]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/intel_pm.c
drm/i915: Add i915 to i915_inject_probe_failure
[linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <linux/module.h>
30 #include <linux/pm_runtime.h>
31
32 #include <drm/drm_atomic_helper.h>
33 #include <drm/drm_fourcc.h>
34 #include <drm/drm_plane_helper.h>
35
36 #include "display/intel_atomic.h"
37 #include "display/intel_fbc.h"
38 #include "display/intel_sprite.h"
39
40 #include "i915_drv.h"
41 #include "i915_irq.h"
42 #include "intel_drv.h"
43 #include "intel_pm.h"
44 #include "intel_sideband.h"
45 #include "../../../platform/x86/intel_ips.h"
46
47 /**
48  * DOC: RC6
49  *
50  * RC6 is a special power stage which allows the GPU to enter an very
51  * low-voltage mode when idle, using down to 0V while at this stage.  This
52  * stage is entered automatically when the GPU is idle when RC6 support is
53  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
54  *
55  * There are different RC6 modes available in Intel GPU, which differentiate
56  * among each other with the latency required to enter and leave RC6 and
57  * voltage consumed by the GPU in different states.
58  *
59  * The combination of the following flags define which states GPU is allowed
60  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
61  * RC6pp is deepest RC6. Their support by hardware varies according to the
62  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
63  * which brings the most power savings; deeper states save more power, but
64  * require higher latency to switch to and wake up.
65  */
66
67 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
68 {
69         if (HAS_LLC(dev_priv)) {
70                 /*
71                  * WaCompressedResourceDisplayNewHashMode:skl,kbl
72                  * Display WA #0390: skl,kbl
73                  *
74                  * Must match Sampler, Pixel Back End, and Media. See
75                  * WaCompressedResourceSamplerPbeMediaNewHashMode.
76                  */
77                 I915_WRITE(CHICKEN_PAR1_1,
78                            I915_READ(CHICKEN_PAR1_1) |
79                            SKL_DE_COMPRESSED_HASH_MODE);
80         }
81
82         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
83         I915_WRITE(CHICKEN_PAR1_1,
84                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
85
86         /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
87         I915_WRITE(GEN8_CHICKEN_DCPR_1,
88                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
89
90         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
91         /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
92         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
93                    DISP_FBC_WM_DIS |
94                    DISP_FBC_MEMORY_WAKE);
95
96         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
97         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
98                    ILK_DPFC_DISABLE_DUMMY0);
99
100         if (IS_SKYLAKE(dev_priv)) {
101                 /* WaDisableDopClockGating */
102                 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
103                            & ~GEN7_DOP_CLOCK_GATE_ENABLE);
104         }
105 }
106
107 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
108 {
109         gen9_init_clock_gating(dev_priv);
110
111         /* WaDisableSDEUnitClockGating:bxt */
112         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
113                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
114
115         /*
116          * FIXME:
117          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
118          */
119         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
120                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
121
122         /*
123          * Wa: Backlight PWM may stop in the asserted state, causing backlight
124          * to stay fully on.
125          */
126         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
127                    PWM1_GATING_DIS | PWM2_GATING_DIS);
128 }
129
130 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
131 {
132         gen9_init_clock_gating(dev_priv);
133
134         /*
135          * WaDisablePWMClockGating:glk
136          * Backlight PWM may stop in the asserted state, causing backlight
137          * to stay fully on.
138          */
139         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
140                    PWM1_GATING_DIS | PWM2_GATING_DIS);
141
142         /* WaDDIIOTimeout:glk */
143         if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
144                 u32 val = I915_READ(CHICKEN_MISC_2);
145                 val &= ~(GLK_CL0_PWR_DOWN |
146                          GLK_CL1_PWR_DOWN |
147                          GLK_CL2_PWR_DOWN);
148                 I915_WRITE(CHICKEN_MISC_2, val);
149         }
150
151 }
152
153 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
154 {
155         u32 tmp;
156
157         tmp = I915_READ(CLKCFG);
158
159         switch (tmp & CLKCFG_FSB_MASK) {
160         case CLKCFG_FSB_533:
161                 dev_priv->fsb_freq = 533; /* 133*4 */
162                 break;
163         case CLKCFG_FSB_800:
164                 dev_priv->fsb_freq = 800; /* 200*4 */
165                 break;
166         case CLKCFG_FSB_667:
167                 dev_priv->fsb_freq =  667; /* 167*4 */
168                 break;
169         case CLKCFG_FSB_400:
170                 dev_priv->fsb_freq = 400; /* 100*4 */
171                 break;
172         }
173
174         switch (tmp & CLKCFG_MEM_MASK) {
175         case CLKCFG_MEM_533:
176                 dev_priv->mem_freq = 533;
177                 break;
178         case CLKCFG_MEM_667:
179                 dev_priv->mem_freq = 667;
180                 break;
181         case CLKCFG_MEM_800:
182                 dev_priv->mem_freq = 800;
183                 break;
184         }
185
186         /* detect pineview DDR3 setting */
187         tmp = I915_READ(CSHRDDR3CTL);
188         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
189 }
190
191 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
192 {
193         u16 ddrpll, csipll;
194
195         ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
196         csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
197
198         switch (ddrpll & 0xff) {
199         case 0xc:
200                 dev_priv->mem_freq = 800;
201                 break;
202         case 0x10:
203                 dev_priv->mem_freq = 1066;
204                 break;
205         case 0x14:
206                 dev_priv->mem_freq = 1333;
207                 break;
208         case 0x18:
209                 dev_priv->mem_freq = 1600;
210                 break;
211         default:
212                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
213                                  ddrpll & 0xff);
214                 dev_priv->mem_freq = 0;
215                 break;
216         }
217
218         dev_priv->ips.r_t = dev_priv->mem_freq;
219
220         switch (csipll & 0x3ff) {
221         case 0x00c:
222                 dev_priv->fsb_freq = 3200;
223                 break;
224         case 0x00e:
225                 dev_priv->fsb_freq = 3733;
226                 break;
227         case 0x010:
228                 dev_priv->fsb_freq = 4266;
229                 break;
230         case 0x012:
231                 dev_priv->fsb_freq = 4800;
232                 break;
233         case 0x014:
234                 dev_priv->fsb_freq = 5333;
235                 break;
236         case 0x016:
237                 dev_priv->fsb_freq = 5866;
238                 break;
239         case 0x018:
240                 dev_priv->fsb_freq = 6400;
241                 break;
242         default:
243                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
244                                  csipll & 0x3ff);
245                 dev_priv->fsb_freq = 0;
246                 break;
247         }
248
249         if (dev_priv->fsb_freq == 3200) {
250                 dev_priv->ips.c_m = 0;
251         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
252                 dev_priv->ips.c_m = 1;
253         } else {
254                 dev_priv->ips.c_m = 2;
255         }
256 }
257
258 static const struct cxsr_latency cxsr_latency_table[] = {
259         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
260         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
261         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
262         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
263         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
264
265         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
266         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
267         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
268         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
269         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
270
271         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
272         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
273         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
274         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
275         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
276
277         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
278         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
279         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
280         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
281         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
282
283         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
284         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
285         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
286         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
287         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
288
289         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
290         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
291         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
292         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
293         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
294 };
295
296 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
297                                                          bool is_ddr3,
298                                                          int fsb,
299                                                          int mem)
300 {
301         const struct cxsr_latency *latency;
302         int i;
303
304         if (fsb == 0 || mem == 0)
305                 return NULL;
306
307         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
308                 latency = &cxsr_latency_table[i];
309                 if (is_desktop == latency->is_desktop &&
310                     is_ddr3 == latency->is_ddr3 &&
311                     fsb == latency->fsb_freq && mem == latency->mem_freq)
312                         return latency;
313         }
314
315         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
316
317         return NULL;
318 }
319
320 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
321 {
322         u32 val;
323
324         vlv_punit_get(dev_priv);
325
326         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
327         if (enable)
328                 val &= ~FORCE_DDR_HIGH_FREQ;
329         else
330                 val |= FORCE_DDR_HIGH_FREQ;
331         val &= ~FORCE_DDR_LOW_FREQ;
332         val |= FORCE_DDR_FREQ_REQ_ACK;
333         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
334
335         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
336                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
337                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
338
339         vlv_punit_put(dev_priv);
340 }
341
342 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
343 {
344         u32 val;
345
346         vlv_punit_get(dev_priv);
347
348         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
349         if (enable)
350                 val |= DSP_MAXFIFO_PM5_ENABLE;
351         else
352                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
353         vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
354
355         vlv_punit_put(dev_priv);
356 }
357
358 #define FW_WM(value, plane) \
359         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
360
361 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
362 {
363         bool was_enabled;
364         u32 val;
365
366         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
367                 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
368                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
369                 POSTING_READ(FW_BLC_SELF_VLV);
370         } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
371                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
372                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
373                 POSTING_READ(FW_BLC_SELF);
374         } else if (IS_PINEVIEW(dev_priv)) {
375                 val = I915_READ(DSPFW3);
376                 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
377                 if (enable)
378                         val |= PINEVIEW_SELF_REFRESH_EN;
379                 else
380                         val &= ~PINEVIEW_SELF_REFRESH_EN;
381                 I915_WRITE(DSPFW3, val);
382                 POSTING_READ(DSPFW3);
383         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
384                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
385                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
386                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
387                 I915_WRITE(FW_BLC_SELF, val);
388                 POSTING_READ(FW_BLC_SELF);
389         } else if (IS_I915GM(dev_priv)) {
390                 /*
391                  * FIXME can't find a bit like this for 915G, and
392                  * and yet it does have the related watermark in
393                  * FW_BLC_SELF. What's going on?
394                  */
395                 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
396                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
397                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
398                 I915_WRITE(INSTPM, val);
399                 POSTING_READ(INSTPM);
400         } else {
401                 return false;
402         }
403
404         trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
405
406         DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
407                       enableddisabled(enable),
408                       enableddisabled(was_enabled));
409
410         return was_enabled;
411 }
412
413 /**
414  * intel_set_memory_cxsr - Configure CxSR state
415  * @dev_priv: i915 device
416  * @enable: Allow vs. disallow CxSR
417  *
418  * Allow or disallow the system to enter a special CxSR
419  * (C-state self refresh) state. What typically happens in CxSR mode
420  * is that several display FIFOs may get combined into a single larger
421  * FIFO for a particular plane (so called max FIFO mode) to allow the
422  * system to defer memory fetches longer, and the memory will enter
423  * self refresh.
424  *
425  * Note that enabling CxSR does not guarantee that the system enter
426  * this special mode, nor does it guarantee that the system stays
427  * in that mode once entered. So this just allows/disallows the system
428  * to autonomously utilize the CxSR mode. Other factors such as core
429  * C-states will affect when/if the system actually enters/exits the
430  * CxSR mode.
431  *
432  * Note that on VLV/CHV this actually only controls the max FIFO mode,
433  * and the system is free to enter/exit memory self refresh at any time
434  * even when the use of CxSR has been disallowed.
435  *
436  * While the system is actually in the CxSR/max FIFO mode, some plane
437  * control registers will not get latched on vblank. Thus in order to
438  * guarantee the system will respond to changes in the plane registers
439  * we must always disallow CxSR prior to making changes to those registers.
440  * Unfortunately the system will re-evaluate the CxSR conditions at
441  * frame start which happens after vblank start (which is when the plane
442  * registers would get latched), so we can't proceed with the plane update
443  * during the same frame where we disallowed CxSR.
444  *
445  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
446  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
447  * the hardware w.r.t. HPLL SR when writing to plane registers.
448  * Disallowing just CxSR is sufficient.
449  */
450 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
451 {
452         bool ret;
453
454         mutex_lock(&dev_priv->wm.wm_mutex);
455         ret = _intel_set_memory_cxsr(dev_priv, enable);
456         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
457                 dev_priv->wm.vlv.cxsr = enable;
458         else if (IS_G4X(dev_priv))
459                 dev_priv->wm.g4x.cxsr = enable;
460         mutex_unlock(&dev_priv->wm.wm_mutex);
461
462         return ret;
463 }
464
465 /*
466  * Latency for FIFO fetches is dependent on several factors:
467  *   - memory configuration (speed, channels)
468  *   - chipset
469  *   - current MCH state
470  * It can be fairly high in some situations, so here we assume a fairly
471  * pessimal value.  It's a tradeoff between extra memory fetches (if we
472  * set this value too high, the FIFO will fetch frequently to stay full)
473  * and power consumption (set it too low to save power and we might see
474  * FIFO underruns and display "flicker").
475  *
476  * A value of 5us seems to be a good balance; safe for very low end
477  * platforms but not overly aggressive on lower latency configs.
478  */
479 static const int pessimal_latency_ns = 5000;
480
481 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
482         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
483
484 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
485 {
486         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
487         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
488         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
489         enum pipe pipe = crtc->pipe;
490         int sprite0_start, sprite1_start;
491
492         switch (pipe) {
493                 u32 dsparb, dsparb2, dsparb3;
494         case PIPE_A:
495                 dsparb = I915_READ(DSPARB);
496                 dsparb2 = I915_READ(DSPARB2);
497                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
498                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
499                 break;
500         case PIPE_B:
501                 dsparb = I915_READ(DSPARB);
502                 dsparb2 = I915_READ(DSPARB2);
503                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
504                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
505                 break;
506         case PIPE_C:
507                 dsparb2 = I915_READ(DSPARB2);
508                 dsparb3 = I915_READ(DSPARB3);
509                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
510                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
511                 break;
512         default:
513                 MISSING_CASE(pipe);
514                 return;
515         }
516
517         fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
518         fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
519         fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
520         fifo_state->plane[PLANE_CURSOR] = 63;
521 }
522
523 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
524                               enum i9xx_plane_id i9xx_plane)
525 {
526         u32 dsparb = I915_READ(DSPARB);
527         int size;
528
529         size = dsparb & 0x7f;
530         if (i9xx_plane == PLANE_B)
531                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
532
533         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
534                       dsparb, plane_name(i9xx_plane), size);
535
536         return size;
537 }
538
539 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
540                               enum i9xx_plane_id i9xx_plane)
541 {
542         u32 dsparb = I915_READ(DSPARB);
543         int size;
544
545         size = dsparb & 0x1ff;
546         if (i9xx_plane == PLANE_B)
547                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
548         size >>= 1; /* Convert to cachelines */
549
550         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
551                       dsparb, plane_name(i9xx_plane), size);
552
553         return size;
554 }
555
556 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
557                               enum i9xx_plane_id i9xx_plane)
558 {
559         u32 dsparb = I915_READ(DSPARB);
560         int size;
561
562         size = dsparb & 0x7f;
563         size >>= 2; /* Convert to cachelines */
564
565         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
566                       dsparb, plane_name(i9xx_plane), size);
567
568         return size;
569 }
570
571 /* Pineview has different values for various configs */
572 static const struct intel_watermark_params pineview_display_wm = {
573         .fifo_size = PINEVIEW_DISPLAY_FIFO,
574         .max_wm = PINEVIEW_MAX_WM,
575         .default_wm = PINEVIEW_DFT_WM,
576         .guard_size = PINEVIEW_GUARD_WM,
577         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
578 };
579 static const struct intel_watermark_params pineview_display_hplloff_wm = {
580         .fifo_size = PINEVIEW_DISPLAY_FIFO,
581         .max_wm = PINEVIEW_MAX_WM,
582         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
583         .guard_size = PINEVIEW_GUARD_WM,
584         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
585 };
586 static const struct intel_watermark_params pineview_cursor_wm = {
587         .fifo_size = PINEVIEW_CURSOR_FIFO,
588         .max_wm = PINEVIEW_CURSOR_MAX_WM,
589         .default_wm = PINEVIEW_CURSOR_DFT_WM,
590         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
591         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
592 };
593 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
594         .fifo_size = PINEVIEW_CURSOR_FIFO,
595         .max_wm = PINEVIEW_CURSOR_MAX_WM,
596         .default_wm = PINEVIEW_CURSOR_DFT_WM,
597         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
598         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
599 };
600 static const struct intel_watermark_params i965_cursor_wm_info = {
601         .fifo_size = I965_CURSOR_FIFO,
602         .max_wm = I965_CURSOR_MAX_WM,
603         .default_wm = I965_CURSOR_DFT_WM,
604         .guard_size = 2,
605         .cacheline_size = I915_FIFO_LINE_SIZE,
606 };
607 static const struct intel_watermark_params i945_wm_info = {
608         .fifo_size = I945_FIFO_SIZE,
609         .max_wm = I915_MAX_WM,
610         .default_wm = 1,
611         .guard_size = 2,
612         .cacheline_size = I915_FIFO_LINE_SIZE,
613 };
614 static const struct intel_watermark_params i915_wm_info = {
615         .fifo_size = I915_FIFO_SIZE,
616         .max_wm = I915_MAX_WM,
617         .default_wm = 1,
618         .guard_size = 2,
619         .cacheline_size = I915_FIFO_LINE_SIZE,
620 };
621 static const struct intel_watermark_params i830_a_wm_info = {
622         .fifo_size = I855GM_FIFO_SIZE,
623         .max_wm = I915_MAX_WM,
624         .default_wm = 1,
625         .guard_size = 2,
626         .cacheline_size = I830_FIFO_LINE_SIZE,
627 };
628 static const struct intel_watermark_params i830_bc_wm_info = {
629         .fifo_size = I855GM_FIFO_SIZE,
630         .max_wm = I915_MAX_WM/2,
631         .default_wm = 1,
632         .guard_size = 2,
633         .cacheline_size = I830_FIFO_LINE_SIZE,
634 };
635 static const struct intel_watermark_params i845_wm_info = {
636         .fifo_size = I830_FIFO_SIZE,
637         .max_wm = I915_MAX_WM,
638         .default_wm = 1,
639         .guard_size = 2,
640         .cacheline_size = I830_FIFO_LINE_SIZE,
641 };
642
643 /**
644  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
645  * @pixel_rate: Pipe pixel rate in kHz
646  * @cpp: Plane bytes per pixel
647  * @latency: Memory wakeup latency in 0.1us units
648  *
649  * Compute the watermark using the method 1 or "small buffer"
650  * formula. The caller may additonally add extra cachelines
651  * to account for TLB misses and clock crossings.
652  *
653  * This method is concerned with the short term drain rate
654  * of the FIFO, ie. it does not account for blanking periods
655  * which would effectively reduce the average drain rate across
656  * a longer period. The name "small" refers to the fact the
657  * FIFO is relatively small compared to the amount of data
658  * fetched.
659  *
660  * The FIFO level vs. time graph might look something like:
661  *
662  *   |\   |\
663  *   | \  | \
664  * __---__---__ (- plane active, _ blanking)
665  * -> time
666  *
667  * or perhaps like this:
668  *
669  *   |\|\  |\|\
670  * __----__----__ (- plane active, _ blanking)
671  * -> time
672  *
673  * Returns:
674  * The watermark in bytes
675  */
676 static unsigned int intel_wm_method1(unsigned int pixel_rate,
677                                      unsigned int cpp,
678                                      unsigned int latency)
679 {
680         u64 ret;
681
682         ret = mul_u32_u32(pixel_rate, cpp * latency);
683         ret = DIV_ROUND_UP_ULL(ret, 10000);
684
685         return ret;
686 }
687
688 /**
689  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
690  * @pixel_rate: Pipe pixel rate in kHz
691  * @htotal: Pipe horizontal total
692  * @width: Plane width in pixels
693  * @cpp: Plane bytes per pixel
694  * @latency: Memory wakeup latency in 0.1us units
695  *
696  * Compute the watermark using the method 2 or "large buffer"
697  * formula. The caller may additonally add extra cachelines
698  * to account for TLB misses and clock crossings.
699  *
700  * This method is concerned with the long term drain rate
701  * of the FIFO, ie. it does account for blanking periods
702  * which effectively reduce the average drain rate across
703  * a longer period. The name "large" refers to the fact the
704  * FIFO is relatively large compared to the amount of data
705  * fetched.
706  *
707  * The FIFO level vs. time graph might look something like:
708  *
709  *    |\___       |\___
710  *    |    \___   |    \___
711  *    |        \  |        \
712  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
713  * -> time
714  *
715  * Returns:
716  * The watermark in bytes
717  */
718 static unsigned int intel_wm_method2(unsigned int pixel_rate,
719                                      unsigned int htotal,
720                                      unsigned int width,
721                                      unsigned int cpp,
722                                      unsigned int latency)
723 {
724         unsigned int ret;
725
726         /*
727          * FIXME remove once all users are computing
728          * watermarks in the correct place.
729          */
730         if (WARN_ON_ONCE(htotal == 0))
731                 htotal = 1;
732
733         ret = (latency * pixel_rate) / (htotal * 10000);
734         ret = (ret + 1) * width * cpp;
735
736         return ret;
737 }
738
739 /**
740  * intel_calculate_wm - calculate watermark level
741  * @pixel_rate: pixel clock
742  * @wm: chip FIFO params
743  * @fifo_size: size of the FIFO buffer
744  * @cpp: bytes per pixel
745  * @latency_ns: memory latency for the platform
746  *
747  * Calculate the watermark level (the level at which the display plane will
748  * start fetching from memory again).  Each chip has a different display
749  * FIFO size and allocation, so the caller needs to figure that out and pass
750  * in the correct intel_watermark_params structure.
751  *
752  * As the pixel clock runs, the FIFO will be drained at a rate that depends
753  * on the pixel size.  When it reaches the watermark level, it'll start
754  * fetching FIFO line sized based chunks from memory until the FIFO fills
755  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
756  * will occur, and a display engine hang could result.
757  */
758 static unsigned int intel_calculate_wm(int pixel_rate,
759                                        const struct intel_watermark_params *wm,
760                                        int fifo_size, int cpp,
761                                        unsigned int latency_ns)
762 {
763         int entries, wm_size;
764
765         /*
766          * Note: we need to make sure we don't overflow for various clock &
767          * latency values.
768          * clocks go from a few thousand to several hundred thousand.
769          * latency is usually a few thousand
770          */
771         entries = intel_wm_method1(pixel_rate, cpp,
772                                    latency_ns / 100);
773         entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
774                 wm->guard_size;
775         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
776
777         wm_size = fifo_size - entries;
778         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
779
780         /* Don't promote wm_size to unsigned... */
781         if (wm_size > wm->max_wm)
782                 wm_size = wm->max_wm;
783         if (wm_size <= 0)
784                 wm_size = wm->default_wm;
785
786         /*
787          * Bspec seems to indicate that the value shouldn't be lower than
788          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
789          * Lets go for 8 which is the burst size since certain platforms
790          * already use a hardcoded 8 (which is what the spec says should be
791          * done).
792          */
793         if (wm_size <= 8)
794                 wm_size = 8;
795
796         return wm_size;
797 }
798
799 static bool is_disabling(int old, int new, int threshold)
800 {
801         return old >= threshold && new < threshold;
802 }
803
804 static bool is_enabling(int old, int new, int threshold)
805 {
806         return old < threshold && new >= threshold;
807 }
808
809 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
810 {
811         return dev_priv->wm.max_level + 1;
812 }
813
814 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
815                                    const struct intel_plane_state *plane_state)
816 {
817         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
818
819         /* FIXME check the 'enable' instead */
820         if (!crtc_state->base.active)
821                 return false;
822
823         /*
824          * Treat cursor with fb as always visible since cursor updates
825          * can happen faster than the vrefresh rate, and the current
826          * watermark code doesn't handle that correctly. Cursor updates
827          * which set/clear the fb or change the cursor size are going
828          * to get throttled by intel_legacy_cursor_update() to work
829          * around this problem with the watermark code.
830          */
831         if (plane->id == PLANE_CURSOR)
832                 return plane_state->base.fb != NULL;
833         else
834                 return plane_state->base.visible;
835 }
836
837 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
838 {
839         struct intel_crtc *crtc, *enabled = NULL;
840
841         for_each_intel_crtc(&dev_priv->drm, crtc) {
842                 if (intel_crtc_active(crtc)) {
843                         if (enabled)
844                                 return NULL;
845                         enabled = crtc;
846                 }
847         }
848
849         return enabled;
850 }
851
852 static void pineview_update_wm(struct intel_crtc *unused_crtc)
853 {
854         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
855         struct intel_crtc *crtc;
856         const struct cxsr_latency *latency;
857         u32 reg;
858         unsigned int wm;
859
860         latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
861                                          dev_priv->is_ddr3,
862                                          dev_priv->fsb_freq,
863                                          dev_priv->mem_freq);
864         if (!latency) {
865                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
866                 intel_set_memory_cxsr(dev_priv, false);
867                 return;
868         }
869
870         crtc = single_enabled_crtc(dev_priv);
871         if (crtc) {
872                 const struct drm_display_mode *adjusted_mode =
873                         &crtc->config->base.adjusted_mode;
874                 const struct drm_framebuffer *fb =
875                         crtc->base.primary->state->fb;
876                 int cpp = fb->format->cpp[0];
877                 int clock = adjusted_mode->crtc_clock;
878
879                 /* Display SR */
880                 wm = intel_calculate_wm(clock, &pineview_display_wm,
881                                         pineview_display_wm.fifo_size,
882                                         cpp, latency->display_sr);
883                 reg = I915_READ(DSPFW1);
884                 reg &= ~DSPFW_SR_MASK;
885                 reg |= FW_WM(wm, SR);
886                 I915_WRITE(DSPFW1, reg);
887                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
888
889                 /* cursor SR */
890                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
891                                         pineview_display_wm.fifo_size,
892                                         4, latency->cursor_sr);
893                 reg = I915_READ(DSPFW3);
894                 reg &= ~DSPFW_CURSOR_SR_MASK;
895                 reg |= FW_WM(wm, CURSOR_SR);
896                 I915_WRITE(DSPFW3, reg);
897
898                 /* Display HPLL off SR */
899                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
900                                         pineview_display_hplloff_wm.fifo_size,
901                                         cpp, latency->display_hpll_disable);
902                 reg = I915_READ(DSPFW3);
903                 reg &= ~DSPFW_HPLL_SR_MASK;
904                 reg |= FW_WM(wm, HPLL_SR);
905                 I915_WRITE(DSPFW3, reg);
906
907                 /* cursor HPLL off SR */
908                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
909                                         pineview_display_hplloff_wm.fifo_size,
910                                         4, latency->cursor_hpll_disable);
911                 reg = I915_READ(DSPFW3);
912                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
913                 reg |= FW_WM(wm, HPLL_CURSOR);
914                 I915_WRITE(DSPFW3, reg);
915                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
916
917                 intel_set_memory_cxsr(dev_priv, true);
918         } else {
919                 intel_set_memory_cxsr(dev_priv, false);
920         }
921 }
922
923 /*
924  * Documentation says:
925  * "If the line size is small, the TLB fetches can get in the way of the
926  *  data fetches, causing some lag in the pixel data return which is not
927  *  accounted for in the above formulas. The following adjustment only
928  *  needs to be applied if eight whole lines fit in the buffer at once.
929  *  The WM is adjusted upwards by the difference between the FIFO size
930  *  and the size of 8 whole lines. This adjustment is always performed
931  *  in the actual pixel depth regardless of whether FBC is enabled or not."
932  */
933 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
934 {
935         int tlb_miss = fifo_size * 64 - width * cpp * 8;
936
937         return max(0, tlb_miss);
938 }
939
940 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
941                                 const struct g4x_wm_values *wm)
942 {
943         enum pipe pipe;
944
945         for_each_pipe(dev_priv, pipe)
946                 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
947
948         I915_WRITE(DSPFW1,
949                    FW_WM(wm->sr.plane, SR) |
950                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
951                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
952                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
953         I915_WRITE(DSPFW2,
954                    (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
955                    FW_WM(wm->sr.fbc, FBC_SR) |
956                    FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
957                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
958                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
959                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
960         I915_WRITE(DSPFW3,
961                    (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
962                    FW_WM(wm->sr.cursor, CURSOR_SR) |
963                    FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
964                    FW_WM(wm->hpll.plane, HPLL_SR));
965
966         POSTING_READ(DSPFW1);
967 }
968
969 #define FW_WM_VLV(value, plane) \
970         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
971
972 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
973                                 const struct vlv_wm_values *wm)
974 {
975         enum pipe pipe;
976
977         for_each_pipe(dev_priv, pipe) {
978                 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
979
980                 I915_WRITE(VLV_DDL(pipe),
981                            (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
982                            (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
983                            (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
984                            (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
985         }
986
987         /*
988          * Zero the (unused) WM1 watermarks, and also clear all the
989          * high order bits so that there are no out of bounds values
990          * present in the registers during the reprogramming.
991          */
992         I915_WRITE(DSPHOWM, 0);
993         I915_WRITE(DSPHOWM1, 0);
994         I915_WRITE(DSPFW4, 0);
995         I915_WRITE(DSPFW5, 0);
996         I915_WRITE(DSPFW6, 0);
997
998         I915_WRITE(DSPFW1,
999                    FW_WM(wm->sr.plane, SR) |
1000                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1001                    FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1002                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1003         I915_WRITE(DSPFW2,
1004                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1005                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1006                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1007         I915_WRITE(DSPFW3,
1008                    FW_WM(wm->sr.cursor, CURSOR_SR));
1009
1010         if (IS_CHERRYVIEW(dev_priv)) {
1011                 I915_WRITE(DSPFW7_CHV,
1012                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1013                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1014                 I915_WRITE(DSPFW8_CHV,
1015                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1016                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1017                 I915_WRITE(DSPFW9_CHV,
1018                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1019                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1020                 I915_WRITE(DSPHOWM,
1021                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1022                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1023                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1024                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1025                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1026                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1027                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1028                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1029                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1030                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1031         } else {
1032                 I915_WRITE(DSPFW7,
1033                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1034                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1035                 I915_WRITE(DSPHOWM,
1036                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1037                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1038                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1039                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1040                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1041                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1042                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1043         }
1044
1045         POSTING_READ(DSPFW1);
1046 }
1047
1048 #undef FW_WM_VLV
1049
1050 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1051 {
1052         /* all latencies in usec */
1053         dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1054         dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1055         dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1056
1057         dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1058 }
1059
1060 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1061 {
1062         /*
1063          * DSPCNTR[13] supposedly controls whether the
1064          * primary plane can use the FIFO space otherwise
1065          * reserved for the sprite plane. It's not 100% clear
1066          * what the actual FIFO size is, but it looks like we
1067          * can happily set both primary and sprite watermarks
1068          * up to 127 cachelines. So that would seem to mean
1069          * that either DSPCNTR[13] doesn't do anything, or that
1070          * the total FIFO is >= 256 cachelines in size. Either
1071          * way, we don't seem to have to worry about this
1072          * repartitioning as the maximum watermark value the
1073          * register can hold for each plane is lower than the
1074          * minimum FIFO size.
1075          */
1076         switch (plane_id) {
1077         case PLANE_CURSOR:
1078                 return 63;
1079         case PLANE_PRIMARY:
1080                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1081         case PLANE_SPRITE0:
1082                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1083         default:
1084                 MISSING_CASE(plane_id);
1085                 return 0;
1086         }
1087 }
1088
1089 static int g4x_fbc_fifo_size(int level)
1090 {
1091         switch (level) {
1092         case G4X_WM_LEVEL_SR:
1093                 return 7;
1094         case G4X_WM_LEVEL_HPLL:
1095                 return 15;
1096         default:
1097                 MISSING_CASE(level);
1098                 return 0;
1099         }
1100 }
1101
1102 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1103                           const struct intel_plane_state *plane_state,
1104                           int level)
1105 {
1106         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1107         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1108         const struct drm_display_mode *adjusted_mode =
1109                 &crtc_state->base.adjusted_mode;
1110         unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1111         unsigned int clock, htotal, cpp, width, wm;
1112
1113         if (latency == 0)
1114                 return USHRT_MAX;
1115
1116         if (!intel_wm_plane_visible(crtc_state, plane_state))
1117                 return 0;
1118
1119         cpp = plane_state->base.fb->format->cpp[0];
1120
1121         /*
1122          * Not 100% sure which way ELK should go here as the
1123          * spec only says CL/CTG should assume 32bpp and BW
1124          * doesn't need to. But as these things followed the
1125          * mobile vs. desktop lines on gen3 as well, let's
1126          * assume ELK doesn't need this.
1127          *
1128          * The spec also fails to list such a restriction for
1129          * the HPLL watermark, which seems a little strange.
1130          * Let's use 32bpp for the HPLL watermark as well.
1131          */
1132         if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1133             level != G4X_WM_LEVEL_NORMAL)
1134                 cpp = max(cpp, 4u);
1135
1136         clock = adjusted_mode->crtc_clock;
1137         htotal = adjusted_mode->crtc_htotal;
1138
1139         if (plane->id == PLANE_CURSOR)
1140                 width = plane_state->base.crtc_w;
1141         else
1142                 width = drm_rect_width(&plane_state->base.dst);
1143
1144         if (plane->id == PLANE_CURSOR) {
1145                 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1146         } else if (plane->id == PLANE_PRIMARY &&
1147                    level == G4X_WM_LEVEL_NORMAL) {
1148                 wm = intel_wm_method1(clock, cpp, latency);
1149         } else {
1150                 unsigned int small, large;
1151
1152                 small = intel_wm_method1(clock, cpp, latency);
1153                 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1154
1155                 wm = min(small, large);
1156         }
1157
1158         wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1159                               width, cpp);
1160
1161         wm = DIV_ROUND_UP(wm, 64) + 2;
1162
1163         return min_t(unsigned int, wm, USHRT_MAX);
1164 }
1165
1166 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1167                                  int level, enum plane_id plane_id, u16 value)
1168 {
1169         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1170         bool dirty = false;
1171
1172         for (; level < intel_wm_num_levels(dev_priv); level++) {
1173                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1174
1175                 dirty |= raw->plane[plane_id] != value;
1176                 raw->plane[plane_id] = value;
1177         }
1178
1179         return dirty;
1180 }
1181
1182 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1183                                int level, u16 value)
1184 {
1185         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1186         bool dirty = false;
1187
1188         /* NORMAL level doesn't have an FBC watermark */
1189         level = max(level, G4X_WM_LEVEL_SR);
1190
1191         for (; level < intel_wm_num_levels(dev_priv); level++) {
1192                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1193
1194                 dirty |= raw->fbc != value;
1195                 raw->fbc = value;
1196         }
1197
1198         return dirty;
1199 }
1200
1201 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1202                               const struct intel_plane_state *plane_state,
1203                               u32 pri_val);
1204
1205 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1206                                      const struct intel_plane_state *plane_state)
1207 {
1208         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1209         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1210         enum plane_id plane_id = plane->id;
1211         bool dirty = false;
1212         int level;
1213
1214         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1215                 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1216                 if (plane_id == PLANE_PRIMARY)
1217                         dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1218                 goto out;
1219         }
1220
1221         for (level = 0; level < num_levels; level++) {
1222                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1223                 int wm, max_wm;
1224
1225                 wm = g4x_compute_wm(crtc_state, plane_state, level);
1226                 max_wm = g4x_plane_fifo_size(plane_id, level);
1227
1228                 if (wm > max_wm)
1229                         break;
1230
1231                 dirty |= raw->plane[plane_id] != wm;
1232                 raw->plane[plane_id] = wm;
1233
1234                 if (plane_id != PLANE_PRIMARY ||
1235                     level == G4X_WM_LEVEL_NORMAL)
1236                         continue;
1237
1238                 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1239                                         raw->plane[plane_id]);
1240                 max_wm = g4x_fbc_fifo_size(level);
1241
1242                 /*
1243                  * FBC wm is not mandatory as we
1244                  * can always just disable its use.
