]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/hid/hid-core.c
Merge tag 'asoc-v5.6-2' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux.git] / drivers / hid / hid-core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID support for Linux
4  *
5  *  Copyright (c) 1999 Andreas Gal
6  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8  *  Copyright (c) 2006-2012 Jiri Kosina
9  */
10
11 /*
12  */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35
36 #include "hid-ids.h"
37
38 /*
39  * Version Information
40  */
41
42 #define DRIVER_DESC "HID core driver"
43
44 int hid_debug = 0;
45 module_param_named(debug, hid_debug, int, 0600);
46 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47 EXPORT_SYMBOL_GPL(hid_debug);
48
49 static int hid_ignore_special_drivers = 0;
50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52
53 /*
54  * Register a new report for a device.
55  */
56
57 struct hid_report *hid_register_report(struct hid_device *device,
58                                        unsigned int type, unsigned int id,
59                                        unsigned int application)
60 {
61         struct hid_report_enum *report_enum = device->report_enum + type;
62         struct hid_report *report;
63
64         if (id >= HID_MAX_IDS)
65                 return NULL;
66         if (report_enum->report_id_hash[id])
67                 return report_enum->report_id_hash[id];
68
69         report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70         if (!report)
71                 return NULL;
72
73         if (id != 0)
74                 report_enum->numbered = 1;
75
76         report->id = id;
77         report->type = type;
78         report->size = 0;
79         report->device = device;
80         report->application = application;
81         report_enum->report_id_hash[id] = report;
82
83         list_add_tail(&report->list, &report_enum->report_list);
84
85         return report;
86 }
87 EXPORT_SYMBOL_GPL(hid_register_report);
88
89 /*
90  * Register a new field for this report.
91  */
92
93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
94 {
95         struct hid_field *field;
96
97         if (report->maxfield == HID_MAX_FIELDS) {
98                 hid_err(report->device, "too many fields in report\n");
99                 return NULL;
100         }
101
102         field = kzalloc((sizeof(struct hid_field) +
103                          usages * sizeof(struct hid_usage) +
104                          values * sizeof(unsigned)), GFP_KERNEL);
105         if (!field)
106                 return NULL;
107
108         field->index = report->maxfield++;
109         report->field[field->index] = field;
110         field->usage = (struct hid_usage *)(field + 1);
111         field->value = (s32 *)(field->usage + usages);
112         field->report = report;
113
114         return field;
115 }
116
117 /*
118  * Open a collection. The type/usage is pushed on the stack.
119  */
120
121 static int open_collection(struct hid_parser *parser, unsigned type)
122 {
123         struct hid_collection *collection;
124         unsigned usage;
125         int collection_index;
126
127         usage = parser->local.usage[0];
128
129         if (parser->collection_stack_ptr == parser->collection_stack_size) {
130                 unsigned int *collection_stack;
131                 unsigned int new_size = parser->collection_stack_size +
132                                         HID_COLLECTION_STACK_SIZE;
133
134                 collection_stack = krealloc(parser->collection_stack,
135                                             new_size * sizeof(unsigned int),
136                                             GFP_KERNEL);
137                 if (!collection_stack)
138                         return -ENOMEM;
139
140                 parser->collection_stack = collection_stack;
141                 parser->collection_stack_size = new_size;
142         }
143
144         if (parser->device->maxcollection == parser->device->collection_size) {
145                 collection = kmalloc(
146                                 array3_size(sizeof(struct hid_collection),
147                                             parser->device->collection_size,
148                                             2),
149                                 GFP_KERNEL);
150                 if (collection == NULL) {
151                         hid_err(parser->device, "failed to reallocate collection array\n");
152                         return -ENOMEM;
153                 }
154                 memcpy(collection, parser->device->collection,
155                         sizeof(struct hid_collection) *
156                         parser->device->collection_size);
157                 memset(collection + parser->device->collection_size, 0,
158                         sizeof(struct hid_collection) *
159                         parser->device->collection_size);
160                 kfree(parser->device->collection);
161                 parser->device->collection = collection;
162                 parser->device->collection_size *= 2;
163         }
164
165         parser->collection_stack[parser->collection_stack_ptr++] =
166                 parser->device->maxcollection;
167
168         collection_index = parser->device->maxcollection++;
169         collection = parser->device->collection + collection_index;
170         collection->type = type;
171         collection->usage = usage;
172         collection->level = parser->collection_stack_ptr - 1;
173         collection->parent_idx = (collection->level == 0) ? -1 :
174                 parser->collection_stack[collection->level - 1];
175
176         if (type == HID_COLLECTION_APPLICATION)
177                 parser->device->maxapplication++;
178
179         return 0;
180 }
181
182 /*
183  * Close a collection.
184  */
185
186 static int close_collection(struct hid_parser *parser)
187 {
188         if (!parser->collection_stack_ptr) {
189                 hid_err(parser->device, "collection stack underflow\n");
190                 return -EINVAL;
191         }
192         parser->collection_stack_ptr--;
193         return 0;
194 }
195
196 /*
197  * Climb up the stack, search for the specified collection type
198  * and return the usage.
199  */
200
201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
202 {
203         struct hid_collection *collection = parser->device->collection;
204         int n;
205
206         for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207                 unsigned index = parser->collection_stack[n];
208                 if (collection[index].type == type)
209                         return collection[index].usage;
210         }
211         return 0; /* we know nothing about this usage type */
212 }
213
214 /*
215  * Concatenate usage which defines 16 bits or less with the
216  * currently defined usage page to form a 32 bit usage
217  */
218
219 static void complete_usage(struct hid_parser *parser, unsigned int index)
220 {
221         parser->local.usage[index] &= 0xFFFF;
222         parser->local.usage[index] |=
223                 (parser->global.usage_page & 0xFFFF) << 16;
224 }
225
226 /*
227  * Add a usage to the temporary parser table.
228  */
229
230 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
231 {
232         if (parser->local.usage_index >= HID_MAX_USAGES) {
233                 hid_err(parser->device, "usage index exceeded\n");
234                 return -1;
235         }
236         parser->local.usage[parser->local.usage_index] = usage;
237
238         /*
239          * If Usage item only includes usage id, concatenate it with
240          * currently defined usage page
241          */
242         if (size <= 2)
243                 complete_usage(parser, parser->local.usage_index);
244
245         parser->local.usage_size[parser->local.usage_index] = size;
246         parser->local.collection_index[parser->local.usage_index] =
247                 parser->collection_stack_ptr ?
248                 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
249         parser->local.usage_index++;
250         return 0;
251 }
252
253 /*
254  * Register a new field for this report.
255  */
256
257 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
258 {
259         struct hid_report *report;
260         struct hid_field *field;
261         unsigned int usages;
262         unsigned int offset;
263         unsigned int i;
264         unsigned int application;
265
266         application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
267
268         report = hid_register_report(parser->device, report_type,
269                                      parser->global.report_id, application);
270         if (!report) {
271                 hid_err(parser->device, "hid_register_report failed\n");
272                 return -1;
273         }
274
275         /* Handle both signed and unsigned cases properly */
276         if ((parser->global.logical_minimum < 0 &&
277                 parser->global.logical_maximum <
278                 parser->global.logical_minimum) ||
279                 (parser->global.logical_minimum >= 0 &&
280                 (__u32)parser->global.logical_maximum <
281                 (__u32)parser->global.logical_minimum)) {
282                 dbg_hid("logical range invalid 0x%x 0x%x\n",
283                         parser->global.logical_minimum,
284                         parser->global.logical_maximum);
285                 return -1;
286         }
287
288         offset = report->size;
289         report->size += parser->global.report_size * parser->global.report_count;
290
291         /* Total size check: Allow for possible report index byte */
292         if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
293                 hid_err(parser->device, "report is too long\n");
294                 return -1;
295         }
296
297         if (!parser->local.usage_index) /* Ignore padding fields */
298                 return 0;
299
300         usages = max_t(unsigned, parser->local.usage_index,
301                                  parser->global.report_count);
302
303         field = hid_register_field(report, usages, parser->global.report_count);
304         if (!field)
305                 return 0;
306
307         field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
308         field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
309         field->application = application;
310
311         for (i = 0; i < usages; i++) {
312                 unsigned j = i;
313                 /* Duplicate the last usage we parsed if we have excess values */
314                 if (i >= parser->local.usage_index)
315                         j = parser->local.usage_index - 1;
316                 field->usage[i].hid = parser->local.usage[j];
317                 field->usage[i].collection_index =
318                         parser->local.collection_index[j];
319                 field->usage[i].usage_index = i;
320                 field->usage[i].resolution_multiplier = 1;
321         }
322
323         field->maxusage = usages;
324         field->flags = flags;
325         field->report_offset = offset;
326         field->report_type = report_type;
327         field->report_size = parser->global.report_size;
328         field->report_count = parser->global.report_count;
329         field->logical_minimum = parser->global.logical_minimum;
330         field->logical_maximum = parser->global.logical_maximum;
331         field->physical_minimum = parser->global.physical_minimum;
332         field->physical_maximum = parser->global.physical_maximum;
333         field->unit_exponent = parser->global.unit_exponent;
334         field->unit = parser->global.unit;
335
336         return 0;
337 }
338
339 /*
340  * Read data value from item.
341  */
342
343 static u32 item_udata(struct hid_item *item)
344 {
345         switch (item->size) {
346         case 1: return item->data.u8;
347         case 2: return item->data.u16;
348         case 4: return item->data.u32;
349         }
350         return 0;
351 }
352
353 static s32 item_sdata(struct hid_item *item)
354 {
355         switch (item->size) {
356         case 1: return item->data.s8;
357         case 2: return item->data.s16;
358         case 4: return item->data.s32;
359         }
360         return 0;
361 }
362
363 /*
364  * Process a global item.
