]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
a5b4a2d9a49296d3c3525930e6e4c4de574c75ff
[linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31
32 #include <drm/i915_drm.h>
33
34 #include "i915_drv.h"
35 #include "i915_gem_render_state.h"
36 #include "i915_reset.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_workarounds.h"
40
41 /* Rough estimate of the typical request size, performing a flush,
42  * set-context and then emitting the batch.
43  */
44 #define LEGACY_REQUEST_SIZE 200
45
46 unsigned int intel_ring_update_space(struct intel_ring *ring)
47 {
48         unsigned int space;
49
50         space = __intel_ring_space(ring->head, ring->emit, ring->size);
51
52         ring->space = space;
53         return space;
54 }
55
56 static int
57 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
58 {
59         unsigned int num_store_dw;
60         u32 cmd, *cs;
61
62         cmd = MI_FLUSH;
63         num_store_dw = 0;
64         if (mode & EMIT_INVALIDATE)
65                 cmd |= MI_READ_FLUSH;
66         if (mode & EMIT_FLUSH)
67                 num_store_dw = 4;
68
69         cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
70         if (IS_ERR(cs))
71                 return PTR_ERR(cs);
72
73         *cs++ = cmd;
74         while (num_store_dw--) {
75                 *cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
76                 *cs++ = i915_scratch_offset(rq->i915);
77                 *cs++ = 0;
78         }
79         *cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;
80
81         intel_ring_advance(rq, cs);
82
83         return 0;
84 }
85
86 static int
87 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
88 {
89         u32 cmd, *cs;
90         int i;
91
92         /*
93          * read/write caches:
94          *
95          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
96          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
97          * also flushed at 2d versus 3d pipeline switches.
98          *
99          * read-only caches:
100          *
101          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
102          * MI_READ_FLUSH is set, and is always flushed on 965.
103          *
104          * I915_GEM_DOMAIN_COMMAND may not exist?
105          *
106          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
107          * invalidated when MI_EXE_FLUSH is set.
108          *
109          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
110          * invalidated with every MI_FLUSH.
111          *
112          * TLBs:
113          *
114          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
115          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
116          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
117          * are flushed at any MI_FLUSH.
118          */
119
120         cmd = MI_FLUSH;
121         if (mode & EMIT_INVALIDATE) {
122                 cmd |= MI_EXE_FLUSH;
123                 if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
124                         cmd |= MI_INVALIDATE_ISP;
125         }
126
127         i = 2;
128         if (mode & EMIT_INVALIDATE)
129                 i += 20;
130
131         cs = intel_ring_begin(rq, i);
132         if (IS_ERR(cs))
133                 return PTR_ERR(cs);
134
135         *cs++ = cmd;
136
137         /*
138          * A random delay to let the CS invalidate take effect? Without this
139          * delay, the GPU relocation path fails as the CS does not see
140          * the updated contents. Just as important, if we apply the flushes
141          * to the EMIT_FLUSH branch (i.e. immediately after the relocation
142          * write and before the invalidate on the next batch), the relocations
143          * still fail. This implies that is a delay following invalidation
144          * that is required to reset the caches as opposed to a delay to
145          * ensure the memory is written.
146          */
147         if (mode & EMIT_INVALIDATE) {
148                 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
149                 *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
150                 *cs++ = 0;
151                 *cs++ = 0;
152
153                 for (i = 0; i < 12; i++)
154                         *cs++ = MI_FLUSH;
155
156                 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
157                 *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
158                 *cs++ = 0;
159                 *cs++ = 0;
160         }
161
162         *cs++ = cmd;
163
164         intel_ring_advance(rq, cs);
165
166         return 0;
167 }
168
169 /*
170  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
171  * implementing two workarounds on gen6.  From section 1.4.7.1
172  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
173  *
174  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
175  * produced by non-pipelined state commands), software needs to first
176  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
177  * 0.
178  *
179  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
180  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
181  *
182  * And the workaround for these two requires this workaround first:
183  *
184  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
185  * BEFORE the pipe-control with a post-sync op and no write-cache
186  * flushes.
187  *
188  * And this last workaround is tricky because of the requirements on
189  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
190  * volume 2 part 1:
191  *
192  *     "1 of the following must also be set:
193  *      - Render Target Cache Flush Enable ([12] of DW1)
194  *      - Depth Cache Flush Enable ([0] of DW1)
195  *      - Stall at Pixel Scoreboard ([1] of DW1)
196  *      - Depth Stall ([13] of DW1)
197  *      - Post-Sync Operation ([13] of DW1)
198  *      - Notify Enable ([8] of DW1)"
199  *
200  * The cache flushes require the workaround flush that triggered this
201  * one, so we can't use it.  Depth stall would trigger the same.
202  * Post-sync nonzero is what triggered this second workaround, so we
203  * can't use that one either.  Notify enable is IRQs, which aren't
204  * really our business.  That leaves only stall at scoreboard.
205  */
206 static int
207 gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
208 {
209         u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
210         u32 *cs;
211
212         cs = intel_ring_begin(rq, 6);
213         if (IS_ERR(cs))
214                 return PTR_ERR(cs);
215
216         *cs++ = GFX_OP_PIPE_CONTROL(5);
217         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
218         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
219         *cs++ = 0; /* low dword */
220         *cs++ = 0; /* high dword */
221         *cs++ = MI_NOOP;
222         intel_ring_advance(rq, cs);
223
224         cs = intel_ring_begin(rq, 6);
225         if (IS_ERR(cs))
226                 return PTR_ERR(cs);
227
228         *cs++ = GFX_OP_PIPE_CONTROL(5);
229         *cs++ = PIPE_CONTROL_QW_WRITE;
230         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
231         *cs++ = 0;
232         *cs++ = 0;
233         *cs++ = MI_NOOP;
234         intel_ring_advance(rq, cs);
235
236         return 0;
237 }
238
239 static int
240 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
241 {
242         u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
243         u32 *cs, flags = 0;
244         int ret;
245
246         /* Force SNB workarounds for PIPE_CONTROL flushes */
247         ret = gen6_emit_post_sync_nonzero_flush(rq);
248         if (ret)
249                 return ret;
250
251         /* Just flush everything.  Experiments have shown that reducing the
252          * number of bits based on the write domains has little performance
253          * impact.
254          */
255         if (mode & EMIT_FLUSH) {
256                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258                 /*
259                  * Ensure that any following seqno writes only happen
260                  * when the render cache is indeed flushed.
261                  */
262                 flags |= PIPE_CONTROL_CS_STALL;
263         }
264         if (mode & EMIT_INVALIDATE) {
265                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271                 /*
272                  * TLB invalidate requires a post-sync write.
273                  */
274                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275         }
276
277         cs = intel_ring_begin(rq, 4);
278         if (IS_ERR(cs))
279                 return PTR_ERR(cs);
280
281         *cs++ = GFX_OP_PIPE_CONTROL(4);
282         *cs++ = flags;
283         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
284         *cs++ = 0;
285         intel_ring_advance(rq, cs);
286
287         return 0;
288 }
289
290 static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
291 {
292         /* First we do the gen6_emit_post_sync_nonzero_flush w/a */
293         *cs++ = GFX_OP_PIPE_CONTROL(4);
294         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
295         *cs++ = 0;
296         *cs++ = 0;
297
298         *cs++ = GFX_OP_PIPE_CONTROL(4);
299         *cs++ = PIPE_CONTROL_QW_WRITE;
300         *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
301         *cs++ = 0;
302
303         /* Finally we can flush and with it emit the breadcrumb */
304         *cs++ = GFX_OP_PIPE_CONTROL(4);
305         *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
306                  PIPE_CONTROL_DEPTH_CACHE_FLUSH |
307                  PIPE_CONTROL_DC_FLUSH_ENABLE |
308                  PIPE_CONTROL_QW_WRITE |
309                  PIPE_CONTROL_CS_STALL);
310         *cs++ = rq->timeline->hwsp_offset | PIPE_CONTROL_GLOBAL_GTT;
311         *cs++ = rq->fence.seqno;
312
313         *cs++ = GFX_OP_PIPE_CONTROL(4);
314         *cs++ = PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_STORE_DATA_INDEX;
315         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR | PIPE_CONTROL_GLOBAL_GTT;
316         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
317
318         *cs++ = MI_USER_INTERRUPT;
319         *cs++ = MI_NOOP;
320
321         rq->tail = intel_ring_offset(rq, cs);
322         assert_ring_tail_valid(rq->ring, rq->tail);
323
324         return cs;
325 }
326
327 static int
328 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
329 {
330         u32 *cs;
331
332         cs = intel_ring_begin(rq, 4);
333         if (IS_ERR(cs))
334                 return PTR_ERR(cs);
335
336         *cs++ = GFX_OP_PIPE_CONTROL(4);
337         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
338         *cs++ = 0;
339         *cs++ = 0;
340         intel_ring_advance(rq, cs);
341
342         return 0;
343 }
344
345 static int
346 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
347 {
348         u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
349         u32 *cs, flags = 0;
350
351         /*
352          * Ensure that any following seqno writes only happen when the render
353          * cache is indeed flushed.
