]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <linux/module.h>
30 #include <linux/pm_runtime.h>
31
32 #include <drm/drm_atomic_helper.h>
33 #include <drm/drm_fourcc.h>
34 #include <drm/drm_plane_helper.h>
35
36 #include "i915_drv.h"
37 #include "intel_drv.h"
38 #include "intel_fbc.h"
39 #include "intel_pm.h"
40 #include "intel_sprite.h"
41 #include "../../../platform/x86/intel_ips.h"
42
43 /**
44  * DOC: RC6
45  *
46  * RC6 is a special power stage which allows the GPU to enter an very
47  * low-voltage mode when idle, using down to 0V while at this stage.  This
48  * stage is entered automatically when the GPU is idle when RC6 support is
49  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
50  *
51  * There are different RC6 modes available in Intel GPU, which differentiate
52  * among each other with the latency required to enter and leave RC6 and
53  * voltage consumed by the GPU in different states.
54  *
55  * The combination of the following flags define which states GPU is allowed
56  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
57  * RC6pp is deepest RC6. Their support by hardware varies according to the
58  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
59  * which brings the most power savings; deeper states save more power, but
60  * require higher latency to switch to and wake up.
61  */
62
63 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
64 {
65         if (HAS_LLC(dev_priv)) {
66                 /*
67                  * WaCompressedResourceDisplayNewHashMode:skl,kbl
68                  * Display WA #0390: skl,kbl
69                  *
70                  * Must match Sampler, Pixel Back End, and Media. See
71                  * WaCompressedResourceSamplerPbeMediaNewHashMode.
72                  */
73                 I915_WRITE(CHICKEN_PAR1_1,
74                            I915_READ(CHICKEN_PAR1_1) |
75                            SKL_DE_COMPRESSED_HASH_MODE);
76         }
77
78         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
79         I915_WRITE(CHICKEN_PAR1_1,
80                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
81
82         /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
83         I915_WRITE(GEN8_CHICKEN_DCPR_1,
84                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
85
86         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
87         /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
88         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
89                    DISP_FBC_WM_DIS |
90                    DISP_FBC_MEMORY_WAKE);
91
92         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
93         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
94                    ILK_DPFC_DISABLE_DUMMY0);
95
96         if (IS_SKYLAKE(dev_priv)) {
97                 /* WaDisableDopClockGating */
98                 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
99                            & ~GEN7_DOP_CLOCK_GATE_ENABLE);
100         }
101 }
102
103 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
104 {
105         gen9_init_clock_gating(dev_priv);
106
107         /* WaDisableSDEUnitClockGating:bxt */
108         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
109                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
110
111         /*
112          * FIXME:
113          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
114          */
115         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
116                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
117
118         /*
119          * Wa: Backlight PWM may stop in the asserted state, causing backlight
120          * to stay fully on.
121          */
122         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
123                    PWM1_GATING_DIS | PWM2_GATING_DIS);
124 }
125
126 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
127 {
128         gen9_init_clock_gating(dev_priv);
129
130         /*
131          * WaDisablePWMClockGating:glk
132          * Backlight PWM may stop in the asserted state, causing backlight
133          * to stay fully on.
134          */
135         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
136                    PWM1_GATING_DIS | PWM2_GATING_DIS);
137
138         /* WaDDIIOTimeout:glk */
139         if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
140                 u32 val = I915_READ(CHICKEN_MISC_2);
141                 val &= ~(GLK_CL0_PWR_DOWN |
142                          GLK_CL1_PWR_DOWN |
143                          GLK_CL2_PWR_DOWN);
144                 I915_WRITE(CHICKEN_MISC_2, val);
145         }
146
147 }
148
149 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
150 {
151         u32 tmp;
152
153         tmp = I915_READ(CLKCFG);
154
155         switch (tmp & CLKCFG_FSB_MASK) {
156         case CLKCFG_FSB_533:
157                 dev_priv->fsb_freq = 533; /* 133*4 */
158                 break;
159         case CLKCFG_FSB_800:
160                 dev_priv->fsb_freq = 800; /* 200*4 */
161                 break;
162         case CLKCFG_FSB_667:
163                 dev_priv->fsb_freq =  667; /* 167*4 */
164                 break;
165         case CLKCFG_FSB_400:
166                 dev_priv->fsb_freq = 400; /* 100*4 */
167                 break;
168         }
169
170         switch (tmp & CLKCFG_MEM_MASK) {
171         case CLKCFG_MEM_533:
172                 dev_priv->mem_freq = 533;
173                 break;
174         case CLKCFG_MEM_667:
175                 dev_priv->mem_freq = 667;
176                 break;
177         case CLKCFG_MEM_800:
178                 dev_priv->mem_freq = 800;
179                 break;
180         }
181
182         /* detect pineview DDR3 setting */
183         tmp = I915_READ(CSHRDDR3CTL);
184         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
185 }
186
187 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
188 {
189         u16 ddrpll, csipll;
190
191         ddrpll = I915_READ16(DDRMPLL1);
192         csipll = I915_READ16(CSIPLL0);
193
194         switch (ddrpll & 0xff) {
195         case 0xc:
196                 dev_priv->mem_freq = 800;
197                 break;
198         case 0x10:
199                 dev_priv->mem_freq = 1066;
200                 break;
201         case 0x14:
202                 dev_priv->mem_freq = 1333;
203                 break;
204         case 0x18:
205                 dev_priv->mem_freq = 1600;
206                 break;
207         default:
208                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
209                                  ddrpll & 0xff);
210                 dev_priv->mem_freq = 0;
211                 break;
212         }
213
214         dev_priv->ips.r_t = dev_priv->mem_freq;
215
216         switch (csipll & 0x3ff) {
217         case 0x00c:
218                 dev_priv->fsb_freq = 3200;
219                 break;
220         case 0x00e:
221                 dev_priv->fsb_freq = 3733;
222                 break;
223         case 0x010:
224                 dev_priv->fsb_freq = 4266;
225                 break;
226         case 0x012:
227                 dev_priv->fsb_freq = 4800;
228                 break;
229         case 0x014:
230                 dev_priv->fsb_freq = 5333;
231                 break;
232         case 0x016:
233                 dev_priv->fsb_freq = 5866;
234                 break;
235         case 0x018:
236                 dev_priv->fsb_freq = 6400;
237                 break;
238         default:
239                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
240                                  csipll & 0x3ff);
241                 dev_priv->fsb_freq = 0;
242                 break;
243         }
244
245         if (dev_priv->fsb_freq == 3200) {
246                 dev_priv->ips.c_m = 0;
247         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
248                 dev_priv->ips.c_m = 1;
249         } else {
250                 dev_priv->ips.c_m = 2;
251         }
252 }
253
254 static const struct cxsr_latency cxsr_latency_table[] = {
255         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
256         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
257         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
258         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
259         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
260
261         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
262         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
263         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
264         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
265         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
266
267         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
268         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
269         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
270         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
271         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
272
273         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
274         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
275         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
276         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
277         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
278
279         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
280         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
281         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
282         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
283         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
284
285         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
286         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
287         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
288         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
289         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
290 };
291
292 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
293                                                          bool is_ddr3,
294                                                          int fsb,
295                                                          int mem)
296 {
297         const struct cxsr_latency *latency;
298         int i;
299
300         if (fsb == 0 || mem == 0)
301                 return NULL;
302
303         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
304                 latency = &cxsr_latency_table[i];
305                 if (is_desktop == latency->is_desktop &&
306                     is_ddr3 == latency->is_ddr3 &&
307                     fsb == latency->fsb_freq && mem == latency->mem_freq)
308                         return latency;
309         }
310
311         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
312
313         return NULL;
314 }
315
316 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
317 {
318         u32 val;
319
320         mutex_lock(&dev_priv->pcu_lock);
321
322         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
323         if (enable)
324                 val &= ~FORCE_DDR_HIGH_FREQ;
325         else
326                 val |= FORCE_DDR_HIGH_FREQ;
327         val &= ~FORCE_DDR_LOW_FREQ;
328         val |= FORCE_DDR_FREQ_REQ_ACK;
329         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
330
331         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
332                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
333                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
334
335         mutex_unlock(&dev_priv->pcu_lock);
336 }
337
338 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
339 {
340         u32 val;
341
342         mutex_lock(&dev_priv->pcu_lock);
343
344         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
345         if (enable)
346                 val |= DSP_MAXFIFO_PM5_ENABLE;
347         else
348                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
349         vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
350
351         mutex_unlock(&dev_priv->pcu_lock);
352 }
353
354 #define FW_WM(value, plane) \
355         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
356
357 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
358 {
359         bool was_enabled;
360         u32 val;
361
362         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
363                 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
364                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
365                 POSTING_READ(FW_BLC_SELF_VLV);
366         } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
367                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
368                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
369                 POSTING_READ(FW_BLC_SELF);
370         } else if (IS_PINEVIEW(dev_priv)) {
371                 val = I915_READ(DSPFW3);
372                 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
373                 if (enable)
374                         val |= PINEVIEW_SELF_REFRESH_EN;
375                 else
376                         val &= ~PINEVIEW_SELF_REFRESH_EN;
377                 I915_WRITE(DSPFW3, val);
378                 POSTING_READ(DSPFW3);
379         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
380                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
381                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
382                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
383                 I915_WRITE(FW_BLC_SELF, val);
384                 POSTING_READ(FW_BLC_SELF);
385         } else if (IS_I915GM(dev_priv)) {
386                 /*
387                  * FIXME can't find a bit like this for 915G, and
388                  * and yet it does have the related watermark in
389                  * FW_BLC_SELF. What's going on?
390                  */
391                 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
392                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
393                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
394                 I915_WRITE(INSTPM, val);
395                 POSTING_READ(INSTPM);
396         } else {
397                 return false;
398         }
399
400         trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
401
402         DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
403                       enableddisabled(enable),
404                       enableddisabled(was_enabled));
405
406         return was_enabled;
407 }
408
409 /**
410  * intel_set_memory_cxsr - Configure CxSR state
411  * @dev_priv: i915 device
412  * @enable: Allow vs. disallow CxSR
413  *
414  * Allow or disallow the system to enter a special CxSR
415  * (C-state self refresh) state. What typically happens in CxSR mode
416  * is that several display FIFOs may get combined into a single larger
417  * FIFO for a particular plane (so called max FIFO mode) to allow the
418  * system to defer memory fetches longer, and the memory will enter
419  * self refresh.
420  *
421  * Note that enabling CxSR does not guarantee that the system enter
422  * this special mode, nor does it guarantee that the system stays
423  * in that mode once entered. So this just allows/disallows the system
424  * to autonomously utilize the CxSR mode. Other factors such as core
425  * C-states will affect when/if the system actually enters/exits the
426  * CxSR mode.
427  *
428  * Note that on VLV/CHV this actually only controls the max FIFO mode,
429  * and the system is free to enter/exit memory self refresh at any time
430  * even when the use of CxSR has been disallowed.
431  *
432  * While the system is actually in the CxSR/max FIFO mode, some plane
433  * control registers will not get latched on vblank. Thus in order to
434  * guarantee the system will respond to changes in the plane registers
435  * we must always disallow CxSR prior to making changes to those registers.
436  * Unfortunately the system will re-evaluate the CxSR conditions at
437  * frame start which happens after vblank start (which is when the plane
438  * registers would get latched), so we can't proceed with the plane update
439  * during the same frame where we disallowed CxSR.
440  *
441  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
442  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
443  * the hardware w.r.t. HPLL SR when writing to plane registers.
444  * Disallowing just CxSR is sufficient.
445  */
446 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
447 {
448         bool ret;
449
450         mutex_lock(&dev_priv->wm.wm_mutex);
451         ret = _intel_set_memory_cxsr(dev_priv, enable);
452         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
453                 dev_priv->wm.vlv.cxsr = enable;
454         else if (IS_G4X(dev_priv))
455                 dev_priv->wm.g4x.cxsr = enable;
456         mutex_unlock(&dev_priv->wm.wm_mutex);
457
458         return ret;
459 }
460
461 /*
462  * Latency for FIFO fetches is dependent on several factors:
463  *   - memory configuration (speed, channels)
464  *   - chipset
465  *   - current MCH state
466  * It can be fairly high in some situations, so here we assume a fairly
467  * pessimal value.  It's a tradeoff between extra memory fetches (if we
468  * set this value too high, the FIFO will fetch frequently to stay full)
469  * and power consumption (set it too low to save power and we might see
470  * FIFO underruns and display "flicker").
471  *
472  * A value of 5us seems to be a good balance; safe for very low end
473  * platforms but not overly aggressive on lower latency configs.
474  */
475 static const int pessimal_latency_ns = 5000;
476
477 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
478         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
479
480 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
481 {
482         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
483         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
484         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
485         enum pipe pipe = crtc->pipe;
486         int sprite0_start, sprite1_start;
487
488         switch (pipe) {
489                 u32 dsparb, dsparb2, dsparb3;
490         case PIPE_A:
491                 dsparb = I915_READ(DSPARB);
492                 dsparb2 = I915_READ(DSPARB2);
493                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
494                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
495                 break;
496         case PIPE_B:
497                 dsparb = I915_READ(DSPARB);
498                 dsparb2 = I915_READ(DSPARB2);
499                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
500                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
501                 break;
502         case PIPE_C:
503                 dsparb2 = I915_READ(DSPARB2);
504                 dsparb3 = I915_READ(DSPARB3);
505                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
506                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
507                 break;
508         default:
509                 MISSING_CASE(pipe);
510                 return;
511         }
512
513         fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
514         fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
515         fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
516         fifo_state->plane[PLANE_CURSOR] = 63;
517 }
518
519 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
520                               enum i9xx_plane_id i9xx_plane)
521 {
522         u32 dsparb = I915_READ(DSPARB);
523         int size;
524
525         size = dsparb & 0x7f;
526         if (i9xx_plane == PLANE_B)
527                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
528
529         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
530                       dsparb, plane_name(i9xx_plane), size);
531
532         return size;
533 }
534
535 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
536                               enum i9xx_plane_id i9xx_plane)
537 {
538         u32 dsparb = I915_READ(DSPARB);
539         int size;
540
541         size = dsparb & 0x1ff;
542         if (i9xx_plane == PLANE_B)
543                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
544         size >>= 1; /* Convert to cachelines */
545
546         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
547                       dsparb, plane_name(i9xx_plane), size);
548
549         return size;
550 }
551
552 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
553                               enum i9xx_plane_id i9xx_plane)
554 {
555         u32 dsparb = I915_READ(DSPARB);
556         int size;
557
558         size = dsparb & 0x7f;
559         size >>= 2; /* Convert to cachelines */
560
561         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
562                       dsparb, plane_name(i9xx_plane), size);
563
564         return size;
565 }
566
567 /* Pineview has different values for various configs */
568 static const struct intel_watermark_params pineview_display_wm = {
569         .fifo_size = PINEVIEW_DISPLAY_FIFO,
570         .max_wm = PINEVIEW_MAX_WM,
571         .default_wm = PINEVIEW_DFT_WM,
572         .guard_size = PINEVIEW_GUARD_WM,
573         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
574 };
575 static const struct intel_watermark_params pineview_display_hplloff_wm = {
576         .fifo_size = PINEVIEW_DISPLAY_FIFO,
577         .max_wm = PINEVIEW_MAX_WM,
578         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
579         .guard_size = PINEVIEW_GUARD_WM,
580         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
581 };
582 static const struct intel_watermark_params pineview_cursor_wm = {
583         .fifo_size = PINEVIEW_CURSOR_FIFO,
584         .max_wm = PINEVIEW_CURSOR_MAX_WM,
585         .default_wm = PINEVIEW_CURSOR_DFT_WM,
586         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
587         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
588 };
589 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
590         .fifo_size = PINEVIEW_CURSOR_FIFO,
591         .max_wm = PINEVIEW_CURSOR_MAX_WM,
592         .default_wm = PINEVIEW_CURSOR_DFT_WM,
593         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
594         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
595 };
596 static const struct intel_watermark_params i965_cursor_wm_info = {
597         .fifo_size = I965_CURSOR_FIFO,
598         .max_wm = I965_CURSOR_MAX_WM,
599         .default_wm = I965_CURSOR_DFT_WM,
600         .guard_size = 2,
601         .cacheline_size = I915_FIFO_LINE_SIZE,
602 };
603 static const struct intel_watermark_params i945_wm_info = {
604         .fifo_size = I945_FIFO_SIZE,
605         .max_wm = I915_MAX_WM,
606         .default_wm = 1,
607         .guard_size = 2,
608         .cacheline_size = I915_FIFO_LINE_SIZE,
609 };
610 static const struct intel_watermark_params i915_wm_info = {
611         .fifo_size = I915_FIFO_SIZE,
612         .max_wm = I915_MAX_WM,
613         .default_wm = 1,
614         .guard_size = 2,
615         .cacheline_size = I915_FIFO_LINE_SIZE,
616 };
617 static const struct intel_watermark_params i830_a_wm_info = {
618         .fifo_size = I855GM_FIFO_SIZE,
619         .max_wm = I915_MAX_WM,
620         .default_wm = 1,
621         .guard_size = 2,
622         .cacheline_size = I830_FIFO_LINE_SIZE,
623 };
624 static const struct intel_watermark_params i830_bc_wm_info = {
625         .fifo_size = I855GM_FIFO_SIZE,
626         .max_wm = I915_MAX_WM/2,
627         .default_wm = 1,
628         .guard_size = 2,
629         .cacheline_size = I830_FIFO_LINE_SIZE,
630 };
631 static const struct intel_watermark_params i845_wm_info = {
632         .fifo_size = I830_FIFO_SIZE,
633         .max_wm = I915_MAX_WM,
634         .default_wm = 1,
635         .guard_size = 2,
636         .cacheline_size = I830_FIFO_LINE_SIZE,
637 };
638
639 /**
640  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
641  * @pixel_rate: Pipe pixel rate in kHz
642  * @cpp: Plane bytes per pixel
643  * @latency: Memory wakeup latency in 0.1us units
644  *
645  * Compute the watermark using the method 1 or "small buffer"
646  * formula. The caller may additonally add extra cachelines
647  * to account for TLB misses and clock crossings.
648  *
649  * This method is concerned with the short term drain rate
650  * of the FIFO, ie. it does not account for blanking periods
651  * which would effectively reduce the average drain rate across
652  * a longer period. The name "small" refers to the fact the
653  * FIFO is relatively small compared to the amount of data
654  * fetched.
655  *
656  * The FIFO level vs. time graph might look something like:
657  *
658  *   |\   |\
659  *   | \  | \
660  * __---__---__ (- plane active, _ blanking)
661  * -> time
662  *
663  * or perhaps like this:
664  *
665  *   |\|\  |\|\
666  * __----__----__ (- plane active, _ blanking)
667  * -> time
668  *
669  * Returns:
670  * The watermark in bytes
671  */
672 static unsigned int intel_wm_method1(unsigned int pixel_rate,
673                                      unsigned int cpp,
674                                      unsigned int latency)
675 {
676         u64 ret;
677
678         ret = (u64)pixel_rate * cpp * latency;
679         ret = DIV_ROUND_UP_ULL(ret, 10000);
680
681         return ret;
682 }
683
684 /**
685  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
686  * @pixel_rate: Pipe pixel rate in kHz
687  * @htotal: Pipe horizontal total
688  * @width: Plane width in pixels
689  * @cpp: Plane bytes per pixel
690  * @latency: Memory wakeup latency in 0.1us units
691  *
692  * Compute the watermark using the method 2 or "large buffer"
693  * formula. The caller may additonally add extra cachelines
694  * to account for TLB misses and clock crossings.
695  *
696  * This method is concerned with the long term drain rate
697  * of the FIFO, ie. it does account for blanking periods
698  * which effectively reduce the average drain rate across
699  * a longer period. The name "large" refers to the fact the
700  * FIFO is relatively large compared to the amount of data
701  * fetched.
702  *
703  * The FIFO level vs. time graph might look something like:
704  *
705  *    |\___       |\___
706  *    |    \___   |    \___
707  *    |        \  |        \
708  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
709  * -> time
710  *
711  * Returns:
712  * The watermark in bytes
713  */
714 static unsigned int intel_wm_method2(unsigned int pixel_rate,
715                                      unsigned int htotal,
716                                      unsigned int width,
717                                      unsigned int cpp,
718                                      unsigned int latency)
719 {
720         unsigned int ret;
721
722         /*
723          * FIXME remove once all users are computing
724          * watermarks in the correct place.
725          */
726         if (WARN_ON_ONCE(htotal == 0))
727                 htotal = 1;
728
729         ret = (latency * pixel_rate) / (htotal * 10000);
730         ret = (ret + 1) * width * cpp;
731
732         return ret;
733 }
734
735 /**
736  * intel_calculate_wm - calculate watermark level
737  * @pixel_rate: pixel clock
738  * @wm: chip FIFO params
739  * @fifo_size: size of the FIFO buffer
740  * @cpp: bytes per pixel
741  * @latency_ns: memory latency for the platform
742  *
743  * Calculate the watermark level (the level at which the display plane will
744  * start fetching from memory again).  Each chip has a different display
745  * FIFO size and allocation, so the caller needs to figure that out and pass
746  * in the correct intel_watermark_params structure.
747  *
748  * As the pixel clock runs, the FIFO will be drained at a rate that depends
749  * on the pixel size.  When it reaches the watermark level, it'll start
750  * fetching FIFO line sized based chunks from memory until the FIFO fills
751  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
752  * will occur, and a display engine hang could result.
753  */
754 static unsigned int intel_calculate_wm(int pixel_rate,
755                                        const struct intel_watermark_params *wm,
756                                        int fifo_size, int cpp,
757                                        unsigned int latency_ns)
758 {
759         int entries, wm_size;
760
761         /*
762          * Note: we need to make sure we don't overflow for various clock &
763          * latency values.
764          * clocks go from a few thousand to several hundred thousand.
765          * latency is usually a few thousand
766          */
767         entries = intel_wm_method1(pixel_rate, cpp,
768                                    latency_ns / 100);
769         entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
770                 wm->guard_size;
771         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
772
773         wm_size = fifo_size - entries;
774         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
775
776         /* Don't promote wm_size to unsigned... */
777         if (wm_size > wm->max_wm)
778                 wm_size = wm->max_wm;
779         if (wm_size <= 0)
780                 wm_size = wm->default_wm;
781
782         /*
783          * Bspec seems to indicate that the value shouldn't be lower than
784          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
785          * Lets go for 8 which is the burst size since certain platforms
786          * already use a hardcoded 8 (which is what the spec says should be
787          * done).
788          */
789         if (wm_size <= 8)
790                 wm_size = 8;
791
792         return wm_size;
793 }
794
795 static bool is_disabling(int old, int new, int threshold)
796 {
797         return old >= threshold && new < threshold;
798 }
799
800 static bool is_enabling(int old, int new, int threshold)
801 {
802         return old < threshold && new >= threshold;
803 }
804
805 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
806 {
807         return dev_priv->wm.max_level + 1;
808 }
809
810 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
811                                    const struct intel_plane_state *plane_state)
812 {
813         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
814
815         /* FIXME check the 'enable' instead */
816         if (!crtc_state->base.active)
817                 return false;
818
819         /*
820          * Treat cursor with fb as always visible since cursor updates
821          * can happen faster than the vrefresh rate, and the current
822          * watermark code doesn't handle that correctly. Cursor updates
823          * which set/clear the fb or change the cursor size are going
824          * to get throttled by intel_legacy_cursor_update() to work
825          * around this problem with the watermark code.
826          */
827         if (plane->id == PLANE_CURSOR)
828                 return plane_state->base.fb != NULL;
829         else
830                 return plane_state->base.visible;
831 }
832
833 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
834 {
835         struct intel_crtc *crtc, *enabled = NULL;
836
837         for_each_intel_crtc(&dev_priv->drm, crtc) {
838                 if (intel_crtc_active(crtc)) {
839                         if (enabled)
840                                 return NULL;
841                         enabled = crtc;
842                 }
843         }
844
845         return enabled;
846 }
847
848 static void pineview_update_wm(struct intel_crtc *unused_crtc)
849 {
850         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
851         struct intel_crtc *crtc;
852         const struct cxsr_latency *latency;
853         u32 reg;
854         unsigned int wm;
855
856         latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
857                                          dev_priv->is_ddr3,
858                                          dev_priv->fsb_freq,
859                                          dev_priv->mem_freq);
860         if (!latency) {
861                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
862                 intel_set_memory_cxsr(dev_priv, false);
863                 return;
864         }
865
866         crtc = single_enabled_crtc(dev_priv);
867         if (crtc) {
868                 const struct drm_display_mode *adjusted_mode =
869                         &crtc->config->base.adjusted_mode;
870                 const struct drm_framebuffer *fb =
871                         crtc->base.primary->state->fb;
872                 int cpp = fb->format->cpp[0];
873                 int clock = adjusted_mode->crtc_clock;
874
875                 /* Display SR */
876                 wm = intel_calculate_wm(clock, &pineview_display_wm,
877                                         pineview_display_wm.fifo_size,
878                                         cpp, latency->display_sr);
879                 reg = I915_READ(DSPFW1);
880                 reg &= ~DSPFW_SR_MASK;
881                 reg |= FW_WM(wm, SR);
882                 I915_WRITE(DSPFW1, reg);
883                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
884
885                 /* cursor SR */
886                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
887                                         pineview_display_wm.fifo_size,
888                                         4, latency->cursor_sr);
889                 reg = I915_READ(DSPFW3);
890                 reg &= ~DSPFW_CURSOR_SR_MASK;
891                 reg |= FW_WM(wm, CURSOR_SR);
892                 I915_WRITE(DSPFW3, reg);
893
894                 /* Display HPLL off SR */
895                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
896                                         pineview_display_hplloff_wm.fifo_size,
897                                         cpp, latency->display_hpll_disable);
898                 reg = I915_READ(DSPFW3);
899                 reg &= ~DSPFW_HPLL_SR_MASK;
900                 reg |= FW_WM(wm, HPLL_SR);
901                 I915_WRITE(DSPFW3, reg);
902
903                 /* cursor HPLL off SR */
904                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
905                                         pineview_display_hplloff_wm.fifo_size,
906                                         4, latency->cursor_hpll_disable);
907                 reg = I915_READ(DSPFW3);
908                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
909                 reg |= FW_WM(wm, HPLL_CURSOR);
910                 I915_WRITE(DSPFW3, reg);
911                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
912
913                 intel_set_memory_cxsr(dev_priv, true);
914         } else {
915                 intel_set_memory_cxsr(dev_priv, false);
916         }
917 }
918
919 /*
920  * Documentation says:
921  * "If the line size is small, the TLB fetches can get in the way of the
922  *  data fetches, causing some lag in the pixel data return which is not
923  *  accounted for in the above formulas. The following adjustment only
924  *  needs to be applied if eight whole lines fit in the buffer at once.
925  *  The WM is adjusted upwards by the difference between the FIFO size
926  *  and the size of 8 whole lines. This adjustment is always performed
927  *  in the actual pixel depth regardless of whether FBC is enabled or not."
928  */
929 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
930 {
931         int tlb_miss = fifo_size * 64 - width * cpp * 8;
932
933         return max(0, tlb_miss);
934 }
935
936 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
937                                 const struct g4x_wm_values *wm)
938 {
939         enum pipe pipe;
940
941         for_each_pipe(dev_priv, pipe)
942                 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
943
944         I915_WRITE(DSPFW1,
945                    FW_WM(wm->sr.plane, SR) |
946                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
947                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
948                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
949         I915_WRITE(DSPFW2,
950                    (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
951                    FW_WM(wm->sr.fbc, FBC_SR) |
952                    FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
953                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
954                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
955                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
956         I915_WRITE(DSPFW3,
957                    (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
958                    FW_WM(wm->sr.cursor, CURSOR_SR) |
959                    FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
960                    FW_WM(wm->hpll.plane, HPLL_SR));
961
962         POSTING_READ(DSPFW1);
963 }
964
965 #define FW_WM_VLV(value, plane) \
966         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
967
968 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
969                                 const struct vlv_wm_values *wm)
970 {
971         enum pipe pipe;
972
973         for_each_pipe(dev_priv, pipe) {
974                 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
975
976                 I915_WRITE(VLV_DDL(pipe),
977                            (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
978                            (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
979                            (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
980                            (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
981         }
982
983         /*
984          * Zero the (unused) WM1 watermarks, and also clear all the
985          * high order bits so that there are no out of bounds values
986          * present in the registers during the reprogramming.
987          */
988         I915_WRITE(DSPHOWM, 0);
989         I915_WRITE(DSPHOWM1, 0);
990         I915_WRITE(DSPFW4, 0);
991         I915_WRITE(DSPFW5, 0);
992         I915_WRITE(DSPFW6, 0);
993
994         I915_WRITE(DSPFW1,
995                    FW_WM(wm->sr.plane, SR) |
996                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
997                    FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
998                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
999         I915_WRITE(DSPFW2,
1000                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1001                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1002                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1003         I915_WRITE(DSPFW3,
1004                    FW_WM(wm->sr.cursor, CURSOR_SR));
1005
1006         if (IS_CHERRYVIEW(dev_priv)) {
1007                 I915_WRITE(DSPFW7_CHV,
1008                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1009                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1010                 I915_WRITE(DSPFW8_CHV,
1011                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1012                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1013                 I915_WRITE(DSPFW9_CHV,
1014                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1015                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1016                 I915_WRITE(DSPHOWM,
1017                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1018                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1019                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1020                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1021                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1022                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1023                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1024                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1025                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1026                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1027         } else {
1028                 I915_WRITE(DSPFW7,
1029                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1030                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1031                 I915_WRITE(DSPHOWM,
1032                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1033                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1034                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1035                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1036                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1037                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1038                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1039         }
1040
1041         POSTING_READ(DSPFW1);
1042 }
1043
1044 #undef FW_WM_VLV
1045
1046 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1047 {
1048         /* all latencies in usec */
1049         dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1050         dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1051         dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1052
1053         dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1054 }
1055
1056 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1057 {
1058         /*
1059          * DSPCNTR[13] supposedly controls whether the
1060          * primary plane can use the FIFO space otherwise
1061          * reserved for the sprite plane. It's not 100% clear
1062          * what the actual FIFO size is, but it looks like we
1063          * can happily set both primary and sprite watermarks
1064          * up to 127 cachelines. So that would seem to mean
1065          * that either DSPCNTR[13] doesn't do anything, or that
1066          * the total FIFO is >= 256 cachelines in size. Either
1067          * way, we don't seem to have to worry about this
1068          * repartitioning as the maximum watermark value the
1069          * register can hold for each plane is lower than the
1070          * minimum FIFO size.
1071          */
1072         switch (plane_id) {
1073         case PLANE_CURSOR:
1074                 return 63;
1075         case PLANE_PRIMARY:
1076                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1077         case PLANE_SPRITE0:
1078                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1079         default:
1080                 MISSING_CASE(plane_id);
1081                 return 0;
1082         }
1083 }
1084
1085 static int g4x_fbc_fifo_size(int level)
1086 {
1087         switch (level) {
1088         case G4X_WM_LEVEL_SR:
1089                 return 7;
1090         case G4X_WM_LEVEL_HPLL:
1091                 return 15;
1092         default:
1093                 MISSING_CASE(level);
1094                 return 0;
1095         }
1096 }
1097
1098 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1099                           const struct intel_plane_state *plane_state,
1100                           int level)
1101 {
1102         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1103         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1104         const struct drm_display_mode *adjusted_mode =
1105                 &crtc_state->base.adjusted_mode;
1106         unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1107         unsigned int clock, htotal, cpp, width, wm;
1108
1109         if (latency == 0)
1110                 return USHRT_MAX;
1111
1112         if (!intel_wm_plane_visible(crtc_state, plane_state))
1113                 return 0;
1114
1115         /*
1116          * Not 100% sure which way ELK should go here as the
1117          * spec only says CL/CTG should assume 32bpp and BW
1118          * doesn't need to. But as these things followed the
1119          * mobile vs. desktop lines on gen3 as well, let's
1120          * assume ELK doesn't need this.
1121          *
1122          * The spec also fails to list such a restriction for
1123          * the HPLL watermark, which seems a little strange.
1124          * Let's use 32bpp for the HPLL watermark as well.
1125          */
1126         if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1127             level != G4X_WM_LEVEL_NORMAL)
1128                 cpp = 4;
1129         else
1130                 cpp = plane_state->base.fb->format->cpp[0];
1131
1132         clock = adjusted_mode->crtc_clock;
1133         htotal = adjusted_mode->crtc_htotal;
1134
1135         if (plane->id == PLANE_CURSOR)
1136                 width = plane_state->base.crtc_w;
1137         else
1138                 width = drm_rect_width(&plane_state->base.dst);
1139
1140         if (plane->id == PLANE_CURSOR) {
1141                 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1142         } else if (plane->id == PLANE_PRIMARY &&
1143                    level == G4X_WM_LEVEL_NORMAL) {
1144                 wm = intel_wm_method1(clock, cpp, latency);
1145         } else {
1146                 unsigned int small, large;
1147
1148                 small = intel_wm_method1(clock, cpp, latency);
1149                 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1150
1151                 wm = min(small, large);
1152         }
1153
1154         wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1155                               width, cpp);
1156
1157         wm = DIV_ROUND_UP(wm, 64) + 2;
1158
1159         return min_t(unsigned int, wm, USHRT_MAX);
1160 }
1161
1162 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1163                                  int level, enum plane_id plane_id, u16 value)
1164 {
1165         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1166         bool dirty = false;
1167
1168         for (; level < intel_wm_num_levels(dev_priv); level++) {
1169                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1170
1171                 dirty |= raw->plane[plane_id] != value;
1172                 raw->plane[plane_id] = value;
1173         }
1174
1175         return dirty;
1176 }
1177
1178 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1179                                int level, u16 value)
1180 {
1181         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1182         bool dirty = false;
1183
1184         /* NORMAL level doesn't have an FBC watermark */
1185         level = max(level, G4X_WM_LEVEL_SR);
1186
1187         for (; level < intel_wm_num_levels(dev_priv); level++) {
1188                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1189
1190                 dirty |= raw->fbc != value;
1191                 raw->fbc = value;
1192         }
1193
1194         return dirty;
1195 }
1196
1197 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1198                               const struct intel_plane_state *pstate,
1199                               u32 pri_val);
1200
1201 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1202                                      const struct intel_plane_state *plane_state)
1203 {
1204         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1205         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1206         enum plane_id plane_id = plane->id;
1207         bool dirty = false;
1208         int level;
1209
1210         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1211                 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1212                 if (plane_id == PLANE_PRIMARY)
1213                         dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1214                 goto out;
1215         }
1216
1217         for (level = 0; level < num_levels; level++) {
1218                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1219                 int wm, max_wm;
1220
1221                 wm = g4x_compute_wm(crtc_state, plane_state, level);
1222                 max_wm = g4x_plane_fifo_size(plane_id, level);
1223
1224                 if (wm > max_wm)
1225                         break;
1226
1227                 dirty |= raw->plane[plane_id] != wm;
1228                 raw->plane[plane_id] = wm;
1229
1230                 if (plane_id != PLANE_PRIMARY ||
1231                     level == G4X_WM_LEVEL_NORMAL)
1232                         continue;
1233
1234                 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1235                                         raw->plane[plane_id]);
1236                 max_wm = g4x_fbc_fifo_size(level);
1237
1238                 /*
1239                  * FBC wm is not mandatory as we
1240                  * can always just disable its use.
1241                  */
1242                 if (wm > max_wm)
1243                         wm = USHRT_MAX;
1244
1245                 dirty |= raw->fbc != wm;
1246                 raw->fbc = wm;
1247         }
1248
1249         /* mark watermarks as invalid */
1250         dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1251
1252         if (plane_id == PLANE_PRIMARY)
1253                 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1254
1255  out:
1256         if (dirty) {
1257                 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1258                               plane->base.name,
1259                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1260                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1261                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1262
1263                 if (plane_id == PLANE_PRIMARY)
1264                         DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1265                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1266                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1267         }
1268
1269         return dirty;
1270 }
1271
1272 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1273                                       enum plane_id plane_id, int level)
1274 {
1275         const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1276
1277         return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1278 }
1279
1280 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1281                                      int level)
1282 {
1283         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1284
1285         if (level > dev_priv->wm.max_level)
1286                 return false;
1287
1288         return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1289                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1290                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1291 }
1292
1293 /* mark all levels starting from 'level' as invalid */
1294 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1295                                struct g4x_wm_state *wm_state, int level)
1296 {
1297         if (level <= G4X_WM_LEVEL_NORMAL) {
1298                 enum plane_id plane_id;
1299
1300                 for_each_plane_id_on_crtc(crtc, plane_id)
1301                         wm_state->wm.plane[plane_id] = USHRT_MAX;
1302         }
1303
1304         if (level <= G4X_WM_LEVEL_SR) {
1305                 wm_state->cxsr = false;
1306                 wm_state->sr.cursor = USHRT_MAX;
1307                 wm_state->sr.plane = USHRT_MAX;
1308                 wm_state->sr.fbc = USHRT_MAX;
1309         }
1310
1311         if (level <= G4X_WM_LEVEL_HPLL) {
1312                 wm_state->hpll_en = false;
1313                 wm_state->hpll.cursor = USHRT_MAX;
1314                 wm_state->hpll.plane = USHRT_MAX;
1315                 wm_state->hpll.fbc = USHRT_MAX;
1316         }
1317 }
1318
1319 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1320 {
1321         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1322         struct intel_atomic_state *state =
1323                 to_intel_atomic_state(crtc_state->base.state);
1324         struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1325         int num_active_planes = hweight32(crtc_state->active_planes &
1326                                           ~BIT(PLANE_CURSOR));
1327         const struct g4x_pipe_wm *raw;
1328         const struct intel_plane_state *old_plane_state;
1329         const struct intel_plane_state *new_plane_state;
1330         struct intel_plane *plane;
1331         enum plane_id plane_id;
1332         int i, level;
1333         unsigned int dirty = 0;
1334
1335         for_each_oldnew_intel_plane_in_state(state, plane,
1336                                              old_plane_state,
1337                                              new_plane_state, i) {
1338                 if (new_plane_state->base.crtc != &crtc->base &&
1339                     old_plane_state->base.crtc != &crtc->base)
1340                         continue;
1341
1342                 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1343                         dirty |= BIT(plane->id);
1344         }
1345
1346         if (!dirty)
1347                 return 0;
1348
1349         level = G4X_WM_LEVEL_NORMAL;
1350         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1351                 goto out;
1352
1353         raw = &crtc_state->wm.g4x.raw[level];
1354         for_each_plane_id_on_crtc(crtc, plane_id)
1355                 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1356
1357         level = G4X_WM_LEVEL_SR;
1358
1359         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1360                 goto out;
1361
1362         raw = &crtc_state->wm.g4x.raw[level];
1363         wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1364         wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1365         wm_state->sr.fbc = raw->fbc;
1366
1367         wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1368
1369         level = G4X_WM_LEVEL_HPLL;
1370
1371         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1372                 goto out;
1373
1374         raw = &crtc_state->wm.g4x.raw[level];
1375         wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1376         wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1377         wm_state->hpll.fbc = raw->fbc;
1378
1379         wm_state->hpll_en = wm_state->cxsr;
1380
1381         level++;
1382
1383  out:
1384         if (level == G4X_WM_LEVEL_NORMAL)
1385                 return -EINVAL;
1386
1387         /* invalidate the higher levels */
1388         g4x_invalidate_wms(crtc, wm_state, level);
1389
1390         /*
1391          * Determine if the FBC watermark(s) can be used. IF
1392          * this isn't the case we prefer to disable the FBC
1393          ( watermark(s) rather than disable the SR/HPLL
1394          * level(s) entirely.
