]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
Merge airlied/drm-next into drm-misc-next
[linux.git] / drivers / gpu / drm / vmwgfx / vmwgfx_kms.c
1 /**************************************************************************
2  *
3  * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33
34
35 /* Might need a hrtimer here? */
36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
37
38 void vmw_du_cleanup(struct vmw_display_unit *du)
39 {
40         drm_plane_cleanup(&du->primary);
41         drm_plane_cleanup(&du->cursor);
42
43         drm_connector_unregister(&du->connector);
44         drm_crtc_cleanup(&du->crtc);
45         drm_encoder_cleanup(&du->encoder);
46         drm_connector_cleanup(&du->connector);
47 }
48
49 /*
50  * Display Unit Cursor functions
51  */
52
53 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
54                                    u32 *image, u32 width, u32 height,
55                                    u32 hotspotX, u32 hotspotY)
56 {
57         struct {
58                 u32 cmd;
59                 SVGAFifoCmdDefineAlphaCursor cursor;
60         } *cmd;
61         u32 image_size = width * height * 4;
62         u32 cmd_size = sizeof(*cmd) + image_size;
63
64         if (!image)
65                 return -EINVAL;
66
67         cmd = vmw_fifo_reserve(dev_priv, cmd_size);
68         if (unlikely(cmd == NULL)) {
69                 DRM_ERROR("Fifo reserve failed.\n");
70                 return -ENOMEM;
71         }
72
73         memset(cmd, 0, sizeof(*cmd));
74
75         memcpy(&cmd[1], image, image_size);
76
77         cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
78         cmd->cursor.id = 0;
79         cmd->cursor.width = width;
80         cmd->cursor.height = height;
81         cmd->cursor.hotspotX = hotspotX;
82         cmd->cursor.hotspotY = hotspotY;
83
84         vmw_fifo_commit_flush(dev_priv, cmd_size);
85
86         return 0;
87 }
88
89 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv,
90                                     struct vmw_dma_buffer *dmabuf,
91                                     u32 width, u32 height,
92                                     u32 hotspotX, u32 hotspotY)
93 {
94         struct ttm_bo_kmap_obj map;
95         unsigned long kmap_offset;
96         unsigned long kmap_num;
97         void *virtual;
98         bool dummy;
99         int ret;
100
101         kmap_offset = 0;
102         kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
103
104         ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL);
105         if (unlikely(ret != 0)) {
106                 DRM_ERROR("reserve failed\n");
107                 return -EINVAL;
108         }
109
110         ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map);
111         if (unlikely(ret != 0))
112                 goto err_unreserve;
113
114         virtual = ttm_kmap_obj_virtual(&map, &dummy);
115         ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
116                                       hotspotX, hotspotY);
117
118         ttm_bo_kunmap(&map);
119 err_unreserve:
120         ttm_bo_unreserve(&dmabuf->base);
121
122         return ret;
123 }
124
125
126 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
127                                        bool show, int x, int y)
128 {
129         u32 *fifo_mem = dev_priv->mmio_virt;
130         uint32_t count;
131
132         spin_lock(&dev_priv->cursor_lock);
133         vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
134         vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
135         vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
136         count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137         vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
138         spin_unlock(&dev_priv->cursor_lock);
139 }
140
141
142 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
143                           struct ttm_object_file *tfile,
144                           struct ttm_buffer_object *bo,
145                           SVGA3dCmdHeader *header)
146 {
147         struct ttm_bo_kmap_obj map;
148         unsigned long kmap_offset;
149         unsigned long kmap_num;
150         SVGA3dCopyBox *box;
151         unsigned box_count;
152         void *virtual;
153         bool dummy;
154         struct vmw_dma_cmd {
155                 SVGA3dCmdHeader header;
156                 SVGA3dCmdSurfaceDMA dma;
157         } *cmd;
158         int i, ret;
159
160         cmd = container_of(header, struct vmw_dma_cmd, header);
161
162         /* No snooper installed */
163         if (!srf->snooper.image)
164                 return;
165
166         if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
167                 DRM_ERROR("face and mipmap for cursors should never != 0\n");
168                 return;
169         }
170
171         if (cmd->header.size < 64) {
172                 DRM_ERROR("at least one full copy box must be given\n");
173                 return;
174         }
175
176         box = (SVGA3dCopyBox *)&cmd[1];
177         box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
178                         sizeof(SVGA3dCopyBox);
179
180         if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
181             box->x != 0    || box->y != 0    || box->z != 0    ||
182             box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
183             box->d != 1    || box_count != 1) {
184                 /* TODO handle none page aligned offsets */
185                 /* TODO handle more dst & src != 0 */
186                 /* TODO handle more then one copy */
187                 DRM_ERROR("Cant snoop dma request for cursor!\n");
188                 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
189                           box->srcx, box->srcy, box->srcz,
190                           box->x, box->y, box->z,
191                           box->w, box->h, box->d, box_count,
192                           cmd->dma.guest.ptr.offset);
193                 return;
194         }
195
196         kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
197         kmap_num = (64*64*4) >> PAGE_SHIFT;
198
199         ret = ttm_bo_reserve(bo, true, false, NULL);
200         if (unlikely(ret != 0)) {
201                 DRM_ERROR("reserve failed\n");
202                 return;
203         }
204
205         ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
206         if (unlikely(ret != 0))
207                 goto err_unreserve;
208
209         virtual = ttm_kmap_obj_virtual(&map, &dummy);
210
211         if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
212                 memcpy(srf->snooper.image, virtual, 64*64*4);
213         } else {
214                 /* Image is unsigned pointer. */
215                 for (i = 0; i < box->h; i++)
216                         memcpy(srf->snooper.image + i * 64,
217                                virtual + i * cmd->dma.guest.pitch,
218                                box->w * 4);
219         }
220
221         srf->snooper.age++;
222
223         ttm_bo_kunmap(&map);
224 err_unreserve:
225         ttm_bo_unreserve(bo);
226 }
227
228 /**
229  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
230  *
231  * @dev_priv: Pointer to the device private struct.
232  *
233  * Clears all legacy hotspots.
234  */
235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
236 {
237         struct drm_device *dev = dev_priv->dev;
238         struct vmw_display_unit *du;
239         struct drm_crtc *crtc;
240
241         drm_modeset_lock_all(dev);
242         drm_for_each_crtc(crtc, dev) {
243                 du = vmw_crtc_to_du(crtc);
244
245                 du->hotspot_x = 0;
246                 du->hotspot_y = 0;
247         }
248         drm_modeset_unlock_all(dev);
249 }
250
251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
252 {
253         struct drm_device *dev = dev_priv->dev;
254         struct vmw_display_unit *du;
255         struct drm_crtc *crtc;
256
257         mutex_lock(&dev->mode_config.mutex);
258
259         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
260                 du = vmw_crtc_to_du(crtc);
261                 if (!du->cursor_surface ||
262                     du->cursor_age == du->cursor_surface->snooper.age)
263                         continue;
264
265                 du->cursor_age = du->cursor_surface->snooper.age;
266                 vmw_cursor_update_image(dev_priv,
267                                         du->cursor_surface->snooper.image,
268                                         64, 64,
269                                         du->hotspot_x + du->core_hotspot_x,
270                                         du->hotspot_y + du->core_hotspot_y);
271         }
272
273         mutex_unlock(&dev->mode_config.mutex);
274 }
275
276
277 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
278 {
279         vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
280
281         drm_plane_cleanup(plane);
282 }
283
284
285 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
286 {
287         drm_plane_cleanup(plane);
288
289         /* Planes are static in our case so we don't free it */
290 }
291
292
293 /**
294  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
295  *
296  * @vps: plane state associated with the display surface
297  * @unreference: true if we also want to unreference the display.
298  */
299 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
300                              bool unreference)
301 {
302         if (vps->surf) {
303                 if (vps->pinned) {
304                         vmw_resource_unpin(&vps->surf->res);
305                         vps->pinned--;
306                 }
307
308                 if (unreference) {
309                         if (vps->pinned)
310                                 DRM_ERROR("Surface still pinned\n");
311                         vmw_surface_unreference(&vps->surf);
312                 }
313         }
314 }
315
316
317 /**
318  * vmw_du_plane_cleanup_fb - Unpins the cursor
319  *
320  * @plane:  display plane
321  * @old_state: Contains the FB to clean up
322  *
323  * Unpins the framebuffer surface
324  *
325  * Returns 0 on success
326  */
327 void
328 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
329                         struct drm_plane_state *old_state)
330 {
331         struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
332
333         vmw_du_plane_unpin_surf(vps, false);
334 }
335
336
337 /**
338  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
339  *
340  * @plane:  display plane
341  * @new_state: info on the new plane state, including the FB
342  *
343  * Returns 0 on success
344  */
345 int
346 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
347                                struct drm_plane_state *new_state)
348 {
349         struct drm_framebuffer *fb = new_state->fb;
350         struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
351
352
353         if (vps->surf)
354                 vmw_surface_unreference(&vps->surf);
355
356         if (vps->dmabuf)
357                 vmw_dmabuf_unreference(&vps->dmabuf);
358
359         if (fb) {
360                 if (vmw_framebuffer_to_vfb(fb)->dmabuf) {
361                         vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer;
362                         vmw_dmabuf_reference(vps->dmabuf);
363                 } else {
364                         vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
365                         vmw_surface_reference(vps->surf);
366                 }
367         }
368
369         return 0;
370 }
371
372
373 void
374 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
375                                   struct drm_plane_state *old_state)
376 {
377         struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
378         struct vmw_private *dev_priv = vmw_priv(crtc->dev);
379         struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
380         struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
381         s32 hotspot_x, hotspot_y;
382         int ret = 0;
383
384
385         hotspot_x = du->hotspot_x;
386         hotspot_y = du->hotspot_y;
387
388         if (plane->fb) {
389                 hotspot_x += plane->fb->hot_x;
390                 hotspot_y += plane->fb->hot_y;
391         }
392
393         du->cursor_surface = vps->surf;
394         du->cursor_dmabuf = vps->dmabuf;
395
396         /* setup new image */
397         if (vps->surf) {
398                 du->cursor_age = du->cursor_surface->snooper.age;
399
400                 ret = vmw_cursor_update_image(dev_priv,
401                                               vps->surf->snooper.image,
402                                               64, 64, hotspot_x, hotspot_y);
403         } else if (vps->dmabuf) {
404                 ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf,
405                                                plane->state->crtc_w,
406                                                plane->state->crtc_h,
407                                                hotspot_x, hotspot_y);
408         } else {
409                 vmw_cursor_update_position(dev_priv, false, 0, 0);
410                 return;
411         }
412
413         if (!ret) {
414                 du->cursor_x = plane->state->crtc_x + du->set_gui_x;
415                 du->cursor_y = plane->state->crtc_y + du->set_gui_y;
416
417                 vmw_cursor_update_position(dev_priv, true,
418                                            du->cursor_x + hotspot_x,
419                                            du->cursor_y + hotspot_y);
420
421                 du->core_hotspot_x = hotspot_x - du->hotspot_x;
422                 du->core_hotspot_y = hotspot_y - du->hotspot_y;
423         } else {
424                 DRM_ERROR("Failed to update cursor image\n");
425         }
426 }
427
428
429 /**
430  * vmw_du_primary_plane_atomic_check - check if the new state is okay
431  *
432  * @plane: display plane
433  * @state: info on the new plane state, including the FB
434  *
435  * Check if the new state is settable given the current state.  Other
436  * than what the atomic helper checks, we care about crtc fitting
437  * the FB and maintaining one active framebuffer.