1245                  */
1246                 if (wm > max_wm)
1247                         wm = USHRT_MAX;
1248
1249                 dirty |= raw->fbc != wm;
1250                 raw->fbc = wm;
1251         }
1252
1253         /* mark watermarks as invalid */
1254         dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1255
1256         if (plane_id == PLANE_PRIMARY)
1257                 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1258
1259  out:
1260         if (dirty) {
1261                 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1262                               plane->base.name,
1263                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1264                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1265                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1266
1267                 if (plane_id == PLANE_PRIMARY)
1268                         DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1269                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1270                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1271         }
1272
1273         return dirty;
1274 }
1275
1276 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1277                                       enum plane_id plane_id, int level)
1278 {
1279         const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1280
1281         return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1282 }
1283
1284 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1285                                      int level)
1286 {
1287         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1288
1289         if (level > dev_priv->wm.max_level)
1290                 return false;
1291
1292         return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1293                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1294                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1295 }
1296
1297 /* mark all levels starting from 'level' as invalid */
1298 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1299                                struct g4x_wm_state *wm_state, int level)
1300 {
1301         if (level <= G4X_WM_LEVEL_NORMAL) {
1302                 enum plane_id plane_id;
1303
1304                 for_each_plane_id_on_crtc(crtc, plane_id)
1305                         wm_state->wm.plane[plane_id] = USHRT_MAX;
1306         }
1307
1308         if (level <= G4X_WM_LEVEL_SR) {
1309                 wm_state->cxsr = false;
1310                 wm_state->sr.cursor = USHRT_MAX;
1311                 wm_state->sr.plane = USHRT_MAX;
1312                 wm_state->sr.fbc = USHRT_MAX;
1313         }
1314
1315         if (level <= G4X_WM_LEVEL_HPLL) {
1316                 wm_state->hpll_en = false;
1317                 wm_state->hpll.cursor = USHRT_MAX;
1318                 wm_state->hpll.plane = USHRT_MAX;
1319                 wm_state->hpll.fbc = USHRT_MAX;
1320         }
1321 }
1322
1323 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1324 {
1325         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1326         struct intel_atomic_state *state =
1327                 to_intel_atomic_state(crtc_state->base.state);
1328         struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1329         int num_active_planes = hweight32(crtc_state->active_planes &
1330                                           ~BIT(PLANE_CURSOR));
1331         const struct g4x_pipe_wm *raw;
1332         const struct intel_plane_state *old_plane_state;
1333         const struct intel_plane_state *new_plane_state;
1334         struct intel_plane *plane;
1335         enum plane_id plane_id;
1336         int i, level;
1337         unsigned int dirty = 0;
1338
1339         for_each_oldnew_intel_plane_in_state(state, plane,
1340                                              old_plane_state,
1341                                              new_plane_state, i) {
1342                 if (new_plane_state->base.crtc != &crtc->base &&
1343                     old_plane_state->base.crtc != &crtc->base)
1344                         continue;
1345
1346                 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1347                         dirty |= BIT(plane->id);
1348         }
1349
1350         if (!dirty)
1351                 return 0;
1352
1353         level = G4X_WM_LEVEL_NORMAL;
1354         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1355                 goto out;
1356
1357         raw = &crtc_state->wm.g4x.raw[level];
1358         for_each_plane_id_on_crtc(crtc, plane_id)
1359                 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1360
1361         level = G4X_WM_LEVEL_SR;
1362
1363         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1364                 goto out;
1365
1366         raw = &crtc_state->wm.g4x.raw[level];
1367         wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1368         wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1369         wm_state->sr.fbc = raw->fbc;
1370
1371         wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1372
1373         level = G4X_WM_LEVEL_HPLL;
1374
1375         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1376                 goto out;
1377
1378         raw = &crtc_state->wm.g4x.raw[level];
1379         wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1380         wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1381         wm_state->hpll.fbc = raw->fbc;
1382
1383         wm_state->hpll_en = wm_state->cxsr;
1384
1385         level++;
1386
1387  out:
1388         if (level == G4X_WM_LEVEL_NORMAL)
1389                 return -EINVAL;
1390
1391         /* invalidate the higher levels */
1392         g4x_invalidate_wms(crtc, wm_state, level);
1393
1394         /*
1395          * Determine if the FBC watermark(s) can be used. IF
1396          * this isn't the case we prefer to disable the FBC
1397          ( watermark(s) rather than disable the SR/HPLL
1398          * level(s) entirely.
1399          */
1400         wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1401
1402         if (level >= G4X_WM_LEVEL_SR &&
1403             wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1404                 wm_state->fbc_en = false;
1405         else if (level >= G4X_WM_LEVEL_HPLL &&
1406                  wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1407                 wm_state->fbc_en = false;
1408
1409         return 0;
1410 }
1411
1412 static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1413 {
1414         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1415         struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1416         const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1417         struct intel_atomic_state *intel_state =
1418                 to_intel_atomic_state(new_crtc_state->base.state);
1419         const struct intel_crtc_state *old_crtc_state =
1420                 intel_atomic_get_old_crtc_state(intel_state, crtc);
1421         const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1422         enum plane_id plane_id;
1423
1424         if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
1425                 *intermediate = *optimal;
1426
1427                 intermediate->cxsr = false;
1428                 intermediate->hpll_en = false;
1429                 goto out;
1430         }
1431
1432         intermediate->cxsr = optimal->cxsr && active->cxsr &&
1433                 !new_crtc_state->disable_cxsr;
1434         intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1435                 !new_crtc_state->disable_cxsr;
1436         intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1437
1438         for_each_plane_id_on_crtc(crtc, plane_id) {
1439                 intermediate->wm.plane[plane_id] =
1440                         max(optimal->wm.plane[plane_id],
1441                             active->wm.plane[plane_id]);
1442
1443                 WARN_ON(intermediate->wm.plane[plane_id] >
1444                         g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1445         }
1446
1447         intermediate->sr.plane = max(optimal->sr.plane,
1448                                      active->sr.plane);
1449         intermediate->sr.cursor = max(optimal->sr.cursor,
1450                                       active->sr.cursor);
1451         intermediate->sr.fbc = max(optimal->sr.fbc,
1452                                    active->sr.fbc);
1453
1454         intermediate->hpll.plane = max(optimal->hpll.plane,
1455                                        active->hpll.plane);
1456         intermediate->hpll.cursor = max(optimal->hpll.cursor,
1457                                         active->hpll.cursor);
1458         intermediate->hpll.fbc = max(optimal->hpll.fbc,
1459                                      active->hpll.fbc);
1460
1461         WARN_ON((intermediate->sr.plane >
1462                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1463                  intermediate->sr.cursor >
1464                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1465                 intermediate->cxsr);
1466         WARN_ON((intermediate->sr.plane >
1467                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1468                  intermediate->sr.cursor >
1469                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1470                 intermediate->hpll_en);
1471
1472         WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1473                 intermediate->fbc_en && intermediate->cxsr);
1474         WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1475                 intermediate->fbc_en && intermediate->hpll_en);
1476
1477 out:
1478         /*
1479          * If our intermediate WM are identical to the final WM, then we can
1480          * omit the post-vblank programming; only update if it's different.
1481          */
1482         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1483                 new_crtc_state->wm.need_postvbl_update = true;
1484
1485         return 0;
1486 }
1487
1488 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1489                          struct g4x_wm_values *wm)
1490 {
1491         struct intel_crtc *crtc;
1492         int num_active_crtcs = 0;
1493
1494         wm->cxsr = true;
1495         wm->hpll_en = true;
1496         wm->fbc_en = true;
1497
1498         for_each_intel_crtc(&dev_priv->drm, crtc) {
1499                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1500
1501                 if (!crtc->active)
1502                         continue;
1503
1504                 if (!wm_state->cxsr)
1505                         wm->cxsr = false;
1506                 if (!wm_state->hpll_en)
1507                         wm->hpll_en = false;
1508                 if (!wm_state->fbc_en)
1509                         wm->fbc_en = false;
1510
1511                 num_active_crtcs++;
1512         }
1513
1514         if (num_active_crtcs != 1) {
1515                 wm->cxsr = false;
1516                 wm->hpll_en = false;
1517                 wm->fbc_en = false;
1518         }
1519
1520         for_each_intel_crtc(&dev_priv->drm, crtc) {
1521                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1522                 enum pipe pipe = crtc->pipe;
1523
1524                 wm->pipe[pipe] = wm_state->wm;
1525                 if (crtc->active && wm->cxsr)
1526                         wm->sr = wm_state->sr;
1527                 if (crtc->active && wm->hpll_en)
1528                         wm->hpll = wm_state->hpll;
1529         }
1530 }
1531
1532 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1533 {
1534         struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1535         struct g4x_wm_values new_wm = {};
1536
1537         g4x_merge_wm(dev_priv, &new_wm);
1538
1539         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1540                 return;
1541
1542         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1543                 _intel_set_memory_cxsr(dev_priv, false);
1544
1545         g4x_write_wm_values(dev_priv, &new_wm);
1546
1547         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1548                 _intel_set_memory_cxsr(dev_priv, true);
1549
1550         *old_wm = new_wm;
1551 }
1552
1553 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1554                                    struct intel_crtc_state *crtc_state)
1555 {
1556         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1557         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1558
1559         mutex_lock(&dev_priv->wm.wm_mutex);
1560         crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1561         g4x_program_watermarks(dev_priv);
1562         mutex_unlock(&dev_priv->wm.wm_mutex);
1563 }
1564
1565 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1566                                     struct intel_crtc_state *crtc_state)
1567 {
1568         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1569         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1570
1571         if (!crtc_state->wm.need_postvbl_update)
1572                 return;
1573
1574         mutex_lock(&dev_priv->wm.wm_mutex);
1575         crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1576         g4x_program_watermarks(dev_priv);
1577         mutex_unlock(&dev_priv->wm.wm_mutex);
1578 }
1579
1580 /* latency must be in 0.1us units. */
1581 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1582                                    unsigned int htotal,
1583                                    unsigned int width,
1584                                    unsigned int cpp,
1585                                    unsigned int latency)
1586 {
1587         unsigned int ret;
1588
1589         ret = intel_wm_method2(pixel_rate, htotal,
1590                                width, cpp, latency);
1591         ret = DIV_ROUND_UP(ret, 64);
1592
1593         return ret;
1594 }
1595
1596 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1597 {
1598         /* all latencies in usec */
1599         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1600
1601         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1602
1603         if (IS_CHERRYVIEW(dev_priv)) {
1604                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1605                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1606
1607                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1608         }
1609 }
1610
1611 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1612                                 const struct intel_plane_state *plane_state,
1613                                 int level)
1614 {
1615         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1616         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1617         const struct drm_display_mode *adjusted_mode =
1618                 &crtc_state->base.adjusted_mode;
1619         unsigned int clock, htotal, cpp, width, wm;
1620
1621         if (dev_priv->wm.pri_latency[level] == 0)
1622                 return USHRT_MAX;
1623
1624         if (!intel_wm_plane_visible(crtc_state, plane_state))
1625                 return 0;
1626
1627         cpp = plane_state->base.fb->format->cpp[0];
1628         clock = adjusted_mode->crtc_clock;
1629         htotal = adjusted_mode->crtc_htotal;
1630         width = crtc_state->pipe_src_w;
1631
1632         if (plane->id == PLANE_CURSOR) {
1633                 /*
1634                  * FIXME the formula gives values that are
1635                  * too big for the cursor FIFO, and hence we
1636                  * would never be able to use cursors. For
1637                  * now just hardcode the watermark.
1638                  */
1639                 wm = 63;
1640         } else {
1641                 wm = vlv_wm_method2(clock, htotal, width, cpp,
1642                                     dev_priv->wm.pri_latency[level] * 10);
1643         }
1644
1645         return min_t(unsigned int, wm, USHRT_MAX);
1646 }
1647
1648 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1649 {
1650         return (active_planes & (BIT(PLANE_SPRITE0) |
1651                                  BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1652 }
1653
1654 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1655 {
1656         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1657         const struct g4x_pipe_wm *raw =
1658                 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1659         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1660         unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1661         int num_active_planes = hweight32(active_planes);
1662         const int fifo_size = 511;
1663         int fifo_extra, fifo_left = fifo_size;
1664         int sprite0_fifo_extra = 0;
1665         unsigned int total_rate;
1666         enum plane_id plane_id;
1667
1668         /*
1669          * When enabling sprite0 after sprite1 has already been enabled
1670          * we tend to get an underrun unless sprite0 already has some
1671          * FIFO space allcoated. Hence we always allocate at least one
1672          * cacheline for sprite0 whenever sprite1 is enabled.
1673          *
1674          * All other plane enable sequences appear immune to this problem.
1675          */
1676         if (vlv_need_sprite0_fifo_workaround(active_planes))
1677                 sprite0_fifo_extra = 1;
1678
1679         total_rate = raw->plane[PLANE_PRIMARY] +
1680                 raw->plane[PLANE_SPRITE0] +
1681                 raw->plane[PLANE_SPRITE1] +
1682                 sprite0_fifo_extra;
1683
1684         if (total_rate > fifo_size)
1685                 return -EINVAL;
1686
1687         if (total_rate == 0)
1688                 total_rate = 1;
1689
1690         for_each_plane_id_on_crtc(crtc, plane_id) {
1691                 unsigned int rate;
1692
1693                 if ((active_planes & BIT(plane_id)) == 0) {
1694                         fifo_state->plane[plane_id] = 0;
1695                         continue;
1696                 }
1697
1698                 rate = raw->plane[plane_id];
1699                 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1700                 fifo_left -= fifo_state->plane[plane_id];
1701         }
1702
1703         fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1704         fifo_left -= sprite0_fifo_extra;
1705
1706         fifo_state->plane[PLANE_CURSOR] = 63;
1707
1708         fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1709
1710         /* spread the remainder evenly */
1711         for_each_plane_id_on_crtc(crtc, plane_id) {
1712                 int plane_extra;
1713
1714                 if (fifo_left == 0)
1715                         break;
1716
1717                 if ((active_planes & BIT(plane_id)) == 0)
1718                         continue;
1719
1720                 plane_extra = min(fifo_extra, fifo_left);
1721                 fifo_state->plane[plane_id] += plane_extra;
1722                 fifo_left -= plane_extra;
1723         }
1724
1725         WARN_ON(active_planes != 0 && fifo_left != 0);
1726
1727         /* give it all to the first plane if none are active */
1728         if (active_planes == 0) {
1729                 WARN_ON(fifo_left != fifo_size);
1730                 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1731         }
1732
1733         return 0;
1734 }
1735
1736 /* mark all levels starting from 'level' as invalid */
1737 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1738                                struct vlv_wm_state *wm_state, int level)
1739 {
1740         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1741
1742         for (; level < intel_wm_num_levels(dev_priv); level++) {
1743                 enum plane_id plane_id;
1744
1745                 for_each_plane_id_on_crtc(crtc, plane_id)
1746                         wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1747
1748                 wm_state->sr[level].cursor = USHRT_MAX;
1749                 wm_state->sr[level].plane = USHRT_MAX;
1750         }
1751 }
1752
1753 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1754 {
1755         if (wm > fifo_size)
1756                 return USHRT_MAX;
1757         else
1758                 return fifo_size - wm;
1759 }
1760
1761 /*
1762  * Starting from 'level' set all higher
1763  * levels to 'value' in the "raw" watermarks.
1764  */
1765 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1766                                  int level, enum plane_id plane_id, u16 value)
1767 {
1768         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1769         int num_levels = intel_wm_num_levels(dev_priv);
1770         bool dirty = false;
1771
1772         for (; level < num_levels; level++) {
1773                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1774
1775                 dirty |= raw->plane[plane_id] != value;
1776                 raw->plane[plane_id] = value;
1777         }
1778
1779         return dirty;
1780 }
1781
1782 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1783                                      const struct intel_plane_state *plane_state)
1784 {
1785         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1786         enum plane_id plane_id = plane->id;
1787         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1788         int level;
1789         bool dirty = false;
1790
1791         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1792                 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1793                 goto out;
1794         }
1795
1796         for (level = 0; level < num_levels; level++) {
1797                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1798                 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1799                 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1800
1801                 if (wm > max_wm)
1802                         break;
1803
1804                 dirty |= raw->plane[plane_id] != wm;
1805                 raw->plane[plane_id] = wm;
1806         }
1807
1808         /* mark all higher levels as invalid */
1809         dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1810
1811 out:
1812         if (dirty)
1813                 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1814                               plane->base.name,
1815                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1816                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1817                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1818
1819         return dirty;
1820 }
1821
1822 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1823                                       enum plane_id plane_id, int level)
1824 {
1825         const struct g4x_pipe_wm *raw =
1826                 &crtc_state->wm.vlv.raw[level];
1827         const struct vlv_fifo_state *fifo_state =
1828                 &crtc_state->wm.vlv.fifo_state;
1829
1830         return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1831 }
1832
1833 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1834 {
1835         return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1836                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1837                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1838                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1839 }
1840
1841 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1842 {
1843         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1844         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1845         struct intel_atomic_state *state =
1846                 to_intel_atomic_state(crtc_state->base.state);
1847         struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1848         const struct vlv_fifo_state *fifo_state =
1849                 &crtc_state->wm.vlv.fifo_state;
1850         int num_active_planes = hweight32(crtc_state->active_planes &
1851                                           ~BIT(PLANE_CURSOR));
1852         bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1853         const struct intel_plane_state *old_plane_state;
1854         const struct intel_plane_state *new_plane_state;
1855         struct intel_plane *plane;
1856         enum plane_id plane_id;
1857         int level, ret, i;
1858         unsigned int dirty = 0;
1859
1860         for_each_oldnew_intel_plane_in_state(state, plane,
1861                                              old_plane_state,
1862                                              new_plane_state, i) {
1863                 if (new_plane_state->base.crtc != &crtc->base &&
1864                     old_plane_state->base.crtc != &crtc->base)
1865                         continue;
1866
1867                 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1868                         dirty |= BIT(plane->id);
1869         }
1870
1871         /*
1872          * DSPARB registers may have been reset due to the
1873          * power well being turned off. Make sure we restore
1874          * them to a consistent state even if no primary/sprite
1875          * planes are initially active.
1876          */
1877         if (needs_modeset)
1878                 crtc_state->fifo_changed = true;
1879
1880         if (!dirty)
1881                 return 0;
1882
1883         /* cursor changes don't warrant a FIFO recompute */
1884         if (dirty & ~BIT(PLANE_CURSOR)) {
1885                 const struct intel_crtc_state *old_crtc_state =
1886                         intel_atomic_get_old_crtc_state(state, crtc);
1887                 const struct vlv_fifo_state *old_fifo_state =
1888                         &old_crtc_state->wm.vlv.fifo_state;
1889
1890                 ret = vlv_compute_fifo(crtc_state);
1891                 if (ret)
1892                         return ret;
1893
1894                 if (needs_modeset ||
1895                     memcmp(old_fifo_state, fifo_state,
1896                            sizeof(*fifo_state)) != 0)
1897                         crtc_state->fifo_changed = true;
1898         }
1899
1900         /* initially allow all levels */
1901         wm_state->num_levels = intel_wm_num_levels(dev_priv);
1902         /*
1903          * Note that enabling cxsr with no primary/sprite planes
1904          * enabled can wedge the pipe. Hence we only allow cxsr
1905          * with exactly one enabled primary/sprite plane.
1906          */
1907         wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1908
1909         for (level = 0; level < wm_state->num_levels; level++) {
1910                 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1911                 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1912
1913                 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1914                         break;
1915
1916                 for_each_plane_id_on_crtc(crtc, plane_id) {
1917                         wm_state->wm[level].plane[plane_id] =
1918                                 vlv_invert_wm_value(raw->plane[plane_id],
1919                                                     fifo_state->plane[plane_id]);
1920                 }
1921
1922                 wm_state->sr[level].plane =
1923                         vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1924                                                  raw->plane[PLANE_SPRITE0],
1925                                                  raw->plane[PLANE_SPRITE1]),
1926                                             sr_fifo_size);
1927
1928                 wm_state->sr[level].cursor =
1929                         vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1930                                             63);
1931         }
1932
1933         if (level == 0)
1934                 return -EINVAL;
1935
1936         /* limit to only levels we can actually handle */
1937         wm_state->num_levels = level;
1938
1939         /* invalidate the higher levels */
1940         vlv_invalidate_wms(crtc, wm_state, level);
1941
1942         return 0;
1943 }
1944
1945 #define VLV_FIFO(plane, value) \
1946         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1947
1948 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1949                                    struct intel_crtc_state *crtc_state)
1950 {
1951         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1952         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1953         struct intel_uncore *uncore = &dev_priv->uncore;
1954         const struct vlv_fifo_state *fifo_state =
1955                 &crtc_state->wm.vlv.fifo_state;
1956         int sprite0_start, sprite1_start, fifo_size;
1957
1958         if (!crtc_state->fifo_changed)
1959                 return;
1960
1961         sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1962         sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1963         fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1964
1965         WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1966         WARN_ON(fifo_size != 511);
1967
1968         trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1969
1970         /*
1971          * uncore.lock serves a double purpose here. It allows us to
1972          * use the less expensive I915_{READ,WRITE}_FW() functions, and
1973          * it protects the DSPARB registers from getting clobbered by
1974          * parallel updates from multiple pipes.
1975          *
1976          * intel_pipe_update_start() has already disabled interrupts
1977          * for us, so a plain spin_lock() is sufficient here.
1978          */
1979         spin_lock(&uncore->lock);
1980
1981         switch (crtc->pipe) {
1982                 u32 dsparb, dsparb2, dsparb3;
1983         case PIPE_A:
1984                 dsparb = intel_uncore_read_fw(uncore, DSPARB);
1985                 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1986
1987                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1988                             VLV_FIFO(SPRITEB, 0xff));
1989                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1990                            VLV_FIFO(SPRITEB, sprite1_start));
1991
1992                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1993                              VLV_FIFO(SPRITEB_HI, 0x1));
1994                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1995                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1996
1997                 intel_uncore_write_fw(uncore, DSPARB, dsparb);
1998                 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1999                 break;
2000         case PIPE_B:
2001                 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2002                 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2003
2004                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2005                             VLV_FIFO(SPRITED, 0xff));
2006                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2007                            VLV_FIFO(SPRITED, sprite1_start));
2008
2009                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2010                              VLV_FIFO(SPRITED_HI, 0xff));
2011                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2012                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2013
2014                 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2015                 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2016                 break;
2017         case PIPE_C:
2018                 dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2019                 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2020
2021                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2022                              VLV_FIFO(SPRITEF, 0xff));
2023                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2024                             VLV_FIFO(SPRITEF, sprite1_start));
2025
2026                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2027                              VLV_FIFO(SPRITEF_HI, 0xff));
2028                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2029                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2030
2031                 intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2032                 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2033                 break;
2034         default:
2035                 break;
2036         }
2037
2038         intel_uncore_posting_read_fw(uncore, DSPARB);
2039
2040         spin_unlock(&uncore->lock);
2041 }
2042
2043 #undef VLV_FIFO
2044
2045 static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2046 {
2047         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2048         struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2049         const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2050         struct intel_atomic_state *intel_state =
2051                 to_intel_atomic_state(new_crtc_state->base.state);
2052         const struct intel_crtc_state *old_crtc_state =
2053                 intel_atomic_get_old_crtc_state(intel_state, crtc);
2054         const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2055         int level;
2056
2057         if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
2058                 *intermediate = *optimal;
2059
2060                 intermediate->cxsr = false;
2061                 goto out;
2062         }
2063
2064         intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2065         intermediate->cxsr = optimal->cxsr && active->cxsr &&
2066                 !new_crtc_state->disable_cxsr;
2067
2068         for (level = 0; level < intermediate->num_levels; level++) {
2069                 enum plane_id plane_id;
2070
2071                 for_each_plane_id_on_crtc(crtc, plane_id) {
2072                         intermediate->wm[level].plane[plane_id] =
2073                                 min(optimal->wm[level].plane[plane_id],
2074                                     active->wm[level].plane[plane_id]);
2075                 }
2076
2077                 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2078                                                     active->sr[level].plane);
2079                 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2080                                                      active->sr[level].cursor);
2081         }
2082
2083         vlv_invalidate_wms(crtc, intermediate, level);
2084
2085 out:
2086         /*
2087          * If our intermediate WM are identical to the final WM, then we can
2088          * omit the post-vblank programming; only update if it's different.
2089          */
2090         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2091                 new_crtc_state->wm.need_postvbl_update = true;
2092
2093         return 0;
2094 }
2095
2096 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2097                          struct vlv_wm_values *wm)
2098 {
2099         struct intel_crtc *crtc;
2100         int num_active_crtcs = 0;
2101
2102         wm->level = dev_priv->wm.max_level;
2103         wm->cxsr = true;
2104
2105         for_each_intel_crtc(&dev_priv->drm, crtc) {
2106                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2107
2108                 if (!crtc->active)
2109                         continue;
2110
2111                 if (!wm_state->cxsr)
2112                         wm->cxsr = false;
2113
2114                 num_active_crtcs++;
2115                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2116         }
2117
2118         if (num_active_crtcs != 1)
2119                 wm->cxsr = false;
2120
2121         if (num_active_crtcs > 1)
2122                 wm->level = VLV_WM_LEVEL_PM2;
2123
2124         for_each_intel_crtc(&dev_priv->drm, crtc) {
2125                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2126                 enum pipe pipe = crtc->pipe;
2127
2128                 wm->pipe[pipe] = wm_state->wm[wm->level];
2129                 if (crtc->active && wm->cxsr)
2130                         wm->sr = wm_state->sr[wm->level];
2131
2132                 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2133                 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2134                 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2135                 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2136         }
2137 }
2138
2139 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2140 {
2141         struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2142         struct vlv_wm_values new_wm = {};
2143
2144         vlv_merge_wm(dev_priv, &new_wm);
2145
2146         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2147                 return;
2148
2149         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2150                 chv_set_memory_dvfs(dev_priv, false);
2151
2152         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2153                 chv_set_memory_pm5(dev_priv, false);
2154
2155         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2156                 _intel_set_memory_cxsr(dev_priv, false);
2157
2158         vlv_write_wm_values(dev_priv, &new_wm);
2159
2160         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2161                 _intel_set_memory_cxsr(dev_priv, true);
2162
2163         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2164                 chv_set_memory_pm5(dev_priv, true);
2165
2166         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2167                 chv_set_memory_dvfs(dev_priv, true);
2168
2169         *old_wm = new_wm;
2170 }
2171
2172 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2173                                    struct intel_crtc_state *crtc_state)
2174 {
2175         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2176         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2177
2178         mutex_lock(&dev_priv->wm.wm_mutex);
2179         crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2180         vlv_program_watermarks(dev_priv);
2181         mutex_unlock(&dev_priv->wm.wm_mutex);
2182 }
2183
2184 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2185                                     struct intel_crtc_state *crtc_state)
2186 {
2187         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2188         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2189
2190         if (!crtc_state->wm.need_postvbl_update)
2191                 return;
2192
2193         mutex_lock(&dev_priv->wm.wm_mutex);
2194         crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2195         vlv_program_watermarks(dev_priv);
2196         mutex_unlock(&dev_priv->wm.wm_mutex);
2197 }
2198
2199 static void i965_update_wm(struct intel_crtc *unused_crtc)
2200 {
2201         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2202         struct intel_crtc *crtc;
2203         int srwm = 1;
2204         int cursor_sr = 16;
2205         bool cxsr_enabled;
2206
2207         /* Calc sr entries for one plane configs */
2208         crtc = single_enabled_crtc(dev_priv);
2209         if (crtc) {
2210                 /* self-refresh has much higher latency */
2211                 static const int sr_latency_ns = 12000;
2212                 const struct drm_display_mode *adjusted_mode =
2213                         &crtc->config->base.adjusted_mode;
2214                 const struct drm_framebuffer *fb =
2215                         crtc->base.primary->state->fb;
2216                 int clock = adjusted_mode->crtc_clock;
2217                 int htotal = adjusted_mode->crtc_htotal;
2218                 int hdisplay = crtc->config->pipe_src_w;
2219                 int cpp = fb->format->cpp[0];
2220                 int entries;
2221
2222                 entries = intel_wm_method2(clock, htotal,
2223                                            hdisplay, cpp, sr_latency_ns / 100);
2224                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2225                 srwm = I965_FIFO_SIZE - entries;
2226                 if (srwm < 0)
2227                         srwm = 1;
2228                 srwm &= 0x1ff;
2229                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2230                               entries, srwm);
2231
2232                 entries = intel_wm_method2(clock, htotal,
2233                                            crtc->base.cursor->state->crtc_w, 4,
2234                                            sr_latency_ns / 100);
2235                 entries = DIV_ROUND_UP(entries,
2236                                        i965_cursor_wm_info.cacheline_size) +
2237                         i965_cursor_wm_info.guard_size;
2238
2239                 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2240                 if (cursor_sr > i965_cursor_wm_info.max_wm)
2241                         cursor_sr = i965_cursor_wm_info.max_wm;
2242
2243                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2244                               "cursor %d\n", srwm, cursor_sr);
2245
2246                 cxsr_enabled = true;
2247         } else {
2248                 cxsr_enabled = false;
2249                 /* Turn off self refresh if both pipes are enabled */
2250                 intel_set_memory_cxsr(dev_priv, false);
2251         }
2252
2253         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2254                       srwm);
2255
2256         /* 965 has limitations... */
2257         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2258                    FW_WM(8, CURSORB) |
2259                    FW_WM(8, PLANEB) |
2260                    FW_WM(8, PLANEA));
2261         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2262                    FW_WM(8, PLANEC_OLD));
2263         /* update cursor SR watermark */
2264         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2265
2266         if (cxsr_enabled)
2267                 intel_set_memory_cxsr(dev_priv, true);
2268 }
2269
2270 #undef FW_WM
2271
2272 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2273 {
2274         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2275         const struct intel_watermark_params *wm_info;
2276         u32 fwater_lo;
2277         u32 fwater_hi;
2278         int cwm, srwm = 1;
2279         int fifo_size;
2280         int planea_wm, planeb_wm;
2281         struct intel_crtc *crtc, *enabled = NULL;
2282
2283         if (IS_I945GM(dev_priv))
2284                 wm_info = &i945_wm_info;
2285         else if (!IS_GEN(dev_priv, 2))
2286                 wm_info = &i915_wm_info;
2287         else
2288                 wm_info = &i830_a_wm_info;
2289
2290         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2291         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2292         if (intel_crtc_active(crtc)) {
2293                 const struct drm_display_mode *adjusted_mode =
2294                         &crtc->config->base.adjusted_mode;
2295                 const struct drm_framebuffer *fb =
2296                         crtc->base.primary->state->fb;
2297                 int cpp;
2298
2299                 if (IS_GEN(dev_priv, 2))
2300                         cpp = 4;
2301                 else
2302                         cpp = fb->format->cpp[0];
2303
2304                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2305                                                wm_info, fifo_size, cpp,
2306                                                pessimal_latency_ns);
2307                 enabled = crtc;
2308         } else {
2309                 planea_wm = fifo_size - wm_info->guard_size;
2310                 if (planea_wm > (long)wm_info->max_wm)
2311                         planea_wm = wm_info->max_wm;
2312         }
2313
2314         if (IS_GEN(dev_priv, 2))
2315                 wm_info = &i830_bc_wm_info;
2316
2317         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2318         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2319         if (intel_crtc_active(crtc)) {
2320                 const struct drm_display_mode *adjusted_mode =
2321                         &crtc->config->base.adjusted_mode;
2322                 const struct drm_framebuffer *fb =
2323                         crtc->base.primary->state->fb;
2324                 int cpp;
2325
2326                 if (IS_GEN(dev_priv, 2))
2327                         cpp = 4;
2328                 else
2329                         cpp = fb->format->cpp[0];
2330
2331                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2332                                                wm_info, fifo_size, cpp,
2333                                                pessimal_latency_ns);
2334                 if (enabled == NULL)
2335                         enabled = crtc;
2336                 else
2337                         enabled = NULL;
2338         } else {
2339                 planeb_wm = fifo_size - wm_info->guard_size;
2340                 if (planeb_wm > (long)wm_info->max_wm)
2341                         planeb_wm = wm_info->max_wm;
2342         }
2343
2344         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2345
2346         if (IS_I915GM(dev_priv) && enabled) {
2347                 struct drm_i915_gem_object *obj;
2348
2349                 obj = intel_fb_obj(enabled->base.primary->state->fb);
2350
2351                 /* self-refresh seems busted with untiled */
2352                 if (!i915_gem_object_is_tiled(obj))
2353                         enabled = NULL;
2354         }
2355
2356         /*
2357          * Overlay gets an aggressive default since video jitter is bad.
2358          */
2359         cwm = 2;
2360
2361         /* Play safe and disable self-refresh before adjusting watermarks. */
2362         intel_set_memory_cxsr(dev_priv, false);
2363
2364         /* Calc sr entries for one plane configs */
2365         if (HAS_FW_BLC(dev_priv) && enabled) {
2366                 /* self-refresh has much higher latency */
2367                 static const int sr_latency_ns = 6000;
2368                 const struct drm_display_mode *adjusted_mode =
2369                         &enabled->config->base.adjusted_mode;
2370                 const struct drm_framebuffer *fb =
2371                         enabled->base.primary->state->fb;
2372                 int clock = adjusted_mode->crtc_clock;
2373                 int htotal = adjusted_mode->crtc_htotal;
2374                 int hdisplay = enabled->config->pipe_src_w;
2375                 int cpp;
2376                 int entries;
2377
2378                 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2379                         cpp = 4;
2380                 else
2381                         cpp = fb->format->cpp[0];
2382
2383                 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2384                                            sr_latency_ns / 100);
2385                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2386                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2387                 srwm = wm_info->fifo_size - entries;
2388                 if (srwm < 0)
2389                         srwm = 1;
2390
2391                 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2392                         I915_WRITE(FW_BLC_SELF,
2393                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2394                 else
2395                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2396         }
2397
2398         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2399                       planea_wm, planeb_wm, cwm, srwm);
2400
2401         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2402         fwater_hi = (cwm & 0x1f);
2403
2404         /* Set request length to 8 cachelines per fetch */
2405         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2406         fwater_hi = fwater_hi | (1 << 8);
2407
2408         I915_WRITE(FW_BLC, fwater_lo);
2409         I915_WRITE(FW_BLC2, fwater_hi);
2410
2411         if (enabled)
2412                 intel_set_memory_cxsr(dev_priv, true);
2413 }
2414
2415 static void i845_update_wm(struct intel_crtc *unused_crtc)
2416 {
2417         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2418         struct intel_crtc *crtc;
2419         const struct drm_display_mode *adjusted_mode;
2420         u32 fwater_lo;
2421         int planea_wm;
2422
2423         crtc = single_enabled_crtc(dev_priv);
2424         if (crtc == NULL)
2425                 return;
2426
2427         adjusted_mode = &crtc->config->base.adjusted_mode;
2428         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2429                                        &i845_wm_info,
2430                                        dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2431                                        4, pessimal_latency_ns);
2432         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2433         fwater_lo |= (3<<8) | planea_wm;
2434
2435         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2436
2437         I915_WRITE(FW_BLC, fwater_lo);
2438 }
2439
2440 /* latency must be in 0.1us units. */
2441 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2442                                    unsigned int cpp,
2443                                    unsigned int latency)
2444 {
2445         unsigned int ret;
2446
2447         ret = intel_wm_method1(pixel_rate, cpp, latency);
2448         ret = DIV_ROUND_UP(ret, 64) + 2;
2449
2450         return ret;
2451 }
2452
2453 /* latency must be in 0.1us units. */
2454 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2455                                    unsigned int htotal,
2456                                    unsigned int width,
2457                                    unsigned int cpp,
2458                                    unsigned int latency)
2459 {
2460         unsigned int ret;
2461
2462         ret = intel_wm_method2(pixel_rate, htotal,
2463                                width, cpp, latency);
2464         ret = DIV_ROUND_UP(ret, 64) + 2;
2465
2466         return ret;
2467 }
2468
2469 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2470 {
2471         /*
2472          * Neither of these should be possible since this function shouldn't be
2473          * called if the CRTC is off or the plane is invisible.  But let's be
2474          * extra paranoid to avoid a potential divide-by-zero if we screw up
2475          * elsewhere in the driver.
2476          */
2477         if (WARN_ON(!cpp))
2478                 return 0;
2479         if (WARN_ON(!horiz_pixels))
2480                 return 0;
2481
2482         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2483 }
2484
2485 struct ilk_wm_maximums {
2486         u16 pri;
2487         u16 spr;
2488         u16 cur;
2489         u16 fbc;
2490 };
2491
2492 /*
2493  * For both WM_PIPE and WM_LP.
2494  * mem_value must be in 0.1us units.
2495  */
2496 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2497                               const struct intel_plane_state *plane_state,
2498                               u32 mem_value, bool is_lp)
2499 {
2500         u32 method1, method2;
2501         int cpp;
2502
2503         if (mem_value == 0)
2504                 return U32_MAX;
2505
2506         if (!intel_wm_plane_visible(crtc_state, plane_state))
2507                 return 0;
2508
2509         cpp = plane_state->base.fb->format->cpp[0];
2510
2511         method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2512
2513         if (!is_lp)
2514                 return method1;
2515
2516         method2 = ilk_wm_method2(crtc_state->pixel_rate,
2517                                  crtc_state->base.adjusted_mode.crtc_htotal,
2518                                  drm_rect_width(&plane_state->base.dst),
2519                                  cpp, mem_value);
2520
2521         return min(method1, method2);
2522 }
2523
2524 /*
2525  * For both WM_PIPE and WM_LP.
2526  * mem_value must be in 0.1us units.
2527  */
2528 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2529                               const struct intel_plane_state *plane_state,
2530                               u32 mem_value)
2531 {
2532         u32 method1, method2;
2533         int cpp;
2534
2535         if (mem_value == 0)
2536                 return U32_MAX;
2537
2538         if (!intel_wm_plane_visible(crtc_state, plane_state))
2539                 return 0;
2540
2541         cpp = plane_state->base.fb->format->cpp[0];
2542
2543         method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2544         method2 = ilk_wm_method2(crtc_state->pixel_rate,
2545                                  crtc_state->base.adjusted_mode.crtc_htotal,
2546                                  drm_rect_width(&plane_state->base.dst),
2547                                  cpp, mem_value);
2548         return min(method1, method2);
2549 }
2550
2551 /*
2552  * For both WM_PIPE and WM_LP.