1395          */
1396         wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1397
1398         if (level >= G4X_WM_LEVEL_SR &&
1399             wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1400                 wm_state->fbc_en = false;
1401         else if (level >= G4X_WM_LEVEL_HPLL &&
1402                  wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1403                 wm_state->fbc_en = false;
1404
1405         return 0;
1406 }
1407
1408 static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1409 {
1410         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1411         struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1412         const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1413         struct intel_atomic_state *intel_state =
1414                 to_intel_atomic_state(new_crtc_state->base.state);
1415         const struct intel_crtc_state *old_crtc_state =
1416                 intel_atomic_get_old_crtc_state(intel_state, crtc);
1417         const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1418         enum plane_id plane_id;
1419
1420         if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
1421                 *intermediate = *optimal;
1422
1423                 intermediate->cxsr = false;
1424                 intermediate->hpll_en = false;
1425                 goto out;
1426         }
1427
1428         intermediate->cxsr = optimal->cxsr && active->cxsr &&
1429                 !new_crtc_state->disable_cxsr;
1430         intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1431                 !new_crtc_state->disable_cxsr;
1432         intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1433
1434         for_each_plane_id_on_crtc(crtc, plane_id) {
1435                 intermediate->wm.plane[plane_id] =
1436                         max(optimal->wm.plane[plane_id],
1437                             active->wm.plane[plane_id]);
1438
1439                 WARN_ON(intermediate->wm.plane[plane_id] >
1440                         g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1441         }
1442
1443         intermediate->sr.plane = max(optimal->sr.plane,
1444                                      active->sr.plane);
1445         intermediate->sr.cursor = max(optimal->sr.cursor,
1446                                       active->sr.cursor);
1447         intermediate->sr.fbc = max(optimal->sr.fbc,
1448                                    active->sr.fbc);
1449
1450         intermediate->hpll.plane = max(optimal->hpll.plane,
1451                                        active->hpll.plane);
1452         intermediate->hpll.cursor = max(optimal->hpll.cursor,
1453                                         active->hpll.cursor);
1454         intermediate->hpll.fbc = max(optimal->hpll.fbc,
1455                                      active->hpll.fbc);
1456
1457         WARN_ON((intermediate->sr.plane >
1458                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1459                  intermediate->sr.cursor >
1460                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1461                 intermediate->cxsr);
1462         WARN_ON((intermediate->sr.plane >
1463                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1464                  intermediate->sr.cursor >
1465                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1466                 intermediate->hpll_en);
1467
1468         WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1469                 intermediate->fbc_en && intermediate->cxsr);
1470         WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1471                 intermediate->fbc_en && intermediate->hpll_en);
1472
1473 out:
1474         /*
1475          * If our intermediate WM are identical to the final WM, then we can
1476          * omit the post-vblank programming; only update if it's different.
1477          */
1478         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1479                 new_crtc_state->wm.need_postvbl_update = true;
1480
1481         return 0;
1482 }
1483
1484 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1485                          struct g4x_wm_values *wm)
1486 {
1487         struct intel_crtc *crtc;
1488         int num_active_crtcs = 0;
1489
1490         wm->cxsr = true;
1491         wm->hpll_en = true;
1492         wm->fbc_en = true;
1493
1494         for_each_intel_crtc(&dev_priv->drm, crtc) {
1495                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1496
1497                 if (!crtc->active)
1498                         continue;
1499
1500                 if (!wm_state->cxsr)
1501                         wm->cxsr = false;
1502                 if (!wm_state->hpll_en)
1503                         wm->hpll_en = false;
1504                 if (!wm_state->fbc_en)
1505                         wm->fbc_en = false;
1506
1507                 num_active_crtcs++;
1508         }
1509
1510         if (num_active_crtcs != 1) {
1511                 wm->cxsr = false;
1512                 wm->hpll_en = false;
1513                 wm->fbc_en = false;
1514         }
1515
1516         for_each_intel_crtc(&dev_priv->drm, crtc) {
1517                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1518                 enum pipe pipe = crtc->pipe;
1519
1520                 wm->pipe[pipe] = wm_state->wm;
1521                 if (crtc->active && wm->cxsr)
1522                         wm->sr = wm_state->sr;
1523                 if (crtc->active && wm->hpll_en)
1524                         wm->hpll = wm_state->hpll;
1525         }
1526 }
1527
1528 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1529 {
1530         struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1531         struct g4x_wm_values new_wm = {};
1532
1533         g4x_merge_wm(dev_priv, &new_wm);
1534
1535         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1536                 return;
1537
1538         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1539                 _intel_set_memory_cxsr(dev_priv, false);
1540
1541         g4x_write_wm_values(dev_priv, &new_wm);
1542
1543         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1544                 _intel_set_memory_cxsr(dev_priv, true);
1545
1546         *old_wm = new_wm;
1547 }
1548
1549 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1550                                    struct intel_crtc_state *crtc_state)
1551 {
1552         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1553         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1554
1555         mutex_lock(&dev_priv->wm.wm_mutex);
1556         crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1557         g4x_program_watermarks(dev_priv);
1558         mutex_unlock(&dev_priv->wm.wm_mutex);
1559 }
1560
1561 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1562                                     struct intel_crtc_state *crtc_state)
1563 {
1564         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1565         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1566
1567         if (!crtc_state->wm.need_postvbl_update)
1568                 return;
1569
1570         mutex_lock(&dev_priv->wm.wm_mutex);
1571         intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1572         g4x_program_watermarks(dev_priv);
1573         mutex_unlock(&dev_priv->wm.wm_mutex);
1574 }
1575
1576 /* latency must be in 0.1us units. */
1577 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1578                                    unsigned int htotal,
1579                                    unsigned int width,
1580                                    unsigned int cpp,
1581                                    unsigned int latency)
1582 {
1583         unsigned int ret;
1584
1585         ret = intel_wm_method2(pixel_rate, htotal,
1586                                width, cpp, latency);
1587         ret = DIV_ROUND_UP(ret, 64);
1588
1589         return ret;
1590 }
1591
1592 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1593 {
1594         /* all latencies in usec */
1595         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1596
1597         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1598
1599         if (IS_CHERRYVIEW(dev_priv)) {
1600                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1601                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1602
1603                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1604         }
1605 }
1606
1607 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1608                                 const struct intel_plane_state *plane_state,
1609                                 int level)
1610 {
1611         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1612         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1613         const struct drm_display_mode *adjusted_mode =
1614                 &crtc_state->base.adjusted_mode;
1615         unsigned int clock, htotal, cpp, width, wm;
1616
1617         if (dev_priv->wm.pri_latency[level] == 0)
1618                 return USHRT_MAX;
1619
1620         if (!intel_wm_plane_visible(crtc_state, plane_state))
1621                 return 0;
1622
1623         cpp = plane_state->base.fb->format->cpp[0];
1624         clock = adjusted_mode->crtc_clock;
1625         htotal = adjusted_mode->crtc_htotal;
1626         width = crtc_state->pipe_src_w;
1627
1628         if (plane->id == PLANE_CURSOR) {
1629                 /*
1630                  * FIXME the formula gives values that are
1631                  * too big for the cursor FIFO, and hence we
1632                  * would never be able to use cursors. For
1633                  * now just hardcode the watermark.
1634                  */
1635                 wm = 63;
1636         } else {
1637                 wm = vlv_wm_method2(clock, htotal, width, cpp,
1638                                     dev_priv->wm.pri_latency[level] * 10);
1639         }
1640
1641         return min_t(unsigned int, wm, USHRT_MAX);
1642 }
1643
1644 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1645 {
1646         return (active_planes & (BIT(PLANE_SPRITE0) |
1647                                  BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1648 }
1649
1650 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1651 {
1652         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1653         const struct g4x_pipe_wm *raw =
1654                 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1655         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1656         unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1657         int num_active_planes = hweight32(active_planes);
1658         const int fifo_size = 511;
1659         int fifo_extra, fifo_left = fifo_size;
1660         int sprite0_fifo_extra = 0;
1661         unsigned int total_rate;
1662         enum plane_id plane_id;
1663
1664         /*
1665          * When enabling sprite0 after sprite1 has already been enabled
1666          * we tend to get an underrun unless sprite0 already has some
1667          * FIFO space allcoated. Hence we always allocate at least one
1668          * cacheline for sprite0 whenever sprite1 is enabled.
1669          *
1670          * All other plane enable sequences appear immune to this problem.
1671          */
1672         if (vlv_need_sprite0_fifo_workaround(active_planes))
1673                 sprite0_fifo_extra = 1;
1674
1675         total_rate = raw->plane[PLANE_PRIMARY] +
1676                 raw->plane[PLANE_SPRITE0] +
1677                 raw->plane[PLANE_SPRITE1] +
1678                 sprite0_fifo_extra;
1679
1680         if (total_rate > fifo_size)
1681                 return -EINVAL;
1682
1683         if (total_rate == 0)
1684                 total_rate = 1;
1685
1686         for_each_plane_id_on_crtc(crtc, plane_id) {
1687                 unsigned int rate;
1688
1689                 if ((active_planes & BIT(plane_id)) == 0) {
1690                         fifo_state->plane[plane_id] = 0;
1691                         continue;
1692                 }
1693
1694                 rate = raw->plane[plane_id];
1695                 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1696                 fifo_left -= fifo_state->plane[plane_id];
1697         }
1698
1699         fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1700         fifo_left -= sprite0_fifo_extra;
1701
1702         fifo_state->plane[PLANE_CURSOR] = 63;
1703
1704         fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1705
1706         /* spread the remainder evenly */
1707         for_each_plane_id_on_crtc(crtc, plane_id) {
1708                 int plane_extra;
1709
1710                 if (fifo_left == 0)
1711                         break;
1712
1713                 if ((active_planes & BIT(plane_id)) == 0)
1714                         continue;
1715
1716                 plane_extra = min(fifo_extra, fifo_left);
1717                 fifo_state->plane[plane_id] += plane_extra;
1718                 fifo_left -= plane_extra;
1719         }
1720
1721         WARN_ON(active_planes != 0 && fifo_left != 0);
1722
1723         /* give it all to the first plane if none are active */
1724         if (active_planes == 0) {
1725                 WARN_ON(fifo_left != fifo_size);
1726                 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1727         }
1728
1729         return 0;
1730 }
1731
1732 /* mark all levels starting from 'level' as invalid */
1733 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1734                                struct vlv_wm_state *wm_state, int level)
1735 {
1736         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1737
1738         for (; level < intel_wm_num_levels(dev_priv); level++) {
1739                 enum plane_id plane_id;
1740
1741                 for_each_plane_id_on_crtc(crtc, plane_id)
1742                         wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1743
1744                 wm_state->sr[level].cursor = USHRT_MAX;
1745                 wm_state->sr[level].plane = USHRT_MAX;
1746         }
1747 }
1748
1749 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1750 {
1751         if (wm > fifo_size)
1752                 return USHRT_MAX;
1753         else
1754                 return fifo_size - wm;
1755 }
1756
1757 /*
1758  * Starting from 'level' set all higher
1759  * levels to 'value' in the "raw" watermarks.
1760  */
1761 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1762                                  int level, enum plane_id plane_id, u16 value)
1763 {
1764         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1765         int num_levels = intel_wm_num_levels(dev_priv);
1766         bool dirty = false;
1767
1768         for (; level < num_levels; level++) {
1769                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1770
1771                 dirty |= raw->plane[plane_id] != value;
1772                 raw->plane[plane_id] = value;
1773         }
1774
1775         return dirty;
1776 }
1777
1778 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1779                                      const struct intel_plane_state *plane_state)
1780 {
1781         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1782         enum plane_id plane_id = plane->id;
1783         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1784         int level;
1785         bool dirty = false;
1786
1787         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1788                 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1789                 goto out;
1790         }
1791
1792         for (level = 0; level < num_levels; level++) {
1793                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1794                 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1795                 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1796
1797                 if (wm > max_wm)
1798                         break;
1799
1800                 dirty |= raw->plane[plane_id] != wm;
1801                 raw->plane[plane_id] = wm;
1802         }
1803
1804         /* mark all higher levels as invalid */
1805         dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1806
1807 out:
1808         if (dirty)
1809                 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1810                               plane->base.name,
1811                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1812                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1813                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1814
1815         return dirty;
1816 }
1817
1818 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1819                                       enum plane_id plane_id, int level)
1820 {
1821         const struct g4x_pipe_wm *raw =
1822                 &crtc_state->wm.vlv.raw[level];
1823         const struct vlv_fifo_state *fifo_state =
1824                 &crtc_state->wm.vlv.fifo_state;
1825
1826         return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1827 }
1828
1829 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1830 {
1831         return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1832                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1833                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1834                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1835 }
1836
1837 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1838 {
1839         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1840         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1841         struct intel_atomic_state *state =
1842                 to_intel_atomic_state(crtc_state->base.state);
1843         struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1844         const struct vlv_fifo_state *fifo_state =
1845                 &crtc_state->wm.vlv.fifo_state;
1846         int num_active_planes = hweight32(crtc_state->active_planes &
1847                                           ~BIT(PLANE_CURSOR));
1848         bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1849         const struct intel_plane_state *old_plane_state;
1850         const struct intel_plane_state *new_plane_state;
1851         struct intel_plane *plane;
1852         enum plane_id plane_id;
1853         int level, ret, i;
1854         unsigned int dirty = 0;
1855
1856         for_each_oldnew_intel_plane_in_state(state, plane,
1857                                              old_plane_state,
1858                                              new_plane_state, i) {
1859                 if (new_plane_state->base.crtc != &crtc->base &&
1860                     old_plane_state->base.crtc != &crtc->base)
1861                         continue;
1862
1863                 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1864                         dirty |= BIT(plane->id);
1865         }
1866
1867         /*
1868          * DSPARB registers may have been reset due to the
1869          * power well being turned off. Make sure we restore
1870          * them to a consistent state even if no primary/sprite
1871          * planes are initially active.
1872          */
1873         if (needs_modeset)
1874                 crtc_state->fifo_changed = true;
1875
1876         if (!dirty)
1877                 return 0;
1878
1879         /* cursor changes don't warrant a FIFO recompute */
1880         if (dirty & ~BIT(PLANE_CURSOR)) {
1881                 const struct intel_crtc_state *old_crtc_state =
1882                         intel_atomic_get_old_crtc_state(state, crtc);
1883                 const struct vlv_fifo_state *old_fifo_state =
1884                         &old_crtc_state->wm.vlv.fifo_state;
1885
1886                 ret = vlv_compute_fifo(crtc_state);
1887                 if (ret)
1888                         return ret;
1889
1890                 if (needs_modeset ||
1891                     memcmp(old_fifo_state, fifo_state,
1892                            sizeof(*fifo_state)) != 0)
1893                         crtc_state->fifo_changed = true;
1894         }
1895
1896         /* initially allow all levels */
1897         wm_state->num_levels = intel_wm_num_levels(dev_priv);
1898         /*
1899          * Note that enabling cxsr with no primary/sprite planes
1900          * enabled can wedge the pipe. Hence we only allow cxsr
1901          * with exactly one enabled primary/sprite plane.
1902          */
1903         wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1904
1905         for (level = 0; level < wm_state->num_levels; level++) {
1906                 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1907                 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1908
1909                 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1910                         break;
1911
1912                 for_each_plane_id_on_crtc(crtc, plane_id) {
1913                         wm_state->wm[level].plane[plane_id] =
1914                                 vlv_invert_wm_value(raw->plane[plane_id],
1915                                                     fifo_state->plane[plane_id]);
1916                 }
1917
1918                 wm_state->sr[level].plane =
1919                         vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1920                                                  raw->plane[PLANE_SPRITE0],
1921                                                  raw->plane[PLANE_SPRITE1]),
1922                                             sr_fifo_size);
1923
1924                 wm_state->sr[level].cursor =
1925                         vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1926                                             63);
1927         }
1928
1929         if (level == 0)
1930                 return -EINVAL;
1931
1932         /* limit to only levels we can actually handle */
1933         wm_state->num_levels = level;
1934
1935         /* invalidate the higher levels */
1936         vlv_invalidate_wms(crtc, wm_state, level);
1937
1938         return 0;
1939 }
1940
1941 #define VLV_FIFO(plane, value) \
1942         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1943
1944 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1945                                    struct intel_crtc_state *crtc_state)
1946 {
1947         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1948         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1949         const struct vlv_fifo_state *fifo_state =
1950                 &crtc_state->wm.vlv.fifo_state;
1951         int sprite0_start, sprite1_start, fifo_size;
1952
1953         if (!crtc_state->fifo_changed)
1954                 return;
1955
1956         sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1957         sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1958         fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1959
1960         WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1961         WARN_ON(fifo_size != 511);
1962
1963         trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1964
1965         /*
1966          * uncore.lock serves a double purpose here. It allows us to
1967          * use the less expensive I915_{READ,WRITE}_FW() functions, and
1968          * it protects the DSPARB registers from getting clobbered by
1969          * parallel updates from multiple pipes.
1970          *
1971          * intel_pipe_update_start() has already disabled interrupts
1972          * for us, so a plain spin_lock() is sufficient here.
1973          */
1974         spin_lock(&dev_priv->uncore.lock);
1975
1976         switch (crtc->pipe) {
1977                 u32 dsparb, dsparb2, dsparb3;
1978         case PIPE_A:
1979                 dsparb = I915_READ_FW(DSPARB);
1980                 dsparb2 = I915_READ_FW(DSPARB2);
1981
1982                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1983                             VLV_FIFO(SPRITEB, 0xff));
1984                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1985                            VLV_FIFO(SPRITEB, sprite1_start));
1986
1987                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1988                              VLV_FIFO(SPRITEB_HI, 0x1));
1989                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1990                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1991
1992                 I915_WRITE_FW(DSPARB, dsparb);
1993                 I915_WRITE_FW(DSPARB2, dsparb2);
1994                 break;
1995         case PIPE_B:
1996                 dsparb = I915_READ_FW(DSPARB);
1997                 dsparb2 = I915_READ_FW(DSPARB2);
1998
1999                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2000                             VLV_FIFO(SPRITED, 0xff));
2001                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2002                            VLV_FIFO(SPRITED, sprite1_start));
2003
2004                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2005                              VLV_FIFO(SPRITED_HI, 0xff));
2006                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2007                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2008
2009                 I915_WRITE_FW(DSPARB, dsparb);
2010                 I915_WRITE_FW(DSPARB2, dsparb2);
2011                 break;
2012         case PIPE_C:
2013                 dsparb3 = I915_READ_FW(DSPARB3);
2014                 dsparb2 = I915_READ_FW(DSPARB2);
2015
2016                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2017                              VLV_FIFO(SPRITEF, 0xff));
2018                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2019                             VLV_FIFO(SPRITEF, sprite1_start));
2020
2021                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2022                              VLV_FIFO(SPRITEF_HI, 0xff));
2023                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2024                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2025
2026                 I915_WRITE_FW(DSPARB3, dsparb3);
2027                 I915_WRITE_FW(DSPARB2, dsparb2);
2028                 break;
2029         default:
2030                 break;
2031         }
2032
2033         POSTING_READ_FW(DSPARB);
2034
2035         spin_unlock(&dev_priv->uncore.lock);
2036 }
2037
2038 #undef VLV_FIFO
2039
2040 static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2041 {
2042         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2043         struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2044         const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2045         struct intel_atomic_state *intel_state =
2046                 to_intel_atomic_state(new_crtc_state->base.state);
2047         const struct intel_crtc_state *old_crtc_state =
2048                 intel_atomic_get_old_crtc_state(intel_state, crtc);
2049         const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2050         int level;
2051
2052         if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
2053                 *intermediate = *optimal;
2054
2055                 intermediate->cxsr = false;
2056                 goto out;
2057         }
2058
2059         intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2060         intermediate->cxsr = optimal->cxsr && active->cxsr &&
2061                 !new_crtc_state->disable_cxsr;
2062
2063         for (level = 0; level < intermediate->num_levels; level++) {
2064                 enum plane_id plane_id;
2065
2066                 for_each_plane_id_on_crtc(crtc, plane_id) {
2067                         intermediate->wm[level].plane[plane_id] =
2068                                 min(optimal->wm[level].plane[plane_id],
2069                                     active->wm[level].plane[plane_id]);
2070                 }
2071
2072                 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2073                                                     active->sr[level].plane);
2074                 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2075                                                      active->sr[level].cursor);
2076         }
2077
2078         vlv_invalidate_wms(crtc, intermediate, level);
2079
2080 out:
2081         /*
2082          * If our intermediate WM are identical to the final WM, then we can
2083          * omit the post-vblank programming; only update if it's different.
2084          */
2085         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2086                 new_crtc_state->wm.need_postvbl_update = true;
2087
2088         return 0;
2089 }
2090
2091 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2092                          struct vlv_wm_values *wm)
2093 {
2094         struct intel_crtc *crtc;
2095         int num_active_crtcs = 0;
2096
2097         wm->level = dev_priv->wm.max_level;
2098         wm->cxsr = true;
2099
2100         for_each_intel_crtc(&dev_priv->drm, crtc) {
2101                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2102
2103                 if (!crtc->active)
2104                         continue;
2105
2106                 if (!wm_state->cxsr)
2107                         wm->cxsr = false;
2108
2109                 num_active_crtcs++;
2110                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2111         }
2112
2113         if (num_active_crtcs != 1)
2114                 wm->cxsr = false;
2115
2116         if (num_active_crtcs > 1)
2117                 wm->level = VLV_WM_LEVEL_PM2;
2118
2119         for_each_intel_crtc(&dev_priv->drm, crtc) {
2120                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2121                 enum pipe pipe = crtc->pipe;
2122
2123                 wm->pipe[pipe] = wm_state->wm[wm->level];
2124                 if (crtc->active && wm->cxsr)
2125                         wm->sr = wm_state->sr[wm->level];
2126
2127                 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2128                 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2129                 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2130                 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2131         }
2132 }
2133
2134 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2135 {
2136         struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2137         struct vlv_wm_values new_wm = {};
2138
2139         vlv_merge_wm(dev_priv, &new_wm);
2140
2141         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2142                 return;
2143
2144         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2145                 chv_set_memory_dvfs(dev_priv, false);
2146
2147         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2148                 chv_set_memory_pm5(dev_priv, false);
2149
2150         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2151                 _intel_set_memory_cxsr(dev_priv, false);
2152
2153         vlv_write_wm_values(dev_priv, &new_wm);
2154
2155         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2156                 _intel_set_memory_cxsr(dev_priv, true);
2157
2158         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2159                 chv_set_memory_pm5(dev_priv, true);
2160
2161         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2162                 chv_set_memory_dvfs(dev_priv, true);
2163
2164         *old_wm = new_wm;
2165 }
2166
2167 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2168                                    struct intel_crtc_state *crtc_state)
2169 {
2170         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2171         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2172
2173         mutex_lock(&dev_priv->wm.wm_mutex);
2174         crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2175         vlv_program_watermarks(dev_priv);
2176         mutex_unlock(&dev_priv->wm.wm_mutex);
2177 }
2178
2179 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2180                                     struct intel_crtc_state *crtc_state)
2181 {
2182         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2183         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2184
2185         if (!crtc_state->wm.need_postvbl_update)
2186                 return;
2187
2188         mutex_lock(&dev_priv->wm.wm_mutex);
2189         intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2190         vlv_program_watermarks(dev_priv);
2191         mutex_unlock(&dev_priv->wm.wm_mutex);
2192 }
2193
2194 static void i965_update_wm(struct intel_crtc *unused_crtc)
2195 {
2196         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2197         struct intel_crtc *crtc;
2198         int srwm = 1;
2199         int cursor_sr = 16;
2200         bool cxsr_enabled;
2201
2202         /* Calc sr entries for one plane configs */
2203         crtc = single_enabled_crtc(dev_priv);
2204         if (crtc) {
2205                 /* self-refresh has much higher latency */
2206                 static const int sr_latency_ns = 12000;
2207                 const struct drm_display_mode *adjusted_mode =
2208                         &crtc->config->base.adjusted_mode;
2209                 const struct drm_framebuffer *fb =
2210                         crtc->base.primary->state->fb;
2211                 int clock = adjusted_mode->crtc_clock;
2212                 int htotal = adjusted_mode->crtc_htotal;
2213                 int hdisplay = crtc->config->pipe_src_w;
2214                 int cpp = fb->format->cpp[0];
2215                 int entries;
2216
2217                 entries = intel_wm_method2(clock, htotal,
2218                                            hdisplay, cpp, sr_latency_ns / 100);
2219                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2220                 srwm = I965_FIFO_SIZE - entries;
2221                 if (srwm < 0)
2222                         srwm = 1;
2223                 srwm &= 0x1ff;
2224                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2225                               entries, srwm);
2226
2227                 entries = intel_wm_method2(clock, htotal,
2228                                            crtc->base.cursor->state->crtc_w, 4,
2229                                            sr_latency_ns / 100);
2230                 entries = DIV_ROUND_UP(entries,
2231                                        i965_cursor_wm_info.cacheline_size) +
2232                         i965_cursor_wm_info.guard_size;
2233
2234                 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2235                 if (cursor_sr > i965_cursor_wm_info.max_wm)
2236                         cursor_sr = i965_cursor_wm_info.max_wm;
2237
2238                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2239                               "cursor %d\n", srwm, cursor_sr);
2240
2241                 cxsr_enabled = true;
2242         } else {
2243                 cxsr_enabled = false;
2244                 /* Turn off self refresh if both pipes are enabled */
2245                 intel_set_memory_cxsr(dev_priv, false);
2246         }
2247
2248         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2249                       srwm);
2250
2251         /* 965 has limitations... */
2252         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2253                    FW_WM(8, CURSORB) |
2254                    FW_WM(8, PLANEB) |
2255                    FW_WM(8, PLANEA));
2256         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2257                    FW_WM(8, PLANEC_OLD));
2258         /* update cursor SR watermark */
2259         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2260
2261         if (cxsr_enabled)
2262                 intel_set_memory_cxsr(dev_priv, true);
2263 }
2264
2265 #undef FW_WM
2266
2267 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2268 {
2269         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2270         const struct intel_watermark_params *wm_info;
2271         u32 fwater_lo;
2272         u32 fwater_hi;
2273         int cwm, srwm = 1;
2274         int fifo_size;
2275         int planea_wm, planeb_wm;
2276         struct intel_crtc *crtc, *enabled = NULL;
2277
2278         if (IS_I945GM(dev_priv))
2279                 wm_info = &i945_wm_info;
2280         else if (!IS_GEN(dev_priv, 2))
2281                 wm_info = &i915_wm_info;
2282         else
2283                 wm_info = &i830_a_wm_info;
2284
2285         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2286         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2287         if (intel_crtc_active(crtc)) {
2288                 const struct drm_display_mode *adjusted_mode =
2289                         &crtc->config->base.adjusted_mode;
2290                 const struct drm_framebuffer *fb =
2291                         crtc->base.primary->state->fb;
2292                 int cpp;
2293
2294                 if (IS_GEN(dev_priv, 2))
2295                         cpp = 4;
2296                 else
2297                         cpp = fb->format->cpp[0];
2298
2299                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2300                                                wm_info, fifo_size, cpp,
2301                                                pessimal_latency_ns);
2302                 enabled = crtc;
2303         } else {
2304                 planea_wm = fifo_size - wm_info->guard_size;
2305                 if (planea_wm > (long)wm_info->max_wm)
2306                         planea_wm = wm_info->max_wm;
2307         }
2308
2309         if (IS_GEN(dev_priv, 2))
2310                 wm_info = &i830_bc_wm_info;
2311
2312         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2313         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2314         if (intel_crtc_active(crtc)) {
2315                 const struct drm_display_mode *adjusted_mode =
2316                         &crtc->config->base.adjusted_mode;
2317                 const struct drm_framebuffer *fb =
2318                         crtc->base.primary->state->fb;
2319                 int cpp;
2320
2321                 if (IS_GEN(dev_priv, 2))
2322                         cpp = 4;
2323                 else
2324                         cpp = fb->format->cpp[0];
2325
2326                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2327                                                wm_info, fifo_size, cpp,
2328                                                pessimal_latency_ns);
2329                 if (enabled == NULL)
2330                         enabled = crtc;
2331                 else
2332                         enabled = NULL;
2333         } else {
2334                 planeb_wm = fifo_size - wm_info->guard_size;
2335                 if (planeb_wm > (long)wm_info->max_wm)
2336                         planeb_wm = wm_info->max_wm;
2337         }
2338
2339         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2340
2341         if (IS_I915GM(dev_priv) && enabled) {
2342                 struct drm_i915_gem_object *obj;
2343
2344                 obj = intel_fb_obj(enabled->base.primary->state->fb);
2345
2346                 /* self-refresh seems busted with untiled */
2347                 if (!i915_gem_object_is_tiled(obj))
2348                         enabled = NULL;
2349         }
2350
2351         /*
2352          * Overlay gets an aggressive default since video jitter is bad.
2353          */
2354         cwm = 2;
2355
2356         /* Play safe and disable self-refresh before adjusting watermarks. */
2357         intel_set_memory_cxsr(dev_priv, false);
2358
2359         /* Calc sr entries for one plane configs */
2360         if (HAS_FW_BLC(dev_priv) && enabled) {
2361                 /* self-refresh has much higher latency */
2362                 static const int sr_latency_ns = 6000;
2363                 const struct drm_display_mode *adjusted_mode =
2364                         &enabled->config->base.adjusted_mode;
2365                 const struct drm_framebuffer *fb =
2366                         enabled->base.primary->state->fb;
2367                 int clock = adjusted_mode->crtc_clock;
2368                 int htotal = adjusted_mode->crtc_htotal;
2369                 int hdisplay = enabled->config->pipe_src_w;
2370                 int cpp;
2371                 int entries;
2372
2373                 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2374                         cpp = 4;
2375                 else
2376                         cpp = fb->format->cpp[0];
2377
2378                 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2379                                            sr_latency_ns / 100);
2380                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2381                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2382                 srwm = wm_info->fifo_size - entries;
2383                 if (srwm < 0)
2384                         srwm = 1;
2385
2386                 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2387                         I915_WRITE(FW_BLC_SELF,
2388                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2389                 else
2390                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2391         }
2392
2393         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2394                       planea_wm, planeb_wm, cwm, srwm);
2395
2396         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2397         fwater_hi = (cwm & 0x1f);
2398
2399         /* Set request length to 8 cachelines per fetch */
2400         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2401         fwater_hi = fwater_hi | (1 << 8);
2402
2403         I915_WRITE(FW_BLC, fwater_lo);
2404         I915_WRITE(FW_BLC2, fwater_hi);
2405
2406         if (enabled)
2407                 intel_set_memory_cxsr(dev_priv, true);
2408 }
2409
2410 static void i845_update_wm(struct intel_crtc *unused_crtc)
2411 {
2412         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2413         struct intel_crtc *crtc;
2414         const struct drm_display_mode *adjusted_mode;
2415         u32 fwater_lo;
2416         int planea_wm;
2417
2418         crtc = single_enabled_crtc(dev_priv);
2419         if (crtc == NULL)
2420                 return;
2421
2422         adjusted_mode = &crtc->config->base.adjusted_mode;
2423         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2424                                        &i845_wm_info,
2425                                        dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2426                                        4, pessimal_latency_ns);
2427         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2428         fwater_lo |= (3<<8) | planea_wm;
2429
2430         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2431
2432         I915_WRITE(FW_BLC, fwater_lo);
2433 }
2434
2435 /* latency must be in 0.1us units. */
2436 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2437                                    unsigned int cpp,
2438                                    unsigned int latency)
2439 {
2440         unsigned int ret;
2441
2442         ret = intel_wm_method1(pixel_rate, cpp, latency);
2443         ret = DIV_ROUND_UP(ret, 64) + 2;
2444
2445         return ret;
2446 }
2447
2448 /* latency must be in 0.1us units. */
2449 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2450                                    unsigned int htotal,
2451                                    unsigned int width,
2452                                    unsigned int cpp,
2453                                    unsigned int latency)
2454 {
2455         unsigned int ret;
2456
2457         ret = intel_wm_method2(pixel_rate, htotal,
2458                                width, cpp, latency);
2459         ret = DIV_ROUND_UP(ret, 64) + 2;
2460
2461         return ret;
2462 }
2463
2464 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2465 {
2466         /*
2467          * Neither of these should be possible since this function shouldn't be
2468          * called if the CRTC is off or the plane is invisible.  But let's be
2469          * extra paranoid to avoid a potential divide-by-zero if we screw up
2470          * elsewhere in the driver.
2471          */
2472         if (WARN_ON(!cpp))
2473                 return 0;
2474         if (WARN_ON(!horiz_pixels))
2475                 return 0;
2476
2477         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2478 }
2479
2480 struct ilk_wm_maximums {
2481         u16 pri;
2482         u16 spr;
2483         u16 cur;
2484         u16 fbc;
2485 };
2486
2487 /*
2488  * For both WM_PIPE and WM_LP.
2489  * mem_value must be in 0.1us units.
2490  */
2491 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2492                               const struct intel_plane_state *pstate,
2493                               u32 mem_value, bool is_lp)
2494 {
2495         u32 method1, method2;
2496         int cpp;
2497
2498         if (mem_value == 0)
2499                 return U32_MAX;
2500
2501         if (!intel_wm_plane_visible(cstate, pstate))
2502                 return 0;
2503
2504         cpp = pstate->base.fb->format->cpp[0];
2505
2506         method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2507
2508         if (!is_lp)
2509                 return method1;
2510
2511         method2 = ilk_wm_method2(cstate->pixel_rate,
2512                                  cstate->base.adjusted_mode.crtc_htotal,
2513                                  drm_rect_width(&pstate->base.dst),
2514                                  cpp, mem_value);
2515
2516         return min(method1, method2);
2517 }
2518
2519 /*
2520  * For both WM_PIPE and WM_LP.
2521  * mem_value must be in 0.1us units.
2522  */
2523 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2524                               const struct intel_plane_state *pstate,
2525                               u32 mem_value)
2526 {
2527         u32 method1, method2;
2528         int cpp;
2529
2530         if (mem_value == 0)
2531                 return U32_MAX;
2532
2533         if (!intel_wm_plane_visible(cstate, pstate))
2534                 return 0;
2535
2536         cpp = pstate->base.fb->format->cpp[0];
2537
2538         method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2539         method2 = ilk_wm_method2(cstate->pixel_rate,
2540                                  cstate->base.adjusted_mode.crtc_htotal,
2541                                  drm_rect_width(&pstate->base.dst),
2542                                  cpp, mem_value);
2543         return min(method1, method2);
2544 }
2545
2546 /*
2547  * For both WM_PIPE and WM_LP.
2548  * mem_value must be in 0.1us units.
