]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/ttm/ttm_bo_util.c
73a1b018602929e3c7a27fdd9967d7b5b5193cd0
[linux.git] / drivers / gpu / drm / ttm / ttm_bo_util.c
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31
32 #include <drm/ttm/ttm_bo_driver.h>
33 #include <drm/ttm/ttm_placement.h>
34 #include <drm/drm_vma_manager.h>
35 #include <linux/io.h>
36 #include <linux/highmem.h>
37 #include <linux/wait.h>
38 #include <linux/slab.h>
39 #include <linux/vmalloc.h>
40 #include <linux/module.h>
41 #include <linux/dma-resv.h>
42
43 struct ttm_transfer_obj {
44         struct ttm_buffer_object base;
45         struct ttm_buffer_object *bo;
46 };
47
48 void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
49 {
50         ttm_bo_mem_put(bo, &bo->mem);
51 }
52
53 int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
54                    struct ttm_operation_ctx *ctx,
55                     struct ttm_mem_reg *new_mem)
56 {
57         struct ttm_tt *ttm = bo->ttm;
58         struct ttm_mem_reg *old_mem = &bo->mem;
59         int ret;
60
61         if (old_mem->mem_type != TTM_PL_SYSTEM) {
62                 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
63
64                 if (unlikely(ret != 0)) {
65                         if (ret != -ERESTARTSYS)
66                                 pr_err("Failed to expire sync object before unbinding TTM\n");
67                         return ret;
68                 }
69
70                 ttm_tt_unbind(ttm);
71                 ttm_bo_free_old_node(bo);
72                 ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
73                                 TTM_PL_MASK_MEM);
74                 old_mem->mem_type = TTM_PL_SYSTEM;
75         }
76
77         ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
78         if (unlikely(ret != 0))
79                 return ret;
80
81         if (new_mem->mem_type != TTM_PL_SYSTEM) {
82                 ret = ttm_tt_bind(ttm, new_mem, ctx);
83                 if (unlikely(ret != 0))
84                         return ret;
85         }
86
87         *old_mem = *new_mem;
88         new_mem->mm_node = NULL;
89
90         return 0;
91 }
92 EXPORT_SYMBOL(ttm_bo_move_ttm);
93
94 int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
95 {
96         if (likely(man->io_reserve_fastpath))
97                 return 0;
98
99         if (interruptible)
100                 return mutex_lock_interruptible(&man->io_reserve_mutex);
101
102         mutex_lock(&man->io_reserve_mutex);
103         return 0;
104 }
105 EXPORT_SYMBOL(ttm_mem_io_lock);
106
107 void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
108 {
109         if (likely(man->io_reserve_fastpath))
110                 return;
111
112         mutex_unlock(&man->io_reserve_mutex);
113 }
114 EXPORT_SYMBOL(ttm_mem_io_unlock);
115
116 static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
117 {
118         struct ttm_buffer_object *bo;
119
120         if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
121                 return -EAGAIN;
122
123         bo = list_first_entry(&man->io_reserve_lru,
124                               struct ttm_buffer_object,
125                               io_reserve_lru);
126         list_del_init(&bo->io_reserve_lru);
127         ttm_bo_unmap_virtual_locked(bo);
128
129         return 0;
130 }
131
132
133 int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
134                        struct ttm_mem_reg *mem)
135 {
136         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
137         int ret = 0;
138
139         if (!bdev->driver->io_mem_reserve)
140                 return 0;
141         if (likely(man->io_reserve_fastpath))
142                 return bdev->driver->io_mem_reserve(bdev, mem);
143
144         if (bdev->driver->io_mem_reserve &&
145             mem->bus.io_reserved_count++ == 0) {
146 retry:
147                 ret = bdev->driver->io_mem_reserve(bdev, mem);
148                 if (ret == -EAGAIN) {
149                         ret = ttm_mem_io_evict(man);
150                         if (ret == 0)
151                                 goto retry;
152                 }
153         }
154         return ret;
155 }
156 EXPORT_SYMBOL(ttm_mem_io_reserve);
157
158 void ttm_mem_io_free(struct ttm_bo_device *bdev,
159                      struct ttm_mem_reg *mem)
160 {
161         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
162
163         if (likely(man->io_reserve_fastpath))
164                 return;
165
166         if (bdev->driver->io_mem_reserve &&
167             --mem->bus.io_reserved_count == 0 &&
168             bdev->driver->io_mem_free)
