;
321
322         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
323
324         desc = ctx->desc_template;                              /* bits  3-4  */
325         desc |= engine->ctx_desc_template;                      /* bits  0-11 */
326         desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
327                                                                 /* bits 12-31 */
328         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
329
330         ce->lrc_desc = desc;
331 }
332
333 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
334                                      struct intel_engine_cs *engine)
335 {
336         return ctx->engine[engine->id].lrc_desc;
337 }
338
339 static inline void
340 execlists_context_status_change(struct drm_i915_gem_request *rq,
341                                 unsigned long status)
342 {
343         /*
344          * Only used when GVT-g is enabled now. When GVT-g is disabled,
345          * The compiler should eliminate this function as dead-code.
346          */
347         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
348                 return;
349
350         atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
351 }
352
353 static void
354 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
355 {
356         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
357         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
358         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
359         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
360 }
361
362 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
363 {
364         struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
365         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366         u32 *reg_state = ce->lrc_reg_state;
367
368         reg_state[CTX_RING_TAIL+1] = rq->tail;
369
370         /* True 32b PPGTT with dynamic page allocation: update PDP
371          * registers and point the unallocated PDPs to scratch page.
372          * PML4 is allocated during ppgtt init, so this is not needed
373          * in 48-bit mode.
374          */
375         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
376                 execlists_update_context_pdps(ppgtt, reg_state);
377
378         return ce->lrc_desc;
379 }
380
381 static void execlists_submit_ports(struct intel_engine_cs *engine)
382 {
383         struct drm_i915_private *dev_priv = engine->i915;
384         struct execlist_port *port = engine->execlist_port;
385         u32 __iomem *elsp =
386                 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
387         u64 desc[2];
388
389         if (!port[0].count)
390                 execlists_context_status_change(port[0].request,
391                                                 INTEL_CONTEXT_SCHEDULE_IN);
392         desc[0] = execlists_update_context(port[0].request);
393         engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
394
395         if (port[1].request) {
396                 GEM_BUG_ON(port[1].count);
397                 execlists_context_status_change(port[1].request,
398                                                 INTEL_CONTEXT_SCHEDULE_IN);
399                 desc[1] = execlists_update_context(port[1].request);
400                 port[1].count = 1;
401         } else {
402                 desc[1] = 0;
403         }
404         GEM_BUG_ON(desc[0] == desc[1]);
405
406         /* You must always write both descriptors in the order below. */
407         writel(upper_32_bits(desc[1]), elsp);
408         writel(lower_32_bits(desc[1]), elsp);
409
410         writel(upper_32_bits(desc[0]), elsp);
411         /* The context is automatically loaded after the following */
412         writel(lower_32_bits(desc[0]), elsp);
413 }
414
415 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
416 {
417         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
418                 ctx->execlists_force_single_submission);
419 }
420
421 static bool can_merge_ctx(const struct i915_gem_context *prev,
422                           const struct i915_gem_context *next)
423 {
424         if (prev != next)
425                 return false;
426
427         if (ctx_single_port_submission(prev))
428                 return false;
429
430         return true;
431 }
432
433 static void execlists_dequeue(struct intel_engine_cs *engine)
434 {
435         struct drm_i915_gem_request *last;
436         struct execlist_port *port = engine->execlist_port;
437         unsigned long flags;
438         struct rb_node *rb;
439         bool submit = false;
440
441         last = port->request;
442         if (last)
443                 /* WaIdleLiteRestore:bdw,skl
444                  * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
445                  * as we resubmit the request. See gen8_emit_breadcrumb()
446                  * for where we prepare the padding after the end of the
447                  * request.
448                  */
449                 last->tail = last->wa_tail;
450
451         GEM_BUG_ON(port[1].request);
452
453         /* Hardware submission is through 2 ports. Conceptually each port
454          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
455          * static for a context, and unique to each, so we only execute
456          * requests belonging to a single context from each ring. RING_HEAD
457          * is maintained by the CS in the context image, it marks the place
458          * where it got up to last time, and through RING_TAIL we tell the CS
459          * where we want to execute up to this time.
460          *
461          * In this list the requests are in order of execution. Consecutive
462          * requests from the same context are adjacent in the ringbuffer. We
463          * can combine these requests into a single RING_TAIL update:
464          *
465          *              RING_HEAD...req1...req2
466          *                                    ^- RING_TAIL
467          * since to execute req2 the CS must first execute req1.
468          *
469          * Our goal then is to point each port to the end of a consecutive
470          * sequence of requests as being the most optimal (fewest wake ups
471          * and context switches) submission.
472          */
473
474         spin_lock_irqsave(&engine->timeline->lock, flags);
475         rb = engine->execlist_first;
476         while (rb) {
477                 struct drm_i915_gem_request *cursor =
478                         rb_entry(rb, typeof(*cursor), priotree.node);
479
480                 /* Can we combine this request with the current port? It has to
481                  * be the same context/ringbuffer and not have any exceptions
482                  * (e.g. GVT saying never to combine contexts).
483                  *
484                  * If we can combine the requests, we can execute both by
485                  * updating the RING_TAIL to point to the end of the second
486                  * request, and so we never need to tell the hardware about
487                  * the first.
488                  */
489                 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
490                         /* If we are on the second port and cannot combine
491                          * this request with the last, then we are done.
492                          */
493                         if (port != engine->execlist_port)
494                                 break;
495
496                         /* If GVT overrides us we only ever submit port[0],
497                          * leaving port[1] empty. Note that we also have
498                          * to be careful that we don't queue the same
499                          * context (even though a different request) to
500                          * the second port.
501                          */
502                         if (ctx_single_port_submission(last->ctx) ||
503                             ctx_single_port_submission(cursor->ctx))
504                                 break;
505
506                         GEM_BUG_ON(last->ctx == cursor->ctx);
507
508                         i915_gem_request_assign(&port->request, last);
509                         port++;
510                 }
511
512                 rb = rb_next(rb);
513                 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
514                 RB_CLEAR_NODE(&cursor->priotree.node);
515                 cursor->priotree.priority = INT_MAX;
516
517                 /* We keep the previous context alive until we retire the
518                  * following request. This ensures that any the context object
519                  * is still pinned for any residual writes the HW makes into it
520                  * on the context switch into the next object following the
521                  * breadcrumb. Otherwise, we may retire the context too early.
522                  */
523                 cursor->previous_context = engine->last_context;
524                 engine->last_context = cursor->ctx;
525
526                 __i915_gem_request_submit(cursor);
527                 last = cursor;
528                 submit = true;
529         }
530         if (submit) {
531                 i915_gem_request_assign(&port->request, last);
532                 engine->execlist_first = rb;
533         }
534         spin_unlock_irqrestore(&engine->timeline->lock, flags);
535
536         if (submit)
537                 execlists_submit_ports(engine);
538 }
539
540 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
541 {
542         return !engine->execlist_port[0].request;
543 }
544
545 /**
546  * intel_execlists_idle() - Determine if all engine submission ports are idle
547  * @dev_priv: i915 device private
548  *
549  * Return true if there are no requests pending on any of the submission ports
550  * of any engines.