2549  */
2550 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2551                               const struct intel_plane_state *pstate,
2552                               u32 mem_value)
2553 {
2554         int cpp;
2555
2556         if (mem_value == 0)
2557                 return U32_MAX;
2558
2559         if (!intel_wm_plane_visible(cstate, pstate))
2560                 return 0;
2561
2562         cpp = pstate->base.fb->format->cpp[0];
2563
2564         return ilk_wm_method2(cstate->pixel_rate,
2565                               cstate->base.adjusted_mode.crtc_htotal,
2566                               pstate->base.crtc_w, cpp, mem_value);
2567 }
2568
2569 /* Only for WM_LP. */
2570 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2571                               const struct intel_plane_state *pstate,
2572                               u32 pri_val)
2573 {
2574         int cpp;
2575
2576         if (!intel_wm_plane_visible(cstate, pstate))
2577                 return 0;
2578
2579         cpp = pstate->base.fb->format->cpp[0];
2580
2581         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2582 }
2583
2584 static unsigned int
2585 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2586 {
2587         if (INTEL_GEN(dev_priv) >= 8)
2588                 return 3072;
2589         else if (INTEL_GEN(dev_priv) >= 7)
2590                 return 768;
2591         else
2592                 return 512;
2593 }
2594
2595 static unsigned int
2596 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2597                      int level, bool is_sprite)
2598 {
2599         if (INTEL_GEN(dev_priv) >= 8)
2600                 /* BDW primary/sprite plane watermarks */
2601                 return level == 0 ? 255 : 2047;
2602         else if (INTEL_GEN(dev_priv) >= 7)
2603                 /* IVB/HSW primary/sprite plane watermarks */
2604                 return level == 0 ? 127 : 1023;
2605         else if (!is_sprite)
2606                 /* ILK/SNB primary plane watermarks */
2607                 return level == 0 ? 127 : 511;
2608         else
2609                 /* ILK/SNB sprite plane watermarks */
2610                 return level == 0 ? 63 : 255;
2611 }
2612
2613 static unsigned int
2614 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2615 {
2616         if (INTEL_GEN(dev_priv) >= 7)
2617                 return level == 0 ? 63 : 255;
2618         else
2619                 return level == 0 ? 31 : 63;
2620 }
2621
2622 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2623 {
2624         if (INTEL_GEN(dev_priv) >= 8)
2625                 return 31;
2626         else
2627                 return 15;
2628 }
2629
2630 /* Calculate the maximum primary/sprite plane watermark */
2631 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2632                                      int level,
2633                                      const struct intel_wm_config *config,
2634                                      enum intel_ddb_partitioning ddb_partitioning,
2635                                      bool is_sprite)
2636 {
2637         unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2638
2639         /* if sprites aren't enabled, sprites get nothing */
2640         if (is_sprite && !config->sprites_enabled)
2641                 return 0;
2642
2643         /* HSW allows LP1+ watermarks even with multiple pipes */
2644         if (level == 0 || config->num_pipes_active > 1) {
2645                 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2646
2647                 /*
2648                  * For some reason the non self refresh
2649                  * FIFO size is only half of the self
2650                  * refresh FIFO size on ILK/SNB.
2651                  */
2652                 if (INTEL_GEN(dev_priv) <= 6)
2653                         fifo_size /= 2;
2654         }
2655
2656         if (config->sprites_enabled) {
2657                 /* level 0 is always calculated with 1:1 split */
2658                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2659                         if (is_sprite)
2660                                 fifo_size *= 5;
2661                         fifo_size /= 6;
2662                 } else {
2663                         fifo_size /= 2;
2664                 }
2665         }
2666
2667         /* clamp to max that the registers can hold */
2668         return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2669 }
2670
2671 /* Calculate the maximum cursor plane watermark */
2672 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2673                                       int level,
2674                                       const struct intel_wm_config *config)
2675 {
2676         /* HSW LP1+ watermarks w/ multiple pipes */
2677         if (level > 0 && config->num_pipes_active > 1)
2678                 return 64;
2679
2680         /* otherwise just report max that registers can hold */
2681         return ilk_cursor_wm_reg_max(dev_priv, level);
2682 }
2683
2684 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2685                                     int level,
2686                                     const struct intel_wm_config *config,
2687                                     enum intel_ddb_partitioning ddb_partitioning,
2688                                     struct ilk_wm_maximums *max)
2689 {
2690         max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2691         max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2692         max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2693         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2694 }
2695
2696 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2697                                         int level,
2698                                         struct ilk_wm_maximums *max)
2699 {
2700         max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2701         max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2702         max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2703         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2704 }
2705
2706 static bool ilk_validate_wm_level(int level,
2707                                   const struct ilk_wm_maximums *max,
2708                                   struct intel_wm_level *result)
2709 {
2710         bool ret;
2711
2712         /* already determined to be invalid? */
2713         if (!result->enable)
2714                 return false;
2715
2716         result->enable = result->pri_val <= max->pri &&
2717                          result->spr_val <= max->spr &&
2718                          result->cur_val <= max->cur;
2719
2720         ret = result->enable;
2721
2722         /*
2723          * HACK until we can pre-compute everything,
2724          * and thus fail gracefully if LP0 watermarks
2725          * are exceeded...
2726          */
2727         if (level == 0 && !result->enable) {
2728                 if (result->pri_val > max->pri)
2729                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2730                                       level, result->pri_val, max->pri);
2731                 if (result->spr_val > max->spr)
2732                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2733                                       level, result->spr_val, max->spr);
2734                 if (result->cur_val > max->cur)
2735                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2736                                       level, result->cur_val, max->cur);
2737
2738                 result->pri_val = min_t(u32, result->pri_val, max->pri);
2739                 result->spr_val = min_t(u32, result->spr_val, max->spr);
2740                 result->cur_val = min_t(u32, result->cur_val, max->cur);
2741                 result->enable = true;
2742         }
2743
2744         return ret;
2745 }
2746
2747 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2748                                  const struct intel_crtc *intel_crtc,
2749                                  int level,
2750                                  struct intel_crtc_state *cstate,
2751                                  const struct intel_plane_state *pristate,
2752                                  const struct intel_plane_state *sprstate,
2753                                  const struct intel_plane_state *curstate,
2754                                  struct intel_wm_level *result)
2755 {
2756         u16 pri_latency = dev_priv->wm.pri_latency[level];
2757         u16 spr_latency = dev_priv->wm.spr_latency[level];
2758         u16 cur_latency = dev_priv->wm.cur_latency[level];
2759
2760         /* WM1+ latency values stored in 0.5us units */
2761         if (level > 0) {
2762                 pri_latency *= 5;
2763                 spr_latency *= 5;
2764                 cur_latency *= 5;
2765         }
2766
2767         if (pristate) {
2768                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2769                                                      pri_latency, level);
2770                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2771         }
2772
2773         if (sprstate)
2774                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2775
2776         if (curstate)
2777                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2778
2779         result->enable = true;
2780 }
2781
2782 static u32
2783 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2784 {
2785         const struct intel_atomic_state *intel_state =
2786                 to_intel_atomic_state(cstate->base.state);
2787         const struct drm_display_mode *adjusted_mode =
2788                 &cstate->base.adjusted_mode;
2789         u32 linetime, ips_linetime;
2790
2791         if (!cstate->base.active)
2792                 return 0;
2793         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2794                 return 0;
2795         if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2796                 return 0;
2797
2798         /* The WM are computed with base on how long it takes to fill a single
2799          * row at the given clock rate, multiplied by 8.
2800          * */
2801         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2802                                      adjusted_mode->crtc_clock);
2803         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2804                                          intel_state->cdclk.logical.cdclk);
2805
2806         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2807                PIPE_WM_LINETIME_TIME(linetime);
2808 }
2809
2810 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2811                                   u16 wm[8])
2812 {
2813         if (INTEL_GEN(dev_priv) >= 9) {
2814                 u32 val;
2815                 int ret, i;
2816                 int level, max_level = ilk_wm_max_level(dev_priv);
2817
2818                 /* read the first set of memory latencies[0:3] */
2819                 val = 0; /* data0 to be programmed to 0 for first set */
2820                 mutex_lock(&dev_priv->pcu_lock);
2821                 ret = sandybridge_pcode_read(dev_priv,
2822                                              GEN9_PCODE_READ_MEM_LATENCY,
2823                                              &val);
2824                 mutex_unlock(&dev_priv->pcu_lock);
2825
2826                 if (ret) {
2827                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2828                         return;
2829                 }
2830
2831                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2832                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2833                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2834                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2835                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2836                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2837                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2838
2839                 /* read the second set of memory latencies[4:7] */
2840                 val = 1; /* data0 to be programmed to 1 for second set */
2841                 mutex_lock(&dev_priv->pcu_lock);
2842                 ret = sandybridge_pcode_read(dev_priv,
2843                                              GEN9_PCODE_READ_MEM_LATENCY,
2844                                              &val);
2845                 mutex_unlock(&dev_priv->pcu_lock);
2846                 if (ret) {
2847                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2848                         return;
2849                 }
2850
2851                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2852                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2853                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2854                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2855                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2856                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2857                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2858
2859                 /*
2860                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2861                  * need to be disabled. We make sure to sanitize the values out
2862                  * of the punit to satisfy this requirement.
2863                  */
2864                 for (level = 1; level <= max_level; level++) {
2865                         if (wm[level] == 0) {
2866                                 for (i = level + 1; i <= max_level; i++)
2867                                         wm[i] = 0;
2868                                 break;
2869                         }
2870                 }
2871
2872                 /*
2873                  * WaWmMemoryReadLatency:skl+,glk
2874                  *
2875                  * punit doesn't take into account the read latency so we need
2876                  * to add 2us to the various latency levels we retrieve from the
2877                  * punit when level 0 response data us 0us.
2878                  */
2879                 if (wm[0] == 0) {
2880                         wm[0] += 2;
2881                         for (level = 1; level <= max_level; level++) {
2882                                 if (wm[level] == 0)
2883                                         break;
2884                                 wm[level] += 2;
2885                         }
2886                 }
2887
2888                 /*
2889                  * WA Level-0 adjustment for 16GB DIMMs: SKL+
2890                  * If we could not get dimm info enable this WA to prevent from
2891                  * any underrun. If not able to get Dimm info assume 16GB dimm
2892                  * to avoid any underrun.
2893                  */
2894                 if (dev_priv->dram_info.is_16gb_dimm)
2895                         wm[0] += 1;
2896
2897         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2898                 u64 sskpd = I915_READ64(MCH_SSKPD);
2899
2900                 wm[0] = (sskpd >> 56) & 0xFF;
2901                 if (wm[0] == 0)
2902                         wm[0] = sskpd & 0xF;
2903                 wm[1] = (sskpd >> 4) & 0xFF;
2904                 wm[2] = (sskpd >> 12) & 0xFF;
2905                 wm[3] = (sskpd >> 20) & 0x1FF;
2906                 wm[4] = (sskpd >> 32) & 0x1FF;
2907         } else if (INTEL_GEN(dev_priv) >= 6) {
2908                 u32 sskpd = I915_READ(MCH_SSKPD);
2909
2910                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2911                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2912                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2913                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2914         } else if (INTEL_GEN(dev_priv) >= 5) {
2915                 u32 mltr = I915_READ(MLTR_ILK);
2916
2917                 /* ILK primary LP0 latency is 700 ns */
2918                 wm[0] = 7;
2919                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2920                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2921         } else {
2922                 MISSING_CASE(INTEL_DEVID(dev_priv));
2923         }
2924 }
2925
2926 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2927                                        u16 wm[5])
2928 {
2929         /* ILK sprite LP0 latency is 1300 ns */
2930         if (IS_GEN(dev_priv, 5))
2931                 wm[0] = 13;
2932 }
2933
2934 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2935                                        u16 wm[5])
2936 {
2937         /* ILK cursor LP0 latency is 1300 ns */
2938         if (IS_GEN(dev_priv, 5))
2939                 wm[0] = 13;
2940 }
2941
2942 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2943 {
2944         /* how many WM levels are we expecting */
2945         if (INTEL_GEN(dev_priv) >= 9)
2946                 return 7;
2947         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2948                 return 4;
2949         else if (INTEL_GEN(dev_priv) >= 6)
2950                 return 3;
2951         else
2952                 return 2;
2953 }
2954
2955 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2956                                    const char *name,
2957                                    const u16 wm[8])
2958 {
2959         int level, max_level = ilk_wm_max_level(dev_priv);
2960
2961         for (level = 0; level <= max_level; level++) {
2962                 unsigned int latency = wm[level];
2963
2964                 if (latency == 0) {
2965                         DRM_DEBUG_KMS("%s WM%d latency not provided\n",
2966                                       name, level);
2967                         continue;
2968                 }
2969
2970                 /*
2971                  * - latencies are in us on gen9.
2972                  * - before then, WM1+ latency values are in 0.5us units
2973                  */
2974                 if (INTEL_GEN(dev_priv) >= 9)
2975                         latency *= 10;
2976                 else if (level > 0)
2977                         latency *= 5;
2978
2979                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2980                               name, level, wm[level],
2981                               latency / 10, latency % 10);
2982         }
2983 }
2984
2985 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2986                                     u16 wm[5], u16 min)
2987 {
2988         int level, max_level = ilk_wm_max_level(dev_priv);
2989
2990         if (wm[0] >= min)
2991                 return false;
2992
2993         wm[0] = max(wm[0], min);
2994         for (level = 1; level <= max_level; level++)
2995                 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2996
2997         return true;
2998 }
2999
3000 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3001 {
3002         bool changed;
3003
3004         /*
3005          * The BIOS provided WM memory latency values are often
3006          * inadequate for high resolution displays. Adjust them.
3007          */
3008         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3009                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3010                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3011
3012         if (!changed)
3013                 return;
3014
3015         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3016         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3017         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3018         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3019 }
3020
3021 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3022 {
3023         /*
3024          * On some SNB machines (Thinkpad X220 Tablet at least)
3025          * LP3 usage can cause vblank interrupts to be lost.
3026          * The DEIIR bit will go high but it looks like the CPU
3027          * never gets interrupted.
3028          *
3029          * It's not clear whether other interrupt source could
3030          * be affected or if this is somehow limited to vblank
3031          * interrupts only. To play it safe we disable LP3
3032          * watermarks entirely.
3033          */
3034         if (dev_priv->wm.pri_latency[3] == 0 &&
3035             dev_priv->wm.spr_latency[3] == 0 &&
3036             dev_priv->wm.cur_latency[3] == 0)
3037                 return;
3038
3039         dev_priv->wm.pri_latency[3] = 0;
3040         dev_priv->wm.spr_latency[3] = 0;
3041         dev_priv->wm.cur_latency[3] = 0;
3042
3043         DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
3044         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3045         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3046         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3047 }
3048
3049 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3050 {
3051         intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3052
3053         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3054                sizeof(dev_priv->wm.pri_latency));
3055         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3056                sizeof(dev_priv->wm.pri_latency));
3057
3058         intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3059         intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3060
3061         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3062         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3063         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3064
3065         if (IS_GEN(dev_priv, 6)) {
3066                 snb_wm_latency_quirk(dev_priv);
3067                 snb_wm_lp3_irq_quirk(dev_priv);
3068         }
3069 }
3070
3071 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3072 {
3073         intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3074         intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3075 }
3076
3077 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3078                                  struct intel_pipe_wm *pipe_wm)
3079 {
3080         /* LP0 watermark maximums depend on this pipe alone */
3081         const struct intel_wm_config config = {
3082                 .num_pipes_active = 1,
3083                 .sprites_enabled = pipe_wm->sprites_enabled,
3084                 .sprites_scaled = pipe_wm->sprites_scaled,
3085         };
3086         struct ilk_wm_maximums max;
3087
3088         /* LP0 watermarks always use 1/2 DDB partitioning */
3089         ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3090
3091         /* At least LP0 must be valid */
3092         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3093                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3094                 return false;
3095         }
3096
3097         return true;
3098 }
3099
3100 /* Compute new watermarks for the pipe */
3101 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3102 {
3103         struct drm_atomic_state *state = cstate->base.state;
3104         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3105         struct intel_pipe_wm *pipe_wm;
3106         struct drm_device *dev = state->dev;
3107         const struct drm_i915_private *dev_priv = to_i915(dev);
3108         struct drm_plane *plane;
3109         const struct drm_plane_state *plane_state;
3110         const struct intel_plane_state *pristate = NULL;
3111         const struct intel_plane_state *sprstate = NULL;
3112         const struct intel_plane_state *curstate = NULL;
3113         int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3114         struct ilk_wm_maximums max;
3115
3116         pipe_wm = &cstate->wm.ilk.optimal;
3117
3118         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3119                 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3120
3121                 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3122                         pristate = ps;
3123                 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3124                         sprstate = ps;
3125                 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3126                         curstate = ps;
3127         }
3128
3129         pipe_wm->pipe_enabled = cstate->base.active;
3130         if (sprstate) {
3131                 pipe_wm->sprites_enabled = sprstate->base.visible;
3132                 pipe_wm->sprites_scaled = sprstate->base.visible &&
3133                         (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3134                          drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3135         }
3136
3137         usable_level = max_level;
3138
3139         /* ILK/SNB: LP2+ watermarks only w/o sprites */
3140         if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3141                 usable_level = 1;
3142
3143         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3144         if (pipe_wm->sprites_scaled)
3145                 usable_level = 0;
3146
3147         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3148         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3149                              pristate, sprstate, curstate, &pipe_wm->wm[0]);
3150
3151         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3152                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3153
3154         if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3155                 return -EINVAL;
3156
3157         ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3158
3159         for (level = 1; level <= usable_level; level++) {
3160                 struct intel_wm_level *wm = &pipe_wm->wm[level];
3161
3162                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3163                                      pristate, sprstate, curstate, wm);
3164
3165                 /*
3166                  * Disable any watermark level that exceeds the
3167                  * register maximums since such watermarks are
3168                  * always invalid.
3169                  */
3170                 if (!ilk_validate_wm_level(level, &max, wm)) {
3171                         memset(wm, 0, sizeof(*wm));
3172                         break;
3173                 }
3174         }
3175
3176         return 0;
3177 }
3178
3179 /*
3180  * Build a set of 'intermediate' watermark values that satisfy both the old
3181  * state and the new state.  These can be programmed to the hardware
3182  * immediately.
3183  */
3184 static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3185 {
3186         struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
3187         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3188         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3189         struct intel_atomic_state *intel_state =
3190                 to_intel_atomic_state(newstate->base.state);
3191         const struct intel_crtc_state *oldstate =
3192                 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3193         const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3194         int level, max_level = ilk_wm_max_level(dev_priv);
3195
3196         /*
3197          * Start with the final, target watermarks, then combine with the
3198          * currently active watermarks to get values that are safe both before
3199          * and after the vblank.
3200          */
3201         *a = newstate->wm.ilk.optimal;
3202         if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
3203             intel_state->skip_intermediate_wm)
3204                 return 0;
3205
3206         a->pipe_enabled |= b->pipe_enabled;
3207         a->sprites_enabled |= b->sprites_enabled;
3208         a->sprites_scaled |= b->sprites_scaled;
3209
3210         for (level = 0; level <= max_level; level++) {
3211                 struct intel_wm_level *a_wm = &a->wm[level];
3212                 const struct intel_wm_level *b_wm = &b->wm[level];
3213
3214                 a_wm->enable &= b_wm->enable;
3215                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3216                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3217                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3218                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3219         }
3220
3221         /*
3222          * We need to make sure that these merged watermark values are
3223          * actually a valid configuration themselves.  If they're not,
3224          * there's no safe way to transition from the old state to
3225          * the new state, so we need to fail the atomic transaction.
3226          */
3227         if (!ilk_validate_pipe_wm(dev_priv, a))
3228                 return -EINVAL;
3229
3230         /*
3231          * If our intermediate WM are identical to the final WM, then we can
3232          * omit the post-vblank programming; only update if it's different.
3233          */
3234         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3235                 newstate->wm.need_postvbl_update = true;
3236
3237         return 0;
3238 }
3239
3240 /*
3241  * Merge the watermarks from all active pipes for a specific level.
3242  */
3243 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3244                                int level,
3245                                struct intel_wm_level *ret_wm)
3246 {
3247         const struct intel_crtc *intel_crtc;
3248
3249         ret_wm->enable = true;
3250
3251         for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3252                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3253                 const struct intel_wm_level *wm = &active->wm[level];
3254
3255                 if (!active->pipe_enabled)
3256                         continue;
3257
3258                 /*
3259                  * The watermark values may have been used in the past,
3260                  * so we must maintain them in the registers for some
3261                  * time even if the level is now disabled.
3262                  */
3263                 if (!wm->enable)
3264                         ret_wm->enable = false;
3265
3266                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3267                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3268                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3269                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3270         }
3271 }
3272
3273 /*
3274  * Merge all low power watermarks for all active pipes.
3275  */
3276 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3277                          const struct intel_wm_config *config,
3278                          const struct ilk_wm_maximums *max,
3279                          struct intel_pipe_wm *merged)
3280 {
3281         int level, max_level = ilk_wm_max_level(dev_priv);
3282         int last_enabled_level = max_level;
3283
3284         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3285         if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3286             config->num_pipes_active > 1)
3287                 last_enabled_level = 0;
3288
3289         /* ILK: FBC WM must be disabled always */
3290         merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3291
3292         /* merge each WM1+ level */
3293         for (level = 1; level <= max_level; level++) {
3294                 struct intel_wm_level *wm = &merged->wm[level];
3295
3296                 ilk_merge_wm_level(dev_priv, level, wm);
3297
3298                 if (level > last_enabled_level)
3299                         wm->enable = false;
3300                 else if (!ilk_validate_wm_level(level, max, wm))
3301                         /* make sure all following levels get disabled */
3302                         last_enabled_level = level - 1;
3303
3304                 /*
3305                  * The spec says it is preferred to disable
3306                  * FBC WMs instead of disabling a WM level.
3307                  */
3308                 if (wm->fbc_val > max->fbc) {
3309                         if (wm->enable)
3310                                 merged->fbc_wm_enabled = false;
3311                         wm->fbc_val = 0;
3312                 }
3313         }
3314
3315         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3316         /*
3317          * FIXME this is racy. FBC might get enabled later.
3318          * What we should check here is whether FBC can be
3319          * enabled sometime later.
3320          */
3321         if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3322             intel_fbc_is_active(dev_priv)) {
3323                 for (level = 2; level <= max_level; level++) {
3324                         struct intel_wm_level *wm = &merged->wm[level];
3325
3326                         wm->enable = false;
3327                 }
3328         }
3329 }
3330
3331 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3332 {
3333         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3334         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3335 }
3336
3337 /* The value we need to program into the WM_LPx latency field */
3338 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3339                                       int level)
3340 {
3341         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3342                 return 2 * level;
3343         else
3344                 return dev_priv->wm.pri_latency[level];
3345 }
3346
3347 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3348                                    const struct intel_pipe_wm *merged,
3349                                    enum intel_ddb_partitioning partitioning,
3350                                    struct ilk_wm_values *results)
3351 {
3352         struct intel_crtc *intel_crtc;
3353         int level, wm_lp;
3354
3355         results->enable_fbc_wm = merged->fbc_wm_enabled;
3356         results->partitioning = partitioning;
3357
3358         /* LP1+ register values */
3359         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3360                 const struct intel_wm_level *r;
3361
3362                 level = ilk_wm_lp_to_level(wm_lp, merged);
3363
3364                 r = &merged->wm[level];
3365
3366                 /*
3367                  * Maintain the watermark values even if the level is
3368                  * disabled. Doing otherwise could cause underruns.
3369                  */
3370                 results->wm_lp[wm_lp - 1] =
3371                         (ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3372                         (r->pri_val << WM1_LP_SR_SHIFT) |
3373                         r->cur_val;
3374
3375                 if (r->enable)
3376                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3377
3378                 if (INTEL_GEN(dev_priv) >= 8)
3379                         results->wm_lp[wm_lp - 1] |=
3380                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3381                 else
3382                         results->wm_lp[wm_lp - 1] |=
3383                                 r->fbc_val << WM1_LP_FBC_SHIFT;
3384
3385                 /*
3386                  * Always set WM1S_LP_EN when spr_val != 0, even if the
3387                  * level is disabled. Doing otherwise could cause underruns.
3388                  */
3389                 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3390                         WARN_ON(wm_lp != 1);
3391                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3392                 } else
3393                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3394         }
3395
3396         /* LP0 register values */
3397         for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3398                 enum pipe pipe = intel_crtc->pipe;
3399                 const struct intel_wm_level *r =
3400                         &intel_crtc->wm.active.ilk.wm[0];
3401
3402                 if (WARN_ON(!r->enable))
3403                         continue;
3404
3405                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3406
3407                 results->wm_pipe[pipe] =
3408                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3409                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3410                         r->cur_val;
3411         }
3412 }
3413
3414 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3415  * case both are at the same level. Prefer r1 in case they're the same. */
3416 static struct intel_pipe_wm *
3417 ilk_find_best_result(struct drm_i915_private *dev_priv,
3418                      struct intel_pipe_wm *r1,
3419                      struct intel_pipe_wm *r2)
3420 {
3421         int level, max_level = ilk_wm_max_level(dev_priv);
3422         int level1 = 0, level2 = 0;
3423
3424         for (level = 1; level <= max_level; level++) {
3425                 if (r1->wm[level].enable)
3426                         level1 = level;
3427                 if (r2->wm[level].enable)
3428                         level2 = level;
3429         }
3430
3431         if (level1 == level2) {
3432                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3433                         return r2;
3434                 else
3435                         return r1;
3436         } else if (level1 > level2) {
3437                 return r1;
3438         } else {
3439                 return r2;
3440         }
3441 }
3442
3443 /* dirty bits used to track which watermarks need changes */
3444 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3445 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3446 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3447 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3448 #define WM_DIRTY_FBC (1 << 24)
3449 #define WM_DIRTY_DDB (1 << 25)
3450
3451 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3452                                          const struct ilk_wm_values *old,
3453                                          const struct ilk_wm_values *new)
3454 {
3455         unsigned int dirty = 0;
3456         enum pipe pipe;
3457         int wm_lp;
3458
3459         for_each_pipe(dev_priv, pipe) {
3460                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3461                         dirty |= WM_DIRTY_LINETIME(pipe);
3462                         /* Must disable LP1+ watermarks too */
3463                         dirty |= WM_DIRTY_LP_ALL;
3464                 }
3465
3466                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3467                         dirty |= WM_DIRTY_PIPE(pipe);
3468                         /* Must disable LP1+ watermarks too */
3469                         dirty |= WM_DIRTY_LP_ALL;
3470                 }
3471         }
3472
3473         if (old->enable_fbc_wm != new->enable_fbc_wm) {
3474                 dirty |= WM_DIRTY_FBC;
3475                 /* Must disable LP1+ watermarks too */
3476                 dirty |= WM_DIRTY_LP_ALL;
3477         }
3478
3479         if (old->partitioning != new->partitioning) {
3480                 dirty |= WM_DIRTY_DDB;
3481                 /* Must disable LP1+ watermarks too */
3482                 dirty |= WM_DIRTY_LP_ALL;
3483         }
3484
3485         /* LP1+ watermarks already deemed dirty, no need to continue */
3486         if (dirty & WM_DIRTY_LP_ALL)
3487                 return dirty;
3488
3489         /* Find the lowest numbered LP1+ watermark in need of an update... */
3490         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3491                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3492                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3493                         break;
3494         }
3495
3496         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3497         for (; wm_lp <= 3; wm_lp++)
3498                 dirty |= WM_DIRTY_LP(wm_lp);
3499
3500         return dirty;
3501 }
3502
3503 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3504                                unsigned int dirty)
3505 {
3506         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3507         bool changed = false;
3508
3509         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3510                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3511                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3512                 changed = true;
3513         }
3514         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3515                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3516                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3517                 changed = true;
3518         }
3519         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3520                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3521                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3522                 changed = true;
3523         }
3524
3525         /*
3526          * Don't touch WM1S_LP_EN here.
3527          * Doing so could cause underruns.
3528          */
3529
3530         return changed;
3531 }
3532
3533 /*
3534  * The spec says we shouldn't write when we don't need, because every write
3535  * causes WMs to be re-evaluated, expending some power.
3536  */
3537 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3538                                 struct ilk_wm_values *results)
3539 {
3540         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3541         unsigned int dirty;
3542         u32 val;
3543
3544         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3545         if (!dirty)
3546                 return;
3547
3548         _ilk_disable_lp_wm(dev_priv, dirty);
3549
3550         if (dirty & WM_DIRTY_PIPE(PIPE_A))
3551                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3552         if (dirty & WM_DIRTY_PIPE(PIPE_B))
3553                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3554         if (dirty & WM_DIRTY_PIPE(PIPE_C))
3555                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3556
3557         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3558                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3559         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3560                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3561         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3562                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3563
3564         if (dirty & WM_DIRTY_DDB) {
3565                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3566                         val = I915_READ(WM_MISC);
3567                         if (results->partitioning == INTEL_DDB_PART_1_2)
3568                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
3569                         else
3570                                 val |= WM_MISC_DATA_PARTITION_5_6;
3571                         I915_WRITE(WM_MISC, val);
3572                 } else {
3573                         val = I915_READ(DISP_ARB_CTL2);
3574                         if (results->partitioning == INTEL_DDB_PART_1_2)
3575                                 val &= ~DISP_DATA_PARTITION_5_6;
3576                         else
3577                                 val |= DISP_DATA_PARTITION_5_6;
3578                         I915_WRITE(DISP_ARB_CTL2, val);
3579                 }
3580         }
3581
3582         if (dirty & WM_DIRTY_FBC) {
3583                 val = I915_READ(DISP_ARB_CTL);
3584                 if (results->enable_fbc_wm)
3585                         val &= ~DISP_FBC_WM_DIS;
3586                 else
3587                         val |= DISP_FBC_WM_DIS;
3588                 I915_WRITE(DISP_ARB_CTL, val);
3589         }
3590
3591         if (dirty & WM_DIRTY_LP(1) &&
3592             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3593                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3594
3595         if (INTEL_GEN(dev_priv) >= 7) {
3596                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3597                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3598                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3599                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3600         }
3601
3602         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3603                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3604         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3605                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3606         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3607                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3608
3609         dev_priv->wm.hw = *results;
3610 }
3611
3612 bool ilk_disable_lp_wm(struct drm_device *dev)
3613 {
3614         struct drm_i915_private *dev_priv = to_i915(dev);
3615
3616         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3617 }
3618
3619 static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
3620 {
3621         u8 enabled_slices;
3622
3623         /* Slice 1 will always be enabled */
3624         enabled_slices = 1;
3625
3626         /* Gen prior to GEN11 have only one DBuf slice */
3627         if (INTEL_GEN(dev_priv) < 11)
3628                 return enabled_slices;
3629
3630         /*
3631          * FIXME: for now we'll only ever use 1 slice; pretend that we have
3632          * only that 1 slice enabled until we have a proper way for on-demand
3633          * toggling of the second slice.
3634          */
3635         if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3636                 enabled_slices++;
3637
3638         return enabled_slices;
3639 }
3640
3641 /*
3642  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3643  * so assume we'll always need it in order to avoid underruns.
3644  */
3645 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3646 {
3647         return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3648 }
3649
3650 static bool
3651 intel_has_sagv(struct drm_i915_private *dev_priv)
3652 {
3653         return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
3654                 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3655 }
3656
3657 /*
3658  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3659  * depending on power and performance requirements. The display engine access
3660  * to system memory is blocked during the adjustment time. Because of the
3661  * blocking time, having this enabled can cause full system hangs and/or pipe
3662  * underruns if we don't meet all of the following requirements:
3663  *
3664  *  - <= 1 pipe enabled
3665  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3666  *  - We're not using an interlaced display configuration
3667  */
3668 int
3669 intel_enable_sagv(struct drm_i915_private *dev_priv)
3670 {
3671         int ret;
3672
3673         if (!intel_has_sagv(dev_priv))
3674                 return 0;
3675
3676         if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3677                 return 0;
3678
3679         DRM_DEBUG_KMS("Enabling SAGV\n");
3680         mutex_lock(&dev_priv->pcu_lock);
3681
3682         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3683                                       GEN9_SAGV_ENABLE);
3684
3685         /* We don't need to wait for SAGV when enabling */
3686         mutex_unlock(&dev_priv->pcu_lock);
3687
3688         /*
3689          * Some skl systems, pre-release machines in particular,
3690          * don't actually have SAGV.
3691          */
3692         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3693                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3694                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3695                 return 0;
3696         } else if (ret < 0) {
3697                 DRM_ERROR("Failed to enable SAGV\n");
3698                 return ret;
3699         }
3700
3701         dev_priv->sagv_status = I915_SAGV_ENABLED;
3702         return 0;
3703 }
3704
3705 int
3706 intel_disable_sagv(struct drm_i915_private *dev_priv)
3707 {
3708         int ret;
3709
3710         if (!intel_has_sagv(dev_priv))
3711                 return 0;
3712
3713         if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3714                 return 0;
3715
3716         DRM_DEBUG_KMS("Disabling SAGV\n");
3717         mutex_lock(&dev_priv->pcu_lock);
3718
3719         /* bspec says to keep retrying for at least 1 ms */
3720         ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3721                                 GEN9_SAGV_DISABLE,
3722                                 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3723                                 1);
3724         mutex_unlock(&dev_priv->pcu_lock);
3725
3726         /*
3727          * Some skl systems, pre-release machines in particular,
3728          * don't actually have SAGV.
3729          */
3730         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3731                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3732                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3733                 return 0;
3734         } else if (ret < 0) {
3735                 DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3736                 return ret;
3737         }
3738
3739         dev_priv->sagv_status = I915_SAGV_DISABLED;
3740         return 0;
3741 }
3742
3743 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3744 {
3745         struct drm_device *dev = state->dev;
3746         struct drm_i915_private *dev_priv = to_i915(dev);
3747         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3748         struct intel_crtc *crtc;
3749         struct intel_plane *plane;
3750         struct intel_crtc_state *cstate;
3751         enum pipe pipe;
3752         int level, latency;
3753         int sagv_block_time_us;
3754
3755         if (!intel_has_sagv(dev_priv))
3756                 return false;
3757
3758         if (IS_GEN(dev_priv, 9))
3759                 sagv_block_time_us = 30;
3760         else if (IS_GEN(dev_priv, 10))
3761                 sagv_block_time_us = 20;
3762         else
3763                 sagv_block_time_us = 10;
3764
3765         /*
3766          * SKL+ workaround: bspec recommends we disable SAGV when we have
3767          * more then one pipe enabled
3768          *
3769          * If there are no active CRTCs, no additional checks need be performed
3770          */
3771         if (hweight32(intel_state->active_crtcs) == 0)
3772                 return true;
3773         else if (hweight32(intel_state->active_crtcs) > 1)
3774                 return false;
3775
3776         /* Since we're now guaranteed to only have one active CRTC... */
3777         pipe = ffs(intel_state->active_crtcs) - 1;
3778         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3779         cstate = to_intel_crtc_state(crtc->base.state);
3780
3781         if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3782                 return false;
3783
3784         for_each_intel_plane_on_crtc(dev, crtc, plane) {
3785                 struct skl_plane_wm *wm =
3786                         &cstate->wm.skl.optimal.planes[plane->id];
3787
3788                 /* Skip this plane if it's not enabled */
3789                 if (!wm->wm[0].plane_en)
3790                         continue;
3791
3792                 /* Find the highest enabled wm level for this plane */
3793                 for (level = ilk_wm_max_level(dev_priv);
3794                      !wm->wm[level].plane_en; --level)
3795                      { }
3796
3797                 latency = dev_priv->wm.skl_latency[level];
3798
3799                 if (skl_needs_memory_bw_wa(dev_priv) &&
3800                     plane->base.state->fb->modifier ==
3801                     I915_FORMAT_MOD_X_TILED)
3802                         latency += 15;
3803
3804                 /*
3805                  * If any of the planes on this pipe don't enable wm levels that
3806                  * incur memory latencies higher than sagv_block_time_us we
3807                  * can't enable SAGV.
3808                  */
3809                 if (latency < sagv_block_time_us)
3810                         return false;
3811         }
3812
3813         return true;
3814 }
3815
3816 static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3817                               const struct intel_crtc_state *cstate,
3818                               const u64 total_data_rate,
3819                               const int num_active,
3820                               struct skl_ddb_allocation *ddb)
3821 {
3822         const struct drm_display_mode *adjusted_mode;
3823         u64 total_data_bw;
3824         u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3825
3826         WARN_ON(ddb_size == 0);
3827
3828         if (INTEL_GEN(dev_priv) < 11)
3829                 return ddb_size - 4; /* 4 blocks for bypass path allocation */
3830
3831         adjusted_mode = &cstate->base.adjusted_mode;
3832         total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3833
3834         /*
3835          * 12GB/s is maximum BW supported by single DBuf slice.
3836          *
3837          * FIXME dbuf slice code is broken:
3838          * - must wait for planes to stop using the slice before powering it off
3839          * - plane straddling both slices is illegal in multi-pipe scenarios
3840          * - should validate we stay within the hw bandwidth limits
3841          */
3842         if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3843                 ddb->enabled_slices = 2;
3844         } else {
3845                 ddb->enabled_slices = 1;
3846                 ddb_size /= 2;
3847         }
3848
3849         return ddb_size;
3850 }
3851
3852 static void
3853 skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3854                                    const struct intel_crtc_state *cstate,
3855                                    const u64 total_data_rate,
3856                                    struct skl_ddb_allocation *ddb,
3857                                    struct skl_ddb_entry *alloc, /* out */
3858                                    int *num_active /* out */)
3859 {
3860         struct drm_atomic_state *state = cstate->base.state;
3861         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3862         struct drm_crtc *for_crtc = cstate->base.crtc;
3863         const struct drm_crtc_state *crtc_state;
3864         const struct drm_crtc *crtc;
3865         u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
3866         enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
3867         u16 ddb_size;
3868         u32 i;
3869
3870         if (WARN_ON(!state) || !cstate->base.active) {
3871                 alloc->start = 0;
3872                 alloc->end = 0;
3873                 *num_active = hweight32(dev_priv->active_crtcs);
3874                 return;
3875         }
3876
3877         if (intel_state->active_pipe_changes)
3878                 *num_active = hweight32(intel_state->active_crtcs);
3879         else
3880                 *num_active = hweight32(dev_priv->active_crtcs);
3881
3882         ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
3883                                       *num_active, ddb);
3884
3885         /*
3886          * If the state doesn't change the active CRTC's or there is no
3887          * modeset request, then there's no need to recalculate;
3888          * the existing pipe allocation limits should remain unchanged.