365  */
366
367 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
368 {
369         __s32 raw_value;
370         switch (item->tag) {
371         case HID_GLOBAL_ITEM_TAG_PUSH:
372
373                 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
374                         hid_err(parser->device, "global environment stack overflow\n");
375                         return -1;
376                 }
377
378                 memcpy(parser->global_stack + parser->global_stack_ptr++,
379                         &parser->global, sizeof(struct hid_global));
380                 return 0;
381
382         case HID_GLOBAL_ITEM_TAG_POP:
383
384                 if (!parser->global_stack_ptr) {
385                         hid_err(parser->device, "global environment stack underflow\n");
386                         return -1;
387                 }
388
389                 memcpy(&parser->global, parser->global_stack +
390                         --parser->global_stack_ptr, sizeof(struct hid_global));
391                 return 0;
392
393         case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
394                 parser->global.usage_page = item_udata(item);
395                 return 0;
396
397         case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
398                 parser->global.logical_minimum = item_sdata(item);
399                 return 0;
400
401         case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
402                 if (parser->global.logical_minimum < 0)
403                         parser->global.logical_maximum = item_sdata(item);
404                 else
405                         parser->global.logical_maximum = item_udata(item);
406                 return 0;
407
408         case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
409                 parser->global.physical_minimum = item_sdata(item);
410                 return 0;
411
412         case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
413                 if (parser->global.physical_minimum < 0)
414                         parser->global.physical_maximum = item_sdata(item);
415                 else
416                         parser->global.physical_maximum = item_udata(item);
417                 return 0;
418
419         case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
420                 /* Many devices provide unit exponent as a two's complement
421                  * nibble due to the common misunderstanding of HID
422                  * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
423                  * both this and the standard encoding. */
424                 raw_value = item_sdata(item);
425                 if (!(raw_value & 0xfffffff0))
426                         parser->global.unit_exponent = hid_snto32(raw_value, 4);
427                 else
428                         parser->global.unit_exponent = raw_value;
429                 return 0;
430
431         case HID_GLOBAL_ITEM_TAG_UNIT:
432                 parser->global.unit = item_udata(item);
433                 return 0;
434
435         case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
436                 parser->global.report_size = item_udata(item);
437                 if (parser->global.report_size > 256) {
438                         hid_err(parser->device, "invalid report_size %d\n",
439                                         parser->global.report_size);
440                         return -1;
441                 }
442                 return 0;
443
444         case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
445                 parser->global.report_count = item_udata(item);
446                 if (parser->global.report_count > HID_MAX_USAGES) {
447                         hid_err(parser->device, "invalid report_count %d\n",
448                                         parser->global.report_count);
449                         return -1;
450                 }
451                 return 0;
452
453         case HID_GLOBAL_ITEM_TAG_REPORT_ID:
454                 parser->global.report_id = item_udata(item);
455                 if (parser->global.report_id == 0 ||
456                     parser->global.report_id >= HID_MAX_IDS) {
457                         hid_err(parser->device, "report_id %u is invalid\n",
458                                 parser->global.report_id);
459                         return -1;
460                 }
461                 return 0;
462
463         default:
464                 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
465                 return -1;
466         }
467 }
468
469 /*
470  * Process a local item.
471  */
472
473 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
474 {
475         __u32 data;
476         unsigned n;
477         __u32 count;
478
479         data = item_udata(item);
480
481         switch (item->tag) {
482         case HID_LOCAL_ITEM_TAG_DELIMITER:
483
484                 if (data) {
485                         /*
486                          * We treat items before the first delimiter
487                          * as global to all usage sets (branch 0).
488                          * In the moment we process only these global
489                          * items and the first delimiter set.
490                          */
491                         if (parser->local.delimiter_depth != 0) {
492                                 hid_err(parser->device, "nested delimiters\n");
493                                 return -1;
494                         }
495                         parser->local.delimiter_depth++;
496                         parser->local.delimiter_branch++;
497                 } else {
498                         if (parser->local.delimiter_depth < 1) {
499                                 hid_err(parser->device, "bogus close delimiter\n");
500                                 return -1;
501                         }
502                         parser->local.delimiter_depth--;
503                 }
504                 return 0;
505
506         case HID_LOCAL_ITEM_TAG_USAGE:
507
508                 if (parser->local.delimiter_branch > 1) {
509                         dbg_hid("alternative usage ignored\n");
510                         return 0;
511                 }
512
513                 return hid_add_usage(parser, data, item->size);
514
515         case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
516
517                 if (parser->local.delimiter_branch > 1) {
518                         dbg_hid("alternative usage ignored\n");
519                         return 0;
520                 }
521
522                 parser->local.usage_minimum = data;
523                 return 0;
524
525         case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
526
527                 if (parser->local.delimiter_branch > 1) {
528                         dbg_hid("alternative usage ignored\n");
529                         return 0;
530                 }
531
532                 count = data - parser->local.usage_minimum;
533                 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
534                         /*
535                          * We do not warn if the name is not set, we are
536                          * actually pre-scanning the device.
537                          */
538                         if (dev_name(&parser->device->dev))
539                                 hid_warn(parser->device,
540                                          "ignoring exceeding usage max\n");
541                         data = HID_MAX_USAGES - parser->local.usage_index +
542                                 parser->local.usage_minimum - 1;
543                         if (data <= 0) {
544                                 hid_err(parser->device,
545                                         "no more usage index available\n");
546                                 return -1;
547                         }
548                 }
549
550                 for (n = parser->local.usage_minimum; n <= data; n++)
551                         if (hid_add_usage(parser, n, item->size)) {
552                                 dbg_hid("hid_add_usage failed\n");
553                                 return -1;
554                         }
555                 return 0;
556
557         default:
558
559                 dbg_hid("unknown local item tag 0x%x\n", item->tag);
560                 return 0;
561         }
562         return 0;
563 }
564
565 /*
566  * Concatenate Usage Pages into Usages where relevant:
567  * As per specification, 6.2.2.8: "When the parser encounters a main item it
568  * concatenates the last declared Usage Page with a Usage to form a complete
569  * usage value."
570  */
571
572 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
573 {
574         int i;
575         unsigned int usage_page;
576         unsigned int current_page;
577
578         if (!parser->local.usage_index)
579                 return;
580
581         usage_page = parser->global.usage_page;
582
583         /*
584          * Concatenate usage page again only if last declared Usage Page
585          * has not been already used in previous usages concatenation
586          */
587         for (i = parser->local.usage_index - 1; i >= 0; i--) {
588                 if (parser->local.usage_size[i] > 2)
589                         /* Ignore extended usages */
590                         continue;
591
592                 current_page = parser->local.usage[i] >> 16;
593                 if (current_page == usage_page)
594                         break;
595
596                 complete_usage(parser, i);
597         }
598 }
599
600 /*
601  * Process a main item.
602  */
603
604 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
605 {
606         __u32 data;
607         int ret;
608
609         hid_concatenate_last_usage_page(parser);
610
611         data = item_udata(item);
612
613         switch (item->tag) {
614         case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
615                 ret = open_collection(parser, data & 0xff);
616                 break;
617         case HID_MAIN_ITEM_TAG_END_COLLECTION:
618                 ret = close_collection(parser);
619                 break;
620         case HID_MAIN_ITEM_TAG_INPUT:
621                 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
622                 break;
623         case HID_MAIN_ITEM_TAG_OUTPUT:
624                 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
625                 break;
626         case HID_MAIN_ITEM_TAG_FEATURE:
627                 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
628                 break;
629         default:
630                 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
631                 ret = 0;
632         }
633
634         memset(&parser->local, 0, sizeof(parser->local));       /* Reset the local parser environment */
635
636         return ret;
637 }
638
639 /*
640  * Process a reserved item.
641  */
642
643 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
644 {
645         dbg_hid("reserved item type, tag 0x%x\n", item->tag);
646         return 0;
647 }
648
649 /*
650  * Free a report and all registered fields. The field->usage and
651  * field->value table's are allocated behind the field, so we need
652  * only to free(field) itself.
653  */
654
655 static void hid_free_report(struct hid_report *report)
656 {
657         unsigned n;
658
659         for (n = 0; n < report->maxfield; n++)
660                 kfree(report->field[n]);
661         kfree(report);
662 }
663
664 /*
665  * Close report. This function returns the device
666  * state to the point prior to hid_open_report().
667  */
668 static void hid_close_report(struct hid_device *device)
669 {
670         unsigned i, j;
671
672         for (i = 0; i < HID_REPORT_TYPES; i++) {
673                 struct hid_report_enum *report_enum = device->report_enum + i;
674
675                 for (j = 0; j < HID_MAX_IDS; j++) {
676                         struct hid_report *report = report_enum->report_id_hash[j];
677                         if (report)
678                                 hid_free_report(report);
679                 }
680                 memset(report_enum, 0, sizeof(*report_enum));
681                 INIT_LIST_HEAD(&report_enum->report_list);
682         }
683
684         kfree(device->rdesc);
685         device->rdesc = NULL;
686         device->rsize = 0;
687
688         kfree(device->collection);
689         device->collection = NULL;
690         device->collection_size = 0;
691         device->maxcollection = 0;
692         device->maxapplication = 0;
693
694         device->status &= ~HID_STAT_PARSED;
695 }
696
697 /*
698  * Free a device structure, all reports, and all fields.
699  */
700
701 static void hid_device_release(struct device *dev)
702 {
703         struct hid_device *hid = to_hid_device(dev);
704
705         hid_close_report(hid);
706         kfree(hid->dev_rdesc);
707         kfree(hid);
708 }
709
710 /*
711  * Fetch a report description item from the data stream. We support long
712  * items, though they are not used yet.