551  */
552 bool intel_execlists_idle(struct drm_i915_private *dev_priv)
553 {
554         struct intel_engine_cs *engine;
555         enum intel_engine_id id;
556
557         if (!i915.enable_execlists)
558                 return true;
559
560         for_each_engine(engine, dev_priv, id)
561                 if (!execlists_elsp_idle(engine))
562                         return false;
563
564         return true;
565 }
566
567 static bool execlists_elsp_ready(struct intel_engine_cs *engine)
568 {
569         int port;
570
571         port = 1; /* wait for a free slot */
572         if (engine->disable_lite_restore_wa || engine->preempt_wa)
573                 port = 0; /* wait for GPU to be idle before continuing */
574
575         return !engine->execlist_port[port].request;
576 }
577
578 /*
579  * Check the unread Context Status Buffers and manage the submission of new
580  * contexts to the ELSP accordingly.
581  */
582 static void intel_lrc_irq_handler(unsigned long data)
583 {
584         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
585         struct execlist_port *port = engine->execlist_port;
586         struct drm_i915_private *dev_priv = engine->i915;
587
588         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
589
590         if (!execlists_elsp_idle(engine)) {
591                 u32 __iomem *csb_mmio =
592                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
593                 u32 __iomem *buf =
594                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
595                 unsigned int csb, head, tail;
596
597                 csb = readl(csb_mmio);
598                 head = GEN8_CSB_READ_PTR(csb);
599                 tail = GEN8_CSB_WRITE_PTR(csb);
600                 if (tail < head)
601                         tail += GEN8_CSB_ENTRIES;
602                 while (head < tail) {
603                         unsigned int idx = ++head % GEN8_CSB_ENTRIES;
604                         unsigned int status = readl(buf + 2 * idx);
605
606                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
607                                 continue;
608
609                         GEM_BUG_ON(port[0].count == 0);
610                         if (--port[0].count == 0) {
611                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
612                                 execlists_context_status_change(port[0].request,
613                                                                 INTEL_CONTEXT_SCHEDULE_OUT);
614
615                                 i915_gem_request_put(port[0].request);
616                                 port[0] = port[1];
617                                 memset(&port[1], 0, sizeof(port[1]));
618
619                                 engine->preempt_wa = false;
620                         }
621
622                         GEM_BUG_ON(port[0].count == 0 &&
623                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
624                 }
625
626                 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
627                                      GEN8_CSB_WRITE_PTR(csb) << 8),
628                        csb_mmio);
629         }
630
631         if (execlists_elsp_ready(engine))
632                 execlists_dequeue(engine);
633
634         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
635 }
636
637 static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
638 {
639         struct rb_node **p, *rb;
640         bool first = true;
641
642         /* most positive priority is scheduled first, equal priorities fifo */
643         rb = NULL;
644         p = &root->rb_node;
645         while (*p) {
646                 struct i915_priotree *pos;
647
648                 rb = *p;
649                 pos = rb_entry(rb, typeof(*pos), node);
650                 if (pt->priority > pos->priority) {
651                         p = &rb->rb_left;
652                 } else {
653                         p = &rb->rb_right;
654                         first = false;
655                 }
656         }
657         rb_link_node(&pt->node, rb, p);
658         rb_insert_color(&pt->node, root);
659
660         return first;
661 }
662
663 static void execlists_submit_request(struct drm_i915_gem_request *request)
664 {
665         struct intel_engine_cs *engine = request->engine;
666         unsigned long flags;
667
668         /* Will be called from irq-context when using foreign fences. */
669         spin_lock_irqsave(&engine->timeline->lock, flags);
670
671         if (insert_request(&request->priotree, &engine->execlist_queue))
672                 engine->execlist_first = &request->priotree.node;
673         if (execlists_elsp_idle(engine))
674                 tasklet_hi_schedule(&engine->irq_tasklet);
675
676         spin_unlock_irqrestore(&engine->timeline->lock, flags);
677 }
678
679 static struct intel_engine_cs *
680 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
681 {
682         struct intel_engine_cs *engine;
683
684         engine = container_of(pt,
685                               struct drm_i915_gem_request,
686                               priotree)->engine;
687         if (engine != locked) {
688                 if (locked)
689                         spin_unlock_irq(&locked->timeline->lock);
690                 spin_lock_irq(&engine->timeline->lock);
691         }
692
693         return engine;
694 }
695
696 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
697 {
698         static DEFINE_MUTEX(lock);
699         struct intel_engine_cs *engine = NULL;
700         struct i915_dependency *dep, *p;
701         struct i915_dependency stack;
702         LIST_HEAD(dfs);
703
704         if (prio <= READ_ONCE(request->priotree.priority))
705                 return;
706
707         /* Need global lock to use the temporary link inside i915_dependency */
708         mutex_lock(&lock);
709
710         stack.signaler = &request->priotree;
711         list_add(&stack.dfs_link, &dfs);
712
713         /* Recursively bump all dependent priorities to match the new request.
714          *
715          * A naive approach would be to use recursion:
716          * static void update_priorities(struct i915_priotree *pt, prio) {
717          *      list_for_each_entry(dep, &pt->signalers_list, signal_link)
718          *              update_priorities(dep->signal, prio)
719          *      insert_request(pt);
720          * }
721          * but that may have unlimited recursion depth and so runs a very
722          * real risk of overunning the kernel stack. Instead, we build
723          * a flat list of all dependencies starting with the current request.
724          * As we walk the list of dependencies, we add all of its dependencies
725          * to the end of the list (this may include an already visited
726          * request) and continue to walk onwards onto the new dependencies. The
727          * end result is a topological list of requests in reverse order, the
728          * last element in the list is the request we must execute first.
729          */
730         list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
731                 struct i915_priotree *pt = dep->signaler;
732
733                 list_for_each_entry(p, &pt->signalers_list, signal_link)
734                         if (prio > READ_ONCE(p->signaler->priority))
735                                 list_move_tail(&p->dfs_link, &dfs);
736
737                 p = list_next_entry(dep, dfs_link);
738                 if (!RB_EMPTY_NODE(&pt->node))
739                         continue;
740
741                 engine = pt_lock_engine(pt, engine);
742
743                 /* If it is not already in the rbtree, we can update the
744                  * priority inplace and skip over it (and its dependencies)
745                  * if it is referenced *again* as we descend the dfs.
746                  */
747                 if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
748                         pt->priority = prio;
749                         list_del_init(&dep->dfs_link);
750                 }
751         }
752
753         /* Fifo and depth-first replacement ensure our deps execute before us */
754         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
755                 struct i915_priotree *pt = dep->signaler;
756
757                 INIT_LIST_HEAD(&dep->dfs_link);
758
759                 engine = pt_lock_engine(pt, engine);
760
761                 if (prio <= pt->priority)
762                         continue;
763
764                 GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));
765
766                 pt->priority = prio;
767                 rb_erase(&pt->node, &engine->execlist_queue);
768                 if (insert_request(pt, &engine->execlist_queue))
769                         engine->execlist_first = &pt->node;
770         }
771
772         if (engine)
773                 spin_unlock_irq(&engine->timeline->lock);
774
775         mutex_unlock(&lock);
776
777         /* XXX Do we need to preempt to make room for us and our deps? */
778 }
779
780 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
781 {
782         struct intel_engine_cs *engine = request->engine;
783         struct intel_context *ce = &request->ctx->engine[engine->id];
784         int ret;
785
786         /* Flush enough space to reduce the likelihood of waiting after
787          * we start building the request - in which case we will just
788          * have to repeat work.
