]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
drm/vc4: drop use of drmP.h
[linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * encoder's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, the CRTC is also
19  * responsible for writing the display list for the HVS channel that
20  * the CRTC will use.
21  *
22  * The 2835 has 3 different pixel valves.  pv0 in the audio power
23  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
24  * image domain can feed either HDMI or the SDTV controller.  The
25  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26  * SDTV, etc.) according to which output type is chosen in the mux.
27  *
28  * For power management, the pixel valve's registers are all clocked
29  * by the AXI clock, while the timings and FIFOs make use of the
30  * output-specific clock.  Since the encoders also directly consume
31  * the CPRMAN clocks, and know what timings they need, they are the
32  * ones that set the clock.
33  */
34
35 #include <linux/clk.h>
36 #include <linux/component.h>
37 #include <linux/of_device.h>
38
39 #include <drm/drm_atomic.h>
40 #include <drm/drm_atomic_helper.h>
41 #include <drm/drm_atomic_uapi.h>
42 #include <drm/drm_fb_cma_helper.h>
43 #include <drm/drm_print.h>
44 #include <drm/drm_probe_helper.h>
45 #include <drm/drm_vblank.h>
46
47 #include "vc4_drv.h"
48 #include "vc4_regs.h"
49
50 struct vc4_crtc_state {
51         struct drm_crtc_state base;
52         /* Dlist area for this CRTC configuration. */
53         struct drm_mm_node mm;
54         bool feed_txp;
55         bool txp_armed;
56
57         struct {
58                 unsigned int left;
59                 unsigned int right;
60                 unsigned int top;
61                 unsigned int bottom;
62         } margins;
63 };
64
65 static inline struct vc4_crtc_state *
66 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
67 {
68         return (struct vc4_crtc_state *)crtc_state;
69 }
70
71 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
72 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
73
74 static const struct debugfs_reg32 crtc_regs[] = {
75         VC4_REG32(PV_CONTROL),
76         VC4_REG32(PV_V_CONTROL),
77         VC4_REG32(PV_VSYNCD_EVEN),
78         VC4_REG32(PV_HORZA),
79         VC4_REG32(PV_HORZB),
80         VC4_REG32(PV_VERTA),
81         VC4_REG32(PV_VERTB),
82         VC4_REG32(PV_VERTA_EVEN),
83         VC4_REG32(PV_VERTB_EVEN),
84         VC4_REG32(PV_INTEN),
85         VC4_REG32(PV_INTSTAT),
86         VC4_REG32(PV_STAT),
87         VC4_REG32(PV_HACT_ACT),
88 };
89
90 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
91                              bool in_vblank_irq, int *vpos, int *hpos,
92                              ktime_t *stime, ktime_t *etime,
93                              const struct drm_display_mode *mode)
94 {
95         struct vc4_dev *vc4 = to_vc4_dev(dev);
96         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
97         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
98         u32 val;
99         int fifo_lines;
100         int vblank_lines;
101         bool ret = false;
102
103         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
104
105         /* Get optional system timestamp before query. */
106         if (stime)
107                 *stime = ktime_get();
108
109         /*
110          * Read vertical scanline which is currently composed for our
111          * pixelvalve by the HVS, and also the scaler status.
112          */
113         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
114
115         /* Get optional system timestamp after query. */
116         if (etime)
117                 *etime = ktime_get();
118
119         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
120
121         /* Vertical position of hvs composed scanline. */
122         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
123         *hpos = 0;
124
125         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
126                 *vpos /= 2;
127
128                 /* Use hpos to correct for field offset in interlaced mode. */
129                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
130                         *hpos += mode->crtc_htotal / 2;
131         }
132
133         /* This is the offset we need for translating hvs -> pv scanout pos. */
134         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
135
136         if (fifo_lines > 0)
137                 ret = true;
138
139         /* HVS more than fifo_lines into frame for compositing? */
140         if (*vpos > fifo_lines) {
141                 /*
142                  * We are in active scanout and can get some meaningful results
143                  * from HVS. The actual PV scanout can not trail behind more
144                  * than fifo_lines as that is the fifo's capacity. Assume that
145                  * in active scanout the HVS and PV work in lockstep wrt. HVS
146                  * refilling the fifo and PV consuming from the fifo, ie.
147                  * whenever the PV consumes and frees up a scanline in the
148                  * fifo, the HVS will immediately refill it, therefore
149                  * incrementing vpos. Therefore we choose HVS read position -
150                  * fifo size in scanlines as a estimate of the real scanout
151                  * position of the PV.
152                  */
153                 *vpos -= fifo_lines + 1;
154
155                 return ret;
156         }
157
158         /*
159          * Less: This happens when we are in vblank and the HVS, after getting
160          * the VSTART restart signal from the PV, just started refilling its
161          * fifo with new lines from the top-most lines of the new framebuffers.
162          * The PV does not scan out in vblank, so does not remove lines from
163          * the fifo, so the fifo will be full quickly and the HVS has to pause.