169                 bdev->driver->io_mem_free(bdev, mem);
170
171 }
172 EXPORT_SYMBOL(ttm_mem_io_free);
173
174 int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
175 {
176         struct ttm_mem_reg *mem = &bo->mem;
177         int ret;
178
179         if (!mem->bus.io_reserved_vm) {
180                 struct ttm_mem_type_manager *man =
181                         &bo->bdev->man[mem->mem_type];
182
183                 ret = ttm_mem_io_reserve(bo->bdev, mem);
184                 if (unlikely(ret != 0))
185                         return ret;
186                 mem->bus.io_reserved_vm = true;
187                 if (man->use_io_reserve_lru)
188                         list_add_tail(&bo->io_reserve_lru,
189                                       &man->io_reserve_lru);
190         }
191         return 0;
192 }
193
194 void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
195 {
196         struct ttm_mem_reg *mem = &bo->mem;
197
198         if (mem->bus.io_reserved_vm) {
199                 mem->bus.io_reserved_vm = false;
200                 list_del_init(&bo->io_reserve_lru);
201                 ttm_mem_io_free(bo->bdev, mem);
202         }
203 }
204
205 static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
206                         void **virtual)
207 {
208         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
209         int ret;
210         void *addr;
211
212         *virtual = NULL;
213         (void) ttm_mem_io_lock(man, false);
214         ret = ttm_mem_io_reserve(bdev, mem);
215         ttm_mem_io_unlock(man);
216         if (ret || !mem->bus.is_iomem)
217                 return ret;
218
219         if (mem->bus.addr) {
220                 addr = mem->bus.addr;
221         } else {
222                 if (mem->placement & TTM_PL_FLAG_WC)
223                         addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
224                 else
225                         addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
226                 if (!addr) {
227                         (void) ttm_mem_io_lock(man, false);
228                         ttm_mem_io_free(bdev, mem);
229                         ttm_mem_io_unlock(man);
230                         return -ENOMEM;
231                 }
232         }
233         *virtual = addr;
234         return 0;
235 }
236
237 static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
238                          void *virtual)
239 {
240         struct ttm_mem_type_manager *man;
241
242         man = &bdev->man[mem->mem_type];
243
244         if (virtual && mem->bus.addr == NULL)
245                 iounmap(virtual);
246         (void) ttm_mem_io_lock(man, false);
247         ttm_mem_io_free(bdev, mem);
248         ttm_mem_io_unlock(man);
249 }
250
251 static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
252 {
253         uint32_t *dstP =
254             (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
255         uint32_t *srcP =
256             (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
257
258         int i;
259         for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
260                 iowrite32(ioread32(srcP++), dstP++);
261         return 0;
262 }
263
264 #ifdef CONFIG_X86
265 #define __ttm_kmap_atomic_prot(__page, __prot) kmap_atomic_prot(__page, __prot)
266 #define __ttm_kunmap_atomic(__addr) kunmap_atomic(__addr)
267 #else
268 #define __ttm_kmap_atomic_prot(__page, __prot) vmap(&__page, 1, 0,  __prot)
269 #define __ttm_kunmap_atomic(__addr) vunmap(__addr)
270 #endif
271
272
273 /**
274  * ttm_kmap_atomic_prot - Efficient kernel map of a single page with
275  * specified page protection.
276  *
277  * @page: The page to map.
278  * @prot: The page protection.
279  *
280  * This function maps a TTM page using the kmap_atomic api if available,
281  * otherwise falls back to vmap. The user must make sure that the
282  * specified page does not have an aliased mapping with a different caching
283  * policy unless the architecture explicitly allows it. Also mapping and
284  * unmapping using this api must be correctly nested. Unmapping should
285  * occur in the reverse order of mapping.
286  */
287 void *ttm_kmap_atomic_prot(struct page *page, pgprot_t prot)
288 {
289         if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
290                 return kmap_atomic(page);
291         else
292                 return __ttm_kmap_atomic_prot(page, prot);
293 }
294 EXPORT_SYMBOL(ttm_kmap_atomic_prot);
295
296 /**
297  * ttm_kunmap_atomic_prot - Unmap a page that was mapped using
298  * ttm_kmap_atomic_prot.