354          *
355          * Workaround: 4th PIPE_CONTROL command (except the ones with only
356          * read-cache invalidate bits set) must have the CS_STALL bit set. We
357          * don't try to be clever and just set it unconditionally.
358          */
359         flags |= PIPE_CONTROL_CS_STALL;
360
361         /* Just flush everything.  Experiments have shown that reducing the
362          * number of bits based on the write domains has little performance
363          * impact.
364          */
365         if (mode & EMIT_FLUSH) {
366                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
367                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
368                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
369                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
370         }
371         if (mode & EMIT_INVALIDATE) {
372                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
373                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
374                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
375                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
376                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
377                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
378                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
379                 /*
380                  * TLB invalidate requires a post-sync write.
381                  */
382                 flags |= PIPE_CONTROL_QW_WRITE;
383                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
384
385                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
386
387                 /* Workaround: we must issue a pipe_control with CS-stall bit
388                  * set before a pipe_control command that has the state cache
389                  * invalidate bit set. */
390                 gen7_render_ring_cs_stall_wa(rq);
391         }
392
393         cs = intel_ring_begin(rq, 4);
394         if (IS_ERR(cs))
395                 return PTR_ERR(cs);
396
397         *cs++ = GFX_OP_PIPE_CONTROL(4);
398         *cs++ = flags;
399         *cs++ = scratch_addr;
400         *cs++ = 0;
401         intel_ring_advance(rq, cs);
402
403         return 0;
404 }
405
406 static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
407 {
408         *cs++ = GFX_OP_PIPE_CONTROL(4);
409         *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
410                  PIPE_CONTROL_DEPTH_CACHE_FLUSH |
411                  PIPE_CONTROL_DC_FLUSH_ENABLE |
412                  PIPE_CONTROL_FLUSH_ENABLE |
413                  PIPE_CONTROL_QW_WRITE |
414                  PIPE_CONTROL_GLOBAL_GTT_IVB |
415                  PIPE_CONTROL_CS_STALL);
416         *cs++ = rq->timeline->hwsp_offset;
417         *cs++ = rq->fence.seqno;
418
419         *cs++ = GFX_OP_PIPE_CONTROL(4);
420         *cs++ = (PIPE_CONTROL_QW_WRITE |
421                  PIPE_CONTROL_STORE_DATA_INDEX |
422                  PIPE_CONTROL_GLOBAL_GTT_IVB);
423         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR;
424         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
425
426         *cs++ = MI_USER_INTERRUPT;
427         *cs++ = MI_NOOP;
428
429         rq->tail = intel_ring_offset(rq, cs);
430         assert_ring_tail_valid(rq->ring, rq->tail);
431
432         return cs;
433 }
434
435 static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
436 {
437         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
438         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
439
440         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
441         *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
442         *cs++ = rq->fence.seqno;
443
444         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
445         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR | MI_FLUSH_DW_USE_GTT;
446         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
447
448         *cs++ = MI_USER_INTERRUPT;
449         *cs++ = MI_NOOP;
450
451         rq->tail = intel_ring_offset(rq, cs);
452         assert_ring_tail_valid(rq->ring, rq->tail);
453
454         return cs;
455 }
456
457 #define GEN7_XCS_WA 32
458 static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
459 {
460         int i;
461
462         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
463         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
464
465         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
466         *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
467         *cs++ = rq->fence.seqno;
468
469         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
470         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR | MI_FLUSH_DW_USE_GTT;
471         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
472
473         for (i = 0; i < GEN7_XCS_WA; i++) {
474                 *cs++ = MI_STORE_DWORD_INDEX;
475                 *cs++ = I915_GEM_HWS_SEQNO_ADDR;
476                 *cs++ = rq->fence.seqno;
477         }
478
479         *cs++ = MI_FLUSH_DW;
480         *cs++ = 0;
481         *cs++ = 0;
482
483         *cs++ = MI_USER_INTERRUPT;
484
485         rq->tail = intel_ring_offset(rq, cs);
486         assert_ring_tail_valid(rq->ring, rq->tail);
487
488         return cs;
489 }
490 #undef GEN7_XCS_WA
491
492 static void set_hwstam(struct intel_engine_cs *engine, u32 mask)
493 {
494         /*
495          * Keep the render interrupt unmasked as this papers over
496          * lost interrupts following a reset.
497          */
498         if (engine->class == RENDER_CLASS) {
499                 if (INTEL_GEN(engine->i915) >= 6)
500                         mask &= ~BIT(0);
501                 else
502                         mask &= ~I915_USER_INTERRUPT;
503         }
504
505         intel_engine_set_hwsp_writemask(engine, mask);
506 }
507
508 static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys)
509 {
510         struct drm_i915_private *dev_priv = engine->i915;
511         u32 addr;
512
513         addr = lower_32_bits(phys);
514         if (INTEL_GEN(dev_priv) >= 4)
515                 addr |= (phys >> 28) & 0xf0;
516
517         I915_WRITE(HWS_PGA, addr);
518 }
519
520 static struct page *status_page(struct intel_engine_cs *engine)
521 {
522         struct drm_i915_gem_object *obj = engine->status_page.vma->obj;
523
524         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
525         return sg_page(obj->mm.pages->sgl);
526 }
527
528 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
529 {
530         set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine))));
531         set_hwstam(engine, ~0u);
532 }
533
534 static void set_hwsp(struct intel_engine_cs *engine, u32 offset)
535 {
536         struct drm_i915_private *dev_priv = engine->i915;
537         i915_reg_t hwsp;
538
539         /*
540          * The ring status page addresses are no longer next to the rest of
541          * the ring registers as of gen7.
542          */
543         if (IS_GEN(dev_priv, 7)) {
544                 switch (engine->id) {
545                 /*
546                  * No more rings exist on Gen7. Default case is only to shut up
547                  * gcc switch check warning.
548                  */
549                 default:
550                         GEM_BUG_ON(engine->id);
551                         /* fallthrough */
552                 case RCS0:
553                         hwsp = RENDER_HWS_PGA_GEN7;
554                         break;
555                 case BCS0:
556                         hwsp = BLT_HWS_PGA_GEN7;
557                         break;
558                 case VCS0:
559                         hwsp = BSD_HWS_PGA_GEN7;
560                         break;
561                 case VECS0:
562                         hwsp = VEBOX_HWS_PGA_GEN7;
563                         break;
564                 }
565         } else if (IS_GEN(dev_priv, 6)) {
566                 hwsp = RING_HWS_PGA_GEN6(engine->mmio_base);
567         } else {
568                 hwsp = RING_HWS_PGA(engine->mmio_base);
569         }
570
571         I915_WRITE(hwsp, offset);
572         POSTING_READ(hwsp);
573 }
574
575 static void flush_cs_tlb(struct intel_engine_cs *engine)
576 {
577         struct drm_i915_private *dev_priv = engine->i915;
578         i915_reg_t instpm = RING_INSTPM(engine->mmio_base);
579
580         if (!IS_GEN_RANGE(dev_priv, 6, 7))
581                 return;
582
583         /* ring should be idle before issuing a sync flush*/
584         WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
585
586         I915_WRITE(instpm,
587                    _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
588                                       INSTPM_SYNC_FLUSH));
589         if (intel_wait_for_register(&dev_priv->uncore,
590                                     instpm, INSTPM_SYNC_FLUSH, 0,
591                                     1000))
592                 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
593                           engine->name);
594 }
595
596 static void ring_setup_status_page(struct intel_engine_cs *engine)
597 {
598         set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma));
599         set_hwstam(engine, ~0u);
600
601         flush_cs_tlb(engine);
602 }
603
604 static bool stop_ring(struct intel_engine_cs *engine)
605 {
606         struct drm_i915_private *dev_priv = engine->i915;
607
608         if (INTEL_GEN(dev_priv) > 2) {
609                 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
610                 if (intel_wait_for_register(&dev_priv->uncore,
611                                             RING_MI_MODE(engine->mmio_base),
612                                             MODE_IDLE,
613                                             MODE_IDLE,
614                                             1000)) {
615                         DRM_ERROR("%s : timed out trying to stop ring\n",
616                                   engine->name);
617                         /* Sometimes we observe that the idle flag is not
618                          * set even though the ring is empty. So double
619                          * check before giving up.