164          * We can't get meaningful readings wrt. scanline position of the PV
165          * and need to make things up in a approximative but consistent way.
166          */
167         vblank_lines = mode->vtotal - mode->vdisplay;
168
169         if (in_vblank_irq) {
170                 /*
171                  * Assume the irq handler got called close to first
172                  * line of vblank, so PV has about a full vblank
173                  * scanlines to go, and as a base timestamp use the
174                  * one taken at entry into vblank irq handler, so it
175                  * is not affected by random delays due to lock
176                  * contention on event_lock or vblank_time lock in
177                  * the core.
178                  */
179                 *vpos = -vblank_lines;
180
181                 if (stime)
182                         *stime = vc4_crtc->t_vblank;
183                 if (etime)
184                         *etime = vc4_crtc->t_vblank;
185
186                 /*
187                  * If the HVS fifo is not yet full then we know for certain
188                  * we are at the very beginning of vblank, as the hvs just
189                  * started refilling, and the stime and etime timestamps
190                  * truly correspond to start of vblank.
191                  *
192                  * Unfortunately there's no way to report this to upper levels
193                  * and make it more useful.
194                  */
195         } else {
196                 /*
197                  * No clue where we are inside vblank. Return a vpos of zero,
198                  * which will cause calling code to just return the etime
199                  * timestamp uncorrected. At least this is no worse than the
200                  * standard fallback.
201                  */
202                 *vpos = 0;
203         }
204
205         return ret;
206 }
207
208 static void vc4_crtc_destroy(struct drm_crtc *crtc)
209 {
210         drm_crtc_cleanup(crtc);
211 }
212
213 static void
214 vc4_crtc_lut_load(struct drm_crtc *crtc)
215 {
216         struct drm_device *dev = crtc->dev;
217         struct vc4_dev *vc4 = to_vc4_dev(dev);
218         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
219         u32 i;
220
221         /* The LUT memory is laid out with each HVS channel in order,
222          * each of which takes 256 writes for R, 256 for G, then 256
223          * for B.
224          */
225         HVS_WRITE(SCALER_GAMADDR,
226                   SCALER_GAMADDR_AUTOINC |
227                   (vc4_crtc->channel * 3 * crtc->gamma_size));
228
229         for (i = 0; i < crtc->gamma_size; i++)
230                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
231         for (i = 0; i < crtc->gamma_size; i++)
232                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
233         for (i = 0; i < crtc->gamma_size; i++)
234                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
235 }
236
237 static void
238 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
239 {
240         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
241         struct drm_color_lut *lut = crtc->state->gamma_lut->data;
242         u32 length = drm_color_lut_size(crtc->state->gamma_lut);
243         u32 i;
244
245         for (i = 0; i < length; i++) {
246                 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
247                 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
248                 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
249         }
250
251         vc4_crtc_lut_load(crtc);
252 }
253
254 static u32 vc4_get_fifo_full_level(u32 format)
255 {
256         static const u32 fifo_len_bytes = 64;
257         static const u32 hvs_latency_pix = 6;
258
259         switch (format) {
260         case PV_CONTROL_FORMAT_DSIV_16:
261         case PV_CONTROL_FORMAT_DSIC_16:
262                 return fifo_len_bytes - 2 * hvs_latency_pix;
263         case PV_CONTROL_FORMAT_DSIV_18:
264                 return fifo_len_bytes - 14;
265         case PV_CONTROL_FORMAT_24:
266         case PV_CONTROL_FORMAT_DSIV_24:
267         default:
268                 return fifo_len_bytes - 3 * hvs_latency_pix;
269         }
270 }
271
272 /*
273  * Returns the encoder attached to the CRTC.
274  *
275  * VC4 can only scan out to one encoder at a time, while the DRM core
276  * allows drivers to push pixels to more than one encoder from the
277  * same CRTC.