2553  * mem_value must be in 0.1us units.
2554  */
2555 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2556                               const struct intel_plane_state *plane_state,
2557                               u32 mem_value)
2558 {
2559         int cpp;
2560
2561         if (mem_value == 0)
2562                 return U32_MAX;
2563
2564         if (!intel_wm_plane_visible(crtc_state, plane_state))
2565                 return 0;
2566
2567         cpp = plane_state->base.fb->format->cpp[0];
2568
2569         return ilk_wm_method2(crtc_state->pixel_rate,
2570                               crtc_state->base.adjusted_mode.crtc_htotal,
2571                               plane_state->base.crtc_w, cpp, mem_value);
2572 }
2573
2574 /* Only for WM_LP. */
2575 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2576                               const struct intel_plane_state *plane_state,
2577                               u32 pri_val)
2578 {
2579         int cpp;
2580
2581         if (!intel_wm_plane_visible(crtc_state, plane_state))
2582                 return 0;
2583
2584         cpp = plane_state->base.fb->format->cpp[0];
2585
2586         return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->base.dst), cpp);
2587 }
2588
2589 static unsigned int
2590 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2591 {
2592         if (INTEL_GEN(dev_priv) >= 8)
2593                 return 3072;
2594         else if (INTEL_GEN(dev_priv) >= 7)
2595                 return 768;
2596         else
2597                 return 512;
2598 }
2599
2600 static unsigned int
2601 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2602                      int level, bool is_sprite)
2603 {
2604         if (INTEL_GEN(dev_priv) >= 8)
2605                 /* BDW primary/sprite plane watermarks */
2606                 return level == 0 ? 255 : 2047;
2607         else if (INTEL_GEN(dev_priv) >= 7)
2608                 /* IVB/HSW primary/sprite plane watermarks */
2609                 return level == 0 ? 127 : 1023;
2610         else if (!is_sprite)
2611                 /* ILK/SNB primary plane watermarks */
2612                 return level == 0 ? 127 : 511;
2613         else
2614                 /* ILK/SNB sprite plane watermarks */
2615                 return level == 0 ? 63 : 255;
2616 }
2617
2618 static unsigned int
2619 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2620 {
2621         if (INTEL_GEN(dev_priv) >= 7)
2622                 return level == 0 ? 63 : 255;
2623         else
2624                 return level == 0 ? 31 : 63;
2625 }
2626
2627 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2628 {
2629         if (INTEL_GEN(dev_priv) >= 8)
2630                 return 31;
2631         else
2632                 return 15;
2633 }
2634
2635 /* Calculate the maximum primary/sprite plane watermark */
2636 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2637                                      int level,
2638                                      const struct intel_wm_config *config,
2639                                      enum intel_ddb_partitioning ddb_partitioning,
2640                                      bool is_sprite)
2641 {
2642         unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2643
2644         /* if sprites aren't enabled, sprites get nothing */
2645         if (is_sprite && !config->sprites_enabled)
2646                 return 0;
2647
2648         /* HSW allows LP1+ watermarks even with multiple pipes */
2649         if (level == 0 || config->num_pipes_active > 1) {
2650                 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2651
2652                 /*
2653                  * For some reason the non self refresh
2654                  * FIFO size is only half of the self
2655                  * refresh FIFO size on ILK/SNB.
2656                  */
2657                 if (INTEL_GEN(dev_priv) <= 6)
2658                         fifo_size /= 2;
2659         }
2660
2661         if (config->sprites_enabled) {
2662                 /* level 0 is always calculated with 1:1 split */
2663                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2664                         if (is_sprite)
2665                                 fifo_size *= 5;
2666                         fifo_size /= 6;
2667                 } else {
2668                         fifo_size /= 2;
2669                 }
2670         }
2671
2672         /* clamp to max that the registers can hold */
2673         return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2674 }
2675
2676 /* Calculate the maximum cursor plane watermark */
2677 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2678                                       int level,
2679                                       const struct intel_wm_config *config)
2680 {
2681         /* HSW LP1+ watermarks w/ multiple pipes */
2682         if (level > 0 && config->num_pipes_active > 1)
2683                 return 64;
2684
2685         /* otherwise just report max that registers can hold */
2686         return ilk_cursor_wm_reg_max(dev_priv, level);
2687 }
2688
2689 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2690                                     int level,
2691                                     const struct intel_wm_config *config,
2692                                     enum intel_ddb_partitioning ddb_partitioning,
2693                                     struct ilk_wm_maximums *max)
2694 {
2695         max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2696         max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2697         max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2698         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2699 }
2700
2701 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2702                                         int level,
2703                                         struct ilk_wm_maximums *max)
2704 {
2705         max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2706         max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2707         max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2708         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2709 }
2710
2711 static bool ilk_validate_wm_level(int level,
2712                                   const struct ilk_wm_maximums *max,
2713                                   struct intel_wm_level *result)
2714 {
2715         bool ret;
2716
2717         /* already determined to be invalid? */
2718         if (!result->enable)
2719                 return false;
2720
2721         result->enable = result->pri_val <= max->pri &&
2722                          result->spr_val <= max->spr &&
2723                          result->cur_val <= max->cur;
2724
2725         ret = result->enable;
2726
2727         /*
2728          * HACK until we can pre-compute everything,
2729          * and thus fail gracefully if LP0 watermarks
2730          * are exceeded...
2731          */
2732         if (level == 0 && !result->enable) {
2733                 if (result->pri_val > max->pri)
2734                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2735                                       level, result->pri_val, max->pri);
2736                 if (result->spr_val > max->spr)
2737                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2738                                       level, result->spr_val, max->spr);
2739                 if (result->cur_val > max->cur)
2740                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2741                                       level, result->cur_val, max->cur);
2742
2743                 result->pri_val = min_t(u32, result->pri_val, max->pri);
2744                 result->spr_val = min_t(u32, result->spr_val, max->spr);
2745                 result->cur_val = min_t(u32, result->cur_val, max->cur);
2746                 result->enable = true;
2747         }
2748
2749         return ret;
2750 }
2751
2752 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2753                                  const struct intel_crtc *intel_crtc,
2754                                  int level,
2755                                  struct intel_crtc_state *crtc_state,
2756                                  const struct intel_plane_state *pristate,
2757                                  const struct intel_plane_state *sprstate,
2758                                  const struct intel_plane_state *curstate,
2759                                  struct intel_wm_level *result)
2760 {
2761         u16 pri_latency = dev_priv->wm.pri_latency[level];
2762         u16 spr_latency = dev_priv->wm.spr_latency[level];
2763         u16 cur_latency = dev_priv->wm.cur_latency[level];
2764
2765         /* WM1+ latency values stored in 0.5us units */
2766         if (level > 0) {
2767                 pri_latency *= 5;
2768                 spr_latency *= 5;
2769                 cur_latency *= 5;
2770         }
2771
2772         if (pristate) {
2773                 result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2774                                                      pri_latency, level);
2775                 result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2776         }
2777
2778         if (sprstate)
2779                 result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2780
2781         if (curstate)
2782                 result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2783
2784         result->enable = true;
2785 }
2786
2787 static u32
2788 hsw_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
2789 {
2790         const struct intel_atomic_state *intel_state =
2791                 to_intel_atomic_state(crtc_state->base.state);
2792         const struct drm_display_mode *adjusted_mode =
2793                 &crtc_state->base.adjusted_mode;
2794         u32 linetime, ips_linetime;
2795
2796         if (!crtc_state->base.active)
2797                 return 0;
2798         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2799                 return 0;
2800         if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2801                 return 0;
2802
2803         /* The WM are computed with base on how long it takes to fill a single
2804          * row at the given clock rate, multiplied by 8.
2805          * */
2806         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2807                                      adjusted_mode->crtc_clock);
2808         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2809                                          intel_state->cdclk.logical.cdclk);
2810
2811         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2812                PIPE_WM_LINETIME_TIME(linetime);
2813 }
2814
2815 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2816                                   u16 wm[8])
2817 {
2818         struct intel_uncore *uncore = &dev_priv->uncore;
2819
2820         if (INTEL_GEN(dev_priv) >= 9) {
2821                 u32 val;
2822                 int ret, i;
2823                 int level, max_level = ilk_wm_max_level(dev_priv);
2824
2825                 /* read the first set of memory latencies[0:3] */
2826                 val = 0; /* data0 to be programmed to 0 for first set */
2827                 ret = sandybridge_pcode_read(dev_priv,
2828                                              GEN9_PCODE_READ_MEM_LATENCY,
2829                                              &val, NULL);
2830
2831                 if (ret) {
2832                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2833                         return;
2834                 }
2835
2836                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2837                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2838                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2839                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2840                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2841                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2842                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2843
2844                 /* read the second set of memory latencies[4:7] */
2845                 val = 1; /* data0 to be programmed to 1 for second set */
2846                 ret = sandybridge_pcode_read(dev_priv,
2847                                              GEN9_PCODE_READ_MEM_LATENCY,
2848                                              &val, NULL);
2849                 if (ret) {
2850                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2851                         return;
2852                 }
2853
2854                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2855                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2856                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2857                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2858                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2859                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2860                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2861
2862                 /*
2863                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2864                  * need to be disabled. We make sure to sanitize the values out
2865                  * of the punit to satisfy this requirement.
2866                  */
2867                 for (level = 1; level <= max_level; level++) {
2868                         if (wm[level] == 0) {
2869                                 for (i = level + 1; i <= max_level; i++)
2870                                         wm[i] = 0;
2871                                 break;
2872                         }
2873                 }
2874
2875                 /*
2876                  * WaWmMemoryReadLatency:skl+,glk
2877                  *
2878                  * punit doesn't take into account the read latency so we need
2879                  * to add 2us to the various latency levels we retrieve from the
2880                  * punit when level 0 response data us 0us.
2881                  */
2882                 if (wm[0] == 0) {
2883                         wm[0] += 2;
2884                         for (level = 1; level <= max_level; level++) {
2885                                 if (wm[level] == 0)
2886                                         break;
2887                                 wm[level] += 2;
2888                         }
2889                 }
2890
2891                 /*
2892                  * WA Level-0 adjustment for 16GB DIMMs: SKL+
2893                  * If we could not get dimm info enable this WA to prevent from
2894                  * any underrun. If not able to get Dimm info assume 16GB dimm
2895                  * to avoid any underrun.
2896                  */
2897                 if (dev_priv->dram_info.is_16gb_dimm)
2898                         wm[0] += 1;
2899
2900         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2901                 u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2902
2903                 wm[0] = (sskpd >> 56) & 0xFF;
2904                 if (wm[0] == 0)
2905                         wm[0] = sskpd & 0xF;
2906                 wm[1] = (sskpd >> 4) & 0xFF;
2907                 wm[2] = (sskpd >> 12) & 0xFF;
2908                 wm[3] = (sskpd >> 20) & 0x1FF;
2909                 wm[4] = (sskpd >> 32) & 0x1FF;
2910         } else if (INTEL_GEN(dev_priv) >= 6) {
2911                 u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2912
2913                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2914                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2915                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2916                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2917         } else if (INTEL_GEN(dev_priv) >= 5) {
2918                 u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2919
2920                 /* ILK primary LP0 latency is 700 ns */
2921                 wm[0] = 7;
2922                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2923                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2924         } else {
2925                 MISSING_CASE(INTEL_DEVID(dev_priv));
2926         }
2927 }
2928
2929 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2930                                        u16 wm[5])
2931 {
2932         /* ILK sprite LP0 latency is 1300 ns */
2933         if (IS_GEN(dev_priv, 5))
2934                 wm[0] = 13;
2935 }
2936
2937 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2938                                        u16 wm[5])
2939 {
2940         /* ILK cursor LP0 latency is 1300 ns */
2941         if (IS_GEN(dev_priv, 5))
2942                 wm[0] = 13;
2943 }
2944
2945 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2946 {
2947         /* how many WM levels are we expecting */
2948         if (INTEL_GEN(dev_priv) >= 9)
2949                 return 7;
2950         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2951                 return 4;
2952         else if (INTEL_GEN(dev_priv) >= 6)
2953                 return 3;
2954         else
2955                 return 2;
2956 }
2957
2958 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2959                                    const char *name,
2960                                    const u16 wm[8])
2961 {
2962         int level, max_level = ilk_wm_max_level(dev_priv);
2963
2964         for (level = 0; level <= max_level; level++) {
2965                 unsigned int latency = wm[level];
2966
2967                 if (latency == 0) {
2968                         DRM_DEBUG_KMS("%s WM%d latency not provided\n",
2969                                       name, level);
2970                         continue;
2971                 }
2972
2973                 /*
2974                  * - latencies are in us on gen9.
2975                  * - before then, WM1+ latency values are in 0.5us units
2976                  */
2977                 if (INTEL_GEN(dev_priv) >= 9)
2978                         latency *= 10;
2979                 else if (level > 0)
2980                         latency *= 5;
2981
2982                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2983                               name, level, wm[level],
2984                               latency / 10, latency % 10);
2985         }
2986 }
2987
2988 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2989                                     u16 wm[5], u16 min)
2990 {
2991         int level, max_level = ilk_wm_max_level(dev_priv);
2992
2993         if (wm[0] >= min)
2994                 return false;
2995
2996         wm[0] = max(wm[0], min);
2997         for (level = 1; level <= max_level; level++)
2998                 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2999
3000         return true;
3001 }
3002
3003 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3004 {
3005         bool changed;
3006
3007         /*
3008          * The BIOS provided WM memory latency values are often
3009          * inadequate for high resolution displays. Adjust them.
3010          */
3011         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3012                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3013                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3014
3015         if (!changed)
3016                 return;
3017
3018         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3019         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3020         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3021         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3022 }
3023
3024 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3025 {
3026         /*
3027          * On some SNB machines (Thinkpad X220 Tablet at least)
3028          * LP3 usage can cause vblank interrupts to be lost.
3029          * The DEIIR bit will go high but it looks like the CPU
3030          * never gets interrupted.
3031          *
3032          * It's not clear whether other interrupt source could
3033          * be affected or if this is somehow limited to vblank
3034          * interrupts only. To play it safe we disable LP3
3035          * watermarks entirely.
3036          */
3037         if (dev_priv->wm.pri_latency[3] == 0 &&
3038             dev_priv->wm.spr_latency[3] == 0 &&
3039             dev_priv->wm.cur_latency[3] == 0)
3040                 return;
3041
3042         dev_priv->wm.pri_latency[3] = 0;
3043         dev_priv->wm.spr_latency[3] = 0;
3044         dev_priv->wm.cur_latency[3] = 0;
3045
3046         DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
3047         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3048         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3049         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3050 }
3051
3052 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3053 {
3054         intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3055
3056         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3057                sizeof(dev_priv->wm.pri_latency));
3058         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3059                sizeof(dev_priv->wm.pri_latency));
3060
3061         intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3062         intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3063
3064         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3065         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3066         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3067
3068         if (IS_GEN(dev_priv, 6)) {
3069                 snb_wm_latency_quirk(dev_priv);
3070                 snb_wm_lp3_irq_quirk(dev_priv);
3071         }
3072 }
3073
3074 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3075 {
3076         intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3077         intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3078 }
3079
3080 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3081                                  struct intel_pipe_wm *pipe_wm)
3082 {
3083         /* LP0 watermark maximums depend on this pipe alone */
3084         const struct intel_wm_config config = {
3085                 .num_pipes_active = 1,
3086                 .sprites_enabled = pipe_wm->sprites_enabled,
3087                 .sprites_scaled = pipe_wm->sprites_scaled,
3088         };
3089         struct ilk_wm_maximums max;
3090
3091         /* LP0 watermarks always use 1/2 DDB partitioning */
3092         ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3093
3094         /* At least LP0 must be valid */
3095         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3096                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3097                 return false;
3098         }
3099
3100         return true;
3101 }
3102
3103 /* Compute new watermarks for the pipe */
3104 static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3105 {
3106         struct drm_atomic_state *state = crtc_state->base.state;
3107         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3108         struct intel_pipe_wm *pipe_wm;
3109         struct drm_device *dev = state->dev;
3110         const struct drm_i915_private *dev_priv = to_i915(dev);
3111         struct drm_plane *plane;
3112         const struct drm_plane_state *plane_state;
3113         const struct intel_plane_state *pristate = NULL;
3114         const struct intel_plane_state *sprstate = NULL;
3115         const struct intel_plane_state *curstate = NULL;
3116         int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3117         struct ilk_wm_maximums max;
3118
3119         pipe_wm = &crtc_state->wm.ilk.optimal;
3120
3121         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &crtc_state->base) {
3122                 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3123
3124                 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3125                         pristate = ps;
3126                 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3127                         sprstate = ps;
3128                 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3129                         curstate = ps;
3130         }
3131
3132         pipe_wm->pipe_enabled = crtc_state->base.active;
3133         if (sprstate) {
3134                 pipe_wm->sprites_enabled = sprstate->base.visible;
3135                 pipe_wm->sprites_scaled = sprstate->base.visible &&
3136                         (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3137                          drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3138         }
3139
3140         usable_level = max_level;
3141
3142         /* ILK/SNB: LP2+ watermarks only w/o sprites */
3143         if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3144                 usable_level = 1;
3145
3146         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3147         if (pipe_wm->sprites_scaled)
3148                 usable_level = 0;
3149
3150         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3151         ilk_compute_wm_level(dev_priv, intel_crtc, 0, crtc_state,
3152                              pristate, sprstate, curstate, &pipe_wm->wm[0]);
3153
3154         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3155                 pipe_wm->linetime = hsw_compute_linetime_wm(crtc_state);
3156
3157         if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3158                 return -EINVAL;
3159
3160         ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3161
3162         for (level = 1; level <= usable_level; level++) {
3163                 struct intel_wm_level *wm = &pipe_wm->wm[level];
3164
3165                 ilk_compute_wm_level(dev_priv, intel_crtc, level, crtc_state,
3166                                      pristate, sprstate, curstate, wm);
3167
3168                 /*
3169                  * Disable any watermark level that exceeds the
3170                  * register maximums since such watermarks are
3171                  * always invalid.
3172                  */
3173                 if (!ilk_validate_wm_level(level, &max, wm)) {
3174                         memset(wm, 0, sizeof(*wm));
3175                         break;
3176                 }
3177         }
3178
3179         return 0;
3180 }
3181
3182 /*
3183  * Build a set of 'intermediate' watermark values that satisfy both the old
3184  * state and the new state.  These can be programmed to the hardware
3185  * immediately.
3186  */
3187 static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3188 {
3189         struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
3190         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3191         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3192         struct intel_atomic_state *intel_state =
3193                 to_intel_atomic_state(newstate->base.state);
3194         const struct intel_crtc_state *oldstate =
3195                 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3196         const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3197         int level, max_level = ilk_wm_max_level(dev_priv);
3198
3199         /*
3200          * Start with the final, target watermarks, then combine with the
3201          * currently active watermarks to get values that are safe both before
3202          * and after the vblank.
3203          */
3204         *a = newstate->wm.ilk.optimal;
3205         if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
3206             intel_state->skip_intermediate_wm)
3207                 return 0;
3208
3209         a->pipe_enabled |= b->pipe_enabled;
3210         a->sprites_enabled |= b->sprites_enabled;
3211         a->sprites_scaled |= b->sprites_scaled;
3212
3213         for (level = 0; level <= max_level; level++) {
3214                 struct intel_wm_level *a_wm = &a->wm[level];
3215                 const struct intel_wm_level *b_wm = &b->wm[level];
3216
3217                 a_wm->enable &= b_wm->enable;
3218                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3219                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3220                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3221                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3222         }
3223
3224         /*
3225          * We need to make sure that these merged watermark values are
3226          * actually a valid configuration themselves.  If they're not,
3227          * there's no safe way to transition from the old state to
3228          * the new state, so we need to fail the atomic transaction.
3229          */
3230         if (!ilk_validate_pipe_wm(dev_priv, a))
3231                 return -EINVAL;
3232
3233         /*
3234          * If our intermediate WM are identical to the final WM, then we can
3235          * omit the post-vblank programming; only update if it's different.
3236          */
3237         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3238                 newstate->wm.need_postvbl_update = true;
3239
3240         return 0;
3241 }
3242
3243 /*
3244  * Merge the watermarks from all active pipes for a specific level.
3245  */
3246 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3247                                int level,
3248                                struct intel_wm_level *ret_wm)
3249 {
3250         const struct intel_crtc *intel_crtc;
3251
3252         ret_wm->enable = true;
3253
3254         for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3255                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3256                 const struct intel_wm_level *wm = &active->wm[level];
3257
3258                 if (!active->pipe_enabled)
3259                         continue;
3260
3261                 /*
3262                  * The watermark values may have been used in the past,
3263                  * so we must maintain them in the registers for some
3264                  * time even if the level is now disabled.
3265                  */
3266                 if (!wm->enable)
3267                         ret_wm->enable = false;
3268
3269                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3270                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3271                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3272                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3273         }
3274 }
3275
3276 /*
3277  * Merge all low power watermarks for all active pipes.
3278  */
3279 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3280                          const struct intel_wm_config *config,
3281                          const struct ilk_wm_maximums *max,
3282                          struct intel_pipe_wm *merged)
3283 {
3284         int level, max_level = ilk_wm_max_level(dev_priv);
3285         int last_enabled_level = max_level;
3286
3287         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3288         if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3289             config->num_pipes_active > 1)
3290                 last_enabled_level = 0;
3291
3292         /* ILK: FBC WM must be disabled always */
3293         merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3294
3295         /* merge each WM1+ level */
3296         for (level = 1; level <= max_level; level++) {
3297                 struct intel_wm_level *wm = &merged->wm[level];
3298
3299                 ilk_merge_wm_level(dev_priv, level, wm);
3300
3301                 if (level > last_enabled_level)
3302                         wm->enable = false;
3303                 else if (!ilk_validate_wm_level(level, max, wm))
3304                         /* make sure all following levels get disabled */
3305                         last_enabled_level = level - 1;
3306
3307                 /*
3308                  * The spec says it is preferred to disable
3309                  * FBC WMs instead of disabling a WM level.
3310                  */
3311                 if (wm->fbc_val > max->fbc) {
3312                         if (wm->enable)
3313                                 merged->fbc_wm_enabled = false;
3314                         wm->fbc_val = 0;
3315                 }
3316         }
3317
3318         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3319         /*
3320          * FIXME this is racy. FBC might get enabled later.
3321          * What we should check here is whether FBC can be
3322          * enabled sometime later.
3323          */
3324         if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3325             intel_fbc_is_active(dev_priv)) {
3326                 for (level = 2; level <= max_level; level++) {
3327                         struct intel_wm_level *wm = &merged->wm[level];
3328
3329                         wm->enable = false;
3330                 }
3331         }
3332 }
3333
3334 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3335 {
3336         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3337         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3338 }
3339
3340 /* The value we need to program into the WM_LPx latency field */
3341 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3342                                       int level)
3343 {
3344         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3345                 return 2 * level;
3346         else
3347                 return dev_priv->wm.pri_latency[level];
3348 }
3349
3350 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3351                                    const struct intel_pipe_wm *merged,
3352                                    enum intel_ddb_partitioning partitioning,
3353                                    struct ilk_wm_values *results)
3354 {
3355         struct intel_crtc *intel_crtc;
3356         int level, wm_lp;
3357
3358         results->enable_fbc_wm = merged->fbc_wm_enabled;
3359         results->partitioning = partitioning;
3360
3361         /* LP1+ register values */
3362         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3363                 const struct intel_wm_level *r;
3364
3365                 level = ilk_wm_lp_to_level(wm_lp, merged);
3366
3367                 r = &merged->wm[level];
3368
3369                 /*
3370                  * Maintain the watermark values even if the level is
3371                  * disabled. Doing otherwise could cause underruns.
3372                  */
3373                 results->wm_lp[wm_lp - 1] =
3374                         (ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3375                         (r->pri_val << WM1_LP_SR_SHIFT) |
3376                         r->cur_val;
3377
3378                 if (r->enable)
3379                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3380
3381                 if (INTEL_GEN(dev_priv) >= 8)
3382                         results->wm_lp[wm_lp - 1] |=
3383                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3384                 else
3385                         results->wm_lp[wm_lp - 1] |=
3386                                 r->fbc_val << WM1_LP_FBC_SHIFT;
3387
3388                 /*
3389                  * Always set WM1S_LP_EN when spr_val != 0, even if the
3390                  * level is disabled. Doing otherwise could cause underruns.
3391                  */
3392                 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3393                         WARN_ON(wm_lp != 1);
3394                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3395                 } else
3396                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3397         }
3398
3399         /* LP0 register values */
3400         for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3401                 enum pipe pipe = intel_crtc->pipe;
3402                 const struct intel_wm_level *r =
3403                         &intel_crtc->wm.active.ilk.wm[0];
3404
3405                 if (WARN_ON(!r->enable))
3406                         continue;
3407
3408                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3409
3410                 results->wm_pipe[pipe] =
3411                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3412                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3413                         r->cur_val;
3414         }
3415 }
3416
3417 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3418  * case both are at the same level. Prefer r1 in case they're the same. */
3419 static struct intel_pipe_wm *
3420 ilk_find_best_result(struct drm_i915_private *dev_priv,
3421                      struct intel_pipe_wm *r1,
3422                      struct intel_pipe_wm *r2)
3423 {
3424         int level, max_level = ilk_wm_max_level(dev_priv);
3425         int level1 = 0, level2 = 0;
3426
3427         for (level = 1; level <= max_level; level++) {
3428                 if (r1->wm[level].enable)
3429                         level1 = level;
3430                 if (r2->wm[level].enable)
3431                         level2 = level;
3432         }
3433
3434         if (level1 == level2) {
3435                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3436                         return r2;
3437                 else
3438                         return r1;
3439         } else if (level1 > level2) {
3440                 return r1;
3441         } else {
3442                 return r2;
3443         }
3444 }
3445
3446 /* dirty bits used to track which watermarks need changes */
3447 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3448 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3449 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3450 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3451 #define WM_DIRTY_FBC (1 << 24)
3452 #define WM_DIRTY_DDB (1 << 25)
3453
3454 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3455                                          const struct ilk_wm_values *old,
3456                                          const struct ilk_wm_values *new)
3457 {
3458         unsigned int dirty = 0;
3459         enum pipe pipe;
3460         int wm_lp;
3461
3462         for_each_pipe(dev_priv, pipe) {
3463                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3464                         dirty |= WM_DIRTY_LINETIME(pipe);
3465                         /* Must disable LP1+ watermarks too */
3466                         dirty |= WM_DIRTY_LP_ALL;
3467                 }
3468
3469                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3470                         dirty |= WM_DIRTY_PIPE(pipe);
3471                         /* Must disable LP1+ watermarks too */
3472                         dirty |= WM_DIRTY_LP_ALL;
3473                 }
3474         }
3475
3476         if (old->enable_fbc_wm != new->enable_fbc_wm) {
3477                 dirty |= WM_DIRTY_FBC;
3478                 /* Must disable LP1+ watermarks too */
3479                 dirty |= WM_DIRTY_LP_ALL;
3480         }
3481
3482         if (old->partitioning != new->partitioning) {
3483                 dirty |= WM_DIRTY_DDB;
3484                 /* Must disable LP1+ watermarks too */
3485                 dirty |= WM_DIRTY_LP_ALL;
3486         }
3487
3488         /* LP1+ watermarks already deemed dirty, no need to continue */
3489         if (dirty & WM_DIRTY_LP_ALL)
3490                 return dirty;
3491
3492         /* Find the lowest numbered LP1+ watermark in need of an update... */
3493         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3494                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3495                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3496                         break;
3497         }
3498
3499         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3500         for (; wm_lp <= 3; wm_lp++)
3501                 dirty |= WM_DIRTY_LP(wm_lp);
3502
3503         return dirty;
3504 }
3505
3506 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3507                                unsigned int dirty)
3508 {
3509         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3510         bool changed = false;
3511
3512         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3513                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3514                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3515                 changed = true;
3516         }
3517         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3518                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3519                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3520                 changed = true;
3521         }
3522         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3523                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3524                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3525                 changed = true;
3526         }
3527
3528         /*
3529          * Don't touch WM1S_LP_EN here.
3530          * Doing so could cause underruns.
3531          */
3532
3533         return changed;
3534 }
3535
3536 /*
3537  * The spec says we shouldn't write when we don't need, because every write
3538  * causes WMs to be re-evaluated, expending some power.
3539  */
3540 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3541                                 struct ilk_wm_values *results)
3542 {
3543         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3544         unsigned int dirty;
3545         u32 val;
3546
3547         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3548         if (!dirty)
3549                 return;
3550
3551         _ilk_disable_lp_wm(dev_priv, dirty);
3552
3553         if (dirty & WM_DIRTY_PIPE(PIPE_A))
3554                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3555         if (dirty & WM_DIRTY_PIPE(PIPE_B))
3556                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3557         if (dirty & WM_DIRTY_PIPE(PIPE_C))
3558                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3559
3560         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3561                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3562         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3563                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3564         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3565                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3566
3567         if (dirty & WM_DIRTY_DDB) {
3568                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3569                         val = I915_READ(WM_MISC);
3570                         if (results->partitioning == INTEL_DDB_PART_1_2)
3571                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
3572                         else
3573                                 val |= WM_MISC_DATA_PARTITION_5_6;
3574                         I915_WRITE(WM_MISC, val);
3575                 } else {
3576                         val = I915_READ(DISP_ARB_CTL2);
3577                         if (results->partitioning == INTEL_DDB_PART_1_2)
3578                                 val &= ~DISP_DATA_PARTITION_5_6;
3579                         else
3580                                 val |= DISP_DATA_PARTITION_5_6;
3581                         I915_WRITE(DISP_ARB_CTL2, val);
3582                 }
3583         }
3584
3585         if (dirty & WM_DIRTY_FBC) {
3586                 val = I915_READ(DISP_ARB_CTL);
3587                 if (results->enable_fbc_wm)
3588                         val &= ~DISP_FBC_WM_DIS;
3589                 else
3590                         val |= DISP_FBC_WM_DIS;
3591                 I915_WRITE(DISP_ARB_CTL, val);
3592         }
3593
3594         if (dirty & WM_DIRTY_LP(1) &&
3595             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3596                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3597
3598         if (INTEL_GEN(dev_priv) >= 7) {
3599                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3600                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3601                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3602                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3603         }
3604
3605         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3606                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3607         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3608                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3609         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3610                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3611
3612         dev_priv->wm.hw = *results;
3613 }
3614
3615 bool ilk_disable_lp_wm(struct drm_device *dev)
3616 {
3617         struct drm_i915_private *dev_priv = to_i915(dev);
3618
3619         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3620 }
3621
3622 static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
3623 {
3624         u8 enabled_slices;
3625
3626         /* Slice 1 will always be enabled */
3627         enabled_slices = 1;
3628
3629         /* Gen prior to GEN11 have only one DBuf slice */
3630         if (INTEL_GEN(dev_priv) < 11)
3631                 return enabled_slices;
3632
3633         /*
3634          * FIXME: for now we'll only ever use 1 slice; pretend that we have
3635          * only that 1 slice enabled until we have a proper way for on-demand
3636          * toggling of the second slice.
3637          */
3638         if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3639                 enabled_slices++;
3640
3641         return enabled_slices;
3642 }
3643
3644 /*
3645  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3646  * so assume we'll always need it in order to avoid underruns.
3647  */
3648 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3649 {
3650         return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3651 }
3652
3653 static bool
3654 intel_has_sagv(struct drm_i915_private *dev_priv)
3655 {
3656         return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
3657                 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3658 }
3659
3660 /*
3661  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3662  * depending on power and performance requirements. The display engine access
3663  * to system memory is blocked during the adjustment time. Because of the
3664  * blocking time, having this enabled can cause full system hangs and/or pipe
3665  * underruns if we don't meet all of the following requirements:
3666  *
3667  *  - <= 1 pipe enabled
3668  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3669  *  - We're not using an interlaced display configuration
3670  */
3671 int
3672 intel_enable_sagv(struct drm_i915_private *dev_priv)
3673 {
3674         int ret;
3675
3676         if (!intel_has_sagv(dev_priv))
3677                 return 0;
3678
3679         if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3680                 return 0;
3681
3682         DRM_DEBUG_KMS("Enabling SAGV\n");
3683         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3684                                       GEN9_SAGV_ENABLE);
3685
3686         /* We don't need to wait for SAGV when enabling */
3687
3688         /*
3689          * Some skl systems, pre-release machines in particular,
3690          * don't actually have SAGV.
3691          */
3692         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3693                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3694                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3695                 return 0;
3696         } else if (ret < 0) {
3697                 DRM_ERROR("Failed to enable SAGV\n");
3698                 return ret;
3699         }
3700
3701         dev_priv->sagv_status = I915_SAGV_ENABLED;
3702         return 0;
3703 }
3704
3705 int
3706 intel_disable_sagv(struct drm_i915_private *dev_priv)
3707 {
3708         int ret;
3709
3710         if (!intel_has_sagv(dev_priv))
3711                 return 0;
3712
3713         if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3714                 return 0;
3715
3716         DRM_DEBUG_KMS("Disabling SAGV\n");
3717         /* bspec says to keep retrying for at least 1 ms */
3718         ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3719                                 GEN9_SAGV_DISABLE,
3720                                 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3721                                 1);
3722         /*
3723          * Some skl systems, pre-release machines in particular,
3724          * don't actually have SAGV.
3725          */
3726         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3727                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3728                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3729                 return 0;
3730         } else if (ret < 0) {
3731                 DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3732                 return ret;
3733         }
3734
3735         dev_priv->sagv_status = I915_SAGV_DISABLED;
3736         return 0;
3737 }
3738
3739 bool intel_can_enable_sagv(struct intel_atomic_state *state)
3740 {
3741         struct drm_device *dev = state->base.dev;
3742         struct drm_i915_private *dev_priv = to_i915(dev);
3743         struct intel_crtc *crtc;
3744         struct intel_plane *plane;
3745         struct intel_crtc_state *crtc_state;
3746         enum pipe pipe;
3747         int level, latency;
3748         int sagv_block_time_us;
3749
3750         if (!intel_has_sagv(dev_priv))
3751                 return false;
3752
3753         if (IS_GEN(dev_priv, 9))
3754                 sagv_block_time_us = 30;
3755         else if (IS_GEN(dev_priv, 10))
3756                 sagv_block_time_us = 20;
3757         else
3758                 sagv_block_time_us = 10;
3759
3760         /*
3761          * If there are no active CRTCs, no additional checks need be performed
3762          */
3763         if (hweight32(state->active_crtcs) == 0)
3764                 return true;
3765
3766         /*
3767          * SKL+ workaround: bspec recommends we disable SAGV when we have
3768          * more then one pipe enabled
3769          */
3770         if (hweight32(state->active_crtcs) > 1)
3771                 return false;
3772
3773         /* Since we're now guaranteed to only have one active CRTC... */
3774         pipe = ffs(state->active_crtcs) - 1;
3775         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3776         crtc_state = to_intel_crtc_state(crtc->base.state);
3777
3778         if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3779                 return false;
3780
3781         for_each_intel_plane_on_crtc(dev, crtc, plane) {
3782                 struct skl_plane_wm *wm =
3783                         &crtc_state->wm.skl.optimal.planes[plane->id];
3784
3785                 /* Skip this plane if it's not enabled */
3786                 if (!wm->wm[0].plane_en)
3787                         continue;
3788
3789                 /* Find the highest enabled wm level for this plane */
3790                 for (level = ilk_wm_max_level(dev_priv);
3791                      !wm->wm[level].plane_en; --level)
3792                      { }
3793
3794                 latency = dev_priv->wm.skl_latency[level];
3795
3796                 if (skl_needs_memory_bw_wa(dev_priv) &&
3797                     plane->base.state->fb->modifier ==
3798                     I915_FORMAT_MOD_X_TILED)
3799                         latency += 15;
3800
3801                 /*
3802                  * If any of the planes on this pipe don't enable wm levels that
3803                  * incur memory latencies higher than sagv_block_time_us we
3804                  * can't enable SAGV.
3805                  */
3806                 if (latency < sagv_block_time_us)
3807                         return false;
3808         }
3809
3810         return true;
3811 }
3812
3813 static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3814                               const struct intel_crtc_state *crtc_state,
3815                               const u64 total_data_rate,
3816                               const int num_active,
3817                               struct skl_ddb_allocation *ddb)
3818 {
3819         const struct drm_display_mode *adjusted_mode;
3820         u64 total_data_bw;
3821         u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3822
3823         WARN_ON(ddb_size == 0);
3824
3825         if (INTEL_GEN(dev_priv) < 11)
3826                 return ddb_size - 4; /* 4 blocks for bypass path allocation */
3827
3828         adjusted_mode = &crtc_state->base.adjusted_mode;
3829         total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3830
3831         /*
3832          * 12GB/s is maximum BW supported by single DBuf slice.