713  */
714
715 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
716 {
717         u8 b;
718
719         if ((end - start) <= 0)
720                 return NULL;
721
722         b = *start++;
723
724         item->type = (b >> 2) & 3;
725         item->tag  = (b >> 4) & 15;
726
727         if (item->tag == HID_ITEM_TAG_LONG) {
728
729                 item->format = HID_ITEM_FORMAT_LONG;
730
731                 if ((end - start) < 2)
732                         return NULL;
733
734                 item->size = *start++;
735                 item->tag  = *start++;
736
737                 if ((end - start) < item->size)
738                         return NULL;
739
740                 item->data.longdata = start;
741                 start += item->size;
742                 return start;
743         }
744
745         item->format = HID_ITEM_FORMAT_SHORT;
746         item->size = b & 3;
747
748         switch (item->size) {
749         case 0:
750                 return start;
751
752         case 1:
753                 if ((end - start) < 1)
754                         return NULL;
755                 item->data.u8 = *start++;
756                 return start;
757
758         case 2:
759                 if ((end - start) < 2)
760                         return NULL;
761                 item->data.u16 = get_unaligned_le16(start);
762                 start = (__u8 *)((__le16 *)start + 1);
763                 return start;
764
765         case 3:
766                 item->size++;
767                 if ((end - start) < 4)
768                         return NULL;
769                 item->data.u32 = get_unaligned_le32(start);
770                 start = (__u8 *)((__le32 *)start + 1);
771                 return start;
772         }
773
774         return NULL;
775 }
776
777 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
778 {
779         struct hid_device *hid = parser->device;
780
781         if (usage == HID_DG_CONTACTID)
782                 hid->group = HID_GROUP_MULTITOUCH;
783 }
784
785 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
786 {
787         if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
788             parser->global.report_size == 8)
789                 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
790
791         if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
792             parser->global.report_size == 8)
793                 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
794 }
795
796 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
797 {
798         struct hid_device *hid = parser->device;
799         int i;
800
801         if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
802             type == HID_COLLECTION_PHYSICAL)
803                 hid->group = HID_GROUP_SENSOR_HUB;
804
805         if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
806             hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
807             hid->group == HID_GROUP_MULTITOUCH)
808                 hid->group = HID_GROUP_GENERIC;
809
810         if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
811                 for (i = 0; i < parser->local.usage_index; i++)
812                         if (parser->local.usage[i] == HID_GD_POINTER)
813                                 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
814
815         if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
816                 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
817 }
818
819 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
820 {
821         __u32 data;
822         int i;
823
824         hid_concatenate_last_usage_page(parser);
825
826         data = item_udata(item);
827
828         switch (item->tag) {
829         case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
830                 hid_scan_collection(parser, data & 0xff);
831                 break;
832         case HID_MAIN_ITEM_TAG_END_COLLECTION:
833                 break;
834         case HID_MAIN_ITEM_TAG_INPUT:
835                 /* ignore constant inputs, they will be ignored by hid-input */
836                 if (data & HID_MAIN_ITEM_CONSTANT)
837                         break;
838                 for (i = 0; i < parser->local.usage_index; i++)
839                         hid_scan_input_usage(parser, parser->local.usage[i]);
840                 break;
841         case HID_MAIN_ITEM_TAG_OUTPUT:
842                 break;
843         case HID_MAIN_ITEM_TAG_FEATURE:
844                 for (i = 0; i < parser->local.usage_index; i++)
845                         hid_scan_feature_usage(parser, parser->local.usage[i]);
846                 break;
847         }
848
849         /* Reset the local parser environment */
850         memset(&parser->local, 0, sizeof(parser->local));
851
852         return 0;
853 }
854
855 /*
856  * Scan a report descriptor before the device is added to the bus.
857  * Sets device groups and other properties that determine what driver
858  * to load.
859  */
860 static int hid_scan_report(struct hid_device *hid)
861 {
862         struct hid_parser *parser;
863         struct hid_item item;
864         __u8 *start = hid->dev_rdesc;
865         __u8 *end = start + hid->dev_rsize;
866         static int (*dispatch_type[])(struct hid_parser *parser,
867                                       struct hid_item *item) = {
868                 hid_scan_main,
869                 hid_parser_global,
870                 hid_parser_local,
871                 hid_parser_reserved
872         };
873
874         parser = vzalloc(sizeof(struct hid_parser));
875         if (!parser)
876                 return -ENOMEM;
877
878         parser->device = hid;
879         hid->group = HID_GROUP_GENERIC;
880
881         /*
882          * The parsing is simpler than the one in hid_open_report() as we should
883          * be robust against hid errors. Those errors will be raised by
884          * hid_open_report() anyway.
885          */
886         while ((start = fetch_item(start, end, &item)) != NULL)
887                 dispatch_type[item.type](parser, &item);
888
889         /*
890          * Handle special flags set during scanning.
891          */
892         if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
893             (hid->group == HID_GROUP_MULTITOUCH))
894                 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
895
896         /*
897          * Vendor specific handlings
898          */
899         switch (hid->vendor) {
900         case USB_VENDOR_ID_WACOM:
901                 hid->group = HID_GROUP_WACOM;
902                 break;
903         case USB_VENDOR_ID_SYNAPTICS:
904                 if (hid->group == HID_GROUP_GENERIC)
905                         if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
906                             && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
907                                 /*
908                                  * hid-rmi should take care of them,
909                                  * not hid-generic
910                                  */
911                                 hid->group = HID_GROUP_RMI;
912                 break;
913         }
914
915         kfree(parser->collection_stack);
916         vfree(parser);
917         return 0;
918 }
919
920 /**
921  * hid_parse_report - parse device report
922  *
923  * @device: hid device
924  * @start: report start
925  * @size: report size
926  *
927  * Allocate the device report as read by the bus driver. This function should
928  * only be called from parse() in ll drivers.
929  */
930 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
931 {
932         hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
933         if (!hid->dev_rdesc)
934                 return -ENOMEM;
935         hid->dev_rsize = size;
936         return 0;
937 }
938 EXPORT_SYMBOL_GPL(hid_parse_report);
939
940 static const char * const hid_report_names[] = {
941         "HID_INPUT_REPORT",
942         "HID_OUTPUT_REPORT",
943         "HID_FEATURE_REPORT",
944 };
945 /**
946  * hid_validate_values - validate existing device report's value indexes
947  *
948  * @device: hid device
949  * @type: which report type to examine
950  * @id: which report ID to examine (0 for first)
951  * @field_index: which report field to examine
952  * @report_counts: expected number of values
953  *
954  * Validate the number of values in a given field of a given report, after
955  * parsing.
956  */
957 struct hid_report *hid_validate_values(struct hid_device *hid,
958                                        unsigned int type, unsigned int id,
959                                        unsigned int field_index,
960                                        unsigned int report_counts)
961 {
962         struct hid_report *report;
963
964         if (type > HID_FEATURE_REPORT) {
965                 hid_err(hid, "invalid HID report type %u\n", type);
966                 return NULL;
967         }
968
969         if (id >= HID_MAX_IDS) {
970                 hid_err(hid, "invalid HID report id %u\n", id);
971                 return NULL;
972         }
973
974         /*
975          * Explicitly not using hid_get_report() here since it depends on
976          * ->numbered being checked, which may not always be the case when
977          * drivers go to access report values.
978          */
979         if (id == 0) {
980                 /*
981                  * Validating on id 0 means we should examine the first
982                  * report in the list.
983                  */
984                 report = list_entry(
985                                 hid->report_enum[type].report_list.next,
986                                 struct hid_report, list);
987         } else {
988                 report = hid->report_enum[type].report_id_hash[id];
989         }
990         if (!report) {
991                 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
992                 return NULL;
993         }
994         if (report->maxfield <= field_index) {
995                 hid_err(hid, "not enough fields in %s %u\n",
996                         hid_report_names[type], id);
997                 return NULL;
998         }
999         if (report->field[field_index]->report_count < report_counts) {
1000                 hid_err(hid, "not enough values in %s %u field %u\n",
1001                         hid_report_names[type], id, field_index);
1002                 return NULL;
1003         }
1004         return report;
1005 }
1006 EXPORT_SYMBOL_GPL(hid_validate_values);
1007
1008 static int hid_calculate_multiplier(struct hid_device *hid,
1009                                      struct hid_field *multiplier)
1010 {
1011         int m;
1012         __s32 v = *multiplier->value;
1013         __s32 lmin = multiplier->logical_minimum;
1014         __s32 lmax = multiplier->logical_maximum;
1015         __s32 pmin = multiplier->physical_minimum;
1016         __s32 pmax = multiplier->physical_maximum;
1017
1018         /*
1019          * "Because OS implementations will generally divide the control's
1020          * reported count by the Effective Resolution Multiplier, designers
1021          * should take care not to establish a potential Effective
1022          * Resolution Multiplier of zero."
1023          * HID Usage Table, v1.12, Section 4.3.1, p31
1024          */
1025         if (lmax - lmin == 0)
1026                 return 1;
1027         /*
1028          * Handling the unit exponent is left as an exercise to whoever
1029          * finds a device where that exponent is not 0.
1030          */
1031         m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1032         if (unlikely(multiplier->unit_exponent != 0)) {
1033                 hid_warn(hid,
1034                          "unsupported Resolution Multiplier unit exponent %d\n",
1035                          multiplier->unit_exponent);
1036         }
1037
1038         /* There are no devices with an effective multiplier > 255 */
1039         if (unlikely(m == 0 || m > 255 || m < -255)) {
1040                 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1041                 m = 1;
1042         }
1043
1044         return m;
1045 }
1046
1047 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1048                                           struct hid_field *field,
1049                                           struct hid_collection *multiplier_collection,
1050                                           int effective_multiplier)
1051 {
1052         struct hid_collection *collection;
1053         struct hid_usage *usage;
1054         int i;
1055
1056         /*
1057          * If multiplier_collection is NULL, the multiplier applies
1058          * to all fields in the report.