278  */
279 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
280 {
281         struct drm_connector *connector;
282         struct drm_connector_list_iter conn_iter;
283
284         drm_connector_list_iter_begin(crtc->dev, &conn_iter);
285         drm_for_each_connector_iter(connector, &conn_iter) {
286                 if (connector->state->crtc == crtc) {
287                         drm_connector_list_iter_end(&conn_iter);
288                         return connector->encoder;
289                 }
290         }
291         drm_connector_list_iter_end(&conn_iter);
292
293         return NULL;
294 }
295
296 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
297 {
298         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
299         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
300         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
301         struct drm_crtc_state *state = crtc->state;
302         struct drm_display_mode *mode = &state->adjusted_mode;
303         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
304         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
305         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
306                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
307         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
308
309         /* Reset the PV fifo. */
310         CRTC_WRITE(PV_CONTROL, 0);
311         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
312         CRTC_WRITE(PV_CONTROL, 0);
313
314         CRTC_WRITE(PV_HORZA,
315                    VC4_SET_FIELD((mode->htotal -
316                                   mode->hsync_end) * pixel_rep,
317                                  PV_HORZA_HBP) |
318                    VC4_SET_FIELD((mode->hsync_end -
319                                   mode->hsync_start) * pixel_rep,
320                                  PV_HORZA_HSYNC));
321         CRTC_WRITE(PV_HORZB,
322                    VC4_SET_FIELD((mode->hsync_start -
323                                   mode->hdisplay) * pixel_rep,
324                                  PV_HORZB_HFP) |
325                    VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
326
327         CRTC_WRITE(PV_VERTA,
328                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
329                                  PV_VERTA_VBP) |
330                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
331                                  PV_VERTA_VSYNC));
332         CRTC_WRITE(PV_VERTB,
333                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
334                                  PV_VERTB_VFP) |
335                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
336
337         if (interlace) {
338                 CRTC_WRITE(PV_VERTA_EVEN,
339                            VC4_SET_FIELD(mode->crtc_vtotal -
340                                          mode->crtc_vsync_end - 1,
341                                          PV_VERTA_VBP) |
342                            VC4_SET_FIELD(mode->crtc_vsync_end -
343                                          mode->crtc_vsync_start,
344                                          PV_VERTA_VSYNC));
345                 CRTC_WRITE(PV_VERTB_EVEN,
346                            VC4_SET_FIELD(mode->crtc_vsync_start -
347                                          mode->crtc_vdisplay,
348                                          PV_VERTB_VFP) |
349                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
350
351                 /* We set up first field even mode for HDMI.  VEC's
352                  * NTSC mode would want first field odd instead, once
353                  * we support it (to do so, set ODD_FIRST and put the
354                  * delay in VSYNCD_EVEN instead).
355                  */
356                 CRTC_WRITE(PV_V_CONTROL,
357                            PV_VCONTROL_CONTINUOUS |
358                            (is_dsi ? PV_VCONTROL_DSI : 0) |
359                            PV_VCONTROL_INTERLACE |
360                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
361                                          PV_VCONTROL_ODD_DELAY));
362                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
363         } else {
364                 CRTC_WRITE(PV_V_CONTROL,
365                            PV_VCONTROL_CONTINUOUS |
366                            (is_dsi ? PV_VCONTROL_DSI : 0));
367         }
368
369         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
370
371         CRTC_WRITE(PV_CONTROL,
372                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
373                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
374                                  PV_CONTROL_FIFO_LEVEL) |
375                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
376                    PV_CONTROL_CLR_AT_START |
377                    PV_CONTROL_TRIGGER_UNDERFLOW |
378                    PV_CONTROL_WAIT_HSTART |
379                    VC4_SET_FIELD(vc4_encoder->clock_select,
380                                  PV_CONTROL_CLK_SELECT) |
381                    PV_CONTROL_FIFO_CLR |
382                    PV_CONTROL_EN);
383 }
384
385 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
386 {
387         struct drm_device *dev = crtc->dev;
388         struct vc4_dev *vc4 = to_vc4_dev(dev);
389         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
390         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
391         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
392         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
393         bool debug_dump_regs = false;
394
395         if (debug_dump_regs) {
396                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
397                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
398                          drm_crtc_index(crtc));
399                 drm_print_regset32(&p, &vc4_crtc->regset);
400         }
401
402         if (vc4_crtc->channel == 2) {
403                 u32 dispctrl;
404                 u32 dsp3_mux;
405
406                 /*
407                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
408                  * FIFO X'.
409                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
410                  *
411                  * DSP3 is connected to FIFO2 unless the transposer is
412                  * enabled. In this case, FIFO 2 is directly accessed by the
413                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
414                  * route.
415                  */
416                 if (vc4_state->feed_txp)
417                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
418                 else
419                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
420
421                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
422                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
423                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
424         }
425
426         if (!vc4_state->feed_txp)
427                 vc4_crtc_config_pv(crtc);
428
429         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
430                   SCALER_DISPBKGND_AUTOHS |
431                   SCALER_DISPBKGND_GAMMA |
432                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
433
434         /* Reload the LUT, since the SRAMs would have been disabled if
435          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
436          */
437         vc4_crtc_lut_load(crtc);
438
439         if (debug_dump_regs) {
440                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
441                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
442                          drm_crtc_index(crtc));
443                 drm_print_regset32(&p, &vc4_crtc->regset);
444         }
445 }
446
447 static void require_hvs_enabled(struct drm_device *dev)
448 {
449         struct vc4_dev *vc4 = to_vc4_dev(dev);
450
451         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
452                      SCALER_DISPCTRL_ENABLE);
453 }
454
455 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
456                                     struct drm_crtc_state *old_state)
457 {
458         struct drm_device *dev = crtc->dev;
459         struct vc4_dev *vc4 = to_vc4_dev(dev);
460         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
461         u32 chan = vc4_crtc->channel;
462         int ret;
463         require_hvs_enabled(dev);
464
465         /* Disable vblank irq handling before crtc is disabled. */
466         drm_crtc_vblank_off(crtc);
467
468         CRTC_WRITE(PV_V_CONTROL,
469                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
470         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
471         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
472
473         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
474             SCALER_DISPCTRLX_ENABLE) {
475                 HVS_WRITE(SCALER_DISPCTRLX(chan),
476                           SCALER_DISPCTRLX_RESET);
477
478                 /* While the docs say that reset is self-clearing, it
479                  * seems it doesn't actually.