3833          *
3834          * FIXME dbuf slice code is broken:
3835          * - must wait for planes to stop using the slice before powering it off
3836          * - plane straddling both slices is illegal in multi-pipe scenarios
3837          * - should validate we stay within the hw bandwidth limits
3838          */
3839         if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3840                 ddb->enabled_slices = 2;
3841         } else {
3842                 ddb->enabled_slices = 1;
3843                 ddb_size /= 2;
3844         }
3845
3846         return ddb_size;
3847 }
3848
3849 static void
3850 skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3851                                    const struct intel_crtc_state *crtc_state,
3852                                    const u64 total_data_rate,
3853                                    struct skl_ddb_allocation *ddb,
3854                                    struct skl_ddb_entry *alloc, /* out */
3855                                    int *num_active /* out */)
3856 {
3857         struct drm_atomic_state *state = crtc_state->base.state;
3858         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3859         struct drm_crtc *for_crtc = crtc_state->base.crtc;
3860         const struct intel_crtc *crtc;
3861         u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
3862         enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
3863         u16 ddb_size;
3864         u32 i;
3865
3866         if (WARN_ON(!state) || !crtc_state->base.active) {
3867                 alloc->start = 0;
3868                 alloc->end = 0;
3869                 *num_active = hweight32(dev_priv->active_crtcs);
3870                 return;
3871         }
3872
3873         if (intel_state->active_pipe_changes)
3874                 *num_active = hweight32(intel_state->active_crtcs);
3875         else
3876                 *num_active = hweight32(dev_priv->active_crtcs);
3877
3878         ddb_size = intel_get_ddb_size(dev_priv, crtc_state, total_data_rate,
3879                                       *num_active, ddb);
3880
3881         /*
3882          * If the state doesn't change the active CRTC's or there is no
3883          * modeset request, then there's no need to recalculate;
3884          * the existing pipe allocation limits should remain unchanged.
3885          * Note that we're safe from racing commits since any racing commit
3886          * that changes the active CRTC list or do modeset would need to
3887          * grab _all_ crtc locks, including the one we currently hold.
3888          */
3889         if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3890                 /*
3891                  * alloc may be cleared by clear_intel_crtc_state,
3892                  * copy from old state to be sure
3893                  */
3894                 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3895                 return;
3896         }
3897
3898         /*
3899          * Watermark/ddb requirement highly depends upon width of the
3900          * framebuffer, So instead of allocating DDB equally among pipes
3901          * distribute DDB based on resolution/width of the display.
3902          */
3903         for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
3904                 const struct drm_display_mode *adjusted_mode =
3905                         &crtc_state->base.adjusted_mode;
3906                 enum pipe pipe = crtc->pipe;
3907                 int hdisplay, vdisplay;
3908
3909                 if (!crtc_state->base.enable)
3910                         continue;
3911
3912                 drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
3913                 total_width += hdisplay;
3914
3915                 if (pipe < for_pipe)
3916                         width_before_pipe += hdisplay;
3917                 else if (pipe == for_pipe)
3918                         pipe_width = hdisplay;
3919         }
3920
3921         alloc->start = ddb_size * width_before_pipe / total_width;
3922         alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3923 }
3924
3925 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
3926                                  int width, const struct drm_format_info *format,
3927                                  u64 modifier, unsigned int rotation,
3928                                  u32 plane_pixel_rate, struct skl_wm_params *wp,
3929                                  int color_plane);
3930 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
3931                                  int level,
3932                                  const struct skl_wm_params *wp,
3933                                  const struct skl_wm_level *result_prev,
3934                                  struct skl_wm_level *result /* out */);
3935
3936 static unsigned int
3937 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
3938                       int num_active)
3939 {
3940         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
3941         int level, max_level = ilk_wm_max_level(dev_priv);
3942         struct skl_wm_level wm = {};
3943         int ret, min_ddb_alloc = 0;
3944         struct skl_wm_params wp;
3945
3946         ret = skl_compute_wm_params(crtc_state, 256,
3947                                     drm_format_info(DRM_FORMAT_ARGB8888),
3948                                     DRM_FORMAT_MOD_LINEAR,
3949                                     DRM_MODE_ROTATE_0,
3950                                     crtc_state->pixel_rate, &wp, 0);
3951         WARN_ON(ret);
3952
3953         for (level = 0; level <= max_level; level++) {
3954                 skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
3955                 if (wm.min_ddb_alloc == U16_MAX)
3956                         break;
3957
3958                 min_ddb_alloc = wm.min_ddb_alloc;
3959         }
3960
3961         return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
3962 }
3963
3964 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
3965                                        struct skl_ddb_entry *entry, u32 reg)
3966 {
3967
3968         entry->start = reg & DDB_ENTRY_MASK;
3969         entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3970
3971         if (entry->end)
3972                 entry->end += 1;
3973 }
3974
3975 static void
3976 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
3977                            const enum pipe pipe,
3978                            const enum plane_id plane_id,
3979                            struct skl_ddb_entry *ddb_y,
3980                            struct skl_ddb_entry *ddb_uv)
3981 {
3982         u32 val, val2;
3983         u32 fourcc = 0;
3984
3985         /* Cursor doesn't support NV12/planar, so no extra calculation needed */
3986         if (plane_id == PLANE_CURSOR) {
3987                 val = I915_READ(CUR_BUF_CFG(pipe));
3988                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3989                 return;
3990         }
3991
3992         val = I915_READ(PLANE_CTL(pipe, plane_id));
3993
3994         /* No DDB allocated for disabled planes */
3995         if (val & PLANE_CTL_ENABLE)
3996                 fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
3997                                               val & PLANE_CTL_ORDER_RGBX,
3998                                               val & PLANE_CTL_ALPHA_MASK);
3999
4000         if (INTEL_GEN(dev_priv) >= 11) {
4001                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4002                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4003         } else {
4004                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4005                 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4006
4007                 if (is_planar_yuv_format(fourcc))
4008                         swap(val, val2);
4009
4010                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4011                 skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4012         }
4013 }
4014
4015 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4016                                struct skl_ddb_entry *ddb_y,
4017                                struct skl_ddb_entry *ddb_uv)
4018 {
4019         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4020         enum intel_display_power_domain power_domain;
4021         enum pipe pipe = crtc->pipe;
4022         intel_wakeref_t wakeref;
4023         enum plane_id plane_id;
4024
4025         power_domain = POWER_DOMAIN_PIPE(pipe);
4026         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4027         if (!wakeref)
4028                 return;
4029
4030         for_each_plane_id_on_crtc(crtc, plane_id)
4031                 skl_ddb_get_hw_plane_state(dev_priv, pipe,
4032                                            plane_id,
4033                                            &ddb_y[plane_id],
4034                                            &ddb_uv[plane_id]);
4035
4036         intel_display_power_put(dev_priv, power_domain, wakeref);
4037 }
4038
4039 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
4040                           struct skl_ddb_allocation *ddb /* out */)
4041 {
4042         ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4043 }
4044
4045 /*
4046  * Determines the downscale amount of a plane for the purposes of watermark calculations.
4047  * The bspec defines downscale amount as:
4048  *
4049  * """
4050  * Horizontal down scale amount = maximum[1, Horizontal source size /
4051  *                                           Horizontal destination size]
4052  * Vertical down scale amount = maximum[1, Vertical source size /
4053  *                                         Vertical destination size]
4054  * Total down scale amount = Horizontal down scale amount *
4055  *                           Vertical down scale amount
4056  * """
4057  *
4058  * Return value is provided in 16.16 fixed point form to retain fractional part.
4059  * Caller should take care of dividing & rounding off the value.
4060  */
4061 static uint_fixed_16_16_t
4062 skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
4063                            const struct intel_plane_state *plane_state)
4064 {
4065         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
4066         u32 src_w, src_h, dst_w, dst_h;
4067         uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4068         uint_fixed_16_16_t downscale_h, downscale_w;
4069
4070         if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4071                 return u32_to_fixed16(0);
4072
4073         /* n.b., src is 16.16 fixed point, dst is whole integer */
4074         if (plane->id == PLANE_CURSOR) {
4075                 /*
4076                  * Cursors only support 0/180 degree rotation,
4077                  * hence no need to account for rotation here.
4078                  */
4079                 src_w = plane_state->base.src_w >> 16;
4080                 src_h = plane_state->base.src_h >> 16;
4081                 dst_w = plane_state->base.crtc_w;
4082                 dst_h = plane_state->base.crtc_h;
4083         } else {
4084                 /*
4085                  * Src coordinates are already rotated by 270 degrees for
4086                  * the 90/270 degree plane rotation cases (to match the
4087                  * GTT mapping), hence no need to account for rotation here.
4088                  */
4089                 src_w = drm_rect_width(&plane_state->base.src) >> 16;
4090                 src_h = drm_rect_height(&plane_state->base.src) >> 16;
4091                 dst_w = drm_rect_width(&plane_state->base.dst);
4092                 dst_h = drm_rect_height(&plane_state->base.dst);
4093         }
4094
4095         fp_w_ratio = div_fixed16(src_w, dst_w);
4096         fp_h_ratio = div_fixed16(src_h, dst_h);
4097         downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4098         downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4099
4100         return mul_fixed16(downscale_w, downscale_h);
4101 }
4102
4103 static uint_fixed_16_16_t
4104 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
4105 {
4106         uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4107
4108         if (!crtc_state->base.enable)
4109                 return pipe_downscale;
4110
4111         if (crtc_state->pch_pfit.enabled) {
4112                 u32 src_w, src_h, dst_w, dst_h;
4113                 u32 pfit_size = crtc_state->pch_pfit.size;
4114                 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4115                 uint_fixed_16_16_t downscale_h, downscale_w;
4116
4117                 src_w = crtc_state->pipe_src_w;
4118                 src_h = crtc_state->pipe_src_h;
4119                 dst_w = pfit_size >> 16;
4120                 dst_h = pfit_size & 0xffff;
4121
4122                 if (!dst_w || !dst_h)
4123                         return pipe_downscale;
4124
4125                 fp_w_ratio = div_fixed16(src_w, dst_w);
4126                 fp_h_ratio = div_fixed16(src_h, dst_h);
4127                 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4128                 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4129
4130                 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
4131         }
4132
4133         return pipe_downscale;
4134 }
4135
4136 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4137                                   struct intel_crtc_state *crtc_state)
4138 {
4139         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4140         struct drm_atomic_state *state = crtc_state->base.state;
4141         struct drm_plane *plane;
4142         const struct drm_plane_state *drm_plane_state;
4143         int crtc_clock, dotclk;
4144         u32 pipe_max_pixel_rate;
4145         uint_fixed_16_16_t pipe_downscale;
4146         uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4147
4148         if (!crtc_state->base.enable)
4149                 return 0;
4150
4151         drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
4152                 uint_fixed_16_16_t plane_downscale;
4153                 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4154                 int bpp;
4155                 const struct intel_plane_state *plane_state =
4156                         to_intel_plane_state(drm_plane_state);
4157
4158                 if (!intel_wm_plane_visible(crtc_state, plane_state))
4159                         continue;
4160
4161                 if (WARN_ON(!plane_state->base.fb))
4162                         return -EINVAL;
4163
4164                 plane_downscale = skl_plane_downscale_amount(crtc_state, plane_state);
4165                 bpp = plane_state->base.fb->format->cpp[0] * 8;
4166                 if (bpp == 64)
4167                         plane_downscale = mul_fixed16(plane_downscale,
4168                                                       fp_9_div_8);
4169
4170                 max_downscale = max_fixed16(plane_downscale, max_downscale);
4171         }
4172         pipe_downscale = skl_pipe_downscale_amount(crtc_state);
4173
4174         pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
4175
4176         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
4177         dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
4178
4179         if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4180                 dotclk *= 2;
4181
4182         pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4183
4184         if (pipe_max_pixel_rate < crtc_clock) {
4185                 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4186                 return -EINVAL;
4187         }
4188
4189         return 0;
4190 }
4191
4192 static u64
4193 skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
4194                              const struct intel_plane_state *plane_state,
4195                              const int plane)
4196 {
4197         struct intel_plane *intel_plane = to_intel_plane(plane_state->base.plane);
4198         u32 data_rate;
4199         u32 width = 0, height = 0;
4200         struct drm_framebuffer *fb;
4201         u32 format;
4202         uint_fixed_16_16_t down_scale_amount;
4203         u64 rate;
4204
4205         if (!plane_state->base.visible)
4206                 return 0;
4207
4208         fb = plane_state->base.fb;
4209         format = fb->format->format;
4210
4211         if (intel_plane->id == PLANE_CURSOR)
4212                 return 0;
4213         if (plane == 1 && !is_planar_yuv_format(format))
4214                 return 0;
4215
4216         /*
4217          * Src coordinates are already rotated by 270 degrees for
4218          * the 90/270 degree plane rotation cases (to match the
4219          * GTT mapping), hence no need to account for rotation here.
4220          */
4221         width = drm_rect_width(&plane_state->base.src) >> 16;
4222         height = drm_rect_height(&plane_state->base.src) >> 16;
4223
4224         /* UV plane does 1/2 pixel sub-sampling */
4225         if (plane == 1 && is_planar_yuv_format(format)) {
4226                 width /= 2;
4227                 height /= 2;
4228         }
4229
4230         data_rate = width * height;
4231
4232         down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4233
4234         rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4235
4236         rate *= fb->format->cpp[plane];
4237         return rate;
4238 }
4239
4240 static u64
4241 skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4242                                  u64 *plane_data_rate,
4243                                  u64 *uv_plane_data_rate)
4244 {
4245         struct drm_atomic_state *state = crtc_state->base.state;
4246         struct drm_plane *plane;
4247         const struct drm_plane_state *drm_plane_state;
4248         u64 total_data_rate = 0;
4249
4250         if (WARN_ON(!state))
4251                 return 0;
4252
4253         /* Calculate and cache data rate for each plane */
4254         drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
4255                 enum plane_id plane_id = to_intel_plane(plane)->id;
4256                 const struct intel_plane_state *plane_state =
4257                         to_intel_plane_state(drm_plane_state);
4258                 u64 rate;
4259
4260                 /* packed/y */
4261                 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4262                 plane_data_rate[plane_id] = rate;
4263                 total_data_rate += rate;
4264
4265                 /* uv-plane */
4266                 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4267                 uv_plane_data_rate[plane_id] = rate;
4268                 total_data_rate += rate;
4269         }
4270
4271         return total_data_rate;
4272 }
4273
4274 static u64
4275 icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4276                                  u64 *plane_data_rate)
4277 {
4278         struct drm_plane *plane;
4279         const struct drm_plane_state *drm_plane_state;
4280         u64 total_data_rate = 0;
4281
4282         if (WARN_ON(!crtc_state->base.state))
4283                 return 0;
4284
4285         /* Calculate and cache data rate for each plane */
4286         drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
4287                 const struct intel_plane_state *plane_state =
4288                         to_intel_plane_state(drm_plane_state);
4289                 enum plane_id plane_id = to_intel_plane(plane)->id;
4290                 u64 rate;
4291
4292                 if (!plane_state->linked_plane) {
4293                         rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4294                         plane_data_rate[plane_id] = rate;
4295                         total_data_rate += rate;
4296                 } else {
4297                         enum plane_id y_plane_id;
4298
4299                         /*
4300                          * The slave plane might not iterate in
4301                          * drm_atomic_crtc_state_for_each_plane_state(),
4302                          * and needs the master plane state which may be
4303                          * NULL if we try get_new_plane_state(), so we
4304                          * always calculate from the master.
4305                          */
4306                         if (plane_state->slave)
4307                                 continue;
4308
4309                         /* Y plane rate is calculated on the slave */
4310                         rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4311                         y_plane_id = plane_state->linked_plane->id;
4312                         plane_data_rate[y_plane_id] = rate;
4313                         total_data_rate += rate;
4314
4315                         rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4316                         plane_data_rate[plane_id] = rate;
4317                         total_data_rate += rate;
4318                 }
4319         }
4320
4321         return total_data_rate;
4322 }
4323
4324 static int
4325 skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state,
4326                       struct skl_ddb_allocation *ddb /* out */)
4327 {
4328         struct drm_atomic_state *state = crtc_state->base.state;
4329         struct drm_crtc *crtc = crtc_state->base.crtc;
4330         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4331         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4332         struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4333         u16 alloc_size, start = 0;
4334         u16 total[I915_MAX_PLANES] = {};
4335         u16 uv_total[I915_MAX_PLANES] = {};
4336         u64 total_data_rate;
4337         enum plane_id plane_id;
4338         int num_active;
4339         u64 plane_data_rate[I915_MAX_PLANES] = {};
4340         u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4341         u32 blocks;
4342         int level;
4343
4344         /* Clear the partitioning for disabled planes. */
4345         memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
4346         memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4347
4348         if (WARN_ON(!state))
4349                 return 0;
4350
4351         if (!crtc_state->base.active) {
4352                 alloc->start = alloc->end = 0;
4353                 return 0;
4354         }
4355
4356         if (INTEL_GEN(dev_priv) >= 11)
4357                 total_data_rate =
4358                         icl_get_total_relative_data_rate(crtc_state,
4359                                                          plane_data_rate);
4360         else
4361                 total_data_rate =
4362                         skl_get_total_relative_data_rate(crtc_state,
4363                                                          plane_data_rate,
4364                                                          uv_plane_data_rate);
4365
4366
4367         skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4368                                            ddb, alloc, &num_active);
4369         alloc_size = skl_ddb_entry_size(alloc);
4370         if (alloc_size == 0)
4371                 return 0;
4372
4373         /* Allocate fixed number of blocks for cursor. */
4374         total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4375         alloc_size -= total[PLANE_CURSOR];
4376         crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4377                 alloc->end - total[PLANE_CURSOR];
4378         crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4379
4380         if (total_data_rate == 0)
4381                 return 0;
4382
4383         /*
4384          * Find the highest watermark level for which we can satisfy the block
4385          * requirement of active planes.
4386          */
4387         for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4388                 blocks = 0;
4389                 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4390                         const struct skl_plane_wm *wm =
4391                                 &crtc_state->wm.skl.optimal.planes[plane_id];
4392
4393                         if (plane_id == PLANE_CURSOR) {
4394                                 if (WARN_ON(wm->wm[level].min_ddb_alloc >
4395                                             total[PLANE_CURSOR])) {
4396                                         blocks = U32_MAX;
4397                                         break;
4398                                 }
4399                                 continue;
4400                         }
4401
4402                         blocks += wm->wm[level].min_ddb_alloc;
4403                         blocks += wm->uv_wm[level].min_ddb_alloc;
4404                 }
4405
4406                 if (blocks <= alloc_size) {
4407                         alloc_size -= blocks;
4408                         break;
4409                 }
4410         }
4411
4412         if (level < 0) {
4413                 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4414                 DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
4415                               alloc_size);
4416                 return -EINVAL;
4417         }
4418
4419         /*
4420          * Grant each plane the blocks it requires at the highest achievable
4421          * watermark level, plus an extra share of the leftover blocks
4422          * proportional to its relative data rate.
4423          */
4424         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4425                 const struct skl_plane_wm *wm =
4426                         &crtc_state->wm.skl.optimal.planes[plane_id];
4427                 u64 rate;
4428                 u16 extra;
4429
4430                 if (plane_id == PLANE_CURSOR)
4431                         continue;
4432
4433                 /*
4434                  * We've accounted for all active planes; remaining planes are
4435                  * all disabled.
4436                  */
4437                 if (total_data_rate == 0)
4438                         break;
4439
4440                 rate = plane_data_rate[plane_id];
4441                 extra = min_t(u16, alloc_size,
4442                               DIV64_U64_ROUND_UP(alloc_size * rate,
4443                                                  total_data_rate));
4444                 total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4445                 alloc_size -= extra;
4446                 total_data_rate -= rate;
4447
4448                 if (total_data_rate == 0)
4449                         break;
4450
4451                 rate = uv_plane_data_rate[plane_id];
4452                 extra = min_t(u16, alloc_size,
4453                               DIV64_U64_ROUND_UP(alloc_size * rate,
4454                                                  total_data_rate));
4455                 uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4456                 alloc_size -= extra;
4457                 total_data_rate -= rate;
4458         }
4459         WARN_ON(alloc_size != 0 || total_data_rate != 0);
4460
4461         /* Set the actual DDB start/end points for each plane */
4462         start = alloc->start;
4463         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4464                 struct skl_ddb_entry *plane_alloc =
4465                         &crtc_state->wm.skl.plane_ddb_y[plane_id];
4466                 struct skl_ddb_entry *uv_plane_alloc =
4467                         &crtc_state->wm.skl.plane_ddb_uv[plane_id];
4468
4469                 if (plane_id == PLANE_CURSOR)
4470                         continue;
4471
4472                 /* Gen11+ uses a separate plane for UV watermarks */
4473                 WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4474
4475                 /* Leave disabled planes at (0,0) */
4476                 if (total[plane_id]) {
4477                         plane_alloc->start = start;
4478                         start += total[plane_id];
4479                         plane_alloc->end = start;
4480                 }
4481
4482                 if (uv_total[plane_id]) {
4483                         uv_plane_alloc->start = start;
4484                         start += uv_total[plane_id];
4485                         uv_plane_alloc->end = start;
4486                 }
4487         }
4488
4489         /*
4490          * When we calculated watermark values we didn't know how high
4491          * of a level we'd actually be able to hit, so we just marked
4492          * all levels as "enabled."  Go back now and disable the ones
4493          * that aren't actually possible.
4494          */
4495         for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4496                 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4497                         struct skl_plane_wm *wm =
4498                                 &crtc_state->wm.skl.optimal.planes[plane_id];
4499
4500                         /*
4501                          * We only disable the watermarks for each plane if
4502                          * they exceed the ddb allocation of said plane. This
4503                          * is done so that we don't end up touching cursor
4504                          * watermarks needlessly when some other plane reduces
4505                          * our max possible watermark level.
4506                          *
4507                          * Bspec has this to say about the PLANE_WM enable bit:
4508                          * "All the watermarks at this level for all enabled
4509                          *  planes must be enabled before the level will be used."
4510                          * So this is actually safe to do.
4511                          */
4512                         if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
4513                             wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
4514                                 memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4515
4516                         /*
4517                          * Wa_1408961008:icl, ehl
4518                          * Underruns with WM1+ disabled
4519                          */
4520                         if (IS_GEN(dev_priv, 11) &&
4521                             level == 1 && wm->wm[0].plane_en) {
4522                                 wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4523                                 wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
4524                                 wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4525                         }
4526                 }
4527         }
4528
4529         /*
4530          * Go back and disable the transition watermark if it turns out we
4531          * don't have enough DDB blocks for it.
4532          */
4533         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4534                 struct skl_plane_wm *wm =
4535                         &crtc_state->wm.skl.optimal.planes[plane_id];
4536
4537                 if (wm->trans_wm.plane_res_b >= total[plane_id])
4538                         memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4539         }
4540
4541         return 0;
4542 }
4543
4544 /*
4545  * The max latency should be 257 (max the punit can code is 255 and we add 2us
4546  * for the read latency) and cpp should always be <= 8, so that
4547  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4548  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4549 */
4550 static uint_fixed_16_16_t
4551 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
4552                u8 cpp, u32 latency, u32 dbuf_block_size)
4553 {
4554         u32 wm_intermediate_val;
4555         uint_fixed_16_16_t ret;
4556
4557         if (latency == 0)
4558                 return FP_16_16_MAX;
4559
4560         wm_intermediate_val = latency * pixel_rate * cpp;
4561         ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4562
4563         if (INTEL_GEN(dev_priv) >= 10)
4564                 ret = add_fixed16_u32(ret, 1);
4565
4566         return ret;
4567 }
4568
4569 static uint_fixed_16_16_t
4570 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
4571                uint_fixed_16_16_t plane_blocks_per_line)
4572 {
4573         u32 wm_intermediate_val;
4574         uint_fixed_16_16_t ret;
4575
4576         if (latency == 0)
4577                 return FP_16_16_MAX;
4578
4579         wm_intermediate_val = latency * pixel_rate;
4580         wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4581                                            pipe_htotal * 1000);
4582         ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4583         return ret;
4584 }
4585
4586 static uint_fixed_16_16_t
4587 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4588 {
4589         u32 pixel_rate;
4590         u32 crtc_htotal;
4591         uint_fixed_16_16_t linetime_us;
4592
4593         if (!crtc_state->base.active)
4594                 return u32_to_fixed16(0);
4595
4596         pixel_rate = crtc_state->pixel_rate;
4597
4598         if (WARN_ON(pixel_rate == 0))
4599                 return u32_to_fixed16(0);
4600
4601         crtc_htotal = crtc_state->base.adjusted_mode.crtc_htotal;
4602         linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4603
4604         return linetime_us;
4605 }
4606
4607 static u32
4608 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
4609                               const struct intel_plane_state *plane_state)
4610 {
4611         u64 adjusted_pixel_rate;
4612         uint_fixed_16_16_t downscale_amount;
4613
4614         /* Shouldn't reach here on disabled planes... */
4615         if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4616                 return 0;
4617
4618         /*
4619          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4620          * with additional adjustments for plane-specific scaling.
4621          */
4622         adjusted_pixel_rate = crtc_state->pixel_rate;
4623         downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4624
4625         return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4626                                             downscale_amount);
4627 }
4628
4629 static int
4630 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4631                       int width, const struct drm_format_info *format,
4632                       u64 modifier, unsigned int rotation,
4633                       u32 plane_pixel_rate, struct skl_wm_params *wp,
4634                       int color_plane)
4635 {
4636         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4637         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4638         u32 interm_pbpl;
4639
4640         /* only planar format has two planes */
4641         if (color_plane == 1 && !is_planar_yuv_format(format->format)) {
4642                 DRM_DEBUG_KMS("Non planar format have single plane\n");
4643                 return -EINVAL;
4644         }
4645
4646         wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
4647                       modifier == I915_FORMAT_MOD_Yf_TILED ||
4648                       modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4649                       modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4650         wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
4651         wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4652                          modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4653         wp->is_planar = is_planar_yuv_format(format->format);
4654
4655         wp->width = width;
4656         if (color_plane == 1 && wp->is_planar)
4657                 wp->width /= 2;
4658
4659         wp->cpp = format->cpp[color_plane];
4660         wp->plane_pixel_rate = plane_pixel_rate;
4661
4662         if (INTEL_GEN(dev_priv) >= 11 &&
4663             modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4664                 wp->dbuf_block_size = 256;
4665         else
4666                 wp->dbuf_block_size = 512;
4667
4668         if (drm_rotation_90_or_270(rotation)) {
4669                 switch (wp->cpp) {
4670                 case 1:
4671                         wp->y_min_scanlines = 16;
4672                         break;
4673                 case 2:
4674                         wp->y_min_scanlines = 8;
4675                         break;
4676                 case 4:
4677                         wp->y_min_scanlines = 4;
4678                         break;
4679                 default:
4680                         MISSING_CASE(wp->cpp);
4681                         return -EINVAL;
4682                 }
4683         } else {
4684                 wp->y_min_scanlines = 4;
4685         }
4686
4687         if (skl_needs_memory_bw_wa(dev_priv))
4688                 wp->y_min_scanlines *= 2;
4689
4690         wp->plane_bytes_per_line = wp->width * wp->cpp;
4691         if (wp->y_tiled) {
4692                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4693                                            wp->y_min_scanlines,
4694                                            wp->dbuf_block_size);
4695
4696                 if (INTEL_GEN(dev_priv) >= 10)
4697                         interm_pbpl++;
4698
4699                 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4700                                                         wp->y_min_scanlines);
4701         } else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4702                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4703                                            wp->dbuf_block_size);
4704                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4705         } else {
4706                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4707                                            wp->dbuf_block_size) + 1;
4708                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4709         }
4710
4711         wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4712                                              wp->plane_blocks_per_line);
4713
4714         wp->linetime_us = fixed16_to_u32_round_up(
4715                                         intel_get_linetime_us(crtc_state));
4716
4717         return 0;
4718 }
4719
4720 static int
4721 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
4722                             const struct intel_plane_state *plane_state,
4723                             struct skl_wm_params *wp, int color_plane)
4724 {
4725         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
4726         const struct drm_framebuffer *fb = plane_state->base.fb;
4727         int width;
4728
4729         if (plane->id == PLANE_CURSOR) {
4730                 width = plane_state->base.crtc_w;
4731         } else {
4732                 /*
4733                  * Src coordinates are already rotated by 270 degrees for
4734                  * the 90/270 degree plane rotation cases (to match the
4735                  * GTT mapping), hence no need to account for rotation here.
4736                  */
4737                 width = drm_rect_width(&plane_state->base.src) >> 16;
4738         }
4739
4740         return skl_compute_wm_params(crtc_state, width,
4741                                      fb->format, fb->modifier,
4742                                      plane_state->base.rotation,
4743                                      skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
4744                                      wp, color_plane);
4745 }
4746
4747 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
4748 {
4749         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4750                 return true;
4751
4752         /* The number of lines are ignored for the level 0 watermark. */
4753         return level > 0;
4754 }
4755
4756 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4757                                  int level,
4758                                  const struct skl_wm_params *wp,
4759                                  const struct skl_wm_level *result_prev,
4760                                  struct skl_wm_level *result /* out */)
4761 {
4762         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4763         u32 latency = dev_priv->wm.skl_latency[level];
4764         uint_fixed_16_16_t method1, method2;
4765         uint_fixed_16_16_t selected_result;
4766         u32 res_blocks, res_lines, min_ddb_alloc = 0;
4767
4768         if (latency == 0) {
4769                 /* reject it */
4770                 result->min_ddb_alloc = U16_MAX;
4771                 return;
4772         }
4773
4774         /*
4775          * WaIncreaseLatencyIPCEnabled: kbl,cfl
4776          * Display WA #1141: kbl,cfl
4777          */
4778         if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
4779             dev_priv->ipc_enabled)
4780                 latency += 4;
4781
4782         if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4783                 latency += 15;
4784
4785         method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4786                                  wp->cpp, latency, wp->dbuf_block_size);
4787         method2 = skl_wm_method2(wp->plane_pixel_rate,
4788                                  crtc_state->base.adjusted_mode.crtc_htotal,
4789                                  latency,
4790                                  wp->plane_blocks_per_line);
4791
4792         if (wp->y_tiled) {
4793                 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4794         } else {
4795                 if ((wp->cpp * crtc_state->base.adjusted_mode.crtc_htotal /
4796                      wp->dbuf_block_size < 1) &&
4797                      (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4798                         selected_result = method2;
4799                 } else if (latency >= wp->linetime_us) {
4800                         if (IS_GEN(dev_priv, 9) &&
4801                             !IS_GEMINILAKE(dev_priv))
4802                                 selected_result = min_fixed16(method1, method2);
4803                         else
4804                                 selected_result = method2;
4805                 } else {
4806                         selected_result = method1;
4807                 }
4808         }
4809
4810         res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4811         res_lines = div_round_up_fixed16(selected_result,
4812                                          wp->plane_blocks_per_line);
4813
4814         if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
4815                 /* Display WA #1125: skl,bxt,kbl */
4816                 if (level == 0 && wp->rc_surface)
4817                         res_blocks +=
4818                                 fixed16_to_u32_round_up(wp->y_tile_minimum);
4819
4820                 /* Display WA #1126: skl,bxt,kbl */
4821                 if (level >= 1 && level <= 7) {
4822                         if (wp->y_tiled) {
4823                                 res_blocks +=
4824                                     fixed16_to_u32_round_up(wp->y_tile_minimum);
4825                                 res_lines += wp->y_min_scanlines;
4826                         } else {
4827                                 res_blocks++;
4828                         }
4829
4830                         /*
4831                          * Make sure result blocks for higher latency levels are
4832                          * atleast as high as level below the current level.
4833                          * Assumption in DDB algorithm optimization for special
4834                          * cases. Also covers Display WA #1125 for RC.
4835                          */
4836                         if (result_prev->plane_res_b > res_blocks)
4837                                 res_blocks = result_prev->plane_res_b;
4838                 }
4839         }
4840
4841         if (INTEL_GEN(dev_priv) >= 11) {
4842                 if (wp->y_tiled) {
4843                         int extra_lines;
4844
4845                         if (res_lines % wp->y_min_scanlines == 0)
4846                                 extra_lines = wp->y_min_scanlines;
4847                         else
4848                                 extra_lines = wp->y_min_scanlines * 2 -
4849                                         res_lines % wp->y_min_scanlines;
4850
4851                         min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
4852                                                                  wp->plane_blocks_per_line);
4853                 } else {
4854                         min_ddb_alloc = res_blocks +
4855                                 DIV_ROUND_UP(res_blocks, 10);
4856                 }
4857         }
4858
4859         if (!skl_wm_has_lines(dev_priv, level))
4860                 res_lines = 0;
4861
4862         if (res_lines > 31) {
4863                 /* reject it */
4864                 result->min_ddb_alloc = U16_MAX;
4865                 return;
4866         }
4867
4868         /*
4869          * If res_lines is valid, assume we can use this watermark level
4870          * for now.  We'll come back and disable it after we calculate the
4871          * DDB allocation if it turns out we don't actually have enough
4872          * blocks to satisfy it.
4873          */
4874         result->plane_res_b = res_blocks;
4875         result->plane_res_l = res_lines;
4876         /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
4877         result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4878         result->plane_en = true;
4879 }
4880
4881 static void
4882 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
4883                       const struct skl_wm_params *wm_params,
4884                       struct skl_wm_level *levels)
4885 {
4886         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4887         int level, max_level = ilk_wm_max_level(dev_priv);
4888         struct skl_wm_level *result_prev = &levels[0];
4889
4890         for (level = 0; level <= max_level; level++) {
4891                 struct skl_wm_level *result = &levels[level];
4892
4893                 skl_compute_plane_wm(crtc_state, level, wm_params,
4894                                      result_prev, result);
4895
4896                 result_prev = result;
4897         }
4898 }
4899
4900 static u32
4901 skl_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
4902 {
4903         struct drm_atomic_state *state = crtc_state->base.state;
4904         struct drm_i915_private *dev_priv = to_i915(state->dev);
4905         uint_fixed_16_16_t linetime_us;
4906         u32 linetime_wm;
4907
4908         linetime_us = intel_get_linetime_us(crtc_state);
4909         linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4910
4911         /* Display WA #1135: BXT:ALL GLK:ALL */
4912         if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4913                 linetime_wm /= 2;
4914
4915         return linetime_wm;
4916 }
4917
4918 static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
4919                                       const struct skl_wm_params *wp,
4920                                       struct skl_plane_wm *wm)
4921 {
4922         struct drm_device *dev = crtc_state->base.crtc->dev;
4923         const struct drm_i915_private *dev_priv = to_i915(dev);
4924         u16 trans_min, trans_y_tile_min;
4925         const u16 trans_amount = 10; /* This is configurable amount */
4926         u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4927
4928         /* Transition WM are not recommended by HW team for GEN9 */
4929         if (INTEL_GEN(dev_priv) <= 9)
4930                 return;
4931
4932         /* Transition WM don't make any sense if ipc is disabled */
4933         if (!dev_priv->ipc_enabled)
4934                 return;
4935
4936         trans_min = 14;
4937         if (INTEL_GEN(dev_priv) >= 11)
4938                 trans_min = 4;
4939
4940         trans_offset_b = trans_min + trans_amount;
4941
4942         /*
4943          * The spec asks for Selected Result Blocks for wm0 (the real value),
4944          * not Result Blocks (the integer value). Pay attention to the capital
4945          * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
4946          * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
4947          * and since we later will have to get the ceiling of the sum in the
4948          * transition watermarks calculation, we can just pretend Selected
4949          * Result Blocks is Result Blocks minus 1 and it should work for the
4950          * current platforms.
4951          */
4952         wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4953
4954         if (wp->y_tiled) {
4955                 trans_y_tile_min =
4956                         (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4957                 res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4958                                 trans_offset_b;
4959         } else {
4960                 res_blocks = wm0_sel_res_b + trans_offset_b;
4961
4962                 /* WA BUG:1938466 add one block for non y-tile planes */
4963                 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4964                         res_blocks += 1;
4965
4966         }
4967
4968         /*
4969          * Just assume we can enable the transition watermark.  After
4970          * computing the DDB we'll come back and disable it if that
4971          * assumption turns out to be false.