3889          * Note that we're safe from racing commits since any racing commit
3890          * that changes the active CRTC list or do modeset would need to
3891          * grab _all_ crtc locks, including the one we currently hold.
3892          */
3893         if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3894                 /*
3895                  * alloc may be cleared by clear_intel_crtc_state,
3896                  * copy from old state to be sure
3897                  */
3898                 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3899                 return;
3900         }
3901
3902         /*
3903          * Watermark/ddb requirement highly depends upon width of the
3904          * framebuffer, So instead of allocating DDB equally among pipes
3905          * distribute DDB based on resolution/width of the display.
3906          */
3907         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3908                 const struct drm_display_mode *adjusted_mode;
3909                 int hdisplay, vdisplay;
3910                 enum pipe pipe;
3911
3912                 if (!crtc_state->enable)
3913                         continue;
3914
3915                 pipe = to_intel_crtc(crtc)->pipe;
3916                 adjusted_mode = &crtc_state->adjusted_mode;
3917                 drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
3918                 total_width += hdisplay;
3919
3920                 if (pipe < for_pipe)
3921                         width_before_pipe += hdisplay;
3922                 else if (pipe == for_pipe)
3923                         pipe_width = hdisplay;
3924         }
3925
3926         alloc->start = ddb_size * width_before_pipe / total_width;
3927         alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3928 }
3929
3930 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
3931                                  int width, const struct drm_format_info *format,
3932                                  u64 modifier, unsigned int rotation,
3933                                  u32 plane_pixel_rate, struct skl_wm_params *wp,
3934                                  int color_plane);
3935 static void skl_compute_plane_wm(const struct intel_crtc_state *cstate,
3936                                  int level,
3937                                  const struct skl_wm_params *wp,
3938                                  const struct skl_wm_level *result_prev,
3939                                  struct skl_wm_level *result /* out */);
3940
3941 static unsigned int
3942 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
3943                       int num_active)
3944 {
3945         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
3946         int level, max_level = ilk_wm_max_level(dev_priv);
3947         struct skl_wm_level wm = {};
3948         int ret, min_ddb_alloc = 0;
3949         struct skl_wm_params wp;
3950
3951         ret = skl_compute_wm_params(crtc_state, 256,
3952                                     drm_format_info(DRM_FORMAT_ARGB8888),
3953                                     DRM_FORMAT_MOD_LINEAR,
3954                                     DRM_MODE_ROTATE_0,
3955                                     crtc_state->pixel_rate, &wp, 0);
3956         WARN_ON(ret);
3957
3958         for (level = 0; level <= max_level; level++) {
3959                 skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
3960                 if (wm.min_ddb_alloc == U16_MAX)
3961                         break;
3962
3963                 min_ddb_alloc = wm.min_ddb_alloc;
3964         }
3965
3966         return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
3967 }
3968
3969 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
3970                                        struct skl_ddb_entry *entry, u32 reg)
3971 {
3972
3973         entry->start = reg & DDB_ENTRY_MASK;
3974         entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3975
3976         if (entry->end)
3977                 entry->end += 1;
3978 }
3979
3980 static void
3981 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
3982                            const enum pipe pipe,
3983                            const enum plane_id plane_id,
3984                            struct skl_ddb_entry *ddb_y,
3985                            struct skl_ddb_entry *ddb_uv)
3986 {
3987         u32 val, val2;
3988         u32 fourcc = 0;
3989
3990         /* Cursor doesn't support NV12/planar, so no extra calculation needed */
3991         if (plane_id == PLANE_CURSOR) {
3992                 val = I915_READ(CUR_BUF_CFG(pipe));
3993                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3994                 return;
3995         }
3996
3997         val = I915_READ(PLANE_CTL(pipe, plane_id));
3998
3999         /* No DDB allocated for disabled planes */
4000         if (val & PLANE_CTL_ENABLE)
4001                 fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
4002                                               val & PLANE_CTL_ORDER_RGBX,
4003                                               val & PLANE_CTL_ALPHA_MASK);
4004
4005         if (INTEL_GEN(dev_priv) >= 11) {
4006                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4007                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4008         } else {
4009                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4010                 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4011
4012                 if (is_planar_yuv_format(fourcc))
4013                         swap(val, val2);
4014
4015                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4016                 skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4017         }
4018 }
4019
4020 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4021                                struct skl_ddb_entry *ddb_y,
4022                                struct skl_ddb_entry *ddb_uv)
4023 {
4024         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4025         enum intel_display_power_domain power_domain;
4026         enum pipe pipe = crtc->pipe;
4027         intel_wakeref_t wakeref;
4028         enum plane_id plane_id;
4029
4030         power_domain = POWER_DOMAIN_PIPE(pipe);
4031         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4032         if (!wakeref)
4033                 return;
4034
4035         for_each_plane_id_on_crtc(crtc, plane_id)
4036                 skl_ddb_get_hw_plane_state(dev_priv, pipe,
4037                                            plane_id,
4038                                            &ddb_y[plane_id],
4039                                            &ddb_uv[plane_id]);
4040
4041         intel_display_power_put(dev_priv, power_domain, wakeref);
4042 }
4043
4044 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
4045                           struct skl_ddb_allocation *ddb /* out */)
4046 {
4047         ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4048 }
4049
4050 /*
4051  * Determines the downscale amount of a plane for the purposes of watermark calculations.
4052  * The bspec defines downscale amount as:
4053  *
4054  * """
4055  * Horizontal down scale amount = maximum[1, Horizontal source size /
4056  *                                           Horizontal destination size]
4057  * Vertical down scale amount = maximum[1, Vertical source size /
4058  *                                         Vertical destination size]
4059  * Total down scale amount = Horizontal down scale amount *
4060  *                           Vertical down scale amount
4061  * """
4062  *
4063  * Return value is provided in 16.16 fixed point form to retain fractional part.
4064  * Caller should take care of dividing & rounding off the value.
4065  */
4066 static uint_fixed_16_16_t
4067 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
4068                            const struct intel_plane_state *pstate)
4069 {
4070         struct intel_plane *plane = to_intel_plane(pstate->base.plane);
4071         u32 src_w, src_h, dst_w, dst_h;
4072         uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4073         uint_fixed_16_16_t downscale_h, downscale_w;
4074
4075         if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4076                 return u32_to_fixed16(0);
4077
4078         /* n.b., src is 16.16 fixed point, dst is whole integer */
4079         if (plane->id == PLANE_CURSOR) {
4080                 /*
4081                  * Cursors only support 0/180 degree rotation,
4082                  * hence no need to account for rotation here.
4083                  */
4084                 src_w = pstate->base.src_w >> 16;
4085                 src_h = pstate->base.src_h >> 16;
4086                 dst_w = pstate->base.crtc_w;
4087                 dst_h = pstate->base.crtc_h;
4088         } else {
4089                 /*
4090                  * Src coordinates are already rotated by 270 degrees for
4091                  * the 90/270 degree plane rotation cases (to match the
4092                  * GTT mapping), hence no need to account for rotation here.
4093                  */
4094                 src_w = drm_rect_width(&pstate->base.src) >> 16;
4095                 src_h = drm_rect_height(&pstate->base.src) >> 16;
4096                 dst_w = drm_rect_width(&pstate->base.dst);
4097                 dst_h = drm_rect_height(&pstate->base.dst);
4098         }
4099
4100         fp_w_ratio = div_fixed16(src_w, dst_w);
4101         fp_h_ratio = div_fixed16(src_h, dst_h);
4102         downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4103         downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4104
4105         return mul_fixed16(downscale_w, downscale_h);
4106 }
4107
4108 static uint_fixed_16_16_t
4109 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
4110 {
4111         uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4112
4113         if (!crtc_state->base.enable)
4114                 return pipe_downscale;
4115
4116         if (crtc_state->pch_pfit.enabled) {
4117                 u32 src_w, src_h, dst_w, dst_h;
4118                 u32 pfit_size = crtc_state->pch_pfit.size;
4119                 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4120                 uint_fixed_16_16_t downscale_h, downscale_w;
4121
4122                 src_w = crtc_state->pipe_src_w;
4123                 src_h = crtc_state->pipe_src_h;
4124                 dst_w = pfit_size >> 16;
4125                 dst_h = pfit_size & 0xffff;
4126
4127                 if (!dst_w || !dst_h)
4128                         return pipe_downscale;
4129
4130                 fp_w_ratio = div_fixed16(src_w, dst_w);
4131                 fp_h_ratio = div_fixed16(src_h, dst_h);
4132                 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4133                 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4134
4135                 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
4136         }
4137
4138         return pipe_downscale;
4139 }
4140
4141 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4142                                   struct intel_crtc_state *cstate)
4143 {
4144         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4145         struct drm_crtc_state *crtc_state = &cstate->base;
4146         struct drm_atomic_state *state = crtc_state->state;
4147         struct drm_plane *plane;
4148         const struct drm_plane_state *pstate;
4149         struct intel_plane_state *intel_pstate;
4150         int crtc_clock, dotclk;
4151         u32 pipe_max_pixel_rate;
4152         uint_fixed_16_16_t pipe_downscale;
4153         uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4154
4155         if (!cstate->base.enable)
4156                 return 0;
4157
4158         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4159                 uint_fixed_16_16_t plane_downscale;
4160                 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4161                 int bpp;
4162
4163                 if (!intel_wm_plane_visible(cstate,
4164                                             to_intel_plane_state(pstate)))
4165                         continue;
4166
4167                 if (WARN_ON(!pstate->fb))
4168                         return -EINVAL;
4169
4170                 intel_pstate = to_intel_plane_state(pstate);
4171                 plane_downscale = skl_plane_downscale_amount(cstate,
4172                                                              intel_pstate);
4173                 bpp = pstate->fb->format->cpp[0] * 8;
4174                 if (bpp == 64)
4175                         plane_downscale = mul_fixed16(plane_downscale,
4176                                                       fp_9_div_8);
4177
4178                 max_downscale = max_fixed16(plane_downscale, max_downscale);
4179         }
4180         pipe_downscale = skl_pipe_downscale_amount(cstate);
4181
4182         pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
4183
4184         crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4185         dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
4186
4187         if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4188                 dotclk *= 2;
4189
4190         pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4191
4192         if (pipe_max_pixel_rate < crtc_clock) {
4193                 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4194                 return -EINVAL;
4195         }
4196
4197         return 0;
4198 }
4199
4200 static u64
4201 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4202                              const struct intel_plane_state *intel_pstate,
4203                              const int plane)
4204 {
4205         struct intel_plane *intel_plane =
4206                 to_intel_plane(intel_pstate->base.plane);
4207         u32 data_rate;
4208         u32 width = 0, height = 0;
4209         struct drm_framebuffer *fb;
4210         u32 format;
4211         uint_fixed_16_16_t down_scale_amount;
4212         u64 rate;
4213
4214         if (!intel_pstate->base.visible)
4215                 return 0;
4216
4217         fb = intel_pstate->base.fb;
4218         format = fb->format->format;
4219
4220         if (intel_plane->id == PLANE_CURSOR)
4221                 return 0;
4222         if (plane == 1 && !is_planar_yuv_format(format))
4223                 return 0;
4224
4225         /*
4226          * Src coordinates are already rotated by 270 degrees for
4227          * the 90/270 degree plane rotation cases (to match the
4228          * GTT mapping), hence no need to account for rotation here.
4229          */
4230         width = drm_rect_width(&intel_pstate->base.src) >> 16;
4231         height = drm_rect_height(&intel_pstate->base.src) >> 16;
4232
4233         /* UV plane does 1/2 pixel sub-sampling */
4234         if (plane == 1 && is_planar_yuv_format(format)) {
4235                 width /= 2;
4236                 height /= 2;
4237         }
4238
4239         data_rate = width * height;
4240
4241         down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4242
4243         rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4244
4245         rate *= fb->format->cpp[plane];
4246         return rate;
4247 }
4248
4249 static u64
4250 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4251                                  u64 *plane_data_rate,
4252                                  u64 *uv_plane_data_rate)
4253 {
4254         struct drm_crtc_state *cstate = &intel_cstate->base;
4255         struct drm_atomic_state *state = cstate->state;
4256         struct drm_plane *plane;
4257         const struct drm_plane_state *pstate;
4258         u64 total_data_rate = 0;
4259
4260         if (WARN_ON(!state))
4261                 return 0;
4262
4263         /* Calculate and cache data rate for each plane */
4264         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4265                 enum plane_id plane_id = to_intel_plane(plane)->id;
4266                 u64 rate;
4267                 const struct intel_plane_state *intel_pstate =
4268                         to_intel_plane_state(pstate);
4269
4270                 /* packed/y */
4271                 rate = skl_plane_relative_data_rate(intel_cstate,
4272                                                     intel_pstate, 0);
4273                 plane_data_rate[plane_id] = rate;
4274                 total_data_rate += rate;
4275
4276                 /* uv-plane */
4277                 rate = skl_plane_relative_data_rate(intel_cstate,
4278                                                     intel_pstate, 1);
4279                 uv_plane_data_rate[plane_id] = rate;
4280                 total_data_rate += rate;
4281         }
4282
4283         return total_data_rate;
4284 }
4285
4286 static u64
4287 icl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4288                                  u64 *plane_data_rate)
4289 {
4290         struct drm_crtc_state *cstate = &intel_cstate->base;
4291         struct drm_atomic_state *state = cstate->state;
4292         struct drm_plane *plane;
4293         const struct drm_plane_state *pstate;
4294         u64 total_data_rate = 0;
4295
4296         if (WARN_ON(!state))
4297                 return 0;
4298
4299         /* Calculate and cache data rate for each plane */
4300         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4301                 const struct intel_plane_state *intel_pstate =
4302                         to_intel_plane_state(pstate);
4303                 enum plane_id plane_id = to_intel_plane(plane)->id;
4304                 u64 rate;
4305
4306                 if (!intel_pstate->linked_plane) {
4307                         rate = skl_plane_relative_data_rate(intel_cstate,
4308                                                             intel_pstate, 0);
4309                         plane_data_rate[plane_id] = rate;
4310                         total_data_rate += rate;
4311                 } else {
4312                         enum plane_id y_plane_id;
4313
4314                         /*
4315                          * The slave plane might not iterate in
4316                          * drm_atomic_crtc_state_for_each_plane_state(),
4317                          * and needs the master plane state which may be
4318                          * NULL if we try get_new_plane_state(), so we
4319                          * always calculate from the master.
4320                          */
4321                         if (intel_pstate->slave)
4322                                 continue;
4323
4324                         /* Y plane rate is calculated on the slave */
4325                         rate = skl_plane_relative_data_rate(intel_cstate,
4326                                                             intel_pstate, 0);
4327                         y_plane_id = intel_pstate->linked_plane->id;
4328                         plane_data_rate[y_plane_id] = rate;
4329                         total_data_rate += rate;
4330
4331                         rate = skl_plane_relative_data_rate(intel_cstate,
4332                                                             intel_pstate, 1);
4333                         plane_data_rate[plane_id] = rate;
4334                         total_data_rate += rate;
4335                 }
4336         }
4337
4338         return total_data_rate;
4339 }
4340
4341 static int
4342 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4343                       struct skl_ddb_allocation *ddb /* out */)
4344 {
4345         struct drm_atomic_state *state = cstate->base.state;
4346         struct drm_crtc *crtc = cstate->base.crtc;
4347         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4348         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4349         struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4350         u16 alloc_size, start = 0;
4351         u16 total[I915_MAX_PLANES] = {};
4352         u16 uv_total[I915_MAX_PLANES] = {};
4353         u64 total_data_rate;
4354         enum plane_id plane_id;
4355         int num_active;
4356         u64 plane_data_rate[I915_MAX_PLANES] = {};
4357         u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4358         u32 blocks;
4359         int level;
4360
4361         /* Clear the partitioning for disabled planes. */
4362         memset(cstate->wm.skl.plane_ddb_y, 0, sizeof(cstate->wm.skl.plane_ddb_y));
4363         memset(cstate->wm.skl.plane_ddb_uv, 0, sizeof(cstate->wm.skl.plane_ddb_uv));
4364
4365         if (WARN_ON(!state))
4366                 return 0;
4367
4368         if (!cstate->base.active) {
4369                 alloc->start = alloc->end = 0;
4370                 return 0;
4371         }
4372
4373         if (INTEL_GEN(dev_priv) < 11)
4374                 total_data_rate =
4375                         skl_get_total_relative_data_rate(cstate,
4376                                                          plane_data_rate,
4377                                                          uv_plane_data_rate);
4378         else
4379                 total_data_rate =
4380                         icl_get_total_relative_data_rate(cstate,
4381                                                          plane_data_rate);
4382
4383         skl_ddb_get_pipe_allocation_limits(dev_priv, cstate, total_data_rate,
4384                                            ddb, alloc, &num_active);
4385         alloc_size = skl_ddb_entry_size(alloc);
4386         if (alloc_size == 0)
4387                 return 0;
4388
4389         /* Allocate fixed number of blocks for cursor. */
4390         total[PLANE_CURSOR] = skl_cursor_allocation(cstate, num_active);
4391         alloc_size -= total[PLANE_CURSOR];
4392         cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4393                 alloc->end - total[PLANE_CURSOR];
4394         cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4395
4396         if (total_data_rate == 0)
4397                 return 0;
4398
4399         /*
4400          * Find the highest watermark level for which we can satisfy the block
4401          * requirement of active planes.
4402          */
4403         for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4404                 blocks = 0;
4405                 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4406                         const struct skl_plane_wm *wm =
4407                                 &cstate->wm.skl.optimal.planes[plane_id];
4408
4409                         if (plane_id == PLANE_CURSOR) {
4410                                 if (WARN_ON(wm->wm[level].min_ddb_alloc >
4411                                             total[PLANE_CURSOR])) {
4412                                         blocks = U32_MAX;
4413                                         break;
4414                                 }
4415                                 continue;
4416                         }
4417
4418                         blocks += wm->wm[level].min_ddb_alloc;
4419                         blocks += wm->uv_wm[level].min_ddb_alloc;
4420                 }
4421
4422                 if (blocks <= alloc_size) {
4423                         alloc_size -= blocks;
4424                         break;
4425                 }
4426         }
4427
4428         if (level < 0) {
4429                 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4430                 DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
4431                               alloc_size);
4432                 return -EINVAL;
4433         }
4434
4435         /*
4436          * Grant each plane the blocks it requires at the highest achievable
4437          * watermark level, plus an extra share of the leftover blocks
4438          * proportional to its relative data rate.
4439          */
4440         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4441                 const struct skl_plane_wm *wm =
4442                         &cstate->wm.skl.optimal.planes[plane_id];
4443                 u64 rate;
4444                 u16 extra;
4445
4446                 if (plane_id == PLANE_CURSOR)
4447                         continue;
4448
4449                 /*
4450                  * We've accounted for all active planes; remaining planes are
4451                  * all disabled.
4452                  */
4453                 if (total_data_rate == 0)
4454                         break;
4455
4456                 rate = plane_data_rate[plane_id];
4457                 extra = min_t(u16, alloc_size,
4458                               DIV64_U64_ROUND_UP(alloc_size * rate,
4459                                                  total_data_rate));
4460                 total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4461                 alloc_size -= extra;
4462                 total_data_rate -= rate;
4463
4464                 if (total_data_rate == 0)
4465                         break;
4466
4467                 rate = uv_plane_data_rate[plane_id];
4468                 extra = min_t(u16, alloc_size,
4469                               DIV64_U64_ROUND_UP(alloc_size * rate,
4470                                                  total_data_rate));
4471                 uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4472                 alloc_size -= extra;
4473                 total_data_rate -= rate;
4474         }
4475         WARN_ON(alloc_size != 0 || total_data_rate != 0);
4476
4477         /* Set the actual DDB start/end points for each plane */
4478         start = alloc->start;
4479         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4480                 struct skl_ddb_entry *plane_alloc =
4481                         &cstate->wm.skl.plane_ddb_y[plane_id];
4482                 struct skl_ddb_entry *uv_plane_alloc =
4483                         &cstate->wm.skl.plane_ddb_uv[plane_id];
4484
4485                 if (plane_id == PLANE_CURSOR)
4486                         continue;
4487
4488                 /* Gen11+ uses a separate plane for UV watermarks */
4489                 WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4490
4491                 /* Leave disabled planes at (0,0) */
4492                 if (total[plane_id]) {
4493                         plane_alloc->start = start;
4494                         start += total[plane_id];
4495                         plane_alloc->end = start;
4496                 }
4497
4498                 if (uv_total[plane_id]) {
4499                         uv_plane_alloc->start = start;
4500                         start += uv_total[plane_id];
4501                         uv_plane_alloc->end = start;
4502                 }
4503         }
4504
4505         /*
4506          * When we calculated watermark values we didn't know how high
4507          * of a level we'd actually be able to hit, so we just marked
4508          * all levels as "enabled."  Go back now and disable the ones
4509          * that aren't actually possible.
4510          */
4511         for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4512                 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4513                         struct skl_plane_wm *wm =
4514                                 &cstate->wm.skl.optimal.planes[plane_id];
4515
4516                         /*
4517                          * We only disable the watermarks for each plane if
4518                          * they exceed the ddb allocation of said plane. This
4519                          * is done so that we don't end up touching cursor
4520                          * watermarks needlessly when some other plane reduces
4521                          * our max possible watermark level.
4522                          *
4523                          * Bspec has this to say about the PLANE_WM enable bit:
4524                          * "All the watermarks at this level for all enabled
4525                          *  planes must be enabled before the level will be used."
4526                          * So this is actually safe to do.
4527                          */
4528                         if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
4529                             wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
4530                                 memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4531
4532                         /*
4533                          * Wa_1408961008:icl, ehl
4534                          * Underruns with WM1+ disabled
4535                          */
4536                         if (IS_GEN(dev_priv, 11) &&
4537                             level == 1 && wm->wm[0].plane_en) {
4538                                 wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4539                                 wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
4540                                 wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4541                         }
4542                 }
4543         }
4544
4545         /*
4546          * Go back and disable the transition watermark if it turns out we
4547          * don't have enough DDB blocks for it.
4548          */
4549         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4550                 struct skl_plane_wm *wm =
4551                         &cstate->wm.skl.optimal.planes[plane_id];
4552
4553                 if (wm->trans_wm.plane_res_b >= total[plane_id])
4554                         memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4555         }
4556
4557         return 0;
4558 }
4559
4560 /*
4561  * The max latency should be 257 (max the punit can code is 255 and we add 2us
4562  * for the read latency) and cpp should always be <= 8, so that
4563  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4564  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4565 */
4566 static uint_fixed_16_16_t
4567 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
4568                u8 cpp, u32 latency, u32 dbuf_block_size)
4569 {
4570         u32 wm_intermediate_val;
4571         uint_fixed_16_16_t ret;
4572
4573         if (latency == 0)
4574                 return FP_16_16_MAX;
4575
4576         wm_intermediate_val = latency * pixel_rate * cpp;
4577         ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4578
4579         if (INTEL_GEN(dev_priv) >= 10)
4580                 ret = add_fixed16_u32(ret, 1);
4581
4582         return ret;
4583 }
4584
4585 static uint_fixed_16_16_t
4586 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
4587                uint_fixed_16_16_t plane_blocks_per_line)
4588 {
4589         u32 wm_intermediate_val;
4590         uint_fixed_16_16_t ret;
4591
4592         if (latency == 0)
4593                 return FP_16_16_MAX;
4594
4595         wm_intermediate_val = latency * pixel_rate;
4596         wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4597                                            pipe_htotal * 1000);
4598         ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4599         return ret;
4600 }
4601
4602 static uint_fixed_16_16_t
4603 intel_get_linetime_us(const struct intel_crtc_state *cstate)
4604 {
4605         u32 pixel_rate;
4606         u32 crtc_htotal;
4607         uint_fixed_16_16_t linetime_us;
4608
4609         if (!cstate->base.active)
4610                 return u32_to_fixed16(0);
4611
4612         pixel_rate = cstate->pixel_rate;
4613
4614         if (WARN_ON(pixel_rate == 0))
4615                 return u32_to_fixed16(0);
4616
4617         crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4618         linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4619
4620         return linetime_us;
4621 }
4622
4623 static u32
4624 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4625                               const struct intel_plane_state *pstate)
4626 {
4627         u64 adjusted_pixel_rate;
4628         uint_fixed_16_16_t downscale_amount;
4629
4630         /* Shouldn't reach here on disabled planes... */
4631         if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4632                 return 0;
4633
4634         /*
4635          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4636          * with additional adjustments for plane-specific scaling.
4637          */
4638         adjusted_pixel_rate = cstate->pixel_rate;
4639         downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4640
4641         return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4642                                             downscale_amount);
4643 }
4644
4645 static int
4646 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4647                       int width, const struct drm_format_info *format,
4648                       u64 modifier, unsigned int rotation,
4649                       u32 plane_pixel_rate, struct skl_wm_params *wp,
4650                       int color_plane)
4651 {
4652         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4653         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4654         u32 interm_pbpl;
4655
4656         /* only planar format has two planes */
4657         if (color_plane == 1 && !is_planar_yuv_format(format->format)) {
4658                 DRM_DEBUG_KMS("Non planar format have single plane\n");
4659                 return -EINVAL;
4660         }
4661
4662         wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
4663                       modifier == I915_FORMAT_MOD_Yf_TILED ||
4664                       modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4665                       modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4666         wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
4667         wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4668                          modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4669         wp->is_planar = is_planar_yuv_format(format->format);
4670
4671         wp->width = width;
4672         if (color_plane == 1 && wp->is_planar)
4673                 wp->width /= 2;
4674
4675         wp->cpp = format->cpp[color_plane];
4676         wp->plane_pixel_rate = plane_pixel_rate;
4677
4678         if (INTEL_GEN(dev_priv) >= 11 &&
4679             modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4680                 wp->dbuf_block_size = 256;
4681         else
4682                 wp->dbuf_block_size = 512;
4683
4684         if (drm_rotation_90_or_270(rotation)) {
4685                 switch (wp->cpp) {
4686                 case 1:
4687                         wp->y_min_scanlines = 16;
4688                         break;
4689                 case 2:
4690                         wp->y_min_scanlines = 8;
4691                         break;
4692                 case 4:
4693                         wp->y_min_scanlines = 4;
4694                         break;
4695                 default:
4696                         MISSING_CASE(wp->cpp);
4697                         return -EINVAL;
4698                 }
4699         } else {
4700                 wp->y_min_scanlines = 4;
4701         }
4702
4703         if (skl_needs_memory_bw_wa(dev_priv))
4704                 wp->y_min_scanlines *= 2;
4705
4706         wp->plane_bytes_per_line = wp->width * wp->cpp;
4707         if (wp->y_tiled) {
4708                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4709                                            wp->y_min_scanlines,
4710                                            wp->dbuf_block_size);
4711
4712                 if (INTEL_GEN(dev_priv) >= 10)
4713                         interm_pbpl++;
4714
4715                 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4716                                                         wp->y_min_scanlines);
4717         } else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4718                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4719                                            wp->dbuf_block_size);
4720                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4721         } else {
4722                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4723                                            wp->dbuf_block_size) + 1;
4724                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4725         }
4726
4727         wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4728                                              wp->plane_blocks_per_line);
4729
4730         wp->linetime_us = fixed16_to_u32_round_up(
4731                                         intel_get_linetime_us(crtc_state));
4732
4733         return 0;
4734 }
4735
4736 static int
4737 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
4738                             const struct intel_plane_state *plane_state,
4739                             struct skl_wm_params *wp, int color_plane)
4740 {
4741         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
4742         const struct drm_framebuffer *fb = plane_state->base.fb;
4743         int width;
4744
4745         if (plane->id == PLANE_CURSOR) {
4746                 width = plane_state->base.crtc_w;
4747         } else {
4748                 /*
4749                  * Src coordinates are already rotated by 270 degrees for
4750                  * the 90/270 degree plane rotation cases (to match the
4751                  * GTT mapping), hence no need to account for rotation here.
4752                  */
4753                 width = drm_rect_width(&plane_state->base.src) >> 16;
4754         }
4755
4756         return skl_compute_wm_params(crtc_state, width,
4757                                      fb->format, fb->modifier,
4758                                      plane_state->base.rotation,
4759                                      skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
4760                                      wp, color_plane);
4761 }
4762
4763 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
4764 {
4765         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4766                 return true;
4767
4768         /* The number of lines are ignored for the level 0 watermark. */
4769         return level > 0;
4770 }
4771
4772 static void skl_compute_plane_wm(const struct intel_crtc_state *cstate,
4773                                  int level,
4774                                  const struct skl_wm_params *wp,
4775                                  const struct skl_wm_level *result_prev,
4776                                  struct skl_wm_level *result /* out */)
4777 {
4778         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4779         u32 latency = dev_priv->wm.skl_latency[level];
4780         uint_fixed_16_16_t method1, method2;
4781         uint_fixed_16_16_t selected_result;
4782         u32 res_blocks, res_lines, min_ddb_alloc = 0;
4783
4784         if (latency == 0) {
4785                 /* reject it */
4786                 result->min_ddb_alloc = U16_MAX;
4787                 return;
4788         }
4789
4790         /* Display WA #1141: kbl,cfl */
4791         if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
4792             IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4793             dev_priv->ipc_enabled)
4794                 latency += 4;
4795
4796         if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4797                 latency += 15;
4798
4799         method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4800                                  wp->cpp, latency, wp->dbuf_block_size);
4801         method2 = skl_wm_method2(wp->plane_pixel_rate,
4802                                  cstate->base.adjusted_mode.crtc_htotal,
4803                                  latency,
4804                                  wp->plane_blocks_per_line);
4805
4806         if (wp->y_tiled) {
4807                 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4808         } else {
4809                 if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4810                      wp->dbuf_block_size < 1) &&
4811                      (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4812                         selected_result = method2;
4813                 } else if (latency >= wp->linetime_us) {
4814                         if (IS_GEN(dev_priv, 9) &&
4815                             !IS_GEMINILAKE(dev_priv))
4816                                 selected_result = min_fixed16(method1, method2);
4817                         else
4818                                 selected_result = method2;
4819                 } else {
4820                         selected_result = method1;
4821                 }
4822         }
4823
4824         res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4825         res_lines = div_round_up_fixed16(selected_result,
4826                                          wp->plane_blocks_per_line);
4827
4828         if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
4829                 /* Display WA #1125: skl,bxt,kbl */
4830                 if (level == 0 && wp->rc_surface)
4831                         res_blocks +=
4832                                 fixed16_to_u32_round_up(wp->y_tile_minimum);
4833
4834                 /* Display WA #1126: skl,bxt,kbl */
4835                 if (level >= 1 && level <= 7) {
4836                         if (wp->y_tiled) {
4837                                 res_blocks +=
4838                                     fixed16_to_u32_round_up(wp->y_tile_minimum);
4839                                 res_lines += wp->y_min_scanlines;
4840                         } else {
4841                                 res_blocks++;
4842                         }
4843
4844                         /*
4845                          * Make sure result blocks for higher latency levels are
4846                          * atleast as high as level below the current level.
4847                          * Assumption in DDB algorithm optimization for special
4848                          * cases. Also covers Display WA #1125 for RC.
4849                          */
4850                         if (result_prev->plane_res_b > res_blocks)
4851                                 res_blocks = result_prev->plane_res_b;
4852                 }
4853         }
4854
4855         if (INTEL_GEN(dev_priv) >= 11) {
4856                 if (wp->y_tiled) {
4857                         int extra_lines;
4858
4859                         if (res_lines % wp->y_min_scanlines == 0)
4860                                 extra_lines = wp->y_min_scanlines;
4861                         else
4862                                 extra_lines = wp->y_min_scanlines * 2 -
4863                                         res_lines % wp->y_min_scanlines;
4864
4865                         min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
4866                                                                  wp->plane_blocks_per_line);
4867                 } else {
4868                         min_ddb_alloc = res_blocks +
4869                                 DIV_ROUND_UP(res_blocks, 10);
4870                 }
4871         }
4872
4873         if (!skl_wm_has_lines(dev_priv, level))
4874                 res_lines = 0;
4875
4876         if (res_lines > 31) {
4877                 /* reject it */
4878                 result->min_ddb_alloc = U16_MAX;
4879                 return;
4880         }
4881
4882         /*
4883          * If res_lines is valid, assume we can use this watermark level
4884          * for now.  We'll come back and disable it after we calculate the
4885          * DDB allocation if it turns out we don't actually have enough
4886          * blocks to satisfy it.
4887          */
4888         result->plane_res_b = res_blocks;
4889         result->plane_res_l = res_lines;
4890         /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
4891         result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4892         result->plane_en = true;
4893 }
4894
4895 static void
4896 skl_compute_wm_levels(const struct intel_crtc_state *cstate,
4897                       const struct skl_wm_params *wm_params,
4898                       struct skl_wm_level *levels)
4899 {
4900         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4901         int level, max_level = ilk_wm_max_level(dev_priv);
4902         struct skl_wm_level *result_prev = &levels[0];
4903
4904         for (level = 0; level <= max_level; level++) {
4905                 struct skl_wm_level *result = &levels[level];
4906
4907                 skl_compute_plane_wm(cstate, level, wm_params,
4908                                      result_prev, result);
4909
4910                 result_prev = result;
4911         }
4912 }
4913
4914 static u32
4915 skl_compute_linetime_wm(const struct intel_crtc_state *cstate)
4916 {
4917         struct drm_atomic_state *state = cstate->base.state;
4918         struct drm_i915_private *dev_priv = to_i915(state->dev);
4919         uint_fixed_16_16_t linetime_us;
4920         u32 linetime_wm;
4921
4922         linetime_us = intel_get_linetime_us(cstate);
4923         linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4924
4925         /* Display WA #1135: BXT:ALL GLK:ALL */
4926         if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4927                 linetime_wm /= 2;
4928
4929         return linetime_wm;
4930 }
4931
4932 static void skl_compute_transition_wm(const struct intel_crtc_state *cstate,
4933                                       const struct skl_wm_params *wp,
4934                                       struct skl_plane_wm *wm)
4935 {
4936         struct drm_device *dev = cstate->base.crtc->dev;
4937         const struct drm_i915_private *dev_priv = to_i915(dev);
4938         u16 trans_min, trans_y_tile_min;
4939         const u16 trans_amount = 10; /* This is configurable amount */
4940         u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4941
4942         /* Transition WM are not recommended by HW team for GEN9 */
4943         if (INTEL_GEN(dev_priv) <= 9)
4944                 return;
4945
4946         /* Transition WM don't make any sense if ipc is disabled */
4947         if (!dev_priv->ipc_enabled)
4948                 return;
4949
4950         trans_min = 14;
4951         if (INTEL_GEN(dev_priv) >= 11)
4952                 trans_min = 4;
4953
4954         trans_offset_b = trans_min + trans_amount;
4955
4956         /*
4957          * The spec asks for Selected Result Blocks for wm0 (the real value),
4958          * not Result Blocks (the integer value). Pay attention to the capital
4959          * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
4960          * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
4961          * and since we later will have to get the ceiling of the sum in the
4962          * transition watermarks calculation, we can just pretend Selected
4963          * Result Blocks is Result Blocks minus 1 and it should work for the
4964          * current platforms.
4965          */
4966         wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4967
4968         if (wp->y_tiled) {
4969                 trans_y_tile_min =
4970                         (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4971                 res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4972                                 trans_offset_b;
4973         } else {
4974                 res_blocks = wm0_sel_res_b + trans_offset_b;
4975
4976                 /* WA BUG:1938466 add one block for non y-tile planes */
4977                 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4978                         res_blocks += 1;
4979
4980         }
4981
4982         /*
4983          * Just assume we can enable the transition watermark.  After
4984          * computing the DDB we'll come back and disable it if that
4985          * assumption turns out to be false.
4986          */
4987         wm->trans_wm.plane_res_b = res_blocks + 1;
4988         wm->trans_wm.plane_en = true;
4989 }
4990
4991 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4992                                      const struct intel_plane_state *plane_state,
4993                                      enum plane_id plane_id, int color_plane)
4994 {
4995         struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4996         struct skl_wm_params wm_params;
4997         int ret;
4998
4999         ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5000                                           &wm_params, color_plane);
5001         if (ret)
5002                 return ret;
5003
5004         skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5005         skl_compute_transition_wm(crtc_state, &wm_params, wm);
5006
5007         return 0;
5008 }
5009
5010 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5011                                  const struct intel_plane_state *plane_state,
5012                                  enum plane_id plane_id)
5013 {
5014         struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5015         struct skl_wm_params wm_params;
5016         int ret;
5017
5018         wm->is_planar = true;
5019
5020         /* uv plane watermarks must also be validated for NV12/Planar */
5021         ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5022                                           &wm_params, 1);
5023         if (ret)
5024                 return ret;
5025
5026         skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5027
5028         return 0;
5029 }
5030
5031 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5032                               const struct intel_plane_state *plane_state)
5033 {
5034         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
5035         const struct drm_framebuffer *fb = plane_state->base.fb;
5036         enum plane_id plane_id = plane->id;
5037         int ret;
5038
5039         if (!intel_wm_plane_visible(crtc_state, plane_state))
5040                 return 0;
5041
5042         ret = skl_build_plane_wm_single(crtc_state, plane_state,
5043                                         plane_id, 0);
5044         if (ret)
5045                 return ret;
5046
5047         if (fb->format->is_yuv && fb->format->num_planes > 1) {
5048                 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5049                                             plane_id);
5050                 if (ret)
5051                         return ret;
5052         }
5053
5054         return 0;
5055 }
5056
5057 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5058                               const struct intel_plane_state *plane_state)
5059 {
5060         enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
5061         int ret;
5062
5063         /* Watermarks calculated in master */
5064         if (plane_state->slave)
5065                 return 0;
5066
5067         if (plane_state->linked_plane) {
5068                 const struct drm_framebuffer *fb = plane_state->base.fb;
5069                 enum plane_id y_plane_id = plane_state->linked_plane->id;
5070
5071                 WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
5072                 WARN_ON(!fb->format->is_yuv ||
5073                         fb->format->num_planes == 1);
5074
5075                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5076                                                 y_plane_id, 0);
5077                 if (ret)
5078                         return ret;
5079
5080                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5081                                                 plane_id, 1);
5082                 if (ret)
5083                         return ret;
5084         } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5085                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5086                                                 plane_id, 0);
5087                 if (ret)
5088                         return ret;
5089         }
5090
5091         return 0;
5092 }
5093
5094 static int skl_build_pipe_wm(struct intel_crtc_state *cstate)
5095 {
5096         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5097         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5098         struct drm_crtc_state *crtc_state = &cstate->base;
5099         struct drm_plane *plane;
5100         const struct drm_plane_state *pstate;
5101         int ret;
5102
5103         /*
5104          * We'll only calculate watermarks for planes that are actually
5105          * enabled, so make sure all other planes are set as disabled.