480                  */
481                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
482         }
483
484         /* Once we leave, the scaler should be disabled and its fifo empty. */
485
486         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
487
488         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
489                                    SCALER_DISPSTATX_MODE) !=
490                      SCALER_DISPSTATX_MODE_DISABLED);
491
492         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
493                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
494                      SCALER_DISPSTATX_EMPTY);
495
496         /*
497          * Make sure we issue a vblank event after disabling the CRTC if
498          * someone was waiting it.
499          */
500         if (crtc->state->event) {
501                 unsigned long flags;
502
503                 spin_lock_irqsave(&dev->event_lock, flags);
504                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
505                 crtc->state->event = NULL;
506                 spin_unlock_irqrestore(&dev->event_lock, flags);
507         }
508 }
509
510 void vc4_crtc_txp_armed(struct drm_crtc_state *state)
511 {
512         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
513
514         vc4_state->txp_armed = true;
515 }
516
517 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
518 {
519         struct drm_device *dev = crtc->dev;
520         struct vc4_dev *vc4 = to_vc4_dev(dev);
521         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
522         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
523
524         if (crtc->state->event) {
525                 unsigned long flags;
526
527                 crtc->state->event->pipe = drm_crtc_index(crtc);
528
529                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
530
531                 spin_lock_irqsave(&dev->event_lock, flags);
532
533                 if (!vc4_state->feed_txp || vc4_state->txp_armed) {
534                         vc4_crtc->event = crtc->state->event;
535                         crtc->state->event = NULL;
536                 }
537
538                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
539                           vc4_state->mm.start);
540
541                 spin_unlock_irqrestore(&dev->event_lock, flags);
542         } else {
543                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
544                           vc4_state->mm.start);
545         }
546 }
547
548 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
549                                    struct drm_crtc_state *old_state)
550 {
551         struct drm_device *dev = crtc->dev;
552         struct vc4_dev *vc4 = to_vc4_dev(dev);
553         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
554         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
555         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
556
557         require_hvs_enabled(dev);
558
559         /* Enable vblank irq handling before crtc is started otherwise
560          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
561          */
562         drm_crtc_vblank_on(crtc);
563         vc4_crtc_update_dlist(crtc);
564
565         /* Turn on the scaler, which will wait for vstart to start
566          * compositing.
567          * When feeding the transposer, we should operate in oneshot
568          * mode.
569          */
570         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
571                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
572                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
573                   SCALER_DISPCTRLX_ENABLE |
574                   (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
575
576         /* When feeding the transposer block the pixelvalve is unneeded and
577          * should not be enabled.
578          */
579         if (!vc4_state->feed_txp)
580                 CRTC_WRITE(PV_V_CONTROL,
581                            CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
582 }
583
584 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
585                                                 const struct drm_display_mode *mode)
586 {
587         /* Do not allow doublescan modes from user space */
588         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
589                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
590                               crtc->base.id);
591                 return MODE_NO_DBLESCAN;
592         }
593
594         return MODE_OK;
595 }
596
597 void vc4_crtc_get_margins(struct drm_crtc_state *state,
598                           unsigned int *left, unsigned int *right,
599                           unsigned int *top, unsigned int *bottom)
600 {
601         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
602         struct drm_connector_state *conn_state;
603         struct drm_connector *conn;
604         int i;
605
606         *left = vc4_state->margins.left;
607         *right = vc4_state->margins.right;
608         *top = vc4_state->margins.top;
609         *bottom = vc4_state->margins.bottom;
610
611         /* We have to interate over all new connector states because
612          * vc4_crtc_get_margins() might be called before
613          * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
614          * might be outdated.
615          */
616         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
617                 if (conn_state->crtc != state->crtc)
618                         continue;
619
620                 *left = conn_state->tv.margins.left;
621                 *right = conn_state->tv.margins.right;
622                 *top = conn_state->tv.margins.top;
623                 *bottom = conn_state->tv.margins.bottom;
624                 break;
625         }
626 }
627
628 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
629                                  struct drm_crtc_state *state)
630 {
631         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
632         struct drm_device *dev = crtc->dev;
633         struct vc4_dev *vc4 = to_vc4_dev(dev);
634         struct drm_plane *plane;
635         unsigned long flags;
636         const struct drm_plane_state *plane_state;
637         struct drm_connector *conn;
638         struct drm_connector_state *conn_state;
639         u32 dlist_count = 0;
640         int ret, i;
641
642         /* The pixelvalve can only feed one encoder (and encoders are
643          * 1:1 with connectors.)