789          */
790         request->reserved_space += EXECLISTS_REQUEST_SIZE;
791
792         if (!ce->state) {
793                 ret = execlists_context_deferred_alloc(request->ctx, engine);
794                 if (ret)
795                         return ret;
796         }
797
798         request->ring = ce->ring;
799
800         ret = intel_lr_context_pin(request->ctx, engine);
801         if (ret)
802                 return ret;
803
804         if (i915.enable_guc_submission) {
805                 /*
806                  * Check that the GuC has space for the request before
807                  * going any further, as the i915_add_request() call
808                  * later on mustn't fail ...
809                  */
810                 ret = i915_guc_wq_reserve(request);
811                 if (ret)
812                         goto err_unpin;
813         }
814
815         ret = intel_ring_begin(request, 0);
816         if (ret)
817                 goto err_unreserve;
818
819         if (!ce->initialised) {
820                 ret = engine->init_context(request);
821                 if (ret)
822                         goto err_unreserve;
823
824                 ce->initialised = true;
825         }
826
827         /* Note that after this point, we have committed to using
828          * this request as it is being used to both track the
829          * state of engine initialisation and liveness of the
830          * golden renderstate above. Think twice before you try
831          * to cancel/unwind this request now.
832          */
833
834         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
835         return 0;
836
837 err_unreserve:
838         if (i915.enable_guc_submission)
839                 i915_guc_wq_unreserve(request);
840 err_unpin:
841         intel_lr_context_unpin(request->ctx, engine);
842         return ret;
843 }
844
845 static int intel_lr_context_pin(struct i915_gem_context *ctx,
846                                 struct intel_engine_cs *engine)
847 {
848         struct intel_context *ce = &ctx->engine[engine->id];
849         void *vaddr;
850         int ret;
851
852         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
853
854         if (ce->pin_count++)
855                 return 0;
856
857         ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
858                            PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
859         if (ret)
860                 goto err;
861
862         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
863         if (IS_ERR(vaddr)) {
864                 ret = PTR_ERR(vaddr);
865                 goto unpin_vma;
866         }
867
868         ret = intel_ring_pin(ce->ring);
869         if (ret)
870                 goto unpin_map;
871
872         intel_lr_context_descriptor_update(ctx, engine);
873
874         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
875         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
876                 i915_ggtt_offset(ce->ring->vma);
877
878         ce->state->obj->mm.dirty = true;
879
880         /* Invalidate GuC TLB. */
881         if (i915.enable_guc_submission) {
882                 struct drm_i915_private *dev_priv = ctx->i915;
883                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
884         }
885
886         i915_gem_context_get(ctx);
887         return 0;
888
889 unpin_map:
890         i915_gem_object_unpin_map(ce->state->obj);
891 unpin_vma:
892         __i915_vma_unpin(ce->state);
893 err:
894         ce->pin_count = 0;
895         return ret;
896 }
897
898 void intel_lr_context_unpin(struct i915_gem_context *ctx,
899                             struct intel_engine_cs *engine)
900 {
901         struct intel_context *ce = &ctx->engine[engine->id];
902
903         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
904         GEM_BUG_ON(ce->pin_count == 0);
905
906         if (--ce->pin_count)
907                 return;
908
909         intel_ring_unpin(ce->ring);
910
911         i915_gem_object_unpin_map(ce->state->obj);
912         i915_vma_unpin(ce->state);
913
914         i915_gem_context_put(ctx);
915 }
916
917 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
918 {
919         int ret, i;
920         struct intel_ring *ring = req->ring;
921         struct i915_workarounds *w = &req->i915->workarounds;
922
923         if (w->count == 0)
924                 return 0;
925
926         ret = req->engine->emit_flush(req, EMIT_BARRIER);
927         if (ret)
928                 return ret;
929
930         ret = intel_ring_begin(req, w->count * 2 + 2);
931         if (ret)
932                 return ret;
933
934         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
935         for (i = 0; i < w->count; i++) {
936                 intel_ring_emit_reg(ring, w->reg[i].addr);
937                 intel_ring_emit(ring, w->reg[i].value);
938         }
939         intel_ring_emit(ring, MI_NOOP);
940
941         intel_ring_advance(ring);
942
943         ret = req->engine->emit_flush(req, EMIT_BARRIER);
944         if (ret)
945                 return ret;
946
947         return 0;
948 }
949
950 #define wa_ctx_emit(batch, index, cmd)                                  \
951         do {                                                            \
952                 int __index = (index)++;                                \
953                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
954                         return -ENOSPC;                                 \
955                 }                                                       \
956                 batch[__index] = (cmd);                                 \
957         } while (0)
958
959 #define wa_ctx_emit_reg(batch, index, reg) \
960         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
961
962 /*
963  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
964  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
965  * but there is a slight complication as this is applied in WA batch where the
966  * values are only initialized once so we cannot take register value at the
967  * beginning and reuse it further; hence we save its value to memory, upload a
968  * constant value with bit21 set and then we restore it back with the saved value.
969  * To simplify the WA, a constant value is formed by using the default value
970  * of this register. This shouldn't be a problem because we are only modifying
971  * it for a short period and this batch in non-premptible. We can ofcourse
972  * use additional instructions that read the actual value of the register
973  * at that time and set our bit of interest but it makes the WA complicated.
974  *
975  * This WA is also required for Gen9 so extracting as a function avoids
976  * code duplication.
977  */
978 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
979                                                 uint32_t *batch,
980                                                 uint32_t index)
981 {
982         struct drm_i915_private *dev_priv = engine->i915;
983         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
984
985         /*
986          * WaDisableLSQCROPERFforOCL:kbl
987          * This WA is implemented in skl_init_clock_gating() but since
988          * this batch updates GEN8_L3SQCREG4 with default value we need to
989          * set this bit here to retain the WA during flush.
990          */
991         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
992                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
993
994         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
995                                    MI_SRM_LRM_GLOBAL_GTT));
996         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
997         wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
998         wa_ctx_emit(batch, index, 0);
999
1000         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1001         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1002         wa_ctx_emit(batch, index, l3sqc4_flush);
1003
1004         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1005         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1006                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1007         wa_ctx_emit(batch, index, 0);
1008         wa_ctx_emit(batch, index, 0);
1009         wa_ctx_emit(batch, index, 0);
1010         wa_ctx_emit(batch, index, 0);
1011
1012         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1013                                    MI_SRM_LRM_GLOBAL_GTT));
1014         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1015         wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
1016         wa_ctx_emit(batch, index, 0);
1017
1018         return index;
1019 }
1020
1021 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1022                                     uint32_t offset,
1023                                     uint32_t start_alignment)
1024 {
1025         return wa_ctx->offset = ALIGN(offset, start_alignment);
1026 }
1027
1028 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1029                              uint32_t offset,
1030                              uint32_t size_alignment)
1031 {
1032         wa_ctx->size = offset - wa_ctx->offset;
1033
1034         WARN(wa_ctx->size % size_alignment,
1035              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1036              wa_ctx->size, size_alignment);
1037         return 0;
1038 }
1039
1040 /*
1041  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1042  * initialized at the beginning and shared across all contexts but this field
1043  * helps us to have multiple batches at different offsets and select them based
1044  * on a criteria. At the moment this batch always start at the beginning of the page
1045  * and at this point we don't have multiple wa_ctx batch buffers.