1059          * Otherwise, it is the Logical Collection the multiplier applies to
1060          * but our field may be in a subcollection of that collection.
1061          */
1062         for (i = 0; i < field->maxusage; i++) {
1063                 usage = &field->usage[i];
1064
1065                 collection = &hid->collection[usage->collection_index];
1066                 while (collection->parent_idx != -1 &&
1067                        collection != multiplier_collection)
1068                         collection = &hid->collection[collection->parent_idx];
1069
1070                 if (collection->parent_idx != -1 ||
1071                     multiplier_collection == NULL)
1072                         usage->resolution_multiplier = effective_multiplier;
1073
1074         }
1075 }
1076
1077 static void hid_apply_multiplier(struct hid_device *hid,
1078                                  struct hid_field *multiplier)
1079 {
1080         struct hid_report_enum *rep_enum;
1081         struct hid_report *rep;
1082         struct hid_field *field;
1083         struct hid_collection *multiplier_collection;
1084         int effective_multiplier;
1085         int i;
1086
1087         /*
1088          * "The Resolution Multiplier control must be contained in the same
1089          * Logical Collection as the control(s) to which it is to be applied.
1090          * If no Resolution Multiplier is defined, then the Resolution
1091          * Multiplier defaults to 1.  If more than one control exists in a
1092          * Logical Collection, the Resolution Multiplier is associated with
1093          * all controls in the collection. If no Logical Collection is
1094          * defined, the Resolution Multiplier is associated with all
1095          * controls in the report."
1096          * HID Usage Table, v1.12, Section 4.3.1, p30
1097          *
1098          * Thus, search from the current collection upwards until we find a
1099          * logical collection. Then search all fields for that same parent
1100          * collection. Those are the fields the multiplier applies to.
1101          *
1102          * If we have more than one multiplier, it will overwrite the
1103          * applicable fields later.
1104          */
1105         multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1106         while (multiplier_collection->parent_idx != -1 &&
1107                multiplier_collection->type != HID_COLLECTION_LOGICAL)
1108                 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1109
1110         effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1111
1112         rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1113         list_for_each_entry(rep, &rep_enum->report_list, list) {
1114                 for (i = 0; i < rep->maxfield; i++) {
1115                         field = rep->field[i];
1116                         hid_apply_multiplier_to_field(hid, field,
1117                                                       multiplier_collection,
1118                                                       effective_multiplier);
1119                 }
1120         }
1121 }
1122
1123 /*
1124  * hid_setup_resolution_multiplier - set up all resolution multipliers
1125  *
1126  * @device: hid device
1127  *
1128  * Search for all Resolution Multiplier Feature Reports and apply their
1129  * value to all matching Input items. This only updates the internal struct
1130  * fields.
1131  *
1132  * The Resolution Multiplier is applied by the hardware. If the multiplier
1133  * is anything other than 1, the hardware will send pre-multiplied events
1134  * so that the same physical interaction generates an accumulated
1135  *      accumulated_value = value * * multiplier
1136  * This may be achieved by sending
1137  * - "value * multiplier" for each event, or
1138  * - "value" but "multiplier" times as frequently, or
1139  * - a combination of the above
1140  * The only guarantee is that the same physical interaction always generates
1141  * an accumulated 'value * multiplier'.
1142  *
1143  * This function must be called before any event processing and after
1144  * any SetRequest to the Resolution Multiplier.
1145  */
1146 void hid_setup_resolution_multiplier(struct hid_device *hid)
1147 {
1148         struct hid_report_enum *rep_enum;
1149         struct hid_report *rep;
1150         struct hid_usage *usage;
1151         int i, j;
1152
1153         rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1154         list_for_each_entry(rep, &rep_enum->report_list, list) {
1155                 for (i = 0; i < rep->maxfield; i++) {
1156                         /* Ignore if report count is out of bounds. */
1157                         if (rep->field[i]->report_count < 1)
1158                                 continue;
1159
1160                         for (j = 0; j < rep->field[i]->maxusage; j++) {
1161                                 usage = &rep->field[i]->usage[j];
1162                                 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1163                                         hid_apply_multiplier(hid,
1164                                                              rep->field[i]);
1165                         }
1166                 }
1167         }
1168 }
1169 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1170
1171 /**
1172  * hid_open_report - open a driver-specific device report
1173  *
1174  * @device: hid device
1175  *
1176  * Parse a report description into a hid_device structure. Reports are
1177  * enumerated, fields are attached to these reports.
1178  * 0 returned on success, otherwise nonzero error value.
1179  *
1180  * This function (or the equivalent hid_parse() macro) should only be
1181  * called from probe() in drivers, before starting the device.
1182  */
1183 int hid_open_report(struct hid_device *device)
1184 {
1185         struct hid_parser *parser;
1186         struct hid_item item;
1187         unsigned int size;
1188         __u8 *start;
1189         __u8 *buf;
1190         __u8 *end;
1191         __u8 *next;
1192         int ret;
1193         static int (*dispatch_type[])(struct hid_parser *parser,
1194                                       struct hid_item *item) = {
1195                 hid_parser_main,
1196                 hid_parser_global,
1197                 hid_parser_local,
1198                 hid_parser_reserved
1199         };
1200
1201         if (WARN_ON(device->status & HID_STAT_PARSED))
1202                 return -EBUSY;
1203
1204         start = device->dev_rdesc;
1205         if (WARN_ON(!start))
1206                 return -ENODEV;
1207         size = device->dev_rsize;
1208
1209         buf = kmemdup(start, size, GFP_KERNEL);
1210         if (buf == NULL)
1211                 return -ENOMEM;
1212
1213         if (device->driver->report_fixup)
1214                 start = device->driver->report_fixup(device, buf, &size);
1215         else
1216                 start = buf;
1217
1218         start = kmemdup(start, size, GFP_KERNEL);
1219         kfree(buf);
1220         if (start == NULL)
1221                 return -ENOMEM;
1222
1223         device->rdesc = start;
1224         device->rsize = size;
1225
1226         parser = vzalloc(sizeof(struct hid_parser));
1227         if (!parser) {
1228                 ret = -ENOMEM;
1229                 goto alloc_err;
1230         }
1231
1232         parser->device = device;
1233
1234         end = start + size;
1235
1236         device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1237                                      sizeof(struct hid_collection), GFP_KERNEL);
1238         if (!device->collection) {
1239                 ret = -ENOMEM;
1240                 goto err;
1241         }
1242         device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1243
1244         ret = -EINVAL;
1245         while ((next = fetch_item(start, end, &item)) != NULL) {
1246                 start = next;
1247
1248                 if (item.format != HID_ITEM_FORMAT_SHORT) {
1249                         hid_err(device, "unexpected long global item\n");
1250                         goto err;
1251                 }
1252
1253                 if (dispatch_type[item.type](parser, &item)) {
1254                         hid_err(device, "item %u %u %u %u parsing failed\n",
1255                                 item.format, (unsigned)item.size,
1256                                 (unsigned)item.type, (unsigned)item.tag);
1257                         goto err;
1258                 }
1259
1260                 if (start == end) {
1261                         if (parser->collection_stack_ptr) {
1262                                 hid_err(device, "unbalanced collection at end of report description\n");
1263                                 goto err;
1264                         }
1265                         if (parser->local.delimiter_depth) {
1266                                 hid_err(device, "unbalanced delimiter at end of report description\n");
1267                                 goto err;
1268                         }
1269
1270                         /*
1271                          * fetch initial values in case the device's
1272                          * default multiplier isn't the recommended 1
1273                          */
1274                         hid_setup_resolution_multiplier(device);
1275
1276                         kfree(parser->collection_stack);
1277                         vfree(parser);
1278                         device->status |= HID_STAT_PARSED;
1279
1280                         return 0;
1281                 }
1282         }
1283
1284         hid_err(device, "item fetching failed at offset %u/%u\n",
1285                 size - (unsigned int)(end - start), size);
1286 err:
1287         kfree(parser->collection_stack);
1288 alloc_err:
1289         vfree(parser);
1290         hid_close_report(device);
1291         return ret;
1292 }
1293 EXPORT_SYMBOL_GPL(hid_open_report);
1294
1295 /*
1296  * Convert a signed n-bit integer to signed 32-bit integer. Common
1297  * cases are done through the compiler, the screwed things has to be
1298  * done by hand.
1299  */
1300
1301 static s32 snto32(__u32 value, unsigned n)
1302 {
1303         switch (n) {
1304         case 8:  return ((__s8)value);
1305         case 16: return ((__s16)value);
1306         case 32: return ((__s32)value);
1307         }
1308         return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1309 }
1310
1311 s32 hid_snto32(__u32 value, unsigned n)
1312 {
1313         return snto32(value, n);
1314 }
1315 EXPORT_SYMBOL_GPL(hid_snto32);
1316
1317 /*
1318  * Convert a signed 32-bit integer to a signed n-bit integer.
1319  */
1320
1321 static u32 s32ton(__s32 value, unsigned n)
1322 {
1323         s32 a = value >> (n - 1);
1324         if (a && a != -1)
1325                 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1326         return value & ((1 << n) - 1);
1327 }
1328
1329 /*
1330  * Extract/implement a data field from/to a little endian report (bit array).
1331  *
1332  * Code sort-of follows HID spec:
1333  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1334  *
1335  * While the USB HID spec allows unlimited length bit fields in "report
1336  * descriptors", most devices never use more than 16 bits.