644          */
645         if (hweight32(state->connector_mask) > 1)
646                 return -EINVAL;
647
648         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
649                 dlist_count += vc4_plane_dlist_size(plane_state);
650
651         dlist_count++; /* Account for SCALER_CTL0_END. */
652
653         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
654         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
655                                  dlist_count);
656         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
657         if (ret)
658                 return ret;
659
660         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
661                 if (conn_state->crtc != crtc)
662                         continue;
663
664                 /* The writeback connector is implemented using the transposer
665                  * block which is directly taking its data from the HVS FIFO.
666                  */
667                 if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
668                         state->no_vblank = true;
669                         vc4_state->feed_txp = true;
670                 } else {
671                         state->no_vblank = false;
672                         vc4_state->feed_txp = false;
673                 }
674
675                 vc4_state->margins.left = conn_state->tv.margins.left;
676                 vc4_state->margins.right = conn_state->tv.margins.right;
677                 vc4_state->margins.top = conn_state->tv.margins.top;
678                 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
679                 break;
680         }
681
682         return 0;
683 }
684
685 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
686                                   struct drm_crtc_state *old_state)
687 {
688         struct drm_device *dev = crtc->dev;
689         struct vc4_dev *vc4 = to_vc4_dev(dev);
690         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
691         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
692         struct drm_plane *plane;
693         struct vc4_plane_state *vc4_plane_state;
694         bool debug_dump_regs = false;
695         bool enable_bg_fill = false;
696         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
697         u32 __iomem *dlist_next = dlist_start;
698
699         if (debug_dump_regs) {
700                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
701                 vc4_hvs_dump_state(dev);
702         }
703
704         /* Copy all the active planes' dlist contents to the hardware dlist. */
705         drm_atomic_crtc_for_each_plane(plane, crtc) {
706                 /* Is this the first active plane? */
707                 if (dlist_next == dlist_start) {
708                         /* We need to enable background fill when a plane
709                          * could be alpha blending from the background, i.e.
710                          * where no other plane is underneath. It suffices to
711                          * consider the first active plane here since we set
712                          * needs_bg_fill such that either the first plane
713                          * already needs it or all planes on top blend from
714                          * the first or a lower plane.
715                          */
716                         vc4_plane_state = to_vc4_plane_state(plane->state);
717                         enable_bg_fill = vc4_plane_state->needs_bg_fill;
718                 }
719
720                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
721         }
722
723         writel(SCALER_CTL0_END, dlist_next);
724         dlist_next++;
725
726         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
727
728         if (enable_bg_fill)
729                 /* This sets a black background color fill, as is the case
730                  * with other DRM drivers.
731                  */
732                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
733                           HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
734                           SCALER_DISPBKGND_FILL);
735
736         /* Only update DISPLIST if the CRTC was already running and is not
737          * being disabled.
738          * vc4_crtc_enable() takes care of updating the dlist just after
739          * re-enabling VBLANK interrupts and before enabling the engine.
740          * If the CRTC is being disabled, there's no point in updating this
741          * information.
742          */
743         if (crtc->state->active && old_state->active)
744                 vc4_crtc_update_dlist(crtc);
745
746         if (crtc->state->color_mgmt_changed) {
747                 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
748
749                 if (crtc->state->gamma_lut) {
750                         vc4_crtc_update_gamma_lut(crtc);
751                         dispbkgndx |= SCALER_DISPBKGND_GAMMA;
752                 } else {
753                         /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
754                          * in hardware, which is the same as a linear lut that
755                          * DRM expects us to use in absence of a user lut.
756                          */
757                         dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
758                 }
759                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
760         }
761
762         if (debug_dump_regs) {
763                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
764                 vc4_hvs_dump_state(dev);
765         }
766 }
767
768 static int vc4_enable_vblank(struct drm_crtc *crtc)
769 {
770         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
771
772         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
773
774         return 0;
775 }
776
777 static void vc4_disable_vblank(struct drm_crtc *crtc)
778 {
779         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
780
781         CRTC_WRITE(PV_INTEN, 0);
782 }
783
784 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
785 {
786         struct drm_crtc *crtc = &vc4_crtc->base;
787         struct drm_device *dev = crtc->dev;
788         struct vc4_dev *vc4 = to_vc4_dev(dev);
789         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
790         u32 chan = vc4_crtc->channel;
791         unsigned long flags;
792
793         spin_lock_irqsave(&dev->event_lock, flags);
794         if (vc4_crtc->event &&
795             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
796              vc4_state->feed_txp)) {
797                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
798                 vc4_crtc->event = NULL;
799                 drm_crtc_vblank_put(crtc);
800
801                 /* Wait for the page flip to unmask the underrun to ensure that
802                  * the display list was updated by the hardware. Before that
803                  * happens, the HVS will be using the previous display list with
804                  * the CRTC and encoder already reconfigured, leading to
805                  * underruns. This can be seen when reconfiguring the CRTC.