620                          */
621                         if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
622                                 return false;
623                 }
624         }
625
626         I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
627
628         I915_WRITE_HEAD(engine, 0);
629         I915_WRITE_TAIL(engine, 0);
630
631         /* The ring must be empty before it is disabled */
632         I915_WRITE_CTL(engine, 0);
633
634         return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
635 }
636
637 static int init_ring_common(struct intel_engine_cs *engine)
638 {
639         struct drm_i915_private *dev_priv = engine->i915;
640         struct intel_ring *ring = engine->buffer;
641         int ret = 0;
642
643         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
644
645         if (!stop_ring(engine)) {
646                 /* G45 ring initialization often fails to reset head to zero */
647                 DRM_DEBUG_DRIVER("%s head not reset to zero "
648                                 "ctl %08x head %08x tail %08x start %08x\n",
649                                 engine->name,
650                                 I915_READ_CTL(engine),
651                                 I915_READ_HEAD(engine),
652                                 I915_READ_TAIL(engine),
653                                 I915_READ_START(engine));
654
655                 if (!stop_ring(engine)) {
656                         DRM_ERROR("failed to set %s head to zero "
657                                   "ctl %08x head %08x tail %08x start %08x\n",
658                                   engine->name,
659                                   I915_READ_CTL(engine),
660                                   I915_READ_HEAD(engine),
661                                   I915_READ_TAIL(engine),
662                                   I915_READ_START(engine));
663                         ret = -EIO;
664                         goto out;
665                 }
666         }
667
668         if (HWS_NEEDS_PHYSICAL(dev_priv))
669                 ring_setup_phys_status_page(engine);
670         else
671                 ring_setup_status_page(engine);
672
673         intel_engine_reset_breadcrumbs(engine);
674
675         /* Enforce ordering by reading HEAD register back */
676         I915_READ_HEAD(engine);
677
678         /* Initialize the ring. This must happen _after_ we've cleared the ring
679          * registers with the above sequence (the readback of the HEAD registers
680          * also enforces ordering), otherwise the hw might lose the new ring
681          * register values. */
682         I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
683
684         /* WaClearRingBufHeadRegAtInit:ctg,elk */
685         if (I915_READ_HEAD(engine))
686                 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
687                                  engine->name, I915_READ_HEAD(engine));
688
689         /* Check that the ring offsets point within the ring! */
690         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
691         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
692         intel_ring_update_space(ring);
693
694         /* First wake the ring up to an empty/idle ring */
695         I915_WRITE_HEAD(engine, ring->head);
696         I915_WRITE_TAIL(engine, ring->head);
697         (void)I915_READ_TAIL(engine);
698
699         I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
700
701         /* If the head is still not zero, the ring is dead */
702         if (intel_wait_for_register(&dev_priv->uncore,
703                                     RING_CTL(engine->mmio_base),
704                                     RING_VALID, RING_VALID,
705                                     50)) {
706                 DRM_ERROR("%s initialization failed "
707                           "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
708                           engine->name,
709                           I915_READ_CTL(engine),
710                           I915_READ_CTL(engine) & RING_VALID,
711                           I915_READ_HEAD(engine), ring->head,
712                           I915_READ_TAIL(engine), ring->tail,
713                           I915_READ_START(engine),
714                           i915_ggtt_offset(ring->vma));
715                 ret = -EIO;
716                 goto out;
717         }
718
719         if (INTEL_GEN(dev_priv) > 2)
720                 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
721
722         /* Now awake, let it get started */
723         if (ring->tail != ring->head) {
724                 I915_WRITE_TAIL(engine, ring->tail);
725                 (void)I915_READ_TAIL(engine);
726         }
727
728         /* Papering over lost _interrupts_ immediately following the restart */
729         intel_engine_queue_breadcrumbs(engine);
730 out:
731         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
732
733         return ret;
734 }
735
736 static void reset_prepare(struct intel_engine_cs *engine)
737 {
738         intel_engine_stop_cs(engine);
739 }
740
741 static void reset_ring(struct intel_engine_cs *engine, bool stalled)
742 {
743         struct i915_timeline *tl = &engine->timeline;
744         struct i915_request *pos, *rq;
745         unsigned long flags;
746         u32 head;
747
748         rq = NULL;
749         spin_lock_irqsave(&tl->lock, flags);
750         list_for_each_entry(pos, &tl->requests, link) {
751                 if (!i915_request_completed(pos)) {
752                         rq = pos;
753                         break;
754                 }
755         }
756
757         /*
758          * The guilty request will get skipped on a hung engine.
759          *
760          * Users of client default contexts do not rely on logical
761          * state preserved between batches so it is safe to execute
762          * queued requests following the hang. Non default contexts
763          * rely on preserved state, so skipping a batch loses the
764          * evolution of the state and it needs to be considered corrupted.
765          * Executing more queued batches on top of corrupted state is
766          * risky. But we take the risk by trying to advance through
767          * the queued requests in order to make the client behaviour
768          * more predictable around resets, by not throwing away random
769          * amount of batches it has prepared for execution. Sophisticated
770          * clients can use gem_reset_stats_ioctl and dma fence status
771          * (exported via sync_file info ioctl on explicit fences) to observe
772          * when it loses the context state and should rebuild accordingly.
773          *
774          * The context ban, and ultimately the client ban, mechanism are safety
775          * valves if client submission ends up resulting in nothing more than
776          * subsequent hangs.
777          */
778
779         if (rq) {
780                 /*
781                  * Try to restore the logical GPU state to match the
782                  * continuation of the request queue. If we skip the
783                  * context/PD restore, then the next request may try to execute
784                  * assuming that its context is valid and loaded on the GPU and
785                  * so may try to access invalid memory, prompting repeated GPU
786                  * hangs.
787                  *
788                  * If the request was guilty, we still restore the logical
789                  * state in case the next request requires it (e.g. the
790                  * aliasing ppgtt), but skip over the hung batch.
791                  *
792                  * If the request was innocent, we try to replay the request
793                  * with the restored context.
794                  */
795                 i915_reset_request(rq, stalled);
796
797                 GEM_BUG_ON(rq->ring != engine->buffer);
798                 head = rq->head;
799         } else {
800                 head = engine->buffer->tail;
801         }
802         engine->buffer->head = intel_ring_wrap(engine->buffer, head);
803
804         spin_unlock_irqrestore(&tl->lock, flags);
805 }
806
807 static void reset_finish(struct intel_engine_cs *engine)
808 {
809 }
810
811 static int intel_rcs_ctx_init(struct i915_request *rq)
812 {
813         int ret;
814
815         ret = intel_engine_emit_ctx_wa(rq);
816         if (ret != 0)
817                 return ret;
818
819         ret = i915_gem_render_state_emit(rq);
820         if (ret)
821                 return ret;
822
823         return 0;
824 }
825
826 static int init_render_ring(struct intel_engine_cs *engine)
827 {
828         struct drm_i915_private *dev_priv = engine->i915;
829         int ret = init_ring_common(engine);
830         if (ret)
831                 return ret;
832
833         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
834         if (IS_GEN_RANGE(dev_priv, 4, 6))
835                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
836
837         /* We need to disable the AsyncFlip performance optimisations in order
838          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
839          * programmed to '1' on all products.
840          *
841          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
842          */
843         if (IS_GEN_RANGE(dev_priv, 6, 7))
844                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
845
846         /* Required for the hardware to program scanline values for waiting */
847         /* WaEnableFlushTlbInvalidationMode:snb */
848         if (IS_GEN(dev_priv, 6))
849                 I915_WRITE(GFX_MODE,
850                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
851
852         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
853         if (IS_GEN(dev_priv, 7))
854                 I915_WRITE(GFX_MODE_GEN7,
855                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
856                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
857
858         if (IS_GEN(dev_priv, 6)) {
859                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
860                  * "If this bit is set, STCunit will have LRA as replacement
861                  *  policy. [...] This bit must be reset.  LRA replacement
862                  *  policy is not supported."