5106          */
5107         memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
5108
5109         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
5110                 const struct intel_plane_state *intel_pstate =
5111                                                 to_intel_plane_state(pstate);
5112
5113                 if (INTEL_GEN(dev_priv) >= 11)
5114                         ret = icl_build_plane_wm(cstate, intel_pstate);
5115                 else
5116                         ret = skl_build_plane_wm(cstate, intel_pstate);
5117                 if (ret)
5118                         return ret;
5119         }
5120
5121         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
5122
5123         return 0;
5124 }
5125
5126 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5127                                 i915_reg_t reg,
5128                                 const struct skl_ddb_entry *entry)
5129 {
5130         if (entry->end)
5131                 I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5132         else
5133                 I915_WRITE_FW(reg, 0);
5134 }
5135
5136 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5137                                i915_reg_t reg,
5138                                const struct skl_wm_level *level)
5139 {
5140         u32 val = 0;
5141
5142         if (level->plane_en)
5143                 val |= PLANE_WM_EN;
5144         if (level->ignore_lines)
5145                 val |= PLANE_WM_IGNORE_LINES;
5146         val |= level->plane_res_b;
5147         val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5148
5149         I915_WRITE_FW(reg, val);
5150 }
5151
5152 void skl_write_plane_wm(struct intel_plane *plane,
5153                         const struct intel_crtc_state *crtc_state)
5154 {
5155         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5156         int level, max_level = ilk_wm_max_level(dev_priv);
5157         enum plane_id plane_id = plane->id;
5158         enum pipe pipe = plane->pipe;
5159         const struct skl_plane_wm *wm =
5160                 &crtc_state->wm.skl.optimal.planes[plane_id];
5161         const struct skl_ddb_entry *ddb_y =
5162                 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5163         const struct skl_ddb_entry *ddb_uv =
5164                 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5165
5166         for (level = 0; level <= max_level; level++) {
5167                 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5168                                    &wm->wm[level]);
5169         }
5170         skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5171                            &wm->trans_wm);
5172
5173         if (INTEL_GEN(dev_priv) >= 11) {
5174                 skl_ddb_entry_write(dev_priv,
5175                                     PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5176                 return;
5177         }
5178
5179         if (wm->is_planar)
5180                 swap(ddb_y, ddb_uv);
5181
5182         skl_ddb_entry_write(dev_priv,
5183                             PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5184         skl_ddb_entry_write(dev_priv,
5185                             PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5186 }
5187
5188 void skl_write_cursor_wm(struct intel_plane *plane,
5189                          const struct intel_crtc_state *crtc_state)
5190 {
5191         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5192         int level, max_level = ilk_wm_max_level(dev_priv);
5193         enum plane_id plane_id = plane->id;
5194         enum pipe pipe = plane->pipe;
5195         const struct skl_plane_wm *wm =
5196                 &crtc_state->wm.skl.optimal.planes[plane_id];
5197         const struct skl_ddb_entry *ddb =
5198                 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5199
5200         for (level = 0; level <= max_level; level++) {
5201                 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5202                                    &wm->wm[level]);
5203         }
5204         skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5205
5206         skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5207 }
5208
5209 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5210                          const struct skl_wm_level *l2)
5211 {
5212         return l1->plane_en == l2->plane_en &&
5213                 l1->ignore_lines == l2->ignore_lines &&
5214                 l1->plane_res_l == l2->plane_res_l &&
5215                 l1->plane_res_b == l2->plane_res_b;
5216 }
5217
5218 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5219                                 const struct skl_plane_wm *wm1,
5220                                 const struct skl_plane_wm *wm2)
5221 {
5222         int level, max_level = ilk_wm_max_level(dev_priv);
5223
5224         for (level = 0; level <= max_level; level++) {
5225                 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
5226                     !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
5227                         return false;
5228         }
5229
5230         return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5231 }
5232
5233 static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
5234                                const struct skl_pipe_wm *wm1,
5235                                const struct skl_pipe_wm *wm2)
5236 {
5237         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5238         enum plane_id plane_id;
5239
5240         for_each_plane_id_on_crtc(crtc, plane_id) {
5241                 if (!skl_plane_wm_equals(dev_priv,
5242                                          &wm1->planes[plane_id],
5243                                          &wm2->planes[plane_id]))
5244                         return false;
5245         }
5246
5247         return wm1->linetime == wm2->linetime;
5248 }
5249
5250 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5251                                            const struct skl_ddb_entry *b)
5252 {
5253         return a->start < b->end && b->start < a->end;
5254 }
5255
5256 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5257                                  const struct skl_ddb_entry *entries,
5258                                  int num_entries, int ignore_idx)
5259 {
5260         int i;
5261
5262         for (i = 0; i < num_entries; i++) {
5263                 if (i != ignore_idx &&
5264                     skl_ddb_entries_overlap(ddb, &entries[i]))
5265                         return true;
5266         }
5267
5268         return false;
5269 }
5270
5271 static u32
5272 pipes_modified(struct intel_atomic_state *state)
5273 {
5274         struct intel_crtc *crtc;
5275         struct intel_crtc_state *cstate;
5276         u32 i, ret = 0;
5277
5278         for_each_new_intel_crtc_in_state(state, crtc, cstate, i)
5279                 ret |= drm_crtc_mask(&crtc->base);
5280
5281         return ret;
5282 }
5283
5284 static int
5285 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5286                             struct intel_crtc_state *new_crtc_state)
5287 {
5288         struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
5289         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
5290         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5291         struct intel_plane *plane;
5292
5293         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5294                 struct intel_plane_state *plane_state;
5295                 enum plane_id plane_id = plane->id;
5296
5297                 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5298                                         &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
5299                     skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
5300                                         &new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5301                         continue;
5302
5303                 plane_state = intel_atomic_get_plane_state(state, plane);
5304                 if (IS_ERR(plane_state))
5305                         return PTR_ERR(plane_state);
5306
5307                 new_crtc_state->update_planes |= BIT(plane_id);
5308         }
5309
5310         return 0;
5311 }
5312
5313 static int
5314 skl_compute_ddb(struct intel_atomic_state *state)
5315 {
5316         const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5317         struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5318         struct intel_crtc_state *old_crtc_state;
5319         struct intel_crtc_state *new_crtc_state;
5320         struct intel_crtc *crtc;
5321         int ret, i;
5322
5323         memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5324
5325         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5326                                             new_crtc_state, i) {
5327                 ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5328                 if (ret)
5329                         return ret;
5330
5331                 ret = skl_ddb_add_affected_planes(old_crtc_state,
5332                                                   new_crtc_state);
5333                 if (ret)
5334                         return ret;
5335         }
5336
5337         return 0;
5338 }
5339
5340 static char enast(bool enable)
5341 {
5342         return enable ? '*' : ' ';
5343 }
5344
5345 static void
5346 skl_print_wm_changes(struct intel_atomic_state *state)
5347 {
5348         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5349         const struct intel_crtc_state *old_crtc_state;
5350         const struct intel_crtc_state *new_crtc_state;
5351         struct intel_plane *plane;
5352         struct intel_crtc *crtc;
5353         int i;
5354
5355         if ((drm_debug & DRM_UT_KMS) == 0)
5356                 return;
5357
5358         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5359                                             new_crtc_state, i) {
5360                 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
5361
5362                 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
5363                 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
5364
5365                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5366                         enum plane_id plane_id = plane->id;
5367                         const struct skl_ddb_entry *old, *new;
5368
5369                         old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
5370                         new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5371
5372                         if (skl_ddb_entry_equal(old, new))
5373                                 continue;
5374
5375                         DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
5376                                       plane->base.base.id, plane->base.name,
5377                                       old->start, old->end, new->start, new->end,
5378                                       skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5379                 }
5380
5381                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5382                         enum plane_id plane_id = plane->id;
5383                         const struct skl_plane_wm *old_wm, *new_wm;
5384
5385                         old_wm = &old_pipe_wm->planes[plane_id];
5386                         new_wm = &new_pipe_wm->planes[plane_id];
5387
5388                         if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
5389                                 continue;
5390
5391                         DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
5392                                       " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
5393                                       plane->base.base.id, plane->base.name,
5394                                       enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
5395                                       enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
5396                                       enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
5397                                       enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
5398                                       enast(old_wm->trans_wm.plane_en),
5399                                       enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
5400                                       enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
5401                                       enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
5402                                       enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5403                                       enast(new_wm->trans_wm.plane_en));
5404
5405                         DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5406                                       " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5407                                       plane->base.base.id, plane->base.name,
5408                                       enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
5409                                       enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
5410                                       enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
5411                                       enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
5412                                       enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
5413                                       enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
5414                                       enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
5415                                       enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
5416                                       enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5417
5418                                       enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
5419                                       enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
5420                                       enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
5421                                       enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
5422                                       enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
5423                                       enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
5424                                       enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
5425                                       enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5426                                       enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5427
5428                         DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5429                                       " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5430                                       plane->base.base.id, plane->base.name,
5431                                       old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
5432                                       old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
5433                                       old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
5434                                       old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
5435                                       old_wm->trans_wm.plane_res_b,
5436                                       new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
5437                                       new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
5438                                       new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
5439                                       new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5440                                       new_wm->trans_wm.plane_res_b);
5441
5442                         DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5443                                       " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5444                                       plane->base.base.id, plane->base.name,
5445                                       old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
5446                                       old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
5447                                       old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
5448                                       old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
5449                                       old_wm->trans_wm.min_ddb_alloc,
5450                                       new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
5451                                       new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
5452                                       new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
5453                                       new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5454                                       new_wm->trans_wm.min_ddb_alloc);
5455                 }
5456         }
5457 }
5458
5459 static int
5460 skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
5461 {
5462         struct drm_device *dev = state->base.dev;
5463         const struct drm_i915_private *dev_priv = to_i915(dev);
5464         struct intel_crtc *crtc;
5465         struct intel_crtc_state *crtc_state;
5466         u32 realloc_pipes = pipes_modified(state);
5467         int ret, i;
5468
5469         /*
5470          * When we distrust bios wm we always need to recompute to set the
5471          * expected DDB allocations for each CRTC.
5472          */
5473         if (dev_priv->wm.distrust_bios_wm)
5474                 (*changed) = true;
5475
5476         /*
5477          * If this transaction isn't actually touching any CRTC's, don't
5478          * bother with watermark calculation.  Note that if we pass this
5479          * test, we're guaranteed to hold at least one CRTC state mutex,
5480          * which means we can safely use values like dev_priv->active_crtcs
5481          * since any racing commits that want to update them would need to
5482          * hold _all_ CRTC state mutexes.
5483          */
5484         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5485                 (*changed) = true;
5486
5487         if (!*changed)
5488                 return 0;
5489
5490         /*
5491          * If this is our first atomic update following hardware readout,
5492          * we can't trust the DDB that the BIOS programmed for us.  Let's
5493          * pretend that all pipes switched active status so that we'll
5494          * ensure a full DDB recompute.
5495          */
5496         if (dev_priv->wm.distrust_bios_wm) {
5497                 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5498                                        state->base.acquire_ctx);
5499                 if (ret)
5500                         return ret;
5501
5502                 state->active_pipe_changes = ~0;
5503
5504                 /*
5505                  * We usually only initialize state->active_crtcs if we
5506                  * we're doing a modeset; make sure this field is always
5507                  * initialized during the sanitization process that happens
5508                  * on the first commit too.
5509                  */
5510                 if (!state->modeset)
5511                         state->active_crtcs = dev_priv->active_crtcs;
5512         }
5513
5514         /*
5515          * If the modeset changes which CRTC's are active, we need to
5516          * recompute the DDB allocation for *all* active pipes, even
5517          * those that weren't otherwise being modified in any way by this
5518          * atomic commit.  Due to the shrinking of the per-pipe allocations
5519          * when new active CRTC's are added, it's possible for a pipe that
5520          * we were already using and aren't changing at all here to suddenly
5521          * become invalid if its DDB needs exceeds its new allocation.
5522          *
5523          * Note that if we wind up doing a full DDB recompute, we can't let
5524          * any other display updates race with this transaction, so we need
5525          * to grab the lock on *all* CRTC's.
5526          */
5527         if (state->active_pipe_changes || state->modeset) {
5528                 realloc_pipes = ~0;
5529                 state->wm_results.dirty_pipes = ~0;
5530         }
5531
5532         /*
5533          * We're not recomputing for the pipes not included in the commit, so
5534          * make sure we start with the current state.
5535          */
5536         for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
5537                 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
5538                 if (IS_ERR(crtc_state))
5539                         return PTR_ERR(crtc_state);
5540         }
5541
5542         return 0;
5543 }
5544
5545 /*
5546  * To make sure the cursor watermark registers are always consistent
5547  * with our computed state the following scenario needs special
5548  * treatment:
5549  *
5550  * 1. enable cursor
5551  * 2. move cursor entirely offscreen
5552  * 3. disable cursor
5553  *
5554  * Step 2. does call .disable_plane() but does not zero the watermarks
5555  * (since we consider an offscreen cursor still active for the purposes
5556  * of watermarks). Step 3. would not normally call .disable_plane()
5557  * because the actual plane visibility isn't changing, and we don't
5558  * deallocate the cursor ddb until the pipe gets disabled. So we must
5559  * force step 3. to call .disable_plane() to update the watermark
5560  * registers properly.
5561  *
5562  * Other planes do not suffer from this issues as their watermarks are
5563  * calculated based on the actual plane visibility. The only time this
5564  * can trigger for the other planes is during the initial readout as the
5565  * default value of the watermarks registers is not zero.
5566  */
5567 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
5568                                       struct intel_crtc *crtc)
5569 {
5570         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5571         const struct intel_crtc_state *old_crtc_state =
5572                 intel_atomic_get_old_crtc_state(state, crtc);
5573         struct intel_crtc_state *new_crtc_state =
5574                 intel_atomic_get_new_crtc_state(state, crtc);
5575         struct intel_plane *plane;
5576
5577         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5578                 struct intel_plane_state *plane_state;
5579                 enum plane_id plane_id = plane->id;
5580
5581                 /*
5582                  * Force a full wm update for every plane on modeset.
5583                  * Required because the reset value of the wm registers
5584                  * is non-zero, whereas we want all disabled planes to
5585                  * have zero watermarks. So if we turn off the relevant
5586                  * power well the hardware state will go out of sync
5587                  * with the software state.
5588                  */
5589                 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
5590                     skl_plane_wm_equals(dev_priv,
5591                                         &old_crtc_state->wm.skl.optimal.planes[plane_id],
5592                                         &new_crtc_state->wm.skl.optimal.planes[plane_id]))
5593                         continue;
5594
5595                 plane_state = intel_atomic_get_plane_state(state, plane);
5596                 if (IS_ERR(plane_state))
5597                         return PTR_ERR(plane_state);
5598
5599                 new_crtc_state->update_planes |= BIT(plane_id);
5600         }
5601
5602         return 0;
5603 }
5604
5605 static int
5606 skl_compute_wm(struct intel_atomic_state *state)
5607 {
5608         struct intel_crtc *crtc;
5609         struct intel_crtc_state *new_crtc_state;
5610         struct intel_crtc_state *old_crtc_state;
5611         struct skl_ddb_values *results = &state->wm_results;
5612         bool changed = false;
5613         int ret, i;
5614
5615         /* Clear all dirty flags */
5616         results->dirty_pipes = 0;
5617
5618         ret = skl_ddb_add_affected_pipes(state, &changed);
5619         if (ret || !changed)
5620                 return ret;
5621
5622         /*
5623          * Calculate WM's for all pipes that are part of this transaction.
5624          * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5625          * weren't otherwise being modified (and set bits in dirty_pipes) if
5626          * pipe allocations had to change.
5627          */
5628         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5629                                             new_crtc_state, i) {
5630                 ret = skl_build_pipe_wm(new_crtc_state);
5631                 if (ret)
5632                         return ret;
5633
5634                 ret = skl_wm_add_affected_planes(state, crtc);
5635                 if (ret)
5636                         return ret;
5637
5638                 if (!skl_pipe_wm_equals(crtc,
5639                                         &old_crtc_state->wm.skl.optimal,
5640                                         &new_crtc_state->wm.skl.optimal))
5641                         results->dirty_pipes |= drm_crtc_mask(&crtc->base);
5642         }
5643
5644         ret = skl_compute_ddb(state);
5645         if (ret)
5646                 return ret;
5647
5648         skl_print_wm_changes(state);
5649
5650         return 0;
5651 }
5652
5653 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5654                                       struct intel_crtc_state *cstate)
5655 {
5656         struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5657         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5658         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5659         enum pipe pipe = crtc->pipe;
5660
5661         if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5662                 return;
5663
5664         I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5665 }
5666
5667 static void skl_initial_wm(struct intel_atomic_state *state,
5668                            struct intel_crtc_state *cstate)
5669 {
5670         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5671         struct drm_device *dev = intel_crtc->base.dev;
5672         struct drm_i915_private *dev_priv = to_i915(dev);
5673         struct skl_ddb_values *results = &state->wm_results;
5674
5675         if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5676                 return;
5677
5678         mutex_lock(&dev_priv->wm.wm_mutex);
5679
5680         if (cstate->base.active_changed)
5681                 skl_atomic_update_crtc_wm(state, cstate);
5682
5683         mutex_unlock(&dev_priv->wm.wm_mutex);
5684 }
5685
5686 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5687                                   struct intel_wm_config *config)
5688 {
5689         struct intel_crtc *crtc;
5690
5691         /* Compute the currently _active_ config */
5692         for_each_intel_crtc(&dev_priv->drm, crtc) {
5693                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5694
5695                 if (!wm->pipe_enabled)
5696                         continue;
5697
5698                 config->sprites_enabled |= wm->sprites_enabled;
5699                 config->sprites_scaled |= wm->sprites_scaled;
5700                 config->num_pipes_active++;
5701         }
5702 }
5703
5704 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5705 {
5706         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5707         struct ilk_wm_maximums max;
5708         struct intel_wm_config config = {};
5709         struct ilk_wm_values results = {};
5710         enum intel_ddb_partitioning partitioning;
5711
5712         ilk_compute_wm_config(dev_priv, &config);
5713
5714         ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
5715         ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5716
5717         /* 5/6 split only in single pipe config on IVB+ */
5718         if (INTEL_GEN(dev_priv) >= 7 &&
5719             config.num_pipes_active == 1 && config.sprites_enabled) {
5720                 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
5721                 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5722
5723                 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5724         } else {
5725                 best_lp_wm = &lp_wm_1_2;
5726         }
5727
5728         partitioning = (best_lp_wm == &lp_wm_1_2) ?
5729                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5730
5731         ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5732
5733         ilk_write_wm_values(dev_priv, &results);
5734 }
5735
5736 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5737                                    struct intel_crtc_state *cstate)
5738 {
5739         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5740         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5741
5742         mutex_lock(&dev_priv->wm.wm_mutex);
5743         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5744         ilk_program_watermarks(dev_priv);
5745         mutex_unlock(&dev_priv->wm.wm_mutex);
5746 }
5747
5748 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5749                                     struct intel_crtc_state *cstate)
5750 {
5751         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5752         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5753
5754         mutex_lock(&dev_priv->wm.wm_mutex);
5755         if (cstate->wm.need_postvbl_update) {
5756                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5757                 ilk_program_watermarks(dev_priv);
5758         }
5759         mutex_unlock(&dev_priv->wm.wm_mutex);
5760 }
5761
5762 static inline void skl_wm_level_from_reg_val(u32 val,
5763                                              struct skl_wm_level *level)
5764 {
5765         level->plane_en = val & PLANE_WM_EN;
5766         level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5767         level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5768         level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5769                 PLANE_WM_LINES_MASK;
5770 }
5771
5772 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5773                               struct skl_pipe_wm *out)
5774 {
5775         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5776         enum pipe pipe = crtc->pipe;
5777         int level, max_level;
5778         enum plane_id plane_id;
5779         u32 val;
5780
5781         max_level = ilk_wm_max_level(dev_priv);
5782
5783         for_each_plane_id_on_crtc(crtc, plane_id) {
5784                 struct skl_plane_wm *wm = &out->planes[plane_id];
5785
5786                 for (level = 0; level <= max_level; level++) {
5787                         if (plane_id != PLANE_CURSOR)
5788                                 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5789                         else
5790                                 val = I915_READ(CUR_WM(pipe, level));
5791
5792                         skl_wm_level_from_reg_val(val, &wm->wm[level]);
5793                 }
5794
5795                 if (plane_id != PLANE_CURSOR)
5796                         val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5797                 else
5798                         val = I915_READ(CUR_WM_TRANS(pipe));
5799
5800                 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5801         }
5802
5803         if (!crtc->active)
5804                 return;
5805
5806         out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5807 }
5808
5809 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5810 {
5811         struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5812         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5813         struct intel_crtc *crtc;
5814         struct intel_crtc_state *cstate;
5815
5816         skl_ddb_get_hw_state(dev_priv, ddb);
5817         for_each_intel_crtc(&dev_priv->drm, crtc) {
5818                 cstate = to_intel_crtc_state(crtc->base.state);
5819
5820                 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5821
5822                 if (crtc->active)
5823                         hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
5824         }
5825
5826         if (dev_priv->active_crtcs) {
5827                 /* Fully recompute DDB on first atomic commit */
5828                 dev_priv->wm.distrust_bios_wm = true;
5829         }
5830 }
5831
5832 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5833 {
5834         struct drm_device *dev = crtc->base.dev;
5835         struct drm_i915_private *dev_priv = to_i915(dev);
5836         struct ilk_wm_values *hw = &dev_priv->wm.hw;
5837         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->base.state);
5838         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5839         enum pipe pipe = crtc->pipe;
5840         static const i915_reg_t wm0_pipe_reg[] = {
5841                 [PIPE_A] = WM0_PIPEA_ILK,
5842                 [PIPE_B] = WM0_PIPEB_ILK,
5843                 [PIPE_C] = WM0_PIPEC_IVB,
5844         };
5845
5846         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5847         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5848                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5849
5850         memset(active, 0, sizeof(*active));
5851
5852         active->pipe_enabled = crtc->active;
5853
5854         if (active->pipe_enabled) {
5855                 u32 tmp = hw->wm_pipe[pipe];
5856
5857                 /*
5858                  * For active pipes LP0 watermark is marked as
5859                  * enabled, and LP1+ watermaks as disabled since
5860                  * we can't really reverse compute them in case
5861                  * multiple pipes are active.
5862                  */
5863                 active->wm[0].enable = true;
5864                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5865                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5866                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5867                 active->linetime = hw->wm_linetime[pipe];
5868         } else {
5869                 int level, max_level = ilk_wm_max_level(dev_priv);
5870
5871                 /*
5872                  * For inactive pipes, all watermark levels
5873                  * should be marked as enabled but zeroed,
5874                  * which is what we'd compute them to.
5875                  */
5876                 for (level = 0; level <= max_level; level++)
5877                         active->wm[level].enable = true;
5878         }
5879
5880         crtc->wm.active.ilk = *active;
5881 }
5882
5883 #define _FW_WM(value, plane) \
5884         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5885 #define _FW_WM_VLV(value, plane) \
5886         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5887
5888 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5889                                struct g4x_wm_values *wm)
5890 {
5891         u32 tmp;
5892
5893         tmp = I915_READ(DSPFW1);
5894         wm->sr.plane = _FW_WM(tmp, SR);
5895         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5896         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5897         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5898
5899         tmp = I915_READ(DSPFW2);
5900         wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5901         wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5902         wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5903         wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5904         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5905         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5906
5907         tmp = I915_READ(DSPFW3);
5908         wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5909         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5910         wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5911         wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5912 }
5913
5914 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5915                                struct vlv_wm_values *wm)
5916 {
5917         enum pipe pipe;
5918         u32 tmp;
5919
5920         for_each_pipe(dev_priv, pipe) {
5921                 tmp = I915_READ(VLV_DDL(pipe));
5922
5923                 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5924                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5925                 wm->ddl[pipe].plane[PLANE_CURSOR] =
5926                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5927                 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5928                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5929                 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5930                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5931         }
5932
5933         tmp = I915_READ(DSPFW1);
5934         wm->sr.plane = _FW_WM(tmp, SR);
5935         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5936         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5937         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5938
5939         tmp = I915_READ(DSPFW2);
5940         wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5941         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5942         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5943
5944         tmp = I915_READ(DSPFW3);
5945         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5946
5947         if (IS_CHERRYVIEW(dev_priv)) {
5948                 tmp = I915_READ(DSPFW7_CHV);
5949                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5950                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5951
5952                 tmp = I915_READ(DSPFW8_CHV);
5953                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5954                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5955
5956                 tmp = I915_READ(DSPFW9_CHV);
5957                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5958                 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5959
5960                 tmp = I915_READ(DSPHOWM);
5961                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5962                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5963                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5964                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5965                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5966                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5967                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5968                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5969                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5970                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5971         } else {
5972                 tmp = I915_READ(DSPFW7);
5973                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5974                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5975
5976                 tmp = I915_READ(DSPHOWM);
5977                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5978                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5979                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5980                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5981                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5982                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5983                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5984         }
5985 }
5986
5987 #undef _FW_WM
5988 #undef _FW_WM_VLV
5989
5990 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5991 {
5992         struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5993         struct intel_crtc *crtc;
5994
5995         g4x_read_wm_values(dev_priv, wm);
5996
5997         wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5998
5999         for_each_intel_crtc(&dev_priv->drm, crtc) {
6000                 struct intel_crtc_state *crtc_state =
6001                         to_intel_crtc_state(crtc->base.state);
6002                 struct g4x_wm_state *active = &crtc->wm.active.g4x;
6003                 struct g4x_pipe_wm *raw;
6004                 enum pipe pipe = crtc->pipe;
6005                 enum plane_id plane_id;
6006                 int level, max_level;
6007
6008                 active->cxsr = wm->cxsr;
6009                 active->hpll_en = wm->hpll_en;
6010                 active->fbc_en = wm->fbc_en;
6011
6012                 active->sr = wm->sr;
6013                 active->hpll = wm->hpll;
6014
6015                 for_each_plane_id_on_crtc(crtc, plane_id) {
6016                         active->wm.plane[plane_id] =
6017                                 wm->pipe[pipe].plane[plane_id];
6018                 }
6019
6020                 if (wm->cxsr && wm->hpll_en)
6021                         max_level = G4X_WM_LEVEL_HPLL;
6022                 else if (wm->cxsr)
6023                         max_level = G4X_WM_LEVEL_SR;
6024                 else
6025                         max_level = G4X_WM_LEVEL_NORMAL;
6026
6027                 level = G4X_WM_LEVEL_NORMAL;
6028                 raw = &crtc_state->wm.g4x.raw[level];
6029                 for_each_plane_id_on_crtc(crtc, plane_id)
6030                         raw->plane[plane_id] = active->wm.plane[plane_id];
6031
6032                 if (++level > max_level)
6033                         goto out;
6034
6035                 raw = &crtc_state->wm.g4x.raw[level];
6036                 raw->plane[PLANE_PRIMARY] = active->sr.plane;
6037                 raw->plane[PLANE_CURSOR] = active->sr.cursor;
6038                 raw->plane[PLANE_SPRITE0] = 0;
6039                 raw->fbc = active->sr.fbc;
6040
6041                 if (++level > max_level)
6042                         goto out;
6043
6044                 raw = &crtc_state->wm.g4x.raw[level];
6045                 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6046                 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6047                 raw->plane[PLANE_SPRITE0] = 0;
6048                 raw->fbc = active->hpll.fbc;
6049
6050         out:
6051                 for_each_plane_id_on_crtc(crtc, plane_id)
6052                         g4x_raw_plane_wm_set(crtc_state, level,
6053                                              plane_id, USHRT_MAX);
6054                 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6055
6056                 crtc_state->wm.g4x.optimal = *active;
6057                 crtc_state->wm.g4x.intermediate = *active;
6058
6059                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6060                               pipe_name(pipe),
6061                               wm->pipe[pipe].plane[PLANE_PRIMARY],
6062                               wm->pipe[pipe].plane[PLANE_CURSOR],
6063                               wm->pipe[pipe].plane[PLANE_SPRITE0]);
6064         }
6065
6066         DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6067                       wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6068         DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6069                       wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6070         DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
6071                       yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6072 }
6073
6074 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6075 {
6076         struct intel_plane *plane;
6077         struct intel_crtc *crtc;
6078
6079         mutex_lock(&dev_priv->wm.wm_mutex);
6080
6081         for_each_intel_plane(&dev_priv->drm, plane) {
6082                 struct intel_crtc *crtc =
6083                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6084                 struct intel_crtc_state *crtc_state =
6085                         to_intel_crtc_state(crtc->base.state);
6086                 struct intel_plane_state *plane_state =
6087                         to_intel_plane_state(plane->base.state);
6088                 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6089                 enum plane_id plane_id = plane->id;
6090                 int level;
6091
6092                 if (plane_state->base.visible)
6093                         continue;
6094
6095                 for (level = 0; level < 3; level++) {
6096                         struct g4x_pipe_wm *raw =
6097                                 &crtc_state->wm.g4x.raw[level];
6098
6099                         raw->plane[plane_id] = 0;
6100                         wm_state->wm.plane[plane_id] = 0;
6101                 }
6102
6103                 if (plane_id == PLANE_PRIMARY) {
6104                         for (level = 0; level < 3; level++) {
6105                                 struct g4x_pipe_wm *raw =
6106                                         &crtc_state->wm.g4x.raw[level];
6107                                 raw->fbc = 0;
6108                         }
6109
6110                         wm_state->sr.fbc = 0;
6111                         wm_state->hpll.fbc = 0;
6112                         wm_state->fbc_en = false;
6113                 }
6114         }
6115
6116         for_each_intel_crtc(&dev_priv->drm, crtc) {
6117                 struct intel_crtc_state *crtc_state =
6118                         to_intel_crtc_state(crtc->base.state);
6119
6120                 crtc_state->wm.g4x.intermediate =
6121                         crtc_state->wm.g4x.optimal;
6122                 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6123         }
6124
6125         g4x_program_watermarks(dev_priv);
6126
6127         mutex_unlock(&dev_priv->wm.wm_mutex);
6128 }
6129
6130 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6131 {
6132         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6133         struct intel_crtc *crtc;
6134         u32 val;
6135
6136         vlv_read_wm_values(dev_priv, wm);
6137
6138         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6139         wm->level = VLV_WM_LEVEL_PM2;
6140
6141         if (IS_CHERRYVIEW(dev_priv)) {
6142                 mutex_lock(&dev_priv->pcu_lock);
6143
6144                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6145                 if (val & DSP_MAXFIFO_PM5_ENABLE)
6146                         wm->level = VLV_WM_LEVEL_PM5;
6147
6148                 /*
6149                  * If DDR DVFS is disabled in the BIOS, Punit
6150                  * will never ack the request. So if that happens
6151                  * assume we don't have to enable/disable DDR DVFS
6152                  * dynamically. To test that just set the REQ_ACK
6153                  * bit to poke the Punit, but don't change the
6154                  * HIGH/LOW bits so that we don't actually change
6155                  * the current state.
6156                  */
6157                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6158                 val |= FORCE_DDR_FREQ_REQ_ACK;
6159                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6160
6161                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6162                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6163                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
6164                                       "assuming DDR DVFS is disabled\n");
6165                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6166                 } else {
6167                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6168                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6169                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
6170                 }
6171
6172                 mutex_unlock(&dev_priv->pcu_lock);
6173         }
6174
6175         for_each_intel_crtc(&dev_priv->drm, crtc) {
6176                 struct intel_crtc_state *crtc_state =
6177                         to_intel_crtc_state(crtc->base.state);
6178                 struct vlv_wm_state *active = &crtc->wm.active.vlv;
6179                 const struct vlv_fifo_state *fifo_state =
6180                         &crtc_state->wm.vlv.fifo_state;
6181                 enum pipe pipe = crtc->pipe;
6182                 enum plane_id plane_id;
6183                 int level;
6184
6185                 vlv_get_fifo_size(crtc_state);
6186
6187                 active->num_levels = wm->level + 1;
6188                 active->cxsr = wm->cxsr;
6189
6190                 for (level = 0; level < active->num_levels; level++) {
6191                         struct g4x_pipe_wm *raw =
6192                                 &crtc_state->wm.vlv.raw[level];
6193
6194                         active->sr[level].plane = wm->sr.plane;
6195                         active->sr[level].cursor = wm->sr.cursor;
6196
6197                         for_each_plane_id_on_crtc(crtc, plane_id) {
6198                                 active->wm[level].plane[plane_id] =
6199                                         wm->pipe[pipe].plane[plane_id];
6200
6201                                 raw->plane[plane_id] =
6202                                         vlv_invert_wm_value(active->wm[level].plane[plane_id],
6203                                                             fifo_state->plane[plane_id]);
6204                         }
6205                 }
6206
6207                 for_each_plane_id_on_crtc(crtc, plane_id)
6208                         vlv_raw_plane_wm_set(crtc_state, level,
6209                                              plane_id, USHRT_MAX);
6210                 vlv_invalidate_wms(crtc, active, level);
6211
6212                 crtc_state->wm.vlv.optimal = *active;
6213                 crtc_state->wm.vlv.intermediate = *active;
6214
6215                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6216                               pipe_name(pipe),
6217                               wm->pipe[pipe].plane[PLANE_PRIMARY],
6218                               wm->pipe[pipe].plane[PLANE_CURSOR],
6219                               wm->pipe[pipe].plane[PLANE_SPRITE0],
6220                               wm->pipe[pipe].plane[PLANE_SPRITE1]);
6221         }
6222
6223         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6224                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6225 }
6226
6227 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
6228 {
6229         struct intel_plane *plane;
6230         struct intel_crtc *crtc;
6231
6232         mutex_lock(&dev_priv->wm.wm_mutex);
6233
6234         for_each_intel_plane(&dev_priv->drm, plane) {
6235                 struct intel_crtc *crtc =
6236                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6237                 struct intel_crtc_state *crtc_state =
6238                         to_intel_crtc_state(crtc->base.state);
6239                 struct intel_plane_state *plane_state =
6240                         to_intel_plane_state(plane->base.state);
6241                 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6242                 const struct vlv_fifo_state *fifo_state =
6243                         &crtc_state->wm.vlv.fifo_state;
6244                 enum plane_id plane_id = plane->id;
6245                 int level;
6246
6247                 if (plane_state->base.visible)
6248                         continue;
6249
6250                 for (level = 0; level < wm_state->num_levels; level++) {
6251                         struct g4x_pipe_wm *raw =
6252                                 &crtc_state->wm.vlv.raw[level];
6253
6254                         raw->plane[plane_id] = 0;
6255
6256                         wm_state->wm[level].plane[plane_id] =
6257                                 vlv_invert_wm_value(raw->plane[plane_id],
6258                                                     fifo_state->plane[plane_id]);
6259                 }
6260         }
6261
6262         for_each_intel_crtc(&dev_priv->drm, crtc) {
6263                 struct intel_crtc_state *crtc_state =
6264                         to_intel_crtc_state(crtc->base.state);
6265
6266                 crtc_state->wm.vlv.intermediate =
6267                         crtc_state->wm.vlv.optimal;
6268                 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6269         }
6270
6271         vlv_program_watermarks(dev_priv);
6272
6273         mutex_unlock(&dev_priv->wm.wm_mutex);
6274 }
6275
6276 /*
6277  * FIXME should probably kill this and improve
6278  * the real watermark readout/sanitation instead
6279  */
6280 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6281 {
6282         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6283         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6284         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6285
6286         /*
6287          * Don't touch WM1S_LP_EN here.
6288          * Doing so could cause underruns.
6289          */
6290 }
6291
6292 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6293 {
6294         struct ilk_wm_values *hw = &dev_priv->wm.hw;
6295         struct intel_crtc *crtc;
6296
6297         ilk_init_lp_watermarks(dev_priv);
6298
6299         for_each_intel_crtc(&dev_priv->drm, crtc)
6300                 ilk_pipe_wm_get_hw_state(crtc);
6301
6302         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6303         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6304         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6305
6306         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6307         if (INTEL_GEN(dev_priv) >= 7) {
6308                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6309                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6310         }
6311
6312         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6313                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6314                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6315         else if (IS_IVYBRIDGE(dev_priv))
6316                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6317                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6318
6319         hw->enable_fbc_wm =
6320                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6321 }
6322
6323 /**
6324  * intel_update_watermarks - update FIFO watermark values based on current modes
6325  * @crtc: the #intel_crtc on which to compute the WM
6326  *
6327  * Calculate watermark values for the various WM regs based on current mode
6328  * and plane configuration.