806                  */
807                 vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
808         }
809         spin_unlock_irqrestore(&dev->event_lock, flags);
810 }
811
812 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
813 {
814         crtc->t_vblank = ktime_get();
815         drm_crtc_handle_vblank(&crtc->base);
816         vc4_crtc_handle_page_flip(crtc);
817 }
818
819 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
820 {
821         struct vc4_crtc *vc4_crtc = data;
822         u32 stat = CRTC_READ(PV_INTSTAT);
823         irqreturn_t ret = IRQ_NONE;
824
825         if (stat & PV_INT_VFP_START) {
826                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
827                 vc4_crtc_handle_vblank(vc4_crtc);
828                 ret = IRQ_HANDLED;
829         }
830
831         return ret;
832 }
833
834 struct vc4_async_flip_state {
835         struct drm_crtc *crtc;
836         struct drm_framebuffer *fb;
837         struct drm_framebuffer *old_fb;
838         struct drm_pending_vblank_event *event;
839
840         struct vc4_seqno_cb cb;
841 };
842
843 /* Called when the V3D execution for the BO being flipped to is done, so that
844  * we can actually update the plane's address to point to it.
845  */
846 static void
847 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
848 {
849         struct vc4_async_flip_state *flip_state =
850                 container_of(cb, struct vc4_async_flip_state, cb);
851         struct drm_crtc *crtc = flip_state->crtc;
852         struct drm_device *dev = crtc->dev;
853         struct vc4_dev *vc4 = to_vc4_dev(dev);
854         struct drm_plane *plane = crtc->primary;
855
856         vc4_plane_async_set_fb(plane, flip_state->fb);
857         if (flip_state->event) {
858                 unsigned long flags;
859
860                 spin_lock_irqsave(&dev->event_lock, flags);
861                 drm_crtc_send_vblank_event(crtc, flip_state->event);
862                 spin_unlock_irqrestore(&dev->event_lock, flags);
863         }
864
865         drm_crtc_vblank_put(crtc);
866         drm_framebuffer_put(flip_state->fb);
867
868         /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
869          * when the planes are updated through the async update path.
870          * FIXME: we should move to generic async-page-flip when it's
871          * available, so that we can get rid of this hand-made cleanup_fb()
872          * logic.
873          */
874         if (flip_state->old_fb) {
875                 struct drm_gem_cma_object *cma_bo;
876                 struct vc4_bo *bo;
877
878                 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
879                 bo = to_vc4_bo(&cma_bo->base);
880                 vc4_bo_dec_usecnt(bo);
881                 drm_framebuffer_put(flip_state->old_fb);
882         }
883
884         kfree(flip_state);
885
886         up(&vc4->async_modeset);
887 }
888
889 /* Implements async (non-vblank-synced) page flips.
890  *
891  * The page flip ioctl needs to return immediately, so we grab the
892  * modeset semaphore on the pipe, and queue the address update for
893  * when V3D is done with the BO being flipped to.
894  */
895 static int vc4_async_page_flip(struct drm_crtc *crtc,
896                                struct drm_framebuffer *fb,
897                                struct drm_pending_vblank_event *event,
898                                uint32_t flags)
899 {
900         struct drm_device *dev = crtc->dev;
901         struct vc4_dev *vc4 = to_vc4_dev(dev);
902         struct drm_plane *plane = crtc->primary;
903         int ret = 0;
904         struct vc4_async_flip_state *flip_state;
905         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
906         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
907
908         /* Increment the BO usecnt here, so that we never end up with an
909          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
910          * plane is later updated through the non-async path.
911          * FIXME: we should move to generic async-page-flip when it's
912          * available, so that we can get rid of this hand-made prepare_fb()
913          * logic.
914          */
915         ret = vc4_bo_inc_usecnt(bo);
916         if (ret)
917                 return ret;
918
919         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
920         if (!flip_state) {
921                 vc4_bo_dec_usecnt(bo);
922                 return -ENOMEM;
923         }
924
925         drm_framebuffer_get(fb);
926         flip_state->fb = fb;
927         flip_state->crtc = crtc;
928         flip_state->event = event;
929
930         /* Make sure all other async modesetes have landed. */
931         ret = down_interruptible(&vc4->async_modeset);
932         if (ret) {
933                 drm_framebuffer_put(fb);
934                 vc4_bo_dec_usecnt(bo);
935                 kfree(flip_state);
936                 return ret;
937         }
938
939         /* Save the current FB before it's replaced by the new one in
940          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
941          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
942          * it consistent.
943          * FIXME: we should move to generic async-page-flip when it's
944          * available, so that we can get rid of this hand-made cleanup_fb()
945          * logic.
946          */
947         flip_state->old_fb = plane->state->fb;
948         if (flip_state->old_fb)
949                 drm_framebuffer_get(flip_state->old_fb);
950
951         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
952
953         /* Immediately update the plane's legacy fb pointer, so that later
954          * modeset prep sees the state that will be present when the semaphore
955          * is released.