438  *
439  * Returns 0 on success
440  */
441 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
442                                       struct drm_plane_state *state)
443 {
444         struct drm_crtc_state *crtc_state = NULL;
445         struct drm_framebuffer *new_fb = state->fb;
446         struct drm_rect clip = {};
447         int ret;
448
449         if (state->crtc)
450                 crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc);
451
452         if (crtc_state && crtc_state->enable) {
453                 clip.x2 = crtc_state->adjusted_mode.hdisplay;
454                 clip.y2 = crtc_state->adjusted_mode.vdisplay;
455         }
456
457         ret = drm_atomic_helper_check_plane_state(state, crtc_state, &clip,
458                                                   DRM_PLANE_HELPER_NO_SCALING,
459                                                   DRM_PLANE_HELPER_NO_SCALING,
460                                                   false, true);
461
462         if (!ret && new_fb) {
463                 struct drm_crtc *crtc = state->crtc;
464                 struct vmw_connector_state *vcs;
465                 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
466                 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
467                 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
468
469                 vcs = vmw_connector_state_to_vcs(du->connector.state);
470
471                 /* Only one active implicit framebuffer at a time. */
472                 mutex_lock(&dev_priv->global_kms_state_mutex);
473                 if (vcs->is_implicit && dev_priv->implicit_fb &&
474                     !(dev_priv->num_implicit == 1 && du->active_implicit)
475                     && dev_priv->implicit_fb != vfb) {
476                         DRM_ERROR("Multiple implicit framebuffers "
477                                   "not supported.\n");
478                         ret = -EINVAL;
479                 }
480                 mutex_unlock(&dev_priv->global_kms_state_mutex);
481         }
482
483
484         return ret;
485 }
486
487
488 /**
489  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
490  *
491  * @plane: cursor plane
492  * @state: info on the new plane state
493  *
494  * This is a chance to fail if the new cursor state does not fit
495  * our requirements.
496  *
497  * Returns 0 on success
498  */
499 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
500                                      struct drm_plane_state *new_state)
501 {
502         int ret = 0;
503         struct vmw_surface *surface = NULL;
504         struct drm_framebuffer *fb = new_state->fb;
505
506
507         /* Turning off */
508         if (!fb)
509                 return ret;
510
511         /* A lot of the code assumes this */
512         if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
513                 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
514                           new_state->crtc_w, new_state->crtc_h);
515                 ret = -EINVAL;
516         }
517
518         if (!vmw_framebuffer_to_vfb(fb)->dmabuf)
519                 surface = vmw_framebuffer_to_vfbs(fb)->surface;
520
521         if (surface && !surface->snooper.image) {
522                 DRM_ERROR("surface not suitable for cursor\n");
523                 ret = -EINVAL;
524         }
525
526         return ret;
527 }
528
529
530 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
531                              struct drm_crtc_state *new_state)
532 {
533         struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
534         int connector_mask = 1 << drm_connector_index(&du->connector);
535         bool has_primary = new_state->plane_mask &
536                            BIT(drm_plane_index(crtc->primary));
537
538         /* We always want to have an active plane with an active CRTC */
539         if (has_primary != new_state->enable)
540                 return -EINVAL;
541
542
543         if (new_state->connector_mask != connector_mask &&
544             new_state->connector_mask != 0) {
545                 DRM_ERROR("Invalid connectors configuration\n");
546                 return -EINVAL;
547         }
548
549         /*
550          * Our virtual device does not have a dot clock, so use the logical
551          * clock value as the dot clock.
552          */
553         if (new_state->mode.crtc_clock == 0)
554                 new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
555
556         return 0;
557 }
558
559
560 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
561                               struct drm_crtc_state *old_crtc_state)
562 {
563 }
564
565
566 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
567                               struct drm_crtc_state *old_crtc_state)
568 {
569         struct drm_pending_vblank_event *event = crtc->state->event;
570
571         if (event) {
572                 crtc->state->event = NULL;
573
574                 spin_lock_irq(&crtc->dev->event_lock);
575                 if (drm_crtc_vblank_get(crtc) == 0)
576                         drm_crtc_arm_vblank_event(crtc, event);
577                 else
578                         drm_crtc_send_vblank_event(crtc, event);
579                 spin_unlock_irq(&crtc->dev->event_lock);
580         }
581
582 }
583
584
585 /**
586  * vmw_du_crtc_duplicate_state - duplicate crtc state
587  * @crtc: DRM crtc
588  *
589  * Allocates and returns a copy of the crtc state (both common and
590  * vmw-specific) for the specified crtc.
591  *
592  * Returns: The newly allocated crtc state, or NULL on failure.
593  */
594 struct drm_crtc_state *
595 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
596 {
597         struct drm_crtc_state *state;
598         struct vmw_crtc_state *vcs;
599
600         if (WARN_ON(!crtc->state))
601                 return NULL;
602
603         vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
604
605         if (!vcs)
606                 return NULL;
607
608         state = &vcs->base;
609
610         __drm_atomic_helper_crtc_duplicate_state(crtc, state);
611
612         return state;
613 }
614
615
616 /**
617  * vmw_du_crtc_reset - creates a blank vmw crtc state
618  * @crtc: DRM crtc
619  *
620  * Resets the atomic state for @crtc by freeing the state pointer (which
621  * might be NULL, e.g. at driver load time) and allocating a new empty state
622  * object.
623  */
624 void vmw_du_crtc_reset(struct drm_crtc *crtc)
625 {
626         struct vmw_crtc_state *vcs;
627
628
629         if (crtc->state) {
630                 __drm_atomic_helper_crtc_destroy_state(crtc->state);
631
632                 kfree(vmw_crtc_state_to_vcs(crtc->state));
633         }
634
635         vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
636
637         if (!vcs) {
638                 DRM_ERROR("Cannot allocate vmw_crtc_state\n");
639                 return;
640         }
641
642         crtc->state = &vcs->base;
643         crtc->state->crtc = crtc;
644 }
645
646
647 /**
648  * vmw_du_crtc_destroy_state - destroy crtc state
649  * @crtc: DRM crtc
650  * @state: state object to destroy
651  *
652  * Destroys the crtc state (both common and vmw-specific) for the
653  * specified plane.
654  */
655 void
656 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
657                           struct drm_crtc_state *state)
658 {
659         drm_atomic_helper_crtc_destroy_state(crtc, state);
660 }
661
662
663 /**
664  * vmw_du_plane_duplicate_state - duplicate plane state
665  * @plane: drm plane
666  *
667  * Allocates and returns a copy of the plane state (both common and
668  * vmw-specific) for the specified plane.
669  *
670  * Returns: The newly allocated plane state, or NULL on failure.
671  */
672 struct drm_plane_state *
673 vmw_du_plane_duplicate_state(struct drm_plane *plane)
674 {
675         struct drm_plane_state *state;
676         struct vmw_plane_state *vps;
677
678         vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
679
680         if (!vps)
681                 return NULL;
682
683         vps->pinned = 0;
684
685         /* Mapping is managed by prepare_fb/cleanup_fb */
686         memset(&vps->guest_map, 0, sizeof(vps->guest_map));
687         memset(&vps->host_map, 0, sizeof(vps->host_map));
688         vps->cpp = 0;
689
690         /* Each ref counted resource needs to be acquired again */
691         if (vps->surf)
692                 (void) vmw_surface_reference(vps->surf);
693
694         if (vps->dmabuf)
695                 (void) vmw_dmabuf_reference(vps->dmabuf);
696
697         state = &vps->base;
698
699         __drm_atomic_helper_plane_duplicate_state(plane, state);
700
701         return state;
702 }
703
704
705 /**
706  * vmw_du_plane_reset - creates a blank vmw plane state
707  * @plane: drm plane
708  *
709  * Resets the atomic state for @plane by freeing the state pointer (which might
710  * be NULL, e.g. at driver load time) and allocating a new empty state object.
711  */
712 void vmw_du_plane_reset(struct drm_plane *plane)
713 {
714         struct vmw_plane_state *vps;
715
716
717         if (plane->state)
718                 vmw_du_plane_destroy_state(plane, plane->state);
719
720         vps = kzalloc(sizeof(*vps), GFP_KERNEL);
721
722         if (!vps) {
723                 DRM_ERROR("Cannot allocate vmw_plane_state\n");
724                 return;
725         }
726
727         plane->state = &vps->base;
728         plane->state->plane = plane;
729         plane->state->rotation = DRM_MODE_ROTATE_0;
730 }
731
732
733 /**
734  * vmw_du_plane_destroy_state - destroy plane state
735  * @plane: DRM plane
736  * @state: state object to destroy
737  *
738  * Destroys the plane state (both common and vmw-specific) for the
739  * specified plane.
740  */
741 void
742 vmw_du_plane_destroy_state(struct drm_plane *plane,
743                            struct drm_plane_state *state)
744 {
745         struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
746
747
748         /* Should have been freed by cleanup_fb */
749         if (vps->guest_map.virtual) {
750                 DRM_ERROR("Guest mapping not freed\n");
751                 ttm_bo_kunmap(&vps->guest_map);
752         }
753
754         if (vps->host_map.virtual) {
755                 DRM_ERROR("Host mapping not freed\n");
756                 ttm_bo_kunmap(&vps->host_map);
757         }
758
759         if (vps->surf)
760                 vmw_surface_unreference(&vps->surf);
761
762         if (vps->dmabuf)
763                 vmw_dmabuf_unreference(&vps->dmabuf);
764
765         drm_atomic_helper_plane_destroy_state(plane, state);
766 }
767
768
769 /**
770  * vmw_du_connector_duplicate_state - duplicate connector state
771  * @connector: DRM connector
772  *
773  * Allocates and returns a copy of the connector state (both common and
774  * vmw-specific) for the specified connector.
775  *
776  * Returns: The newly allocated connector state, or NULL on failure.
777  */
778 struct drm_connector_state *
779 vmw_du_connector_duplicate_state(struct drm_connector *connector)
780 {
781         struct drm_connector_state *state;
782         struct vmw_connector_state *vcs;
783
784         if (WARN_ON(!connector->state))
785                 return NULL;
786
787         vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
788
789         if (!vcs)
790                 return NULL;
791
792         state = &vcs->base;
793
794         __drm_atomic_helper_connector_duplicate_state(connector, state);
795
796         return state;
797 }
798
799
800 /**
801  * vmw_du_connector_reset - creates a blank vmw connector state
802  * @connector: DRM connector
803  *
804  * Resets the atomic state for @connector by freeing the state pointer (which
805  * might be NULL, e.g. at driver load time) and allocating a new empty state
806  * object.