299  *
300  * @addr: The virtual address from the map.
301  * @prot: The page protection.
302  */
303 void ttm_kunmap_atomic_prot(void *addr, pgprot_t prot)
304 {
305         if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
306                 kunmap_atomic(addr);
307         else
308                 __ttm_kunmap_atomic(addr);
309 }
310 EXPORT_SYMBOL(ttm_kunmap_atomic_prot);
311
312 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
313                                 unsigned long page,
314                                 pgprot_t prot)
315 {
316         struct page *d = ttm->pages[page];
317         void *dst;
318
319         if (!d)
320                 return -ENOMEM;
321
322         src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
323         dst = ttm_kmap_atomic_prot(d, prot);
324         if (!dst)
325                 return -ENOMEM;
326
327         memcpy_fromio(dst, src, PAGE_SIZE);
328
329         ttm_kunmap_atomic_prot(dst, prot);
330
331         return 0;
332 }
333
334 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
335                                 unsigned long page,
336                                 pgprot_t prot)
337 {
338         struct page *s = ttm->pages[page];
339         void *src;
340
341         if (!s)
342                 return -ENOMEM;
343
344         dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
345         src = ttm_kmap_atomic_prot(s, prot);
346         if (!src)
347                 return -ENOMEM;
348
349         memcpy_toio(dst, src, PAGE_SIZE);
350
351         ttm_kunmap_atomic_prot(src, prot);
352
353         return 0;
354 }
355
356 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
357                        struct ttm_operation_ctx *ctx,
358                        struct ttm_mem_reg *new_mem)
359 {
360         struct ttm_bo_device *bdev = bo->bdev;
361         struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
362         struct ttm_tt *ttm = bo->ttm;
363         struct ttm_mem_reg *old_mem = &bo->mem;
364         struct ttm_mem_reg old_copy = *old_mem;
365         void *old_iomap;
366         void *new_iomap;
367         int ret;
368         unsigned long i;
369         unsigned long page;
370         unsigned long add = 0;
371         int dir;
372
373         ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
374         if (ret)
375                 return ret;
376
377         ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
378         if (ret)
379                 return ret;
380         ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
381         if (ret)
382                 goto out;
383
384         /*
385          * Single TTM move. NOP.
386          */
387         if (old_iomap == NULL && new_iomap == NULL)
388                 goto out2;
389
390         /*
391          * Don't move nonexistent data. Clear destination instead.
392          */
393         if (old_iomap == NULL &&
394             (ttm == NULL || (ttm->state == tt_unpopulated &&
395                              !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
396                 memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
397                 goto out2;
398         }
399
400         /*
401          * TTM might be null for moves within the same region.
402          */
403         if (ttm) {
404                 ret = ttm_tt_populate(ttm, ctx);
405                 if (ret)
406                         goto out1;
407         }
408
409         add = 0;
410         dir = 1;
411
412         if ((old_mem->mem_type == new_mem->mem_type) &&
413             (new_mem->start < old_mem->start + old_mem->size)) {
414                 dir = -1;
415                 add = new_mem->num_pages - 1;
416         }
417
418         for (i = 0; i < new_mem->num_pages; ++i) {
419                 page = i * dir + add;
420                 if (old_iomap == NULL) {
421                         pgprot_t prot = ttm_io_prot(old_mem->placement,
422                                                     PAGE_KERNEL);
423                         ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
424                                                    prot);
425                 } else if (new_iomap == NULL) {
426                         pgprot_t prot = ttm_io_prot(new_mem->placement,
427                                                     PAGE_KERNEL);
428                         ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
429                                                    prot);
430                 } else {
431                         ret = ttm_copy_io_page(new_iomap, old_iomap, page);
432                 }
433                 if (ret)
434                         goto out1;
435         }
436         mb();
437 out2:
438         old_copy = *old_mem;
439         *old_mem = *new_mem;
440         new_mem->mm_node = NULL;
441
442         if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
443                 ttm_tt_destroy(ttm);
444                 bo->ttm = NULL;
445         }
446
447 out1:
448         ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
449 out:
450         ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
451
452         /*
453          * On error, keep the mm node!