956          */
957         drm_atomic_set_fb_for_plane(plane->state, fb);
958
959         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
960                            vc4_async_page_flip_complete);
961
962         /* Driver takes ownership of state on successful async commit. */
963         return 0;
964 }
965
966 static int vc4_page_flip(struct drm_crtc *crtc,
967                          struct drm_framebuffer *fb,
968                          struct drm_pending_vblank_event *event,
969                          uint32_t flags,
970                          struct drm_modeset_acquire_ctx *ctx)
971 {
972         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
973                 return vc4_async_page_flip(crtc, fb, event, flags);
974         else
975                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
976 }
977
978 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
979 {
980         struct vc4_crtc_state *vc4_state, *old_vc4_state;
981
982         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
983         if (!vc4_state)
984                 return NULL;
985
986         old_vc4_state = to_vc4_crtc_state(crtc->state);
987         vc4_state->feed_txp = old_vc4_state->feed_txp;
988         vc4_state->margins = old_vc4_state->margins;
989
990         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
991         return &vc4_state->base;
992 }
993
994 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
995                                    struct drm_crtc_state *state)
996 {
997         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
998         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
999
1000         if (vc4_state->mm.allocated) {
1001                 unsigned long flags;
1002
1003                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1004                 drm_mm_remove_node(&vc4_state->mm);
1005                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1006
1007         }
1008
1009         drm_atomic_helper_crtc_destroy_state(crtc, state);
1010 }
1011
1012 static void
1013 vc4_crtc_reset(struct drm_crtc *crtc)
1014 {
1015         if (crtc->state)
1016                 vc4_crtc_destroy_state(crtc, crtc->state);
1017
1018         crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1019         if (crtc->state)
1020                 crtc->state->crtc = crtc;
1021 }
1022
1023 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1024         .set_config = drm_atomic_helper_set_config,
1025         .destroy = vc4_crtc_destroy,
1026         .page_flip = vc4_page_flip,
1027         .set_property = NULL,
1028         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1029         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1030         .reset = vc4_crtc_reset,
1031         .atomic_duplicate_state = vc4_crtc_duplicate_state,
1032         .atomic_destroy_state = vc4_crtc_destroy_state,
1033         .gamma_set = drm_atomic_helper_legacy_gamma_set,
1034         .enable_vblank = vc4_enable_vblank,
1035         .disable_vblank = vc4_disable_vblank,
1036 };
1037
1038 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1039         .mode_set_nofb = vc4_crtc_mode_set_nofb,
1040         .mode_valid = vc4_crtc_mode_valid,
1041         .atomic_check = vc4_crtc_atomic_check,
1042         .atomic_flush = vc4_crtc_atomic_flush,
1043         .atomic_enable = vc4_crtc_atomic_enable,
1044         .atomic_disable = vc4_crtc_atomic_disable,
1045 };
1046
1047 static const struct vc4_crtc_data pv0_data = {
1048         .hvs_channel = 0,
1049         .debugfs_name = "crtc0_regs",
1050         .encoder_types = {
1051                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1052                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1053         },
1054 };
1055
1056 static const struct vc4_crtc_data pv1_data = {
1057         .hvs_channel = 2,
1058         .debugfs_name = "crtc1_regs",
1059         .encoder_types = {
1060                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1061                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1062         },
1063 };
1064
1065 static const struct vc4_crtc_data pv2_data = {
1066         .hvs_channel = 1,
1067         .debugfs_name = "crtc2_regs",
1068         .encoder_types = {
1069                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1070                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1071         },
1072 };
1073
1074 static const struct of_device_id vc4_crtc_dt_match[] = {
1075         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1076         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1077         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
1078         {}
1079 };
1080
1081 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1082                                         struct drm_crtc *crtc)
1083 {
1084         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1085         const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1086         const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1087         struct drm_encoder *encoder;
1088
1089         drm_for_each_encoder(encoder, drm) {
1090                 struct vc4_encoder *vc4_encoder;
1091                 int i;
1092
1093                 /* HVS FIFO2 can feed the TXP IP. */
1094                 if (crtc_data->hvs_channel == 2 &&
1095                     encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1096                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
1097                         continue;
1098                 }
1099
1100                 vc4_encoder = to_vc4_encoder(encoder);
1101                 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1102                         if (vc4_encoder->type == encoder_types[i]) {
1103                                 vc4_encoder->clock_select = i;
1104                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1105                                 break;
1106                         }
1107                 }
1108         }
1109 }
1110
1111 static void
1112 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1113 {
1114         struct drm_device *drm = vc4_crtc->base.dev;
1115         struct vc4_dev *vc4 = to_vc4_dev(drm);
1116         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1117         /* Top/base are supposed to be 4-pixel aligned, but the
1118          * Raspberry Pi firmware fills the low bits (which are
1119          * presumably ignored).