6329  *
6330  * There are several cases to deal with here:
6331  *   - normal (i.e. non-self-refresh)
6332  *   - self-refresh (SR) mode
6333  *   - lines are large relative to FIFO size (buffer can hold up to 2)
6334  *   - lines are small relative to FIFO size (buffer can hold more than 2
6335  *     lines), so need to account for TLB latency
6336  *
6337  *   The normal calculation is:
6338  *     watermark = dotclock * bytes per pixel * latency
6339  *   where latency is platform & configuration dependent (we assume pessimal
6340  *   values here).
6341  *
6342  *   The SR calculation is:
6343  *     watermark = (trunc(latency/line time)+1) * surface width *
6344  *       bytes per pixel
6345  *   where
6346  *     line time = htotal / dotclock
6347  *     surface width = hdisplay for normal plane and 64 for cursor
6348  *   and latency is assumed to be high, as above.
6349  *
6350  * The final value programmed to the register should always be rounded up,
6351  * and include an extra 2 entries to account for clock crossings.
6352  *
6353  * We don't use the sprite, so we can ignore that.  And on Crestline we have
6354  * to set the non-SR watermarks to 8.
6355  */
6356 void intel_update_watermarks(struct intel_crtc *crtc)
6357 {
6358         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6359
6360         if (dev_priv->display.update_wm)
6361                 dev_priv->display.update_wm(crtc);
6362 }
6363
6364 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6365 {
6366         u32 val;
6367
6368         if (!HAS_IPC(dev_priv))
6369                 return;
6370
6371         val = I915_READ(DISP_ARB_CTL2);
6372
6373         if (dev_priv->ipc_enabled)
6374                 val |= DISP_IPC_ENABLE;
6375         else
6376                 val &= ~DISP_IPC_ENABLE;
6377
6378         I915_WRITE(DISP_ARB_CTL2, val);
6379 }
6380
6381 void intel_init_ipc(struct drm_i915_private *dev_priv)
6382 {
6383         if (!HAS_IPC(dev_priv))
6384                 return;
6385
6386         /* Display WA #1141: SKL:all KBL:all CFL */
6387         if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
6388                 dev_priv->ipc_enabled = dev_priv->dram_info.symmetric_memory;
6389         else
6390                 dev_priv->ipc_enabled = true;
6391
6392         intel_enable_ipc(dev_priv);
6393 }
6394
6395 /*
6396  * Lock protecting IPS related data structures
6397  */
6398 DEFINE_SPINLOCK(mchdev_lock);
6399
6400 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6401 {
6402         u16 rgvswctl;
6403
6404         lockdep_assert_held(&mchdev_lock);
6405
6406         rgvswctl = I915_READ16(MEMSWCTL);
6407         if (rgvswctl & MEMCTL_CMD_STS) {
6408                 DRM_DEBUG("gpu busy, RCS change rejected\n");
6409                 return false; /* still busy with another command */
6410         }
6411
6412         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6413                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6414         I915_WRITE16(MEMSWCTL, rgvswctl);
6415         POSTING_READ16(MEMSWCTL);
6416
6417         rgvswctl |= MEMCTL_CMD_STS;
6418         I915_WRITE16(MEMSWCTL, rgvswctl);
6419
6420         return true;
6421 }
6422
6423 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6424 {
6425         u32 rgvmodectl;
6426         u8 fmax, fmin, fstart, vstart;
6427
6428         spin_lock_irq(&mchdev_lock);
6429
6430         rgvmodectl = I915_READ(MEMMODECTL);
6431
6432         /* Enable temp reporting */
6433         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6434         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6435
6436         /* 100ms RC evaluation intervals */
6437         I915_WRITE(RCUPEI, 100000);
6438         I915_WRITE(RCDNEI, 100000);
6439
6440         /* Set max/min thresholds to 90ms and 80ms respectively */
6441         I915_WRITE(RCBMAXAVG, 90000);
6442         I915_WRITE(RCBMINAVG, 80000);
6443
6444         I915_WRITE(MEMIHYST, 1);
6445
6446         /* Set up min, max, and cur for interrupt handling */
6447         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6448         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6449         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6450                 MEMMODE_FSTART_SHIFT;
6451
6452         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6453                 PXVFREQ_PX_SHIFT;
6454
6455         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
6456         dev_priv->ips.fstart = fstart;
6457
6458         dev_priv->ips.max_delay = fstart;
6459         dev_priv->ips.min_delay = fmin;
6460         dev_priv->ips.cur_delay = fstart;
6461
6462         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6463                          fmax, fmin, fstart);
6464
6465         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6466
6467         /*
6468          * Interrupts will be enabled in ironlake_irq_postinstall
6469          */
6470
6471         I915_WRITE(VIDSTART, vstart);
6472         POSTING_READ(VIDSTART);
6473
6474         rgvmodectl |= MEMMODE_SWMODE_EN;
6475         I915_WRITE(MEMMODECTL, rgvmodectl);
6476
6477         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6478                 DRM_ERROR("stuck trying to change perf mode\n");
6479         mdelay(1);
6480
6481         ironlake_set_drps(dev_priv, fstart);
6482
6483         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
6484                 I915_READ(DDREC) + I915_READ(CSIEC);
6485         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6486         dev_priv->ips.last_count2 = I915_READ(GFXEC);
6487         dev_priv->ips.last_time2 = ktime_get_raw_ns();
6488
6489         spin_unlock_irq(&mchdev_lock);
6490 }
6491
6492 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6493 {
6494         u16 rgvswctl;
6495
6496         spin_lock_irq(&mchdev_lock);
6497
6498         rgvswctl = I915_READ16(MEMSWCTL);
6499
6500         /* Ack interrupts, disable EFC interrupt */
6501         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6502         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6503         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6504         I915_WRITE(DEIIR, DE_PCU_EVENT);
6505         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6506
6507         /* Go back to the starting frequency */
6508         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6509         mdelay(1);
6510         rgvswctl |= MEMCTL_CMD_STS;
6511         I915_WRITE(MEMSWCTL, rgvswctl);
6512         mdelay(1);
6513
6514         spin_unlock_irq(&mchdev_lock);
6515 }
6516
6517 /* There's a funny hw issue where the hw returns all 0 when reading from
6518  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6519  * ourselves, instead of doing a rmw cycle (which might result in us clearing
6520  * all limits and the gpu stuck at whatever frequency it is at atm).
6521  */
6522 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6523 {
6524         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6525         u32 limits;
6526
6527         /* Only set the down limit when we've reached the lowest level to avoid
6528          * getting more interrupts, otherwise leave this clear. This prevents a
6529          * race in the hw when coming out of rc6: There's a tiny window where
6530          * the hw runs at the minimal clock before selecting the desired
6531          * frequency, if the down threshold expires in that window we will not
6532          * receive a down interrupt. */
6533         if (INTEL_GEN(dev_priv) >= 9) {
6534                 limits = (rps->max_freq_softlimit) << 23;
6535                 if (val <= rps->min_freq_softlimit)
6536                         limits |= (rps->min_freq_softlimit) << 14;
6537         } else {
6538                 limits = rps->max_freq_softlimit << 24;
6539                 if (val <= rps->min_freq_softlimit)
6540                         limits |= rps->min_freq_softlimit << 16;
6541         }
6542
6543         return limits;
6544 }
6545
6546 static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6547 {
6548         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6549         u32 threshold_up = 0, threshold_down = 0; /* in % */
6550         u32 ei_up = 0, ei_down = 0;
6551
6552         lockdep_assert_held(&rps->power.mutex);
6553
6554         if (new_power == rps->power.mode)
6555                 return;
6556
6557         /* Note the units here are not exactly 1us, but 1280ns. */
6558         switch (new_power) {
6559         case LOW_POWER:
6560                 /* Upclock if more than 95% busy over 16ms */
6561                 ei_up = 16000;
6562                 threshold_up = 95;
6563
6564                 /* Downclock if less than 85% busy over 32ms */
6565                 ei_down = 32000;
6566                 threshold_down = 85;
6567                 break;
6568
6569         case BETWEEN:
6570                 /* Upclock if more than 90% busy over 13ms */
6571                 ei_up = 13000;
6572                 threshold_up = 90;
6573
6574                 /* Downclock if less than 75% busy over 32ms */
6575                 ei_down = 32000;
6576                 threshold_down = 75;
6577                 break;
6578
6579         case HIGH_POWER:
6580                 /* Upclock if more than 85% busy over 10ms */
6581                 ei_up = 10000;
6582                 threshold_up = 85;
6583
6584                 /* Downclock if less than 60% busy over 32ms */
6585                 ei_down = 32000;
6586                 threshold_down = 60;
6587                 break;
6588         }
6589
6590         /* When byt can survive without system hang with dynamic
6591          * sw freq adjustments, this restriction can be lifted.
6592          */
6593         if (IS_VALLEYVIEW(dev_priv))
6594                 goto skip_hw_write;
6595
6596         I915_WRITE(GEN6_RP_UP_EI,
6597                    GT_INTERVAL_FROM_US(dev_priv, ei_up));
6598         I915_WRITE(GEN6_RP_UP_THRESHOLD,
6599                    GT_INTERVAL_FROM_US(dev_priv,
6600                                        ei_up * threshold_up / 100));
6601
6602         I915_WRITE(GEN6_RP_DOWN_EI,
6603                    GT_INTERVAL_FROM_US(dev_priv, ei_down));
6604         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6605                    GT_INTERVAL_FROM_US(dev_priv,
6606                                        ei_down * threshold_down / 100));
6607
6608         I915_WRITE(GEN6_RP_CONTROL,
6609                    (INTEL_GEN(dev_priv) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
6610                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6611                    GEN6_RP_MEDIA_IS_GFX |
6612                    GEN6_RP_ENABLE |
6613                    GEN6_RP_UP_BUSY_AVG |
6614                    GEN6_RP_DOWN_IDLE_AVG);
6615
6616 skip_hw_write:
6617         rps->power.mode = new_power;
6618         rps->power.up_threshold = threshold_up;
6619         rps->power.down_threshold = threshold_down;
6620 }
6621
6622 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6623 {
6624         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6625         int new_power;
6626
6627         new_power = rps->power.mode;
6628         switch (rps->power.mode) {
6629         case LOW_POWER:
6630                 if (val > rps->efficient_freq + 1 &&
6631                     val > rps->cur_freq)
6632                         new_power = BETWEEN;
6633                 break;
6634
6635         case BETWEEN:
6636                 if (val <= rps->efficient_freq &&
6637                     val < rps->cur_freq)
6638                         new_power = LOW_POWER;
6639                 else if (val >= rps->rp0_freq &&
6640                          val > rps->cur_freq)
6641                         new_power = HIGH_POWER;
6642                 break;
6643
6644         case HIGH_POWER:
6645                 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6646                     val < rps->cur_freq)
6647                         new_power = BETWEEN;
6648                 break;
6649         }
6650         /* Max/min bins are special */
6651         if (val <= rps->min_freq_softlimit)
6652                 new_power = LOW_POWER;
6653         if (val >= rps->max_freq_softlimit)
6654                 new_power = HIGH_POWER;
6655
6656         mutex_lock(&rps->power.mutex);
6657         if (rps->power.interactive)
6658                 new_power = HIGH_POWER;
6659         rps_set_power(dev_priv, new_power);
6660         mutex_unlock(&rps->power.mutex);
6661 }
6662
6663 void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
6664 {
6665         struct intel_rps *rps = &i915->gt_pm.rps;
6666
6667         if (INTEL_GEN(i915) < 6)
6668                 return;
6669
6670         mutex_lock(&rps->power.mutex);
6671         if (interactive) {
6672                 if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
6673                         rps_set_power(i915, HIGH_POWER);
6674         } else {
6675                 GEM_BUG_ON(!rps->power.interactive);
6676                 rps->power.interactive--;
6677         }
6678         mutex_unlock(&rps->power.mutex);
6679 }
6680
6681 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6682 {
6683         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6684         u32 mask = 0;
6685
6686         /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6687         if (val > rps->min_freq_softlimit)
6688                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6689         if (val < rps->max_freq_softlimit)
6690                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6691
6692         mask &= dev_priv->pm_rps_events;
6693
6694         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6695 }
6696
6697 /* gen6_set_rps is called to update the frequency request, but should also be
6698  * called when the range (min_delay and max_delay) is modified so that we can
6699  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6700 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6701 {
6702         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6703
6704         /* min/max delay may still have been modified so be sure to
6705          * write the limits value.
6706          */
6707         if (val != rps->cur_freq) {
6708                 gen6_set_rps_thresholds(dev_priv, val);
6709
6710                 if (INTEL_GEN(dev_priv) >= 9)
6711                         I915_WRITE(GEN6_RPNSWREQ,
6712                                    GEN9_FREQUENCY(val));
6713                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6714                         I915_WRITE(GEN6_RPNSWREQ,
6715                                    HSW_FREQUENCY(val));
6716                 else
6717                         I915_WRITE(GEN6_RPNSWREQ,
6718                                    GEN6_FREQUENCY(val) |
6719                                    GEN6_OFFSET(0) |
6720                                    GEN6_AGGRESSIVE_TURBO);
6721         }
6722
6723         /* Make sure we continue to get interrupts
6724          * until we hit the minimum or maximum frequencies.
6725          */
6726         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6727         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6728
6729         rps->cur_freq = val;
6730         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6731
6732         return 0;
6733 }
6734
6735 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6736 {
6737         int err;
6738
6739         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6740                       "Odd GPU freq value\n"))
6741                 val &= ~1;
6742
6743         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6744
6745         if (val != dev_priv->gt_pm.rps.cur_freq) {
6746                 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6747                 if (err)
6748                         return err;
6749
6750                 gen6_set_rps_thresholds(dev_priv, val);
6751         }
6752
6753         dev_priv->gt_pm.rps.cur_freq = val;
6754         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6755
6756         return 0;
6757 }
6758
6759 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6760  *
6761  * * If Gfx is Idle, then
6762  * 1. Forcewake Media well.
6763  * 2. Request idle freq.
6764  * 3. Release Forcewake of Media well.
6765 */
6766 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6767 {
6768         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6769         u32 val = rps->idle_freq;
6770         int err;
6771
6772         if (rps->cur_freq <= val)
6773                 return;
6774
6775         /* The punit delays the write of the frequency and voltage until it
6776          * determines the GPU is awake. During normal usage we don't want to
6777          * waste power changing the frequency if the GPU is sleeping (rc6).
6778          * However, the GPU and driver is now idle and we do not want to delay
6779          * switching to minimum voltage (reducing power whilst idle) as we do
6780          * not expect to be woken in the near future and so must flush the
6781          * change by waking the device.
6782          *
6783          * We choose to take the media powerwell (either would do to trick the
6784          * punit into committing the voltage change) as that takes a lot less
6785          * power than the render powerwell.
6786          */
6787         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_MEDIA);
6788         err = valleyview_set_rps(dev_priv, val);
6789         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_MEDIA);
6790
6791         if (err)
6792                 DRM_ERROR("Failed to set RPS for idle\n");
6793 }
6794
6795 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6796 {
6797         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6798
6799         mutex_lock(&dev_priv->pcu_lock);
6800         if (rps->enabled) {
6801                 u8 freq;
6802
6803                 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6804                         gen6_rps_reset_ei(dev_priv);
6805                 I915_WRITE(GEN6_PMINTRMSK,
6806                            gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6807
6808                 gen6_enable_rps_interrupts(dev_priv);
6809
6810                 /* Use the user's desired frequency as a guide, but for better
6811                  * performance, jump directly to RPe as our starting frequency.
6812                  */
6813                 freq = max(rps->cur_freq,
6814                            rps->efficient_freq);
6815
6816                 if (intel_set_rps(dev_priv,
6817                                   clamp(freq,
6818                                         rps->min_freq_softlimit,
6819                                         rps->max_freq_softlimit)))
6820                         DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6821         }
6822         mutex_unlock(&dev_priv->pcu_lock);
6823 }
6824
6825 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6826 {
6827         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6828
6829         /* Flush our bottom-half so that it does not race with us
6830          * setting the idle frequency and so that it is bounded by
6831          * our rpm wakeref. And then disable the interrupts to stop any
6832          * futher RPS reclocking whilst we are asleep.
6833          */
6834         gen6_disable_rps_interrupts(dev_priv);
6835
6836         mutex_lock(&dev_priv->pcu_lock);
6837         if (rps->enabled) {
6838                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6839                         vlv_set_rps_idle(dev_priv);
6840                 else
6841                         gen6_set_rps(dev_priv, rps->idle_freq);
6842                 rps->last_adj = 0;
6843                 I915_WRITE(GEN6_PMINTRMSK,
6844                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6845         }
6846         mutex_unlock(&dev_priv->pcu_lock);
6847 }
6848
6849 void gen6_rps_boost(struct i915_request *rq)
6850 {
6851         struct intel_rps *rps = &rq->i915->gt_pm.rps;
6852         unsigned long flags;
6853         bool boost;
6854
6855         /* This is intentionally racy! We peek at the state here, then
6856          * validate inside the RPS worker.
6857          */
6858         if (!rps->enabled)
6859                 return;
6860
6861         if (i915_request_signaled(rq))
6862                 return;
6863
6864         /* Serializes with i915_request_retire() */
6865         boost = false;
6866         spin_lock_irqsave(&rq->lock, flags);
6867         if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
6868                 boost = !atomic_fetch_inc(&rps->num_waiters);
6869                 rq->waitboost = true;
6870         }
6871         spin_unlock_irqrestore(&rq->lock, flags);
6872         if (!boost)
6873                 return;
6874
6875         if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6876                 schedule_work(&rps->work);
6877
6878         atomic_inc(&rps->boosts);
6879 }
6880
6881 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6882 {
6883         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6884         int err;
6885
6886         lockdep_assert_held(&dev_priv->pcu_lock);
6887         GEM_BUG_ON(val > rps->max_freq);
6888         GEM_BUG_ON(val < rps->min_freq);
6889
6890         if (!rps->enabled) {
6891                 rps->cur_freq = val;
6892                 return 0;
6893         }
6894
6895         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6896                 err = valleyview_set_rps(dev_priv, val);
6897         else
6898                 err = gen6_set_rps(dev_priv, val);
6899
6900         return err;
6901 }
6902
6903 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6904 {
6905         I915_WRITE(GEN6_RC_CONTROL, 0);
6906         I915_WRITE(GEN9_PG_ENABLE, 0);
6907 }
6908
6909 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6910 {
6911         I915_WRITE(GEN6_RP_CONTROL, 0);
6912 }
6913
6914 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6915 {
6916         I915_WRITE(GEN6_RC_CONTROL, 0);
6917 }
6918
6919 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6920 {
6921         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6922         I915_WRITE(GEN6_RP_CONTROL, 0);
6923 }
6924
6925 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6926 {
6927         I915_WRITE(GEN6_RC_CONTROL, 0);
6928 }
6929
6930 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6931 {
6932         I915_WRITE(GEN6_RP_CONTROL, 0);
6933 }
6934
6935 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6936 {
6937         /* We're doing forcewake before Disabling RC6,
6938          * This what the BIOS expects when going into suspend */
6939         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
6940
6941         I915_WRITE(GEN6_RC_CONTROL, 0);
6942
6943         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
6944 }
6945
6946 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6947 {
6948         I915_WRITE(GEN6_RP_CONTROL, 0);
6949 }
6950
6951 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6952 {
6953         bool enable_rc6 = true;
6954         unsigned long rc6_ctx_base;
6955         u32 rc_ctl;
6956         int rc_sw_target;
6957
6958         rc_ctl = I915_READ(GEN6_RC_CONTROL);
6959         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6960                        RC_SW_TARGET_STATE_SHIFT;
6961         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6962                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6963                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6964                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6965                          rc_sw_target);
6966
6967         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6968                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6969                 enable_rc6 = false;
6970         }
6971
6972         /*
6973          * The exact context size is not known for BXT, so assume a page size
6974          * for this check.
6975          */
6976         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6977         if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
6978               (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6979                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6980                 enable_rc6 = false;
6981         }
6982
6983         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6984               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6985               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6986               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6987                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6988                 enable_rc6 = false;
6989         }
6990
6991         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6992             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6993             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6994                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6995                 enable_rc6 = false;
6996         }
6997
6998         if (!I915_READ(GEN6_GFXPAUSE)) {
6999                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
7000                 enable_rc6 = false;
7001         }
7002
7003         if (!I915_READ(GEN8_MISC_CTRL0)) {
7004                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
7005                 enable_rc6 = false;
7006         }
7007
7008         return enable_rc6;
7009 }
7010
7011 static bool sanitize_rc6(struct drm_i915_private *i915)
7012 {
7013         struct intel_device_info *info = mkwrite_device_info(i915);
7014
7015         /* Powersaving is controlled by the host when inside a VM */
7016         if (intel_vgpu_active(i915))
7017                 info->has_rc6 = 0;
7018
7019         if (info->has_rc6 &&
7020             IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
7021                 DRM_INFO("RC6 disabled by BIOS\n");
7022                 info->has_rc6 = 0;
7023         }
7024
7025         /*
7026          * We assume that we do not have any deep rc6 levels if we don't have
7027          * have the previous rc6 level supported, i.e. we use HAS_RC6()
7028          * as the initial coarse check for rc6 in general, moving on to
7029          * progressively finer/deeper levels.
7030          */
7031         if (!info->has_rc6 && info->has_rc6p)
7032                 info->has_rc6p = 0;
7033
7034         return info->has_rc6;
7035 }
7036
7037 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
7038 {
7039         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7040
7041         /* All of these values are in units of 50MHz */
7042
7043         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
7044         if (IS_GEN9_LP(dev_priv)) {
7045                 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
7046                 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
7047                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
7048                 rps->min_freq = (rp_state_cap >>  0) & 0xff;
7049         } else {
7050                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7051                 rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
7052                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
7053                 rps->min_freq = (rp_state_cap >> 16) & 0xff;
7054         }
7055         /* hw_max = RP0 until we check for overclocking */
7056         rps->max_freq = rps->rp0_freq;
7057
7058         rps->efficient_freq = rps->rp1_freq;
7059         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
7060             IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7061                 u32 ddcc_status = 0;
7062
7063                 if (sandybridge_pcode_read(dev_priv,
7064                                            HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
7065                                            &ddcc_status) == 0)
7066                         rps->efficient_freq =
7067                                 clamp_t(u8,
7068                                         ((ddcc_status >> 8) & 0xff),
7069                                         rps->min_freq,
7070                                         rps->max_freq);
7071         }
7072
7073         if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7074                 /* Store the frequency values in 16.66 MHZ units, which is
7075                  * the natural hardware unit for SKL
7076                  */
7077                 rps->rp0_freq *= GEN9_FREQ_SCALER;
7078                 rps->rp1_freq *= GEN9_FREQ_SCALER;
7079                 rps->min_freq *= GEN9_FREQ_SCALER;
7080                 rps->max_freq *= GEN9_FREQ_SCALER;
7081                 rps->efficient_freq *= GEN9_FREQ_SCALER;
7082         }
7083 }
7084
7085 static void reset_rps(struct drm_i915_private *dev_priv,
7086                       int (*set)(struct drm_i915_private *, u8))
7087 {
7088         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7089         u8 freq = rps->cur_freq;
7090
7091         /* force a reset */
7092         rps->power.mode = -1;
7093         rps->cur_freq = -1;
7094
7095         if (set(dev_priv, freq))
7096                 DRM_ERROR("Failed to reset RPS to initial values\n");
7097 }
7098
7099 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
7100 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
7101 {
7102         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7103
7104         /* Program defaults and thresholds for RPS */
7105         if (IS_GEN(dev_priv, 9))
7106                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7107                         GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
7108
7109         /* 1 second timeout*/
7110         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
7111                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
7112
7113         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
7114
7115         /* Leaning on the below call to gen6_set_rps to program/setup the
7116          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
7117          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
7118         reset_rps(dev_priv, gen6_set_rps);
7119
7120         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7121 }
7122
7123 static void gen11_enable_rc6(struct drm_i915_private *dev_priv)
7124 {
7125         struct intel_engine_cs *engine;
7126         enum intel_engine_id id;
7127
7128         /* 1a: Software RC state - RC0 */
7129         I915_WRITE(GEN6_RC_STATE, 0);
7130
7131         /*
7132          * 1b: Get forcewake during program sequence. Although the driver
7133          * hasn't enabled a state yet where we need forcewake, BIOS may have.
7134          */
7135         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7136
7137         /* 2a: Disable RC states. */
7138         I915_WRITE(GEN6_RC_CONTROL, 0);
7139
7140         /* 2b: Program RC6 thresholds.*/
7141         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
7142         I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
7143
7144         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7145         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7146         for_each_engine(engine, dev_priv, id)
7147                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7148
7149         if (HAS_GUC(dev_priv))
7150                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
7151
7152         I915_WRITE(GEN6_RC_SLEEP, 0);
7153
7154         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
7155
7156         /*
7157          * 2c: Program Coarse Power Gating Policies.
7158          *
7159          * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
7160          * use instead is a more conservative estimate for the maximum time
7161          * it takes us to service a CS interrupt and submit a new ELSP - that
7162          * is the time which the GPU is idle waiting for the CPU to select the
7163          * next request to execute. If the idle hysteresis is less than that
7164          * interrupt service latency, the hardware will automatically gate
7165          * the power well and we will then incur the wake up cost on top of
7166          * the service latency. A similar guide from intel_pstate is that we
7167          * do not want the enable hysteresis to less than the wakeup latency.
7168          *
7169          * igt/gem_exec_nop/sequential provides a rough estimate for the
7170          * service latency, and puts it around 10us for Broadwell (and other
7171          * big core) and around 40us for Broxton (and other low power cores).
7172          * [Note that for legacy ringbuffer submission, this is less than 1us!]
7173          * However, the wakeup latency on Broxton is closer to 100us. To be
7174          * conservative, we have to factor in a context switch on top (due
7175          * to ksoftirqd).
7176          */
7177         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
7178         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7179
7180         /* 3a: Enable RC6 */
7181         I915_WRITE(GEN6_RC_CONTROL,
7182                    GEN6_RC_CTL_HW_ENABLE |
7183                    GEN6_RC_CTL_RC6_ENABLE |
7184                    GEN6_RC_CTL_EI_MODE(1));
7185
7186         /* 3b: Enable Coarse Power Gating only when RC6 is enabled. */
7187         I915_WRITE(GEN9_PG_ENABLE,
7188                    GEN9_RENDER_PG_ENABLE |
7189                    GEN9_MEDIA_PG_ENABLE |
7190                    GEN11_MEDIA_SAMPLER_PG_ENABLE);
7191
7192         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7193 }
7194
7195 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
7196 {
7197         struct intel_engine_cs *engine;
7198         enum intel_engine_id id;
7199         u32 rc6_mode;
7200
7201         /* 1a: Software RC state - RC0 */
7202         I915_WRITE(GEN6_RC_STATE, 0);
7203
7204         /* 1b: Get forcewake during program sequence. Although the driver
7205          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7206         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7207
7208         /* 2a: Disable RC states. */
7209         I915_WRITE(GEN6_RC_CONTROL, 0);
7210
7211         /* 2b: Program RC6 thresholds.*/
7212         if (INTEL_GEN(dev_priv) >= 10) {
7213                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
7214                 I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
7215         } else if (IS_SKYLAKE(dev_priv)) {
7216                 /*
7217                  * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
7218                  * when CPG is enabled
7219                  */
7220                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
7221         } else {
7222                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
7223         }
7224
7225         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7226         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7227         for_each_engine(engine, dev_priv, id)
7228                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7229
7230         if (HAS_GUC(dev_priv))
7231                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
7232
7233         I915_WRITE(GEN6_RC_SLEEP, 0);
7234
7235         /*
7236          * 2c: Program Coarse Power Gating Policies.
7237          *
7238          * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
7239          * use instead is a more conservative estimate for the maximum time
7240          * it takes us to service a CS interrupt and submit a new ELSP - that
7241          * is the time which the GPU is idle waiting for the CPU to select the
7242          * next request to execute. If the idle hysteresis is less than that
7243          * interrupt service latency, the hardware will automatically gate
7244          * the power well and we will then incur the wake up cost on top of
7245          * the service latency. A similar guide from intel_pstate is that we
7246          * do not want the enable hysteresis to less than the wakeup latency.
7247          *
7248          * igt/gem_exec_nop/sequential provides a rough estimate for the
7249          * service latency, and puts it around 10us for Broadwell (and other
7250          * big core) and around 40us for Broxton (and other low power cores).
7251          * [Note that for legacy ringbuffer submission, this is less than 1us!]
7252          * However, the wakeup latency on Broxton is closer to 100us. To be
7253          * conservative, we have to factor in a context switch on top (due
7254          * to ksoftirqd).
7255          */
7256         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
7257         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7258
7259         /* 3a: Enable RC6 */
7260         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
7261
7262         /* WaRsUseTimeoutMode:cnl (pre-prod) */
7263         if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
7264                 rc6_mode = GEN7_RC_CTL_TO_MODE;
7265         else
7266                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
7267
7268         I915_WRITE(GEN6_RC_CONTROL,
7269                    GEN6_RC_CTL_HW_ENABLE |
7270                    GEN6_RC_CTL_RC6_ENABLE |
7271                    rc6_mode);
7272
7273         /*
7274          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
7275          * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
7276          */
7277         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
7278                 I915_WRITE(GEN9_PG_ENABLE, 0);
7279         else
7280                 I915_WRITE(GEN9_PG_ENABLE,
7281                            GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
7282
7283         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7284 }
7285
7286 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
7287 {
7288         struct intel_engine_cs *engine;
7289         enum intel_engine_id id;
7290
7291         /* 1a: Software RC state - RC0 */
7292         I915_WRITE(GEN6_RC_STATE, 0);
7293
7294         /* 1b: Get forcewake during program sequence. Although the driver
7295          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7296         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7297
7298         /* 2a: Disable RC states. */
7299         I915_WRITE(GEN6_RC_CONTROL, 0);
7300
7301         /* 2b: Program RC6 thresholds.*/
7302         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7303         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7304         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7305         for_each_engine(engine, dev_priv, id)
7306                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7307         I915_WRITE(GEN6_RC_SLEEP, 0);
7308         I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
7309
7310         /* 3: Enable RC6 */
7311
7312         I915_WRITE(GEN6_RC_CONTROL,
7313                    GEN6_RC_CTL_HW_ENABLE |
7314                    GEN7_RC_CTL_TO_MODE |
7315                    GEN6_RC_CTL_RC6_ENABLE);
7316
7317         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7318 }
7319
7320 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
7321 {
7322         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7323
7324         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7325
7326         /* 1 Program defaults and thresholds for RPS*/
7327         I915_WRITE(GEN6_RPNSWREQ,
7328                    HSW_FREQUENCY(rps->rp1_freq));
7329         I915_WRITE(GEN6_RC_VIDEO_FREQ,
7330                    HSW_FREQUENCY(rps->rp1_freq));
7331         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
7332         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
7333
7334         /* Docs recommend 900MHz, and 300 MHz respectively */
7335         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7336                    rps->max_freq_softlimit << 24 |
7337                    rps->min_freq_softlimit << 16);
7338
7339         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
7340         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
7341         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
7342         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
7343
7344         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7345
7346         /* 2: Enable RPS */
7347         I915_WRITE(GEN6_RP_CONTROL,
7348                    GEN6_RP_MEDIA_TURBO |
7349                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7350                    GEN6_RP_MEDIA_IS_GFX |
7351                    GEN6_RP_ENABLE |
7352                    GEN6_RP_UP_BUSY_AVG |
7353                    GEN6_RP_DOWN_IDLE_AVG);
7354
7355         reset_rps(dev_priv, gen6_set_rps);
7356
7357         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7358 }
7359
7360 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7361 {
7362         struct intel_engine_cs *engine;
7363         enum intel_engine_id id;
7364         u32 rc6vids, rc6_mask;
7365         u32 gtfifodbg;
7366         int ret;
7367
7368         I915_WRITE(GEN6_RC_STATE, 0);
7369
7370         /* Clear the DBG now so we don't confuse earlier errors */
7371         gtfifodbg = I915_READ(GTFIFODBG);
7372         if (gtfifodbg) {
7373                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
7374                 I915_WRITE(GTFIFODBG, gtfifodbg);
7375         }
7376
7377         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7378
7379         /* disable the counters and set deterministic thresholds */
7380         I915_WRITE(GEN6_RC_CONTROL, 0);
7381
7382         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7383         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7384         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7385         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7386         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7387
7388         for_each_engine(engine, dev_priv, id)
7389                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7390
7391         I915_WRITE(GEN6_RC_SLEEP, 0);
7392         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7393         if (IS_IVYBRIDGE(dev_priv))
7394                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
7395         else
7396                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7397         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7398         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7399
7400         /* We don't use those on Haswell */
7401         rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
7402         if (HAS_RC6p(dev_priv))
7403                 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
7404         if (HAS_RC6pp(dev_priv))
7405                 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7406         I915_WRITE(GEN6_RC_CONTROL,
7407                    rc6_mask |
7408                    GEN6_RC_CTL_EI_MODE(1) |
7409                    GEN6_RC_CTL_HW_ENABLE);
7410
7411         rc6vids = 0;
7412         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7413         if (IS_GEN(dev_priv, 6) && ret) {
7414                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7415         } else if (IS_GEN(dev_priv, 6) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7416                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
7417                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
7418                 rc6vids &= 0xffff00;
7419                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
7420                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
7421                 if (ret)
7422                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
7423         }
7424
7425         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7426 }
7427
7428 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
7429 {
7430         /* Here begins a magic sequence of register writes to enable
7431          * auto-downclocking.
7432          *
7433          * Perhaps there might be some value in exposing these to
7434          * userspace...
7435          */
7436         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7437
7438         /* Power down if completely idle for over 50ms */
7439         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
7440         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7441
7442         reset_rps(dev_priv, gen6_set_rps);
7443
7444         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7445 }
7446
7447 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7448 {
7449         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7450         const int min_freq = 15;
7451         const int scaling_factor = 180;
7452         unsigned int gpu_freq;
7453         unsigned int max_ia_freq, min_ring_freq;
7454         unsigned int max_gpu_freq, min_gpu_freq;
7455         struct cpufreq_policy *policy;
7456
7457         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7458
7459         if (rps->max_freq <= rps->min_freq)
7460                 return;
7461
7462         policy = cpufreq_cpu_get(0);
7463         if (policy) {
7464                 max_ia_freq = policy->cpuinfo.max_freq;
7465                 cpufreq_cpu_put(policy);
7466         } else {
7467                 /*
7468                  * Default to measured freq if none found, PCU will ensure we
7469                  * don't go over
7470                  */
7471                 max_ia_freq = tsc_khz;
7472         }
7473
7474         /* Convert from kHz to MHz */
7475         max_ia_freq /= 1000;
7476
7477         min_ring_freq = I915_READ(DCLK) & 0xf;
7478         /* convert DDR frequency from units of 266.6MHz to bandwidth */
7479         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7480
7481         min_gpu_freq = rps->min_freq;
7482         max_gpu_freq = rps->max_freq;
7483         if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7484                 /* Convert GT frequency to 50 HZ units */
7485                 min_gpu_freq /= GEN9_FREQ_SCALER;
7486                 max_gpu_freq /= GEN9_FREQ_SCALER;
7487         }
7488
7489         /*
7490          * For each potential GPU frequency, load a ring frequency we'd like
7491          * to use for memory access.  We do this by specifying the IA frequency
7492          * the PCU should use as a reference to determine the ring frequency.
7493          */
7494         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7495                 const int diff = max_gpu_freq - gpu_freq;
7496                 unsigned int ia_freq = 0, ring_freq = 0;
7497
7498                 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7499                         /*
7500                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
7501                          * No floor required for ring frequency on SKL.
7502                          */
7503                         ring_freq = gpu_freq;
7504                 } else if (INTEL_GEN(dev_priv) >= 8) {
7505                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
7506                         ring_freq = max(min_ring_freq, gpu_freq);
7507                 } else if (IS_HASWELL(dev_priv)) {
7508                         ring_freq = mult_frac(gpu_freq, 5, 4);
7509                         ring_freq = max(min_ring_freq, ring_freq);
7510                         /* leave ia_freq as the default, chosen by cpufreq */
7511                 } else {
7512                         /* On older processors, there is no separate ring
7513                          * clock domain, so in order to boost the bandwidth
7514                          * of the ring, we need to upclock the CPU (ia_freq).
7515                          *
7516                          * For GPU frequencies less than 750MHz,
7517                          * just use the lowest ring freq.
7518                          */
7519                         if (gpu_freq < min_freq)
7520                                 ia_freq = 800;
7521                         else
7522                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7523                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7524                 }
7525
7526                 sandybridge_pcode_write(dev_priv,
7527                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7528                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
7529                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
7530                                         gpu_freq);
7531         }
7532 }
7533
7534 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7535 {
7536         u32 val, rp0;
7537
7538         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7539
7540         switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
7541         case 8:
7542                 /* (2 * 4) config */
7543                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
7544                 break;
7545         case 12:
7546                 /* (2 * 6) config */
7547                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
7548                 break;
7549         case 16:
7550                 /* (2 * 8) config */
7551         default:
7552                 /* Setting (2 * 8) Min RP0 for any other combination */
7553                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
7554                 break;
7555         }
7556
7557         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
7558
7559         return rp0;
7560 }
7561
7562 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7563 {
7564         u32 val, rpe;
7565
7566         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
7567         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
7568
7569         return rpe;
7570 }
7571
7572 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
7573 {
7574         u32 val, rp1;
7575
7576         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7577         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
7578
7579         return rp1;
7580 }
7581
7582 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
7583 {
7584         u32 val, rpn;
7585
7586         val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
7587         rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
7588                        FB_GFX_FREQ_FUSE_MASK);
7589
7590         return rpn;
7591 }
7592
7593 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
7594 {
7595         u32 val, rp1;
7596
7597         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7598
7599         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
7600
7601         return rp1;
7602 }
7603
7604 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7605 {
7606         u32 val, rp0;
7607
7608         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7609
7610         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7611         /* Clamp to max */
7612         rp0 = min_t(u32, rp0, 0xea);
7613
7614         return rp0;
7615 }
7616
7617 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7618 {
7619         u32 val, rpe;
7620
7621         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7622         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7623         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7624         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7625
7626         return rpe;
7627 }
7628
7629 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7630 {
7631         u32 val;
7632
7633         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7634         /*
7635          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7636          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7637          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7638          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7639          * to make sure it matches what Punit accepts.