1046  *
1047  * The number of WA applied are not known at the beginning; we use this field
1048  * to return the no of DWORDS written.
1049  *
1050  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1051  * so it adds NOOPs as padding to make it cacheline aligned.
1052  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1053  * makes a complete batch buffer.
1054  */
1055 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1056                                     struct i915_wa_ctx_bb *wa_ctx,
1057                                     uint32_t *batch,
1058                                     uint32_t *offset)
1059 {
1060         uint32_t scratch_addr;
1061         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1062
1063         /* WaDisableCtxRestoreArbitration:bdw,chv */
1064         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1065
1066         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1067         if (IS_BROADWELL(engine->i915)) {
1068                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1069                 if (rc < 0)
1070                         return rc;
1071                 index = rc;
1072         }
1073
1074         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1075         /* Actual scratch location is at 128 bytes offset */
1076         scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1077
1078         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1079         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1080                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1081                                    PIPE_CONTROL_CS_STALL |
1082                                    PIPE_CONTROL_QW_WRITE));
1083         wa_ctx_emit(batch, index, scratch_addr);
1084         wa_ctx_emit(batch, index, 0);
1085         wa_ctx_emit(batch, index, 0);
1086         wa_ctx_emit(batch, index, 0);
1087
1088         /* Pad to end of cacheline */
1089         while (index % CACHELINE_DWORDS)
1090                 wa_ctx_emit(batch, index, MI_NOOP);
1091
1092         /*
1093          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1094          * execution depends on the length specified in terms of cache lines
1095          * in the register CTX_RCS_INDIRECT_CTX
1096          */
1097
1098         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1099 }
1100
1101 /*
1102  *  This batch is started immediately after indirect_ctx batch. Since we ensure
1103  *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1104  *
1105  *  The number of DWORDS written are returned using this field.
1106  *
1107  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1108  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1109  */
1110 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1111                                struct i915_wa_ctx_bb *wa_ctx,
1112                                uint32_t *batch,
1113                                uint32_t *offset)
1114 {
1115         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1116
1117         /* WaDisableCtxRestoreArbitration:bdw,chv */
1118         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1119
1120         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1121
1122         return wa_ctx_end(wa_ctx, *offset = index, 1);
1123 }
1124
1125 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1126                                     struct i915_wa_ctx_bb *wa_ctx,
1127                                     uint32_t *batch,
1128                                     uint32_t *offset)
1129 {
1130         int ret;
1131         struct drm_i915_private *dev_priv = engine->i915;
1132         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1133
1134         /* WaDisableCtxRestoreArbitration:bxt */
1135         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1136                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1137
1138         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1139         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1140         if (ret < 0)
1141                 return ret;
1142         index = ret;
1143
1144         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1145         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1146         wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1147         wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1148                             GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1149         wa_ctx_emit(batch, index, MI_NOOP);
1150
1151         /* WaClearSlmSpaceAtContextSwitch:kbl */
1152         /* Actual scratch location is at 128 bytes offset */
1153         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1154                 u32 scratch_addr =
1155                         i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1156
1157                 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1158                 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1159                                            PIPE_CONTROL_GLOBAL_GTT_IVB |
1160                                            PIPE_CONTROL_CS_STALL |
1161                                            PIPE_CONTROL_QW_WRITE));
1162                 wa_ctx_emit(batch, index, scratch_addr);
1163                 wa_ctx_emit(batch, index, 0);
1164                 wa_ctx_emit(batch, index, 0);
1165                 wa_ctx_emit(batch, index, 0);
1166         }
1167
1168         /* WaMediaPoolStateCmdInWABB:bxt */
1169         if (HAS_POOLED_EU(engine->i915)) {
1170                 /*
1171                  * EU pool configuration is setup along with golden context
1172                  * during context initialization. This value depends on
1173                  * device type (2x6 or 3x6) and needs to be updated based
1174                  * on which subslice is disabled especially for 2x6
1175                  * devices, however it is safe to load default
1176                  * configuration of 3x6 device instead of masking off
1177                  * corresponding bits because HW ignores bits of a disabled
1178                  * subslice and drops down to appropriate config. Please
1179                  * see render_state_setup() in i915_gem_render_state.c for
1180                  * possible configurations, to avoid duplication they are
1181                  * not shown here again.
1182                  */
1183                 u32 eu_pool_config = 0x00777000;
1184                 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1185                 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1186                 wa_ctx_emit(batch, index, eu_pool_config);
1187                 wa_ctx_emit(batch, index, 0);
1188                 wa_ctx_emit(batch, index, 0);
1189                 wa_ctx_emit(batch, index, 0);
1190         }
1191
1192         /* Pad to end of cacheline */
1193         while (index % CACHELINE_DWORDS)
1194                 wa_ctx_emit(batch, index, MI_NOOP);
1195
1196         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1197 }
1198
1199 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1200                                struct i915_wa_ctx_bb *wa_ctx,
1201                                uint32_t *batch,
1202                                uint32_t *offset)
1203 {
1204         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1205
1206         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1207         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1208                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1209                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1210                 wa_ctx_emit(batch, index,
1211                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1212                 wa_ctx_emit(batch, index, MI_NOOP);
1213         }
1214
1215         /* WaClearTdlStateAckDirtyBits:bxt */
1216         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1217                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1218
1219                 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1220                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1221
1222                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1223                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1224
1225                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1226                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1227
1228                 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1229                 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1230                 wa_ctx_emit(batch, index, 0x0);
1231                 wa_ctx_emit(batch, index, MI_NOOP);
1232         }
1233
1234         /* WaDisableCtxRestoreArbitration:bxt */
1235         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1236                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1237
1238         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1239
1240         return wa_ctx_end(wa_ctx, *offset = index, 1);
1241 }
1242
1243 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1244 {
1245         struct drm_i915_gem_object *obj;
1246         struct i915_vma *vma;
1247         int err;
1248
1249         obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1250         if (IS_ERR(obj))
1251                 return PTR_ERR(obj);
1252
1253         vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1254         if (IS_ERR(vma)) {
1255                 err = PTR_ERR(vma);
1256                 goto err;
1257         }
1258
1259         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1260         if (err)
1261                 goto err;
1262
1263         engine->wa_ctx.vma = vma;
1264         return 0;
1265
1266 err:
1267         i915_gem_object_put(obj);
1268         return err;
1269 }
1270
1271 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1272 {
1273         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1274 }
1275
1276 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1277 {
1278         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1279         uint32_t *batch;
1280         uint32_t offset;
1281         struct page *page;
1282         int ret;
1283
1284         WARN_ON(engine->id != RCS);
1285
1286         /* update this when WA for higher Gen are added */
1287         if (INTEL_GEN(engine->i915) > 9) {
1288                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1289                           INTEL_GEN(engine->i915));
1290                 return 0;
1291         }
1292
1293         /* some WA perform writes to scratch page, ensure it is valid */