807  */
808 void vmw_du_connector_reset(struct drm_connector *connector)
809 {
810         struct vmw_connector_state *vcs;
811
812
813         if (connector->state) {
814                 __drm_atomic_helper_connector_destroy_state(connector->state);
815
816                 kfree(vmw_connector_state_to_vcs(connector->state));
817         }
818
819         vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
820
821         if (!vcs) {
822                 DRM_ERROR("Cannot allocate vmw_connector_state\n");
823                 return;
824         }
825
826         __drm_atomic_helper_connector_reset(connector, &vcs->base);
827 }
828
829
830 /**
831  * vmw_du_connector_destroy_state - destroy connector state
832  * @connector: DRM connector
833  * @state: state object to destroy
834  *
835  * Destroys the connector state (both common and vmw-specific) for the
836  * specified plane.
837  */
838 void
839 vmw_du_connector_destroy_state(struct drm_connector *connector,
840                           struct drm_connector_state *state)
841 {
842         drm_atomic_helper_connector_destroy_state(connector, state);
843 }
844 /*
845  * Generic framebuffer code
846  */
847
848 /*
849  * Surface framebuffer code
850  */
851
852 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
853 {
854         struct vmw_framebuffer_surface *vfbs =
855                 vmw_framebuffer_to_vfbs(framebuffer);
856
857         drm_framebuffer_cleanup(framebuffer);
858         vmw_surface_unreference(&vfbs->surface);
859         if (vfbs->base.user_obj)
860                 ttm_base_object_unref(&vfbs->base.user_obj);
861
862         kfree(vfbs);
863 }
864
865 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
866                                   struct drm_file *file_priv,
867                                   unsigned flags, unsigned color,
868                                   struct drm_clip_rect *clips,
869                                   unsigned num_clips)
870 {
871         struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
872         struct vmw_framebuffer_surface *vfbs =
873                 vmw_framebuffer_to_vfbs(framebuffer);
874         struct drm_clip_rect norect;
875         int ret, inc = 1;
876
877         /* Legacy Display Unit does not support 3D */
878         if (dev_priv->active_display_unit == vmw_du_legacy)
879                 return -EINVAL;
880
881         drm_modeset_lock_all(dev_priv->dev);
882
883         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
884         if (unlikely(ret != 0)) {
885                 drm_modeset_unlock_all(dev_priv->dev);
886                 return ret;
887         }
888
889         if (!num_clips) {
890                 num_clips = 1;
891                 clips = &norect;
892                 norect.x1 = norect.y1 = 0;
893                 norect.x2 = framebuffer->width;
894                 norect.y2 = framebuffer->height;
895         } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
896                 num_clips /= 2;
897                 inc = 2; /* skip source rects */
898         }
899
900         if (dev_priv->active_display_unit == vmw_du_screen_object)
901                 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
902                                                    clips, NULL, NULL, 0, 0,
903                                                    num_clips, inc, NULL);
904         else
905                 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
906                                                  clips, NULL, NULL, 0, 0,
907                                                  num_clips, inc, NULL);
908
909         vmw_fifo_flush(dev_priv, false);
910         ttm_read_unlock(&dev_priv->reservation_sem);
911
912         drm_modeset_unlock_all(dev_priv->dev);
913
914         return 0;
915 }
916
917 /**
918  * vmw_kms_readback - Perform a readback from the screen system to
919  * a dma-buffer backed framebuffer.
920  *
921  * @dev_priv: Pointer to the device private structure.
922  * @file_priv: Pointer to a struct drm_file identifying the caller.
923  * Must be set to NULL if @user_fence_rep is NULL.
924  * @vfb: Pointer to the dma-buffer backed framebuffer.
925  * @user_fence_rep: User-space provided structure for fence information.
926  * Must be set to non-NULL if @file_priv is non-NULL.
927  * @vclips: Array of clip rects.
928  * @num_clips: Number of clip rects in @vclips.
929  *
930  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
931  * interrupted.
932  */
933 int vmw_kms_readback(struct vmw_private *dev_priv,
934                      struct drm_file *file_priv,
935                      struct vmw_framebuffer *vfb,
936                      struct drm_vmw_fence_rep __user *user_fence_rep,
937                      struct drm_vmw_rect *vclips,
938                      uint32_t num_clips)
939 {
940         switch (dev_priv->active_display_unit) {
941         case vmw_du_screen_object:
942                 return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
943                                             user_fence_rep, vclips, num_clips);
944         case vmw_du_screen_target:
945                 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
946                                         user_fence_rep, NULL, vclips, num_clips,
947                                         1, false, true);
948         default:
949                 WARN_ONCE(true,
950                           "Readback called with invalid display system.\n");
951 }
952
953         return -ENOSYS;
954 }
955
956
957 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
958         .destroy = vmw_framebuffer_surface_destroy,
959         .dirty = vmw_framebuffer_surface_dirty,
960 };
961
962 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
963                                            struct vmw_surface *surface,
964                                            struct vmw_framebuffer **out,
965                                            const struct drm_mode_fb_cmd2
966                                            *mode_cmd,
967                                            bool is_dmabuf_proxy)
968
969 {
970         struct drm_device *dev = dev_priv->dev;
971         struct vmw_framebuffer_surface *vfbs;
972         enum SVGA3dSurfaceFormat format;
973         int ret;
974         struct drm_format_name_buf format_name;
975
976         /* 3D is only supported on HWv8 and newer hosts */
977         if (dev_priv->active_display_unit == vmw_du_legacy)
978                 return -ENOSYS;
979
980         /*
981          * Sanity checks.
982          */
983
984         /* Surface must be marked as a scanout. */
985         if (unlikely(!surface->scanout))
986                 return -EINVAL;
987
988         if (unlikely(surface->mip_levels[0] != 1 ||
989                      surface->num_sizes != 1 ||
990                      surface->base_size.width < mode_cmd->width ||
991                      surface->base_size.height < mode_cmd->height ||
992                      surface->base_size.depth != 1)) {
993                 DRM_ERROR("Incompatible surface dimensions "
994                           "for requested mode.\n");
995                 return -EINVAL;
996         }
997
998         switch (mode_cmd->pixel_format) {
999         case DRM_FORMAT_ARGB8888:
1000                 format = SVGA3D_A8R8G8B8;
1001                 break;
1002         case DRM_FORMAT_XRGB8888:
1003                 format = SVGA3D_X8R8G8B8;
1004                 break;
1005         case DRM_FORMAT_RGB565:
1006                 format = SVGA3D_R5G6B5;
1007                 break;
1008         case DRM_FORMAT_XRGB1555:
1009                 format = SVGA3D_A1R5G5B5;
1010                 break;
1011         default:
1012                 DRM_ERROR("Invalid pixel format: %s\n",
1013                           drm_get_format_name(mode_cmd->pixel_format, &format_name));
1014                 return -EINVAL;
1015         }
1016
1017         /*
1018          * For DX, surface format validation is done when surface->scanout
1019          * is set.
1020          */
1021         if (!dev_priv->has_dx && format != surface->format) {
1022                 DRM_ERROR("Invalid surface format for requested mode.\n");
1023                 return -EINVAL;
1024         }
1025
1026         vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1027         if (!vfbs) {
1028                 ret = -ENOMEM;
1029                 goto out_err1;
1030         }
1031
1032         drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1033         vfbs->surface = vmw_surface_reference(surface);
1034         vfbs->base.user_handle = mode_cmd->handles[0];
1035         vfbs->is_dmabuf_proxy = is_dmabuf_proxy;
1036
1037         *out = &vfbs->base;
1038
1039         ret = drm_framebuffer_init(dev, &vfbs->base.base,
1040                                    &vmw_framebuffer_surface_funcs);
1041         if (ret)
1042                 goto out_err2;
1043
1044         return 0;
1045
1046 out_err2:
1047         vmw_surface_unreference(&surface);
1048         kfree(vfbs);
1049 out_err1:
1050         return ret;
1051 }
1052
1053 /*
1054  * Dmabuf framebuffer code
1055  */
1056
1057 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer)
1058 {
1059         struct vmw_framebuffer_dmabuf *vfbd =
1060                 vmw_framebuffer_to_vfbd(framebuffer);
1061
1062         drm_framebuffer_cleanup(framebuffer);
1063         vmw_dmabuf_unreference(&vfbd->buffer);
1064         if (vfbd->base.user_obj)
1065                 ttm_base_object_unref(&vfbd->base.user_obj);
1066
1067         kfree(vfbd);
1068 }
1069
1070 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer,
1071                                  struct drm_file *file_priv,
1072                                  unsigned flags, unsigned color,
1073                                  struct drm_clip_rect *clips,
1074                                  unsigned num_clips)
1075 {
1076         struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1077         struct vmw_framebuffer_dmabuf *vfbd =
1078                 vmw_framebuffer_to_vfbd(framebuffer);
1079         struct drm_clip_rect norect;
1080         int ret, increment = 1;
1081
1082         drm_modeset_lock_all(dev_priv->dev);
1083
1084         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1085         if (unlikely(ret != 0)) {
1086                 drm_modeset_unlock_all(dev_priv->dev);
1087                 return ret;
1088         }
1089
1090         if (!num_clips) {
1091                 num_clips = 1;
1092                 clips = &norect;
1093                 norect.x1 = norect.y1 = 0;
1094                 norect.x2 = framebuffer->width;
1095                 norect.y2 = framebuffer->height;
1096         } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1097                 num_clips /= 2;
1098                 increment = 2;
1099         }
1100
1101         switch (dev_priv->active_display_unit) {
1102         case vmw_du_screen_target:
1103                 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1104                                        clips, NULL, num_clips, increment,
1105                                        true, true);
1106                 break;
1107         case vmw_du_screen_object:
1108                 ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base,
1109                                                   clips, NULL, num_clips,
1110                                                   increment, true, NULL);
1111                 break;
1112         case vmw_du_legacy:
1113                 ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0,
1114                                                   clips, num_clips, increment);
1115                 break;
1116         default:
1117                 ret = -EINVAL;
1118                 WARN_ONCE(true, "Dirty called with invalid display system.\n");
1119                 break;
1120         }
1121
1122         vmw_fifo_flush(dev_priv, false);
1123         ttm_read_unlock(&dev_priv->reservation_sem);
1124
1125         drm_modeset_unlock_all(dev_priv->dev);
1126
1127         return ret;
1128 }
1129
1130 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = {
1131         .destroy = vmw_framebuffer_dmabuf_destroy,
1132         .dirty = vmw_framebuffer_dmabuf_dirty,
1133 };
1134
1135 /**
1136  * Pin the dmabuffer to the start of vram.