454          */
455         if (!ret)
456                 ttm_bo_mem_put(bo, &old_copy);
457         return ret;
458 }
459 EXPORT_SYMBOL(ttm_bo_move_memcpy);
460
461 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
462 {
463         struct ttm_transfer_obj *fbo;
464
465         fbo = container_of(bo, struct ttm_transfer_obj, base);
466         ttm_bo_put(fbo->bo);
467         kfree(fbo);
468 }
469
470 /**
471  * ttm_buffer_object_transfer
472  *
473  * @bo: A pointer to a struct ttm_buffer_object.
474  * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
475  * holding the data of @bo with the old placement.
476  *
477  * This is a utility function that may be called after an accelerated move
478  * has been scheduled. A new buffer object is created as a placeholder for
479  * the old data while it's being copied. When that buffer object is idle,
480  * it can be destroyed, releasing the space of the old placement.
481  * Returns:
482  * !0: Failure.
483  */
484
485 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
486                                       struct ttm_buffer_object **new_obj)
487 {
488         struct ttm_transfer_obj *fbo;
489         int ret;
490
491         fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
492         if (!fbo)
493                 return -ENOMEM;
494
495         fbo->base = *bo;
496         fbo->base.mem.placement |= TTM_PL_FLAG_NO_EVICT;
497
498         ttm_bo_get(bo);
499         fbo->bo = bo;
500
501         /**
502          * Fix up members that we shouldn't copy directly:
503          * TODO: Explicit member copy would probably be better here.
504          */
505
506         atomic_inc(&ttm_bo_glob.bo_count);
507         INIT_LIST_HEAD(&fbo->base.ddestroy);
508         INIT_LIST_HEAD(&fbo->base.lru);
509         INIT_LIST_HEAD(&fbo->base.swap);
510         INIT_LIST_HEAD(&fbo->base.io_reserve_lru);
511         mutex_init(&fbo->base.wu_mutex);
512         fbo->base.moving = NULL;
513         drm_vma_node_reset(&fbo->base.base.vma_node);
514
515         kref_init(&fbo->base.list_kref);
516         kref_init(&fbo->base.kref);
517         fbo->base.destroy = &ttm_transfered_destroy;
518         fbo->base.acc_size = 0;
519         fbo->base.base.resv = &fbo->base.base._resv;
520         dma_resv_init(fbo->base.base.resv);
521         ret = dma_resv_trylock(fbo->base.base.resv);
522         WARN_ON(!ret);
523
524         *new_obj = &fbo->base;
525         return 0;
526 }
527
528 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
529 {
530         /* Cached mappings need no adjustment */
531         if (caching_flags & TTM_PL_FLAG_CACHED)
532                 return tmp;
533
534 #if defined(__i386__) || defined(__x86_64__)
535         if (caching_flags & TTM_PL_FLAG_WC)
536                 tmp = pgprot_writecombine(tmp);
537         else if (boot_cpu_data.x86 > 3)
538                 tmp = pgprot_noncached(tmp);
539 #endif
540 #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
541     defined(__powerpc__) || defined(__mips__)
542         if (caching_flags & TTM_PL_FLAG_WC)
543                 tmp = pgprot_writecombine(tmp);
544         else
545                 tmp = pgprot_noncached(tmp);
546 #endif
547 #if defined(__sparc__)
548         tmp = pgprot_noncached(tmp);
549 #endif
550         return tmp;
551 }
552 EXPORT_SYMBOL(ttm_io_prot);
553
554 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
555                           unsigned long offset,
556                           unsigned long size,
557                           struct ttm_bo_kmap_obj *map)
558 {
559         struct ttm_mem_reg *mem = &bo->mem;
560
561         if (bo->mem.bus.addr) {
562                 map->bo_kmap_type = ttm_bo_map_premapped;
563                 map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
564         } else {
565                 map->bo_kmap_type = ttm_bo_map_iomap;
566                 if (mem->placement & TTM_PL_FLAG_WC)
567                         map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
568                                                   size);
569                 else
570                         map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
571                                                        size);
572         }
573         return (!map->virtual) ? -ENOMEM : 0;
574 }
575
576 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
577                            unsigned long start_page,
578                            unsigned long num_pages,
579                            struct ttm_bo_kmap_obj *map)
580 {
581         struct ttm_mem_reg *mem = &bo->mem;
582         struct ttm_operation_ctx ctx = {
583                 .interruptible = false,
584                 .no_wait_gpu = false
585         };
586         struct ttm_tt *ttm = bo->ttm;
587         pgprot_t prot;
588         int ret;
589
590         BUG_ON(!ttm);
591
592         ret = ttm_tt_populate(ttm, &ctx);
593         if (ret)
594                 return ret;
595
596         if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
597                 /*
598                  * We're mapping a single page, and the desired
599                  * page protection is consistent with the bo.