4972          */
4973         wm->trans_wm.plane_res_b = res_blocks + 1;
4974         wm->trans_wm.plane_en = true;
4975 }
4976
4977 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4978                                      const struct intel_plane_state *plane_state,
4979                                      enum plane_id plane_id, int color_plane)
4980 {
4981         struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4982         struct skl_wm_params wm_params;
4983         int ret;
4984
4985         ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4986                                           &wm_params, color_plane);
4987         if (ret)
4988                 return ret;
4989
4990         skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
4991         skl_compute_transition_wm(crtc_state, &wm_params, wm);
4992
4993         return 0;
4994 }
4995
4996 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
4997                                  const struct intel_plane_state *plane_state,
4998                                  enum plane_id plane_id)
4999 {
5000         struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5001         struct skl_wm_params wm_params;
5002         int ret;
5003
5004         wm->is_planar = true;
5005
5006         /* uv plane watermarks must also be validated for NV12/Planar */
5007         ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5008                                           &wm_params, 1);
5009         if (ret)
5010                 return ret;
5011
5012         skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5013
5014         return 0;
5015 }
5016
5017 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5018                               const struct intel_plane_state *plane_state)
5019 {
5020         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
5021         const struct drm_framebuffer *fb = plane_state->base.fb;
5022         enum plane_id plane_id = plane->id;
5023         int ret;
5024
5025         if (!intel_wm_plane_visible(crtc_state, plane_state))
5026                 return 0;
5027
5028         ret = skl_build_plane_wm_single(crtc_state, plane_state,
5029                                         plane_id, 0);
5030         if (ret)
5031                 return ret;
5032
5033         if (fb->format->is_yuv && fb->format->num_planes > 1) {
5034                 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5035                                             plane_id);
5036                 if (ret)
5037                         return ret;
5038         }
5039
5040         return 0;
5041 }
5042
5043 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5044                               const struct intel_plane_state *plane_state)
5045 {
5046         enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
5047         int ret;
5048
5049         /* Watermarks calculated in master */
5050         if (plane_state->slave)
5051                 return 0;
5052
5053         if (plane_state->linked_plane) {
5054                 const struct drm_framebuffer *fb = plane_state->base.fb;
5055                 enum plane_id y_plane_id = plane_state->linked_plane->id;
5056
5057                 WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
5058                 WARN_ON(!fb->format->is_yuv ||
5059                         fb->format->num_planes == 1);
5060
5061                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5062                                                 y_plane_id, 0);
5063                 if (ret)
5064                         return ret;
5065
5066                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5067                                                 plane_id, 1);
5068                 if (ret)
5069                         return ret;
5070         } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5071                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5072                                                 plane_id, 0);
5073                 if (ret)
5074                         return ret;
5075         }
5076
5077         return 0;
5078 }
5079
5080 static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5081 {
5082         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5083         struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5084         struct drm_plane *plane;
5085         const struct drm_plane_state *drm_plane_state;
5086         int ret;
5087
5088         /*
5089          * We'll only calculate watermarks for planes that are actually
5090          * enabled, so make sure all other planes are set as disabled.
5091          */
5092         memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
5093
5094         drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state,
5095                                                    &crtc_state->base) {
5096                 const struct intel_plane_state *plane_state =
5097                         to_intel_plane_state(drm_plane_state);
5098
5099                 if (INTEL_GEN(dev_priv) >= 11)
5100                         ret = icl_build_plane_wm(crtc_state, plane_state);
5101                 else
5102                         ret = skl_build_plane_wm(crtc_state, plane_state);
5103                 if (ret)
5104                         return ret;
5105         }
5106
5107         pipe_wm->linetime = skl_compute_linetime_wm(crtc_state);
5108
5109         return 0;
5110 }
5111
5112 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5113                                 i915_reg_t reg,
5114                                 const struct skl_ddb_entry *entry)
5115 {
5116         if (entry->end)
5117                 I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5118         else
5119                 I915_WRITE_FW(reg, 0);
5120 }
5121
5122 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5123                                i915_reg_t reg,
5124                                const struct skl_wm_level *level)
5125 {
5126         u32 val = 0;
5127
5128         if (level->plane_en)
5129                 val |= PLANE_WM_EN;
5130         if (level->ignore_lines)
5131                 val |= PLANE_WM_IGNORE_LINES;
5132         val |= level->plane_res_b;
5133         val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5134
5135         I915_WRITE_FW(reg, val);
5136 }
5137
5138 void skl_write_plane_wm(struct intel_plane *plane,
5139                         const struct intel_crtc_state *crtc_state)
5140 {
5141         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5142         int level, max_level = ilk_wm_max_level(dev_priv);
5143         enum plane_id plane_id = plane->id;
5144         enum pipe pipe = plane->pipe;
5145         const struct skl_plane_wm *wm =
5146                 &crtc_state->wm.skl.optimal.planes[plane_id];
5147         const struct skl_ddb_entry *ddb_y =
5148                 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5149         const struct skl_ddb_entry *ddb_uv =
5150                 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5151
5152         for (level = 0; level <= max_level; level++) {
5153                 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5154                                    &wm->wm[level]);
5155         }
5156         skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5157                            &wm->trans_wm);
5158
5159         if (INTEL_GEN(dev_priv) >= 11) {
5160                 skl_ddb_entry_write(dev_priv,
5161                                     PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5162                 return;
5163         }
5164
5165         if (wm->is_planar)
5166                 swap(ddb_y, ddb_uv);
5167
5168         skl_ddb_entry_write(dev_priv,
5169                             PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5170         skl_ddb_entry_write(dev_priv,
5171                             PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5172 }
5173
5174 void skl_write_cursor_wm(struct intel_plane *plane,
5175                          const struct intel_crtc_state *crtc_state)
5176 {
5177         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5178         int level, max_level = ilk_wm_max_level(dev_priv);
5179         enum plane_id plane_id = plane->id;
5180         enum pipe pipe = plane->pipe;
5181         const struct skl_plane_wm *wm =
5182                 &crtc_state->wm.skl.optimal.planes[plane_id];
5183         const struct skl_ddb_entry *ddb =
5184                 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5185
5186         for (level = 0; level <= max_level; level++) {
5187                 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5188                                    &wm->wm[level]);
5189         }
5190         skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5191
5192         skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5193 }
5194
5195 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5196                          const struct skl_wm_level *l2)
5197 {
5198         return l1->plane_en == l2->plane_en &&
5199                 l1->ignore_lines == l2->ignore_lines &&
5200                 l1->plane_res_l == l2->plane_res_l &&
5201                 l1->plane_res_b == l2->plane_res_b;
5202 }
5203
5204 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5205                                 const struct skl_plane_wm *wm1,
5206                                 const struct skl_plane_wm *wm2)
5207 {
5208         int level, max_level = ilk_wm_max_level(dev_priv);
5209
5210         for (level = 0; level <= max_level; level++) {
5211                 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
5212                     !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
5213                         return false;
5214         }
5215
5216         return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5217 }
5218
5219 static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
5220                                const struct skl_pipe_wm *wm1,
5221                                const struct skl_pipe_wm *wm2)
5222 {
5223         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5224         enum plane_id plane_id;
5225
5226         for_each_plane_id_on_crtc(crtc, plane_id) {
5227                 if (!skl_plane_wm_equals(dev_priv,
5228                                          &wm1->planes[plane_id],
5229                                          &wm2->planes[plane_id]))
5230                         return false;
5231         }
5232
5233         return wm1->linetime == wm2->linetime;
5234 }
5235
5236 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5237                                            const struct skl_ddb_entry *b)
5238 {
5239         return a->start < b->end && b->start < a->end;
5240 }
5241
5242 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5243                                  const struct skl_ddb_entry *entries,
5244                                  int num_entries, int ignore_idx)
5245 {
5246         int i;
5247
5248         for (i = 0; i < num_entries; i++) {
5249                 if (i != ignore_idx &&
5250                     skl_ddb_entries_overlap(ddb, &entries[i]))
5251                         return true;
5252         }
5253
5254         return false;
5255 }
5256
5257 static u32
5258 pipes_modified(struct intel_atomic_state *state)
5259 {
5260         struct intel_crtc *crtc;
5261         struct intel_crtc_state *crtc_state;
5262         u32 i, ret = 0;
5263
5264         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5265                 ret |= drm_crtc_mask(&crtc->base);
5266
5267         return ret;
5268 }
5269
5270 static int
5271 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5272                             struct intel_crtc_state *new_crtc_state)
5273 {
5274         struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
5275         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
5276         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5277         struct intel_plane *plane;
5278
5279         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5280                 struct intel_plane_state *plane_state;
5281                 enum plane_id plane_id = plane->id;
5282
5283                 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5284                                         &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
5285                     skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
5286                                         &new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5287                         continue;
5288
5289                 plane_state = intel_atomic_get_plane_state(state, plane);
5290                 if (IS_ERR(plane_state))
5291                         return PTR_ERR(plane_state);
5292
5293                 new_crtc_state->update_planes |= BIT(plane_id);
5294         }
5295
5296         return 0;
5297 }
5298
5299 static int
5300 skl_compute_ddb(struct intel_atomic_state *state)
5301 {
5302         const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5303         struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5304         struct intel_crtc_state *old_crtc_state;
5305         struct intel_crtc_state *new_crtc_state;
5306         struct intel_crtc *crtc;
5307         int ret, i;
5308
5309         memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5310
5311         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5312                                             new_crtc_state, i) {
5313                 ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5314                 if (ret)
5315                         return ret;
5316
5317                 ret = skl_ddb_add_affected_planes(old_crtc_state,
5318                                                   new_crtc_state);
5319                 if (ret)
5320                         return ret;
5321         }
5322
5323         return 0;
5324 }
5325
5326 static char enast(bool enable)
5327 {
5328         return enable ? '*' : ' ';
5329 }
5330
5331 static void
5332 skl_print_wm_changes(struct intel_atomic_state *state)
5333 {
5334         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5335         const struct intel_crtc_state *old_crtc_state;
5336         const struct intel_crtc_state *new_crtc_state;
5337         struct intel_plane *plane;
5338         struct intel_crtc *crtc;
5339         int i;
5340
5341         if ((drm_debug & DRM_UT_KMS) == 0)
5342                 return;
5343
5344         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5345                                             new_crtc_state, i) {
5346                 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
5347
5348                 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
5349                 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
5350
5351                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5352                         enum plane_id plane_id = plane->id;
5353                         const struct skl_ddb_entry *old, *new;
5354
5355                         old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
5356                         new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5357
5358                         if (skl_ddb_entry_equal(old, new))
5359                                 continue;
5360
5361                         DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
5362                                       plane->base.base.id, plane->base.name,
5363                                       old->start, old->end, new->start, new->end,
5364                                       skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5365                 }
5366
5367                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5368                         enum plane_id plane_id = plane->id;
5369                         const struct skl_plane_wm *old_wm, *new_wm;
5370
5371                         old_wm = &old_pipe_wm->planes[plane_id];
5372                         new_wm = &new_pipe_wm->planes[plane_id];
5373
5374                         if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
5375                                 continue;
5376
5377                         DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
5378                                       " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
5379                                       plane->base.base.id, plane->base.name,
5380                                       enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
5381                                       enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
5382                                       enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
5383                                       enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
5384                                       enast(old_wm->trans_wm.plane_en),
5385                                       enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
5386                                       enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
5387                                       enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
5388                                       enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5389                                       enast(new_wm->trans_wm.plane_en));
5390
5391                         DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5392                                       " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5393                                       plane->base.base.id, plane->base.name,
5394                                       enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
5395                                       enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
5396                                       enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
5397                                       enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
5398                                       enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
5399                                       enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
5400                                       enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
5401                                       enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
5402                                       enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5403
5404                                       enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
5405                                       enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
5406                                       enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
5407                                       enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
5408                                       enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
5409                                       enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
5410                                       enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
5411                                       enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5412                                       enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5413
5414                         DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5415                                       " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5416                                       plane->base.base.id, plane->base.name,
5417                                       old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
5418                                       old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
5419                                       old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
5420                                       old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
5421                                       old_wm->trans_wm.plane_res_b,
5422                                       new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
5423                                       new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
5424                                       new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
5425                                       new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5426                                       new_wm->trans_wm.plane_res_b);
5427
5428                         DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5429                                       " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5430                                       plane->base.base.id, plane->base.name,
5431                                       old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
5432                                       old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
5433                                       old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
5434                                       old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
5435                                       old_wm->trans_wm.min_ddb_alloc,
5436                                       new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
5437                                       new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
5438                                       new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
5439                                       new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5440                                       new_wm->trans_wm.min_ddb_alloc);
5441                 }
5442         }
5443 }
5444
5445 static int
5446 skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
5447 {
5448         struct drm_device *dev = state->base.dev;
5449         const struct drm_i915_private *dev_priv = to_i915(dev);
5450         struct intel_crtc *crtc;
5451         struct intel_crtc_state *crtc_state;
5452         u32 realloc_pipes = pipes_modified(state);
5453         int ret, i;
5454
5455         /*
5456          * When we distrust bios wm we always need to recompute to set the
5457          * expected DDB allocations for each CRTC.
5458          */
5459         if (dev_priv->wm.distrust_bios_wm)
5460                 (*changed) = true;
5461
5462         /*
5463          * If this transaction isn't actually touching any CRTC's, don't
5464          * bother with watermark calculation.  Note that if we pass this
5465          * test, we're guaranteed to hold at least one CRTC state mutex,
5466          * which means we can safely use values like dev_priv->active_crtcs
5467          * since any racing commits that want to update them would need to
5468          * hold _all_ CRTC state mutexes.
5469          */
5470         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5471                 (*changed) = true;
5472
5473         if (!*changed)
5474                 return 0;
5475
5476         /*
5477          * If this is our first atomic update following hardware readout,
5478          * we can't trust the DDB that the BIOS programmed for us.  Let's
5479          * pretend that all pipes switched active status so that we'll
5480          * ensure a full DDB recompute.
5481          */
5482         if (dev_priv->wm.distrust_bios_wm) {
5483                 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5484                                        state->base.acquire_ctx);
5485                 if (ret)
5486                         return ret;
5487
5488                 state->active_pipe_changes = ~0;
5489
5490                 /*
5491                  * We usually only initialize state->active_crtcs if we
5492                  * we're doing a modeset; make sure this field is always
5493                  * initialized during the sanitization process that happens
5494                  * on the first commit too.
5495                  */
5496                 if (!state->modeset)
5497                         state->active_crtcs = dev_priv->active_crtcs;
5498         }
5499
5500         /*
5501          * If the modeset changes which CRTC's are active, we need to
5502          * recompute the DDB allocation for *all* active pipes, even
5503          * those that weren't otherwise being modified in any way by this
5504          * atomic commit.  Due to the shrinking of the per-pipe allocations
5505          * when new active CRTC's are added, it's possible for a pipe that
5506          * we were already using and aren't changing at all here to suddenly
5507          * become invalid if its DDB needs exceeds its new allocation.
5508          *
5509          * Note that if we wind up doing a full DDB recompute, we can't let
5510          * any other display updates race with this transaction, so we need
5511          * to grab the lock on *all* CRTC's.
5512          */
5513         if (state->active_pipe_changes || state->modeset) {
5514                 realloc_pipes = ~0;
5515                 state->wm_results.dirty_pipes = ~0;
5516         }
5517
5518         /*
5519          * We're not recomputing for the pipes not included in the commit, so
5520          * make sure we start with the current state.
5521          */
5522         for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
5523                 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
5524                 if (IS_ERR(crtc_state))
5525                         return PTR_ERR(crtc_state);
5526         }
5527
5528         return 0;
5529 }
5530
5531 /*
5532  * To make sure the cursor watermark registers are always consistent
5533  * with our computed state the following scenario needs special
5534  * treatment:
5535  *
5536  * 1. enable cursor
5537  * 2. move cursor entirely offscreen
5538  * 3. disable cursor
5539  *
5540  * Step 2. does call .disable_plane() but does not zero the watermarks
5541  * (since we consider an offscreen cursor still active for the purposes
5542  * of watermarks). Step 3. would not normally call .disable_plane()
5543  * because the actual plane visibility isn't changing, and we don't
5544  * deallocate the cursor ddb until the pipe gets disabled. So we must
5545  * force step 3. to call .disable_plane() to update the watermark
5546  * registers properly.
5547  *
5548  * Other planes do not suffer from this issues as their watermarks are
5549  * calculated based on the actual plane visibility. The only time this
5550  * can trigger for the other planes is during the initial readout as the
5551  * default value of the watermarks registers is not zero.
5552  */
5553 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
5554                                       struct intel_crtc *crtc)
5555 {
5556         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5557         const struct intel_crtc_state *old_crtc_state =
5558                 intel_atomic_get_old_crtc_state(state, crtc);
5559         struct intel_crtc_state *new_crtc_state =
5560                 intel_atomic_get_new_crtc_state(state, crtc);
5561         struct intel_plane *plane;
5562
5563         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5564                 struct intel_plane_state *plane_state;
5565                 enum plane_id plane_id = plane->id;
5566
5567                 /*
5568                  * Force a full wm update for every plane on modeset.
5569                  * Required because the reset value of the wm registers
5570                  * is non-zero, whereas we want all disabled planes to
5571                  * have zero watermarks. So if we turn off the relevant
5572                  * power well the hardware state will go out of sync
5573                  * with the software state.
5574                  */
5575                 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
5576                     skl_plane_wm_equals(dev_priv,
5577                                         &old_crtc_state->wm.skl.optimal.planes[plane_id],
5578                                         &new_crtc_state->wm.skl.optimal.planes[plane_id]))
5579                         continue;
5580
5581                 plane_state = intel_atomic_get_plane_state(state, plane);
5582                 if (IS_ERR(plane_state))
5583                         return PTR_ERR(plane_state);
5584
5585                 new_crtc_state->update_planes |= BIT(plane_id);
5586         }
5587
5588         return 0;
5589 }
5590
5591 static int
5592 skl_compute_wm(struct intel_atomic_state *state)
5593 {
5594         struct intel_crtc *crtc;
5595         struct intel_crtc_state *new_crtc_state;
5596         struct intel_crtc_state *old_crtc_state;
5597         struct skl_ddb_values *results = &state->wm_results;
5598         bool changed = false;
5599         int ret, i;
5600
5601         /* Clear all dirty flags */
5602         results->dirty_pipes = 0;
5603
5604         ret = skl_ddb_add_affected_pipes(state, &changed);
5605         if (ret || !changed)
5606                 return ret;
5607
5608         /*
5609          * Calculate WM's for all pipes that are part of this transaction.
5610          * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5611          * weren't otherwise being modified (and set bits in dirty_pipes) if
5612          * pipe allocations had to change.
5613          */
5614         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5615                                             new_crtc_state, i) {
5616                 ret = skl_build_pipe_wm(new_crtc_state);
5617                 if (ret)
5618                         return ret;
5619
5620                 ret = skl_wm_add_affected_planes(state, crtc);
5621                 if (ret)
5622                         return ret;
5623
5624                 if (!skl_pipe_wm_equals(crtc,
5625                                         &old_crtc_state->wm.skl.optimal,
5626                                         &new_crtc_state->wm.skl.optimal))
5627                         results->dirty_pipes |= drm_crtc_mask(&crtc->base);
5628         }
5629
5630         ret = skl_compute_ddb(state);
5631         if (ret)
5632                 return ret;
5633
5634         skl_print_wm_changes(state);
5635
5636         return 0;
5637 }
5638
5639 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5640                                       struct intel_crtc_state *crtc_state)
5641 {
5642         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5643         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5644         struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5645         enum pipe pipe = crtc->pipe;
5646
5647         if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5648                 return;
5649
5650         I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5651 }
5652
5653 static void skl_initial_wm(struct intel_atomic_state *state,
5654                            struct intel_crtc_state *crtc_state)
5655 {
5656         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5657         struct drm_device *dev = intel_crtc->base.dev;
5658         struct drm_i915_private *dev_priv = to_i915(dev);
5659         struct skl_ddb_values *results = &state->wm_results;
5660
5661         if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5662                 return;
5663
5664         mutex_lock(&dev_priv->wm.wm_mutex);
5665
5666         if (crtc_state->base.active_changed)
5667                 skl_atomic_update_crtc_wm(state, crtc_state);
5668
5669         mutex_unlock(&dev_priv->wm.wm_mutex);
5670 }
5671
5672 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5673                                   struct intel_wm_config *config)
5674 {
5675         struct intel_crtc *crtc;
5676
5677         /* Compute the currently _active_ config */
5678         for_each_intel_crtc(&dev_priv->drm, crtc) {
5679                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5680
5681                 if (!wm->pipe_enabled)
5682                         continue;
5683
5684                 config->sprites_enabled |= wm->sprites_enabled;
5685                 config->sprites_scaled |= wm->sprites_scaled;
5686                 config->num_pipes_active++;
5687         }
5688 }
5689
5690 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5691 {
5692         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5693         struct ilk_wm_maximums max;
5694         struct intel_wm_config config = {};
5695         struct ilk_wm_values results = {};
5696         enum intel_ddb_partitioning partitioning;
5697
5698         ilk_compute_wm_config(dev_priv, &config);
5699
5700         ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
5701         ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5702
5703         /* 5/6 split only in single pipe config on IVB+ */
5704         if (INTEL_GEN(dev_priv) >= 7 &&
5705             config.num_pipes_active == 1 && config.sprites_enabled) {
5706                 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
5707                 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5708
5709                 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5710         } else {
5711                 best_lp_wm = &lp_wm_1_2;
5712         }
5713
5714         partitioning = (best_lp_wm == &lp_wm_1_2) ?
5715                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5716
5717         ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5718
5719         ilk_write_wm_values(dev_priv, &results);
5720 }
5721
5722 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5723                                    struct intel_crtc_state *crtc_state)
5724 {
5725         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5726         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5727
5728         mutex_lock(&dev_priv->wm.wm_mutex);
5729         crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5730         ilk_program_watermarks(dev_priv);
5731         mutex_unlock(&dev_priv->wm.wm_mutex);
5732 }
5733
5734 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5735                                     struct intel_crtc_state *crtc_state)
5736 {
5737         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5738         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5739
5740         if (!crtc_state->wm.need_postvbl_update)
5741                 return;
5742
5743         mutex_lock(&dev_priv->wm.wm_mutex);
5744         crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
5745         ilk_program_watermarks(dev_priv);
5746         mutex_unlock(&dev_priv->wm.wm_mutex);
5747 }
5748
5749 static inline void skl_wm_level_from_reg_val(u32 val,
5750                                              struct skl_wm_level *level)
5751 {
5752         level->plane_en = val & PLANE_WM_EN;
5753         level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5754         level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5755         level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5756                 PLANE_WM_LINES_MASK;
5757 }
5758
5759 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5760                               struct skl_pipe_wm *out)
5761 {
5762         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5763         enum pipe pipe = crtc->pipe;
5764         int level, max_level;
5765         enum plane_id plane_id;
5766         u32 val;
5767
5768         max_level = ilk_wm_max_level(dev_priv);
5769
5770         for_each_plane_id_on_crtc(crtc, plane_id) {
5771                 struct skl_plane_wm *wm = &out->planes[plane_id];
5772
5773                 for (level = 0; level <= max_level; level++) {
5774                         if (plane_id != PLANE_CURSOR)
5775                                 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5776                         else
5777                                 val = I915_READ(CUR_WM(pipe, level));
5778
5779                         skl_wm_level_from_reg_val(val, &wm->wm[level]);
5780                 }
5781
5782                 if (plane_id != PLANE_CURSOR)
5783                         val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5784                 else
5785                         val = I915_READ(CUR_WM_TRANS(pipe));
5786
5787                 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5788         }
5789
5790         if (!crtc->active)
5791                 return;
5792
5793         out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5794 }
5795
5796 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5797 {
5798         struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5799         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5800         struct intel_crtc *crtc;
5801         struct intel_crtc_state *crtc_state;
5802
5803         skl_ddb_get_hw_state(dev_priv, ddb);
5804         for_each_intel_crtc(&dev_priv->drm, crtc) {
5805                 crtc_state = to_intel_crtc_state(crtc->base.state);
5806
5807                 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
5808
5809                 if (crtc->active)
5810                         hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
5811         }
5812
5813         if (dev_priv->active_crtcs) {
5814                 /* Fully recompute DDB on first atomic commit */
5815                 dev_priv->wm.distrust_bios_wm = true;
5816         }
5817 }
5818
5819 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5820 {
5821         struct drm_device *dev = crtc->base.dev;
5822         struct drm_i915_private *dev_priv = to_i915(dev);
5823         struct ilk_wm_values *hw = &dev_priv->wm.hw;
5824         struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
5825         struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
5826         enum pipe pipe = crtc->pipe;
5827         static const i915_reg_t wm0_pipe_reg[] = {
5828                 [PIPE_A] = WM0_PIPEA_ILK,
5829                 [PIPE_B] = WM0_PIPEB_ILK,
5830                 [PIPE_C] = WM0_PIPEC_IVB,
5831         };
5832
5833         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5834         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5835                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5836
5837         memset(active, 0, sizeof(*active));
5838
5839         active->pipe_enabled = crtc->active;
5840
5841         if (active->pipe_enabled) {
5842                 u32 tmp = hw->wm_pipe[pipe];
5843
5844                 /*
5845                  * For active pipes LP0 watermark is marked as
5846                  * enabled, and LP1+ watermaks as disabled since
5847                  * we can't really reverse compute them in case
5848                  * multiple pipes are active.
5849                  */
5850                 active->wm[0].enable = true;
5851                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5852                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5853                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5854                 active->linetime = hw->wm_linetime[pipe];
5855         } else {
5856                 int level, max_level = ilk_wm_max_level(dev_priv);
5857
5858                 /*
5859                  * For inactive pipes, all watermark levels
5860                  * should be marked as enabled but zeroed,
5861                  * which is what we'd compute them to.
5862                  */
5863                 for (level = 0; level <= max_level; level++)
5864                         active->wm[level].enable = true;
5865         }
5866
5867         crtc->wm.active.ilk = *active;
5868 }
5869
5870 #define _FW_WM(value, plane) \
5871         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5872 #define _FW_WM_VLV(value, plane) \
5873         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5874
5875 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5876                                struct g4x_wm_values *wm)
5877 {
5878         u32 tmp;
5879
5880         tmp = I915_READ(DSPFW1);
5881         wm->sr.plane = _FW_WM(tmp, SR);
5882         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5883         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5884         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5885
5886         tmp = I915_READ(DSPFW2);
5887         wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5888         wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5889         wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5890         wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5891         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5892         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5893
5894         tmp = I915_READ(DSPFW3);
5895         wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5896         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5897         wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5898         wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5899 }
5900
5901 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5902                                struct vlv_wm_values *wm)
5903 {
5904         enum pipe pipe;
5905         u32 tmp;
5906
5907         for_each_pipe(dev_priv, pipe) {
5908                 tmp = I915_READ(VLV_DDL(pipe));
5909
5910                 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5911                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5912                 wm->ddl[pipe].plane[PLANE_CURSOR] =
5913                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5914                 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5915                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5916                 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5917                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5918         }
5919
5920         tmp = I915_READ(DSPFW1);
5921         wm->sr.plane = _FW_WM(tmp, SR);
5922         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5923         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5924         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5925
5926         tmp = I915_READ(DSPFW2);
5927         wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5928         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5929         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5930
5931         tmp = I915_READ(DSPFW3);
5932         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5933
5934         if (IS_CHERRYVIEW(dev_priv)) {
5935                 tmp = I915_READ(DSPFW7_CHV);
5936                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5937                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5938
5939                 tmp = I915_READ(DSPFW8_CHV);
5940                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5941                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5942
5943                 tmp = I915_READ(DSPFW9_CHV);
5944                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5945                 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5946
5947                 tmp = I915_READ(DSPHOWM);
5948                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5949                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5950                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5951                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5952                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5953                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5954                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5955                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5956                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5957                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5958         } else {
5959                 tmp = I915_READ(DSPFW7);
5960                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5961                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5962
5963                 tmp = I915_READ(DSPHOWM);
5964                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5965                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5966                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5967                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5968                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5969                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5970                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5971         }
5972 }
5973
5974 #undef _FW_WM
5975 #undef _FW_WM_VLV
5976
5977 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5978 {
5979         struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5980         struct intel_crtc *crtc;
5981
5982         g4x_read_wm_values(dev_priv, wm);
5983
5984         wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5985
5986         for_each_intel_crtc(&dev_priv->drm, crtc) {
5987                 struct intel_crtc_state *crtc_state =
5988                         to_intel_crtc_state(crtc->base.state);
5989                 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5990                 struct g4x_pipe_wm *raw;
5991                 enum pipe pipe = crtc->pipe;
5992                 enum plane_id plane_id;
5993                 int level, max_level;
5994
5995                 active->cxsr = wm->cxsr;
5996                 active->hpll_en = wm->hpll_en;
5997                 active->fbc_en = wm->fbc_en;
5998
5999                 active->sr = wm->sr;
6000                 active->hpll = wm->hpll;
6001
6002                 for_each_plane_id_on_crtc(crtc, plane_id) {
6003                         active->wm.plane[plane_id] =
6004                                 wm->pipe[pipe].plane[plane_id];
6005                 }
6006
6007                 if (wm->cxsr && wm->hpll_en)
6008                         max_level = G4X_WM_LEVEL_HPLL;
6009                 else if (wm->cxsr)
6010                         max_level = G4X_WM_LEVEL_SR;
6011                 else
6012                         max_level = G4X_WM_LEVEL_NORMAL;
6013
6014                 level = G4X_WM_LEVEL_NORMAL;
6015                 raw = &crtc_state->wm.g4x.raw[level];
6016                 for_each_plane_id_on_crtc(crtc, plane_id)
6017                         raw->plane[plane_id] = active->wm.plane[plane_id];
6018
6019                 if (++level > max_level)
6020                         goto out;
6021
6022                 raw = &crtc_state->wm.g4x.raw[level];
6023                 raw->plane[PLANE_PRIMARY] = active->sr.plane;
6024                 raw->plane[PLANE_CURSOR] = active->sr.cursor;
6025                 raw->plane[PLANE_SPRITE0] = 0;
6026                 raw->fbc = active->sr.fbc;
6027
6028                 if (++level > max_level)
6029                         goto out;
6030
6031                 raw = &crtc_state->wm.g4x.raw[level];
6032                 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6033                 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6034                 raw->plane[PLANE_SPRITE0] = 0;
6035                 raw->fbc = active->hpll.fbc;
6036
6037         out:
6038                 for_each_plane_id_on_crtc(crtc, plane_id)
6039                         g4x_raw_plane_wm_set(crtc_state, level,
6040                                              plane_id, USHRT_MAX);
6041                 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6042
6043                 crtc_state->wm.g4x.optimal = *active;
6044                 crtc_state->wm.g4x.intermediate = *active;
6045
6046                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6047                               pipe_name(pipe),
6048                               wm->pipe[pipe].plane[PLANE_PRIMARY],
6049                               wm->pipe[pipe].plane[PLANE_CURSOR],
6050                               wm->pipe[pipe].plane[PLANE_SPRITE0]);
6051         }
6052
6053         DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6054                       wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6055         DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6056                       wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6057         DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
6058                       yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6059 }
6060
6061 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6062 {
6063         struct intel_plane *plane;
6064         struct intel_crtc *crtc;
6065
6066         mutex_lock(&dev_priv->wm.wm_mutex);
6067
6068         for_each_intel_plane(&dev_priv->drm, plane) {
6069                 struct intel_crtc *crtc =
6070                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6071                 struct intel_crtc_state *crtc_state =
6072                         to_intel_crtc_state(crtc->base.state);
6073                 struct intel_plane_state *plane_state =
6074                         to_intel_plane_state(plane->base.state);
6075                 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6076                 enum plane_id plane_id = plane->id;
6077                 int level;
6078
6079                 if (plane_state->base.visible)
6080                         continue;
6081
6082                 for (level = 0; level < 3; level++) {
6083                         struct g4x_pipe_wm *raw =
6084                                 &crtc_state->wm.g4x.raw[level];
6085
6086                         raw->plane[plane_id] = 0;
6087                         wm_state->wm.plane[plane_id] = 0;
6088                 }
6089
6090                 if (plane_id == PLANE_PRIMARY) {
6091                         for (level = 0; level < 3; level++) {
6092                                 struct g4x_pipe_wm *raw =
6093                                         &crtc_state->wm.g4x.raw[level];
6094                                 raw->fbc = 0;
6095                         }
6096
6097                         wm_state->sr.fbc = 0;
6098                         wm_state->hpll.fbc = 0;
6099                         wm_state->fbc_en = false;
6100                 }
6101         }
6102
6103         for_each_intel_crtc(&dev_priv->drm, crtc) {
6104                 struct intel_crtc_state *crtc_state =
6105                         to_intel_crtc_state(crtc->base.state);
6106
6107                 crtc_state->wm.g4x.intermediate =
6108                         crtc_state->wm.g4x.optimal;
6109                 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6110         }
6111
6112         g4x_program_watermarks(dev_priv);
6113
6114         mutex_unlock(&dev_priv->wm.wm_mutex);
6115 }
6116
6117 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6118 {
6119         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6120         struct intel_crtc *crtc;
6121         u32 val;
6122
6123         vlv_read_wm_values(dev_priv, wm);
6124
6125         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6126         wm->level = VLV_WM_LEVEL_PM2;
6127
6128         if (IS_CHERRYVIEW(dev_priv)) {
6129                 vlv_punit_get(dev_priv);
6130
6131                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6132                 if (val & DSP_MAXFIFO_PM5_ENABLE)
6133                         wm->level = VLV_WM_LEVEL_PM5;
6134
6135                 /*
6136                  * If DDR DVFS is disabled in the BIOS, Punit
6137                  * will never ack the request. So if that happens
6138                  * assume we don't have to enable/disable DDR DVFS
6139                  * dynamically. To test that just set the REQ_ACK
6140                  * bit to poke the Punit, but don't change the
6141                  * HIGH/LOW bits so that we don't actually change
6142                  * the current state.
6143                  */
6144                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6145                 val |= FORCE_DDR_FREQ_REQ_ACK;
6146                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6147
6148                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6149                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6150                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
6151                                       "assuming DDR DVFS is disabled\n");
6152                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6153                 } else {
6154                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6155                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6156                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
6157                 }
6158
6159                 vlv_punit_put(dev_priv);
6160         }
6161
6162         for_each_intel_crtc(&dev_priv->drm, crtc) {
6163                 struct intel_crtc_state *crtc_state =
6164                         to_intel_crtc_state(crtc->base.state);
6165                 struct vlv_wm_state *active = &crtc->wm.active.vlv;
6166                 const struct vlv_fifo_state *fifo_state =
6167                         &crtc_state->wm.vlv.fifo_state;
6168                 enum pipe pipe = crtc->pipe;
6169                 enum plane_id plane_id;
6170                 int level;
6171
6172                 vlv_get_fifo_size(crtc_state);
6173
6174                 active->num_levels = wm->level + 1;
6175                 active->cxsr = wm->cxsr;
6176
6177                 for (level = 0; level < active->num_levels; level++) {
6178                         struct g4x_pipe_wm *raw =
6179                                 &crtc_state->wm.vlv.raw[level];
6180
6181                         active->sr[level].plane = wm->sr.plane;
6182                         active->sr[level].cursor = wm->sr.cursor;
6183
6184                         for_each_plane_id_on_crtc(crtc, plane_id) {
6185                                 active->wm[level].plane[plane_id] =
6186                                         wm->pipe[pipe].plane[plane_id];
6187
6188                                 raw->plane[plane_id] =
6189                                         vlv_invert_wm_value(active->wm[level].plane[plane_id],
6190                                                             fifo_state->plane[plane_id]);
6191                         }
6192                 }
6193
6194                 for_each_plane_id_on_crtc(crtc, plane_id)
6195                         vlv_raw_plane_wm_set(crtc_state, level,
6196                                              plane_id, USHRT_MAX);
6197                 vlv_invalidate_wms(crtc, active, level);
6198
6199                 crtc_state->wm.vlv.optimal = *active;
6200                 crtc_state->wm.vlv.intermediate = *active;
6201
6202                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6203                               pipe_name(pipe),
6204                               wm->pipe[pipe].plane[PLANE_PRIMARY],
6205                               wm->pipe[pipe].plane[PLANE_CURSOR],
6206                               wm->pipe[pipe].plane[PLANE_SPRITE0],
6207                               wm->pipe[pipe].plane[PLANE_SPRITE1]);
6208         }
6209
6210         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6211                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6212 }
6213
6214 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
6215 {
6216         struct intel_plane *plane;
6217         struct intel_crtc *crtc;
6218
6219         mutex_lock(&dev_priv->wm.wm_mutex);
6220
6221         for_each_intel_plane(&dev_priv->drm, plane) {
6222                 struct intel_crtc *crtc =
6223                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6224                 struct intel_crtc_state *crtc_state =
6225                         to_intel_crtc_state(crtc->base.state);
6226                 struct intel_plane_state *plane_state =
6227                         to_intel_plane_state(plane->base.state);
6228                 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6229                 const struct vlv_fifo_state *fifo_state =
6230                         &crtc_state->wm.vlv.fifo_state;
6231                 enum plane_id plane_id = plane->id;
6232                 int level;
6233
6234                 if (plane_state->base.visible)
6235                         continue;
6236
6237                 for (level = 0; level < wm_state->num_levels; level++) {
6238                         struct g4x_pipe_wm *raw =
6239                                 &crtc_state->wm.vlv.raw[level];
6240
6241                         raw->plane[plane_id] = 0;
6242
6243                         wm_state->wm[level].plane[plane_id] =
6244                                 vlv_invert_wm_value(raw->plane[plane_id],
6245                                                     fifo_state->plane[plane_id]);
6246                 }
6247         }
6248
6249         for_each_intel_crtc(&dev_priv->drm, crtc) {
6250                 struct intel_crtc_state *crtc_state =
6251                         to_intel_crtc_state(crtc->base.state);
6252
6253                 crtc_state->wm.vlv.intermediate =
6254                         crtc_state->wm.vlv.optimal;
6255                 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6256         }
6257
6258         vlv_program_watermarks(dev_priv);
6259
6260         mutex_unlock(&dev_priv->wm.wm_mutex);
6261 }
6262
6263 /*
6264  * FIXME should probably kill this and improve
6265  * the real watermark readout/sanitation instead
6266  */
6267 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6268 {
6269         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6270         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6271         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6272
6273         /*
6274          * Don't touch WM1S_LP_EN here.