1137  */
1138 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1139 {
1140         struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1141         struct vmw_dma_buffer *buf;
1142         int ret;
1143
1144         buf = vfb->dmabuf ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1145                 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1146
1147         if (!buf)
1148                 return 0;
1149
1150         switch (dev_priv->active_display_unit) {
1151         case vmw_du_legacy:
1152                 vmw_overlay_pause_all(dev_priv);
1153                 ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false);
1154                 vmw_overlay_resume_all(dev_priv);
1155                 break;
1156         case vmw_du_screen_object:
1157         case vmw_du_screen_target:
1158                 if (vfb->dmabuf)
1159                         return vmw_dmabuf_pin_in_vram_or_gmr(dev_priv, buf,
1160                                                              false);
1161
1162                 return vmw_dmabuf_pin_in_placement(dev_priv, buf,
1163                                                    &vmw_mob_placement, false);
1164         default:
1165                 return -EINVAL;
1166         }
1167
1168         return ret;
1169 }
1170
1171 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1172 {
1173         struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1174         struct vmw_dma_buffer *buf;
1175
1176         buf = vfb->dmabuf ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1177                 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1178
1179         if (WARN_ON(!buf))
1180                 return 0;
1181
1182         return vmw_dmabuf_unpin(dev_priv, buf, false);
1183 }
1184
1185 /**
1186  * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf
1187  *
1188  * @dev: DRM device
1189  * @mode_cmd: parameters for the new surface
1190  * @dmabuf_mob: MOB backing the DMA buf
1191  * @srf_out: newly created surface
1192  *
1193  * When the content FB is a DMA buf, we create a surface as a proxy to the
1194  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1195  * This is a more efficient approach
1196  *
1197  * RETURNS:
1198  * 0 on success, error code otherwise
1199  */
1200 static int vmw_create_dmabuf_proxy(struct drm_device *dev,
1201                                    const struct drm_mode_fb_cmd2 *mode_cmd,
1202                                    struct vmw_dma_buffer *dmabuf_mob,
1203                                    struct vmw_surface **srf_out)
1204 {
1205         uint32_t format;
1206         struct drm_vmw_size content_base_size = {0};
1207         struct vmw_resource *res;
1208         unsigned int bytes_pp;
1209         struct drm_format_name_buf format_name;
1210         int ret;
1211
1212         switch (mode_cmd->pixel_format) {
1213         case DRM_FORMAT_ARGB8888:
1214         case DRM_FORMAT_XRGB8888:
1215                 format = SVGA3D_X8R8G8B8;
1216                 bytes_pp = 4;
1217                 break;
1218
1219         case DRM_FORMAT_RGB565:
1220         case DRM_FORMAT_XRGB1555:
1221                 format = SVGA3D_R5G6B5;
1222                 bytes_pp = 2;
1223                 break;
1224
1225         case 8:
1226                 format = SVGA3D_P8;
1227                 bytes_pp = 1;
1228                 break;
1229
1230         default:
1231                 DRM_ERROR("Invalid framebuffer format %s\n",
1232                           drm_get_format_name(mode_cmd->pixel_format, &format_name));
1233                 return -EINVAL;
1234         }
1235
1236         content_base_size.width  = mode_cmd->pitches[0] / bytes_pp;
1237         content_base_size.height = mode_cmd->height;
1238         content_base_size.depth  = 1;
1239
1240         ret = vmw_surface_gb_priv_define(dev,
1241                         0, /* kernel visible only */
1242                         0, /* flags */
1243                         format,
1244                         true, /* can be a scanout buffer */
1245                         1, /* num of mip levels */
1246                         0,
1247                         0,
1248                         content_base_size,
1249                         srf_out);
1250         if (ret) {
1251                 DRM_ERROR("Failed to allocate proxy content buffer\n");
1252                 return ret;
1253         }
1254
1255         res = &(*srf_out)->res;
1256
1257         /* Reserve and switch the backing mob. */
1258         mutex_lock(&res->dev_priv->cmdbuf_mutex);
1259         (void) vmw_resource_reserve(res, false, true);
1260         vmw_dmabuf_unreference(&res->backup);
1261         res->backup = vmw_dmabuf_reference(dmabuf_mob);
1262         res->backup_offset = 0;
1263         vmw_resource_unreserve(res, false, NULL, 0);
1264         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1265
1266         return 0;
1267 }
1268
1269
1270
1271 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv,
1272                                           struct vmw_dma_buffer *dmabuf,
1273                                           struct vmw_framebuffer **out,
1274                                           const struct drm_mode_fb_cmd2
1275                                           *mode_cmd)
1276
1277 {
1278         struct drm_device *dev = dev_priv->dev;
1279         struct vmw_framebuffer_dmabuf *vfbd;
1280         unsigned int requested_size;
1281         struct drm_format_name_buf format_name;
1282         int ret;
1283
1284         requested_size = mode_cmd->height * mode_cmd->pitches[0];
1285         if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) {
1286                 DRM_ERROR("Screen buffer object size is too small "
1287                           "for requested mode.\n");
1288                 return -EINVAL;
1289         }
1290
1291         /* Limited framebuffer color depth support for screen objects */
1292         if (dev_priv->active_display_unit == vmw_du_screen_object) {
1293                 switch (mode_cmd->pixel_format) {
1294                 case DRM_FORMAT_XRGB8888:
1295                 case DRM_FORMAT_ARGB8888:
1296                         break;
1297                 case DRM_FORMAT_XRGB1555:
1298                 case DRM_FORMAT_RGB565:
1299                         break;
1300                 default:
1301                         DRM_ERROR("Invalid pixel format: %s\n",
1302                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
1303                         return -EINVAL;
1304                 }
1305         }
1306
1307         vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1308         if (!vfbd) {
1309                 ret = -ENOMEM;
1310                 goto out_err1;
1311         }
1312
1313         drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1314         vfbd->base.dmabuf = true;
1315         vfbd->buffer = vmw_dmabuf_reference(dmabuf);
1316         vfbd->base.user_handle = mode_cmd->handles[0];
1317         *out = &vfbd->base;
1318
1319         ret = drm_framebuffer_init(dev, &vfbd->base.base,
1320                                    &vmw_framebuffer_dmabuf_funcs);
1321         if (ret)
1322                 goto out_err2;
1323
1324         return 0;
1325
1326 out_err2:
1327         vmw_dmabuf_unreference(&dmabuf);
1328         kfree(vfbd);
1329 out_err1:
1330         return ret;
1331 }
1332
1333
1334 /**
1335  * vmw_kms_srf_ok - check if a surface can be created
1336  *
1337  * @width: requested width
1338  * @height: requested height
1339  *
1340  * Surfaces need to be less than texture size
1341  */
1342 static bool
1343 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1344 {
1345         if (width  > dev_priv->texture_max_width ||
1346             height > dev_priv->texture_max_height)
1347                 return false;
1348
1349         return true;
1350 }
1351
1352 /**
1353  * vmw_kms_new_framebuffer - Create a new framebuffer.
1354  *
1355  * @dev_priv: Pointer to device private struct.
1356  * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around.
1357  * Either @dmabuf or @surface must be NULL.
1358  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1359  * Either @dmabuf or @surface must be NULL.
1360  * @only_2d: No presents will occur to this dma buffer based framebuffer. This
1361  * Helps the code to do some important optimizations.
1362  * @mode_cmd: Frame-buffer metadata.
1363  */
1364 struct vmw_framebuffer *
1365 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1366                         struct vmw_dma_buffer *dmabuf,
1367                         struct vmw_surface *surface,
1368                         bool only_2d,
1369                         const struct drm_mode_fb_cmd2 *mode_cmd)
1370 {
1371         struct vmw_framebuffer *vfb = NULL;
1372         bool is_dmabuf_proxy = false;
1373         int ret;
1374
1375         /*
1376          * We cannot use the SurfaceDMA command in an non-accelerated VM,
1377          * therefore, wrap the DMA buf in a surface so we can use the
1378          * SurfaceCopy command.
1379          */
1380         if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1381             dmabuf && only_2d &&
1382             mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1383             dev_priv->active_display_unit == vmw_du_screen_target) {
1384                 ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd,
1385                                               dmabuf, &surface);
1386                 if (ret)
1387                         return ERR_PTR(ret);
1388
1389                 is_dmabuf_proxy = true;
1390         }
1391
1392         /* Create the new framebuffer depending one what we have */
1393         if (surface) {
1394                 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1395                                                       mode_cmd,
1396                                                       is_dmabuf_proxy);
1397
1398                 /*
1399                  * vmw_create_dmabuf_proxy() adds a reference that is no longer
1400                  * needed
1401                  */
1402                 if (is_dmabuf_proxy)
1403                         vmw_surface_unreference(&surface);
1404         } else if (dmabuf) {
1405                 ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb,
1406                                                      mode_cmd);
1407         } else {
1408                 BUG();
1409         }
1410
1411         if (ret)
1412                 return ERR_PTR(ret);
1413
1414         vfb->pin = vmw_framebuffer_pin;
1415         vfb->unpin = vmw_framebuffer_unpin;
1416
1417         return vfb;
1418 }
1419
1420 /*
1421  * Generic Kernel modesetting functions
1422  */
1423
1424 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1425                                                  struct drm_file *file_priv,
1426                                                  const struct drm_mode_fb_cmd2 *mode_cmd)
1427 {
1428         struct vmw_private *dev_priv = vmw_priv(dev);
1429         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1430         struct vmw_framebuffer *vfb = NULL;
1431         struct vmw_surface *surface = NULL;
1432         struct vmw_dma_buffer *bo = NULL;
1433         struct ttm_base_object *user_obj;
1434         int ret;
1435
1436         /**
1437          * This code should be conditioned on Screen Objects not being used.
1438          * If screen objects are used, we can allocate a GMR to hold the
1439          * requested framebuffer.
1440          */
1441
1442         if (!vmw_kms_validate_mode_vram(dev_priv,
1443                                         mode_cmd->pitches[0],
1444                                         mode_cmd->height)) {
1445                 DRM_ERROR("Requested mode exceed bounding box limit.\n");
1446                 return ERR_PTR(-ENOMEM);
1447         }
1448
1449         /*
1450          * Take a reference on the user object of the resource
1451          * backing the kms fb. This ensures that user-space handle
1452          * lookups on that resource will always work as long as
1453          * it's registered with a kms framebuffer. This is important,
1454          * since vmw_execbuf_process identifies resources in the
1455          * command stream using user-space handles.
1456          */
1457
1458         user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1459         if (unlikely(user_obj == NULL)) {
1460                 DRM_ERROR("Could not locate requested kms frame buffer.\n");
1461                 return ERR_PTR(-ENOENT);
1462         }
1463
1464         /**
1465          * End conditioned code.