600                  */
601
602                 map->bo_kmap_type = ttm_bo_map_kmap;
603                 map->page = ttm->pages[start_page];
604                 map->virtual = kmap(map->page);
605         } else {
606                 /*
607                  * We need to use vmap to get the desired page protection
608                  * or to make the buffer object look contiguous.
609                  */
610                 prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
611                 map->bo_kmap_type = ttm_bo_map_vmap;
612                 map->virtual = vmap(ttm->pages + start_page, num_pages,
613                                     0, prot);
614         }
615         return (!map->virtual) ? -ENOMEM : 0;
616 }
617
618 int ttm_bo_kmap(struct ttm_buffer_object *bo,
619                 unsigned long start_page, unsigned long num_pages,
620                 struct ttm_bo_kmap_obj *map)
621 {
622         struct ttm_mem_type_manager *man =
623                 &bo->bdev->man[bo->mem.mem_type];
624         unsigned long offset, size;
625         int ret;
626
627         map->virtual = NULL;
628         map->bo = bo;
629         if (num_pages > bo->num_pages)
630                 return -EINVAL;
631         if (start_page > bo->num_pages)
632                 return -EINVAL;
633
634         (void) ttm_mem_io_lock(man, false);
635         ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
636         ttm_mem_io_unlock(man);
637         if (ret)
638                 return ret;
639         if (!bo->mem.bus.is_iomem) {
640                 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
641         } else {
642                 offset = start_page << PAGE_SHIFT;
643                 size = num_pages << PAGE_SHIFT;
644                 return ttm_bo_ioremap(bo, offset, size, map);
645         }
646 }
647 EXPORT_SYMBOL(ttm_bo_kmap);
648
649 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
650 {
651         struct ttm_buffer_object *bo = map->bo;
652         struct ttm_mem_type_manager *man =
653                 &bo->bdev->man[bo->mem.mem_type];
654
655         if (!map->virtual)
656                 return;
657         switch (map->bo_kmap_type) {
658         case ttm_bo_map_iomap:
659                 iounmap(map->virtual);
660                 break;
661         case ttm_bo_map_vmap:
662                 vunmap(map->virtual);
663                 break;
664         case ttm_bo_map_kmap:
665                 kunmap(map->page);
666                 break;
667         case ttm_bo_map_premapped:
668                 break;
669         default:
670                 BUG();
671         }
672         (void) ttm_mem_io_lock(man, false);
673         ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
674         ttm_mem_io_unlock(man);
675         map->virtual = NULL;
676         map->page = NULL;
677 }
678 EXPORT_SYMBOL(ttm_bo_kunmap);
679
680 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
681                               struct dma_fence *fence,
682                               bool evict,
683                               struct ttm_mem_reg *new_mem)
684 {
685         struct ttm_bo_device *bdev = bo->bdev;
686         struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
687         struct ttm_mem_reg *old_mem = &bo->mem;
688         int ret;
689         struct ttm_buffer_object *ghost_obj;
690
691         dma_resv_add_excl_fence(bo->base.resv, fence);
692         if (evict) {
693                 ret = ttm_bo_wait(bo, false, false);
694                 if (ret)
695                         return ret;
696
697                 if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
698                         ttm_tt_destroy(bo->ttm);
699                         bo->ttm = NULL;
700                 }
701                 ttm_bo_free_old_node(bo);
702         } else {
703                 /**
704                  * This should help pipeline ordinary buffer moves.
705                  *
706                  * Hang old buffer memory on a new buffer object,
707                  * and leave it to be released when the GPU
708                  * operation has completed.
709                  */
710
711                 dma_fence_put(bo->moving);
712                 bo->moving = dma_fence_get(fence);
713
714                 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
715                 if (ret)
716                         return ret;
717
718                 dma_resv_add_excl_fence(ghost_obj->base.resv, fence);
719
720                 /**
721                  * If we're not moving to fixed memory, the TTM object
722                  * needs to stay alive. Otherwhise hang it on the ghost
723                  * bo to be unbound and destroyed.