1294         if (!engine->scratch) {
1295                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1296                 return -EINVAL;
1297         }
1298
1299         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1300         if (ret) {
1301                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1302                 return ret;
1303         }
1304
1305         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1306         batch = kmap_atomic(page);
1307         offset = 0;
1308
1309         if (IS_GEN8(engine->i915)) {
1310                 ret = gen8_init_indirectctx_bb(engine,
1311                                                &wa_ctx->indirect_ctx,
1312                                                batch,
1313                                                &offset);
1314                 if (ret)
1315                         goto out;
1316
1317                 ret = gen8_init_perctx_bb(engine,
1318                                           &wa_ctx->per_ctx,
1319                                           batch,
1320                                           &offset);
1321                 if (ret)
1322                         goto out;
1323         } else if (IS_GEN9(engine->i915)) {
1324                 ret = gen9_init_indirectctx_bb(engine,
1325                                                &wa_ctx->indirect_ctx,
1326                                                batch,
1327                                                &offset);
1328                 if (ret)
1329                         goto out;
1330
1331                 ret = gen9_init_perctx_bb(engine,
1332                                           &wa_ctx->per_ctx,
1333                                           batch,
1334                                           &offset);
1335                 if (ret)
1336                         goto out;
1337         }
1338
1339 out:
1340         kunmap_atomic(batch);
1341         if (ret)
1342                 lrc_destroy_wa_ctx_obj(engine);
1343
1344         return ret;
1345 }
1346
1347 static void lrc_init_hws(struct intel_engine_cs *engine)
1348 {
1349         struct drm_i915_private *dev_priv = engine->i915;
1350
1351         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1352                    engine->status_page.ggtt_offset);
1353         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1354 }
1355
1356 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1357 {
1358         struct drm_i915_private *dev_priv = engine->i915;
1359         int ret;
1360
1361         ret = intel_mocs_init_engine(engine);
1362         if (ret)
1363                 return ret;
1364
1365         lrc_init_hws(engine);
1366
1367         intel_engine_reset_breadcrumbs(engine);
1368
1369         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1370
1371         I915_WRITE(RING_MODE_GEN7(engine),
1372                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1373                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1374
1375         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1376
1377         intel_engine_init_hangcheck(engine);
1378
1379         /* After a GPU reset, we may have requests to replay */
1380         if (!execlists_elsp_idle(engine)) {
1381                 engine->execlist_port[0].count = 0;
1382                 engine->execlist_port[1].count = 0;
1383                 execlists_submit_ports(engine);
1384         }
1385
1386         return 0;
1387 }
1388
1389 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1390 {
1391         struct drm_i915_private *dev_priv = engine->i915;
1392         int ret;
1393
1394         ret = gen8_init_common_ring(engine);
1395         if (ret)
1396                 return ret;
1397
1398         /* We need to disable the AsyncFlip performance optimisations in order
1399          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1400          * programmed to '1' on all products.
1401          *
1402          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1403          */
1404         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1405
1406         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1407
1408         return init_workarounds_ring(engine);
1409 }
1410
1411 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1412 {
1413         int ret;
1414
1415         ret = gen8_init_common_ring(engine);
1416         if (ret)
1417                 return ret;
1418
1419         return init_workarounds_ring(engine);
1420 }
1421
1422 static void reset_common_ring(struct intel_engine_cs *engine,
1423                               struct drm_i915_gem_request *request)
1424 {
1425         struct drm_i915_private *dev_priv = engine->i915;
1426         struct execlist_port *port = engine->execlist_port;
1427         struct intel_context *ce = &request->ctx->engine[engine->id];
1428
1429         /* We want a simple context + ring to execute the breadcrumb update.
1430          * We cannot rely on the context being intact across the GPU hang,
1431          * so clear it and rebuild just what we need for the breadcrumb.
1432          * All pending requests for this context will be zapped, and any
1433          * future request will be after userspace has had the opportunity
1434          * to recreate its own state.
1435          */
1436         execlists_init_reg_state(ce->lrc_reg_state,
1437                                  request->ctx, engine, ce->ring);
1438
1439         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1440         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1441                 i915_ggtt_offset(ce->ring->vma);
1442         ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1443
1444         request->ring->head = request->postfix;
1445         request->ring->last_retired_head = -1;
1446         intel_ring_update_space(request->ring);
1447
1448         if (i915.enable_guc_submission)
1449                 return;
1450
1451         /* Catch up with any missed context-switch interrupts */
1452         I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1453         if (request->ctx != port[0].request->ctx) {
1454                 i915_gem_request_put(port[0].request);
1455                 port[0] = port[1];
1456                 memset(&port[1], 0, sizeof(port[1]));
1457         }
1458
1459         GEM_BUG_ON(request->ctx != port[0].request->ctx);
1460
1461         /* Reset WaIdleLiteRestore:bdw,skl as well */
1462         request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1463 }
1464
1465 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1466 {
1467         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1468         struct intel_ring *ring = req->ring;
1469         struct intel_engine_cs *engine = req->engine;
1470         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1471         int i, ret;
1472
1473         ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1474         if (ret)
1475                 return ret;
1476
1477         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1478         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1479                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1480
1481                 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1482                 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1483                 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1484                 intel_ring_emit(ring, lower_32_bits(pd_daddr));
1485         }
1486
1487         intel_ring_emit(ring, MI_NOOP);
1488         intel_ring_advance(ring);
1489
1490         return 0;
1491 }
1492
1493 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1494                               u64 offset, u32 len,
1495                               unsigned int dispatch_flags)
1496 {
1497         struct intel_ring *ring = req->ring;
1498         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1499         int ret;
1500
1501         /* Don't rely in hw updating PDPs, specially in lite-restore.
1502          * Ideally, we should set Force PD Restore in ctx descriptor,
1503          * but we can't. Force Restore would be a second option, but
1504          * it is unsafe in case of lite-restore (because the ctx is
1505          * not idle). PML4 is allocated during ppgtt init so this is
1506          * not needed in 48-bit.*/
1507         if (req->ctx->ppgtt &&
1508             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1509                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1510                     !intel_vgpu_active(req->i915)) {
1511                         ret = intel_logical_ring_emit_pdps(req);
1512                         if (ret)
1513                                 return ret;
1514                 }
1515
1516                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1517         }
1518
1519         ret = intel_ring_begin(req, 4);
1520         if (ret)
1521                 return ret;
1522
1523         /* FIXME(BDW): Address space and security selectors. */
1524         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1525                         (ppgtt<<8) |
1526                         (dispatch_flags & I915_DISPATCH_RS ?
1527                          MI_BATCH_RESOURCE_STREAMER : 0));
1528         intel_ring_emit(ring, lower_32_bits(offset));
1529         intel_ring_emit(ring, upper_32_bits(offset));
1530         intel_ring_emit(ring, MI_NOOP);
1531         intel_ring_advance(ring);
1532
1533         return 0;
1534 }
1535
1536 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1537 {
1538         struct drm_i915_private *dev_priv = engine->i915;
1539         I915_WRITE_IMR(engine,
1540                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1541         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1542 }
1543
1544 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1545 {
1546         struct drm_i915_private *dev_priv = engine->i915;
1547         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1548 }
1549
1550 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1551 {
1552         struct intel_ring *ring = request->ring;
1553         u32 cmd;
1554         int ret;
1555
1556         ret = intel_ring_begin(request, 4);
1557         if (ret)
1558                 return ret;
1559
1560         cmd = MI_FLUSH_DW + 1;
1561
1562         /* We always require a command barrier so that subsequent
1563          * commands, such as breadcrumb interrupts, are strictly ordered
1564          * wrt the contents of the write cache being flushed to memory
1565          * (and thus being coherent from the CPU).