1466          */
1467
1468         /* returns either a dmabuf or surface */
1469         ret = vmw_user_lookup_handle(dev_priv, tfile,
1470                                      mode_cmd->handles[0],
1471                                      &surface, &bo);
1472         if (ret)
1473                 goto err_out;
1474
1475
1476         if (!bo &&
1477             !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1478                 DRM_ERROR("Surface size cannot exceed %dx%d",
1479                         dev_priv->texture_max_width,
1480                         dev_priv->texture_max_height);
1481                 goto err_out;
1482         }
1483
1484
1485         vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1486                                       !(dev_priv->capabilities & SVGA_CAP_3D),
1487                                       mode_cmd);
1488         if (IS_ERR(vfb)) {
1489                 ret = PTR_ERR(vfb);
1490                 goto err_out;
1491         }
1492
1493 err_out:
1494         /* vmw_user_lookup_handle takes one ref so does new_fb */
1495         if (bo)
1496                 vmw_dmabuf_unreference(&bo);
1497         if (surface)
1498                 vmw_surface_unreference(&surface);
1499
1500         if (ret) {
1501                 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1502                 ttm_base_object_unref(&user_obj);
1503                 return ERR_PTR(ret);
1504         } else
1505                 vfb->user_obj = user_obj;
1506
1507         return &vfb->base;
1508 }
1509
1510
1511
1512 /**
1513  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1514  *
1515  * @dev: DRM device
1516  * @state: the driver state object
1517  *
1518  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1519  * us to assign a value to mode->crtc_clock so that
1520  * drm_calc_timestamping_constants() won't throw an error message
1521  *
1522  * RETURNS
1523  * Zero for success or -errno
1524  */
1525 static int
1526 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1527                              struct drm_atomic_state *state)
1528 {
1529         struct drm_crtc_state *crtc_state;
1530         struct drm_crtc *crtc;
1531         struct vmw_private *dev_priv = vmw_priv(dev);
1532         int i;
1533
1534         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1535                 unsigned long requested_bb_mem = 0;
1536
1537                 if (dev_priv->active_display_unit == vmw_du_screen_target) {
1538                         if (crtc->primary->fb) {
1539                                 int cpp = crtc->primary->fb->pitches[0] /
1540                                           crtc->primary->fb->width;
1541
1542                                 requested_bb_mem += crtc->mode.hdisplay * cpp *
1543                                                     crtc->mode.vdisplay;
1544                         }
1545
1546                         if (requested_bb_mem > dev_priv->prim_bb_mem)
1547                                 return -EINVAL;
1548                 }
1549         }
1550
1551         return drm_atomic_helper_check(dev, state);
1552 }
1553
1554
1555 /**
1556  * vmw_kms_atomic_commit - Perform an atomic state commit
1557  *
1558  * @dev: DRM device
1559  * @state: the driver state object
1560  * @nonblock: Whether nonblocking behaviour is requested
1561  *
1562  * This is a simple wrapper around drm_atomic_helper_commit() for
1563  * us to clear the nonblocking value.
1564  *
1565  * Nonblocking commits currently cause synchronization issues
1566  * for vmwgfx.
1567  *
1568  * RETURNS
1569  * Zero for success or negative error code on failure.
1570  */
1571 int vmw_kms_atomic_commit(struct drm_device *dev,
1572                           struct drm_atomic_state *state,
1573                           bool nonblock)
1574 {
1575         return drm_atomic_helper_commit(dev, state, false);
1576 }
1577
1578
1579 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1580         .fb_create = vmw_kms_fb_create,
1581         .atomic_check = vmw_kms_atomic_check_modeset,
1582         .atomic_commit = vmw_kms_atomic_commit,
1583 };
1584
1585 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1586                                    struct drm_file *file_priv,
1587                                    struct vmw_framebuffer *vfb,
1588                                    struct vmw_surface *surface,
1589                                    uint32_t sid,
1590                                    int32_t destX, int32_t destY,
1591                                    struct drm_vmw_rect *clips,
1592                                    uint32_t num_clips)
1593 {
1594         return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1595                                             &surface->res, destX, destY,
1596                                             num_clips, 1, NULL);
1597 }
1598
1599
1600 int vmw_kms_present(struct vmw_private *dev_priv,
1601                     struct drm_file *file_priv,
1602                     struct vmw_framebuffer *vfb,
1603                     struct vmw_surface *surface,
1604                     uint32_t sid,
1605                     int32_t destX, int32_t destY,
1606                     struct drm_vmw_rect *clips,
1607                     uint32_t num_clips)
1608 {
1609         int ret;
1610
1611         switch (dev_priv->active_display_unit) {
1612         case vmw_du_screen_target:
1613                 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1614                                                  &surface->res, destX, destY,
1615                                                  num_clips, 1, NULL);
1616                 break;
1617         case vmw_du_screen_object:
1618                 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1619                                               sid, destX, destY, clips,
1620                                               num_clips);
1621                 break;
1622         default:
1623                 WARN_ONCE(true,
1624                           "Present called with invalid display system.\n");
1625                 ret = -ENOSYS;
1626                 break;
1627         }
1628         if (ret)
1629                 return ret;
1630
1631         vmw_fifo_flush(dev_priv, false);
1632
1633         return 0;
1634 }
1635
1636 static void
1637 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1638 {
1639         if (dev_priv->hotplug_mode_update_property)
1640                 return;
1641
1642         dev_priv->hotplug_mode_update_property =
1643                 drm_property_create_range(dev_priv->dev,
1644                                           DRM_MODE_PROP_IMMUTABLE,
1645                                           "hotplug_mode_update", 0, 1);
1646
1647         if (!dev_priv->hotplug_mode_update_property)
1648                 return;
1649
1650 }
1651
1652 int vmw_kms_init(struct vmw_private *dev_priv)
1653 {
1654         struct drm_device *dev = dev_priv->dev;
1655         int ret;
1656
1657         drm_mode_config_init(dev);
1658         dev->mode_config.funcs = &vmw_kms_funcs;
1659         dev->mode_config.min_width = 1;
1660         dev->mode_config.min_height = 1;
1661         dev->mode_config.max_width = dev_priv->texture_max_width;
1662         dev->mode_config.max_height = dev_priv->texture_max_height;
1663
1664         drm_mode_create_suggested_offset_properties(dev);
1665         vmw_kms_create_hotplug_mode_update_property(dev_priv);
1666
1667         ret = vmw_kms_stdu_init_display(dev_priv);
1668         if (ret) {
1669                 ret = vmw_kms_sou_init_display(dev_priv);
1670                 if (ret) /* Fallback */
1671                         ret = vmw_kms_ldu_init_display(dev_priv);
1672         }
1673
1674         return ret;
1675 }
1676
1677 int vmw_kms_close(struct vmw_private *dev_priv)
1678 {
1679         int ret = 0;
1680
1681         /*
1682          * Docs says we should take the lock before calling this function
1683          * but since it destroys encoders and our destructor calls
1684          * drm_encoder_cleanup which takes the lock we deadlock.
1685          */
1686         drm_mode_config_cleanup(dev_priv->dev);
1687         if (dev_priv->active_display_unit == vmw_du_legacy)
1688                 ret = vmw_kms_ldu_close_display(dev_priv);
1689
1690         return ret;
1691 }
1692
1693 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1694                                 struct drm_file *file_priv)
1695 {
1696         struct drm_vmw_cursor_bypass_arg *arg = data;
1697         struct vmw_display_unit *du;
1698         struct drm_crtc *crtc;
1699         int ret = 0;
1700
1701
1702         mutex_lock(&dev->mode_config.mutex);
1703         if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1704
1705                 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1706                         du = vmw_crtc_to_du(crtc);
1707                         du->hotspot_x = arg->xhot;
1708                         du->hotspot_y = arg->yhot;
1709                 }
1710
1711                 mutex_unlock(&dev->mode_config.mutex);
1712                 return 0;
1713         }
1714
1715         crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1716         if (!crtc) {
1717                 ret = -ENOENT;
1718                 goto out;
1719         }
1720
1721         du = vmw_crtc_to_du(crtc);
1722
1723         du->hotspot_x = arg->xhot;
1724         du->hotspot_y = arg->yhot;
1725
1726 out:
1727         mutex_unlock(&dev->mode_config.mutex);
1728
1729         return ret;
1730 }
1731
1732 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1733                         unsigned width, unsigned height, unsigned pitch,
1734                         unsigned bpp, unsigned depth)
1735 {
1736         if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1737                 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1738         else if (vmw_fifo_have_pitchlock(vmw_priv))
1739                 vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1740                                SVGA_FIFO_PITCHLOCK);
1741         vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1742         vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1743         vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1744
1745         if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1746                 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1747                           depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1748                 return -EINVAL;
1749         }
1750
1751         return 0;
1752 }
1753
1754 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1755 {
1756         struct vmw_vga_topology_state *save;
1757         uint32_t i;
1758
1759         vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1760         vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1761         vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1762         if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1763                 vmw_priv->vga_pitchlock =
1764                   vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1765         else if (vmw_fifo_have_pitchlock(vmw_priv))
1766                 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1767                                                         SVGA_FIFO_PITCHLOCK);
1768
1769         if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1770                 return 0;
1771
1772         vmw_priv->num_displays = vmw_read(vmw_priv,
1773                                           SVGA_REG_NUM_GUEST_DISPLAYS);
1774
1775         if (vmw_priv->num_displays == 0)
1776                 vmw_priv->num_displays = 1;
1777
1778         for (i = 0; i < vmw_priv->num_displays; ++i) {
1779                 save = &vmw_priv->vga_save[i];
1780                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1781                 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1782                 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1783                 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1784                 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1785                 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1786                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1787                 if (i == 0 && vmw_priv->num_displays == 1 &&
1788                     save->width == 0 && save->height == 0) {
1789
1790                         /*
1791                          * It should be fairly safe to assume that these
1792                          * values are uninitialized.
1793                          */
1794
1795                         save->width = vmw_priv->vga_width - save->pos_x;
1796                         save->height = vmw_priv->vga_height - save->pos_y;
1797                 }
1798         }
1799
1800         return 0;
1801 }
1802
1803 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1804 {
1805         struct vmw_vga_topology_state *save;
1806         uint32_t i;
1807
1808         vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1809         vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1810         vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1811         if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1812                 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1813                           vmw_priv->vga_pitchlock);
1814         else if (vmw_fifo_have_pitchlock(vmw_priv))
1815                 vmw_mmio_write(vmw_priv->vga_pitchlock,
1816                                vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1817
1818         if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1819                 return 0;
1820
1821         for (i = 0; i < vmw_priv->num_displays; ++i) {
1822                 save = &vmw_priv->vga_save[i];
1823                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1824                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1825                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1826                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1827                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1828                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1829                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1830         }
1831
1832         return 0;
1833 }
1834
1835 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1836                                 uint32_t pitch,
1837                                 uint32_t height)
1838 {
1839         return ((u64) pitch * (u64) height) < (u64)
1840                 ((dev_priv->active_display_unit == vmw_du_screen_target) ?