1337  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1338  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1339  */
1340
1341 static u32 __extract(u8 *report, unsigned offset, int n)
1342 {
1343         unsigned int idx = offset / 8;
1344         unsigned int bit_nr = 0;
1345         unsigned int bit_shift = offset % 8;
1346         int bits_to_copy = 8 - bit_shift;
1347         u32 value = 0;
1348         u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1349
1350         while (n > 0) {
1351                 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1352                 n -= bits_to_copy;
1353                 bit_nr += bits_to_copy;
1354                 bits_to_copy = 8;
1355                 bit_shift = 0;
1356                 idx++;
1357         }
1358
1359         return value & mask;
1360 }
1361
1362 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1363                         unsigned offset, unsigned n)
1364 {
1365         if (n > 32) {
1366                 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1367                               __func__, n, current->comm);
1368                 n = 32;
1369         }
1370
1371         return __extract(report, offset, n);
1372 }
1373 EXPORT_SYMBOL_GPL(hid_field_extract);
1374
1375 /*
1376  * "implement" : set bits in a little endian bit stream.
1377  * Same concepts as "extract" (see comments above).
1378  * The data mangled in the bit stream remains in little endian
1379  * order the whole time. It make more sense to talk about
1380  * endianness of register values by considering a register
1381  * a "cached" copy of the little endian bit stream.
1382  */
1383
1384 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1385 {
1386         unsigned int idx = offset / 8;
1387         unsigned int bit_shift = offset % 8;
1388         int bits_to_set = 8 - bit_shift;
1389
1390         while (n - bits_to_set >= 0) {
1391                 report[idx] &= ~(0xff << bit_shift);
1392                 report[idx] |= value << bit_shift;
1393                 value >>= bits_to_set;
1394                 n -= bits_to_set;
1395                 bits_to_set = 8;
1396                 bit_shift = 0;
1397                 idx++;
1398         }
1399
1400         /* last nibble */
1401         if (n) {
1402                 u8 bit_mask = ((1U << n) - 1);
1403                 report[idx] &= ~(bit_mask << bit_shift);
1404                 report[idx] |= value << bit_shift;
1405         }
1406 }
1407
1408 static void implement(const struct hid_device *hid, u8 *report,
1409                       unsigned offset, unsigned n, u32 value)
1410 {
1411         if (unlikely(n > 32)) {
1412                 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1413                          __func__, n, current->comm);
1414                 n = 32;
1415         } else if (n < 32) {
1416                 u32 m = (1U << n) - 1;
1417
1418                 if (unlikely(value > m)) {
1419                         hid_warn(hid,
1420                                  "%s() called with too large value %d (n: %d)! (%s)\n",
1421                                  __func__, value, n, current->comm);
1422                         WARN_ON(1);
1423                         value &= m;
1424                 }
1425         }
1426
1427         __implement(report, offset, n, value);
1428 }
1429
1430 /*
1431  * Search an array for a value.
1432  */
1433
1434 static int search(__s32 *array, __s32 value, unsigned n)
1435 {
1436         while (n--) {
1437                 if (*array++ == value)
1438                         return 0;
1439         }
1440         return -1;
1441 }
1442
1443 /**
1444  * hid_match_report - check if driver's raw_event should be called
1445  *
1446  * @hid: hid device
1447  * @report_type: type to match against
1448  *
1449  * compare hid->driver->report_table->report_type to report->type
1450  */
1451 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1452 {
1453         const struct hid_report_id *id = hid->driver->report_table;
1454
1455         if (!id) /* NULL means all */
1456                 return 1;
1457
1458         for (; id->report_type != HID_TERMINATOR; id++)
1459                 if (id->report_type == HID_ANY_ID ||
1460                                 id->report_type == report->type)
1461                         return 1;
1462         return 0;
1463 }
1464
1465 /**
1466  * hid_match_usage - check if driver's event should be called
1467  *
1468  * @hid: hid device
1469  * @usage: usage to match against
1470  *
1471  * compare hid->driver->usage_table->usage_{type,code} to
1472  * usage->usage_{type,code}
1473  */
1474 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1475 {
1476         const struct hid_usage_id *id = hid->driver->usage_table;
1477
1478         if (!id) /* NULL means all */
1479                 return 1;
1480
1481         for (; id->usage_type != HID_ANY_ID - 1; id++)
1482                 if ((id->usage_hid == HID_ANY_ID ||
1483                                 id->usage_hid == usage->hid) &&
1484                                 (id->usage_type == HID_ANY_ID ||
1485                                 id->usage_type == usage->type) &&
1486                                 (id->usage_code == HID_ANY_ID ||
1487                                  id->usage_code == usage->code))
1488                         return 1;
1489         return 0;
1490 }
1491
1492 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1493                 struct hid_usage *usage, __s32 value, int interrupt)
1494 {
1495         struct hid_driver *hdrv = hid->driver;
1496         int ret;
1497
1498         if (!list_empty(&hid->debug_list))
1499                 hid_dump_input(hid, usage, value);
1500
1501         if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1502                 ret = hdrv->event(hid, field, usage, value);
1503                 if (ret != 0) {
1504                         if (ret < 0)
1505                                 hid_err(hid, "%s's event failed with %d\n",
1506                                                 hdrv->name, ret);
1507                         return;
1508                 }
1509         }
1510
1511         if (hid->claimed & HID_CLAIMED_INPUT)
1512                 hidinput_hid_event(hid, field, usage, value);
1513         if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1514                 hid->hiddev_hid_event(hid, field, usage, value);
1515 }
1516
1517 /*
1518  * Analyse a received field, and fetch the data from it. The field
1519  * content is stored for next report processing (we do differential
1520  * reporting to the layer).
1521  */
1522
1523 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1524                             __u8 *data, int interrupt)
1525 {
1526         unsigned n;
1527         unsigned count = field->report_count;
1528         unsigned offset = field->report_offset;
1529         unsigned size = field->report_size;
1530         __s32 min = field->logical_minimum;
1531         __s32 max = field->logical_maximum;
1532         __s32 *value;
1533
1534         value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1535         if (!value)
1536                 return;
1537
1538         for (n = 0; n < count; n++) {
1539
1540                 value[n] = min < 0 ?
1541                         snto32(hid_field_extract(hid, data, offset + n * size,
1542                                size), size) :
1543                         hid_field_extract(hid, data, offset + n * size, size);
1544
1545                 /* Ignore report if ErrorRollOver */
1546                 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1547                     value[n] >= min && value[n] <= max &&
1548                     value[n] - min < field->maxusage &&
1549                     field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1550                         goto exit;
1551         }
1552
1553         for (n = 0; n < count; n++) {
1554
1555                 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1556                         hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1557                         continue;
1558                 }
1559
1560                 if (field->value[n] >= min && field->value[n] <= max
1561                         && field->value[n] - min < field->maxusage
1562                         && field->usage[field->value[n] - min].hid
1563                         && search(value, field->value[n], count))
1564                                 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1565
1566                 if (value[n] >= min && value[n] <= max
1567                         && value[n] - min < field->maxusage
1568                         && field->usage[value[n] - min].hid
1569                         && search(field->value, value[n], count))
1570                                 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1571         }
1572
1573         memcpy(field->value, value, count * sizeof(__s32));
1574 exit:
1575         kfree(value);
1576 }
1577
1578 /*
1579  * Output the field into the report.
1580  */
1581
1582 static void hid_output_field(const struct hid_device *hid,
1583                              struct hid_field *field, __u8 *data)
1584 {
1585         unsigned count = field->report_count;
1586         unsigned offset = field->report_offset;
1587         unsigned size = field->report_size;
1588         unsigned n;
1589
1590         for (n = 0; n < count; n++) {
1591                 if (field->logical_minimum < 0) /* signed values */
1592                         implement(hid, data, offset + n * size, size,
1593                                   s32ton(field->value[n], size));
1594                 else                            /* unsigned values */
1595                         implement(hid, data, offset + n * size, size,
1596                                   field->value[n]);
1597         }
1598 }
1599
1600 /*
1601  * Create a report. 'data' has to be allocated using
1602  * hid_alloc_report_buf() so that it has proper size.
1603  */
1604
1605 void hid_output_report(struct hid_report *report, __u8 *data)
1606 {
1607         unsigned n;
1608
1609         if (report->id > 0)
1610                 *data++ = report->id;
1611
1612         memset(data, 0, ((report->size - 1) >> 3) + 1);
1613         for (n = 0; n < report->maxfield; n++)
1614                 hid_output_field(report->device, report->field[n], data);
1615 }
1616 EXPORT_SYMBOL_GPL(hid_output_report);
1617
1618 /*
1619  * Allocator for buffer that is going to be passed to hid_output_report()
1620  */
1621 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1622 {
1623         /*
1624          * 7 extra bytes are necessary to achieve proper functionality
1625          * of implement() working on 8 byte chunks
1626          */
1627
1628         u32 len = hid_report_len(report) + 7;
1629
1630         return kmalloc(len, flags);
1631 }
1632 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1633
1634 /*
1635  * Set a field value. The report this field belongs to has to be
1636  * created and transferred to the device, to set this value in the
1637  * device.