863                  */
864                 I915_WRITE(CACHE_MODE_0,
865                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
866         }
867
868         if (IS_GEN_RANGE(dev_priv, 6, 7))
869                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
870
871         if (INTEL_GEN(dev_priv) >= 6)
872                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
873
874         return 0;
875 }
876
877 static void cancel_requests(struct intel_engine_cs *engine)
878 {
879         struct i915_request *request;
880         unsigned long flags;
881
882         spin_lock_irqsave(&engine->timeline.lock, flags);
883
884         /* Mark all submitted requests as skipped. */
885         list_for_each_entry(request, &engine->timeline.requests, link) {
886                 if (!i915_request_signaled(request))
887                         dma_fence_set_error(&request->fence, -EIO);
888
889                 i915_request_mark_complete(request);
890         }
891
892         /* Remaining _unready_ requests will be nop'ed when submitted */
893
894         spin_unlock_irqrestore(&engine->timeline.lock, flags);
895 }
896
897 static void i9xx_submit_request(struct i915_request *request)
898 {
899         struct drm_i915_private *dev_priv = request->i915;
900
901         i915_request_submit(request);
902
903         I915_WRITE_TAIL(request->engine,
904                         intel_ring_set_tail(request->ring, request->tail));
905 }
906
907 static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
908 {
909         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
910         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
911
912         *cs++ = MI_FLUSH;
913
914         *cs++ = MI_STORE_DWORD_INDEX;
915         *cs++ = I915_GEM_HWS_SEQNO_ADDR;
916         *cs++ = rq->fence.seqno;
917
918         *cs++ = MI_STORE_DWORD_INDEX;
919         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR;
920         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
921
922         *cs++ = MI_USER_INTERRUPT;
923
924         rq->tail = intel_ring_offset(rq, cs);
925         assert_ring_tail_valid(rq->ring, rq->tail);
926
927         return cs;
928 }
929
930 #define GEN5_WA_STORES 8 /* must be at least 1! */
931 static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
932 {
933         int i;
934
935         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
936         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
937
938         *cs++ = MI_FLUSH;
939
940         *cs++ = MI_STORE_DWORD_INDEX;
941         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR;
942         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
943
944         BUILD_BUG_ON(GEN5_WA_STORES < 1);
945         for (i = 0; i < GEN5_WA_STORES; i++) {
946                 *cs++ = MI_STORE_DWORD_INDEX;
947                 *cs++ = I915_GEM_HWS_SEQNO_ADDR;
948                 *cs++ = rq->fence.seqno;
949         }
950
951         *cs++ = MI_USER_INTERRUPT;
952         *cs++ = MI_NOOP;
953
954         rq->tail = intel_ring_offset(rq, cs);
955         assert_ring_tail_valid(rq->ring, rq->tail);
956
957         return cs;
958 }
959 #undef GEN5_WA_STORES
960
961 static void
962 gen5_irq_enable(struct intel_engine_cs *engine)
963 {
964         gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
965 }
966
967 static void
968 gen5_irq_disable(struct intel_engine_cs *engine)
969 {
970         gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
971 }
972
973 static void
974 i9xx_irq_enable(struct intel_engine_cs *engine)
975 {
976         struct drm_i915_private *dev_priv = engine->i915;
977
978         dev_priv->irq_mask &= ~engine->irq_enable_mask;
979         I915_WRITE(IMR, dev_priv->irq_mask);
980         POSTING_READ_FW(RING_IMR(engine->mmio_base));
981 }
982
983 static void
984 i9xx_irq_disable(struct intel_engine_cs *engine)
985 {
986         struct drm_i915_private *dev_priv = engine->i915;
987
988         dev_priv->irq_mask |= engine->irq_enable_mask;
989         I915_WRITE(IMR, dev_priv->irq_mask);
990 }
991
992 static void
993 i8xx_irq_enable(struct intel_engine_cs *engine)
994 {
995         struct drm_i915_private *dev_priv = engine->i915;
996
997         dev_priv->irq_mask &= ~engine->irq_enable_mask;
998         I915_WRITE16(IMR, dev_priv->irq_mask);
999         POSTING_READ16(RING_IMR(engine->mmio_base));
1000 }
1001
1002 static void
1003 i8xx_irq_disable(struct intel_engine_cs *engine)
1004 {
1005         struct drm_i915_private *dev_priv = engine->i915;
1006
1007         dev_priv->irq_mask |= engine->irq_enable_mask;
1008         I915_WRITE16(IMR, dev_priv->irq_mask);
1009 }
1010
1011 static int
1012 bsd_ring_flush(struct i915_request *rq, u32 mode)
1013 {
1014         u32 *cs;
1015
1016         cs = intel_ring_begin(rq, 2);
1017         if (IS_ERR(cs))
1018                 return PTR_ERR(cs);
1019
1020         *cs++ = MI_FLUSH;
1021         *cs++ = MI_NOOP;
1022         intel_ring_advance(rq, cs);
1023         return 0;
1024 }
1025
1026 static void
1027 gen6_irq_enable(struct intel_engine_cs *engine)
1028 {
1029         struct drm_i915_private *dev_priv = engine->i915;
1030
1031         I915_WRITE_IMR(engine,
1032                        ~(engine->irq_enable_mask |
1033                          engine->irq_keep_mask));
1034
1035         /* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1036         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1037
1038         gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1039 }
1040
1041 static void
1042 gen6_irq_disable(struct intel_engine_cs *engine)
1043 {
1044         struct drm_i915_private *dev_priv = engine->i915;
1045
1046         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1047         gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1048 }
1049
1050 static void
1051 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1052 {
1053         struct drm_i915_private *dev_priv = engine->i915;
1054
1055         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1056
1057         /* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1058         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1059
1060         gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
1061 }
1062
1063 static void
1064 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1065 {
1066         struct drm_i915_private *dev_priv = engine->i915;
1067
1068         I915_WRITE_IMR(engine, ~0);
1069         gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
1070 }
1071
1072 static int
1073 i965_emit_bb_start(struct i915_request *rq,
1074                    u64 offset, u32 length,
1075                    unsigned int dispatch_flags)
1076 {
1077         u32 *cs;
1078
1079         cs = intel_ring_begin(rq, 2);
1080         if (IS_ERR(cs))
1081                 return PTR_ERR(cs);
1082
1083         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1084                 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1085         *cs++ = offset;
1086         intel_ring_advance(rq, cs);
1087
1088         return 0;
1089 }
1090
1091 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1092 #define I830_BATCH_LIMIT SZ_256K
1093 #define I830_TLB_ENTRIES (2)
1094 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1095 static int
1096 i830_emit_bb_start(struct i915_request *rq,
1097                    u64 offset, u32 len,
1098                    unsigned int dispatch_flags)
1099 {
1100         u32 *cs, cs_offset = i915_scratch_offset(rq->i915);
1101
1102         GEM_BUG_ON(rq->i915->gt.scratch->size < I830_WA_SIZE);
1103
1104         cs = intel_ring_begin(rq, 6);
1105         if (IS_ERR(cs))
1106                 return PTR_ERR(cs);
1107
1108         /* Evict the invalid PTE TLBs */
1109         *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1110         *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1111         *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1112         *cs++ = cs_offset;
1113         *cs++ = 0xdeadbeef;
1114         *cs++ = MI_NOOP;
1115         intel_ring_advance(rq, cs);
1116
1117         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1118                 if (len > I830_BATCH_LIMIT)
1119                         return -ENOSPC;
1120
1121                 cs = intel_ring_begin(rq, 6 + 2);
1122                 if (IS_ERR(cs))
1123                         return PTR_ERR(cs);
1124
1125                 /* Blit the batch (which has now all relocs applied) to the
1126                  * stable batch scratch bo area (so that the CS never
1127                  * stumbles over its tlb invalidation bug) ...
1128                  */
1129                 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1130                 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1131                 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1132                 *cs++ = cs_offset;
1133                 *cs++ = 4096;
1134                 *cs++ = offset;
1135
1136                 *cs++ = MI_FLUSH;
1137                 *cs++ = MI_NOOP;
1138                 intel_ring_advance(rq, cs);
1139
1140                 /* ... and execute it. */
1141                 offset = cs_offset;
1142         }
1143
1144         cs = intel_ring_begin(rq, 2);
1145         if (IS_ERR(cs))
1146                 return PTR_ERR(cs);
1147
1148         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1149         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1150                 MI_BATCH_NON_SECURE);
1151         intel_ring_advance(rq, cs);
1152
1153         return 0;
1154 }
1155
1156 static int
1157 i915_emit_bb_start(struct i915_request *rq,
1158                    u64 offset, u32 len,
1159                    unsigned int dispatch_flags)
1160 {
1161         u32 *cs;
1162
1163         cs = intel_ring_begin(rq, 2);
1164         if (IS_ERR(cs))
1165                 return PTR_ERR(cs);
1166
1167         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1168         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1169                 MI_BATCH_NON_SECURE);
1170         intel_ring_advance(rq, cs);
1171
1172         return 0;
1173 }
1174
1175 int intel_ring_pin(struct intel_ring *ring)
1176 {
1177         struct i915_vma *vma = ring->vma;
1178         enum i915_map_type map = i915_coherent_map_type(vma->vm->i915);
1179         unsigned int flags;
1180         void *addr;
1181         int ret;
1182
1183         GEM_BUG_ON(ring->vaddr);
1184
1185         ret = i915_timeline_pin(ring->timeline);
1186         if (ret)
1187                 return ret;
1188
1189         flags = PIN_GLOBAL;
1190
1191         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1192         flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1193
1194         if (vma->obj->stolen)
1195                 flags |= PIN_MAPPABLE;
1196         else
1197                 flags |= PIN_HIGH;
1198
1199         ret = i915_vma_pin(vma, 0, 0, flags);
1200         if (unlikely(ret))
1201                 goto unpin_timeline;
1202
1203         if (i915_vma_is_map_and_fenceable(vma))
1204                 addr = (void __force *)i915_vma_pin_iomap(vma);
1205         else
1206                 addr = i915_gem_object_pin_map(vma->obj, map);
1207         if (IS_ERR(addr)) {
1208                 ret = PTR_ERR(addr);
1209                 goto unpin_ring;
1210         }
1211
1212         vma->obj->pin_global++;
1213
1214         ring->vaddr = addr;
1215         return 0;
1216
1217 unpin_ring:
1218         i915_vma_unpin(vma);
1219 unpin_timeline:
1220         i915_timeline_unpin(ring->timeline);
1221         return ret;
1222 }
1223
1224 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1225 {
1226         GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
1227
1228         ring->tail = tail;
1229         ring->head = tail;
1230         ring->emit = tail;
1231         intel_ring_update_space(ring);
1232 }
1233
1234 void intel_ring_unpin(struct intel_ring *ring)
1235 {
1236         GEM_BUG_ON(!ring->vma);
1237         GEM_BUG_ON(!ring->vaddr);
1238
1239         /* Discard any unused bytes beyond that submitted to hw. */
1240         intel_ring_reset(ring, ring->tail);
1241
1242         if (i915_vma_is_map_and_fenceable(ring->vma))
1243                 i915_vma_unpin_iomap(ring->vma);
1244         else
1245                 i915_gem_object_unpin_map(ring->vma->obj);
1246         ring->vaddr = NULL;
1247
1248         ring->vma->obj->pin_global--;
1249         i915_vma_unpin(ring->vma);
1250
1251         i915_timeline_unpin(ring->timeline);
1252 }
1253
1254 static struct i915_vma *
1255 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1256 {
1257         struct i915_address_space *vm = &dev_priv->ggtt.vm;
1258         struct drm_i915_gem_object *obj;
1259         struct i915_vma *vma;
1260
1261         obj = i915_gem_object_create_stolen(dev_priv, size);
1262         if (!obj)
1263                 obj = i915_gem_object_create_internal(dev_priv, size);
1264         if (IS_ERR(obj))
1265                 return ERR_CAST(obj);
1266
1267         /*
1268          * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1269          * if supported by the platform's GGTT.