1566          */
1567         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1568
1569         if (mode & EMIT_INVALIDATE) {
1570                 cmd |= MI_INVALIDATE_TLB;
1571                 if (request->engine->id == VCS)
1572                         cmd |= MI_INVALIDATE_BSD;
1573         }
1574
1575         intel_ring_emit(ring, cmd);
1576         intel_ring_emit(ring,
1577                         I915_GEM_HWS_SCRATCH_ADDR |
1578                         MI_FLUSH_DW_USE_GTT);
1579         intel_ring_emit(ring, 0); /* upper addr */
1580         intel_ring_emit(ring, 0); /* value */
1581         intel_ring_advance(ring);
1582
1583         return 0;
1584 }
1585
1586 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1587                                   u32 mode)
1588 {
1589         struct intel_ring *ring = request->ring;
1590         struct intel_engine_cs *engine = request->engine;
1591         u32 scratch_addr =
1592                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1593         bool vf_flush_wa = false, dc_flush_wa = false;
1594         u32 flags = 0;
1595         int ret;
1596         int len;
1597
1598         flags |= PIPE_CONTROL_CS_STALL;
1599
1600         if (mode & EMIT_FLUSH) {
1601                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1602                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1603                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1604                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1605         }
1606
1607         if (mode & EMIT_INVALIDATE) {
1608                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1609                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1610                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1611                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1612                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1613                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1614                 flags |= PIPE_CONTROL_QW_WRITE;
1615                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1616
1617                 /*
1618                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1619                  * pipe control.
1620                  */
1621                 if (IS_GEN9(request->i915))
1622                         vf_flush_wa = true;
1623
1624                 /* WaForGAMHang:kbl */
1625                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1626                         dc_flush_wa = true;
1627         }
1628
1629         len = 6;
1630
1631         if (vf_flush_wa)
1632                 len += 6;
1633
1634         if (dc_flush_wa)
1635                 len += 12;
1636
1637         ret = intel_ring_begin(request, len);
1638         if (ret)
1639                 return ret;
1640
1641         if (vf_flush_wa) {
1642                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1643                 intel_ring_emit(ring, 0);
1644                 intel_ring_emit(ring, 0);
1645                 intel_ring_emit(ring, 0);
1646                 intel_ring_emit(ring, 0);
1647                 intel_ring_emit(ring, 0);
1648         }
1649
1650         if (dc_flush_wa) {
1651                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1652                 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1653                 intel_ring_emit(ring, 0);
1654                 intel_ring_emit(ring, 0);
1655                 intel_ring_emit(ring, 0);
1656                 intel_ring_emit(ring, 0);
1657         }
1658
1659         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1660         intel_ring_emit(ring, flags);
1661         intel_ring_emit(ring, scratch_addr);
1662         intel_ring_emit(ring, 0);
1663         intel_ring_emit(ring, 0);
1664         intel_ring_emit(ring, 0);
1665
1666         if (dc_flush_wa) {
1667                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1668                 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1669                 intel_ring_emit(ring, 0);
1670                 intel_ring_emit(ring, 0);
1671                 intel_ring_emit(ring, 0);
1672                 intel_ring_emit(ring, 0);
1673         }
1674
1675         intel_ring_advance(ring);
1676
1677         return 0;
1678 }
1679
1680 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1681 {
1682         /*
1683          * On BXT A steppings there is a HW coherency issue whereby the
1684          * MI_STORE_DATA_IMM storing the completed request's seqno
1685          * occasionally doesn't invalidate the CPU cache. Work around this by
1686          * clflushing the corresponding cacheline whenever the caller wants
1687          * the coherency to be guaranteed. Note that this cacheline is known
1688          * to be clean at this point, since we only write it in
1689          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1690          * this clflush in practice becomes an invalidate operation.
1691          */
1692         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1693 }
1694
1695 /*
1696  * Reserve space for 2 NOOPs at the end of each request to be
1697  * used as a workaround for not being allowed to do lite
1698  * restore with HEAD==TAIL (WaIdleLiteRestore).
1699  */
1700 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1701 {
1702         *out++ = MI_NOOP;
1703         *out++ = MI_NOOP;
1704         request->wa_tail = intel_ring_offset(request->ring, out);
1705 }
1706
1707 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
1708                                  u32 *out)
1709 {
1710         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1711         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1712
1713         *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1714         *out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1715         *out++ = 0;
1716         *out++ = request->global_seqno;
1717         *out++ = MI_USER_INTERRUPT;
1718         *out++ = MI_NOOP;
1719         request->tail = intel_ring_offset(request->ring, out);
1720
1721         gen8_emit_wa_tail(request, out);
1722 }
1723
1724 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1725
1726 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1727                                         u32 *out)
1728 {
1729         /* We're using qword write, seqno should be aligned to 8 bytes. */
1730         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1731
1732         /* w/a for post sync ops following a GPGPU operation we
1733          * need a prior CS_STALL, which is emitted by the flush
1734          * following the batch.
1735          */
1736         *out++ = GFX_OP_PIPE_CONTROL(6);
1737         *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1738                   PIPE_CONTROL_CS_STALL |
1739                   PIPE_CONTROL_QW_WRITE);
1740         *out++ = intel_hws_seqno_address(request->engine);
1741         *out++ = 0;
1742         *out++ = request->global_seqno;
1743         /* We're thrashing one dword of HWS. */
1744         *out++ = 0;
1745         *out++ = MI_USER_INTERRUPT;
1746         *out++ = MI_NOOP;
1747         request->tail = intel_ring_offset(request->ring, out);
1748
1749         gen8_emit_wa_tail(request, out);
1750 }
1751
1752 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1753
1754 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1755 {
1756         int ret;
1757
1758         ret = intel_logical_ring_workarounds_emit(req);
1759         if (ret)
1760                 return ret;
1761
1762         ret = intel_rcs_context_init_mocs(req);
1763         /*
1764          * Failing to program the MOCS is non-fatal.The system will not
1765          * run at peak performance. So generate an error and carry on.
1766          */
1767         if (ret)
1768                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1769
1770         return i915_gem_render_state_emit(req);
1771 }
1772
1773 /**
1774  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1775  * @engine: Engine Command Streamer.
1776  */
1777 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1778 {
1779         struct drm_i915_private *dev_priv;
1780
1781         /*
1782          * Tasklet cannot be active at this point due intel_mark_active/idle
1783          * so this is just for documentation.