1841                  dev_priv->prim_bb_mem : dev_priv->vram_size);
1842 }
1843
1844
1845 /**
1846  * Function called by DRM code called with vbl_lock held.
1847  */
1848 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1849 {
1850         return 0;
1851 }
1852
1853 /**
1854  * Function called by DRM code called with vbl_lock held.
1855  */
1856 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1857 {
1858         return -ENOSYS;
1859 }
1860
1861 /**
1862  * Function called by DRM code called with vbl_lock held.
1863  */
1864 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1865 {
1866 }
1867
1868
1869 /*
1870  * Small shared kms functions.
1871  */
1872
1873 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num,
1874                          struct drm_vmw_rect *rects)
1875 {
1876         struct drm_device *dev = dev_priv->dev;
1877         struct vmw_display_unit *du;
1878         struct drm_connector *con;
1879
1880         mutex_lock(&dev->mode_config.mutex);
1881
1882 #if 0
1883         {
1884                 unsigned int i;
1885
1886                 DRM_INFO("%s: new layout ", __func__);
1887                 for (i = 0; i < num; i++)
1888                         DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y,
1889                                  rects[i].w, rects[i].h);
1890                 DRM_INFO("\n");
1891         }
1892 #endif
1893
1894         list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1895                 du = vmw_connector_to_du(con);
1896                 if (num > du->unit) {
1897                         du->pref_width = rects[du->unit].w;
1898                         du->pref_height = rects[du->unit].h;
1899                         du->pref_active = true;
1900                         du->gui_x = rects[du->unit].x;
1901                         du->gui_y = rects[du->unit].y;
1902                         drm_object_property_set_value
1903                           (&con->base, dev->mode_config.suggested_x_property,
1904                            du->gui_x);
1905                         drm_object_property_set_value
1906                           (&con->base, dev->mode_config.suggested_y_property,
1907                            du->gui_y);
1908                 } else {
1909                         du->pref_width = 800;
1910                         du->pref_height = 600;
1911                         du->pref_active = false;
1912                         drm_object_property_set_value
1913                           (&con->base, dev->mode_config.suggested_x_property,
1914                            0);
1915                         drm_object_property_set_value
1916                           (&con->base, dev->mode_config.suggested_y_property,
1917                            0);
1918                 }
1919                 con->status = vmw_du_connector_detect(con, true);
1920         }
1921
1922         mutex_unlock(&dev->mode_config.mutex);
1923         drm_sysfs_hotplug_event(dev);
1924
1925         return 0;
1926 }
1927
1928 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
1929                           u16 *r, u16 *g, u16 *b,
1930                           uint32_t size,
1931                           struct drm_modeset_acquire_ctx *ctx)
1932 {
1933         struct vmw_private *dev_priv = vmw_priv(crtc->dev);
1934         int i;
1935
1936         for (i = 0; i < size; i++) {
1937                 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
1938                           r[i], g[i], b[i]);
1939                 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
1940                 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
1941                 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
1942         }
1943
1944         return 0;
1945 }
1946
1947 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
1948 {
1949         return 0;
1950 }
1951
1952 enum drm_connector_status
1953 vmw_du_connector_detect(struct drm_connector *connector, bool force)
1954 {
1955         uint32_t num_displays;
1956         struct drm_device *dev = connector->dev;
1957         struct vmw_private *dev_priv = vmw_priv(dev);
1958         struct vmw_display_unit *du = vmw_connector_to_du(connector);
1959
1960         num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
1961
1962         return ((vmw_connector_to_du(connector)->unit < num_displays &&
1963                  du->pref_active) ?
1964                 connector_status_connected : connector_status_disconnected);
1965 }
1966
1967 static struct drm_display_mode vmw_kms_connector_builtin[] = {
1968         /* 640x480@60Hz */
1969         { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1970                    752, 800, 0, 480, 489, 492, 525, 0,
1971                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1972         /* 800x600@60Hz */
1973         { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1974                    968, 1056, 0, 600, 601, 605, 628, 0,
1975                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1976         /* 1024x768@60Hz */
1977         { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1978                    1184, 1344, 0, 768, 771, 777, 806, 0,
1979                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1980         /* 1152x864@75Hz */
1981         { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1982                    1344, 1600, 0, 864, 865, 868, 900, 0,
1983                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1984         /* 1280x768@60Hz */
1985         { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
1986                    1472, 1664, 0, 768, 771, 778, 798, 0,
1987                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1988         /* 1280x800@60Hz */
1989         { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
1990                    1480, 1680, 0, 800, 803, 809, 831, 0,
1991                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1992         /* 1280x960@60Hz */
1993         { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
1994                    1488, 1800, 0, 960, 961, 964, 1000, 0,
1995                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1996         /* 1280x1024@60Hz */
1997         { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
1998                    1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
1999                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2000         /* 1360x768@60Hz */
2001         { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2002                    1536, 1792, 0, 768, 771, 777, 795, 0,
2003                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2004         /* 1440x1050@60Hz */
2005         { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2006                    1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2007                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2008         /* 1440x900@60Hz */
2009         { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2010                    1672, 1904, 0, 900, 903, 909, 934, 0,
2011                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2012         /* 1600x1200@60Hz */
2013         { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2014                    1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2015                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2016         /* 1680x1050@60Hz */
2017         { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2018                    1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2019                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2020         /* 1792x1344@60Hz */
2021         { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2022                    2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2023                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2024         /* 1853x1392@60Hz */
2025         { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2026                    2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2027                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2028         /* 1920x1200@60Hz */
2029         { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2030                    2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2031                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2032         /* 1920x1440@60Hz */
2033         { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2034                    2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2035                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2036         /* 2560x1600@60Hz */
2037         { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2038                    3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2039                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2040         /* Terminate */
2041         { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2042 };
2043
2044 /**
2045  * vmw_guess_mode_timing - Provide fake timings for a
2046  * 60Hz vrefresh mode.
2047  *
2048  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2049  * members filled in.
2050  */
2051 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2052 {
2053         mode->hsync_start = mode->hdisplay + 50;
2054         mode->hsync_end = mode->hsync_start + 50;
2055         mode->htotal = mode->hsync_end + 50;
2056
2057         mode->vsync_start = mode->vdisplay + 50;
2058         mode->vsync_end = mode->vsync_start + 50;
2059         mode->vtotal = mode->vsync_end + 50;
2060
2061         mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2062         mode->vrefresh = drm_mode_vrefresh(mode);
2063 }
2064
2065
2066 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2067                                 uint32_t max_width, uint32_t max_height)
2068 {
2069         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2070         struct drm_device *dev = connector->dev;
2071         struct vmw_private *dev_priv = vmw_priv(dev);
2072         struct drm_display_mode *mode = NULL;
2073         struct drm_display_mode *bmode;
2074         struct drm_display_mode prefmode = { DRM_MODE("preferred",
2075                 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2076                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2077                 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2078         };
2079         int i;
2080         u32 assumed_bpp = 4;
2081
2082         if (dev_priv->assume_16bpp)
2083                 assumed_bpp = 2;
2084
2085         if (dev_priv->active_display_unit == vmw_du_screen_target) {
2086                 max_width  = min(max_width,  dev_priv->stdu_max_width);
2087                 max_width  = min(max_width,  dev_priv->texture_max_width);
2088
2089                 max_height = min(max_height, dev_priv->stdu_max_height);
2090                 max_height = min(max_height, dev_priv->texture_max_height);
2091         }
2092
2093         /* Add preferred mode */
2094         mode = drm_mode_duplicate(dev, &prefmode);
2095         if (!mode)
2096                 return 0;
2097         mode->hdisplay = du->pref_width;
2098         mode->vdisplay = du->pref_height;
2099         vmw_guess_mode_timing(mode);
2100
2101         if (vmw_kms_validate_mode_vram(dev_priv,
2102                                         mode->hdisplay * assumed_bpp,
2103                                         mode->vdisplay)) {
2104                 drm_mode_probed_add(connector, mode);
2105         } else {
2106                 drm_mode_destroy(dev, mode);
2107                 mode = NULL;
2108         }
2109
2110         if (du->pref_mode) {
2111                 list_del_init(&du->pref_mode->head);
2112                 drm_mode_destroy(dev, du->pref_mode);
2113         }
2114
2115         /* mode might be null here, this is intended */
2116         du->pref_mode = mode;
2117
2118         for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2119                 bmode = &vmw_kms_connector_builtin[i];
2120                 if (bmode->hdisplay > max_width ||
2121                     bmode->vdisplay > max_height)
2122                         continue;
2123
2124                 if (!vmw_kms_validate_mode_vram(dev_priv,
2125                                                 bmode->hdisplay * assumed_bpp,
2126                                                 bmode->vdisplay))
2127                         continue;
2128
2129                 mode = drm_mode_duplicate(dev, bmode);
2130                 if (!mode)
2131                         return 0;
2132                 mode->vrefresh = drm_mode_vrefresh(mode);
2133
2134                 drm_mode_probed_add(connector, mode);
2135         }
2136
2137         drm_mode_connector_list_update(connector);
2138         /* Move the prefered mode first, help apps pick the right mode. */
2139         drm_mode_sort(&connector->modes);
2140
2141         return 1;
2142 }
2143
2144 int vmw_du_connector_set_property(struct drm_connector *connector,
2145                                   struct drm_property *property,
2146                                   uint64_t val)
2147 {
2148         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2149         struct vmw_private *dev_priv = vmw_priv(connector->dev);
2150
2151         if (property == dev_priv->implicit_placement_property)
2152                 du->is_implicit = val;
2153
2154         return 0;
2155 }
2156
2157
2158
2159 /**
2160  * vmw_du_connector_atomic_set_property - Atomic version of get property
2161  *
2162  * @crtc - crtc the property is associated with
2163  *
2164  * Returns:
2165  * Zero on success, negative errno on failure.
2166  */
2167 int
2168 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2169                                      struct drm_connector_state *state,
2170                                      struct drm_property *property,
2171                                      uint64_t val)
2172 {
2173         struct vmw_private *dev_priv = vmw_priv(connector->dev);
2174         struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2175         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2176
2177
2178         if (property == dev_priv->implicit_placement_property) {
2179                 vcs->is_implicit = val;
2180
2181                 /*
2182                  * We should really be doing a drm_atomic_commit() to
2183                  * commit the new state, but since this doesn't cause
2184                  * an immedate state change, this is probably ok
2185                  */
2186                 du->is_implicit = vcs->is_implicit;
2187         } else {
2188                 return -EINVAL;
2189         }
2190
2191         return 0;
2192 }
2193
2194
2195 /**
2196  * vmw_du_connector_atomic_get_property - Atomic version of get property
2197  *
2198  * @connector - connector the property is associated with
2199  *
2200  * Returns:
2201  * Zero on success, negative errno on failure.