1270          */
1271         if (vm->has_read_only)
1272                 i915_gem_object_set_readonly(obj);
1273
1274         vma = i915_vma_instance(obj, vm, NULL);
1275         if (IS_ERR(vma))
1276                 goto err;
1277
1278         return vma;
1279
1280 err:
1281         i915_gem_object_put(obj);
1282         return vma;
1283 }
1284
1285 struct intel_ring *
1286 intel_engine_create_ring(struct intel_engine_cs *engine,
1287                          struct i915_timeline *timeline,
1288                          int size)
1289 {
1290         struct intel_ring *ring;
1291         struct i915_vma *vma;
1292
1293         GEM_BUG_ON(!is_power_of_2(size));
1294         GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1295         GEM_BUG_ON(timeline == &engine->timeline);
1296         lockdep_assert_held(&engine->i915->drm.struct_mutex);
1297
1298         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1299         if (!ring)
1300                 return ERR_PTR(-ENOMEM);
1301
1302         kref_init(&ring->ref);
1303         INIT_LIST_HEAD(&ring->request_list);
1304         ring->timeline = i915_timeline_get(timeline);
1305
1306         ring->size = size;
1307         /* Workaround an erratum on the i830 which causes a hang if
1308          * the TAIL pointer points to within the last 2 cachelines
1309          * of the buffer.
1310          */
1311         ring->effective_size = size;
1312         if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1313                 ring->effective_size -= 2 * CACHELINE_BYTES;
1314
1315         intel_ring_update_space(ring);
1316
1317         vma = intel_ring_create_vma(engine->i915, size);
1318         if (IS_ERR(vma)) {
1319                 kfree(ring);
1320                 return ERR_CAST(vma);
1321         }
1322         ring->vma = vma;
1323
1324         return ring;
1325 }
1326
1327 void intel_ring_free(struct kref *ref)
1328 {
1329         struct intel_ring *ring = container_of(ref, typeof(*ring), ref);
1330         struct drm_i915_gem_object *obj = ring->vma->obj;
1331
1332         i915_vma_close(ring->vma);
1333         __i915_gem_object_release_unless_active(obj);
1334
1335         i915_timeline_put(ring->timeline);
1336         kfree(ring);
1337 }
1338
1339 static void __ring_context_fini(struct intel_context *ce)
1340 {
1341         GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1342         i915_gem_object_put(ce->state->obj);
1343 }
1344
1345 static void ring_context_destroy(struct kref *ref)
1346 {
1347         struct intel_context *ce = container_of(ref, typeof(*ce), ref);
1348
1349         GEM_BUG_ON(intel_context_is_pinned(ce));
1350
1351         if (ce->state)
1352                 __ring_context_fini(ce);
1353
1354         intel_context_free(ce);
1355 }
1356
1357 static int __context_pin_ppgtt(struct i915_gem_context *ctx)
1358 {
1359         struct i915_hw_ppgtt *ppgtt;
1360         int err = 0;
1361
1362         ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1363         if (ppgtt)
1364                 err = gen6_ppgtt_pin(ppgtt);
1365
1366         return err;
1367 }
1368
1369 static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
1370 {
1371         struct i915_hw_ppgtt *ppgtt;
1372
1373         ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1374         if (ppgtt)
1375                 gen6_ppgtt_unpin(ppgtt);
1376 }
1377
1378 static int __context_pin(struct intel_context *ce)
1379 {
1380         struct i915_vma *vma;
1381         int err;
1382
1383         vma = ce->state;
1384         if (!vma)
1385                 return 0;
1386
1387         err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1388         if (err)
1389                 return err;
1390
1391         /*
1392          * And mark is as a globally pinned object to let the shrinker know
1393          * it cannot reclaim the object until we release it.
1394          */
1395         vma->obj->pin_global++;
1396         vma->obj->mm.dirty = true;
1397
1398         return 0;
1399 }
1400
1401 static void __context_unpin(struct intel_context *ce)
1402 {
1403         struct i915_vma *vma;
1404
1405         vma = ce->state;
1406         if (!vma)
1407                 return;
1408
1409         vma->obj->pin_global--;
1410         i915_vma_unpin(vma);
1411 }
1412
1413 static void ring_context_unpin(struct intel_context *ce)
1414 {
1415         __context_unpin_ppgtt(ce->gem_context);
1416         __context_unpin(ce);
1417 }
1418
1419 static struct i915_vma *
1420 alloc_context_vma(struct intel_engine_cs *engine)
1421 {
1422         struct drm_i915_private *i915 = engine->i915;
1423         struct drm_i915_gem_object *obj;
1424         struct i915_vma *vma;
1425         int err;
1426
1427         obj = i915_gem_object_create(i915, engine->context_size);
1428         if (IS_ERR(obj))
1429                 return ERR_CAST(obj);
1430
1431         /*
1432          * Try to make the context utilize L3 as well as LLC.
1433          *
1434          * On VLV we don't have L3 controls in the PTEs so we
1435          * shouldn't touch the cache level, especially as that
1436          * would make the object snooped which might have a
1437          * negative performance impact.
1438          *
1439          * Snooping is required on non-llc platforms in execlist
1440          * mode, but since all GGTT accesses use PAT entry 0 we
1441          * get snooping anyway regardless of cache_level.
1442          *
1443          * This is only applicable for Ivy Bridge devices since
1444          * later platforms don't have L3 control bits in the PTE.