1784          */
1785         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1786                 tasklet_kill(&engine->irq_tasklet);
1787
1788         dev_priv = engine->i915;
1789
1790         if (engine->buffer) {
1791                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1792         }
1793
1794         if (engine->cleanup)
1795                 engine->cleanup(engine);
1796
1797         intel_engine_cleanup_common(engine);
1798
1799         if (engine->status_page.vma) {
1800                 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1801                 engine->status_page.vma = NULL;
1802         }
1803         intel_lr_context_unpin(dev_priv->kernel_context, engine);
1804
1805         lrc_destroy_wa_ctx_obj(engine);
1806         engine->i915 = NULL;
1807         dev_priv->engine[engine->id] = NULL;
1808         kfree(engine);
1809 }
1810
1811 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1812 {
1813         struct intel_engine_cs *engine;
1814         enum intel_engine_id id;
1815
1816         for_each_engine(engine, dev_priv, id) {
1817                 engine->submit_request = execlists_submit_request;
1818                 engine->schedule = execlists_schedule;
1819         }
1820 }
1821
1822 static void
1823 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1824 {
1825         /* Default vfuncs which can be overriden by each engine. */
1826         engine->init_hw = gen8_init_common_ring;
1827         engine->reset_hw = reset_common_ring;
1828         engine->emit_flush = gen8_emit_flush;
1829         engine->emit_breadcrumb = gen8_emit_breadcrumb;
1830         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1831         engine->submit_request = execlists_submit_request;
1832         engine->schedule = execlists_schedule;
1833
1834         engine->irq_enable = gen8_logical_ring_enable_irq;
1835         engine->irq_disable = gen8_logical_ring_disable_irq;
1836         engine->emit_bb_start = gen8_emit_bb_start;
1837         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1838                 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1839 }
1840
1841 static inline void
1842 logical_ring_default_irqs(struct intel_engine_cs *engine)
1843 {
1844         unsigned shift = engine->irq_shift;
1845         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1846         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1847 }
1848
1849 static int
1850 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1851 {
1852         const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1853         void *hws;
1854
1855         /* The HWSP is part of the default context object in LRC mode. */
1856         hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1857         if (IS_ERR(hws))
1858                 return PTR_ERR(hws);
1859
1860         engine->status_page.page_addr = hws + hws_offset;
1861         engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1862         engine->status_page.vma = vma;
1863
1864         return 0;
1865 }
1866
1867 static void
1868 logical_ring_setup(struct intel_engine_cs *engine)
1869 {
1870         struct drm_i915_private *dev_priv = engine->i915;
1871         enum forcewake_domains fw_domains;
1872
1873         intel_engine_setup_common(engine);
1874
1875         /* Intentionally left blank. */
1876         engine->buffer = NULL;
1877
1878         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1879                                                     RING_ELSP(engine),
1880                                                     FW_REG_WRITE);
1881
1882         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1883                                                      RING_CONTEXT_STATUS_PTR(engine),
1884                                                      FW_REG_READ | FW_REG_WRITE);
1885
1886         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1887                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
1888                                                      FW_REG_READ);
1889
1890         engine->fw_domains = fw_domains;
1891
1892         tasklet_init(&engine->irq_tasklet,
1893                      intel_lrc_irq_handler, (unsigned long)engine);
1894
1895         logical_ring_init_platform_invariants(engine);
1896         logical_ring_default_vfuncs(engine);
1897         logical_ring_default_irqs(engine);
1898 }
1899
1900 static int
1901 logical_ring_init(struct intel_engine_cs *engine)
1902 {
1903         struct i915_gem_context *dctx = engine->i915->kernel_context;
1904         int ret;
1905
1906         ret = intel_engine_init_common(engine);
1907         if (ret)
1908                 goto error;
1909
1910         ret = execlists_context_deferred_alloc(dctx, engine);
1911         if (ret)
1912                 goto error;
1913
1914         /* As this is the default context, always pin it */
1915         ret = intel_lr_context_pin(dctx, engine);
1916         if (ret) {
1917                 DRM_ERROR("Failed to pin context for %s: %d\n",
1918                           engine->name, ret);
1919                 goto error;
1920         }
1921
1922         /* And setup the hardware status page. */
1923         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1924         if (ret) {
1925                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1926                 goto error;
1927         }
1928
1929         return 0;
1930
1931 error:
1932         intel_logical_ring_cleanup(engine);
1933         return ret;
1934 }
1935
1936 int logical_render_ring_init(struct intel_engine_cs *engine)
1937 {
1938         struct drm_i915_private *dev_priv = engine->i915;
1939         int ret;
1940
1941         logical_ring_setup(engine);
1942
1943         if (HAS_L3_DPF(dev_priv))
1944                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1945
1946         /* Override some for render ring. */
1947         if (INTEL_GEN(dev_priv) >= 9)
1948                 engine->init_hw = gen9_init_render_ring;
1949         else
1950                 engine->init_hw = gen8_init_render_ring;
1951         engine->init_context = gen8_init_rcs_context;
1952         engine->emit_flush = gen8_emit_flush_render;
1953         engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1954         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1955
1956         ret = intel_engine_create_scratch(engine, 4096);
1957         if (ret)
1958                 return ret;
1959
1960         ret = intel_init_workaround_bb(engine);
1961         if (ret) {
1962                 /*
1963                  * We continue even if we fail to initialize WA batch
1964                  * because we only expect rare glitches but nothing
1965                  * critical to prevent us from using GPU
1966                  */
1967                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1968                           ret);
1969         }
1970
1971         return logical_ring_init(engine);
1972 }
1973
1974 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1975 {
1976         logical_ring_setup(engine);
1977
1978         return logical_ring_init(engine);
1979 }
1980
1981 static u32
1982 make_rpcs(struct drm_i915_private *dev_priv)
1983 {
1984         u32 rpcs = 0;
1985
1986         /*
1987          * No explicit RPCS request is needed to ensure full
1988          * slice/subslice/EU enablement prior to Gen9.
1989         */
1990         if (INTEL_GEN(dev_priv) < 9)
1991                 return 0;
1992
1993         /*
1994          * Starting in Gen9, render power gating can leave
1995          * slice/subslice/EU in a partially enabled state. We
1996          * must make an explicit request through RPCS for full
1997          * enablement.
1998         */
1999         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2000                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2001                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2002                         GEN8_RPCS_S_CNT_SHIFT;
2003                 rpcs |= GEN8_RPCS_ENABLE;
2004         }
2005
2006         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2007                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2008                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2009                         GEN8_RPCS_SS_CNT_SHIFT;
2010                 rpcs |= GEN8_RPCS_ENABLE;
2011         }
2012
2013         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2014                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2015                         GEN8_RPCS_EU_MIN_SHIFT;
2016                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2017                         GEN8_RPCS_EU_MAX_SHIFT;
2018                 rpcs |= GEN8_RPCS_ENABLE;
2019         }
2020
2021         return rpcs;
2022 }
2023
2024 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2025 {
2026         u32 indirect_ctx_offset;
2027
2028         switch (INTEL_GEN(engine->i915)) {
2029         default:
2030                 MISSING_CASE(INTEL_GEN(engine->i915));
2031                 /* fall through */
2032         case 9:
2033                 indirect_ctx_offset =
2034                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2035                 break;
2036         case 8:
2037                 indirect_ctx_offset =
2038                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2039                 break;
2040         }
2041
2042         return indirect_ctx_offset;
2043 }
2044
2045 static void execlists_init_reg_state(u32 *reg_state,
2046                                      struct i915_gem_context *ctx,
2047                                      struct intel_engine_cs *engine,
2048                                      struct intel_ring *ring)
2049 {
2050         struct drm_i915_private *dev_priv = engine->i915;
2051         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2052
2053         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2054          * commands followed by (reg, value) pairs. The values we are setting here are
2055          * only for the first context restore: on a subsequent save, the GPU will
2056          * recreate this batchbuffer with new values (including all the missing
2057          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2058         reg_state[CTX_LRI_HEADER_0] =
2059                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2060         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2061                        RING_CONTEXT_CONTROL(engine),
2062                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2063                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2064                                           (HAS_RESOURCE_STREAMER(dev_priv) ?