7640          */
7641         return max_t(u32, val, 0xc0);
7642 }
7643
7644 /* Check that the pctx buffer wasn't move under us. */
7645 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7646 {
7647         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7648
7649         WARN_ON(pctx_addr != dev_priv->dsm.start +
7650                              dev_priv->vlv_pctx->stolen->start);
7651 }
7652
7653
7654 /* Check that the pcbr address is not empty. */
7655 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7656 {
7657         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7658
7659         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7660 }
7661
7662 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7663 {
7664         resource_size_t pctx_paddr, paddr;
7665         resource_size_t pctx_size = 32*1024;
7666         u32 pcbr;
7667
7668         pcbr = I915_READ(VLV_PCBR);
7669         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7670                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7671                 paddr = dev_priv->dsm.end + 1 - pctx_size;
7672                 GEM_BUG_ON(paddr > U32_MAX);
7673
7674                 pctx_paddr = (paddr & (~4095));
7675                 I915_WRITE(VLV_PCBR, pctx_paddr);
7676         }
7677
7678         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7679 }
7680
7681 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7682 {
7683         struct drm_i915_gem_object *pctx;
7684         resource_size_t pctx_paddr;
7685         resource_size_t pctx_size = 24*1024;
7686         u32 pcbr;
7687
7688         pcbr = I915_READ(VLV_PCBR);
7689         if (pcbr) {
7690                 /* BIOS set it up already, grab the pre-alloc'd space */
7691                 resource_size_t pcbr_offset;
7692
7693                 pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7694                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7695                                                                       pcbr_offset,
7696                                                                       I915_GTT_OFFSET_NONE,
7697                                                                       pctx_size);
7698                 goto out;
7699         }
7700
7701         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7702
7703         /*
7704          * From the Gunit register HAS:
7705          * The Gfx driver is expected to program this register and ensure
7706          * proper allocation within Gfx stolen memory.  For example, this
7707          * register should be programmed such than the PCBR range does not
7708          * overlap with other ranges, such as the frame buffer, protected
7709          * memory, or any other relevant ranges.
7710          */
7711         pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7712         if (!pctx) {
7713                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7714                 goto out;
7715         }
7716
7717         GEM_BUG_ON(range_overflows_t(u64,
7718                                      dev_priv->dsm.start,
7719                                      pctx->stolen->start,
7720                                      U32_MAX));
7721         pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7722         I915_WRITE(VLV_PCBR, pctx_paddr);
7723
7724 out:
7725         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7726         dev_priv->vlv_pctx = pctx;
7727 }
7728
7729 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7730 {
7731         struct drm_i915_gem_object *pctx;
7732
7733         pctx = fetch_and_zero(&dev_priv->vlv_pctx);
7734         if (pctx)
7735                 i915_gem_object_put(pctx);
7736 }
7737
7738 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7739 {
7740         dev_priv->gt_pm.rps.gpll_ref_freq =
7741                 vlv_get_cck_clock(dev_priv, "GPLL ref",
7742                                   CCK_GPLL_CLOCK_CONTROL,
7743                                   dev_priv->czclk_freq);
7744
7745         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7746                          dev_priv->gt_pm.rps.gpll_ref_freq);
7747 }
7748
7749 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7750 {
7751         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7752         u32 val;
7753
7754         valleyview_setup_pctx(dev_priv);
7755
7756         vlv_init_gpll_ref_freq(dev_priv);
7757
7758         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7759         switch ((val >> 6) & 3) {
7760         case 0:
7761         case 1:
7762                 dev_priv->mem_freq = 800;
7763                 break;
7764         case 2:
7765                 dev_priv->mem_freq = 1066;
7766                 break;
7767         case 3:
7768                 dev_priv->mem_freq = 1333;
7769                 break;
7770         }
7771         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7772
7773         rps->max_freq = valleyview_rps_max_freq(dev_priv);
7774         rps->rp0_freq = rps->max_freq;
7775         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7776                          intel_gpu_freq(dev_priv, rps->max_freq),
7777                          rps->max_freq);
7778
7779         rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7780         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7781                          intel_gpu_freq(dev_priv, rps->efficient_freq),
7782                          rps->efficient_freq);
7783
7784         rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7785         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7786                          intel_gpu_freq(dev_priv, rps->rp1_freq),
7787                          rps->rp1_freq);
7788
7789         rps->min_freq = valleyview_rps_min_freq(dev_priv);
7790         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7791                          intel_gpu_freq(dev_priv, rps->min_freq),
7792                          rps->min_freq);
7793 }
7794
7795 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7796 {
7797         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7798         u32 val;
7799
7800         cherryview_setup_pctx(dev_priv);
7801
7802         vlv_init_gpll_ref_freq(dev_priv);
7803
7804         mutex_lock(&dev_priv->sb_lock);
7805         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7806         mutex_unlock(&dev_priv->sb_lock);
7807
7808         switch ((val >> 2) & 0x7) {
7809         case 3:
7810                 dev_priv->mem_freq = 2000;
7811                 break;
7812         default:
7813                 dev_priv->mem_freq = 1600;
7814                 break;
7815         }
7816         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7817
7818         rps->max_freq = cherryview_rps_max_freq(dev_priv);
7819         rps->rp0_freq = rps->max_freq;
7820         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7821                          intel_gpu_freq(dev_priv, rps->max_freq),
7822                          rps->max_freq);
7823
7824         rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7825         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7826                          intel_gpu_freq(dev_priv, rps->efficient_freq),
7827                          rps->efficient_freq);
7828
7829         rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7830         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7831                          intel_gpu_freq(dev_priv, rps->rp1_freq),
7832                          rps->rp1_freq);
7833
7834         rps->min_freq = cherryview_rps_min_freq(dev_priv);
7835         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7836                          intel_gpu_freq(dev_priv, rps->min_freq),
7837                          rps->min_freq);
7838
7839         WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7840                    rps->min_freq) & 1,
7841                   "Odd GPU freq values\n");
7842 }
7843
7844 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7845 {
7846         valleyview_cleanup_pctx(dev_priv);
7847 }
7848
7849 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7850 {
7851         struct intel_engine_cs *engine;
7852         enum intel_engine_id id;
7853         u32 gtfifodbg, rc6_mode, pcbr;
7854
7855         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7856                                              GT_FIFO_FREE_ENTRIES_CHV);
7857         if (gtfifodbg) {
7858                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7859                                  gtfifodbg);
7860                 I915_WRITE(GTFIFODBG, gtfifodbg);
7861         }
7862
7863         cherryview_check_pctx(dev_priv);
7864
7865         /* 1a & 1b: Get forcewake during program sequence. Although the driver
7866          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7867         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7868
7869         /*  Disable RC states. */
7870         I915_WRITE(GEN6_RC_CONTROL, 0);
7871
7872         /* 2a: Program RC6 thresholds.*/
7873         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7874         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7875         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7876
7877         for_each_engine(engine, dev_priv, id)
7878                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7879         I915_WRITE(GEN6_RC_SLEEP, 0);
7880
7881         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7882         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7883
7884         /* Allows RC6 residency counter to work */
7885         I915_WRITE(VLV_COUNTER_CONTROL,
7886                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7887                                       VLV_MEDIA_RC6_COUNT_EN |
7888                                       VLV_RENDER_RC6_COUNT_EN));
7889
7890         /* For now we assume BIOS is allocating and populating the PCBR  */
7891         pcbr = I915_READ(VLV_PCBR);
7892
7893         /* 3: Enable RC6 */
7894         rc6_mode = 0;
7895         if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7896                 rc6_mode = GEN7_RC_CTL_TO_MODE;
7897         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7898
7899         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7900 }
7901
7902 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7903 {
7904         u32 val;
7905
7906         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7907
7908         /* 1: Program defaults and thresholds for RPS*/
7909         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7910         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7911         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7912         I915_WRITE(GEN6_RP_UP_EI, 66000);
7913         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7914
7915         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7916
7917         /* 2: Enable RPS */
7918         I915_WRITE(GEN6_RP_CONTROL,
7919                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7920                    GEN6_RP_MEDIA_IS_GFX |
7921                    GEN6_RP_ENABLE |
7922                    GEN6_RP_UP_BUSY_AVG |
7923                    GEN6_RP_DOWN_IDLE_AVG);
7924
7925         /* Setting Fixed Bias */
7926         val = VLV_OVERRIDE_EN |
7927                   VLV_SOC_TDP_EN |
7928                   CHV_BIAS_CPU_50_SOC_50;
7929         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7930
7931         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7932
7933         /* RPS code assumes GPLL is used */
7934         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7935
7936         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7937         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7938
7939         reset_rps(dev_priv, valleyview_set_rps);
7940
7941         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7942 }
7943
7944 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7945 {
7946         struct intel_engine_cs *engine;
7947         enum intel_engine_id id;
7948         u32 gtfifodbg;
7949
7950         valleyview_check_pctx(dev_priv);
7951
7952         gtfifodbg = I915_READ(GTFIFODBG);
7953         if (gtfifodbg) {
7954                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7955                                  gtfifodbg);
7956                 I915_WRITE(GTFIFODBG, gtfifodbg);
7957         }
7958
7959         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7960
7961         /*  Disable RC states. */
7962         I915_WRITE(GEN6_RC_CONTROL, 0);
7963
7964         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7965         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7966         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7967
7968         for_each_engine(engine, dev_priv, id)
7969                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7970
7971         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7972
7973         /* Allows RC6 residency counter to work */
7974         I915_WRITE(VLV_COUNTER_CONTROL,
7975                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7976                                       VLV_MEDIA_RC0_COUNT_EN |
7977                                       VLV_RENDER_RC0_COUNT_EN |
7978                                       VLV_MEDIA_RC6_COUNT_EN |
7979                                       VLV_RENDER_RC6_COUNT_EN));
7980
7981         I915_WRITE(GEN6_RC_CONTROL,
7982                    GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7983
7984         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7985 }
7986
7987 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7988 {
7989         u32 val;
7990
7991         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7992
7993         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7994         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7995         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7996         I915_WRITE(GEN6_RP_UP_EI, 66000);
7997         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7998
7999         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8000
8001         I915_WRITE(GEN6_RP_CONTROL,
8002                    GEN6_RP_MEDIA_TURBO |
8003                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
8004                    GEN6_RP_MEDIA_IS_GFX |
8005                    GEN6_RP_ENABLE |
8006                    GEN6_RP_UP_BUSY_AVG |
8007                    GEN6_RP_DOWN_IDLE_CONT);
8008
8009         /* Setting Fixed Bias */
8010         val = VLV_OVERRIDE_EN |
8011                   VLV_SOC_TDP_EN |
8012                   VLV_BIAS_CPU_125_SOC_875;
8013         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
8014
8015         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
8016
8017         /* RPS code assumes GPLL is used */
8018         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
8019
8020         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
8021         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
8022
8023         reset_rps(dev_priv, valleyview_set_rps);
8024
8025         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
8026 }
8027
8028 static unsigned long intel_pxfreq(u32 vidfreq)
8029 {
8030         unsigned long freq;
8031         int div = (vidfreq & 0x3f0000) >> 16;
8032         int post = (vidfreq & 0x3000) >> 12;
8033         int pre = (vidfreq & 0x7);
8034
8035         if (!pre)
8036                 return 0;
8037
8038         freq = ((div * 133333) / ((1<<post) * pre));
8039
8040         return freq;
8041 }
8042
8043 static const struct cparams {
8044         u16 i;
8045         u16 t;
8046         u16 m;
8047         u16 c;
8048 } cparams[] = {
8049         { 1, 1333, 301, 28664 },
8050         { 1, 1066, 294, 24460 },
8051         { 1, 800, 294, 25192 },
8052         { 0, 1333, 276, 27605 },
8053         { 0, 1066, 276, 27605 },
8054         { 0, 800, 231, 23784 },
8055 };
8056
8057 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
8058 {
8059         u64 total_count, diff, ret;
8060         u32 count1, count2, count3, m = 0, c = 0;
8061         unsigned long now = jiffies_to_msecs(jiffies), diff1;
8062         int i;
8063
8064         lockdep_assert_held(&mchdev_lock);
8065
8066         diff1 = now - dev_priv->ips.last_time1;
8067
8068         /* Prevent division-by-zero if we are asking too fast.
8069          * Also, we don't get interesting results if we are polling
8070          * faster than once in 10ms, so just return the saved value
8071          * in such cases.
8072          */
8073         if (diff1 <= 10)
8074                 return dev_priv->ips.chipset_power;
8075
8076         count1 = I915_READ(DMIEC);
8077         count2 = I915_READ(DDREC);
8078         count3 = I915_READ(CSIEC);
8079
8080         total_count = count1 + count2 + count3;
8081
8082         /* FIXME: handle per-counter overflow */
8083         if (total_count < dev_priv->ips.last_count1) {
8084                 diff = ~0UL - dev_priv->ips.last_count1;
8085                 diff += total_count;
8086         } else {
8087                 diff = total_count - dev_priv->ips.last_count1;
8088         }
8089
8090         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
8091                 if (cparams[i].i == dev_priv->ips.c_m &&
8092                     cparams[i].t == dev_priv->ips.r_t) {
8093                         m = cparams[i].m;
8094                         c = cparams[i].c;
8095                         break;
8096                 }
8097         }
8098
8099         diff = div_u64(diff, diff1);
8100         ret = ((m * diff) + c);
8101         ret = div_u64(ret, 10);
8102
8103         dev_priv->ips.last_count1 = total_count;
8104         dev_priv->ips.last_time1 = now;
8105
8106         dev_priv->ips.chipset_power = ret;
8107
8108         return ret;
8109 }
8110
8111 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
8112 {
8113         intel_wakeref_t wakeref;
8114         unsigned long val = 0;
8115
8116         if (!IS_GEN(dev_priv, 5))
8117                 return 0;
8118
8119         with_intel_runtime_pm(dev_priv, wakeref) {
8120                 spin_lock_irq(&mchdev_lock);
8121                 val = __i915_chipset_val(dev_priv);
8122                 spin_unlock_irq(&mchdev_lock);
8123         }
8124
8125         return val;
8126 }
8127
8128 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
8129 {
8130         unsigned long m, x, b;
8131         u32 tsfs;
8132
8133         tsfs = I915_READ(TSFS);
8134
8135         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
8136         x = I915_READ8(TR1);
8137
8138         b = tsfs & TSFS_INTR_MASK;
8139
8140         return ((m * x) / 127) - b;
8141 }
8142
8143 static int _pxvid_to_vd(u8 pxvid)
8144 {
8145         if (pxvid == 0)
8146                 return 0;
8147
8148         if (pxvid >= 8 && pxvid < 31)
8149                 pxvid = 31;
8150
8151         return (pxvid + 2) * 125;
8152 }
8153
8154 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
8155 {
8156         const int vd = _pxvid_to_vd(pxvid);
8157         const int vm = vd - 1125;
8158
8159         if (INTEL_INFO(dev_priv)->is_mobile)
8160                 return vm > 0 ? vm : 0;
8161
8162         return vd;
8163 }
8164
8165 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
8166 {
8167         u64 now, diff, diffms;
8168         u32 count;
8169
8170         lockdep_assert_held(&mchdev_lock);
8171
8172         now = ktime_get_raw_ns();
8173         diffms = now - dev_priv->ips.last_time2;
8174         do_div(diffms, NSEC_PER_MSEC);
8175
8176         /* Don't divide by 0 */
8177         if (!diffms)
8178                 return;
8179
8180         count = I915_READ(GFXEC);
8181
8182         if (count < dev_priv->ips.last_count2) {
8183                 diff = ~0UL - dev_priv->ips.last_count2;
8184                 diff += count;
8185         } else {
8186                 diff = count - dev_priv->ips.last_count2;
8187         }
8188
8189         dev_priv->ips.last_count2 = count;
8190         dev_priv->ips.last_time2 = now;
8191
8192         /* More magic constants... */
8193         diff = diff * 1181;
8194         diff = div_u64(diff, diffms * 10);
8195         dev_priv->ips.gfx_power = diff;
8196 }
8197
8198 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
8199 {
8200         intel_wakeref_t wakeref;
8201
8202         if (!IS_GEN(dev_priv, 5))
8203                 return;
8204
8205         with_intel_runtime_pm(dev_priv, wakeref) {
8206                 spin_lock_irq(&mchdev_lock);
8207                 __i915_update_gfx_val(dev_priv);
8208                 spin_unlock_irq(&mchdev_lock);
8209         }
8210 }
8211
8212 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
8213 {
8214         unsigned long t, corr, state1, corr2, state2;
8215         u32 pxvid, ext_v;
8216
8217         lockdep_assert_held(&mchdev_lock);
8218
8219         pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
8220         pxvid = (pxvid >> 24) & 0x7f;
8221         ext_v = pvid_to_extvid(dev_priv, pxvid);
8222
8223         state1 = ext_v;
8224
8225         t = i915_mch_val(dev_priv);
8226
8227         /* Revel in the empirically derived constants */
8228
8229         /* Correction factor in 1/100000 units */
8230         if (t > 80)
8231                 corr = ((t * 2349) + 135940);
8232         else if (t >= 50)
8233                 corr = ((t * 964) + 29317);
8234         else /* < 50 */
8235                 corr = ((t * 301) + 1004);
8236
8237         corr = corr * ((150142 * state1) / 10000 - 78642);
8238         corr /= 100000;
8239         corr2 = (corr * dev_priv->ips.corr);
8240
8241         state2 = (corr2 * state1) / 10000;
8242         state2 /= 100; /* convert to mW */
8243
8244         __i915_update_gfx_val(dev_priv);
8245
8246         return dev_priv->ips.gfx_power + state2;
8247 }
8248
8249 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
8250 {
8251         intel_wakeref_t wakeref;
8252         unsigned long val = 0;
8253
8254         if (!IS_GEN(dev_priv, 5))
8255                 return 0;
8256
8257         with_intel_runtime_pm(dev_priv, wakeref) {
8258                 spin_lock_irq(&mchdev_lock);
8259                 val = __i915_gfx_val(dev_priv);
8260                 spin_unlock_irq(&mchdev_lock);
8261         }
8262
8263         return val;
8264 }
8265
8266 static struct drm_i915_private __rcu *i915_mch_dev;
8267
8268 static struct drm_i915_private *mchdev_get(void)
8269 {
8270         struct drm_i915_private *i915;
8271
8272         rcu_read_lock();
8273         i915 = rcu_dereference(i915_mch_dev);
8274         if (!kref_get_unless_zero(&i915->drm.ref))
8275                 i915 = NULL;
8276         rcu_read_unlock();
8277
8278         return i915;
8279 }
8280
8281 /**
8282  * i915_read_mch_val - return value for IPS use
8283  *
8284  * Calculate and return a value for the IPS driver to use when deciding whether
8285  * we have thermal and power headroom to increase CPU or GPU power budget.
8286  */
8287 unsigned long i915_read_mch_val(void)
8288 {
8289         struct drm_i915_private *i915;
8290         unsigned long chipset_val = 0;
8291         unsigned long graphics_val = 0;
8292         intel_wakeref_t wakeref;
8293
8294         i915 = mchdev_get();
8295         if (!i915)
8296                 return 0;
8297
8298         with_intel_runtime_pm(i915, wakeref) {
8299                 spin_lock_irq(&mchdev_lock);
8300                 chipset_val = __i915_chipset_val(i915);
8301                 graphics_val = __i915_gfx_val(i915);
8302                 spin_unlock_irq(&mchdev_lock);
8303         }
8304
8305         drm_dev_put(&i915->drm);
8306         return chipset_val + graphics_val;
8307 }
8308 EXPORT_SYMBOL_GPL(i915_read_mch_val);
8309
8310 /**
8311  * i915_gpu_raise - raise GPU frequency limit
8312  *
8313  * Raise the limit; IPS indicates we have thermal headroom.
8314  */
8315 bool i915_gpu_raise(void)
8316 {
8317         struct drm_i915_private *i915;
8318
8319         i915 = mchdev_get();
8320         if (!i915)
8321                 return false;
8322
8323         spin_lock_irq(&mchdev_lock);
8324         if (i915->ips.max_delay > i915->ips.fmax)
8325                 i915->ips.max_delay--;
8326         spin_unlock_irq(&mchdev_lock);
8327
8328         drm_dev_put(&i915->drm);
8329         return true;
8330 }
8331 EXPORT_SYMBOL_GPL(i915_gpu_raise);
8332
8333 /**
8334  * i915_gpu_lower - lower GPU frequency limit
8335  *
8336  * IPS indicates we're close to a thermal limit, so throttle back the GPU
8337  * frequency maximum.
8338  */
8339 bool i915_gpu_lower(void)
8340 {
8341         struct drm_i915_private *i915;
8342
8343         i915 = mchdev_get();
8344         if (!i915)
8345                 return false;
8346
8347         spin_lock_irq(&mchdev_lock);
8348         if (i915->ips.max_delay < i915->ips.min_delay)
8349                 i915->ips.max_delay++;
8350         spin_unlock_irq(&mchdev_lock);
8351
8352         drm_dev_put(&i915->drm);
8353         return true;
8354 }
8355 EXPORT_SYMBOL_GPL(i915_gpu_lower);
8356
8357 /**
8358  * i915_gpu_busy - indicate GPU business to IPS
8359  *
8360  * Tell the IPS driver whether or not the GPU is busy.
8361  */
8362 bool i915_gpu_busy(void)
8363 {
8364         struct drm_i915_private *i915;
8365         bool ret;
8366
8367         i915 = mchdev_get();
8368         if (!i915)
8369                 return false;
8370
8371         ret = i915->gt.awake;
8372
8373         drm_dev_put(&i915->drm);
8374         return ret;
8375 }
8376 EXPORT_SYMBOL_GPL(i915_gpu_busy);
8377
8378 /**
8379  * i915_gpu_turbo_disable - disable graphics turbo
8380  *
8381  * Disable graphics turbo by resetting the max frequency and setting the
8382  * current frequency to the default.
8383  */
8384 bool i915_gpu_turbo_disable(void)
8385 {
8386         struct drm_i915_private *i915;
8387         bool ret;
8388
8389         i915 = mchdev_get();
8390         if (!i915)
8391                 return false;
8392
8393         spin_lock_irq(&mchdev_lock);
8394         i915->ips.max_delay = i915->ips.fstart;
8395         ret = ironlake_set_drps(i915, i915->ips.fstart);
8396         spin_unlock_irq(&mchdev_lock);
8397
8398         drm_dev_put(&i915->drm);
8399         return ret;
8400 }
8401 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
8402
8403 /**
8404  * Tells the intel_ips driver that the i915 driver is now loaded, if
8405  * IPS got loaded first.
8406  *
8407  * This awkward dance is so that neither module has to depend on the
8408  * other in order for IPS to do the appropriate communication of
8409  * GPU turbo limits to i915.
8410  */
8411 static void
8412 ips_ping_for_i915_load(void)
8413 {
8414         void (*link)(void);
8415
8416         link = symbol_get(ips_link_to_i915_driver);
8417         if (link) {
8418                 link();
8419                 symbol_put(ips_link_to_i915_driver);
8420         }
8421 }
8422
8423 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
8424 {
8425         /* We only register the i915 ips part with intel-ips once everything is
8426          * set up, to avoid intel-ips sneaking in and reading bogus values. */
8427         rcu_assign_pointer(i915_mch_dev, dev_priv);
8428
8429         ips_ping_for_i915_load();
8430 }
8431
8432 void intel_gpu_ips_teardown(void)
8433 {
8434         rcu_assign_pointer(i915_mch_dev, NULL);
8435 }
8436
8437 static void intel_init_emon(struct drm_i915_private *dev_priv)
8438 {
8439         u32 lcfuse;
8440         u8 pxw[16];
8441         int i;
8442
8443         /* Disable to program */
8444         I915_WRITE(ECR, 0);
8445         POSTING_READ(ECR);
8446
8447         /* Program energy weights for various events */
8448         I915_WRITE(SDEW, 0x15040d00);
8449         I915_WRITE(CSIEW0, 0x007f0000);
8450         I915_WRITE(CSIEW1, 0x1e220004);
8451         I915_WRITE(CSIEW2, 0x04000004);
8452
8453         for (i = 0; i < 5; i++)
8454                 I915_WRITE(PEW(i), 0);
8455         for (i = 0; i < 3; i++)
8456                 I915_WRITE(DEW(i), 0);
8457
8458         /* Program P-state weights to account for frequency power adjustment */
8459         for (i = 0; i < 16; i++) {
8460                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
8461                 unsigned long freq = intel_pxfreq(pxvidfreq);
8462                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8463                         PXVFREQ_PX_SHIFT;
8464                 unsigned long val;
8465
8466                 val = vid * vid;
8467                 val *= (freq / 1000);
8468                 val *= 255;
8469                 val /= (127*127*900);
8470                 if (val > 0xff)
8471                         DRM_ERROR("bad pxval: %ld\n", val);
8472                 pxw[i] = val;
8473         }
8474         /* Render standby states get 0 weight */
8475         pxw[14] = 0;
8476         pxw[15] = 0;
8477
8478         for (i = 0; i < 4; i++) {
8479                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8480                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8481                 I915_WRITE(PXW(i), val);
8482         }
8483
8484         /* Adjust magic regs to magic values (more experimental results) */
8485         I915_WRITE(OGW0, 0);
8486         I915_WRITE(OGW1, 0);
8487         I915_WRITE(EG0, 0x00007f00);
8488         I915_WRITE(EG1, 0x0000000e);
8489         I915_WRITE(EG2, 0x000e0000);
8490         I915_WRITE(EG3, 0x68000300);
8491         I915_WRITE(EG4, 0x42000000);
8492         I915_WRITE(EG5, 0x00140031);
8493         I915_WRITE(EG6, 0);
8494         I915_WRITE(EG7, 0);
8495
8496         for (i = 0; i < 8; i++)
8497                 I915_WRITE(PXWL(i), 0);
8498
8499         /* Enable PMON + select events */
8500         I915_WRITE(ECR, 0x80000019);
8501
8502         lcfuse = I915_READ(LCFUSE02);
8503
8504         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8505 }
8506
8507 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8508 {
8509         struct intel_rps *rps = &dev_priv->gt_pm.rps;
8510
8511         /*
8512          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
8513          * requirement.
8514          */
8515         if (!sanitize_rc6(dev_priv)) {
8516                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8517                 pm_runtime_get(&dev_priv->drm.pdev->dev);
8518         }
8519
8520         mutex_lock(&dev_priv->pcu_lock);
8521
8522         /* Initialize RPS limits (for userspace) */
8523         if (IS_CHERRYVIEW(dev_priv))
8524                 cherryview_init_gt_powersave(dev_priv);
8525         else if (IS_VALLEYVIEW(dev_priv))
8526                 valleyview_init_gt_powersave(dev_priv);
8527         else if (INTEL_GEN(dev_priv) >= 6)
8528                 gen6_init_rps_frequencies(dev_priv);
8529
8530         /* Derive initial user preferences/limits from the hardware limits */
8531         rps->idle_freq = rps->min_freq;
8532         rps->cur_freq = rps->idle_freq;
8533
8534         rps->max_freq_softlimit = rps->max_freq;
8535         rps->min_freq_softlimit = rps->min_freq;
8536
8537         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8538                 rps->min_freq_softlimit =
8539                         max_t(int,
8540                               rps->efficient_freq,
8541                               intel_freq_opcode(dev_priv, 450));
8542
8543         /* After setting max-softlimit, find the overclock max freq */
8544         if (IS_GEN(dev_priv, 6) ||
8545             IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
8546                 u32 params = 0;
8547
8548                 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
8549                 if (params & BIT(31)) { /* OC supported */
8550                         DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8551                                          (rps->max_freq & 0xff) * 50,
8552                                          (params & 0xff) * 50);
8553                         rps->max_freq = params & 0xff;
8554                 }
8555         }
8556
8557         /* Finally allow us to boost to max by default */
8558         rps->boost_freq = rps->max_freq;
8559
8560         mutex_unlock(&dev_priv->pcu_lock);
8561 }
8562
8563 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8564 {
8565         if (IS_VALLEYVIEW(dev_priv))
8566                 valleyview_cleanup_gt_powersave(dev_priv);
8567
8568         if (!HAS_RC6(dev_priv))
8569                 pm_runtime_put(&dev_priv->drm.pdev->dev);
8570 }
8571
8572 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
8573 {
8574         dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
8575         dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8576         intel_disable_gt_powersave(dev_priv);
8577
8578         if (INTEL_GEN(dev_priv) >= 11)
8579                 gen11_reset_rps_interrupts(dev_priv);
8580         else if (INTEL_GEN(dev_priv) >= 6)
8581                 gen6_reset_rps_interrupts(dev_priv);
8582 }
8583
8584 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
8585 {
8586         lockdep_assert_held(&i915->pcu_lock);
8587
8588         if (!i915->gt_pm.llc_pstate.enabled)
8589                 return;
8590
8591         /* Currently there is no HW configuration to be done to disable. */
8592
8593         i915->gt_pm.llc_pstate.enabled = false;
8594 }
8595
8596 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8597 {
8598         lockdep_assert_held(&dev_priv->pcu_lock);
8599
8600         if (!dev_priv->gt_pm.rc6.enabled)
8601                 return;
8602
8603         if (INTEL_GEN(dev_priv) >= 9)
8604                 gen9_disable_rc6(dev_priv);
8605         else if (IS_CHERRYVIEW(dev_priv))
8606                 cherryview_disable_rc6(dev_priv);
8607         else if (IS_VALLEYVIEW(dev_priv))
8608                 valleyview_disable_rc6(dev_priv);
8609         else if (INTEL_GEN(dev_priv) >= 6)
8610                 gen6_disable_rc6(dev_priv);
8611
8612         dev_priv->gt_pm.rc6.enabled = false;
8613 }
8614
8615 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8616 {
8617         lockdep_assert_held(&dev_priv->pcu_lock);
8618
8619         if (!dev_priv->gt_pm.rps.enabled)
8620                 return;
8621
8622         if (INTEL_GEN(dev_priv) >= 9)
8623                 gen9_disable_rps(dev_priv);
8624         else if (IS_CHERRYVIEW(dev_priv))
8625                 cherryview_disable_rps(dev_priv);
8626         else if (IS_VALLEYVIEW(dev_priv))
8627                 valleyview_disable_rps(dev_priv);
8628         else if (INTEL_GEN(dev_priv) >= 6)
8629                 gen6_disable_rps(dev_priv);
8630         else if (IS_IRONLAKE_M(dev_priv))
8631                 ironlake_disable_drps(dev_priv);
8632
8633         dev_priv->gt_pm.rps.enabled = false;
8634 }
8635
8636 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8637 {
8638         mutex_lock(&dev_priv->pcu_lock);
8639
8640         intel_disable_rc6(dev_priv);
8641         intel_disable_rps(dev_priv);
8642         if (HAS_LLC(dev_priv))
8643                 intel_disable_llc_pstate(dev_priv);
8644
8645         mutex_unlock(&dev_priv->pcu_lock);
8646 }
8647
8648 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8649 {
8650         lockdep_assert_held(&i915->pcu_lock);
8651
8652         if (i915->gt_pm.llc_pstate.enabled)
8653                 return;
8654
8655         gen6_update_ring_freq(i915);
8656
8657         i915->gt_pm.llc_pstate.enabled = true;
8658 }
8659
8660 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8661 {
8662         lockdep_assert_held(&dev_priv->pcu_lock);
8663
8664         if (dev_priv->gt_pm.rc6.enabled)
8665                 return;
8666
8667         if (IS_CHERRYVIEW(dev_priv))
8668                 cherryview_enable_rc6(dev_priv);
8669         else if (IS_VALLEYVIEW(dev_priv))
8670                 valleyview_enable_rc6(dev_priv);
8671         else if (INTEL_GEN(dev_priv) >= 11)
8672                 gen11_enable_rc6(dev_priv);
8673         else if (INTEL_GEN(dev_priv) >= 9)
8674                 gen9_enable_rc6(dev_priv);
8675         else if (IS_BROADWELL(dev_priv))
8676                 gen8_enable_rc6(dev_priv);
8677         else if (INTEL_GEN(dev_priv) >= 6)
8678                 gen6_enable_rc6(dev_priv);
8679
8680         dev_priv->gt_pm.rc6.enabled = true;
8681 }
8682
8683 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8684 {
8685         struct intel_rps *rps = &dev_priv->gt_pm.rps;
8686
8687         lockdep_assert_held(&dev_priv->pcu_lock);
8688
8689         if (rps->enabled)
8690                 return;
8691
8692         if (IS_CHERRYVIEW(dev_priv)) {
8693                 cherryview_enable_rps(dev_priv);
8694         } else if (IS_VALLEYVIEW(dev_priv)) {
8695                 valleyview_enable_rps(dev_priv);
8696         } else if (INTEL_GEN(dev_priv) >= 9) {
8697                 gen9_enable_rps(dev_priv);
8698         } else if (IS_BROADWELL(dev_priv)) {
8699                 gen8_enable_rps(dev_priv);
8700         } else if (INTEL_GEN(dev_priv) >= 6) {
8701                 gen6_enable_rps(dev_priv);
8702         } else if (IS_IRONLAKE_M(dev_priv)) {
8703                 ironlake_enable_drps(dev_priv);
8704                 intel_init_emon(dev_priv);
8705         }
8706
8707         WARN_ON(rps->max_freq < rps->min_freq);
8708         WARN_ON(rps->idle_freq > rps->max_freq);
8709
8710         WARN_ON(rps->efficient_freq < rps->min_freq);
8711         WARN_ON(rps->efficient_freq > rps->max_freq);
8712
8713         rps->enabled = true;
8714 }
8715
8716 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8717 {
8718         /* Powersaving is controlled by the host when inside a VM */
8719         if (intel_vgpu_active(dev_priv))
8720                 return;
8721
8722         mutex_lock(&dev_priv->pcu_lock);
8723
8724         if (HAS_RC6(dev_priv))
8725                 intel_enable_rc6(dev_priv);
8726         intel_enable_rps(dev_priv);
8727         if (HAS_LLC(dev_priv))
8728                 intel_enable_llc_pstate(dev_priv);
8729
8730         mutex_unlock(&dev_priv->pcu_lock);
8731 }
8732
8733 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8734 {
8735         /*
8736          * On Ibex Peak and Cougar Point, we need to disable clock
8737          * gating for the panel power sequencer or it will fail to
8738          * start up when no ports are active.
8739          */
8740         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8741 }
8742
8743 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8744 {
8745         enum pipe pipe;
8746
8747         for_each_pipe(dev_priv, pipe) {
8748                 I915_WRITE(DSPCNTR(pipe),
8749                            I915_READ(DSPCNTR(pipe)) |
8750                            DISPPLANE_TRICKLE_FEED_DISABLE);
8751
8752                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8753                 POSTING_READ(DSPSURF(pipe));
8754         }
8755 }
8756
8757 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8758 {
8759         u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8760
8761         /*
8762          * Required for FBC
8763          * WaFbcDisableDpfcClockGating:ilk
8764          */
8765         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8766                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8767                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8768
8769         I915_WRITE(PCH_3DCGDIS0,
8770                    MARIUNIT_CLOCK_GATE_DISABLE |
8771                    SVSMUNIT_CLOCK_GATE_DISABLE);
8772         I915_WRITE(PCH_3DCGDIS1,
8773                    VFMUNIT_CLOCK_GATE_DISABLE);
8774
8775         /*
8776          * According to the spec the following bits should be set in
8777          * order to enable memory self-refresh
8778          * The bit 22/21 of 0x42004
8779          * The bit 5 of 0x42020
8780          * The bit 15 of 0x45000
8781          */
8782         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8783                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
8784                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8785         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8786         I915_WRITE(DISP_ARB_CTL,
8787                    (I915_READ(DISP_ARB_CTL) |
8788                     DISP_FBC_WM_DIS));
8789
8790         /*
8791          * Based on the document from hardware guys the following bits
8792          * should be set unconditionally in order to enable FBC.
8793          * The bit 22 of 0x42000
8794          * The bit 22 of 0x42004
8795          * The bit 7,8,9 of 0x42020.
8796          */
8797         if (IS_IRONLAKE_M(dev_priv)) {
8798                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8799                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8800                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8801                            ILK_FBCQ_DIS);
8802                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8803                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8804                            ILK_DPARB_GATE);
8805         }
8806
8807         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8808
8809         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8810                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8811                    ILK_ELPIN_409_SELECT);
8812         I915_WRITE(_3D_CHICKEN2,
8813                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8814                    _3D_CHICKEN2_WM_READ_PIPELINED);
8815
8816         /* WaDisableRenderCachePipelinedFlush:ilk */
8817         I915_WRITE(CACHE_MODE_0,
8818                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8819
8820         /* WaDisable_RenderCache_OperationalFlush:ilk */
8821         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8822
8823         g4x_disable_trickle_feed(dev_priv);
8824
8825         ibx_init_clock_gating(dev_priv);
8826 }
8827
8828 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8829 {
8830         int pipe;
8831         u32 val;
8832
8833         /*
8834          * On Ibex Peak and Cougar Point, we need to disable clock
8835          * gating for the panel power sequencer or it will fail to
8836          * start up when no ports are active.