1638  */
1639
1640 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1641 {
1642         unsigned size;
1643
1644         if (!field)
1645                 return -1;
1646
1647         size = field->report_size;
1648
1649         hid_dump_input(field->report->device, field->usage + offset, value);
1650
1651         if (offset >= field->report_count) {
1652                 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1653                                 offset, field->report_count);
1654                 return -1;
1655         }
1656         if (field->logical_minimum < 0) {
1657                 if (value != snto32(s32ton(value, size), size)) {
1658                         hid_err(field->report->device, "value %d is out of range\n", value);
1659                         return -1;
1660                 }
1661         }
1662         field->value[offset] = value;
1663         return 0;
1664 }
1665 EXPORT_SYMBOL_GPL(hid_set_field);
1666
1667 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1668                 const u8 *data)
1669 {
1670         struct hid_report *report;
1671         unsigned int n = 0;     /* Normally report number is 0 */
1672
1673         /* Device uses numbered reports, data[0] is report number */
1674         if (report_enum->numbered)
1675                 n = *data;
1676
1677         report = report_enum->report_id_hash[n];
1678         if (report == NULL)
1679                 dbg_hid("undefined report_id %u received\n", n);
1680
1681         return report;
1682 }
1683
1684 /*
1685  * Implement a generic .request() callback, using .raw_request()
1686  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1687  */
1688 int __hid_request(struct hid_device *hid, struct hid_report *report,
1689                 int reqtype)
1690 {
1691         char *buf;
1692         int ret;
1693         u32 len;
1694
1695         buf = hid_alloc_report_buf(report, GFP_KERNEL);
1696         if (!buf)
1697                 return -ENOMEM;
1698
1699         len = hid_report_len(report);
1700
1701         if (reqtype == HID_REQ_SET_REPORT)
1702                 hid_output_report(report, buf);
1703
1704         ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1705                                           report->type, reqtype);
1706         if (ret < 0) {
1707                 dbg_hid("unable to complete request: %d\n", ret);
1708                 goto out;
1709         }
1710
1711         if (reqtype == HID_REQ_GET_REPORT)
1712                 hid_input_report(hid, report->type, buf, ret, 0);
1713
1714         ret = 0;
1715
1716 out:
1717         kfree(buf);
1718         return ret;
1719 }
1720 EXPORT_SYMBOL_GPL(__hid_request);
1721
1722 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1723                 int interrupt)
1724 {
1725         struct hid_report_enum *report_enum = hid->report_enum + type;
1726         struct hid_report *report;
1727         struct hid_driver *hdrv;
1728         unsigned int a;
1729         u32 rsize, csize = size;
1730         u8 *cdata = data;
1731         int ret = 0;
1732
1733         report = hid_get_report(report_enum, data);
1734         if (!report)
1735                 goto out;
1736
1737         if (report_enum->numbered) {
1738                 cdata++;
1739                 csize--;
1740         }
1741
1742         rsize = ((report->size - 1) >> 3) + 1;
1743
1744         if (rsize > HID_MAX_BUFFER_SIZE)
1745                 rsize = HID_MAX_BUFFER_SIZE;
1746
1747         if (csize < rsize) {
1748                 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1749                                 csize, rsize);
1750                 memset(cdata + csize, 0, rsize - csize);
1751         }
1752
1753         if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1754                 hid->hiddev_report_event(hid, report);
1755         if (hid->claimed & HID_CLAIMED_HIDRAW) {
1756                 ret = hidraw_report_event(hid, data, size);
1757                 if (ret)
1758                         goto out;
1759         }
1760
1761         if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1762                 for (a = 0; a < report->maxfield; a++)
1763                         hid_input_field(hid, report->field[a], cdata, interrupt);
1764                 hdrv = hid->driver;
1765                 if (hdrv && hdrv->report)
1766                         hdrv->report(hid, report);
1767         }
1768
1769         if (hid->claimed & HID_CLAIMED_INPUT)
1770                 hidinput_report_event(hid, report);
1771 out:
1772         return ret;
1773 }
1774 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1775
1776 /**
1777  * hid_input_report - report data from lower layer (usb, bt...)
1778  *
1779  * @hid: hid device
1780  * @type: HID report type (HID_*_REPORT)
1781  * @data: report contents
1782  * @size: size of data parameter
1783  * @interrupt: distinguish between interrupt and control transfers
1784  *
1785  * This is data entry for lower layers.
1786  */
1787 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1788 {
1789         struct hid_report_enum *report_enum;
1790         struct hid_driver *hdrv;
1791         struct hid_report *report;
1792         int ret = 0;
1793
1794         if (!hid)
1795                 return -ENODEV;
1796
1797         if (down_trylock(&hid->driver_input_lock))
1798                 return -EBUSY;
1799
1800         if (!hid->driver) {
1801                 ret = -ENODEV;
1802                 goto unlock;
1803         }
1804         report_enum = hid->report_enum + type;
1805         hdrv = hid->driver;
1806
1807         if (!size) {
1808                 dbg_hid("empty report\n");
1809                 ret = -1;
1810                 goto unlock;
1811         }
1812
1813         /* Avoid unnecessary overhead if debugfs is disabled */
1814         if (!list_empty(&hid->debug_list))
1815                 hid_dump_report(hid, type, data, size);
1816
1817         report = hid_get_report(report_enum, data);
1818
1819         if (!report) {
1820                 ret = -1;
1821                 goto unlock;
1822         }
1823
1824         if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1825                 ret = hdrv->raw_event(hid, report, data, size);
1826                 if (ret < 0)
1827                         goto unlock;
1828         }
1829
1830         ret = hid_report_raw_event(hid, type, data, size, interrupt);
1831
1832 unlock:
1833         up(&hid->driver_input_lock);
1834         return ret;
1835 }
1836 EXPORT_SYMBOL_GPL(hid_input_report);
1837
1838 bool hid_match_one_id(const struct hid_device *hdev,
1839                       const struct hid_device_id *id)
1840 {
1841         return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1842                 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1843                 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1844                 (id->product == HID_ANY_ID || id->product == hdev->product);
1845 }
1846
1847 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1848                 const struct hid_device_id *id)
1849 {
1850         for (; id->bus; id++)
1851                 if (hid_match_one_id(hdev, id))
1852                         return id;
1853
1854         return NULL;
1855 }
1856
1857 static const struct hid_device_id hid_hiddev_list[] = {
1858         { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1859         { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1860         { }
1861 };
1862
1863 static bool hid_hiddev(struct hid_device *hdev)
1864 {
1865         return !!hid_match_id(hdev, hid_hiddev_list);
1866 }
1867
1868
1869 static ssize_t
1870 read_report_descriptor(struct file *filp, struct kobject *kobj,
1871                 struct bin_attribute *attr,
1872                 char *buf, loff_t off, size_t count)
1873 {
1874         struct device *dev = kobj_to_dev(kobj);
1875         struct hid_device *hdev = to_hid_device(dev);
1876
1877         if (off >= hdev->rsize)
1878                 return 0;
1879
1880         if (off + count > hdev->rsize)
1881                 count = hdev->rsize - off;
1882
1883         memcpy(buf, hdev->rdesc + off, count);
1884
1885         return count;
1886 }
1887
1888 static ssize_t
1889 show_country(struct device *dev, struct device_attribute *attr,
1890                 char *buf)
1891 {
1892         struct hid_device *hdev = to_hid_device(dev);
1893
1894         return sprintf(buf, "%02x\n", hdev->country & 0xff);
1895 }
1896
1897 static struct bin_attribute dev_bin_attr_report_desc = {
1898         .attr = { .name = "report_descriptor", .mode = 0444 },
1899         .read = read_report_descriptor,
1900         .size = HID_MAX_DESCRIPTOR_SIZE,
1901 };
1902
1903 static const struct device_attribute dev_attr_country = {
1904         .attr = { .name = "country", .mode = 0444 },
1905         .show = show_country,
1906 };
1907
1908 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1909 {
1910         static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1911                 "Joystick", "Gamepad", "Keyboard", "Keypad",
1912                 "Multi-Axis Controller"
1913         };
1914         const char *type, *bus;
1915         char buf[64] = "";
1916         unsigned int i;
1917         int len;
1918         int ret;
1919
1920         if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1921                 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1922         if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1923                 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1924         if (hdev->bus != BUS_USB)
1925                 connect_mask &= ~HID_CONNECT_HIDDEV;
1926         if (hid_hiddev(hdev))
1927                 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1928
1929         if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1930                                 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1931                 hdev->claimed |= HID_CLAIMED_INPUT;
1932
1933         if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1934                         !hdev->hiddev_connect(hdev,
1935                                 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1936                 hdev->claimed |= HID_CLAIMED_HIDDEV;
1937         if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1938                 hdev->claimed |= HID_CLAIMED_HIDRAW;
1939
1940         if (connect_mask & HID_CONNECT_DRIVER)
1941                 hdev->claimed |= HID_CLAIMED_DRIVER;
1942
1943         /* Drivers with the ->raw_event callback set are not required to connect
1944          * to any other listener. */
1945         if (!hdev->claimed && !hdev->driver->raw_event) {
1946                 hid_err(hdev, "device has no listeners, quitting\n");
1947                 return -ENODEV;
1948         }
1949
1950         if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1951                         (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1952                 hdev->ff_init(hdev);
1953
1954         len = 0;
1955         if (hdev->claimed & HID_CLAIMED_INPUT)
1956                 len += sprintf(buf + len, "input");
1957         if (hdev->claimed & HID_CLAIMED_HIDDEV)
1958                 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1959                                 ((struct hiddev *)hdev->hiddev)->minor);
1960         if (hdev->claimed & HID_CLAIMED_HIDRAW)
1961                 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1962                                 ((struct hidraw *)hdev->hidraw)->minor);
1963
1964         type = "Device";
1965         for (i = 0; i < hdev->maxcollection; i++) {
1966                 struct hid_collection *col = &hdev->collection[i];
1967                 if (col->type == HID_COLLECTION_APPLICATION &&
1968                    (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1969                    (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1970                         type = types[col->usage & 0xffff];
1971                         break;
1972                 }
1973         }
1974
1975         switch (hdev->bus) {
1976         case BUS_USB:
1977                 bus = "USB";
1978                 break;
1979         case BUS_BLUETOOTH:
1980                 bus = "BLUETOOTH";
1981                 break;
1982         case BUS_I2C:
1983                 bus = "I2C";
1984                 break;
1985         default:
1986                 bus = "<UNKNOWN>";
1987         }
1988
1989         ret = device_create_file(&hdev->dev, &dev_attr_country);
1990         if (ret)
1991                 hid_warn(hdev,
1992                          "can't create sysfs country code attribute err: %d\n", ret);
1993
1994         hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1995                  buf, bus, hdev->version >> 8, hdev->version & 0xff,
1996                  type, hdev->name, hdev->phys);
1997
1998         return 0;
1999 }
2000 EXPORT_SYMBOL_GPL(hid_connect);
2001
2002 void hid_disconnect(struct hid_device *hdev)
2003 {
2004         device_remove_file(&hdev->dev, &dev_attr_country);
2005         if (hdev->claimed & HID_CLAIMED_INPUT)
2006                 hidinput_disconnect(hdev);
2007         if (hdev->claimed & HID_CLAIMED_HIDDEV)
2008                 hdev->hiddev_disconnect(hdev);
2009         if (hdev->claimed & HID_CLAIMED_HIDRAW)
2010                 hidraw_disconnect(hdev);
2011         hdev->claimed = 0;
2012 }
2013 EXPORT_SYMBOL_GPL(hid_disconnect);
2014
2015 /**
2016  * hid_hw_start - start underlying HW
2017  * @hdev: hid device
2018  * @connect_mask: which outputs to connect, see HID_CONNECT_*
2019  *
2020  * Call this in probe function *after* hid_parse. This will setup HW
2021  * buffers and start the device (if not defeirred to device open).