2065                                            CTX_CTRL_RS_CTX_ENABLE : 0)));
2066         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2067                        0);
2068         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2069                        0);
2070         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2071                        RING_START(engine->mmio_base), 0);
2072         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2073                        RING_CTL(engine->mmio_base),
2074                        RING_CTL_SIZE(ring->size) | RING_VALID);
2075         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2076                        RING_BBADDR_UDW(engine->mmio_base), 0);
2077         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2078                        RING_BBADDR(engine->mmio_base), 0);
2079         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2080                        RING_BBSTATE(engine->mmio_base),
2081                        RING_BB_PPGTT);
2082         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2083                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2084         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2085                        RING_SBBADDR(engine->mmio_base), 0);
2086         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2087                        RING_SBBSTATE(engine->mmio_base), 0);
2088         if (engine->id == RCS) {
2089                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2090                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2091                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2092                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2093                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2094                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2095                 if (engine->wa_ctx.vma) {
2096                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2097                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2098
2099                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2100                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2101                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2102
2103                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2104                                 intel_lr_indirect_ctx_offset(engine) << 6;
2105
2106                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2107                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2108                                 0x01;
2109                 }
2110         }
2111         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2112         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2113                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2114         /* PDP values well be assigned later if needed */
2115         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2116                        0);
2117         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2118                        0);
2119         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2120                        0);
2121         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2122                        0);
2123         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2124                        0);
2125         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2126                        0);
2127         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2128                        0);
2129         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2130                        0);
2131
2132         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2133                 /* 64b PPGTT (48bit canonical)
2134                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2135                  * other PDP Descriptors are ignored.
2136                  */
2137                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2138         } else {
2139                 /* 32b PPGTT
2140                  * PDP*_DESCRIPTOR contains the base address of space supported.
2141                  * With dynamic page allocation, PDPs may not be allocated at
2142                  * this point. Point the unallocated PDPs to the scratch page
2143                  */
2144                 execlists_update_context_pdps(ppgtt, reg_state);
2145         }
2146
2147         if (engine->id == RCS) {
2148                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2149                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2150                                make_rpcs(dev_priv));
2151         }
2152 }
2153
2154 static int
2155 populate_lr_context(struct i915_gem_context *ctx,
2156                     struct drm_i915_gem_object *ctx_obj,
2157                     struct intel_engine_cs *engine,
2158                     struct intel_ring *ring)
2159 {
2160         void *vaddr;
2161         int ret;
2162
2163         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2164         if (ret) {
2165                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2166                 return ret;
2167         }
2168
2169         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2170         if (IS_ERR(vaddr)) {
2171                 ret = PTR_ERR(vaddr);
2172                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2173                 return ret;
2174         }
2175         ctx_obj->mm.dirty = true;
2176
2177         /* The second page of the context object contains some fields which must
2178          * be set up prior to the first execution. */
2179
2180         execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2181                                  ctx, engine, ring);
2182
2183         i915_gem_object_unpin_map(ctx_obj);
2184
2185         return 0;
2186 }
2187
2188 /**
2189  * intel_lr_context_size() - return the size of the context for an engine
2190  * @engine: which engine to find the context size for
2191  *
2192  * Each engine may require a different amount of space for a context image,
2193  * so when allocating (or copying) an image, this function can be used to
2194  * find the right size for the specific engine.
2195  *
2196  * Return: size (in bytes) of an engine-specific context image
2197  *
2198  * Note: this size includes the HWSP, which is part of the context image
2199  * in LRC mode, but does not include the "shared data page" used with
2200  * GuC submission. The caller should account for this if using the GuC.
2201  */
2202 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2203 {
2204         int ret = 0;
2205
2206         WARN_ON(INTEL_GEN(engine->i915) < 8);
2207
2208         switch (engine->id) {
2209         case RCS:
2210                 if (INTEL_GEN(engine->i915) >= 9)
2211                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2212                 else
2213                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2214                 break;
2215         case VCS:
2216         case BCS:
2217         case VECS:
2218         case VCS2:
2219                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2220                 break;
2221         }
2222
2223         return ret;
2224 }
2225
2226 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2227                                             struct intel_engine_cs *engine)
2228 {
2229         struct drm_i915_gem_object *ctx_obj;
2230         struct intel_context *ce = &ctx->engine[engine->id];
2231         struct i915_vma *vma;
2232         uint32_t context_size;
2233         struct intel_ring *ring;
2234         int ret;
2235
2236         WARN_ON(ce->state);
2237
2238         context_size = round_up(intel_lr_context_size(engine), 4096);
2239
2240         /* One extra page as the sharing data between driver and GuC */
2241         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2242
2243         ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2244         if (IS_ERR(ctx_obj)) {
2245                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2246                 return PTR_ERR(ctx_obj);
2247         }
2248
2249         vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2250         if (IS_ERR(vma)) {
2251                 ret = PTR_ERR(vma);
2252                 goto error_deref_obj;
2253         }
2254
2255         ring = intel_engine_create_ring(engine, ctx->ring_size);
2256         if (IS_ERR(ring)) {
2257                 ret = PTR_ERR(ring);
2258                 goto error_deref_obj;
2259         }
2260
2261         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2262         if (ret) {
2263                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2264                 goto error_ring_free;
2265         }
2266
2267         ce->ring = ring;
2268         ce->state = vma;
2269         ce->initialised = engine->init_context == NULL;
2270
2271         return 0;
2272
2273 error_ring_free:
2274         intel_ring_free(ring);
2275 error_deref_obj:
2276         i915_gem_object_put(ctx_obj);
2277         return ret;
2278 }
2279
2280 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2281 {
2282         struct intel_engine_cs *engine;
2283         struct i915_gem_context *ctx;
2284         enum intel_engine_id id;
2285
2286         /* Because we emit WA_TAIL_DWORDS there may be a disparity
2287          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2288          * that stored in context. As we only write new commands from
2289          * ce->ring->tail onwards, everything before that is junk. If the GPU
2290          * starts reading from its RING_HEAD from the context, it may try to
2291          * execute that junk and die.
2292          *
2293          * So to avoid that we reset the context images upon resume. For
2294          * simplicity, we just zero everything out.
2295          */
2296         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2297                 for_each_engine(engine, dev_priv, id) {
2298                         struct intel_context *ce = &ctx->engine[engine->id];
2299                         u32 *reg;
2300
2301                         if (!ce->state)
2302                                 continue;
2303
2304                         reg = i915_gem_object_pin_map(ce->state->obj,
2305                                                       I915_MAP_WB);
2306                         if (WARN_ON(IS_ERR(reg)))
2307                                 continue;
2308
2309                         reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2310                         reg[CTX_RING_HEAD+1] = 0;
2311                         reg[CTX_RING_TAIL+1] = 0;
2312
2313                         ce->state->obj->mm.dirty = true;
2314                         i915_gem_object_unpin_map(ce->state->obj);
2315
2316                         ce->ring->head = ce->ring->tail = 0;
2317                         ce->ring->last_retired_head = -1;
2318                         intel_ring_update_space(ce->ring);
2319                 }
2320         }
2321 }