8837          */
8838         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8839                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8840                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
8841         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8842                    DPLS_EDP_PPS_FIX_DIS);
8843         /* The below fixes the weird display corruption, a few pixels shifted
8844          * downward, on (only) LVDS of some HP laptops with IVY.
8845          */
8846         for_each_pipe(dev_priv, pipe) {
8847                 val = I915_READ(TRANS_CHICKEN2(pipe));
8848                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8849                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8850                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8851                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8852                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8853                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8854                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8855                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8856         }
8857         /* WADP0ClockGatingDisable */
8858         for_each_pipe(dev_priv, pipe) {
8859                 I915_WRITE(TRANS_CHICKEN1(pipe),
8860                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8861         }
8862 }
8863
8864 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8865 {
8866         u32 tmp;
8867
8868         tmp = I915_READ(MCH_SSKPD);
8869         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8870                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8871                               tmp);
8872 }
8873
8874 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8875 {
8876         u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8877
8878         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8879
8880         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8881                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8882                    ILK_ELPIN_409_SELECT);
8883
8884         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8885         I915_WRITE(_3D_CHICKEN,
8886                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8887
8888         /* WaDisable_RenderCache_OperationalFlush:snb */
8889         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8890
8891         /*
8892          * BSpec recoomends 8x4 when MSAA is used,
8893          * however in practice 16x4 seems fastest.
8894          *
8895          * Note that PS/WM thread counts depend on the WIZ hashing
8896          * disable bit, which we don't touch here, but it's good
8897          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8898          */
8899         I915_WRITE(GEN6_GT_MODE,
8900                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8901
8902         I915_WRITE(CACHE_MODE_0,
8903                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8904
8905         I915_WRITE(GEN6_UCGCTL1,
8906                    I915_READ(GEN6_UCGCTL1) |
8907                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8908                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8909
8910         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8911          * gating disable must be set.  Failure to set it results in
8912          * flickering pixels due to Z write ordering failures after
8913          * some amount of runtime in the Mesa "fire" demo, and Unigine
8914          * Sanctuary and Tropics, and apparently anything else with
8915          * alpha test or pixel discard.
8916          *
8917          * According to the spec, bit 11 (RCCUNIT) must also be set,
8918          * but we didn't debug actual testcases to find it out.
8919          *
8920          * WaDisableRCCUnitClockGating:snb
8921          * WaDisableRCPBUnitClockGating:snb
8922          */
8923         I915_WRITE(GEN6_UCGCTL2,
8924                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8925                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8926
8927         /* WaStripsFansDisableFastClipPerformanceFix:snb */
8928         I915_WRITE(_3D_CHICKEN3,
8929                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8930
8931         /*
8932          * Bspec says:
8933          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8934          * 3DSTATE_SF number of SF output attributes is more than 16."
8935          */
8936         I915_WRITE(_3D_CHICKEN3,
8937                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8938
8939         /*
8940          * According to the spec the following bits should be
8941          * set in order to enable memory self-refresh and fbc:
8942          * The bit21 and bit22 of 0x42000
8943          * The bit21 and bit22 of 0x42004
8944          * The bit5 and bit7 of 0x42020
8945          * The bit14 of 0x70180
8946          * The bit14 of 0x71180
8947          *
8948          * WaFbcAsynchFlipDisableFbcQueue:snb
8949          */
8950         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8951                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8952                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8953         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8954                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8955                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8956         I915_WRITE(ILK_DSPCLK_GATE_D,
8957                    I915_READ(ILK_DSPCLK_GATE_D) |
8958                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
8959                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8960
8961         g4x_disable_trickle_feed(dev_priv);
8962
8963         cpt_init_clock_gating(dev_priv);
8964
8965         gen6_check_mch_setup(dev_priv);
8966 }
8967
8968 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8969 {
8970         u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
8971
8972         /*
8973          * WaVSThreadDispatchOverride:ivb,vlv
8974          *
8975          * This actually overrides the dispatch
8976          * mode for all thread types.
8977          */
8978         reg &= ~GEN7_FF_SCHED_MASK;
8979         reg |= GEN7_FF_TS_SCHED_HW;
8980         reg |= GEN7_FF_VS_SCHED_HW;
8981         reg |= GEN7_FF_DS_SCHED_HW;
8982
8983         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8984 }
8985
8986 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8987 {
8988         /*
8989          * TODO: this bit should only be enabled when really needed, then
8990          * disabled when not needed anymore in order to save power.
8991          */
8992         if (HAS_PCH_LPT_LP(dev_priv))
8993                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8994                            I915_READ(SOUTH_DSPCLK_GATE_D) |
8995                            PCH_LP_PARTITION_LEVEL_DISABLE);
8996
8997         /* WADPOClockGatingDisable:hsw */
8998         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8999                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
9000                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
9001 }
9002
9003 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
9004 {
9005         if (HAS_PCH_LPT_LP(dev_priv)) {
9006                 u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9007
9008                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9009                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9010         }
9011 }
9012
9013 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
9014                                    int general_prio_credits,
9015                                    int high_prio_credits)
9016 {
9017         u32 misccpctl;
9018         u32 val;
9019
9020         /* WaTempDisableDOPClkGating:bdw */
9021         misccpctl = I915_READ(GEN7_MISCCPCTL);
9022         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
9023
9024         val = I915_READ(GEN8_L3SQCREG1);
9025         val &= ~L3_PRIO_CREDITS_MASK;
9026         val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
9027         val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
9028         I915_WRITE(GEN8_L3SQCREG1, val);
9029
9030         /*
9031          * Wait at least 100 clocks before re-enabling clock gating.
9032          * See the definition of L3SQCREG1 in BSpec.
9033          */
9034         POSTING_READ(GEN8_L3SQCREG1);
9035         udelay(1);
9036         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
9037 }
9038
9039 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
9040 {
9041         /* This is not an Wa. Enable to reduce Sampler power */
9042         I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
9043                    I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
9044
9045         /* WaEnable32PlaneMode:icl */
9046         I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
9047                    _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
9048 }
9049
9050 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
9051 {
9052         if (!HAS_PCH_CNP(dev_priv))
9053                 return;
9054
9055         /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
9056         I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
9057                    CNP_PWM_CGE_GATING_DISABLE);
9058 }
9059
9060 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
9061 {
9062         u32 val;
9063         cnp_init_clock_gating(dev_priv);
9064
9065         /* This is not an Wa. Enable for better image quality */
9066         I915_WRITE(_3D_CHICKEN3,
9067                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
9068
9069         /* WaEnableChickenDCPR:cnl */
9070         I915_WRITE(GEN8_CHICKEN_DCPR_1,
9071                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
9072
9073         /* WaFbcWakeMemOn:cnl */
9074         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
9075                    DISP_FBC_MEMORY_WAKE);
9076
9077         val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
9078         /* ReadHitWriteOnlyDisable:cnl */
9079         val |= RCCUNIT_CLKGATE_DIS;
9080         /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
9081         if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
9082                 val |= SARBUNIT_CLKGATE_DIS;
9083         I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
9084
9085         /* Wa_2201832410:cnl */
9086         val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
9087         val |= GWUNIT_CLKGATE_DIS;
9088         I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
9089
9090         /* WaDisableVFclkgate:cnl */
9091         /* WaVFUnitClockGatingDisable:cnl */
9092         val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
9093         val |= VFUNIT_CLKGATE_DIS;
9094         I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
9095 }
9096
9097 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
9098 {
9099         cnp_init_clock_gating(dev_priv);
9100         gen9_init_clock_gating(dev_priv);
9101
9102         /* WaFbcNukeOnHostModify:cfl */
9103         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9104                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9105 }
9106
9107 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
9108 {
9109         gen9_init_clock_gating(dev_priv);
9110
9111         /* WaDisableSDEUnitClockGating:kbl */
9112         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
9113                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9114                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9115
9116         /* WaDisableGamClockGating:kbl */
9117         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
9118                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9119                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
9120
9121         /* WaFbcNukeOnHostModify:kbl */
9122         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9123                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9124 }
9125
9126 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
9127 {
9128         gen9_init_clock_gating(dev_priv);
9129
9130         /* WAC6entrylatency:skl */
9131         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
9132                    FBC_LLC_FULLY_OPEN);
9133
9134         /* WaFbcNukeOnHostModify:skl */
9135         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9136                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9137 }
9138
9139 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
9140 {
9141         /* The GTT cache must be disabled if the system is using 2M pages. */
9142         bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
9143                                                  I915_GTT_PAGE_SIZE_2M);
9144         enum pipe pipe;
9145
9146         /* WaSwitchSolVfFArbitrationPriority:bdw */
9147         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9148
9149         /* WaPsrDPAMaskVBlankInSRD:bdw */
9150         I915_WRITE(CHICKEN_PAR1_1,
9151                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
9152
9153         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
9154         for_each_pipe(dev_priv, pipe) {
9155                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
9156                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
9157                            BDW_DPRS_MASK_VBLANK_SRD);
9158         }
9159
9160         /* WaVSRefCountFullforceMissDisable:bdw */
9161         /* WaDSRefCountFullforceMissDisable:bdw */
9162         I915_WRITE(GEN7_FF_THREAD_MODE,
9163                    I915_READ(GEN7_FF_THREAD_MODE) &
9164                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9165
9166         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9167                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9168
9169         /* WaDisableSDEUnitClockGating:bdw */
9170         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9171                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9172
9173         /* WaProgramL3SqcReg1Default:bdw */
9174         gen8_set_l3sqc_credits(dev_priv, 30, 2);
9175
9176         /* WaGttCachingOffByDefault:bdw */
9177         I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
9178
9179         /* WaKVMNotificationOnConfigChange:bdw */
9180         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
9181                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
9182
9183         lpt_init_clock_gating(dev_priv);
9184
9185         /* WaDisableDopClockGating:bdw
9186          *
9187          * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
9188          * clock gating.
9189          */
9190         I915_WRITE(GEN6_UCGCTL1,
9191                    I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
9192 }
9193
9194 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
9195 {
9196         /* L3 caching of data atomics doesn't work -- disable it. */
9197         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
9198         I915_WRITE(HSW_ROW_CHICKEN3,
9199                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
9200
9201         /* This is required by WaCatErrorRejectionIssue:hsw */
9202         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9203                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9204                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9205
9206         /* WaVSRefCountFullforceMissDisable:hsw */
9207         I915_WRITE(GEN7_FF_THREAD_MODE,
9208                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
9209
9210         /* WaDisable_RenderCache_OperationalFlush:hsw */
9211         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9212
9213         /* enable HiZ Raw Stall Optimization */
9214         I915_WRITE(CACHE_MODE_0_GEN7,
9215                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9216
9217         /* WaDisable4x2SubspanOptimization:hsw */
9218         I915_WRITE(CACHE_MODE_1,
9219                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9220
9221         /*
9222          * BSpec recommends 8x4 when MSAA is used,
9223          * however in practice 16x4 seems fastest.
9224          *
9225          * Note that PS/WM thread counts depend on the WIZ hashing
9226          * disable bit, which we don't touch here, but it's good
9227          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9228          */
9229         I915_WRITE(GEN7_GT_MODE,
9230                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9231
9232         /* WaSampleCChickenBitEnable:hsw */
9233         I915_WRITE(HALF_SLICE_CHICKEN3,
9234                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
9235
9236         /* WaSwitchSolVfFArbitrationPriority:hsw */
9237         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9238
9239         lpt_init_clock_gating(dev_priv);
9240 }
9241
9242 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
9243 {
9244         u32 snpcr;
9245
9246         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
9247
9248         /* WaDisableEarlyCull:ivb */
9249         I915_WRITE(_3D_CHICKEN3,
9250                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9251
9252         /* WaDisableBackToBackFlipFix:ivb */
9253         I915_WRITE(IVB_CHICKEN3,
9254                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9255                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
9256
9257         /* WaDisablePSDDualDispatchEnable:ivb */
9258         if (IS_IVB_GT1(dev_priv))
9259                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9260                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9261
9262         /* WaDisable_RenderCache_OperationalFlush:ivb */
9263         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9264
9265         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
9266         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
9267                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
9268
9269         /* WaApplyL3ControlAndL3ChickenMode:ivb */
9270         I915_WRITE(GEN7_L3CNTLREG1,
9271                         GEN7_WA_FOR_GEN7_L3_CONTROL);
9272         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
9273                    GEN7_WA_L3_CHICKEN_MODE);
9274         if (IS_IVB_GT1(dev_priv))
9275                 I915_WRITE(GEN7_ROW_CHICKEN2,
9276                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9277         else {
9278                 /* must write both registers */
9279                 I915_WRITE(GEN7_ROW_CHICKEN2,
9280                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9281                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
9282                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9283         }
9284
9285         /* WaForceL3Serialization:ivb */
9286         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9287                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9288
9289         /*
9290          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9291          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
9292          */
9293         I915_WRITE(GEN6_UCGCTL2,
9294                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9295
9296         /* This is required by WaCatErrorRejectionIssue:ivb */
9297         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9298                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9299                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9300
9301         g4x_disable_trickle_feed(dev_priv);
9302
9303         gen7_setup_fixed_func_scheduler(dev_priv);
9304
9305         if (0) { /* causes HiZ corruption on ivb:gt1 */
9306                 /* enable HiZ Raw Stall Optimization */
9307                 I915_WRITE(CACHE_MODE_0_GEN7,
9308                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9309         }
9310
9311         /* WaDisable4x2SubspanOptimization:ivb */
9312         I915_WRITE(CACHE_MODE_1,
9313                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9314
9315         /*
9316          * BSpec recommends 8x4 when MSAA is used,
9317          * however in practice 16x4 seems fastest.
9318          *
9319          * Note that PS/WM thread counts depend on the WIZ hashing
9320          * disable bit, which we don't touch here, but it's good
9321          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9322          */
9323         I915_WRITE(GEN7_GT_MODE,
9324                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9325
9326         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
9327         snpcr &= ~GEN6_MBC_SNPCR_MASK;
9328         snpcr |= GEN6_MBC_SNPCR_MED;
9329         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9330
9331         if (!HAS_PCH_NOP(dev_priv))
9332                 cpt_init_clock_gating(dev_priv);
9333
9334         gen6_check_mch_setup(dev_priv);
9335 }
9336
9337 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9338 {
9339         /* WaDisableEarlyCull:vlv */
9340         I915_WRITE(_3D_CHICKEN3,
9341                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9342
9343         /* WaDisableBackToBackFlipFix:vlv */
9344         I915_WRITE(IVB_CHICKEN3,
9345                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9346                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
9347
9348         /* WaPsdDispatchEnable:vlv */
9349         /* WaDisablePSDDualDispatchEnable:vlv */
9350         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9351                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
9352                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9353
9354         /* WaDisable_RenderCache_OperationalFlush:vlv */
9355         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9356
9357         /* WaForceL3Serialization:vlv */
9358         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9359                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9360
9361         /* WaDisableDopClockGating:vlv */
9362         I915_WRITE(GEN7_ROW_CHICKEN2,
9363                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9364
9365         /* This is required by WaCatErrorRejectionIssue:vlv */
9366         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9367                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9368                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9369
9370         gen7_setup_fixed_func_scheduler(dev_priv);
9371
9372         /*
9373          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9374          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9375          */
9376         I915_WRITE(GEN6_UCGCTL2,
9377                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9378
9379         /* WaDisableL3Bank2xClockGate:vlv
9380          * Disabling L3 clock gating- MMIO 940c[25] = 1
9381          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
9382         I915_WRITE(GEN7_UCGCTL4,
9383                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9384
9385         /*
9386          * BSpec says this must be set, even though
9387          * WaDisable4x2SubspanOptimization isn't listed for VLV.
9388          */
9389         I915_WRITE(CACHE_MODE_1,
9390                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9391
9392         /*
9393          * BSpec recommends 8x4 when MSAA is used,
9394          * however in practice 16x4 seems fastest.
9395          *
9396          * Note that PS/WM thread counts depend on the WIZ hashing
9397          * disable bit, which we don't touch here, but it's good
9398          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9399          */
9400         I915_WRITE(GEN7_GT_MODE,
9401                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9402
9403         /*
9404          * WaIncreaseL3CreditsForVLVB0:vlv
9405          * This is the hardware default actually.
9406          */
9407         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
9408
9409         /*
9410          * WaDisableVLVClockGating_VBIIssue:vlv
9411          * Disable clock gating on th GCFG unit to prevent a delay
9412          * in the reporting of vblank events.
9413          */
9414         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9415 }
9416
9417 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9418 {
9419         /* WaVSRefCountFullforceMissDisable:chv */
9420         /* WaDSRefCountFullforceMissDisable:chv */
9421         I915_WRITE(GEN7_FF_THREAD_MODE,
9422                    I915_READ(GEN7_FF_THREAD_MODE) &
9423                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9424
9425         /* WaDisableSemaphoreAndSyncFlipWait:chv */
9426         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9427                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9428
9429         /* WaDisableCSUnitClockGating:chv */
9430         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9431                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9432
9433         /* WaDisableSDEUnitClockGating:chv */
9434         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9435                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9436
9437         /*
9438          * WaProgramL3SqcReg1Default:chv
9439          * See gfxspecs/Related Documents/Performance Guide/
9440          * LSQC Setting Recommendations.
9441          */
9442         gen8_set_l3sqc_credits(dev_priv, 38, 2);
9443
9444         /*
9445          * GTT cache may not work with big pages, so if those
9446          * are ever enabled GTT cache may need to be disabled.
9447          */
9448         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9449 }
9450
9451 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9452 {
9453         u32 dspclk_gate;
9454
9455         I915_WRITE(RENCLK_GATE_D1, 0);
9456         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
9457                    GS_UNIT_CLOCK_GATE_DISABLE |
9458                    CL_UNIT_CLOCK_GATE_DISABLE);
9459         I915_WRITE(RAMCLK_GATE_D, 0);
9460         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9461                 OVRUNIT_CLOCK_GATE_DISABLE |
9462                 OVCUNIT_CLOCK_GATE_DISABLE;
9463         if (IS_GM45(dev_priv))
9464                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9465         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9466
9467         /* WaDisableRenderCachePipelinedFlush */
9468         I915_WRITE(CACHE_MODE_0,
9469                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9470
9471         /* WaDisable_RenderCache_OperationalFlush:g4x */
9472         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9473
9474         g4x_disable_trickle_feed(dev_priv);
9475 }
9476
9477 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9478 {
9479         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9480         I915_WRITE(RENCLK_GATE_D2, 0);
9481         I915_WRITE(DSPCLK_GATE_D, 0);
9482         I915_WRITE(RAMCLK_GATE_D, 0);
9483         I915_WRITE16(DEUC, 0);
9484         I915_WRITE(MI_ARB_STATE,
9485                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9486
9487         /* WaDisable_RenderCache_OperationalFlush:gen4 */
9488         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9489 }
9490
9491 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9492 {
9493         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9494                    I965_RCC_CLOCK_GATE_DISABLE |
9495                    I965_RCPB_CLOCK_GATE_DISABLE |
9496                    I965_ISC_CLOCK_GATE_DISABLE |
9497                    I965_FBC_CLOCK_GATE_DISABLE);
9498         I915_WRITE(RENCLK_GATE_D2, 0);
9499         I915_WRITE(MI_ARB_STATE,
9500                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9501
9502         /* WaDisable_RenderCache_OperationalFlush:gen4 */
9503         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9504 }
9505
9506 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9507 {
9508         u32 dstate = I915_READ(D_STATE);
9509
9510         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9511                 DSTATE_DOT_CLOCK_GATING;
9512         I915_WRITE(D_STATE, dstate);
9513
9514         if (IS_PINEVIEW(dev_priv))
9515                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9516
9517         /* IIR "flip pending" means done if this bit is set */
9518         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9519
9520         /* interrupts should cause a wake up from C3 */
9521         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9522
9523         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
9524         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9525
9526         I915_WRITE(MI_ARB_STATE,
9527                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9528 }
9529
9530 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9531 {
9532         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9533
9534         /* interrupts should cause a wake up from C3 */
9535         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
9536                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9537
9538         I915_WRITE(MEM_MODE,
9539                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9540 }
9541
9542 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9543 {
9544         I915_WRITE(MEM_MODE,
9545                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
9546                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9547 }
9548
9549 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9550 {
9551         dev_priv->display.init_clock_gating(dev_priv);
9552 }
9553
9554 void intel_suspend_hw(struct drm_i915_private *dev_priv)
9555 {
9556         if (HAS_PCH_LPT(dev_priv))
9557                 lpt_suspend_hw(dev_priv);
9558 }
9559
9560 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9561 {
9562         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9563 }
9564
9565 /**
9566  * intel_init_clock_gating_hooks - setup the clock gating hooks
9567  * @dev_priv: device private
9568  *
9569  * Setup the hooks that configure which clocks of a given platform can be
9570  * gated and also apply various GT and display specific workarounds for these
9571  * platforms. Note that some GT specific workarounds are applied separately
9572  * when GPU contexts or batchbuffers start their execution.
9573  */
9574 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9575 {
9576         if (IS_GEN(dev_priv, 11))
9577                 dev_priv->display.init_clock_gating = icl_init_clock_gating;
9578         else if (IS_CANNONLAKE(dev_priv))
9579                 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9580         else if (IS_COFFEELAKE(dev_priv))
9581                 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9582         else if (IS_SKYLAKE(dev_priv))
9583                 dev_priv->display.init_clock_gating = skl_init_clock_gating;
9584         else if (IS_KABYLAKE(dev_priv))
9585                 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9586         else if (IS_BROXTON(dev_priv))
9587                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9588         else if (IS_GEMINILAKE(dev_priv))
9589                 dev_priv->display.init_clock_gating = glk_init_clock_gating;
9590         else if (IS_BROADWELL(dev_priv))
9591                 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9592         else if (IS_CHERRYVIEW(dev_priv))
9593                 dev_priv->display.init_clock_gating = chv_init_clock_gating;
9594         else if (IS_HASWELL(dev_priv))
9595                 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9596         else if (IS_IVYBRIDGE(dev_priv))
9597                 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9598         else if (IS_VALLEYVIEW(dev_priv))
9599                 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9600         else if (IS_GEN(dev_priv, 6))
9601                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9602         else if (IS_GEN(dev_priv, 5))
9603                 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9604         else if (IS_G4X(dev_priv))
9605                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9606         else if (IS_I965GM(dev_priv))
9607                 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9608         else if (IS_I965G(dev_priv))
9609                 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9610         else if (IS_GEN(dev_priv, 3))
9611                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9612         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9613                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9614         else if (IS_GEN(dev_priv, 2))
9615                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9616         else {
9617                 MISSING_CASE(INTEL_DEVID(dev_priv));
9618                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9619         }
9620 }
9621
9622 /* Set up chip specific power management-related functions */
9623 void intel_init_pm(struct drm_i915_private *dev_priv)
9624 {
9625         /* For cxsr */
9626         if (IS_PINEVIEW(dev_priv))
9627                 i915_pineview_get_mem_freq(dev_priv);
9628         else if (IS_GEN(dev_priv, 5))
9629                 i915_ironlake_get_mem_freq(dev_priv);
9630
9631         /* For FIFO watermark updates */
9632         if (INTEL_GEN(dev_priv) >= 9) {
9633                 skl_setup_wm_latency(dev_priv);
9634                 dev_priv->display.initial_watermarks = skl_initial_wm;
9635                 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9636                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
9637         } else if (HAS_PCH_SPLIT(dev_priv)) {
9638                 ilk_setup_wm_latency(dev_priv);
9639
9640                 if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
9641                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9642                     (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
9643                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9644                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9645                         dev_priv->display.compute_intermediate_wm =
9646                                 ilk_compute_intermediate_wm;
9647                         dev_priv->display.initial_watermarks =
9648                                 ilk_initial_watermarks;
9649                         dev_priv->display.optimize_watermarks =
9650                                 ilk_optimize_watermarks;
9651                 } else {
9652                         DRM_DEBUG_KMS("Failed to read display plane latency. "
9653                                       "Disable CxSR\n");
9654                 }
9655         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9656                 vlv_setup_wm_latency(dev_priv);
9657                 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9658                 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9659                 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9660                 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9661                 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9662         } else if (IS_G4X(dev_priv)) {
9663                 g4x_setup_wm_latency(dev_priv);
9664                 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9665                 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9666                 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9667                 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9668         } else if (IS_PINEVIEW(dev_priv)) {
9669                 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
9670                                             dev_priv->is_ddr3,
9671                                             dev_priv->fsb_freq,
9672                                             dev_priv->mem_freq)) {
9673                         DRM_INFO("failed to find known CxSR latency "
9674                                  "(found ddr%s fsb freq %d, mem freq %d), "
9675                                  "disabling CxSR\n",
9676                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
9677                                  dev_priv->fsb_freq, dev_priv->mem_freq);
9678                         /* Disable CxSR and never update its watermark again */
9679                         intel_set_memory_cxsr(dev_priv, false);
9680                         dev_priv->display.update_wm = NULL;
9681                 } else
9682                         dev_priv->display.update_wm = pineview_update_wm;
9683         } else if (IS_GEN(dev_priv, 4)) {
9684                 dev_priv->display.update_wm = i965_update_wm;
9685         } else if (IS_GEN(dev_priv, 3)) {
9686                 dev_priv->display.update_wm = i9xx_update_wm;
9687                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9688         } else if (IS_GEN(dev_priv, 2)) {
9689                 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9690                         dev_priv->display.update_wm = i845_update_wm;
9691                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
9692                 } else {
9693                         dev_priv->display.update_wm = i9xx_update_wm;
9694                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
9695                 }
9696         } else {
9697                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9698         }
9699 }
9700
9701 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
9702 {
9703         u32 flags =
9704                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9705
9706         switch (flags) {
9707         case GEN6_PCODE_SUCCESS:
9708                 return 0;
9709         case GEN6_PCODE_UNIMPLEMENTED_CMD:
9710                 return -ENODEV;
9711         case GEN6_PCODE_ILLEGAL_CMD:
9712                 return -ENXIO;
9713         case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9714         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9715                 return -EOVERFLOW;
9716         case GEN6_PCODE_TIMEOUT:
9717                 return -ETIMEDOUT;
9718         default:
9719                 MISSING_CASE(flags);
9720                 return 0;
9721         }
9722 }
9723
9724 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
9725 {
9726         u32 flags =
9727                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9728
9729         switch (flags) {
9730         case GEN6_PCODE_SUCCESS:
9731                 return 0;
9732         case GEN6_PCODE_ILLEGAL_CMD:
9733                 return -ENXIO;
9734         case GEN7_PCODE_TIMEOUT:
9735                 return -ETIMEDOUT;
9736         case GEN7_PCODE_ILLEGAL_DATA:
9737                 return -EINVAL;
9738         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9739                 return -EOVERFLOW;
9740         default:
9741                 MISSING_CASE(flags);
9742                 return 0;
9743         }
9744 }
9745
9746 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
9747 {
9748         int status;
9749
9750         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9751
9752         /* GEN6_PCODE_* are outside of the forcewake domain, we can
9753          * use te fw I915_READ variants to reduce the amount of work
9754          * required when reading/writing.
9755          */
9756
9757         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9758                 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
9759                                  mbox, __builtin_return_address(0));
9760                 return -EAGAIN;
9761         }
9762
9763         I915_WRITE_FW(GEN6_PCODE_DATA, *val);
9764         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9765         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9766
9767         if (__intel_wait_for_register_fw(&dev_priv->uncore,
9768                                          GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9769                                          500, 0, NULL)) {
9770                 DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
9771                           mbox, __builtin_return_address(0));
9772                 return -ETIMEDOUT;
9773         }
9774
9775         *val = I915_READ_FW(GEN6_PCODE_DATA);
9776         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9777
9778         if (INTEL_GEN(dev_priv) > 6)
9779                 status = gen7_check_mailbox_status(dev_priv);
9780         else
9781                 status = gen6_check_mailbox_status(dev_priv);
9782
9783         if (status) {
9784                 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
9785                                  mbox, __builtin_return_address(0), status);
9786                 return status;
9787         }
9788
9789         return 0;
9790 }
9791
9792 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9793                                     u32 mbox, u32 val,
9794                                     int fast_timeout_us, int slow_timeout_ms)
9795 {
9796         int status;
9797
9798         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9799
9800         /* GEN6_PCODE_* are outside of the forcewake domain, we can
9801          * use te fw I915_READ variants to reduce the amount of work
9802          * required when reading/writing.
9803          */
9804
9805         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9806                 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
9807                                  val, mbox, __builtin_return_address(0));
9808                 return -EAGAIN;
9809         }
9810
9811         I915_WRITE_FW(GEN6_PCODE_DATA, val);
9812         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9813         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9814
9815         if (__intel_wait_for_register_fw(&dev_priv->uncore,
9816                                          GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9817                                          fast_timeout_us, slow_timeout_ms,
9818                                          NULL)) {
9819                 DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
9820                           val, mbox, __builtin_return_address(0));
9821                 return -ETIMEDOUT;
9822         }
9823
9824         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9825
9826         if (INTEL_GEN(dev_priv) > 6)
9827                 status = gen7_check_mailbox_status(dev_priv);
9828         else
9829                 status = gen6_check_mailbox_status(dev_priv);
9830
9831         if (status) {
9832                 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
9833                                  val, mbox, __builtin_return_address(0), status);
9834                 return status;
9835         }
9836
9837         return 0;
9838 }
9839
9840 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
9841                                   u32 request, u32 reply_mask, u32 reply,
9842                                   u32 *status)
9843 {
9844         u32 val = request;
9845
9846         *status = sandybridge_pcode_read(dev_priv, mbox, &val);
9847
9848         return *status || ((val & reply_mask) == reply);
9849 }
9850
9851 /**
9852  * skl_pcode_request - send PCODE request until acknowledgment
9853  * @dev_priv: device private
9854  * @mbox: PCODE mailbox ID the request is targeted for
9855  * @request: request ID
9856  * @reply_mask: mask used to check for request acknowledgment
9857  * @reply: value used to check for request acknowledgment
9858  * @timeout_base_ms: timeout for polling with preemption enabled
9859  *
9860  * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9861  * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9862  * The request is acknowledged once the PCODE reply dword equals @reply after
9863  * applying @reply_mask. Polling is first attempted with preemption enabled
9864  * for @timeout_base_ms and if this times out for another 50 ms with
9865  * preemption disabled.
9866  *
9867  * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9868  * other error as reported by PCODE.
9869  */
9870 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9871                       u32 reply_mask, u32 reply, int timeout_base_ms)
9872 {
9873         u32 status;
9874         int ret;
9875
9876         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9877
9878 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9879                                    &status)
9880
9881         /*
9882          * Prime the PCODE by doing a request first. Normally it guarantees
9883          * that a subsequent request, at most @timeout_base_ms later, succeeds.
9884          * _wait_for() doesn't guarantee when its passed condition is evaluated
9885          * first, so send the first request explicitly.
9886          */
9887         if (COND) {
9888                 ret = 0;
9889                 goto out;
9890         }
9891         ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9892         if (!ret)
9893                 goto out;
9894
9895         /*
9896          * The above can time out if the number of requests was low (2 in the
9897          * worst case) _and_ PCODE was busy for some reason even after a
9898          * (queued) request and @timeout_base_ms delay. As a workaround retry
9899          * the poll with preemption disabled to maximize the number of
9900          * requests. Increase the timeout from @timeout_base_ms to 50ms to
9901          * account for interrupts that could reduce the number of these
9902          * requests, and for any quirks of the PCODE firmware that delays
9903          * the request completion.
9904          */
9905         DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9906         WARN_ON_ONCE(timeout_base_ms > 3);
9907         preempt_disable();
9908         ret = wait_for_atomic(COND, 50);
9909         preempt_enable();
9910
9911 out:
9912         return ret ? ret : status;
9913 #undef COND
9914 }
9915
9916 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9917 {
9918         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9919
9920         /*
9921          * N = val - 0xb7
9922          * Slow = Fast = GPLL ref * N
9923          */
9924         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9925 }
9926
9927 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9928 {
9929         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9930
9931         return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9932 }
9933
9934 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9935 {
9936         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9937
9938         /*
9939          * N = val / 2
9940          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9941          */
9942         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9943 }
9944
9945 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9946 {
9947         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9948
9949         /* CHV needs even values */
9950         return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9951 }
9952
9953 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9954 {
9955         if (INTEL_GEN(dev_priv) >= 9)
9956                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9957                                          GEN9_FREQ_SCALER);
9958         else if (IS_CHERRYVIEW(dev_priv))
9959                 return chv_gpu_freq(dev_priv, val);
9960         else if (IS_VALLEYVIEW(dev_priv))
9961                 return byt_gpu_freq(dev_priv, val);
9962         else
9963                 return val * GT_FREQUENCY_MULTIPLIER;
9964 }
9965
9966 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9967 {
9968         if (INTEL_GEN(dev_priv) >= 9)
9969                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9970                                          GT_FREQUENCY_MULTIPLIER);
9971         else if (IS_CHERRYVIEW(dev_priv))
9972                 return chv_freq_opcode(dev_priv, val);
9973         else if (IS_VALLEYVIEW(dev_priv))
9974                 return byt_freq_opcode(dev_priv, val);
9975         else
9976                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9977 }
9978
9979 void intel_pm_setup(struct drm_i915_private *dev_priv)
9980 {
9981         mutex_init(&dev_priv->pcu_lock);
9982         mutex_init(&dev_priv->gt_pm.rps.power.mutex);
9983
9984         atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9985
9986         dev_priv->runtime_pm.suspended = false;
9987         atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9988 }
9989
9990 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9991                              const i915_reg_t reg)
9992 {
9993         u32 lower, upper, tmp;
9994         int loop = 2;
9995
9996         /*
9997          * The register accessed do not need forcewake. We borrow
9998          * uncore lock to prevent concurrent access to range reg.
9999          */
10000         lockdep_assert_held(&dev_priv->uncore.lock);
10001
10002         /*
10003          * vlv and chv residency counters are 40 bits in width.
10004          * With a control bit, we can choose between upper or lower
10005          * 32bit window into this counter.
10006          *
10007          * Although we always use the counter in high-range mode elsewhere,
10008          * userspace may attempt to read the value before rc6 is initialised,
10009          * before we have set the default VLV_COUNTER_CONTROL value. So always
10010          * set the high bit to be safe.
10011          */
10012         I915_WRITE_FW(VLV_COUNTER_CONTROL,
10013                       _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
10014         upper = I915_READ_FW(reg);
10015         do {
10016                 tmp = upper;
10017
10018                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
10019                               _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
10020                 lower = I915_READ_FW(reg);
10021
10022                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
10023                               _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
10024                 upper = I915_READ_FW(reg);
10025         } while (upper != tmp && --loop);
10026
10027         /*
10028          * Everywhere else we always use VLV_COUNTER_CONTROL with the
10029          * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
10030          * now.
10031          */
10032
10033         return lower | (u64)upper << 8;
10034 }
10035
10036 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
10037                            const i915_reg_t reg)
10038 {
10039         struct intel_uncore *uncore = &dev_priv->uncore;
10040         u64 time_hw, prev_hw, overflow_hw;
10041         unsigned int fw_domains;
10042         unsigned long flags;
10043         unsigned int i;
10044         u32 mul, div;
10045
10046         if (!HAS_RC6(dev_priv))
10047                 return 0;
10048
10049         /*
10050          * Store previous hw counter values for counter wrap-around handling.
10051          *
10052          * There are only four interesting registers and they live next to each
10053          * other so we can use the relative address, compared to the smallest
10054          * one as the index into driver storage.
10055          */
10056         i = (i915_mmio_reg_offset(reg) -
10057              i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
10058         if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
10059                 return 0;
10060
10061         fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ);
10062
10063         spin_lock_irqsave(&uncore->lock, flags);
10064         intel_uncore_forcewake_get__locked(uncore, fw_domains);
10065
10066         /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
10067         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
10068                 mul = 1000000;
10069                 div = dev_priv->czclk_freq;
10070                 overflow_hw = BIT_ULL(40);
10071                 time_hw = vlv_residency_raw(dev_priv, reg);
10072         } else {
10073                 /* 833.33ns units on Gen9LP, 1.28us elsewhere. */
10074                 if (IS_GEN9_LP(dev_priv)) {
10075                         mul = 10000;
10076                         div = 12;
10077                 } else {
10078                         mul = 1280;
10079                         div = 1;
10080                 }
10081
10082                 overflow_hw = BIT_ULL(32);
10083                 time_hw = intel_uncore_read_fw(uncore, reg);
10084         }
10085
10086         /*
10087          * Counter wrap handling.
10088          *
10089          * But relying on a sufficient frequency of queries otherwise counters
10090          * can still wrap.
10091          */
10092         prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
10093         dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
10094
10095         /* RC6 delta from last sample. */
10096         if (time_hw >= prev_hw)
10097                 time_hw -= prev_hw;
10098         else
10099                 time_hw += overflow_hw - prev_hw;
10100
10101         /* Add delta to RC6 extended raw driver copy. */
10102         time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
10103         dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
10104
10105         intel_uncore_forcewake_put__locked(uncore, fw_domains);
10106         spin_unlock_irqrestore(&uncore->lock, flags);
10107
10108         return mul_u64_u32_div(time_hw, mul, div);
10109 }
10110
10111 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
10112 {
10113         u32 cagf;
10114
10115         if (INTEL_GEN(dev_priv) >= 9)
10116                 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
10117         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
10118                 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
10119         else
10120                 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
10121
10122         return  cagf;
10123 }