2022  * hid_hw_stop must be called if this was successful.
2023  */
2024 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2025 {
2026         int error;
2027
2028         error = hdev->ll_driver->start(hdev);
2029         if (error)
2030                 return error;
2031
2032         if (connect_mask) {
2033                 error = hid_connect(hdev, connect_mask);
2034                 if (error) {
2035                         hdev->ll_driver->stop(hdev);
2036                         return error;
2037                 }
2038         }
2039
2040         return 0;
2041 }
2042 EXPORT_SYMBOL_GPL(hid_hw_start);
2043
2044 /**
2045  * hid_hw_stop - stop underlying HW
2046  * @hdev: hid device
2047  *
2048  * This is usually called from remove function or from probe when something
2049  * failed and hid_hw_start was called already.
2050  */
2051 void hid_hw_stop(struct hid_device *hdev)
2052 {
2053         hid_disconnect(hdev);
2054         hdev->ll_driver->stop(hdev);
2055 }
2056 EXPORT_SYMBOL_GPL(hid_hw_stop);
2057
2058 /**
2059  * hid_hw_open - signal underlying HW to start delivering events
2060  * @hdev: hid device
2061  *
2062  * Tell underlying HW to start delivering events from the device.
2063  * This function should be called sometime after successful call
2064  * to hid_hw_start().
2065  */
2066 int hid_hw_open(struct hid_device *hdev)
2067 {
2068         int ret;
2069
2070         ret = mutex_lock_killable(&hdev->ll_open_lock);
2071         if (ret)
2072                 return ret;
2073
2074         if (!hdev->ll_open_count++) {
2075                 ret = hdev->ll_driver->open(hdev);
2076                 if (ret)
2077                         hdev->ll_open_count--;
2078         }
2079
2080         mutex_unlock(&hdev->ll_open_lock);
2081         return ret;
2082 }
2083 EXPORT_SYMBOL_GPL(hid_hw_open);
2084
2085 /**
2086  * hid_hw_close - signal underlaying HW to stop delivering events
2087  *
2088  * @hdev: hid device
2089  *
2090  * This function indicates that we are not interested in the events
2091  * from this device anymore. Delivery of events may or may not stop,
2092  * depending on the number of users still outstanding.
2093  */
2094 void hid_hw_close(struct hid_device *hdev)
2095 {
2096         mutex_lock(&hdev->ll_open_lock);
2097         if (!--hdev->ll_open_count)
2098                 hdev->ll_driver->close(hdev);
2099         mutex_unlock(&hdev->ll_open_lock);
2100 }
2101 EXPORT_SYMBOL_GPL(hid_hw_close);
2102
2103 struct hid_dynid {
2104         struct list_head list;
2105         struct hid_device_id id;
2106 };
2107
2108 /**
2109  * store_new_id - add a new HID device ID to this driver and re-probe devices
2110  * @driver: target device driver
2111  * @buf: buffer for scanning device ID data
2112  * @count: input size
2113  *
2114  * Adds a new dynamic hid device ID to this driver,
2115  * and causes the driver to probe for all devices again.
2116  */
2117 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2118                 size_t count)
2119 {
2120         struct hid_driver *hdrv = to_hid_driver(drv);
2121         struct hid_dynid *dynid;
2122         __u32 bus, vendor, product;
2123         unsigned long driver_data = 0;
2124         int ret;
2125
2126         ret = sscanf(buf, "%x %x %x %lx",
2127                         &bus, &vendor, &product, &driver_data);
2128         if (ret < 3)
2129                 return -EINVAL;
2130
2131         dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2132         if (!dynid)
2133                 return -ENOMEM;
2134
2135         dynid->id.bus = bus;
2136         dynid->id.group = HID_GROUP_ANY;
2137         dynid->id.vendor = vendor;
2138         dynid->id.product = product;
2139         dynid->id.driver_data = driver_data;
2140
2141         spin_lock(&hdrv->dyn_lock);
2142         list_add_tail(&dynid->list, &hdrv->dyn_list);
2143         spin_unlock(&hdrv->dyn_lock);
2144
2145         ret = driver_attach(&hdrv->driver);
2146
2147         return ret ? : count;
2148 }
2149 static DRIVER_ATTR_WO(new_id);
2150
2151 static struct attribute *hid_drv_attrs[] = {
2152         &driver_attr_new_id.attr,
2153         NULL,
2154 };
2155 ATTRIBUTE_GROUPS(hid_drv);
2156
2157 static void hid_free_dynids(struct hid_driver *hdrv)
2158 {
2159         struct hid_dynid *dynid, *n;
2160
2161         spin_lock(&hdrv->dyn_lock);
2162         list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2163                 list_del(&dynid->list);
2164                 kfree(dynid);
2165         }
2166         spin_unlock(&hdrv->dyn_lock);
2167 }
2168
2169 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2170                                              struct hid_driver *hdrv)
2171 {
2172         struct hid_dynid *dynid;
2173
2174         spin_lock(&hdrv->dyn_lock);
2175         list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2176                 if (hid_match_one_id(hdev, &dynid->id)) {
2177                         spin_unlock(&hdrv->dyn_lock);
2178                         return &dynid->id;
2179                 }
2180         }
2181         spin_unlock(&hdrv->dyn_lock);
2182
2183         return hid_match_id(hdev, hdrv->id_table);
2184 }
2185 EXPORT_SYMBOL_GPL(hid_match_device);
2186
2187 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2188 {
2189         struct hid_driver *hdrv = to_hid_driver(drv);
2190         struct hid_device *hdev = to_hid_device(dev);
2191
2192         return hid_match_device(hdev, hdrv) != NULL;
2193 }
2194
2195 /**
2196  * hid_compare_device_paths - check if both devices share the same path
2197  * @hdev_a: hid device
2198  * @hdev_b: hid device
2199  * @separator: char to use as separator
2200  *
2201  * Check if two devices share the same path up to the last occurrence of
2202  * the separator char. Both paths must exist (i.e., zero-length paths
2203  * don't match).
2204  */
2205 bool hid_compare_device_paths(struct hid_device *hdev_a,
2206                               struct hid_device *hdev_b, char separator)
2207 {
2208         int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2209         int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2210
2211         if (n1 != n2 || n1 <= 0 || n2 <= 0)
2212                 return false;
2213
2214         return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2215 }
2216 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2217
2218 static int hid_device_probe(struct device *dev)
2219 {
2220         struct hid_driver *hdrv = to_hid_driver(dev->driver);
2221         struct hid_device *hdev = to_hid_device(dev);
2222         const struct hid_device_id *id;
2223         int ret = 0;
2224
2225         if (down_interruptible(&hdev->driver_input_lock)) {
2226                 ret = -EINTR;
2227                 goto end;
2228         }
2229         hdev->io_started = false;
2230
2231         clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2232
2233         if (!hdev->driver) {
2234                 id = hid_match_device(hdev, hdrv);
2235                 if (id == NULL) {
2236                         ret = -ENODEV;
2237                         goto unlock;
2238                 }
2239
2240                 if (hdrv->match) {
2241                         if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2242                                 ret = -ENODEV;
2243                                 goto unlock;
2244                         }
2245                 } else {
2246                         /*
2247                          * hid-generic implements .match(), so if
2248                          * hid_ignore_special_drivers is set, we can safely
2249                          * return.