724                  */
725
726                 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
727                         ghost_obj->ttm = NULL;
728                 else
729                         bo->ttm = NULL;
730
731                 ttm_bo_unreserve(ghost_obj);
732                 ttm_bo_put(ghost_obj);
733         }
734
735         *old_mem = *new_mem;
736         new_mem->mm_node = NULL;
737
738         return 0;
739 }
740 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
741
742 int ttm_bo_pipeline_move(struct ttm_buffer_object *bo,
743                          struct dma_fence *fence, bool evict,
744                          struct ttm_mem_reg *new_mem)
745 {
746         struct ttm_bo_device *bdev = bo->bdev;
747         struct ttm_mem_reg *old_mem = &bo->mem;
748
749         struct ttm_mem_type_manager *from = &bdev->man[old_mem->mem_type];
750         struct ttm_mem_type_manager *to = &bdev->man[new_mem->mem_type];
751
752         int ret;
753
754         dma_resv_add_excl_fence(bo->base.resv, fence);
755
756         if (!evict) {
757                 struct ttm_buffer_object *ghost_obj;
758
759                 /**
760                  * This should help pipeline ordinary buffer moves.
761                  *
762                  * Hang old buffer memory on a new buffer object,
763                  * and leave it to be released when the GPU
764                  * operation has completed.
765                  */
766
767                 dma_fence_put(bo->moving);
768                 bo->moving = dma_fence_get(fence);
769
770                 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
771                 if (ret)
772                         return ret;
773
774                 dma_resv_add_excl_fence(ghost_obj->base.resv, fence);
775
776                 /**
777                  * If we're not moving to fixed memory, the TTM object
778                  * needs to stay alive. Otherwhise hang it on the ghost
779                  * bo to be unbound and destroyed.
780                  */
781
782                 if (!(to->flags & TTM_MEMTYPE_FLAG_FIXED))
783                         ghost_obj->ttm = NULL;
784                 else
785                         bo->ttm = NULL;
786
787                 ttm_bo_unreserve(ghost_obj);
788                 ttm_bo_put(ghost_obj);
789
790         } else if (from->flags & TTM_MEMTYPE_FLAG_FIXED) {
791
792                 /**
793                  * BO doesn't have a TTM we need to bind/unbind. Just remember
794                  * this eviction and free up the allocation
795                  */
796
797                 spin_lock(&from->move_lock);
798                 if (!from->move || dma_fence_is_later(fence, from->move)) {
799                         dma_fence_put(from->move);
800                         from->move = dma_fence_get(fence);
801                 }
802                 spin_unlock(&from->move_lock);
803
804                 ttm_bo_free_old_node(bo);
805
806                 dma_fence_put(bo->moving);
807                 bo->moving = dma_fence_get(fence);
808
809         } else {
810                 /**
811                  * Last resort, wait for the move to be completed.
812                  *
813                  * Should never happen in pratice.
814                  */
815
816                 ret = ttm_bo_wait(bo, false, false);
817                 if (ret)
818                         return ret;
819
820                 if (to->flags & TTM_MEMTYPE_FLAG_FIXED) {
821                         ttm_tt_destroy(bo->ttm);
822                         bo->ttm = NULL;
823                 }
824                 ttm_bo_free_old_node(bo);
825         }
826
827         *old_mem = *new_mem;
828         new_mem->mm_node = NULL;
829
830         return 0;
831 }
832 EXPORT_SYMBOL(ttm_bo_pipeline_move);
833
834 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
835 {
836         struct ttm_buffer_object *ghost;
837         int ret;
838
839         ret = ttm_buffer_object_transfer(bo, &ghost);
840         if (ret)
841                 return ret;
842
843         ret = dma_resv_copy_fences(ghost->base.resv, bo->base.resv);
844         /* Last resort, wait for the BO to be idle when we are OOM */
845         if (ret)
846                 ttm_bo_wait(bo, false, false);
847
848         memset(&bo->mem, 0, sizeof(bo->mem));
849         bo->mem.mem_type = TTM_PL_SYSTEM;
850         bo->ttm = NULL;
851
852         ttm_bo_unreserve(ghost);
853         ttm_bo_put(ghost);
854
855         return 0;
856 }