1445          */
1446         if (IS_IVYBRIDGE(i915))
1447                 i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC);
1448
1449         if (engine->default_state) {
1450                 void *defaults, *vaddr;
1451
1452                 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1453                 if (IS_ERR(vaddr)) {
1454                         err = PTR_ERR(vaddr);
1455                         goto err_obj;
1456                 }
1457
1458                 defaults = i915_gem_object_pin_map(engine->default_state,
1459                                                    I915_MAP_WB);
1460                 if (IS_ERR(defaults)) {
1461                         err = PTR_ERR(defaults);
1462                         goto err_map;
1463                 }
1464
1465                 memcpy(vaddr, defaults, engine->context_size);
1466                 i915_gem_object_unpin_map(engine->default_state);
1467
1468                 i915_gem_object_flush_map(obj);
1469                 i915_gem_object_unpin_map(obj);
1470         }
1471
1472         vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
1473         if (IS_ERR(vma)) {
1474                 err = PTR_ERR(vma);
1475                 goto err_obj;
1476         }
1477
1478         return vma;
1479
1480 err_map:
1481         i915_gem_object_unpin_map(obj);
1482 err_obj:
1483         i915_gem_object_put(obj);
1484         return ERR_PTR(err);
1485 }
1486
1487 static int ring_context_pin(struct intel_context *ce)
1488 {
1489         struct intel_engine_cs *engine = ce->engine;
1490         int err;
1491
1492         /* One ringbuffer to rule them all */
1493         GEM_BUG_ON(!engine->buffer);
1494         ce->ring = engine->buffer;
1495
1496         if (!ce->state && engine->context_size) {
1497                 struct i915_vma *vma;
1498
1499                 vma = alloc_context_vma(engine);
1500                 if (IS_ERR(vma))
1501                         return PTR_ERR(vma);
1502
1503                 ce->state = vma;
1504         }
1505
1506         err = __context_pin(ce);
1507         if (err)
1508                 return err;
1509
1510         err = __context_pin_ppgtt(ce->gem_context);
1511         if (err)
1512                 goto err_unpin;
1513
1514         return 0;
1515
1516 err_unpin:
1517         __context_unpin(ce);
1518         return err;
1519 }
1520
1521 static const struct intel_context_ops ring_context_ops = {
1522         .pin = ring_context_pin,
1523         .unpin = ring_context_unpin,
1524         .destroy = ring_context_destroy,
1525 };
1526
1527 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1528 {
1529         struct i915_timeline *timeline;
1530         struct intel_ring *ring;
1531         int err;
1532
1533         err = intel_engine_setup_common(engine);
1534         if (err)
1535                 return err;
1536
1537         timeline = i915_timeline_create(engine->i915, engine->status_page.vma);
1538         if (IS_ERR(timeline)) {
1539                 err = PTR_ERR(timeline);
1540                 goto err;
1541         }
1542         GEM_BUG_ON(timeline->has_initial_breadcrumb);
1543
1544         ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
1545         i915_timeline_put(timeline);
1546         if (IS_ERR(ring)) {
1547                 err = PTR_ERR(ring);
1548                 goto err;
1549         }
1550
1551         err = intel_ring_pin(ring);
1552         if (err)
1553                 goto err_ring;
1554
1555         GEM_BUG_ON(engine->buffer);
1556         engine->buffer = ring;
1557
1558         err = intel_engine_init_common(engine);
1559         if (err)
1560                 goto err_unpin;
1561
1562         GEM_BUG_ON(ring->timeline->hwsp_ggtt != engine->status_page.vma);
1563
1564         return 0;
1565
1566 err_unpin:
1567         intel_ring_unpin(ring);
1568 err_ring:
1569         intel_ring_put(ring);
1570 err:
1571         intel_engine_cleanup_common(engine);
1572         return err;
1573 }
1574
1575 void intel_engine_cleanup(struct intel_engine_cs *engine)
1576 {
1577         struct drm_i915_private *dev_priv = engine->i915;
1578
1579         WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1580                 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1581
1582         intel_ring_unpin(engine->buffer);
1583         intel_ring_put(engine->buffer);
1584
1585         if (engine->cleanup)
1586                 engine->cleanup(engine);
1587
1588         intel_engine_cleanup_common(engine);
1589
1590         dev_priv->engine[engine->id] = NULL;
1591         kfree(engine);
1592 }
1593
1594 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1595 {
1596         struct intel_engine_cs *engine;
1597         enum intel_engine_id id;
1598
1599         /* Restart from the beginning of the rings for convenience */
1600         for_each_engine(engine, dev_priv, id)
1601                 intel_ring_reset(engine->buffer, 0);
1602 }
1603
1604 static int load_pd_dir(struct i915_request *rq,
1605                        const struct i915_hw_ppgtt *ppgtt)
1606 {
1607         const struct intel_engine_cs * const engine = rq->engine;
1608         u32 *cs;
1609
1610         cs = intel_ring_begin(rq, 6);
1611         if (IS_ERR(cs))
1612                 return PTR_ERR(cs);
1613
1614         *cs++ = MI_LOAD_REGISTER_IMM(1);
1615         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1616         *cs++ = PP_DIR_DCLV_2G;
1617
1618         *cs++ = MI_LOAD_REGISTER_IMM(1);
1619         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1620         *cs++ = ppgtt->pd.base.ggtt_offset << 10;
1621
1622         intel_ring_advance(rq, cs);
1623
1624         return 0;
1625 }
1626
1627 static int flush_pd_dir(struct i915_request *rq)
1628 {
1629         const struct intel_engine_cs * const engine = rq->engine;
1630         u32 *cs;
1631
1632         cs = intel_ring_begin(rq, 4);
1633         if (IS_ERR(cs))
1634                 return PTR_ERR(cs);
1635
1636         /* Stall until the page table load is complete */
1637         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1638         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1639         *cs++ = i915_scratch_offset(rq->i915);
1640         *cs++ = MI_NOOP;
1641
1642         intel_ring_advance(rq, cs);
1643         return 0;
1644 }
1645
1646 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1647 {
1648         struct drm_i915_private *i915 = rq->i915;
1649         struct intel_engine_cs *engine = rq->engine;
1650         enum intel_engine_id id;
1651         const int num_engines =
1652                 IS_HSW_GT1(i915) ? RUNTIME_INFO(i915)->num_engines - 1 : 0;
1653         bool force_restore = false;
1654         int len;
1655         u32 *cs;
1656
1657         flags |= MI_MM_SPACE_GTT;
1658         if (IS_HASWELL(i915))
1659                 /* These flags are for resource streamer on HSW+ */
1660                 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1661         else
1662                 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1663
1664         len = 4;
1665         if (IS_GEN(i915, 7))
1666                 len += 2 + (num_engines ? 4 * num_engines + 6 : 0);
1667         if (flags & MI_FORCE_RESTORE) {
1668                 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1669                 flags &= ~MI_FORCE_RESTORE;
1670                 force_restore = true;
1671                 len += 2;
1672         }
1673
1674         cs = intel_ring_begin(rq, len);
1675         if (IS_ERR(cs))
1676                 return PTR_ERR(cs);
1677
1678         /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1679         if (IS_GEN(i915, 7)) {
1680                 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1681                 if (num_engines) {
1682                         struct intel_engine_cs *signaller;
1683
1684                         *cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1685                         for_each_engine(signaller, i915, id) {
1686                                 if (signaller == engine)
1687                                         continue;
1688
1689                                 *cs++ = i915_mmio_reg_offset(
1690                                            RING_PSMI_CTL(signaller->mmio_base));
1691                                 *cs++ = _MASKED_BIT_ENABLE(
1692                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1693                         }
1694                 }
1695         }
1696
1697         if (force_restore) {
1698                 /*
1699                  * The HW doesn't handle being told to restore the current
1700                  * context very well. Quite often it likes goes to go off and
1701                  * sulk, especially when it is meant to be reloading PP_DIR.
1702                  * A very simple fix to force the reload is to simply switch
1703                  * away from the current context and back again.
1704                  *
1705                  * Note that the kernel_context will contain random state
1706                  * following the INHIBIT_RESTORE. We accept this since we
1707                  * never use the kernel_context state; it is merely a
1708                  * placeholder we use to flush other contexts.
1709                  */
1710                 *cs++ = MI_SET_CONTEXT;
1711                 *cs++ = i915_ggtt_offset(engine->kernel_context->state) |
1712                         MI_MM_SPACE_GTT |
1713                         MI_RESTORE_INHIBIT;
1714         }
1715
1716         *cs++ = MI_NOOP;
1717         *cs++ = MI_SET_CONTEXT;
1718         *cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1719         /*
1720          * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1721          * WaMiSetContext_Hang:snb,ivb,vlv
1722          */
1723         *cs++ = MI_NOOP;
1724
1725         if (IS_GEN(i915, 7)) {
1726                 if (num_engines) {
1727                         struct intel_engine_cs *signaller;
1728                         i915_reg_t last_reg = {}; /* keep gcc quiet */
1729
1730                         *cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1731                         for_each_engine(signaller, i915, id) {
1732                                 if (signaller == engine)
1733                                         continue;
1734
1735                                 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1736                                 *cs++ = i915_mmio_reg_offset(last_reg);
1737                                 *cs++ = _MASKED_BIT_DISABLE(
1738                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1739                         }
1740
1741                         /* Insert a delay before the next switch! */
1742                         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1743                         *cs++ = i915_mmio_reg_offset(last_reg);
1744                         *cs++ = i915_scratch_offset(rq->i915);
1745                         *cs++ = MI_NOOP;
1746                 }
1747                 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1748         }
1749
1750         intel_ring_advance(rq, cs);
1751
1752         return 0;
1753 }
1754
1755 static int remap_l3(struct i915_request *rq, int slice)
1756 {
1757         u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1758         int i;
1759
1760         if (!remap_info)
1761                 return 0;
1762
1763         cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1764         if (IS_ERR(cs))
1765                 return PTR_ERR(cs);
1766
1767         /*
1768          * Note: We do not worry about the concurrent register cacheline hang
1769          * here because no other code should access these registers other than
1770          * at initialization time.
1771          */
1772         *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1773         for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1774                 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1775                 *cs++ = remap_info[i];
1776         }
1777         *cs++ = MI_NOOP;
1778         intel_ring_advance(rq, cs);
1779
1780         return 0;
1781 }
1782
1783 static int switch_context(struct i915_request *rq)
1784 {
1785         struct intel_engine_cs *engine = rq->engine;
1786         struct i915_gem_context *ctx = rq->gem_context;
1787         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1788         unsigned int unwind_mm = 0;
1789         u32 hw_flags = 0;
1790         int ret, i;
1791
1792         lockdep_assert_held(&rq->i915->drm.struct_mutex);
1793         GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1794
1795         if (ppgtt) {
1796                 int loops;
1797
1798                 /*
1799                  * Baytail takes a little more convincing that it really needs
1800                  * to reload the PD between contexts. It is not just a little
1801                  * longer, as adding more stalls after the load_pd_dir (i.e.