6275          * Doing so could cause underruns.
6276          */
6277 }
6278
6279 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6280 {
6281         struct ilk_wm_values *hw = &dev_priv->wm.hw;
6282         struct intel_crtc *crtc;
6283
6284         ilk_init_lp_watermarks(dev_priv);
6285
6286         for_each_intel_crtc(&dev_priv->drm, crtc)
6287                 ilk_pipe_wm_get_hw_state(crtc);
6288
6289         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6290         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6291         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6292
6293         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6294         if (INTEL_GEN(dev_priv) >= 7) {
6295                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6296                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6297         }
6298
6299         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6300                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6301                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6302         else if (IS_IVYBRIDGE(dev_priv))
6303                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6304                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6305
6306         hw->enable_fbc_wm =
6307                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6308 }
6309
6310 /**
6311  * intel_update_watermarks - update FIFO watermark values based on current modes
6312  * @crtc: the #intel_crtc on which to compute the WM
6313  *
6314  * Calculate watermark values for the various WM regs based on current mode
6315  * and plane configuration.
6316  *
6317  * There are several cases to deal with here:
6318  *   - normal (i.e. non-self-refresh)
6319  *   - self-refresh (SR) mode
6320  *   - lines are large relative to FIFO size (buffer can hold up to 2)
6321  *   - lines are small relative to FIFO size (buffer can hold more than 2
6322  *     lines), so need to account for TLB latency
6323  *
6324  *   The normal calculation is:
6325  *     watermark = dotclock * bytes per pixel * latency
6326  *   where latency is platform & configuration dependent (we assume pessimal
6327  *   values here).
6328  *
6329  *   The SR calculation is:
6330  *     watermark = (trunc(latency/line time)+1) * surface width *
6331  *       bytes per pixel
6332  *   where
6333  *     line time = htotal / dotclock
6334  *     surface width = hdisplay for normal plane and 64 for cursor
6335  *   and latency is assumed to be high, as above.
6336  *
6337  * The final value programmed to the register should always be rounded up,
6338  * and include an extra 2 entries to account for clock crossings.
6339  *
6340  * We don't use the sprite, so we can ignore that.  And on Crestline we have
6341  * to set the non-SR watermarks to 8.
6342  */
6343 void intel_update_watermarks(struct intel_crtc *crtc)
6344 {
6345         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6346
6347         if (dev_priv->display.update_wm)
6348                 dev_priv->display.update_wm(crtc);
6349 }
6350
6351 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6352 {
6353         u32 val;
6354
6355         if (!HAS_IPC(dev_priv))
6356                 return;
6357
6358         val = I915_READ(DISP_ARB_CTL2);
6359
6360         if (dev_priv->ipc_enabled)
6361                 val |= DISP_IPC_ENABLE;
6362         else
6363                 val &= ~DISP_IPC_ENABLE;
6364
6365         I915_WRITE(DISP_ARB_CTL2, val);
6366 }
6367
6368 static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
6369 {
6370         /* Display WA #0477 WaDisableIPC: skl */
6371         if (IS_SKYLAKE(dev_priv))
6372                 return false;
6373
6374         /* Display WA #1141: SKL:all KBL:all CFL */
6375         if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
6376                 return dev_priv->dram_info.symmetric_memory;
6377
6378         return true;
6379 }
6380
6381 void intel_init_ipc(struct drm_i915_private *dev_priv)
6382 {
6383         if (!HAS_IPC(dev_priv))
6384                 return;
6385
6386         dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6387
6388         intel_enable_ipc(dev_priv);
6389 }
6390
6391 /*
6392  * Lock protecting IPS related data structures
6393  */
6394 DEFINE_SPINLOCK(mchdev_lock);
6395
6396 bool ironlake_set_drps(struct drm_i915_private *i915, u8 val)
6397 {
6398         struct intel_uncore *uncore = &i915->uncore;
6399         u16 rgvswctl;
6400
6401         lockdep_assert_held(&mchdev_lock);
6402
6403         rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
6404         if (rgvswctl & MEMCTL_CMD_STS) {
6405                 DRM_DEBUG("gpu busy, RCS change rejected\n");
6406                 return false; /* still busy with another command */
6407         }
6408
6409         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6410                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6411         intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
6412         intel_uncore_posting_read16(uncore, MEMSWCTL);
6413
6414         rgvswctl |= MEMCTL_CMD_STS;
6415         intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
6416
6417         return true;
6418 }
6419
6420 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6421 {
6422         struct intel_uncore *uncore = &dev_priv->uncore;
6423         u32 rgvmodectl;
6424         u8 fmax, fmin, fstart, vstart;
6425
6426         spin_lock_irq(&mchdev_lock);
6427
6428         rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
6429
6430         /* Enable temp reporting */
6431         intel_uncore_write16(uncore, PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6432         intel_uncore_write16(uncore, TSC1, I915_READ(TSC1) | TSE);
6433
6434         /* 100ms RC evaluation intervals */
6435         intel_uncore_write(uncore, RCUPEI, 100000);
6436         intel_uncore_write(uncore, RCDNEI, 100000);
6437
6438         /* Set max/min thresholds to 90ms and 80ms respectively */
6439         intel_uncore_write(uncore, RCBMAXAVG, 90000);
6440         intel_uncore_write(uncore, RCBMINAVG, 80000);
6441
6442         intel_uncore_write(uncore, MEMIHYST, 1);
6443
6444         /* Set up min, max, and cur for interrupt handling */
6445         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6446         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6447         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6448                 MEMMODE_FSTART_SHIFT;
6449
6450         vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
6451                   PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
6452
6453         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
6454         dev_priv->ips.fstart = fstart;
6455
6456         dev_priv->ips.max_delay = fstart;
6457         dev_priv->ips.min_delay = fmin;
6458         dev_priv->ips.cur_delay = fstart;
6459
6460         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6461                          fmax, fmin, fstart);
6462
6463         intel_uncore_write(uncore,
6464                            MEMINTREN,
6465                            MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6466
6467         /*
6468          * Interrupts will be enabled in ironlake_irq_postinstall
6469          */
6470
6471         intel_uncore_write(uncore, VIDSTART, vstart);
6472         intel_uncore_posting_read(uncore, VIDSTART);
6473
6474         rgvmodectl |= MEMMODE_SWMODE_EN;
6475         intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
6476
6477         if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
6478                              MEMCTL_CMD_STS) == 0, 10))
6479                 DRM_ERROR("stuck trying to change perf mode\n");
6480         mdelay(1);
6481
6482         ironlake_set_drps(dev_priv, fstart);
6483
6484         dev_priv->ips.last_count1 =
6485                 intel_uncore_read(uncore, DMIEC) +
6486                 intel_uncore_read(uncore, DDREC) +
6487                 intel_uncore_read(uncore, CSIEC);
6488         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6489         dev_priv->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
6490         dev_priv->ips.last_time2 = ktime_get_raw_ns();
6491
6492         spin_unlock_irq(&mchdev_lock);
6493 }
6494
6495 static void ironlake_disable_drps(struct drm_i915_private *i915)
6496 {
6497         struct intel_uncore *uncore = &i915->uncore;
6498         u16 rgvswctl;
6499
6500         spin_lock_irq(&mchdev_lock);
6501
6502         rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
6503
6504         /* Ack interrupts, disable EFC interrupt */
6505         intel_uncore_write(uncore,
6506                            MEMINTREN,
6507                            intel_uncore_read(uncore, MEMINTREN) &
6508                            ~MEMINT_EVAL_CHG_EN);
6509         intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
6510         intel_uncore_write(uncore,
6511                            DEIER,
6512                            intel_uncore_read(uncore, DEIER) & ~DE_PCU_EVENT);
6513         intel_uncore_write(uncore, DEIIR, DE_PCU_EVENT);
6514         intel_uncore_write(uncore,
6515                            DEIMR,
6516                            intel_uncore_read(uncore, DEIMR) | DE_PCU_EVENT);
6517
6518         /* Go back to the starting frequency */
6519         ironlake_set_drps(i915, i915->ips.fstart);
6520         mdelay(1);
6521         rgvswctl |= MEMCTL_CMD_STS;
6522         intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
6523         mdelay(1);
6524
6525         spin_unlock_irq(&mchdev_lock);
6526 }
6527
6528 /* There's a funny hw issue where the hw returns all 0 when reading from
6529  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6530  * ourselves, instead of doing a rmw cycle (which might result in us clearing
6531  * all limits and the gpu stuck at whatever frequency it is at atm).
6532  */
6533 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6534 {
6535         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6536         u32 limits;
6537
6538         /* Only set the down limit when we've reached the lowest level to avoid
6539          * getting more interrupts, otherwise leave this clear. This prevents a
6540          * race in the hw when coming out of rc6: There's a tiny window where
6541          * the hw runs at the minimal clock before selecting the desired
6542          * frequency, if the down threshold expires in that window we will not
6543          * receive a down interrupt. */
6544         if (INTEL_GEN(dev_priv) >= 9) {
6545                 limits = (rps->max_freq_softlimit) << 23;
6546                 if (val <= rps->min_freq_softlimit)
6547                         limits |= (rps->min_freq_softlimit) << 14;
6548         } else {
6549                 limits = rps->max_freq_softlimit << 24;
6550                 if (val <= rps->min_freq_softlimit)
6551                         limits |= rps->min_freq_softlimit << 16;
6552         }
6553
6554         return limits;
6555 }
6556
6557 static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6558 {
6559         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6560         u32 threshold_up = 0, threshold_down = 0; /* in % */
6561         u32 ei_up = 0, ei_down = 0;
6562
6563         lockdep_assert_held(&rps->power.mutex);
6564
6565         if (new_power == rps->power.mode)
6566                 return;
6567
6568         /* Note the units here are not exactly 1us, but 1280ns. */
6569         switch (new_power) {
6570         case LOW_POWER:
6571                 /* Upclock if more than 95% busy over 16ms */
6572                 ei_up = 16000;
6573                 threshold_up = 95;
6574
6575                 /* Downclock if less than 85% busy over 32ms */
6576                 ei_down = 32000;
6577                 threshold_down = 85;
6578                 break;
6579
6580         case BETWEEN:
6581                 /* Upclock if more than 90% busy over 13ms */
6582                 ei_up = 13000;
6583                 threshold_up = 90;
6584
6585                 /* Downclock if less than 75% busy over 32ms */
6586                 ei_down = 32000;
6587                 threshold_down = 75;
6588                 break;
6589
6590         case HIGH_POWER:
6591                 /* Upclock if more than 85% busy over 10ms */
6592                 ei_up = 10000;
6593                 threshold_up = 85;
6594
6595                 /* Downclock if less than 60% busy over 32ms */
6596                 ei_down = 32000;
6597                 threshold_down = 60;
6598                 break;
6599         }
6600
6601         /* When byt can survive without system hang with dynamic
6602          * sw freq adjustments, this restriction can be lifted.
6603          */
6604         if (IS_VALLEYVIEW(dev_priv))
6605                 goto skip_hw_write;
6606
6607         I915_WRITE(GEN6_RP_UP_EI,
6608                    GT_INTERVAL_FROM_US(dev_priv, ei_up));
6609         I915_WRITE(GEN6_RP_UP_THRESHOLD,
6610                    GT_INTERVAL_FROM_US(dev_priv,
6611                                        ei_up * threshold_up / 100));
6612
6613         I915_WRITE(GEN6_RP_DOWN_EI,
6614                    GT_INTERVAL_FROM_US(dev_priv, ei_down));
6615         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6616                    GT_INTERVAL_FROM_US(dev_priv,
6617                                        ei_down * threshold_down / 100));
6618
6619         I915_WRITE(GEN6_RP_CONTROL,
6620                    (INTEL_GEN(dev_priv) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
6621                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6622                    GEN6_RP_MEDIA_IS_GFX |
6623                    GEN6_RP_ENABLE |
6624                    GEN6_RP_UP_BUSY_AVG |
6625                    GEN6_RP_DOWN_IDLE_AVG);
6626
6627 skip_hw_write:
6628         rps->power.mode = new_power;
6629         rps->power.up_threshold = threshold_up;
6630         rps->power.down_threshold = threshold_down;
6631 }
6632
6633 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6634 {
6635         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6636         int new_power;
6637
6638         new_power = rps->power.mode;
6639         switch (rps->power.mode) {
6640         case LOW_POWER:
6641                 if (val > rps->efficient_freq + 1 &&
6642                     val > rps->cur_freq)
6643                         new_power = BETWEEN;
6644                 break;
6645
6646         case BETWEEN:
6647                 if (val <= rps->efficient_freq &&
6648                     val < rps->cur_freq)
6649                         new_power = LOW_POWER;
6650                 else if (val >= rps->rp0_freq &&
6651                          val > rps->cur_freq)
6652                         new_power = HIGH_POWER;
6653                 break;
6654
6655         case HIGH_POWER:
6656                 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6657                     val < rps->cur_freq)
6658                         new_power = BETWEEN;
6659                 break;
6660         }
6661         /* Max/min bins are special */
6662         if (val <= rps->min_freq_softlimit)
6663                 new_power = LOW_POWER;
6664         if (val >= rps->max_freq_softlimit)
6665                 new_power = HIGH_POWER;
6666
6667         mutex_lock(&rps->power.mutex);
6668         if (rps->power.interactive)
6669                 new_power = HIGH_POWER;
6670         rps_set_power(dev_priv, new_power);
6671         mutex_unlock(&rps->power.mutex);
6672 }
6673
6674 void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
6675 {
6676         struct intel_rps *rps = &i915->gt_pm.rps;
6677
6678         if (INTEL_GEN(i915) < 6)
6679                 return;
6680
6681         mutex_lock(&rps->power.mutex);
6682         if (interactive) {
6683                 if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
6684                         rps_set_power(i915, HIGH_POWER);
6685         } else {
6686                 GEM_BUG_ON(!rps->power.interactive);
6687                 rps->power.interactive--;
6688         }
6689         mutex_unlock(&rps->power.mutex);
6690 }
6691
6692 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6693 {
6694         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6695         u32 mask = 0;
6696
6697         /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6698         if (val > rps->min_freq_softlimit)
6699                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6700         if (val < rps->max_freq_softlimit)
6701                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6702
6703         mask &= dev_priv->pm_rps_events;
6704
6705         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6706 }
6707
6708 /* gen6_set_rps is called to update the frequency request, but should also be
6709  * called when the range (min_delay and max_delay) is modified so that we can
6710  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6711 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6712 {
6713         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6714
6715         /* min/max delay may still have been modified so be sure to
6716          * write the limits value.
6717          */
6718         if (val != rps->cur_freq) {
6719                 gen6_set_rps_thresholds(dev_priv, val);
6720
6721                 if (INTEL_GEN(dev_priv) >= 9)
6722                         I915_WRITE(GEN6_RPNSWREQ,
6723                                    GEN9_FREQUENCY(val));
6724                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6725                         I915_WRITE(GEN6_RPNSWREQ,
6726                                    HSW_FREQUENCY(val));
6727                 else
6728                         I915_WRITE(GEN6_RPNSWREQ,
6729                                    GEN6_FREQUENCY(val) |
6730                                    GEN6_OFFSET(0) |
6731                                    GEN6_AGGRESSIVE_TURBO);
6732         }
6733
6734         /* Make sure we continue to get interrupts
6735          * until we hit the minimum or maximum frequencies.
6736          */
6737         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6738         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6739
6740         rps->cur_freq = val;
6741         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6742
6743         return 0;
6744 }
6745
6746 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6747 {
6748         int err;
6749
6750         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6751                       "Odd GPU freq value\n"))
6752                 val &= ~1;
6753
6754         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6755
6756         if (val != dev_priv->gt_pm.rps.cur_freq) {
6757                 vlv_punit_get(dev_priv);
6758                 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6759                 vlv_punit_put(dev_priv);
6760                 if (err)
6761                         return err;
6762
6763                 gen6_set_rps_thresholds(dev_priv, val);
6764         }
6765
6766         dev_priv->gt_pm.rps.cur_freq = val;
6767         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6768
6769         return 0;
6770 }
6771
6772 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6773  *
6774  * * If Gfx is Idle, then
6775  * 1. Forcewake Media well.
6776  * 2. Request idle freq.
6777  * 3. Release Forcewake of Media well.
6778 */
6779 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6780 {
6781         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6782         u32 val = rps->idle_freq;
6783         int err;
6784
6785         if (rps->cur_freq <= val)
6786                 return;
6787
6788         /* The punit delays the write of the frequency and voltage until it
6789          * determines the GPU is awake. During normal usage we don't want to
6790          * waste power changing the frequency if the GPU is sleeping (rc6).
6791          * However, the GPU and driver is now idle and we do not want to delay
6792          * switching to minimum voltage (reducing power whilst idle) as we do
6793          * not expect to be woken in the near future and so must flush the
6794          * change by waking the device.
6795          *
6796          * We choose to take the media powerwell (either would do to trick the
6797          * punit into committing the voltage change) as that takes a lot less
6798          * power than the render powerwell.
6799          */
6800         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_MEDIA);
6801         err = valleyview_set_rps(dev_priv, val);
6802         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_MEDIA);
6803
6804         if (err)
6805                 DRM_ERROR("Failed to set RPS for idle\n");
6806 }
6807
6808 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6809 {
6810         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6811
6812         mutex_lock(&rps->lock);
6813         if (rps->enabled) {
6814                 u8 freq;
6815
6816                 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6817                         gen6_rps_reset_ei(dev_priv);
6818                 I915_WRITE(GEN6_PMINTRMSK,
6819                            gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6820
6821                 gen6_enable_rps_interrupts(dev_priv);
6822
6823                 /* Use the user's desired frequency as a guide, but for better
6824                  * performance, jump directly to RPe as our starting frequency.
6825                  */
6826                 freq = max(rps->cur_freq,
6827                            rps->efficient_freq);
6828
6829                 if (intel_set_rps(dev_priv,
6830                                   clamp(freq,
6831                                         rps->min_freq_softlimit,
6832                                         rps->max_freq_softlimit)))
6833                         DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6834         }
6835         mutex_unlock(&rps->lock);
6836 }
6837
6838 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6839 {
6840         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6841
6842         /* Flush our bottom-half so that it does not race with us
6843          * setting the idle frequency and so that it is bounded by
6844          * our rpm wakeref. And then disable the interrupts to stop any
6845          * futher RPS reclocking whilst we are asleep.
6846          */
6847         gen6_disable_rps_interrupts(dev_priv);
6848
6849         mutex_lock(&rps->lock);
6850         if (rps->enabled) {
6851                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6852                         vlv_set_rps_idle(dev_priv);
6853                 else
6854                         gen6_set_rps(dev_priv, rps->idle_freq);
6855                 rps->last_adj = 0;
6856                 I915_WRITE(GEN6_PMINTRMSK,
6857                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6858         }
6859         mutex_unlock(&rps->lock);
6860 }
6861
6862 void gen6_rps_boost(struct i915_request *rq)
6863 {
6864         struct intel_rps *rps = &rq->i915->gt_pm.rps;
6865         unsigned long flags;
6866         bool boost;
6867
6868         /* This is intentionally racy! We peek at the state here, then
6869          * validate inside the RPS worker.
6870          */
6871         if (!rps->enabled)
6872                 return;
6873
6874         if (i915_request_signaled(rq))
6875                 return;
6876
6877         /* Serializes with i915_request_retire() */
6878         boost = false;
6879         spin_lock_irqsave(&rq->lock, flags);
6880         if (!i915_request_has_waitboost(rq) &&
6881             !dma_fence_is_signaled_locked(&rq->fence)) {
6882                 boost = !atomic_fetch_inc(&rps->num_waiters);
6883                 rq->flags |= I915_REQUEST_WAITBOOST;
6884         }
6885         spin_unlock_irqrestore(&rq->lock, flags);
6886         if (!boost)
6887                 return;
6888
6889         if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6890                 schedule_work(&rps->work);
6891
6892         atomic_inc(&rps->boosts);
6893 }
6894
6895 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6896 {
6897         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6898         int err;
6899
6900         lockdep_assert_held(&rps->lock);
6901         GEM_BUG_ON(val > rps->max_freq);
6902         GEM_BUG_ON(val < rps->min_freq);
6903
6904         if (!rps->enabled) {
6905                 rps->cur_freq = val;
6906                 return 0;
6907         }
6908
6909         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6910                 err = valleyview_set_rps(dev_priv, val);
6911         else
6912                 err = gen6_set_rps(dev_priv, val);
6913
6914         return err;
6915 }
6916
6917 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6918 {
6919         I915_WRITE(GEN6_RC_CONTROL, 0);
6920         I915_WRITE(GEN9_PG_ENABLE, 0);
6921 }
6922
6923 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6924 {
6925         I915_WRITE(GEN6_RP_CONTROL, 0);
6926 }
6927
6928 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6929 {
6930         I915_WRITE(GEN6_RC_CONTROL, 0);
6931 }
6932
6933 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6934 {
6935         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6936         I915_WRITE(GEN6_RP_CONTROL, 0);
6937 }
6938
6939 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6940 {
6941         I915_WRITE(GEN6_RC_CONTROL, 0);
6942 }
6943
6944 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6945 {
6946         I915_WRITE(GEN6_RP_CONTROL, 0);
6947 }
6948
6949 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6950 {
6951         /* We're doing forcewake before Disabling RC6,
6952          * This what the BIOS expects when going into suspend */
6953         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
6954
6955         I915_WRITE(GEN6_RC_CONTROL, 0);
6956
6957         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
6958 }
6959
6960 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6961 {
6962         I915_WRITE(GEN6_RP_CONTROL, 0);
6963 }
6964
6965 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6966 {
6967         bool enable_rc6 = true;
6968         unsigned long rc6_ctx_base;
6969         u32 rc_ctl;
6970         int rc_sw_target;
6971
6972         rc_ctl = I915_READ(GEN6_RC_CONTROL);
6973         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6974                        RC_SW_TARGET_STATE_SHIFT;
6975         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6976                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6977                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6978                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6979                          rc_sw_target);
6980
6981         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6982                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6983                 enable_rc6 = false;
6984         }
6985
6986         /*
6987          * The exact context size is not known for BXT, so assume a page size
6988          * for this check.
6989          */
6990         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6991         if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
6992               (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6993                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6994                 enable_rc6 = false;
6995         }
6996
6997         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6998               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6999               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
7000               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
7001                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
7002                 enable_rc6 = false;
7003         }
7004
7005         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
7006             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
7007             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
7008                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
7009                 enable_rc6 = false;
7010         }
7011
7012         if (!I915_READ(GEN6_GFXPAUSE)) {
7013                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
7014                 enable_rc6 = false;
7015         }
7016
7017         if (!I915_READ(GEN8_MISC_CTRL0)) {
7018                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
7019                 enable_rc6 = false;
7020         }
7021
7022         return enable_rc6;
7023 }
7024
7025 static bool sanitize_rc6(struct drm_i915_private *i915)
7026 {
7027         struct intel_device_info *info = mkwrite_device_info(i915);
7028
7029         /* Powersaving is controlled by the host when inside a VM */
7030         if (intel_vgpu_active(i915)) {
7031                 info->has_rc6 = 0;
7032                 info->has_rps = false;
7033         }
7034
7035         if (info->has_rc6 &&
7036             IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
7037                 DRM_INFO("RC6 disabled by BIOS\n");
7038                 info->has_rc6 = 0;
7039         }
7040
7041         /*
7042          * We assume that we do not have any deep rc6 levels if we don't have
7043          * have the previous rc6 level supported, i.e. we use HAS_RC6()
7044          * as the initial coarse check for rc6 in general, moving on to
7045          * progressively finer/deeper levels.
7046          */
7047         if (!info->has_rc6 && info->has_rc6p)
7048                 info->has_rc6p = 0;
7049
7050         return info->has_rc6;
7051 }
7052
7053 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
7054 {
7055         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7056
7057         /* All of these values are in units of 50MHz */
7058
7059         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
7060         if (IS_GEN9_LP(dev_priv)) {
7061                 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
7062                 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
7063                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
7064                 rps->min_freq = (rp_state_cap >>  0) & 0xff;
7065         } else {
7066                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7067                 rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
7068                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
7069                 rps->min_freq = (rp_state_cap >> 16) & 0xff;
7070         }
7071         /* hw_max = RP0 until we check for overclocking */
7072         rps->max_freq = rps->rp0_freq;
7073
7074         rps->efficient_freq = rps->rp1_freq;
7075         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
7076             IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7077                 u32 ddcc_status = 0;
7078
7079                 if (sandybridge_pcode_read(dev_priv,
7080                                            HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
7081                                            &ddcc_status, NULL) == 0)
7082                         rps->efficient_freq =
7083                                 clamp_t(u8,
7084                                         ((ddcc_status >> 8) & 0xff),
7085                                         rps->min_freq,
7086                                         rps->max_freq);
7087         }
7088
7089         if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7090                 /* Store the frequency values in 16.66 MHZ units, which is
7091                  * the natural hardware unit for SKL
7092                  */
7093                 rps->rp0_freq *= GEN9_FREQ_SCALER;
7094                 rps->rp1_freq *= GEN9_FREQ_SCALER;
7095                 rps->min_freq *= GEN9_FREQ_SCALER;
7096                 rps->max_freq *= GEN9_FREQ_SCALER;
7097                 rps->efficient_freq *= GEN9_FREQ_SCALER;
7098         }
7099 }
7100
7101 static void reset_rps(struct drm_i915_private *dev_priv,
7102                       int (*set)(struct drm_i915_private *, u8))
7103 {
7104         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7105         u8 freq = rps->cur_freq;
7106
7107         /* force a reset */
7108         rps->power.mode = -1;
7109         rps->cur_freq = -1;
7110
7111         if (set(dev_priv, freq))
7112                 DRM_ERROR("Failed to reset RPS to initial values\n");
7113 }
7114
7115 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
7116 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
7117 {
7118         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7119
7120         /* Program defaults and thresholds for RPS */
7121         if (IS_GEN(dev_priv, 9))
7122                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7123                         GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
7124
7125         /* 1 second timeout*/
7126         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
7127                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
7128
7129         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
7130
7131         /* Leaning on the below call to gen6_set_rps to program/setup the
7132          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
7133          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
7134         reset_rps(dev_priv, gen6_set_rps);
7135
7136         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7137 }
7138
7139 static void gen11_enable_rc6(struct drm_i915_private *dev_priv)
7140 {
7141         struct intel_engine_cs *engine;
7142         enum intel_engine_id id;
7143
7144         /* 1a: Software RC state - RC0 */
7145         I915_WRITE(GEN6_RC_STATE, 0);
7146
7147         /*
7148          * 1b: Get forcewake during program sequence. Although the driver
7149          * hasn't enabled a state yet where we need forcewake, BIOS may have.
7150          */
7151         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7152
7153         /* 2a: Disable RC states. */
7154         I915_WRITE(GEN6_RC_CONTROL, 0);
7155
7156         /* 2b: Program RC6 thresholds.*/
7157         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
7158         I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
7159
7160         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7161         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7162         for_each_engine(engine, dev_priv, id)
7163                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7164
7165         if (HAS_GT_UC(dev_priv))
7166                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
7167
7168         I915_WRITE(GEN6_RC_SLEEP, 0);
7169
7170         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
7171
7172         /*
7173          * 2c: Program Coarse Power Gating Policies.
7174          *
7175          * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
7176          * use instead is a more conservative estimate for the maximum time
7177          * it takes us to service a CS interrupt and submit a new ELSP - that
7178          * is the time which the GPU is idle waiting for the CPU to select the
7179          * next request to execute. If the idle hysteresis is less than that
7180          * interrupt service latency, the hardware will automatically gate
7181          * the power well and we will then incur the wake up cost on top of
7182          * the service latency. A similar guide from plane_state is that we
7183          * do not want the enable hysteresis to less than the wakeup latency.
7184          *
7185          * igt/gem_exec_nop/sequential provides a rough estimate for the
7186          * service latency, and puts it around 10us for Broadwell (and other
7187          * big core) and around 40us for Broxton (and other low power cores).
7188          * [Note that for legacy ringbuffer submission, this is less than 1us!]
7189          * However, the wakeup latency on Broxton is closer to 100us. To be
7190          * conservative, we have to factor in a context switch on top (due
7191          * to ksoftirqd).
7192          */
7193         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
7194         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7195
7196         /* 3a: Enable RC6 */
7197         I915_WRITE(GEN6_RC_CONTROL,
7198                    GEN6_RC_CTL_HW_ENABLE |
7199                    GEN6_RC_CTL_RC6_ENABLE |
7200                    GEN6_RC_CTL_EI_MODE(1));
7201
7202         /* 3b: Enable Coarse Power Gating only when RC6 is enabled. */
7203         I915_WRITE(GEN9_PG_ENABLE,
7204                    GEN9_RENDER_PG_ENABLE |
7205                    GEN9_MEDIA_PG_ENABLE |
7206                    GEN11_MEDIA_SAMPLER_PG_ENABLE);
7207
7208         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7209 }
7210
7211 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
7212 {
7213         struct intel_engine_cs *engine;
7214         enum intel_engine_id id;
7215         u32 rc6_mode;
7216
7217         /* 1a: Software RC state - RC0 */
7218         I915_WRITE(GEN6_RC_STATE, 0);
7219
7220         /* 1b: Get forcewake during program sequence. Although the driver
7221          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7222         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7223
7224         /* 2a: Disable RC states. */
7225         I915_WRITE(GEN6_RC_CONTROL, 0);
7226
7227         /* 2b: Program RC6 thresholds.*/
7228         if (INTEL_GEN(dev_priv) >= 10) {
7229                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
7230                 I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
7231         } else if (IS_SKYLAKE(dev_priv)) {
7232                 /*
7233                  * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
7234                  * when CPG is enabled
7235                  */
7236                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
7237         } else {
7238                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
7239         }
7240
7241         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7242         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7243         for_each_engine(engine, dev_priv, id)
7244                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7245
7246         if (HAS_GT_UC(dev_priv))
7247                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
7248
7249         I915_WRITE(GEN6_RC_SLEEP, 0);
7250
7251         /*
7252          * 2c: Program Coarse Power Gating Policies.
7253          *
7254          * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
7255          * use instead is a more conservative estimate for the maximum time
7256          * it takes us to service a CS interrupt and submit a new ELSP - that
7257          * is the time which the GPU is idle waiting for the CPU to select the
7258          * next request to execute. If the idle hysteresis is less than that
7259          * interrupt service latency, the hardware will automatically gate
7260          * the power well and we will then incur the wake up cost on top of
7261          * the service latency. A similar guide from plane_state is that we
7262          * do not want the enable hysteresis to less than the wakeup latency.
7263          *
7264          * igt/gem_exec_nop/sequential provides a rough estimate for the
7265          * service latency, and puts it around 10us for Broadwell (and other
7266          * big core) and around 40us for Broxton (and other low power cores).
7267          * [Note that for legacy ringbuffer submission, this is less than 1us!]
7268          * However, the wakeup latency on Broxton is closer to 100us. To be
7269          * conservative, we have to factor in a context switch on top (due
7270          * to ksoftirqd).
7271          */
7272         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
7273         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7274
7275         /* 3a: Enable RC6 */
7276         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
7277
7278         /* WaRsUseTimeoutMode:cnl (pre-prod) */
7279         if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
7280                 rc6_mode = GEN7_RC_CTL_TO_MODE;
7281         else
7282                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
7283
7284         I915_WRITE(GEN6_RC_CONTROL,
7285                    GEN6_RC_CTL_HW_ENABLE |
7286                    GEN6_RC_CTL_RC6_ENABLE |
7287                    rc6_mode);
7288
7289         /*
7290          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
7291          * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
7292          */
7293         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
7294                 I915_WRITE(GEN9_PG_ENABLE, 0);
7295         else
7296                 I915_WRITE(GEN9_PG_ENABLE,
7297                            GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
7298
7299         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7300 }
7301
7302 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
7303 {
7304         struct intel_engine_cs *engine;
7305         enum intel_engine_id id;
7306
7307         /* 1a: Software RC state - RC0 */
7308         I915_WRITE(GEN6_RC_STATE, 0);
7309
7310         /* 1b: Get forcewake during program sequence. Although the driver
7311          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7312         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7313
7314         /* 2a: Disable RC states. */
7315         I915_WRITE(GEN6_RC_CONTROL, 0);
7316
7317         /* 2b: Program RC6 thresholds.*/
7318         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7319         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7320         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7321         for_each_engine(engine, dev_priv, id)
7322                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7323         I915_WRITE(GEN6_RC_SLEEP, 0);
7324         I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
7325
7326         /* 3: Enable RC6 */
7327
7328         I915_WRITE(GEN6_RC_CONTROL,
7329                    GEN6_RC_CTL_HW_ENABLE |
7330                    GEN7_RC_CTL_TO_MODE |
7331                    GEN6_RC_CTL_RC6_ENABLE);
7332
7333         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7334 }
7335
7336 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
7337 {
7338         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7339
7340         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7341
7342         /* 1 Program defaults and thresholds for RPS*/
7343         I915_WRITE(GEN6_RPNSWREQ,
7344                    HSW_FREQUENCY(rps->rp1_freq));
7345         I915_WRITE(GEN6_RC_VIDEO_FREQ,
7346                    HSW_FREQUENCY(rps->rp1_freq));
7347         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
7348         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
7349
7350         /* Docs recommend 900MHz, and 300 MHz respectively */
7351         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7352                    rps->max_freq_softlimit << 24 |
7353                    rps->min_freq_softlimit << 16);
7354
7355         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
7356         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
7357         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
7358         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
7359
7360         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7361
7362         /* 2: Enable RPS */
7363         I915_WRITE(GEN6_RP_CONTROL,
7364                    GEN6_RP_MEDIA_TURBO |
7365                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7366                    GEN6_RP_MEDIA_IS_GFX |
7367                    GEN6_RP_ENABLE |
7368                    GEN6_RP_UP_BUSY_AVG |
7369                    GEN6_RP_DOWN_IDLE_AVG);
7370
7371         reset_rps(dev_priv, gen6_set_rps);
7372
7373         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7374 }
7375
7376 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7377 {
7378         struct intel_engine_cs *engine;
7379         enum intel_engine_id id;
7380         u32 rc6vids, rc6_mask;
7381         u32 gtfifodbg;
7382         int ret;
7383
7384         I915_WRITE(GEN6_RC_STATE, 0);
7385
7386         /* Clear the DBG now so we don't confuse earlier errors */
7387         gtfifodbg = I915_READ(GTFIFODBG);
7388         if (gtfifodbg) {
7389                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
7390                 I915_WRITE(GTFIFODBG, gtfifodbg);
7391         }
7392
7393         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7394
7395         /* disable the counters and set deterministic thresholds */
7396         I915_WRITE(GEN6_RC_CONTROL, 0);
7397
7398         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7399         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7400         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7401         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7402         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7403
7404         for_each_engine(engine, dev_priv, id)
7405                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7406
7407         I915_WRITE(GEN6_RC_SLEEP, 0);
7408         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7409         if (IS_IVYBRIDGE(dev_priv))
7410                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
7411         else
7412                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7413         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7414         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7415
7416         /* We don't use those on Haswell */
7417         rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
7418         if (HAS_RC6p(dev_priv))
7419                 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
7420         if (HAS_RC6pp(dev_priv))
7421                 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7422         I915_WRITE(GEN6_RC_CONTROL,
7423                    rc6_mask |
7424                    GEN6_RC_CTL_EI_MODE(1) |
7425                    GEN6_RC_CTL_HW_ENABLE);
7426
7427         rc6vids = 0;
7428         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS,
7429                                      &rc6vids, NULL);
7430         if (IS_GEN(dev_priv, 6) && ret) {
7431                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7432         } else if (IS_GEN(dev_priv, 6) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7433                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
7434                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
7435                 rc6vids &= 0xffff00;
7436                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
7437                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
7438                 if (ret)
7439                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
7440         }
7441
7442         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7443 }
7444
7445 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
7446 {
7447         /* Here begins a magic sequence of register writes to enable
7448          * auto-downclocking.