2250                          */
2251                         if (hid_ignore_special_drivers) {
2252                                 ret = -ENODEV;
2253                                 goto unlock;
2254                         }
2255                 }
2256
2257                 /* reset the quirks that has been previously set */
2258                 hdev->quirks = hid_lookup_quirk(hdev);
2259                 hdev->driver = hdrv;
2260                 if (hdrv->probe) {
2261                         ret = hdrv->probe(hdev, id);
2262                 } else { /* default probe */
2263                         ret = hid_open_report(hdev);
2264                         if (!ret)
2265                                 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2266                 }
2267                 if (ret) {
2268                         hid_close_report(hdev);
2269                         hdev->driver = NULL;
2270                 }
2271         }
2272 unlock:
2273         if (!hdev->io_started)
2274                 up(&hdev->driver_input_lock);
2275 end:
2276         return ret;
2277 }
2278
2279 static int hid_device_remove(struct device *dev)
2280 {
2281         struct hid_device *hdev = to_hid_device(dev);
2282         struct hid_driver *hdrv;
2283         int ret = 0;
2284
2285         if (down_interruptible(&hdev->driver_input_lock)) {
2286                 ret = -EINTR;
2287                 goto end;
2288         }
2289         hdev->io_started = false;
2290
2291         hdrv = hdev->driver;
2292         if (hdrv) {
2293                 if (hdrv->remove)
2294                         hdrv->remove(hdev);
2295                 else /* default remove */
2296                         hid_hw_stop(hdev);
2297                 hid_close_report(hdev);
2298                 hdev->driver = NULL;
2299         }
2300
2301         if (!hdev->io_started)
2302                 up(&hdev->driver_input_lock);
2303 end:
2304         return ret;
2305 }
2306
2307 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2308                              char *buf)
2309 {
2310         struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2311
2312         return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2313                          hdev->bus, hdev->group, hdev->vendor, hdev->product);
2314 }
2315 static DEVICE_ATTR_RO(modalias);
2316
2317 static struct attribute *hid_dev_attrs[] = {
2318         &dev_attr_modalias.attr,
2319         NULL,
2320 };
2321 static struct bin_attribute *hid_dev_bin_attrs[] = {
2322         &dev_bin_attr_report_desc,
2323         NULL
2324 };
2325 static const struct attribute_group hid_dev_group = {
2326         .attrs = hid_dev_attrs,
2327         .bin_attrs = hid_dev_bin_attrs,
2328 };
2329 __ATTRIBUTE_GROUPS(hid_dev);
2330
2331 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2332 {
2333         struct hid_device *hdev = to_hid_device(dev);
2334
2335         if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2336                         hdev->bus, hdev->vendor, hdev->product))
2337                 return -ENOMEM;
2338
2339         if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2340                 return -ENOMEM;
2341
2342         if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2343                 return -ENOMEM;
2344
2345         if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2346                 return -ENOMEM;
2347
2348         if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2349                            hdev->bus, hdev->group, hdev->vendor, hdev->product))
2350                 return -ENOMEM;
2351
2352         return 0;
2353 }
2354
2355 struct bus_type hid_bus_type = {
2356         .name           = "hid",
2357         .dev_groups     = hid_dev_groups,
2358         .drv_groups     = hid_drv_groups,
2359         .match          = hid_bus_match,
2360         .probe          = hid_device_probe,
2361         .remove         = hid_device_remove,
2362         .uevent         = hid_uevent,
2363 };
2364 EXPORT_SYMBOL(hid_bus_type);
2365
2366 int hid_add_device(struct hid_device *hdev)
2367 {
2368         static atomic_t id = ATOMIC_INIT(0);
2369         int ret;
2370
2371         if (WARN_ON(hdev->status & HID_STAT_ADDED))
2372                 return -EBUSY;
2373
2374         hdev->quirks = hid_lookup_quirk(hdev);
2375
2376         /* we need to kill them here, otherwise they will stay allocated to
2377          * wait for coming driver */
2378         if (hid_ignore(hdev))
2379                 return -ENODEV;
2380
2381         /*
2382          * Check for the mandatory transport channel.
2383          */
2384          if (!hdev->ll_driver->raw_request) {
2385                 hid_err(hdev, "transport driver missing .raw_request()\n");
2386                 return -EINVAL;
2387          }
2388
2389         /*
2390          * Read the device report descriptor once and use as template
2391          * for the driver-specific modifications.
2392          */
2393         ret = hdev->ll_driver->parse(hdev);
2394         if (ret)
2395                 return ret;
2396         if (!hdev->dev_rdesc)
2397                 return -ENODEV;
2398
2399         /*
2400          * Scan generic devices for group information
2401          */
2402         if (hid_ignore_special_drivers) {
2403                 hdev->group = HID_GROUP_GENERIC;
2404         } else if (!hdev->group &&
2405                    !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2406                 ret = hid_scan_report(hdev);
2407                 if (ret)
2408                         hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2409         }
2410
2411         /* XXX hack, any other cleaner solution after the driver core
2412          * is converted to allow more than 20 bytes as the device name? */
2413         dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2414                      hdev->vendor, hdev->product, atomic_inc_return(&id));
2415
2416         hid_debug_register(hdev, dev_name(&hdev->dev));
2417         ret = device_add(&hdev->dev);
2418         if (!ret)
2419                 hdev->status |= HID_STAT_ADDED;
2420         else
2421                 hid_debug_unregister(hdev);
2422
2423         return ret;
2424 }
2425 EXPORT_SYMBOL_GPL(hid_add_device);
2426
2427 /**
2428  * hid_allocate_device - allocate new hid device descriptor
2429  *
2430  * Allocate and initialize hid device, so that hid_destroy_device might be
2431  * used to free it.
2432  *
2433  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2434  * error value.
2435  */
2436 struct hid_device *hid_allocate_device(void)
2437 {
2438         struct hid_device *hdev;
2439         int ret = -ENOMEM;
2440
2441         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2442         if (hdev == NULL)
2443                 return ERR_PTR(ret);
2444
2445         device_initialize(&hdev->dev);
2446         hdev->dev.release = hid_device_release;
2447         hdev->dev.bus = &hid_bus_type;
2448         device_enable_async_suspend(&hdev->dev);
2449
2450         hid_close_report(hdev);
2451
2452         init_waitqueue_head(&hdev->debug_wait);
2453         INIT_LIST_HEAD(&hdev->debug_list);
2454         spin_lock_init(&hdev->debug_list_lock);
2455         sema_init(&hdev->driver_input_lock, 1);
2456         mutex_init(&hdev->ll_open_lock);
2457
2458         return hdev;
2459 }
2460 EXPORT_SYMBOL_GPL(hid_allocate_device);
2461
2462 static void hid_remove_device(struct hid_device *hdev)
2463 {
2464         if (hdev->status & HID_STAT_ADDED) {
2465                 device_del(&hdev->dev);
2466                 hid_debug_unregister(hdev);
2467                 hdev->status &= ~HID_STAT_ADDED;
2468         }
2469         kfree(hdev->dev_rdesc);
2470         hdev->dev_rdesc = NULL;
2471         hdev->dev_rsize = 0;
2472 }
2473
2474 /**
2475  * hid_destroy_device - free previously allocated device
2476  *
2477  * @hdev: hid device
2478  *
2479  * If you allocate hid_device through hid_allocate_device, you should ever
2480  * free by this function.
2481  */
2482 void hid_destroy_device(struct hid_device *hdev)
2483 {
2484         hid_remove_device(hdev);
2485         put_device(&hdev->dev);
2486 }
2487 EXPORT_SYMBOL_GPL(hid_destroy_device);
2488
2489
2490 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2491 {
2492         struct hid_driver *hdrv = data;
2493         struct hid_device *hdev = to_hid_device(dev);
2494
2495         if (hdev->driver == hdrv &&
2496             !hdrv->match(hdev, hid_ignore_special_drivers) &&
2497             !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2498                 return device_reprobe(dev);
2499
2500         return 0;
2501 }
2502
2503 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2504 {
2505         struct hid_driver *hdrv = to_hid_driver(drv);
2506
2507         if (hdrv->match) {
2508                 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2509                                  __hid_bus_reprobe_drivers);
2510         }
2511
2512         return 0;
2513 }
2514
2515 static int __bus_removed_driver(struct device_driver *drv, void *data)
2516 {
2517         return bus_rescan_devices(&hid_bus_type);
2518 }
2519
2520 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2521                 const char *mod_name)
2522 {
2523         int ret;
2524
2525         hdrv->driver.name = hdrv->name;
2526         hdrv->driver.bus = &hid_bus_type;
2527         hdrv->driver.owner = owner;
2528         hdrv->driver.mod_name = mod_name;
2529
2530         INIT_LIST_HEAD(&hdrv->dyn_list);
2531         spin_lock_init(&hdrv->dyn_lock);
2532
2533         ret = driver_register(&hdrv->driver);
2534
2535         if (ret == 0)
2536                 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2537                                  __hid_bus_driver_added);
2538
2539         return ret;
2540 }
2541 EXPORT_SYMBOL_GPL(__hid_register_driver);
2542
2543 void hid_unregister_driver(struct hid_driver *hdrv)
2544 {
2545         driver_unregister(&hdrv->driver);
2546         hid_free_dynids(hdrv);
2547
2548         bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2549 }
2550 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2551
2552 int hid_check_keys_pressed(struct hid_device *hid)
2553 {
2554         struct hid_input *hidinput;
2555         int i;
2556
2557         if (!(hid->claimed & HID_CLAIMED_INPUT))
2558                 return 0;
2559
2560         list_for_each_entry(hidinput, &hid->inputs, list) {
2561                 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2562                         if (hidinput->input->key[i])
2563                                 return 1;
2564         }
2565
2566         return 0;
2567 }
2568
2569 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2570
2571 static int __init hid_init(void)
2572 {
2573         int ret;
2574
2575         if (hid_debug)
2576                 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2577                         "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2578
2579         ret = bus_register(&hid_bus_type);
2580         if (ret) {
2581                 pr_err("can't register hid bus\n");
2582                 goto err;
2583         }
2584
2585         ret = hidraw_init();
2586         if (ret)
2587                 goto err_bus;
2588
2589         hid_debug_init();
2590
2591         return 0;
2592 err_bus:
2593         bus_unregister(&hid_bus_type);
2594 err:
2595         return ret;
2596 }
2597
2598 static void __exit hid_exit(void)
2599 {
2600         hid_debug_exit();
2601         hidraw_exit();
2602         bus_unregister(&hid_bus_type);
2603         hid_quirks_exit(HID_BUS_ANY);
2604 }
2605
2606 module_init(hid_init);
2607 module_exit(hid_exit);
2608
2609 MODULE_AUTHOR("Andreas Gal");
2610 MODULE_AUTHOR("Vojtech Pavlik");
2611 MODULE_AUTHOR("Jiri Kosina");
2612 MODULE_LICENSE("GPL");