1802                  * adding a long loop around flush_pd_dir) is not as effective
1803                  * as reloading the PD umpteen times. 32 is derived from
1804                  * experimentation (gem_exec_parallel/fds) and has no good
1805                  * explanation.
1806                  */
1807                 loops = 1;
1808                 if (engine->id == BCS0 && IS_VALLEYVIEW(engine->i915))
1809                         loops = 32;
1810
1811                 do {
1812                         ret = load_pd_dir(rq, ppgtt);
1813                         if (ret)
1814                                 goto err;
1815                 } while (--loops);
1816
1817                 if (ppgtt->pd_dirty_engines & engine->mask) {
1818                         unwind_mm = engine->mask;
1819                         ppgtt->pd_dirty_engines &= ~unwind_mm;
1820                         hw_flags = MI_FORCE_RESTORE;
1821                 }
1822         }
1823
1824         if (rq->hw_context->state) {
1825                 GEM_BUG_ON(engine->id != RCS0);
1826
1827                 /*
1828                  * The kernel context(s) is treated as pure scratch and is not
1829                  * expected to retain any state (as we sacrifice it during
1830                  * suspend and on resume it may be corrupted). This is ok,
1831                  * as nothing actually executes using the kernel context; it
1832                  * is purely used for flushing user contexts.
1833                  */
1834                 if (i915_gem_context_is_kernel(ctx))
1835                         hw_flags = MI_RESTORE_INHIBIT;
1836
1837                 ret = mi_set_context(rq, hw_flags);
1838                 if (ret)
1839                         goto err_mm;
1840         }
1841
1842         if (ppgtt) {
1843                 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1844                 if (ret)
1845                         goto err_mm;
1846
1847                 ret = flush_pd_dir(rq);
1848                 if (ret)
1849                         goto err_mm;
1850
1851                 /*
1852                  * Not only do we need a full barrier (post-sync write) after
1853                  * invalidating the TLBs, but we need to wait a little bit
1854                  * longer. Whether this is merely delaying us, or the
1855                  * subsequent flush is a key part of serialising with the
1856                  * post-sync op, this extra pass appears vital before a
1857                  * mm switch!
1858                  */
1859                 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1860                 if (ret)
1861                         goto err_mm;
1862
1863                 ret = engine->emit_flush(rq, EMIT_FLUSH);
1864                 if (ret)
1865                         goto err_mm;
1866         }
1867
1868         if (ctx->remap_slice) {
1869                 for (i = 0; i < MAX_L3_SLICES; i++) {
1870                         if (!(ctx->remap_slice & BIT(i)))
1871                                 continue;
1872
1873                         ret = remap_l3(rq, i);
1874                         if (ret)
1875                                 goto err_mm;
1876                 }
1877
1878                 ctx->remap_slice = 0;
1879         }
1880
1881         return 0;
1882
1883 err_mm:
1884         if (unwind_mm)
1885                 ppgtt->pd_dirty_engines |= unwind_mm;
1886 err:
1887         return ret;
1888 }
1889
1890 static int ring_request_alloc(struct i915_request *request)
1891 {
1892         int ret;
1893
1894         GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1895         GEM_BUG_ON(request->timeline->has_initial_breadcrumb);
1896
1897         /*
1898          * Flush enough space to reduce the likelihood of waiting after
1899          * we start building the request - in which case we will just
1900          * have to repeat work.
1901          */
1902         request->reserved_space += LEGACY_REQUEST_SIZE;
1903
1904         ret = switch_context(request);
1905         if (ret)
1906                 return ret;
1907
1908         /* Unconditionally invalidate GPU caches and TLBs. */
1909         ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1910         if (ret)
1911                 return ret;
1912
1913         request->reserved_space -= LEGACY_REQUEST_SIZE;
1914         return 0;
1915 }
1916
1917 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1918 {
1919         struct i915_request *target;
1920         long timeout;
1921
1922         lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1923
1924         if (intel_ring_update_space(ring) >= bytes)
1925                 return 0;
1926
1927         GEM_BUG_ON(list_empty(&ring->request_list));
1928         list_for_each_entry(target, &ring->request_list, ring_link) {
1929                 /* Would completion of this request free enough space? */
1930                 if (bytes <= __intel_ring_space(target->postfix,
1931                                                 ring->emit, ring->size))
1932                         break;
1933         }
1934
1935         if (WARN_ON(&target->ring_link == &ring->request_list))
1936                 return -ENOSPC;
1937
1938         timeout = i915_request_wait(target,
1939                                     I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1940                                     MAX_SCHEDULE_TIMEOUT);
1941         if (timeout < 0)
1942                 return timeout;
1943
1944         i915_request_retire_upto(target);
1945
1946         intel_ring_update_space(ring);
1947         GEM_BUG_ON(ring->space < bytes);
1948         return 0;
1949 }
1950
1951 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1952 {
1953         struct intel_ring *ring = rq->ring;
1954         const unsigned int remain_usable = ring->effective_size - ring->emit;
1955         const unsigned int bytes = num_dwords * sizeof(u32);
1956         unsigned int need_wrap = 0;
1957         unsigned int total_bytes;
1958         u32 *cs;
1959
1960         /* Packets must be qword aligned. */
1961         GEM_BUG_ON(num_dwords & 1);
1962
1963         total_bytes = bytes + rq->reserved_space;
1964         GEM_BUG_ON(total_bytes > ring->effective_size);
1965
1966         if (unlikely(total_bytes > remain_usable)) {
1967                 const int remain_actual = ring->size - ring->emit;
1968
1969                 if (bytes > remain_usable) {
1970                         /*
1971                          * Not enough space for the basic request. So need to
1972                          * flush out the remainder and then wait for
1973                          * base + reserved.
1974                          */
1975                         total_bytes += remain_actual;
1976                         need_wrap = remain_actual | 1;
1977                 } else  {
1978                         /*
1979                          * The base request will fit but the reserved space
1980                          * falls off the end. So we don't need an immediate
1981                          * wrap and only need to effectively wait for the
1982                          * reserved size from the start of ringbuffer.
1983                          */
1984                         total_bytes = rq->reserved_space + remain_actual;
1985                 }
1986         }
1987
1988         if (unlikely(total_bytes > ring->space)) {
1989                 int ret;
1990
1991                 /*
1992                  * Space is reserved in the ringbuffer for finalising the
1993                  * request, as that cannot be allowed to fail. During request
1994                  * finalisation, reserved_space is set to 0 to stop the
1995                  * overallocation and the assumption is that then we never need
1996                  * to wait (which has the risk of failing with EINTR).
1997                  *
1998                  * See also i915_request_alloc() and i915_request_add().
1999                  */
2000                 GEM_BUG_ON(!rq->reserved_space);
2001
2002                 ret = wait_for_space(ring, total_bytes);
2003                 if (unlikely(ret))
2004                         return ERR_PTR(ret);
2005         }
2006
2007         if (unlikely(need_wrap)) {
2008                 need_wrap &= ~1;
2009                 GEM_BUG_ON(need_wrap > ring->space);
2010                 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
2011                 GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
2012
2013                 /* Fill the tail with MI_NOOP */
2014                 memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
2015                 ring->space -= need_wrap;
2016                 ring->emit = 0;
2017         }
2018
2019         GEM_BUG_ON(ring->emit > ring->size - bytes);
2020         GEM_BUG_ON(ring->space < bytes);
2021         cs = ring->vaddr + ring->emit;
2022         GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
2023         ring->emit += bytes;
2024         ring->space -= bytes;
2025
2026         return cs;
2027 }
2028
2029 /* Align the ring tail to a cacheline boundary */
2030 int intel_ring_cacheline_align(struct i915_request *rq)
2031 {
2032         int num_dwords;
2033         void *cs;
2034
2035         num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
2036         if (num_dwords == 0)
2037                 return 0;
2038
2039         num_dwords = CACHELINE_DWORDS - num_dwords;
2040         GEM_BUG_ON(num_dwords & 1);
2041
2042         cs = intel_ring_begin(rq, num_dwords);
2043         if (IS_ERR(cs))
2044                 return PTR_ERR(cs);
2045
2046         memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
2047         intel_ring_advance(rq, cs);
2048
2049         GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
2050         return 0;
2051 }
2052
2053 static void gen6_bsd_submit_request(struct i915_request *request)
2054 {
2055         struct intel_uncore *uncore = &request->i915->uncore;
2056
2057         intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2058
2059        /* Every tail move must follow the sequence below */
2060
2061         /* Disable notification that the ring is IDLE. The GT
2062          * will then assume that it is busy and bring it out of rc6.