7449          *
7450          * Perhaps there might be some value in exposing these to
7451          * userspace...
7452          */
7453         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7454
7455         /* Power down if completely idle for over 50ms */
7456         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
7457         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7458
7459         reset_rps(dev_priv, gen6_set_rps);
7460
7461         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7462 }
7463
7464 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7465 {
7466         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7467         const int min_freq = 15;
7468         const int scaling_factor = 180;
7469         unsigned int gpu_freq;
7470         unsigned int max_ia_freq, min_ring_freq;
7471         unsigned int max_gpu_freq, min_gpu_freq;
7472         struct cpufreq_policy *policy;
7473
7474         lockdep_assert_held(&rps->lock);
7475
7476         if (rps->max_freq <= rps->min_freq)
7477                 return;
7478
7479         policy = cpufreq_cpu_get(0);
7480         if (policy) {
7481                 max_ia_freq = policy->cpuinfo.max_freq;
7482                 cpufreq_cpu_put(policy);
7483         } else {
7484                 /*
7485                  * Default to measured freq if none found, PCU will ensure we
7486                  * don't go over
7487                  */
7488                 max_ia_freq = tsc_khz;
7489         }
7490
7491         /* Convert from kHz to MHz */
7492         max_ia_freq /= 1000;
7493
7494         min_ring_freq = I915_READ(DCLK) & 0xf;
7495         /* convert DDR frequency from units of 266.6MHz to bandwidth */
7496         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7497
7498         min_gpu_freq = rps->min_freq;
7499         max_gpu_freq = rps->max_freq;
7500         if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7501                 /* Convert GT frequency to 50 HZ units */
7502                 min_gpu_freq /= GEN9_FREQ_SCALER;
7503                 max_gpu_freq /= GEN9_FREQ_SCALER;
7504         }
7505
7506         /*
7507          * For each potential GPU frequency, load a ring frequency we'd like
7508          * to use for memory access.  We do this by specifying the IA frequency
7509          * the PCU should use as a reference to determine the ring frequency.
7510          */
7511         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7512                 const int diff = max_gpu_freq - gpu_freq;
7513                 unsigned int ia_freq = 0, ring_freq = 0;
7514
7515                 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7516                         /*
7517                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
7518                          * No floor required for ring frequency on SKL.
7519                          */
7520                         ring_freq = gpu_freq;
7521                 } else if (INTEL_GEN(dev_priv) >= 8) {
7522                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
7523                         ring_freq = max(min_ring_freq, gpu_freq);
7524                 } else if (IS_HASWELL(dev_priv)) {
7525                         ring_freq = mult_frac(gpu_freq, 5, 4);
7526                         ring_freq = max(min_ring_freq, ring_freq);
7527                         /* leave ia_freq as the default, chosen by cpufreq */
7528                 } else {
7529                         /* On older processors, there is no separate ring
7530                          * clock domain, so in order to boost the bandwidth
7531                          * of the ring, we need to upclock the CPU (ia_freq).
7532                          *
7533                          * For GPU frequencies less than 750MHz,
7534                          * just use the lowest ring freq.
7535                          */
7536                         if (gpu_freq < min_freq)
7537                                 ia_freq = 800;
7538                         else
7539                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7540                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7541                 }
7542
7543                 sandybridge_pcode_write(dev_priv,
7544                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7545                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
7546                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
7547                                         gpu_freq);
7548         }
7549 }
7550
7551 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7552 {
7553         u32 val, rp0;
7554
7555         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7556
7557         switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
7558         case 8:
7559                 /* (2 * 4) config */
7560                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
7561                 break;
7562         case 12:
7563                 /* (2 * 6) config */
7564                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
7565                 break;
7566         case 16:
7567                 /* (2 * 8) config */
7568         default:
7569                 /* Setting (2 * 8) Min RP0 for any other combination */
7570                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
7571                 break;
7572         }
7573
7574         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
7575
7576         return rp0;
7577 }
7578
7579 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7580 {
7581         u32 val, rpe;
7582
7583         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
7584         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
7585
7586         return rpe;
7587 }
7588
7589 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
7590 {
7591         u32 val, rp1;
7592
7593         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7594         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
7595
7596         return rp1;
7597 }
7598
7599 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
7600 {
7601         u32 val, rpn;
7602
7603         val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
7604         rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
7605                        FB_GFX_FREQ_FUSE_MASK);
7606
7607         return rpn;
7608 }
7609
7610 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
7611 {
7612         u32 val, rp1;
7613
7614         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7615
7616         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
7617
7618         return rp1;
7619 }
7620
7621 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7622 {
7623         u32 val, rp0;
7624
7625         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7626
7627         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7628         /* Clamp to max */
7629         rp0 = min_t(u32, rp0, 0xea);
7630
7631         return rp0;
7632 }
7633
7634 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7635 {
7636         u32 val, rpe;
7637
7638         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7639         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7640         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7641         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7642
7643         return rpe;
7644 }
7645
7646 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7647 {
7648         u32 val;
7649
7650         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7651         /*
7652          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7653          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7654          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7655          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7656          * to make sure it matches what Punit accepts.
7657          */
7658         return max_t(u32, val, 0xc0);
7659 }
7660
7661 /* Check that the pctx buffer wasn't move under us. */
7662 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7663 {
7664         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7665
7666         WARN_ON(pctx_addr != dev_priv->dsm.start +
7667                              dev_priv->vlv_pctx->stolen->start);
7668 }
7669
7670
7671 /* Check that the pcbr address is not empty. */
7672 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7673 {
7674         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7675
7676         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7677 }
7678
7679 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7680 {
7681         resource_size_t pctx_paddr, paddr;
7682         resource_size_t pctx_size = 32*1024;
7683         u32 pcbr;
7684
7685         pcbr = I915_READ(VLV_PCBR);
7686         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7687                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7688                 paddr = dev_priv->dsm.end + 1 - pctx_size;
7689                 GEM_BUG_ON(paddr > U32_MAX);
7690
7691                 pctx_paddr = (paddr & (~4095));
7692                 I915_WRITE(VLV_PCBR, pctx_paddr);
7693         }
7694
7695         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7696 }
7697
7698 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7699 {
7700         struct drm_i915_gem_object *pctx;
7701         resource_size_t pctx_paddr;
7702         resource_size_t pctx_size = 24*1024;
7703         u32 pcbr;
7704
7705         pcbr = I915_READ(VLV_PCBR);
7706         if (pcbr) {
7707                 /* BIOS set it up already, grab the pre-alloc'd space */
7708                 resource_size_t pcbr_offset;
7709
7710                 pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7711                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7712                                                                       pcbr_offset,
7713                                                                       I915_GTT_OFFSET_NONE,
7714                                                                       pctx_size);
7715                 goto out;
7716         }
7717
7718         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7719
7720         /*
7721          * From the Gunit register HAS:
7722          * The Gfx driver is expected to program this register and ensure
7723          * proper allocation within Gfx stolen memory.  For example, this
7724          * register should be programmed such than the PCBR range does not
7725          * overlap with other ranges, such as the frame buffer, protected
7726          * memory, or any other relevant ranges.
7727          */
7728         pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7729         if (!pctx) {
7730                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7731                 goto out;
7732         }
7733
7734         GEM_BUG_ON(range_overflows_t(u64,
7735                                      dev_priv->dsm.start,
7736                                      pctx->stolen->start,
7737                                      U32_MAX));
7738         pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7739         I915_WRITE(VLV_PCBR, pctx_paddr);
7740
7741 out:
7742         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7743         dev_priv->vlv_pctx = pctx;
7744 }
7745
7746 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7747 {
7748         struct drm_i915_gem_object *pctx;
7749
7750         pctx = fetch_and_zero(&dev_priv->vlv_pctx);
7751         if (pctx)
7752                 i915_gem_object_put(pctx);
7753 }
7754
7755 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7756 {
7757         dev_priv->gt_pm.rps.gpll_ref_freq =
7758                 vlv_get_cck_clock(dev_priv, "GPLL ref",
7759                                   CCK_GPLL_CLOCK_CONTROL,
7760                                   dev_priv->czclk_freq);
7761
7762         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7763                          dev_priv->gt_pm.rps.gpll_ref_freq);
7764 }
7765
7766 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7767 {
7768         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7769         u32 val;
7770
7771         valleyview_setup_pctx(dev_priv);
7772
7773         vlv_iosf_sb_get(dev_priv,
7774                         BIT(VLV_IOSF_SB_PUNIT) |
7775                         BIT(VLV_IOSF_SB_NC) |
7776                         BIT(VLV_IOSF_SB_CCK));
7777
7778         vlv_init_gpll_ref_freq(dev_priv);
7779
7780         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7781         switch ((val >> 6) & 3) {
7782         case 0:
7783         case 1:
7784                 dev_priv->mem_freq = 800;
7785                 break;
7786         case 2:
7787                 dev_priv->mem_freq = 1066;
7788                 break;
7789         case 3:
7790                 dev_priv->mem_freq = 1333;
7791                 break;
7792         }
7793         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7794
7795         rps->max_freq = valleyview_rps_max_freq(dev_priv);
7796         rps->rp0_freq = rps->max_freq;
7797         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7798                          intel_gpu_freq(dev_priv, rps->max_freq),
7799                          rps->max_freq);
7800
7801         rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7802         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7803                          intel_gpu_freq(dev_priv, rps->efficient_freq),
7804                          rps->efficient_freq);
7805
7806         rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7807         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7808                          intel_gpu_freq(dev_priv, rps->rp1_freq),
7809                          rps->rp1_freq);
7810
7811         rps->min_freq = valleyview_rps_min_freq(dev_priv);
7812         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7813                          intel_gpu_freq(dev_priv, rps->min_freq),
7814                          rps->min_freq);
7815
7816         vlv_iosf_sb_put(dev_priv,
7817                         BIT(VLV_IOSF_SB_PUNIT) |
7818                         BIT(VLV_IOSF_SB_NC) |
7819                         BIT(VLV_IOSF_SB_CCK));
7820 }
7821
7822 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7823 {
7824         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7825         u32 val;
7826
7827         cherryview_setup_pctx(dev_priv);
7828
7829         vlv_iosf_sb_get(dev_priv,
7830                         BIT(VLV_IOSF_SB_PUNIT) |
7831                         BIT(VLV_IOSF_SB_NC) |
7832                         BIT(VLV_IOSF_SB_CCK));
7833
7834         vlv_init_gpll_ref_freq(dev_priv);
7835
7836         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7837
7838         switch ((val >> 2) & 0x7) {
7839         case 3:
7840                 dev_priv->mem_freq = 2000;
7841                 break;
7842         default:
7843                 dev_priv->mem_freq = 1600;
7844                 break;
7845         }
7846         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7847
7848         rps->max_freq = cherryview_rps_max_freq(dev_priv);
7849         rps->rp0_freq = rps->max_freq;
7850         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7851                          intel_gpu_freq(dev_priv, rps->max_freq),
7852                          rps->max_freq);
7853
7854         rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7855         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7856                          intel_gpu_freq(dev_priv, rps->efficient_freq),
7857                          rps->efficient_freq);
7858
7859         rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7860         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7861                          intel_gpu_freq(dev_priv, rps->rp1_freq),
7862                          rps->rp1_freq);
7863
7864         rps->min_freq = cherryview_rps_min_freq(dev_priv);
7865         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7866                          intel_gpu_freq(dev_priv, rps->min_freq),
7867                          rps->min_freq);
7868
7869         vlv_iosf_sb_put(dev_priv,
7870                         BIT(VLV_IOSF_SB_PUNIT) |
7871                         BIT(VLV_IOSF_SB_NC) |
7872                         BIT(VLV_IOSF_SB_CCK));
7873
7874         WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7875                    rps->min_freq) & 1,
7876                   "Odd GPU freq values\n");
7877 }
7878
7879 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7880 {
7881         valleyview_cleanup_pctx(dev_priv);
7882 }
7883
7884 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7885 {
7886         struct intel_engine_cs *engine;
7887         enum intel_engine_id id;
7888         u32 gtfifodbg, rc6_mode, pcbr;
7889
7890         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7891                                              GT_FIFO_FREE_ENTRIES_CHV);
7892         if (gtfifodbg) {
7893                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7894                                  gtfifodbg);
7895                 I915_WRITE(GTFIFODBG, gtfifodbg);
7896         }
7897
7898         cherryview_check_pctx(dev_priv);
7899
7900         /* 1a & 1b: Get forcewake during program sequence. Although the driver
7901          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7902         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7903
7904         /*  Disable RC states. */
7905         I915_WRITE(GEN6_RC_CONTROL, 0);
7906
7907         /* 2a: Program RC6 thresholds.*/
7908         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7909         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7910         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7911
7912         for_each_engine(engine, dev_priv, id)
7913                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7914         I915_WRITE(GEN6_RC_SLEEP, 0);
7915
7916         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7917         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7918
7919         /* Allows RC6 residency counter to work */
7920         I915_WRITE(VLV_COUNTER_CONTROL,
7921                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7922                                       VLV_MEDIA_RC6_COUNT_EN |
7923                                       VLV_RENDER_RC6_COUNT_EN));
7924
7925         /* For now we assume BIOS is allocating and populating the PCBR  */
7926         pcbr = I915_READ(VLV_PCBR);
7927
7928         /* 3: Enable RC6 */
7929         rc6_mode = 0;
7930         if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7931                 rc6_mode = GEN7_RC_CTL_TO_MODE;
7932         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7933
7934         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7935 }
7936
7937 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7938 {
7939         u32 val;
7940
7941         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7942
7943         /* 1: Program defaults and thresholds for RPS*/
7944         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7945         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7946         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7947         I915_WRITE(GEN6_RP_UP_EI, 66000);
7948         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7949
7950         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7951
7952         /* 2: Enable RPS */
7953         I915_WRITE(GEN6_RP_CONTROL,
7954                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7955                    GEN6_RP_MEDIA_IS_GFX |
7956                    GEN6_RP_ENABLE |
7957                    GEN6_RP_UP_BUSY_AVG |
7958                    GEN6_RP_DOWN_IDLE_AVG);
7959
7960         /* Setting Fixed Bias */
7961         vlv_punit_get(dev_priv);
7962
7963         val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
7964         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7965
7966         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7967
7968         vlv_punit_put(dev_priv);
7969
7970         /* RPS code assumes GPLL is used */
7971         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7972
7973         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7974         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7975
7976         reset_rps(dev_priv, valleyview_set_rps);
7977
7978         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7979 }
7980
7981 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7982 {
7983         struct intel_engine_cs *engine;
7984         enum intel_engine_id id;
7985         u32 gtfifodbg;
7986
7987         valleyview_check_pctx(dev_priv);
7988
7989         gtfifodbg = I915_READ(GTFIFODBG);
7990         if (gtfifodbg) {
7991                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7992                                  gtfifodbg);
7993                 I915_WRITE(GTFIFODBG, gtfifodbg);
7994         }
7995
7996         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7997
7998         /*  Disable RC states. */
7999         I915_WRITE(GEN6_RC_CONTROL, 0);
8000
8001         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
8002         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8003         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8004
8005         for_each_engine(engine, dev_priv, id)
8006                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
8007
8008         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
8009
8010         /* Allows RC6 residency counter to work */
8011         I915_WRITE(VLV_COUNTER_CONTROL,
8012                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
8013                                       VLV_MEDIA_RC0_COUNT_EN |
8014                                       VLV_RENDER_RC0_COUNT_EN |
8015                                       VLV_MEDIA_RC6_COUNT_EN |
8016                                       VLV_RENDER_RC6_COUNT_EN));
8017
8018         I915_WRITE(GEN6_RC_CONTROL,
8019                    GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
8020
8021         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
8022 }
8023
8024 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
8025 {
8026         u32 val;
8027
8028         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
8029
8030         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8031         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
8032         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
8033         I915_WRITE(GEN6_RP_UP_EI, 66000);
8034         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
8035
8036         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8037
8038         I915_WRITE(GEN6_RP_CONTROL,
8039                    GEN6_RP_MEDIA_TURBO |
8040                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
8041                    GEN6_RP_MEDIA_IS_GFX |
8042                    GEN6_RP_ENABLE |
8043                    GEN6_RP_UP_BUSY_AVG |
8044                    GEN6_RP_DOWN_IDLE_CONT);
8045
8046         vlv_punit_get(dev_priv);
8047
8048         /* Setting Fixed Bias */
8049         val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
8050         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
8051
8052         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
8053
8054         vlv_punit_put(dev_priv);
8055
8056         /* RPS code assumes GPLL is used */
8057         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
8058
8059         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
8060         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
8061
8062         reset_rps(dev_priv, valleyview_set_rps);
8063
8064         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
8065 }
8066
8067 static unsigned long intel_pxfreq(u32 vidfreq)
8068 {
8069         unsigned long freq;
8070         int div = (vidfreq & 0x3f0000) >> 16;
8071         int post = (vidfreq & 0x3000) >> 12;
8072         int pre = (vidfreq & 0x7);
8073
8074         if (!pre)
8075                 return 0;
8076
8077         freq = ((div * 133333) / ((1<<post) * pre));
8078
8079         return freq;
8080 }
8081
8082 static const struct cparams {
8083         u16 i;
8084         u16 t;
8085         u16 m;
8086         u16 c;
8087 } cparams[] = {
8088         { 1, 1333, 301, 28664 },
8089         { 1, 1066, 294, 24460 },
8090         { 1, 800, 294, 25192 },
8091         { 0, 1333, 276, 27605 },
8092         { 0, 1066, 276, 27605 },
8093         { 0, 800, 231, 23784 },
8094 };
8095
8096 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
8097 {
8098         u64 total_count, diff, ret;
8099         u32 count1, count2, count3, m = 0, c = 0;
8100         unsigned long now = jiffies_to_msecs(jiffies), diff1;
8101         int i;
8102
8103         lockdep_assert_held(&mchdev_lock);
8104
8105         diff1 = now - dev_priv->ips.last_time1;
8106
8107         /* Prevent division-by-zero if we are asking too fast.
8108          * Also, we don't get interesting results if we are polling
8109          * faster than once in 10ms, so just return the saved value
8110          * in such cases.
8111          */
8112         if (diff1 <= 10)
8113                 return dev_priv->ips.chipset_power;
8114
8115         count1 = I915_READ(DMIEC);
8116         count2 = I915_READ(DDREC);
8117         count3 = I915_READ(CSIEC);
8118
8119         total_count = count1 + count2 + count3;
8120
8121         /* FIXME: handle per-counter overflow */
8122         if (total_count < dev_priv->ips.last_count1) {
8123                 diff = ~0UL - dev_priv->ips.last_count1;
8124                 diff += total_count;
8125         } else {
8126                 diff = total_count - dev_priv->ips.last_count1;
8127         }
8128
8129         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
8130                 if (cparams[i].i == dev_priv->ips.c_m &&
8131                     cparams[i].t == dev_priv->ips.r_t) {
8132                         m = cparams[i].m;
8133                         c = cparams[i].c;
8134                         break;
8135                 }
8136         }
8137
8138         diff = div_u64(diff, diff1);
8139         ret = ((m * diff) + c);
8140         ret = div_u64(ret, 10);
8141
8142         dev_priv->ips.last_count1 = total_count;
8143         dev_priv->ips.last_time1 = now;
8144
8145         dev_priv->ips.chipset_power = ret;
8146
8147         return ret;
8148 }
8149
8150 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
8151 {
8152         intel_wakeref_t wakeref;
8153         unsigned long val = 0;
8154
8155         if (!IS_GEN(dev_priv, 5))
8156                 return 0;
8157
8158         with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
8159                 spin_lock_irq(&mchdev_lock);
8160                 val = __i915_chipset_val(dev_priv);
8161                 spin_unlock_irq(&mchdev_lock);
8162         }
8163
8164         return val;
8165 }
8166
8167 unsigned long i915_mch_val(struct drm_i915_private *i915)
8168 {
8169         unsigned long m, x, b;
8170         u32 tsfs;
8171
8172         tsfs = intel_uncore_read(&i915->uncore, TSFS);
8173
8174         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
8175         x = intel_uncore_read8(&i915->uncore, TR1);
8176
8177         b = tsfs & TSFS_INTR_MASK;
8178
8179         return ((m * x) / 127) - b;
8180 }
8181
8182 static int _pxvid_to_vd(u8 pxvid)
8183 {
8184         if (pxvid == 0)
8185                 return 0;
8186
8187         if (pxvid >= 8 && pxvid < 31)
8188                 pxvid = 31;
8189
8190         return (pxvid + 2) * 125;
8191 }
8192
8193 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
8194 {
8195         const int vd = _pxvid_to_vd(pxvid);
8196         const int vm = vd - 1125;
8197
8198         if (INTEL_INFO(dev_priv)->is_mobile)
8199                 return vm > 0 ? vm : 0;
8200
8201         return vd;
8202 }
8203
8204 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
8205 {
8206         u64 now, diff, diffms;
8207         u32 count;
8208
8209         lockdep_assert_held(&mchdev_lock);
8210
8211         now = ktime_get_raw_ns();
8212         diffms = now - dev_priv->ips.last_time2;
8213         do_div(diffms, NSEC_PER_MSEC);
8214
8215         /* Don't divide by 0 */
8216         if (!diffms)
8217                 return;
8218
8219         count = I915_READ(GFXEC);
8220
8221         if (count < dev_priv->ips.last_count2) {
8222                 diff = ~0UL - dev_priv->ips.last_count2;
8223                 diff += count;
8224         } else {
8225                 diff = count - dev_priv->ips.last_count2;
8226         }
8227
8228         dev_priv->ips.last_count2 = count;
8229         dev_priv->ips.last_time2 = now;
8230
8231         /* More magic constants... */
8232         diff = diff * 1181;
8233         diff = div_u64(diff, diffms * 10);
8234         dev_priv->ips.gfx_power = diff;
8235 }
8236
8237 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
8238 {
8239         intel_wakeref_t wakeref;
8240
8241         if (!IS_GEN(dev_priv, 5))
8242                 return;
8243
8244         with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
8245                 spin_lock_irq(&mchdev_lock);
8246                 __i915_update_gfx_val(dev_priv);
8247                 spin_unlock_irq(&mchdev_lock);
8248         }
8249 }
8250
8251 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
8252 {
8253         unsigned long t, corr, state1, corr2, state2;
8254         u32 pxvid, ext_v;
8255
8256         lockdep_assert_held(&mchdev_lock);
8257
8258         pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
8259         pxvid = (pxvid >> 24) & 0x7f;
8260         ext_v = pvid_to_extvid(dev_priv, pxvid);
8261
8262         state1 = ext_v;
8263
8264         t = i915_mch_val(dev_priv);
8265
8266         /* Revel in the empirically derived constants */
8267
8268         /* Correction factor in 1/100000 units */
8269         if (t > 80)
8270                 corr = ((t * 2349) + 135940);
8271         else if (t >= 50)
8272                 corr = ((t * 964) + 29317);
8273         else /* < 50 */
8274                 corr = ((t * 301) + 1004);
8275
8276         corr = corr * ((150142 * state1) / 10000 - 78642);
8277         corr /= 100000;
8278         corr2 = (corr * dev_priv->ips.corr);
8279
8280         state2 = (corr2 * state1) / 10000;
8281         state2 /= 100; /* convert to mW */
8282
8283         __i915_update_gfx_val(dev_priv);
8284
8285         return dev_priv->ips.gfx_power + state2;
8286 }
8287
8288 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
8289 {
8290         intel_wakeref_t wakeref;
8291         unsigned long val = 0;
8292
8293         if (!IS_GEN(dev_priv, 5))
8294                 return 0;
8295
8296         with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
8297                 spin_lock_irq(&mchdev_lock);
8298                 val = __i915_gfx_val(dev_priv);
8299                 spin_unlock_irq(&mchdev_lock);
8300         }
8301
8302         return val;
8303 }
8304
8305 static struct drm_i915_private __rcu *i915_mch_dev;
8306
8307 static struct drm_i915_private *mchdev_get(void)
8308 {
8309         struct drm_i915_private *i915;
8310
8311         rcu_read_lock();
8312         i915 = rcu_dereference(i915_mch_dev);
8313         if (!kref_get_unless_zero(&i915->drm.ref))
8314                 i915 = NULL;
8315         rcu_read_unlock();
8316
8317         return i915;
8318 }
8319
8320 /**
8321  * i915_read_mch_val - return value for IPS use
8322  *
8323  * Calculate and return a value for the IPS driver to use when deciding whether
8324  * we have thermal and power headroom to increase CPU or GPU power budget.
8325  */
8326 unsigned long i915_read_mch_val(void)
8327 {
8328         struct drm_i915_private *i915;
8329         unsigned long chipset_val = 0;
8330         unsigned long graphics_val = 0;
8331         intel_wakeref_t wakeref;
8332
8333         i915 = mchdev_get();
8334         if (!i915)
8335                 return 0;
8336
8337         with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
8338                 spin_lock_irq(&mchdev_lock);
8339                 chipset_val = __i915_chipset_val(i915);
8340                 graphics_val = __i915_gfx_val(i915);
8341                 spin_unlock_irq(&mchdev_lock);
8342         }
8343
8344         drm_dev_put(&i915->drm);
8345         return chipset_val + graphics_val;
8346 }
8347 EXPORT_SYMBOL_GPL(i915_read_mch_val);
8348
8349 /**
8350  * i915_gpu_raise - raise GPU frequency limit
8351  *
8352  * Raise the limit; IPS indicates we have thermal headroom.
8353  */
8354 bool i915_gpu_raise(void)
8355 {
8356         struct drm_i915_private *i915;
8357
8358         i915 = mchdev_get();
8359         if (!i915)
8360                 return false;
8361
8362         spin_lock_irq(&mchdev_lock);
8363         if (i915->ips.max_delay > i915->ips.fmax)
8364                 i915->ips.max_delay--;
8365         spin_unlock_irq(&mchdev_lock);
8366
8367         drm_dev_put(&i915->drm);
8368         return true;
8369 }
8370 EXPORT_SYMBOL_GPL(i915_gpu_raise);
8371
8372 /**
8373  * i915_gpu_lower - lower GPU frequency limit
8374  *
8375  * IPS indicates we're close to a thermal limit, so throttle back the GPU
8376  * frequency maximum.
8377  */
8378 bool i915_gpu_lower(void)
8379 {
8380         struct drm_i915_private *i915;
8381
8382         i915 = mchdev_get();
8383         if (!i915)
8384                 return false;
8385
8386         spin_lock_irq(&mchdev_lock);
8387         if (i915->ips.max_delay < i915->ips.min_delay)
8388                 i915->ips.max_delay++;
8389         spin_unlock_irq(&mchdev_lock);
8390
8391         drm_dev_put(&i915->drm);
8392         return true;
8393 }
8394 EXPORT_SYMBOL_GPL(i915_gpu_lower);
8395
8396 /**
8397  * i915_gpu_busy - indicate GPU business to IPS
8398  *
8399  * Tell the IPS driver whether or not the GPU is busy.
8400  */
8401 bool i915_gpu_busy(void)
8402 {
8403         struct drm_i915_private *i915;
8404         bool ret;
8405
8406         i915 = mchdev_get();
8407         if (!i915)
8408                 return false;
8409
8410         ret = i915->gt.awake;
8411
8412         drm_dev_put(&i915->drm);
8413         return ret;
8414 }
8415 EXPORT_SYMBOL_GPL(i915_gpu_busy);
8416
8417 /**
8418  * i915_gpu_turbo_disable - disable graphics turbo
8419  *
8420  * Disable graphics turbo by resetting the max frequency and setting the
8421  * current frequency to the default.
8422  */
8423 bool i915_gpu_turbo_disable(void)
8424 {
8425         struct drm_i915_private *i915;
8426         bool ret;
8427
8428         i915 = mchdev_get();
8429         if (!i915)
8430                 return false;
8431
8432         spin_lock_irq(&mchdev_lock);
8433         i915->ips.max_delay = i915->ips.fstart;
8434         ret = ironlake_set_drps(i915, i915->ips.fstart);
8435         spin_unlock_irq(&mchdev_lock);
8436
8437         drm_dev_put(&i915->drm);
8438         return ret;
8439 }
8440 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
8441
8442 /**
8443  * Tells the intel_ips driver that the i915 driver is now loaded, if
8444  * IPS got loaded first.
8445  *
8446  * This awkward dance is so that neither module has to depend on the
8447  * other in order for IPS to do the appropriate communication of
8448  * GPU turbo limits to i915.
8449  */
8450 static void
8451 ips_ping_for_i915_load(void)
8452 {
8453         void (*link)(void);
8454
8455         link = symbol_get(ips_link_to_i915_driver);
8456         if (link) {
8457                 link();
8458                 symbol_put(ips_link_to_i915_driver);
8459         }
8460 }
8461
8462 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
8463 {
8464         /* We only register the i915 ips part with intel-ips once everything is
8465          * set up, to avoid intel-ips sneaking in and reading bogus values. */
8466         rcu_assign_pointer(i915_mch_dev, dev_priv);
8467
8468         ips_ping_for_i915_load();
8469 }
8470
8471 void intel_gpu_ips_teardown(void)
8472 {
8473         rcu_assign_pointer(i915_mch_dev, NULL);
8474 }
8475
8476 static void intel_init_emon(struct drm_i915_private *dev_priv)
8477 {
8478         u32 lcfuse;
8479         u8 pxw[16];
8480         int i;
8481
8482         /* Disable to program */
8483         I915_WRITE(ECR, 0);
8484         POSTING_READ(ECR);
8485
8486         /* Program energy weights for various events */
8487         I915_WRITE(SDEW, 0x15040d00);
8488         I915_WRITE(CSIEW0, 0x007f0000);
8489         I915_WRITE(CSIEW1, 0x1e220004);
8490         I915_WRITE(CSIEW2, 0x04000004);
8491
8492         for (i = 0; i < 5; i++)
8493                 I915_WRITE(PEW(i), 0);
8494         for (i = 0; i < 3; i++)
8495                 I915_WRITE(DEW(i), 0);
8496
8497         /* Program P-state weights to account for frequency power adjustment */
8498         for (i = 0; i < 16; i++) {
8499                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
8500                 unsigned long freq = intel_pxfreq(pxvidfreq);
8501                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8502                         PXVFREQ_PX_SHIFT;
8503                 unsigned long val;
8504
8505                 val = vid * vid;
8506                 val *= (freq / 1000);
8507                 val *= 255;
8508                 val /= (127*127*900);
8509                 if (val > 0xff)
8510                         DRM_ERROR("bad pxval: %ld\n", val);
8511                 pxw[i] = val;
8512         }
8513         /* Render standby states get 0 weight */
8514         pxw[14] = 0;
8515         pxw[15] = 0;
8516
8517         for (i = 0; i < 4; i++) {
8518                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8519                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8520                 I915_WRITE(PXW(i), val);
8521         }
8522
8523         /* Adjust magic regs to magic values (more experimental results) */
8524         I915_WRITE(OGW0, 0);
8525         I915_WRITE(OGW1, 0);
8526         I915_WRITE(EG0, 0x00007f00);
8527         I915_WRITE(EG1, 0x0000000e);
8528         I915_WRITE(EG2, 0x000e0000);
8529         I915_WRITE(EG3, 0x68000300);
8530         I915_WRITE(EG4, 0x42000000);
8531         I915_WRITE(EG5, 0x00140031);
8532         I915_WRITE(EG6, 0);
8533         I915_WRITE(EG7, 0);
8534
8535         for (i = 0; i < 8; i++)
8536                 I915_WRITE(PXWL(i), 0);
8537
8538         /* Enable PMON + select events */
8539         I915_WRITE(ECR, 0x80000019);
8540
8541         lcfuse = I915_READ(LCFUSE02);
8542
8543         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8544 }
8545
8546 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8547 {
8548         struct intel_rps *rps = &dev_priv->gt_pm.rps;
8549
8550         /*
8551          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
8552          * requirement.
8553          */
8554         if (!sanitize_rc6(dev_priv)) {
8555                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8556                 pm_runtime_get(&dev_priv->drm.pdev->dev);
8557         }
8558
8559         /* Initialize RPS limits (for userspace) */
8560         if (IS_CHERRYVIEW(dev_priv))
8561                 cherryview_init_gt_powersave(dev_priv);
8562         else if (IS_VALLEYVIEW(dev_priv))
8563                 valleyview_init_gt_powersave(dev_priv);
8564         else if (INTEL_GEN(dev_priv) >= 6)
8565                 gen6_init_rps_frequencies(dev_priv);
8566
8567         /* Derive initial user preferences/limits from the hardware limits */
8568         rps->max_freq_softlimit = rps->max_freq;
8569         rps->min_freq_softlimit = rps->min_freq;
8570
8571         /* After setting max-softlimit, find the overclock max freq */
8572         if (IS_GEN(dev_priv, 6) ||
8573             IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
8574                 u32 params = 0;
8575
8576                 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS,
8577                                        &params, NULL);
8578                 if (params & BIT(31)) { /* OC supported */
8579                         DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8580                                          (rps->max_freq & 0xff) * 50,
8581                                          (params & 0xff) * 50);
8582                         rps->max_freq = params & 0xff;
8583                 }
8584         }
8585
8586         /* Finally allow us to boost to max by default */
8587         rps->boost_freq = rps->max_freq;
8588         rps->idle_freq = rps->min_freq;
8589         rps->cur_freq = rps->idle_freq;
8590 }
8591
8592 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8593 {
8594         if (IS_VALLEYVIEW(dev_priv))
8595                 valleyview_cleanup_gt_powersave(dev_priv);
8596
8597         if (!HAS_RC6(dev_priv))
8598                 pm_runtime_put(&dev_priv->drm.pdev->dev);
8599 }
8600
8601 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
8602 {
8603         dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
8604         dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8605         intel_disable_gt_powersave(dev_priv);
8606
8607         if (INTEL_GEN(dev_priv) >= 11)
8608                 gen11_reset_rps_interrupts(dev_priv);
8609         else if (INTEL_GEN(dev_priv) >= 6)
8610                 gen6_reset_rps_interrupts(dev_priv);
8611 }
8612
8613 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
8614 {
8615         lockdep_assert_held(&i915->gt_pm.rps.lock);
8616
8617         if (!i915->gt_pm.llc_pstate.enabled)
8618                 return;
8619
8620         /* Currently there is no HW configuration to be done to disable. */
8621
8622         i915->gt_pm.llc_pstate.enabled = false;
8623 }
8624
8625 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8626 {
8627         lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8628
8629         if (!dev_priv->gt_pm.rc6.enabled)
8630                 return;
8631
8632         if (INTEL_GEN(dev_priv) >= 9)
8633                 gen9_disable_rc6(dev_priv);
8634         else if (IS_CHERRYVIEW(dev_priv))
8635                 cherryview_disable_rc6(dev_priv);
8636         else if (IS_VALLEYVIEW(dev_priv))
8637                 valleyview_disable_rc6(dev_priv);
8638         else if (INTEL_GEN(dev_priv) >= 6)
8639                 gen6_disable_rc6(dev_priv);
8640
8641         dev_priv->gt_pm.rc6.enabled = false;
8642 }
8643
8644 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8645 {
8646         lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8647
8648         if (!dev_priv->gt_pm.rps.enabled)
8649                 return;
8650
8651         if (INTEL_GEN(dev_priv) >= 9)
8652                 gen9_disable_rps(dev_priv);
8653         else if (IS_CHERRYVIEW(dev_priv))
8654                 cherryview_disable_rps(dev_priv);
8655         else if (IS_VALLEYVIEW(dev_priv))
8656                 valleyview_disable_rps(dev_priv);
8657         else if (INTEL_GEN(dev_priv) >= 6)
8658                 gen6_disable_rps(dev_priv);
8659         else if (IS_IRONLAKE_M(dev_priv))
8660                 ironlake_disable_drps(dev_priv);
8661
8662         dev_priv->gt_pm.rps.enabled = false;
8663 }
8664
8665 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8666 {
8667         mutex_lock(&dev_priv->gt_pm.rps.lock);
8668
8669         intel_disable_rc6(dev_priv);
8670         intel_disable_rps(dev_priv);
8671         if (HAS_LLC(dev_priv))
8672                 intel_disable_llc_pstate(dev_priv);
8673
8674         mutex_unlock(&dev_priv->gt_pm.rps.lock);
8675 }
8676
8677 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8678 {
8679         lockdep_assert_held(&i915->gt_pm.rps.lock);
8680
8681         if (i915->gt_pm.llc_pstate.enabled)
8682                 return;
8683
8684         gen6_update_ring_freq(i915);
8685
8686         i915->gt_pm.llc_pstate.enabled = true;
8687 }
8688
8689 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8690 {
8691         lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8692
8693         if (dev_priv->gt_pm.rc6.enabled)
8694                 return;
8695
8696         if (IS_CHERRYVIEW(dev_priv))
8697                 cherryview_enable_rc6(dev_priv);
8698         else if (IS_VALLEYVIEW(dev_priv))
8699                 valleyview_enable_rc6(dev_priv);
8700         else if (INTEL_GEN(dev_priv) >= 11)
8701                 gen11_enable_rc6(dev_priv);
8702         else if (INTEL_GEN(dev_priv) >= 9)
8703                 gen9_enable_rc6(dev_priv);
8704         else if (IS_BROADWELL(dev_priv))
8705                 gen8_enable_rc6(dev_priv);
8706         else if (INTEL_GEN(dev_priv) >= 6)
8707                 gen6_enable_rc6(dev_priv);
8708
8709         dev_priv->gt_pm.rc6.enabled = true;
8710 }
8711
8712 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8713 {
8714         struct intel_rps *rps = &dev_priv->gt_pm.rps;
8715
8716         lockdep_assert_held(&rps->lock);
8717
8718         if (rps->enabled)
8719                 return;
8720
8721         if (IS_CHERRYVIEW(dev_priv)) {
8722                 cherryview_enable_rps(dev_priv);
8723         } else if (IS_VALLEYVIEW(dev_priv)) {
8724                 valleyview_enable_rps(dev_priv);
8725         } else if (INTEL_GEN(dev_priv) >= 9) {
8726                 gen9_enable_rps(dev_priv);
8727         } else if (IS_BROADWELL(dev_priv)) {
8728                 gen8_enable_rps(dev_priv);
8729         } else if (INTEL_GEN(dev_priv) >= 6) {
8730                 gen6_enable_rps(dev_priv);
8731         } else if (IS_IRONLAKE_M(dev_priv)) {
8732                 ironlake_enable_drps(dev_priv);
8733                 intel_init_emon(dev_priv);
8734         }
8735
8736         WARN_ON(rps->max_freq < rps->min_freq);
8737         WARN_ON(rps->idle_freq > rps->max_freq);
8738
8739         WARN_ON(rps->efficient_freq < rps->min_freq);
8740         WARN_ON(rps->efficient_freq > rps->max_freq);
8741
8742         rps->enabled = true;
8743 }
8744
8745 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8746 {
8747         /* Powersaving is controlled by the host when inside a VM */
8748         if (intel_vgpu_active(dev_priv))
8749                 return;
8750
8751         mutex_lock(&dev_priv->gt_pm.rps.lock);
8752
8753         if (HAS_RC6(dev_priv))
8754                 intel_enable_rc6(dev_priv);
8755         if (HAS_RPS(dev_priv))
8756                 intel_enable_rps(dev_priv);
8757         if (HAS_LLC(dev_priv))
8758                 intel_enable_llc_pstate(dev_priv);
8759
8760         mutex_unlock(&dev_priv->gt_pm.rps.lock);
8761 }
8762
8763 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8764 {
8765         /*
8766          * On Ibex Peak and Cougar Point, we need to disable clock
8767          * gating for the panel power sequencer or it will fail to
8768          * start up when no ports are active.