2202  */
2203 int
2204 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2205                                      const struct drm_connector_state *state,
2206                                      struct drm_property *property,
2207                                      uint64_t *val)
2208 {
2209         struct vmw_private *dev_priv = vmw_priv(connector->dev);
2210         struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2211
2212         if (property == dev_priv->implicit_placement_property)
2213                 *val = vcs->is_implicit;
2214         else {
2215                 DRM_ERROR("Invalid Property %s\n", property->name);
2216                 return -EINVAL;
2217         }
2218
2219         return 0;
2220 }
2221
2222
2223 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2224                                 struct drm_file *file_priv)
2225 {
2226         struct vmw_private *dev_priv = vmw_priv(dev);
2227         struct drm_vmw_update_layout_arg *arg =
2228                 (struct drm_vmw_update_layout_arg *)data;
2229         void __user *user_rects;
2230         struct drm_vmw_rect *rects;
2231         unsigned rects_size;
2232         int ret;
2233         int i;
2234         u64 total_pixels = 0;
2235         struct drm_mode_config *mode_config = &dev->mode_config;
2236         struct drm_vmw_rect bounding_box = {0};
2237
2238         if (!arg->num_outputs) {
2239                 struct drm_vmw_rect def_rect = {0, 0, 800, 600};
2240                 vmw_du_update_layout(dev_priv, 1, &def_rect);
2241                 return 0;
2242         }
2243
2244         rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2245         rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2246                         GFP_KERNEL);
2247         if (unlikely(!rects))
2248                 return -ENOMEM;
2249
2250         user_rects = (void __user *)(unsigned long)arg->rects;
2251         ret = copy_from_user(rects, user_rects, rects_size);
2252         if (unlikely(ret != 0)) {
2253                 DRM_ERROR("Failed to get rects.\n");
2254                 ret = -EFAULT;
2255                 goto out_free;
2256         }
2257
2258         for (i = 0; i < arg->num_outputs; ++i) {
2259                 if (rects[i].x < 0 ||
2260                     rects[i].y < 0 ||
2261                     rects[i].x + rects[i].w > mode_config->max_width ||
2262                     rects[i].y + rects[i].h > mode_config->max_height) {
2263                         DRM_ERROR("Invalid GUI layout.\n");
2264                         ret = -EINVAL;
2265                         goto out_free;
2266                 }
2267
2268                 /*
2269                  * bounding_box.w and bunding_box.h are used as
2270                  * lower-right coordinates
2271                  */
2272                 if (rects[i].x + rects[i].w > bounding_box.w)
2273                         bounding_box.w = rects[i].x + rects[i].w;
2274
2275                 if (rects[i].y + rects[i].h > bounding_box.h)
2276                         bounding_box.h = rects[i].y + rects[i].h;
2277
2278                 total_pixels += (u64) rects[i].w * (u64) rects[i].h;
2279         }
2280
2281         if (dev_priv->active_display_unit == vmw_du_screen_target) {
2282                 /*
2283                  * For Screen Targets, the limits for a toplogy are:
2284                  *      1. Bounding box (assuming 32bpp) must be < prim_bb_mem
2285                  *      2. Total pixels (assuming 32bpp) must be < prim_bb_mem
2286                  */
2287                 u64 bb_mem    = (u64) bounding_box.w * bounding_box.h * 4;
2288                 u64 pixel_mem = total_pixels * 4;
2289
2290                 if (bb_mem > dev_priv->prim_bb_mem) {
2291                         DRM_ERROR("Topology is beyond supported limits.\n");
2292                         ret = -EINVAL;
2293                         goto out_free;
2294                 }
2295
2296                 if (pixel_mem > dev_priv->prim_bb_mem) {
2297                         DRM_ERROR("Combined output size too large\n");
2298                         ret = -EINVAL;
2299                         goto out_free;
2300                 }
2301         }
2302
2303         vmw_du_update_layout(dev_priv, arg->num_outputs, rects);
2304
2305 out_free:
2306         kfree(rects);
2307         return ret;
2308 }
2309
2310 /**
2311  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2312  * on a set of cliprects and a set of display units.
2313  *
2314  * @dev_priv: Pointer to a device private structure.
2315  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2316  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2317  * Cliprects are given in framebuffer coordinates.
2318  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2319  * be NULL. Cliprects are given in source coordinates.
2320  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2321  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2322  * @num_clips: Number of cliprects in the @clips or @vclips array.
2323  * @increment: Integer with which to increment the clip counter when looping.
2324  * Used to skip a predetermined number of clip rects.
2325  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2326  */
2327 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2328                          struct vmw_framebuffer *framebuffer,
2329                          const struct drm_clip_rect *clips,
2330                          const struct drm_vmw_rect *vclips,
2331                          s32 dest_x, s32 dest_y,
2332                          int num_clips,
2333                          int increment,
2334                          struct vmw_kms_dirty *dirty)
2335 {
2336         struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2337         struct drm_crtc *crtc;
2338         u32 num_units = 0;
2339         u32 i, k;
2340
2341         dirty->dev_priv = dev_priv;
2342
2343         list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, head) {
2344                 if (crtc->primary->fb != &framebuffer->base)
2345                         continue;
2346                 units[num_units++] = vmw_crtc_to_du(crtc);
2347         }
2348
2349         for (k = 0; k < num_units; k++) {
2350                 struct vmw_display_unit *unit = units[k];
2351                 s32 crtc_x = unit->crtc.x;
2352                 s32 crtc_y = unit->crtc.y;
2353                 s32 crtc_width = unit->crtc.mode.hdisplay;
2354                 s32 crtc_height = unit->crtc.mode.vdisplay;
2355                 const struct drm_clip_rect *clips_ptr = clips;
2356                 const struct drm_vmw_rect *vclips_ptr = vclips;
2357
2358                 dirty->unit = unit;
2359                 if (dirty->fifo_reserve_size > 0) {
2360                         dirty->cmd = vmw_fifo_reserve(dev_priv,
2361                                                       dirty->fifo_reserve_size);
2362                         if (!dirty->cmd) {
2363                                 DRM_ERROR("Couldn't reserve fifo space "
2364                                           "for dirty blits.\n");
2365                                 return -ENOMEM;
2366                         }
2367                         memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2368                 }
2369                 dirty->num_hits = 0;
2370                 for (i = 0; i < num_clips; i++, clips_ptr += increment,
2371                        vclips_ptr += increment) {
2372                         s32 clip_left;
2373                         s32 clip_top;
2374
2375                         /*
2376                          * Select clip array type. Note that integer type
2377                          * in @clips is unsigned short, whereas in @vclips
2378                          * it's 32-bit.
2379                          */
2380                         if (clips) {
2381                                 dirty->fb_x = (s32) clips_ptr->x1;
2382                                 dirty->fb_y = (s32) clips_ptr->y1;
2383                                 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2384                                         crtc_x;
2385                                 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2386                                         crtc_y;
2387                         } else {
2388                                 dirty->fb_x = vclips_ptr->x;
2389                                 dirty->fb_y = vclips_ptr->y;
2390                                 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2391                                         dest_x - crtc_x;
2392                                 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2393                                         dest_y - crtc_y;
2394                         }
2395
2396                         dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2397                         dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2398
2399                         /* Skip this clip if it's outside the crtc region */
2400                         if (dirty->unit_x1 >= crtc_width ||
2401                             dirty->unit_y1 >= crtc_height ||
2402                             dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2403                                 continue;
2404
2405                         /* Clip right and bottom to crtc limits */
2406                         dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2407                                                crtc_width);
2408                         dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2409                                                crtc_height);
2410
2411                         /* Clip left and top to crtc limits */
2412                         clip_left = min_t(s32, dirty->unit_x1, 0);
2413                         clip_top = min_t(s32, dirty->unit_y1, 0);
2414                         dirty->unit_x1 -= clip_left;
2415                         dirty->unit_y1 -= clip_top;
2416                         dirty->fb_x -= clip_left;
2417                         dirty->fb_y -= clip_top;
2418
2419                         dirty->clip(dirty);
2420                 }
2421
2422                 dirty->fifo_commit(dirty);
2423         }
2424
2425         return 0;
2426 }
2427
2428 /**
2429  * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2430  * command submission.
2431  *
2432  * @dev_priv. Pointer to a device private structure.
2433  * @buf: The buffer object
2434  * @interruptible: Whether to perform waits as interruptible.
2435  * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2436  * The buffer will be validated as a GMR. Already pinned buffers will not be
2437  * validated.
2438  *
2439  * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2440  * interrupted by a signal.
2441  */
2442 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2443                                   struct vmw_dma_buffer *buf,
2444                                   bool interruptible,
2445                                   bool validate_as_mob)
2446 {
2447         struct ttm_buffer_object *bo = &buf->base;
2448         int ret;
2449
2450         ttm_bo_reserve(bo, false, false, NULL);
2451         ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2452                                          validate_as_mob);
2453         if (ret)
2454                 ttm_bo_unreserve(bo);
2455
2456         return ret;
2457 }
2458
2459 /**
2460  * vmw_kms_helper_buffer_revert - Undo the actions of
2461  * vmw_kms_helper_buffer_prepare.
2462  *
2463  * @res: Pointer to the buffer object.
2464  *
2465  * Helper to be used if an error forces the caller to undo the actions of
2466  * vmw_kms_helper_buffer_prepare.
2467  */
2468 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf)
2469 {
2470         if (buf)
2471                 ttm_bo_unreserve(&buf->base);
2472 }
2473
2474 /**
2475  * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2476  * kms command submission.
2477  *
2478  * @dev_priv: Pointer to a device private structure.
2479  * @file_priv: Pointer to a struct drm_file representing the caller's
2480  * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2481  * if non-NULL, @user_fence_rep must be non-NULL.
2482  * @buf: The buffer object.
2483  * @out_fence:  Optional pointer to a fence pointer. If non-NULL, a
2484  * ref-counted fence pointer is returned here.
2485  * @user_fence_rep: Optional pointer to a user-space provided struct
2486  * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2487  * function copies fence data to user-space in a fail-safe manner.
2488  */
2489 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2490                                   struct drm_file *file_priv,
2491                                   struct vmw_dma_buffer *buf,
2492                                   struct vmw_fence_obj **out_fence,
2493                                   struct drm_vmw_fence_rep __user *
2494                                   user_fence_rep)
2495 {
2496         struct vmw_fence_obj *fence;
2497         uint32_t handle;
2498         int ret;
2499
2500         ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2501                                          file_priv ? &handle : NULL);
2502         if (buf)
2503                 vmw_fence_single_bo(&buf->base, fence);
2504         if (file_priv)
2505                 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2506                                             ret, user_fence_rep, fence,
2507                                             handle, -1, NULL);
2508         if (out_fence)
2509                 *out_fence = fence;
2510         else
2511                 vmw_fence_obj_unreference(&fence);
2512
2513         vmw_kms_helper_buffer_revert(buf);
2514 }
2515
2516
2517 /**
2518  * vmw_kms_helper_resource_revert - Undo the actions of
2519  * vmw_kms_helper_resource_prepare.