1120          */
1121         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1122         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1123
1124         vc4_crtc->cob_size = top - base + 4;
1125 }
1126
1127 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1128 {
1129         struct platform_device *pdev = to_platform_device(dev);
1130         struct drm_device *drm = dev_get_drvdata(master);
1131         struct vc4_crtc *vc4_crtc;
1132         struct drm_crtc *crtc;
1133         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1134         const struct of_device_id *match;
1135         int ret, i;
1136
1137         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1138         if (!vc4_crtc)
1139                 return -ENOMEM;
1140         crtc = &vc4_crtc->base;
1141
1142         match = of_match_device(vc4_crtc_dt_match, dev);
1143         if (!match)
1144                 return -ENODEV;
1145         vc4_crtc->data = match->data;
1146         vc4_crtc->pdev = pdev;
1147
1148         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1149         if (IS_ERR(vc4_crtc->regs))
1150                 return PTR_ERR(vc4_crtc->regs);
1151
1152         vc4_crtc->regset.base = vc4_crtc->regs;
1153         vc4_crtc->regset.regs = crtc_regs;
1154         vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1155
1156         /* For now, we create just the primary and the legacy cursor
1157          * planes.  We should be able to stack more planes on easily,
1158          * but to do that we would need to compute the bandwidth
1159          * requirement of the plane configuration, and reject ones
1160          * that will take too much.
1161          */
1162         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1163         if (IS_ERR(primary_plane)) {
1164                 dev_err(dev, "failed to construct primary plane\n");
1165                 ret = PTR_ERR(primary_plane);
1166                 goto err;
1167         }
1168
1169         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1170                                   &vc4_crtc_funcs, NULL);
1171         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1172         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1173         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1174         drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1175
1176         /* We support CTM, but only for one CRTC at a time. It's therefore
1177          * implemented as private driver state in vc4_kms, not here.
1178          */
1179         drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1180
1181         /* Set up some arbitrary number of planes.  We're not limited
1182          * by a set number of physical registers, just the space in
1183          * the HVS (16k) and how small an plane can be (28 bytes).
1184          * However, each plane we set up takes up some memory, and
1185          * increases the cost of looping over planes, which atomic
1186          * modesetting does quite a bit.  As a result, we pick a
1187          * modest number of planes to expose, that should hopefully
1188          * still cover any sane usecase.
1189          */
1190         for (i = 0; i < 8; i++) {
1191                 struct drm_plane *plane =
1192                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1193
1194                 if (IS_ERR(plane))
1195                         continue;
1196
1197                 plane->possible_crtcs = drm_crtc_mask(crtc);
1198         }
1199
1200         /* Set up the legacy cursor after overlay initialization,
1201          * since we overlay planes on the CRTC in the order they were
1202          * initialized.
1203          */
1204         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1205         if (!IS_ERR(cursor_plane)) {
1206                 cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1207                 crtc->cursor = cursor_plane;
1208         }
1209
1210         vc4_crtc_get_cob_allocation(vc4_crtc);
1211
1212         CRTC_WRITE(PV_INTEN, 0);
1213         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1214         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1215                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1216         if (ret)
1217                 goto err_destroy_planes;
1218
1219         vc4_set_crtc_possible_masks(drm, crtc);
1220
1221         for (i = 0; i < crtc->gamma_size; i++) {
1222                 vc4_crtc->lut_r[i] = i;
1223                 vc4_crtc->lut_g[i] = i;
1224                 vc4_crtc->lut_b[i] = i;
1225         }
1226
1227         platform_set_drvdata(pdev, vc4_crtc);
1228
1229         vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name,
1230                                  &vc4_crtc->regset);
1231
1232         return 0;
1233
1234 err_destroy_planes:
1235         list_for_each_entry_safe(destroy_plane, temp,
1236                                  &drm->mode_config.plane_list, head) {
1237                 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1238                     destroy_plane->funcs->destroy(destroy_plane);
1239         }
1240 err:
1241         return ret;
1242 }
1243
1244 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1245                             void *data)
1246 {
1247         struct platform_device *pdev = to_platform_device(dev);
1248         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1249
1250         vc4_crtc_destroy(&vc4_crtc->base);
1251
1252         CRTC_WRITE(PV_INTEN, 0);
1253
1254         platform_set_drvdata(pdev, NULL);
1255 }
1256
1257 static const struct component_ops vc4_crtc_ops = {
1258         .bind   = vc4_crtc_bind,
1259         .unbind = vc4_crtc_unbind,
1260 };
1261
1262 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1263 {
1264         return component_add(&pdev->dev, &vc4_crtc_ops);
1265 }
1266
1267 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1268 {
1269         component_del(&pdev->dev, &vc4_crtc_ops);
1270         return 0;
1271 }
1272
1273 struct platform_driver vc4_crtc_driver = {
1274         .probe = vc4_crtc_dev_probe,
1275         .remove = vc4_crtc_dev_remove,
1276         .driver = {
1277                 .name = "vc4_crtc",
1278                 .of_match_table = vc4_crtc_dt_match,
1279         },
1280 };