8769          */
8770         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8771 }
8772
8773 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8774 {
8775         enum pipe pipe;
8776
8777         for_each_pipe(dev_priv, pipe) {
8778                 I915_WRITE(DSPCNTR(pipe),
8779                            I915_READ(DSPCNTR(pipe)) |
8780                            DISPPLANE_TRICKLE_FEED_DISABLE);
8781
8782                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8783                 POSTING_READ(DSPSURF(pipe));
8784         }
8785 }
8786
8787 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8788 {
8789         u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8790
8791         /*
8792          * Required for FBC
8793          * WaFbcDisableDpfcClockGating:ilk
8794          */
8795         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8796                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8797                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8798
8799         I915_WRITE(PCH_3DCGDIS0,
8800                    MARIUNIT_CLOCK_GATE_DISABLE |
8801                    SVSMUNIT_CLOCK_GATE_DISABLE);
8802         I915_WRITE(PCH_3DCGDIS1,
8803                    VFMUNIT_CLOCK_GATE_DISABLE);
8804
8805         /*
8806          * According to the spec the following bits should be set in
8807          * order to enable memory self-refresh
8808          * The bit 22/21 of 0x42004
8809          * The bit 5 of 0x42020
8810          * The bit 15 of 0x45000
8811          */
8812         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8813                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
8814                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8815         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8816         I915_WRITE(DISP_ARB_CTL,
8817                    (I915_READ(DISP_ARB_CTL) |
8818                     DISP_FBC_WM_DIS));
8819
8820         /*
8821          * Based on the document from hardware guys the following bits
8822          * should be set unconditionally in order to enable FBC.
8823          * The bit 22 of 0x42000
8824          * The bit 22 of 0x42004
8825          * The bit 7,8,9 of 0x42020.
8826          */
8827         if (IS_IRONLAKE_M(dev_priv)) {
8828                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8829                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8830                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8831                            ILK_FBCQ_DIS);
8832                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8833                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8834                            ILK_DPARB_GATE);
8835         }
8836
8837         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8838
8839         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8840                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8841                    ILK_ELPIN_409_SELECT);
8842         I915_WRITE(_3D_CHICKEN2,
8843                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8844                    _3D_CHICKEN2_WM_READ_PIPELINED);
8845
8846         /* WaDisableRenderCachePipelinedFlush:ilk */
8847         I915_WRITE(CACHE_MODE_0,
8848                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8849
8850         /* WaDisable_RenderCache_OperationalFlush:ilk */
8851         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8852
8853         g4x_disable_trickle_feed(dev_priv);
8854
8855         ibx_init_clock_gating(dev_priv);
8856 }
8857
8858 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8859 {
8860         int pipe;
8861         u32 val;
8862
8863         /*
8864          * On Ibex Peak and Cougar Point, we need to disable clock
8865          * gating for the panel power sequencer or it will fail to
8866          * start up when no ports are active.
8867          */
8868         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8869                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8870                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
8871         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8872                    DPLS_EDP_PPS_FIX_DIS);
8873         /* The below fixes the weird display corruption, a few pixels shifted
8874          * downward, on (only) LVDS of some HP laptops with IVY.
8875          */
8876         for_each_pipe(dev_priv, pipe) {
8877                 val = I915_READ(TRANS_CHICKEN2(pipe));
8878                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8879                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8880                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8881                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8882                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8883                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8884                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8885                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8886         }
8887         /* WADP0ClockGatingDisable */
8888         for_each_pipe(dev_priv, pipe) {
8889                 I915_WRITE(TRANS_CHICKEN1(pipe),
8890                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8891         }
8892 }
8893
8894 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8895 {
8896         u32 tmp;
8897
8898         tmp = I915_READ(MCH_SSKPD);
8899         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8900                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8901                               tmp);
8902 }
8903
8904 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8905 {
8906         u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8907
8908         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8909
8910         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8911                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8912                    ILK_ELPIN_409_SELECT);
8913
8914         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8915         I915_WRITE(_3D_CHICKEN,
8916                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8917
8918         /* WaDisable_RenderCache_OperationalFlush:snb */
8919         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8920
8921         /*
8922          * BSpec recoomends 8x4 when MSAA is used,
8923          * however in practice 16x4 seems fastest.
8924          *
8925          * Note that PS/WM thread counts depend on the WIZ hashing
8926          * disable bit, which we don't touch here, but it's good
8927          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8928          */
8929         I915_WRITE(GEN6_GT_MODE,
8930                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8931
8932         I915_WRITE(CACHE_MODE_0,
8933                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8934
8935         I915_WRITE(GEN6_UCGCTL1,
8936                    I915_READ(GEN6_UCGCTL1) |
8937                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8938                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8939
8940         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8941          * gating disable must be set.  Failure to set it results in
8942          * flickering pixels due to Z write ordering failures after
8943          * some amount of runtime in the Mesa "fire" demo, and Unigine
8944          * Sanctuary and Tropics, and apparently anything else with
8945          * alpha test or pixel discard.
8946          *
8947          * According to the spec, bit 11 (RCCUNIT) must also be set,
8948          * but we didn't debug actual testcases to find it out.
8949          *
8950          * WaDisableRCCUnitClockGating:snb
8951          * WaDisableRCPBUnitClockGating:snb
8952          */
8953         I915_WRITE(GEN6_UCGCTL2,
8954                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8955                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8956
8957         /* WaStripsFansDisableFastClipPerformanceFix:snb */
8958         I915_WRITE(_3D_CHICKEN3,
8959                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8960
8961         /*
8962          * Bspec says:
8963          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8964          * 3DSTATE_SF number of SF output attributes is more than 16."
8965          */
8966         I915_WRITE(_3D_CHICKEN3,
8967                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8968
8969         /*
8970          * According to the spec the following bits should be
8971          * set in order to enable memory self-refresh and fbc:
8972          * The bit21 and bit22 of 0x42000
8973          * The bit21 and bit22 of 0x42004
8974          * The bit5 and bit7 of 0x42020
8975          * The bit14 of 0x70180
8976          * The bit14 of 0x71180
8977          *
8978          * WaFbcAsynchFlipDisableFbcQueue:snb
8979          */
8980         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8981                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8982                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8983         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8984                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8985                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8986         I915_WRITE(ILK_DSPCLK_GATE_D,
8987                    I915_READ(ILK_DSPCLK_GATE_D) |
8988                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
8989                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8990
8991         g4x_disable_trickle_feed(dev_priv);
8992
8993         cpt_init_clock_gating(dev_priv);
8994
8995         gen6_check_mch_setup(dev_priv);
8996 }
8997
8998 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8999 {
9000         u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
9001
9002         /*
9003          * WaVSThreadDispatchOverride:ivb,vlv
9004          *
9005          * This actually overrides the dispatch
9006          * mode for all thread types.
9007          */
9008         reg &= ~GEN7_FF_SCHED_MASK;
9009         reg |= GEN7_FF_TS_SCHED_HW;
9010         reg |= GEN7_FF_VS_SCHED_HW;
9011         reg |= GEN7_FF_DS_SCHED_HW;
9012
9013         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
9014 }
9015
9016 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
9017 {
9018         /*
9019          * TODO: this bit should only be enabled when really needed, then
9020          * disabled when not needed anymore in order to save power.
9021          */
9022         if (HAS_PCH_LPT_LP(dev_priv))
9023                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
9024                            I915_READ(SOUTH_DSPCLK_GATE_D) |
9025                            PCH_LP_PARTITION_LEVEL_DISABLE);
9026
9027         /* WADPOClockGatingDisable:hsw */
9028         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
9029                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
9030                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
9031 }
9032
9033 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
9034 {
9035         if (HAS_PCH_LPT_LP(dev_priv)) {
9036                 u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9037
9038                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9039                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9040         }
9041 }
9042
9043 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
9044                                    int general_prio_credits,
9045                                    int high_prio_credits)
9046 {
9047         u32 misccpctl;
9048         u32 val;
9049
9050         /* WaTempDisableDOPClkGating:bdw */
9051         misccpctl = I915_READ(GEN7_MISCCPCTL);
9052         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
9053
9054         val = I915_READ(GEN8_L3SQCREG1);
9055         val &= ~L3_PRIO_CREDITS_MASK;
9056         val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
9057         val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
9058         I915_WRITE(GEN8_L3SQCREG1, val);
9059
9060         /*
9061          * Wait at least 100 clocks before re-enabling clock gating.
9062          * See the definition of L3SQCREG1 in BSpec.
9063          */
9064         POSTING_READ(GEN8_L3SQCREG1);
9065         udelay(1);
9066         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
9067 }
9068
9069 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
9070 {
9071         /* This is not an Wa. Enable to reduce Sampler power */
9072         I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
9073                    I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
9074
9075         /* WaEnable32PlaneMode:icl */
9076         I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
9077                    _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
9078 }
9079
9080 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
9081 {
9082         if (!HAS_PCH_CNP(dev_priv))
9083                 return;
9084
9085         /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
9086         I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
9087                    CNP_PWM_CGE_GATING_DISABLE);
9088 }
9089
9090 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
9091 {
9092         u32 val;
9093         cnp_init_clock_gating(dev_priv);
9094
9095         /* This is not an Wa. Enable for better image quality */
9096         I915_WRITE(_3D_CHICKEN3,
9097                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
9098
9099         /* WaEnableChickenDCPR:cnl */
9100         I915_WRITE(GEN8_CHICKEN_DCPR_1,
9101                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
9102
9103         /* WaFbcWakeMemOn:cnl */
9104         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
9105                    DISP_FBC_MEMORY_WAKE);
9106
9107         val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
9108         /* ReadHitWriteOnlyDisable:cnl */
9109         val |= RCCUNIT_CLKGATE_DIS;
9110         /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
9111         if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
9112                 val |= SARBUNIT_CLKGATE_DIS;
9113         I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
9114
9115         /* Wa_2201832410:cnl */
9116         val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
9117         val |= GWUNIT_CLKGATE_DIS;
9118         I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
9119
9120         /* WaDisableVFclkgate:cnl */
9121         /* WaVFUnitClockGatingDisable:cnl */
9122         val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
9123         val |= VFUNIT_CLKGATE_DIS;
9124         I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
9125 }
9126
9127 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
9128 {
9129         cnp_init_clock_gating(dev_priv);
9130         gen9_init_clock_gating(dev_priv);
9131
9132         /* WaFbcNukeOnHostModify:cfl */
9133         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9134                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9135 }
9136
9137 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
9138 {
9139         gen9_init_clock_gating(dev_priv);
9140
9141         /* WaDisableSDEUnitClockGating:kbl */
9142         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
9143                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9144                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9145
9146         /* WaDisableGamClockGating:kbl */
9147         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
9148                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9149                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
9150
9151         /* WaFbcNukeOnHostModify:kbl */
9152         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9153                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9154 }
9155
9156 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
9157 {
9158         gen9_init_clock_gating(dev_priv);
9159
9160         /* WAC6entrylatency:skl */
9161         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
9162                    FBC_LLC_FULLY_OPEN);
9163
9164         /* WaFbcNukeOnHostModify:skl */
9165         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9166                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9167 }
9168
9169 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
9170 {
9171         /* The GTT cache must be disabled if the system is using 2M pages. */
9172         bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
9173                                                  I915_GTT_PAGE_SIZE_2M);
9174         enum pipe pipe;
9175
9176         /* WaSwitchSolVfFArbitrationPriority:bdw */
9177         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9178
9179         /* WaPsrDPAMaskVBlankInSRD:bdw */
9180         I915_WRITE(CHICKEN_PAR1_1,
9181                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
9182
9183         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
9184         for_each_pipe(dev_priv, pipe) {
9185                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
9186                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
9187                            BDW_DPRS_MASK_VBLANK_SRD);
9188         }
9189
9190         /* WaVSRefCountFullforceMissDisable:bdw */
9191         /* WaDSRefCountFullforceMissDisable:bdw */
9192         I915_WRITE(GEN7_FF_THREAD_MODE,
9193                    I915_READ(GEN7_FF_THREAD_MODE) &
9194                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9195
9196         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9197                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9198
9199         /* WaDisableSDEUnitClockGating:bdw */
9200         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9201                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9202
9203         /* WaProgramL3SqcReg1Default:bdw */
9204         gen8_set_l3sqc_credits(dev_priv, 30, 2);
9205
9206         /* WaGttCachingOffByDefault:bdw */
9207         I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
9208
9209         /* WaKVMNotificationOnConfigChange:bdw */
9210         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
9211                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
9212
9213         lpt_init_clock_gating(dev_priv);
9214
9215         /* WaDisableDopClockGating:bdw
9216          *
9217          * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
9218          * clock gating.
9219          */
9220         I915_WRITE(GEN6_UCGCTL1,
9221                    I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
9222 }
9223
9224 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
9225 {
9226         /* L3 caching of data atomics doesn't work -- disable it. */
9227         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
9228         I915_WRITE(HSW_ROW_CHICKEN3,
9229                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
9230
9231         /* This is required by WaCatErrorRejectionIssue:hsw */
9232         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9233                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9234                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9235
9236         /* WaVSRefCountFullforceMissDisable:hsw */
9237         I915_WRITE(GEN7_FF_THREAD_MODE,
9238                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
9239
9240         /* WaDisable_RenderCache_OperationalFlush:hsw */
9241         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9242
9243         /* enable HiZ Raw Stall Optimization */
9244         I915_WRITE(CACHE_MODE_0_GEN7,
9245                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9246
9247         /* WaDisable4x2SubspanOptimization:hsw */
9248         I915_WRITE(CACHE_MODE_1,
9249                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9250
9251         /*
9252          * BSpec recommends 8x4 when MSAA is used,
9253          * however in practice 16x4 seems fastest.
9254          *
9255          * Note that PS/WM thread counts depend on the WIZ hashing
9256          * disable bit, which we don't touch here, but it's good
9257          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9258          */
9259         I915_WRITE(GEN7_GT_MODE,
9260                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9261
9262         /* WaSampleCChickenBitEnable:hsw */
9263         I915_WRITE(HALF_SLICE_CHICKEN3,
9264                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
9265
9266         /* WaSwitchSolVfFArbitrationPriority:hsw */
9267         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9268
9269         lpt_init_clock_gating(dev_priv);
9270 }
9271
9272 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
9273 {
9274         u32 snpcr;
9275
9276         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
9277
9278         /* WaDisableEarlyCull:ivb */
9279         I915_WRITE(_3D_CHICKEN3,
9280                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9281
9282         /* WaDisableBackToBackFlipFix:ivb */
9283         I915_WRITE(IVB_CHICKEN3,
9284                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9285                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
9286
9287         /* WaDisablePSDDualDispatchEnable:ivb */
9288         if (IS_IVB_GT1(dev_priv))
9289                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9290                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9291
9292         /* WaDisable_RenderCache_OperationalFlush:ivb */
9293         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9294
9295         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
9296         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
9297                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
9298
9299         /* WaApplyL3ControlAndL3ChickenMode:ivb */
9300         I915_WRITE(GEN7_L3CNTLREG1,
9301                         GEN7_WA_FOR_GEN7_L3_CONTROL);
9302         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
9303                    GEN7_WA_L3_CHICKEN_MODE);
9304         if (IS_IVB_GT1(dev_priv))
9305                 I915_WRITE(GEN7_ROW_CHICKEN2,
9306                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9307         else {
9308                 /* must write both registers */
9309                 I915_WRITE(GEN7_ROW_CHICKEN2,
9310                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9311                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
9312                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9313         }
9314
9315         /* WaForceL3Serialization:ivb */
9316         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9317                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9318
9319         /*
9320          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9321          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
9322          */
9323         I915_WRITE(GEN6_UCGCTL2,
9324                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9325
9326         /* This is required by WaCatErrorRejectionIssue:ivb */
9327         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9328                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9329                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9330
9331         g4x_disable_trickle_feed(dev_priv);
9332
9333         gen7_setup_fixed_func_scheduler(dev_priv);
9334
9335         if (0) { /* causes HiZ corruption on ivb:gt1 */
9336                 /* enable HiZ Raw Stall Optimization */
9337                 I915_WRITE(CACHE_MODE_0_GEN7,
9338                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9339         }
9340
9341         /* WaDisable4x2SubspanOptimization:ivb */
9342         I915_WRITE(CACHE_MODE_1,
9343                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9344
9345         /*
9346          * BSpec recommends 8x4 when MSAA is used,
9347          * however in practice 16x4 seems fastest.
9348          *
9349          * Note that PS/WM thread counts depend on the WIZ hashing
9350          * disable bit, which we don't touch here, but it's good
9351          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9352          */
9353         I915_WRITE(GEN7_GT_MODE,
9354                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9355
9356         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
9357         snpcr &= ~GEN6_MBC_SNPCR_MASK;
9358         snpcr |= GEN6_MBC_SNPCR_MED;
9359         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9360
9361         if (!HAS_PCH_NOP(dev_priv))
9362                 cpt_init_clock_gating(dev_priv);
9363
9364         gen6_check_mch_setup(dev_priv);
9365 }
9366
9367 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9368 {
9369         /* WaDisableEarlyCull:vlv */
9370         I915_WRITE(_3D_CHICKEN3,
9371                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9372
9373         /* WaDisableBackToBackFlipFix:vlv */
9374         I915_WRITE(IVB_CHICKEN3,
9375                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9376                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
9377
9378         /* WaPsdDispatchEnable:vlv */
9379         /* WaDisablePSDDualDispatchEnable:vlv */
9380         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9381                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
9382                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9383
9384         /* WaDisable_RenderCache_OperationalFlush:vlv */
9385         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9386
9387         /* WaForceL3Serialization:vlv */
9388         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9389                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9390
9391         /* WaDisableDopClockGating:vlv */
9392         I915_WRITE(GEN7_ROW_CHICKEN2,
9393                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9394
9395         /* This is required by WaCatErrorRejectionIssue:vlv */
9396         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9397                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9398                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9399
9400         gen7_setup_fixed_func_scheduler(dev_priv);
9401
9402         /*
9403          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9404          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9405          */
9406         I915_WRITE(GEN6_UCGCTL2,
9407                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9408
9409         /* WaDisableL3Bank2xClockGate:vlv
9410          * Disabling L3 clock gating- MMIO 940c[25] = 1
9411          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
9412         I915_WRITE(GEN7_UCGCTL4,
9413                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9414
9415         /*
9416          * BSpec says this must be set, even though
9417          * WaDisable4x2SubspanOptimization isn't listed for VLV.
9418          */
9419         I915_WRITE(CACHE_MODE_1,
9420                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9421
9422         /*
9423          * BSpec recommends 8x4 when MSAA is used,
9424          * however in practice 16x4 seems fastest.
9425          *
9426          * Note that PS/WM thread counts depend on the WIZ hashing
9427          * disable bit, which we don't touch here, but it's good
9428          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9429          */
9430         I915_WRITE(GEN7_GT_MODE,
9431                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9432
9433         /*
9434          * WaIncreaseL3CreditsForVLVB0:vlv
9435          * This is the hardware default actually.
9436          */
9437         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
9438
9439         /*
9440          * WaDisableVLVClockGating_VBIIssue:vlv
9441          * Disable clock gating on th GCFG unit to prevent a delay
9442          * in the reporting of vblank events.
9443          */
9444         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9445 }
9446
9447 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9448 {
9449         /* WaVSRefCountFullforceMissDisable:chv */
9450         /* WaDSRefCountFullforceMissDisable:chv */
9451         I915_WRITE(GEN7_FF_THREAD_MODE,
9452                    I915_READ(GEN7_FF_THREAD_MODE) &
9453                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9454
9455         /* WaDisableSemaphoreAndSyncFlipWait:chv */
9456         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9457                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9458
9459         /* WaDisableCSUnitClockGating:chv */
9460         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9461                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9462
9463         /* WaDisableSDEUnitClockGating:chv */
9464         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9465                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9466
9467         /*
9468          * WaProgramL3SqcReg1Default:chv
9469          * See gfxspecs/Related Documents/Performance Guide/
9470          * LSQC Setting Recommendations.
9471          */
9472         gen8_set_l3sqc_credits(dev_priv, 38, 2);
9473
9474         /*
9475          * GTT cache may not work with big pages, so if those
9476          * are ever enabled GTT cache may need to be disabled.
9477          */
9478         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9479 }
9480
9481 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9482 {
9483         u32 dspclk_gate;
9484
9485         I915_WRITE(RENCLK_GATE_D1, 0);
9486         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
9487                    GS_UNIT_CLOCK_GATE_DISABLE |
9488                    CL_UNIT_CLOCK_GATE_DISABLE);
9489         I915_WRITE(RAMCLK_GATE_D, 0);
9490         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9491                 OVRUNIT_CLOCK_GATE_DISABLE |
9492                 OVCUNIT_CLOCK_GATE_DISABLE;
9493         if (IS_GM45(dev_priv))
9494                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9495         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9496
9497         /* WaDisableRenderCachePipelinedFlush */
9498         I915_WRITE(CACHE_MODE_0,
9499                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9500
9501         /* WaDisable_RenderCache_OperationalFlush:g4x */
9502         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9503
9504         g4x_disable_trickle_feed(dev_priv);
9505 }
9506
9507 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9508 {
9509         struct intel_uncore *uncore = &dev_priv->uncore;
9510
9511         intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9512         intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
9513         intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
9514         intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
9515         intel_uncore_write16(uncore, DEUC, 0);
9516         intel_uncore_write(uncore,
9517                            MI_ARB_STATE,
9518                            _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9519
9520         /* WaDisable_RenderCache_OperationalFlush:gen4 */
9521         intel_uncore_write(uncore,
9522                            CACHE_MODE_0,
9523                            _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9524 }
9525
9526 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9527 {
9528         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9529                    I965_RCC_CLOCK_GATE_DISABLE |
9530                    I965_RCPB_CLOCK_GATE_DISABLE |
9531                    I965_ISC_CLOCK_GATE_DISABLE |
9532                    I965_FBC_CLOCK_GATE_DISABLE);
9533         I915_WRITE(RENCLK_GATE_D2, 0);
9534         I915_WRITE(MI_ARB_STATE,
9535                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9536
9537         /* WaDisable_RenderCache_OperationalFlush:gen4 */
9538         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9539 }
9540
9541 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9542 {
9543         u32 dstate = I915_READ(D_STATE);
9544
9545         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9546                 DSTATE_DOT_CLOCK_GATING;
9547         I915_WRITE(D_STATE, dstate);
9548
9549         if (IS_PINEVIEW(dev_priv))
9550                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9551
9552         /* IIR "flip pending" means done if this bit is set */
9553         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9554
9555         /* interrupts should cause a wake up from C3 */
9556         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9557
9558         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
9559         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9560
9561         I915_WRITE(MI_ARB_STATE,
9562                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9563 }
9564
9565 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9566 {
9567         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9568
9569         /* interrupts should cause a wake up from C3 */
9570         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
9571                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9572
9573         I915_WRITE(MEM_MODE,
9574                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9575 }
9576
9577 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9578 {
9579         I915_WRITE(MEM_MODE,
9580                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
9581                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9582 }
9583
9584 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9585 {
9586         dev_priv->display.init_clock_gating(dev_priv);
9587 }
9588
9589 void intel_suspend_hw(struct drm_i915_private *dev_priv)
9590 {
9591         if (HAS_PCH_LPT(dev_priv))
9592                 lpt_suspend_hw(dev_priv);
9593 }
9594
9595 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9596 {
9597         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9598 }
9599
9600 /**
9601  * intel_init_clock_gating_hooks - setup the clock gating hooks
9602  * @dev_priv: device private
9603  *
9604  * Setup the hooks that configure which clocks of a given platform can be
9605  * gated and also apply various GT and display specific workarounds for these
9606  * platforms. Note that some GT specific workarounds are applied separately
9607  * when GPU contexts or batchbuffers start their execution.
9608  */
9609 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9610 {
9611         if (IS_GEN(dev_priv, 11))
9612                 dev_priv->display.init_clock_gating = icl_init_clock_gating;
9613         else if (IS_CANNONLAKE(dev_priv))
9614                 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9615         else if (IS_COFFEELAKE(dev_priv))
9616                 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9617         else if (IS_SKYLAKE(dev_priv))
9618                 dev_priv->display.init_clock_gating = skl_init_clock_gating;
9619         else if (IS_KABYLAKE(dev_priv))
9620                 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9621         else if (IS_BROXTON(dev_priv))
9622                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9623         else if (IS_GEMINILAKE(dev_priv))
9624                 dev_priv->display.init_clock_gating = glk_init_clock_gating;
9625         else if (IS_BROADWELL(dev_priv))
9626                 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9627         else if (IS_CHERRYVIEW(dev_priv))
9628                 dev_priv->display.init_clock_gating = chv_init_clock_gating;
9629         else if (IS_HASWELL(dev_priv))
9630                 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9631         else if (IS_IVYBRIDGE(dev_priv))
9632                 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9633         else if (IS_VALLEYVIEW(dev_priv))
9634                 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9635         else if (IS_GEN(dev_priv, 6))
9636                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9637         else if (IS_GEN(dev_priv, 5))
9638                 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9639         else if (IS_G4X(dev_priv))
9640                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9641         else if (IS_I965GM(dev_priv))
9642                 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9643         else if (IS_I965G(dev_priv))
9644                 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9645         else if (IS_GEN(dev_priv, 3))
9646                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9647         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9648                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9649         else if (IS_GEN(dev_priv, 2))
9650                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9651         else {
9652                 MISSING_CASE(INTEL_DEVID(dev_priv));
9653                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9654         }
9655 }
9656
9657 /* Set up chip specific power management-related functions */
9658 void intel_init_pm(struct drm_i915_private *dev_priv)
9659 {
9660         /* For cxsr */
9661         if (IS_PINEVIEW(dev_priv))
9662                 i915_pineview_get_mem_freq(dev_priv);
9663         else if (IS_GEN(dev_priv, 5))
9664                 i915_ironlake_get_mem_freq(dev_priv);
9665
9666         /* For FIFO watermark updates */
9667         if (INTEL_GEN(dev_priv) >= 9) {
9668                 skl_setup_wm_latency(dev_priv);
9669                 dev_priv->display.initial_watermarks = skl_initial_wm;
9670                 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9671                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
9672         } else if (HAS_PCH_SPLIT(dev_priv)) {
9673                 ilk_setup_wm_latency(dev_priv);
9674
9675                 if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
9676                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9677                     (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
9678                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9679                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9680                         dev_priv->display.compute_intermediate_wm =
9681                                 ilk_compute_intermediate_wm;
9682                         dev_priv->display.initial_watermarks =
9683                                 ilk_initial_watermarks;
9684                         dev_priv->display.optimize_watermarks =
9685                                 ilk_optimize_watermarks;
9686                 } else {
9687                         DRM_DEBUG_KMS("Failed to read display plane latency. "
9688                                       "Disable CxSR\n");
9689                 }
9690         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9691                 vlv_setup_wm_latency(dev_priv);
9692                 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9693                 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9694                 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9695                 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9696                 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9697         } else if (IS_G4X(dev_priv)) {
9698                 g4x_setup_wm_latency(dev_priv);
9699                 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9700                 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9701                 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9702                 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9703         } else if (IS_PINEVIEW(dev_priv)) {
9704                 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
9705                                             dev_priv->is_ddr3,
9706                                             dev_priv->fsb_freq,
9707                                             dev_priv->mem_freq)) {
9708                         DRM_INFO("failed to find known CxSR latency "
9709                                  "(found ddr%s fsb freq %d, mem freq %d), "
9710                                  "disabling CxSR\n",
9711                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
9712                                  dev_priv->fsb_freq, dev_priv->mem_freq);
9713                         /* Disable CxSR and never update its watermark again */
9714                         intel_set_memory_cxsr(dev_priv, false);
9715                         dev_priv->display.update_wm = NULL;
9716                 } else
9717                         dev_priv->display.update_wm = pineview_update_wm;
9718         } else if (IS_GEN(dev_priv, 4)) {
9719                 dev_priv->display.update_wm = i965_update_wm;
9720         } else if (IS_GEN(dev_priv, 3)) {
9721                 dev_priv->display.update_wm = i9xx_update_wm;
9722                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9723         } else if (IS_GEN(dev_priv, 2)) {
9724                 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9725                         dev_priv->display.update_wm = i845_update_wm;
9726                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
9727                 } else {
9728                         dev_priv->display.update_wm = i9xx_update_wm;
9729                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
9730                 }
9731         } else {
9732                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9733         }
9734 }
9735
9736 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9737 {
9738         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9739
9740         /*
9741          * N = val - 0xb7
9742          * Slow = Fast = GPLL ref * N
9743          */
9744         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9745 }
9746
9747 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9748 {
9749         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9750
9751         return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9752 }
9753
9754 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9755 {
9756         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9757
9758         /*
9759          * N = val / 2
9760          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9761          */
9762         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9763 }
9764
9765 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9766 {
9767         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9768
9769         /* CHV needs even values */
9770         return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9771 }
9772
9773 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9774 {
9775         if (INTEL_GEN(dev_priv) >= 9)
9776                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9777                                          GEN9_FREQ_SCALER);
9778         else if (IS_CHERRYVIEW(dev_priv))
9779                 return chv_gpu_freq(dev_priv, val);
9780         else if (IS_VALLEYVIEW(dev_priv))
9781                 return byt_gpu_freq(dev_priv, val);
9782         else
9783                 return val * GT_FREQUENCY_MULTIPLIER;
9784 }
9785
9786 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9787 {
9788         if (INTEL_GEN(dev_priv) >= 9)
9789                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9790                                          GT_FREQUENCY_MULTIPLIER);
9791         else if (IS_CHERRYVIEW(dev_priv))
9792                 return chv_freq_opcode(dev_priv, val);
9793         else if (IS_VALLEYVIEW(dev_priv))
9794                 return byt_freq_opcode(dev_priv, val);
9795         else
9796                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9797 }
9798
9799 void intel_pm_setup(struct drm_i915_private *dev_priv)
9800 {
9801         mutex_init(&dev_priv->gt_pm.rps.lock);
9802         mutex_init(&dev_priv->gt_pm.rps.power.mutex);
9803
9804         atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9805
9806         dev_priv->runtime_pm.suspended = false;
9807         atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9808 }
9809
9810 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9811                              const i915_reg_t reg)
9812 {
9813         u32 lower, upper, tmp;
9814         int loop = 2;
9815
9816         /*
9817          * The register accessed do not need forcewake. We borrow
9818          * uncore lock to prevent concurrent access to range reg.
9819          */
9820         lockdep_assert_held(&dev_priv->uncore.lock);
9821
9822         /*
9823          * vlv and chv residency counters are 40 bits in width.
9824          * With a control bit, we can choose between upper or lower
9825          * 32bit window into this counter.
9826          *
9827          * Although we always use the counter in high-range mode elsewhere,
9828          * userspace may attempt to read the value before rc6 is initialised,
9829          * before we have set the default VLV_COUNTER_CONTROL value. So always
9830          * set the high bit to be safe.
9831          */
9832         I915_WRITE_FW(VLV_COUNTER_CONTROL,
9833                       _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9834         upper = I915_READ_FW(reg);
9835         do {
9836                 tmp = upper;
9837
9838                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9839                               _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9840                 lower = I915_READ_FW(reg);
9841
9842                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9843                               _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9844                 upper = I915_READ_FW(reg);
9845         } while (upper != tmp && --loop);
9846
9847         /*
9848          * Everywhere else we always use VLV_COUNTER_CONTROL with the
9849          * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9850          * now.
9851          */
9852
9853         return lower | (u64)upper << 8;
9854 }
9855
9856 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9857                            const i915_reg_t reg)
9858 {
9859         struct intel_uncore *uncore = &dev_priv->uncore;
9860         u64 time_hw, prev_hw, overflow_hw;
9861         unsigned int fw_domains;
9862         unsigned long flags;
9863         unsigned int i;
9864         u32 mul, div;
9865
9866         if (!HAS_RC6(dev_priv))
9867                 return 0;
9868
9869         /*
9870          * Store previous hw counter values for counter wrap-around handling.
9871          *
9872          * There are only four interesting registers and they live next to each
9873          * other so we can use the relative address, compared to the smallest
9874          * one as the index into driver storage.
9875          */
9876         i = (i915_mmio_reg_offset(reg) -
9877              i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
9878         if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
9879                 return 0;
9880
9881         fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ);
9882
9883         spin_lock_irqsave(&uncore->lock, flags);
9884         intel_uncore_forcewake_get__locked(uncore, fw_domains);
9885
9886         /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9887         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9888                 mul = 1000000;
9889                 div = dev_priv->czclk_freq;
9890                 overflow_hw = BIT_ULL(40);
9891                 time_hw = vlv_residency_raw(dev_priv, reg);
9892         } else {
9893                 /* 833.33ns units on Gen9LP, 1.28us elsewhere. */
9894                 if (IS_GEN9_LP(dev_priv)) {
9895                         mul = 10000;
9896                         div = 12;
9897                 } else {
9898                         mul = 1280;
9899                         div = 1;
9900                 }
9901
9902                 overflow_hw = BIT_ULL(32);
9903                 time_hw = intel_uncore_read_fw(uncore, reg);
9904         }
9905
9906         /*
9907          * Counter wrap handling.
9908          *
9909          * But relying on a sufficient frequency of queries otherwise counters
9910          * can still wrap.
9911          */
9912         prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
9913         dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
9914
9915         /* RC6 delta from last sample. */
9916         if (time_hw >= prev_hw)
9917                 time_hw -= prev_hw;
9918         else
9919                 time_hw += overflow_hw - prev_hw;
9920
9921         /* Add delta to RC6 extended raw driver copy. */
9922         time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
9923         dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
9924
9925         intel_uncore_forcewake_put__locked(uncore, fw_domains);
9926         spin_unlock_irqrestore(&uncore->lock, flags);
9927
9928         return mul_u64_u32_div(time_hw, mul, div);
9929 }
9930
9931 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
9932                            i915_reg_t reg)
9933 {
9934         return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
9935 }
9936
9937 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
9938 {
9939         u32 cagf;
9940
9941         if (INTEL_GEN(dev_priv) >= 9)
9942                 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
9943         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
9944                 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
9945         else
9946                 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
9947
9948         return  cagf;
9949 }