2520  *
2521  * @res: Pointer to the resource. Typically a surface.
2522  *
2523  * Helper to be used if an error forces the caller to undo the actions of
2524  * vmw_kms_helper_resource_prepare.
2525  */
2526 void vmw_kms_helper_resource_revert(struct vmw_resource *res)
2527 {
2528         vmw_kms_helper_buffer_revert(res->backup);
2529         vmw_resource_unreserve(res, false, NULL, 0);
2530         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2531 }
2532
2533 /**
2534  * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2535  * command submission.
2536  *
2537  * @res: Pointer to the resource. Typically a surface.
2538  * @interruptible: Whether to perform waits as interruptible.
2539  *
2540  * Reserves and validates also the backup buffer if a guest-backed resource.
2541  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2542  * interrupted by a signal.
2543  */
2544 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2545                                     bool interruptible)
2546 {
2547         int ret = 0;
2548
2549         if (interruptible)
2550                 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2551         else
2552                 mutex_lock(&res->dev_priv->cmdbuf_mutex);
2553
2554         if (unlikely(ret != 0))
2555                 return -ERESTARTSYS;
2556
2557         ret = vmw_resource_reserve(res, interruptible, false);
2558         if (ret)
2559                 goto out_unlock;
2560
2561         if (res->backup) {
2562                 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2563                                                     interruptible,
2564                                                     res->dev_priv->has_mob);
2565                 if (ret)
2566                         goto out_unreserve;
2567         }
2568         ret = vmw_resource_validate(res);
2569         if (ret)
2570                 goto out_revert;
2571         return 0;
2572
2573 out_revert:
2574         vmw_kms_helper_buffer_revert(res->backup);
2575 out_unreserve:
2576         vmw_resource_unreserve(res, false, NULL, 0);
2577 out_unlock:
2578         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2579         return ret;
2580 }
2581
2582 /**
2583  * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2584  * kms command submission.
2585  *
2586  * @res: Pointer to the resource. Typically a surface.
2587  * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2588  * ref-counted fence pointer is returned here.
2589  */
2590 void vmw_kms_helper_resource_finish(struct vmw_resource *res,
2591                              struct vmw_fence_obj **out_fence)
2592 {
2593         if (res->backup || out_fence)
2594                 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, res->backup,
2595                                              out_fence, NULL);
2596
2597         vmw_resource_unreserve(res, false, NULL, 0);
2598         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2599 }
2600
2601 /**
2602  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2603  * its backing MOB.
2604  *
2605  * @res: Pointer to the surface resource
2606  * @clips: Clip rects in framebuffer (surface) space.
2607  * @num_clips: Number of clips in @clips.
2608  * @increment: Integer with which to increment the clip counter when looping.
2609  * Used to skip a predetermined number of clip rects.
2610  *
2611  * This function makes sure the proxy surface is updated from its backing MOB
2612  * using the region given by @clips. The surface resource @res and its backing
2613  * MOB needs to be reserved and validated on call.
2614  */
2615 int vmw_kms_update_proxy(struct vmw_resource *res,
2616                          const struct drm_clip_rect *clips,
2617                          unsigned num_clips,
2618                          int increment)
2619 {
2620         struct vmw_private *dev_priv = res->dev_priv;
2621         struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2622         struct {
2623                 SVGA3dCmdHeader header;
2624                 SVGA3dCmdUpdateGBImage body;
2625         } *cmd;
2626         SVGA3dBox *box;
2627         size_t copy_size = 0;
2628         int i;
2629
2630         if (!clips)
2631                 return 0;
2632
2633         cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2634         if (!cmd) {
2635                 DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2636                           "update.\n");
2637                 return -ENOMEM;
2638         }
2639
2640         for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2641                 box = &cmd->body.box;
2642
2643                 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2644                 cmd->header.size = sizeof(cmd->body);
2645                 cmd->body.image.sid = res->id;
2646                 cmd->body.image.face = 0;
2647                 cmd->body.image.mipmap = 0;
2648
2649                 if (clips->x1 > size->width || clips->x2 > size->width ||
2650                     clips->y1 > size->height || clips->y2 > size->height) {
2651                         DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2652                         return -EINVAL;
2653                 }
2654
2655                 box->x = clips->x1;
2656                 box->y = clips->y1;
2657                 box->z = 0;
2658                 box->w = clips->x2 - clips->x1;
2659                 box->h = clips->y2 - clips->y1;
2660                 box->d = 1;
2661
2662                 copy_size += sizeof(*cmd);
2663         }
2664
2665         vmw_fifo_commit(dev_priv, copy_size);
2666
2667         return 0;
2668 }
2669
2670 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2671                             unsigned unit,
2672                             u32 max_width,
2673                             u32 max_height,
2674                             struct drm_connector **p_con,
2675                             struct drm_crtc **p_crtc,
2676                             struct drm_display_mode **p_mode)
2677 {
2678         struct drm_connector *con;
2679         struct vmw_display_unit *du;
2680         struct drm_display_mode *mode;
2681         int i = 0;
2682
2683         list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2684                             head) {
2685                 if (i == unit)
2686                         break;
2687
2688                 ++i;
2689         }
2690
2691         if (i != unit) {
2692                 DRM_ERROR("Could not find initial display unit.\n");
2693                 return -EINVAL;
2694         }
2695
2696         if (list_empty(&con->modes))
2697                 (void) vmw_du_connector_fill_modes(con, max_width, max_height);
2698
2699         if (list_empty(&con->modes)) {
2700                 DRM_ERROR("Could not find initial display mode.\n");
2701                 return -EINVAL;
2702         }
2703
2704         du = vmw_connector_to_du(con);
2705         *p_con = con;
2706         *p_crtc = &du->crtc;
2707
2708         list_for_each_entry(mode, &con->modes, head) {
2709                 if (mode->type & DRM_MODE_TYPE_PREFERRED)
2710                         break;
2711         }
2712
2713         if (mode->type & DRM_MODE_TYPE_PREFERRED)
2714                 *p_mode = mode;
2715         else {
2716                 WARN_ONCE(true, "Could not find initial preferred mode.\n");
2717                 *p_mode = list_first_entry(&con->modes,
2718                                            struct drm_display_mode,
2719                                            head);
2720         }
2721
2722         return 0;
2723 }
2724
2725 /**
2726  * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2727  *
2728  * @dev_priv: Pointer to a device private struct.
2729  * @du: The display unit of the crtc.
2730  */
2731 void vmw_kms_del_active(struct vmw_private *dev_priv,
2732                         struct vmw_display_unit *du)
2733 {
2734         mutex_lock(&dev_priv->global_kms_state_mutex);
2735         if (du->active_implicit) {
2736                 if (--(dev_priv->num_implicit) == 0)
2737                         dev_priv->implicit_fb = NULL;
2738                 du->active_implicit = false;
2739         }
2740         mutex_unlock(&dev_priv->global_kms_state_mutex);
2741 }
2742
2743 /**
2744  * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2745  *
2746  * @vmw_priv: Pointer to a device private struct.
2747  * @du: The display unit of the crtc.
2748  * @vfb: The implicit framebuffer
2749  *
2750  * Registers a binding to an implicit framebuffer.
2751  */
2752 void vmw_kms_add_active(struct vmw_private *dev_priv,
2753                         struct vmw_display_unit *du,
2754                         struct vmw_framebuffer *vfb)
2755 {
2756         mutex_lock(&dev_priv->global_kms_state_mutex);
2757         WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2758
2759         if (!du->active_implicit && du->is_implicit) {
2760                 dev_priv->implicit_fb = vfb;
2761                 du->active_implicit = true;
2762                 dev_priv->num_implicit++;
2763         }
2764         mutex_unlock(&dev_priv->global_kms_state_mutex);
2765 }
2766
2767 /**
2768  * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2769  *
2770  * @dev_priv: Pointer to device-private struct.
2771  * @crtc: The crtc we want to flip.
2772  *
2773  * Returns true or false depending whether it's OK to flip this crtc
2774  * based on the criterion that we must not have more than one implicit
2775  * frame-buffer at any one time.
2776  */
2777 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2778                             struct drm_crtc *crtc)
2779 {
2780         struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2781         bool ret;
2782
2783         mutex_lock(&dev_priv->global_kms_state_mutex);
2784         ret = !du->is_implicit || dev_priv->num_implicit == 1;
2785         mutex_unlock(&dev_priv->global_kms_state_mutex);
2786
2787         return ret;
2788 }
2789
2790 /**
2791  * vmw_kms_update_implicit_fb - Update the implicit fb.
2792  *
2793  * @dev_priv: Pointer to device-private struct.
2794  * @crtc: The crtc the new implicit frame-buffer is bound to.
2795  */
2796 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2797                                 struct drm_crtc *crtc)
2798 {
2799         struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2800         struct vmw_framebuffer *vfb;
2801
2802         mutex_lock(&dev_priv->global_kms_state_mutex);
2803
2804         if (!du->is_implicit)
2805                 goto out_unlock;
2806
2807         vfb = vmw_framebuffer_to_vfb(crtc->primary->fb);
2808         WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2809                      dev_priv->implicit_fb != vfb);
2810
2811         dev_priv->implicit_fb = vfb;
2812 out_unlock:
2813         mutex_unlock(&dev_priv->global_kms_state_mutex);
2814 }
2815
2816 /**
2817  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2818  * property.
2819  *
2820  * @dev_priv: Pointer to a device private struct.
2821  * @immutable: Whether the property is immutable.
2822  *
2823  * Sets up the implicit placement property unless it's already set up.
2824  */
2825 void
2826 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
2827                                            bool immutable)
2828 {
2829         if (dev_priv->implicit_placement_property)
2830                 return;
2831
2832         dev_priv->implicit_placement_property =
2833                 drm_property_create_range(dev_priv->dev,
2834                                           immutable ?
2835                                           DRM_MODE_PROP_IMMUTABLE : 0,
2836                                           "implicit_placement", 0, 1);
2837
2838 }
2839
2840
2841 /**
2842  * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
2843  *
2844  * @set: The configuration to set.
2845  *
2846  * The vmwgfx Xorg driver doesn't assign the mode::type member, which
2847  * when drm_mode_set_crtcinfo is called as part of the configuration setting
2848  * causes it to return incorrect crtc dimensions causing severe problems in
2849  * the vmwgfx modesetting. So explicitly clear that member before calling
2850  * into drm_atomic_helper_set_config.
2851  */
2852 int vmw_kms_set_config(struct drm_mode_set *set,
2853                        struct drm_modeset_acquire_ctx *ctx)
2854 {
2855         if (set && set->mode)
2856                 set->mode->type = 0;
2857
2858         return drm_atomic_helper_set_config(set, ctx);
2859 }