2063          */
2064         intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
2065                               _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2066
2067         /* Clear the context id. Here be magic! */
2068         intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0);
2069
2070         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2071         if (__intel_wait_for_register_fw(uncore,
2072                                          GEN6_BSD_SLEEP_PSMI_CONTROL,
2073                                          GEN6_BSD_SLEEP_INDICATOR,
2074                                          0,
2075                                          1000, 0, NULL))
2076                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2077
2078         /* Now that the ring is fully powered up, update the tail */
2079         i9xx_submit_request(request);
2080
2081         /* Let the ring send IDLE messages to the GT again,
2082          * and so let it sleep to conserve power when idle.
2083          */
2084         intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
2085                               _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2086
2087         intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2088 }
2089
2090 static int mi_flush_dw(struct i915_request *rq, u32 flags)
2091 {
2092         u32 cmd, *cs;
2093
2094         cs = intel_ring_begin(rq, 4);
2095         if (IS_ERR(cs))
2096                 return PTR_ERR(cs);
2097
2098         cmd = MI_FLUSH_DW;
2099
2100         /*
2101          * We always require a command barrier so that subsequent
2102          * commands, such as breadcrumb interrupts, are strictly ordered
2103          * wrt the contents of the write cache being flushed to memory
2104          * (and thus being coherent from the CPU).
2105          */
2106         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2107
2108         /*
2109          * Bspec vol 1c.3 - blitter engine command streamer:
2110          * "If ENABLED, all TLBs will be invalidated once the flush
2111          * operation is complete. This bit is only valid when the
2112          * Post-Sync Operation field is a value of 1h or 3h."
2113          */
2114         cmd |= flags;
2115
2116         *cs++ = cmd;
2117         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2118         *cs++ = 0;
2119         *cs++ = MI_NOOP;
2120
2121         intel_ring_advance(rq, cs);
2122
2123         return 0;
2124 }
2125
2126 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
2127 {
2128         return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
2129 }
2130
2131 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
2132 {
2133         return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
2134 }
2135
2136 static int
2137 hsw_emit_bb_start(struct i915_request *rq,
2138                   u64 offset, u32 len,
2139                   unsigned int dispatch_flags)
2140 {
2141         u32 *cs;
2142
2143         cs = intel_ring_begin(rq, 2);
2144         if (IS_ERR(cs))
2145                 return PTR_ERR(cs);
2146
2147         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2148                 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
2149         /* bit0-7 is the length on GEN6+ */
2150         *cs++ = offset;
2151         intel_ring_advance(rq, cs);
2152
2153         return 0;
2154 }
2155
2156 static int
2157 gen6_emit_bb_start(struct i915_request *rq,
2158                    u64 offset, u32 len,
2159                    unsigned int dispatch_flags)
2160 {
2161         u32 *cs;
2162
2163         cs = intel_ring_begin(rq, 2);
2164         if (IS_ERR(cs))
2165                 return PTR_ERR(cs);
2166
2167         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2168                 0 : MI_BATCH_NON_SECURE_I965);
2169         /* bit0-7 is the length on GEN6+ */
2170         *cs++ = offset;
2171         intel_ring_advance(rq, cs);
2172
2173         return 0;
2174 }
2175
2176 /* Blitter support (SandyBridge+) */
2177
2178 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
2179 {
2180         return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
2181 }
2182
2183 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2184                                 struct intel_engine_cs *engine)
2185 {
2186         if (INTEL_GEN(dev_priv) >= 6) {
2187                 engine->irq_enable = gen6_irq_enable;
2188                 engine->irq_disable = gen6_irq_disable;
2189         } else if (INTEL_GEN(dev_priv) >= 5) {
2190                 engine->irq_enable = gen5_irq_enable;
2191                 engine->irq_disable = gen5_irq_disable;
2192         } else if (INTEL_GEN(dev_priv) >= 3) {
2193                 engine->irq_enable = i9xx_irq_enable;
2194                 engine->irq_disable = i9xx_irq_disable;
2195         } else {
2196                 engine->irq_enable = i8xx_irq_enable;
2197                 engine->irq_disable = i8xx_irq_disable;
2198         }
2199 }
2200
2201 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2202 {
2203         engine->submit_request = i9xx_submit_request;
2204         engine->cancel_requests = cancel_requests;
2205
2206         engine->park = NULL;
2207         engine->unpark = NULL;
2208 }
2209
2210 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2211 {
2212         i9xx_set_default_submission(engine);
2213         engine->submit_request = gen6_bsd_submit_request;
2214 }
2215
2216 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2217                                       struct intel_engine_cs *engine)
2218 {
2219         /* gen8+ are only supported with execlists */
2220         GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
2221
2222         intel_ring_init_irq(dev_priv, engine);
2223
2224         engine->init_hw = init_ring_common;
2225         engine->reset.prepare = reset_prepare;
2226         engine->reset.reset = reset_ring;
2227         engine->reset.finish = reset_finish;
2228
2229         engine->cops = &ring_context_ops;
2230         engine->request_alloc = ring_request_alloc;
2231
2232         /*
2233          * Using a global execution timeline; the previous final breadcrumb is
2234          * equivalent to our next initial bread so we can elide
2235          * engine->emit_init_breadcrumb().
2236          */
2237         engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb;
2238         if (IS_GEN(dev_priv, 5))
2239                 engine->emit_fini_breadcrumb = gen5_emit_breadcrumb;
2240
2241         engine->set_default_submission = i9xx_set_default_submission;
2242
2243         if (INTEL_GEN(dev_priv) >= 6)
2244                 engine->emit_bb_start = gen6_emit_bb_start;
2245         else if (INTEL_GEN(dev_priv) >= 4)
2246                 engine->emit_bb_start = i965_emit_bb_start;
2247         else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2248                 engine->emit_bb_start = i830_emit_bb_start;
2249         else
2250                 engine->emit_bb_start = i915_emit_bb_start;
2251 }
2252
2253 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2254 {
2255         struct drm_i915_private *dev_priv = engine->i915;
2256         int ret;
2257
2258         intel_ring_default_vfuncs(dev_priv, engine);
2259
2260         if (HAS_L3_DPF(dev_priv))
2261                 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2262
2263         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2264
2265         if (INTEL_GEN(dev_priv) >= 7) {
2266                 engine->init_context = intel_rcs_ctx_init;
2267                 engine->emit_flush = gen7_render_ring_flush;
2268                 engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb;
2269         } else if (IS_GEN(dev_priv, 6)) {
2270                 engine->init_context = intel_rcs_ctx_init;
2271                 engine->emit_flush = gen6_render_ring_flush;
2272                 engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb;
2273         } else if (IS_GEN(dev_priv, 5)) {
2274                 engine->emit_flush = gen4_render_ring_flush;
2275         } else {
2276                 if (INTEL_GEN(dev_priv) < 4)
2277                         engine->emit_flush = gen2_render_ring_flush;
2278                 else
2279                         engine->emit_flush = gen4_render_ring_flush;
2280                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2281         }
2282
2283         if (IS_HASWELL(dev_priv))
2284                 engine->emit_bb_start = hsw_emit_bb_start;
2285
2286         engine->init_hw = init_render_ring;
2287
2288         ret = intel_init_ring_buffer(engine);
2289         if (ret)
2290                 return ret;
2291
2292         return 0;
2293 }
2294
2295 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2296 {
2297         struct drm_i915_private *dev_priv = engine->i915;
2298
2299         intel_ring_default_vfuncs(dev_priv, engine);
2300
2301         if (INTEL_GEN(dev_priv) >= 6) {
2302                 /* gen6 bsd needs a special wa for tail updates */
2303                 if (IS_GEN(dev_priv, 6))
2304                         engine->set_default_submission = gen6_bsd_set_default_submission;
2305                 engine->emit_flush = gen6_bsd_ring_flush;
2306                 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2307
2308                 if (IS_GEN(dev_priv, 6))
2309                         engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2310                 else
2311                         engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2312         } else {
2313                 engine->emit_flush = bsd_ring_flush;
2314                 if (IS_GEN(dev_priv, 5))
2315                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2316                 else
2317                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2318         }
2319
2320         return intel_init_ring_buffer(engine);
2321 }
2322
2323 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2324 {
2325         struct drm_i915_private *dev_priv = engine->i915;
2326
2327         GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
2328
2329         intel_ring_default_vfuncs(dev_priv, engine);
2330
2331         engine->emit_flush = gen6_ring_flush;
2332         engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2333
2334         if (IS_GEN(dev_priv, 6))
2335                 engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2336         else
2337                 engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2338
2339         return intel_init_ring_buffer(engine);
2340 }
2341
2342 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2343 {
2344         struct drm_i915_private *dev_priv = engine->i915;
2345
2346         GEM_BUG_ON(INTEL_GEN(dev_priv) < 7);
2347
2348         intel_ring_default_vfuncs(dev_priv, engine);
2349
2350         engine->emit_flush = gen6_ring_flush;
2351         engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2352         engine->irq_enable = hsw_vebox_irq_enable;
2353         engine->irq_disable = hsw_vebox_irq_disable;
2354
2355         engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2356
2357         return intel_init_ring_buffer(engine);
2358 }