]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/hv/ring_buffer.c
media: imx7-media-csi: Use devm_platform_ioremap_resource()
[linux.git] / drivers / hv / ring_buffer.c
1 /*
2  *
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <haiyangz@microsoft.com>
20  *   Hank Janssen  <hjanssen@microsoft.com>
21  *   K. Y. Srinivasan <kys@microsoft.com>
22  *
23  */
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/hyperv.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <linux/slab.h>
32 #include <linux/prefetch.h>
33
34 #include "hyperv_vmbus.h"
35
36 #define VMBUS_PKT_TRAILER       8
37
38 /*
39  * When we write to the ring buffer, check if the host needs to
40  * be signaled. Here is the details of this protocol:
41  *
42  *      1. The host guarantees that while it is draining the
43  *         ring buffer, it will set the interrupt_mask to
44  *         indicate it does not need to be interrupted when
45  *         new data is placed.
46  *
47  *      2. The host guarantees that it will completely drain
48  *         the ring buffer before exiting the read loop. Further,
49  *         once the ring buffer is empty, it will clear the
50  *         interrupt_mask and re-check to see if new data has
51  *         arrived.
52  *
53  * KYS: Oct. 30, 2016:
54  * It looks like Windows hosts have logic to deal with DOS attacks that
55  * can be triggered if it receives interrupts when it is not expecting
56  * the interrupt. The host expects interrupts only when the ring
57  * transitions from empty to non-empty (or full to non full on the guest
58  * to host ring).
59  * So, base the signaling decision solely on the ring state until the
60  * host logic is fixed.
61  */
62
63 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
64 {
65         struct hv_ring_buffer_info *rbi = &channel->outbound;
66
67         virt_mb();
68         if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
69                 return;
70
71         /* check interrupt_mask before read_index */
72         virt_rmb();
73         /*
74          * This is the only case we need to signal when the
75          * ring transitions from being empty to non-empty.
76          */
77         if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
78                 ++channel->intr_out_empty;
79                 vmbus_setevent(channel);
80         }
81 }
82
83 /* Get the next write location for the specified ring buffer. */
84 static inline u32
85 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
86 {
87         u32 next = ring_info->ring_buffer->write_index;
88
89         return next;
90 }
91
92 /* Set the next write location for the specified ring buffer. */
93 static inline void
94 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
95                      u32 next_write_location)
96 {
97         ring_info->ring_buffer->write_index = next_write_location;
98 }
99
100 /* Set the next read location for the specified ring buffer. */
101 static inline void
102 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
103                     u32 next_read_location)
104 {
105         ring_info->ring_buffer->read_index = next_read_location;
106         ring_info->priv_read_index = next_read_location;
107 }
108
109 /* Get the size of the ring buffer. */
110 static inline u32
111 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
112 {
113         return ring_info->ring_datasize;
114 }
115
116 /* Get the read and write indices as u64 of the specified ring buffer. */
117 static inline u64
118 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
119 {
120         return (u64)ring_info->ring_buffer->write_index << 32;
121 }
122
123 /*
124  * Helper routine to copy from source to ring buffer.
125  * Assume there is enough room. Handles wrap-around in dest case only!!
126  */
127 static u32 hv_copyto_ringbuffer(
128         struct hv_ring_buffer_info      *ring_info,
129         u32                             start_write_offset,
130         const void                      *src,
131         u32                             srclen)
132 {
133         void *ring_buffer = hv_get_ring_buffer(ring_info);
134         u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
135
136         memcpy(ring_buffer + start_write_offset, src, srclen);
137
138         start_write_offset += srclen;
139         if (start_write_offset >= ring_buffer_size)
140                 start_write_offset -= ring_buffer_size;
141
142         return start_write_offset;
143 }
144
145 /*
146  *
147  * hv_get_ringbuffer_availbytes()
148  *
149  * Get number of bytes available to read and to write to
150  * for the specified ring buffer
151  */
152 static void
153 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
154                              u32 *read, u32 *write)
155 {
156         u32 read_loc, write_loc, dsize;
157
158         /* Capture the read/write indices before they changed */
159         read_loc = READ_ONCE(rbi->ring_buffer->read_index);
160         write_loc = READ_ONCE(rbi->ring_buffer->write_index);
161         dsize = rbi->ring_datasize;
162
163         *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
164                 read_loc - write_loc;
165         *read = dsize - *write;
166 }
167
168 /* Get various debug metrics for the specified ring buffer. */
169 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
170                                 struct hv_ring_buffer_debug_info *debug_info)
171 {
172         u32 bytes_avail_towrite;
173         u32 bytes_avail_toread;
174
175         mutex_lock(&ring_info->ring_buffer_mutex);
176
177         if (!ring_info->ring_buffer) {
178                 mutex_unlock(&ring_info->ring_buffer_mutex);
179                 return -EINVAL;
180         }
181
182         hv_get_ringbuffer_availbytes(ring_info,
183                                      &bytes_avail_toread,
184                                      &bytes_avail_towrite);
185         debug_info->bytes_avail_toread = bytes_avail_toread;
186         debug_info->bytes_avail_towrite = bytes_avail_towrite;
187         debug_info->current_read_index = ring_info->ring_buffer->read_index;
188         debug_info->current_write_index = ring_info->ring_buffer->write_index;
189         debug_info->current_interrupt_mask
190                 = ring_info->ring_buffer->interrupt_mask;
191         mutex_unlock(&ring_info->ring_buffer_mutex);
192
193         return 0;
194 }
195 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
196
197 /* Initialize a channel's ring buffer info mutex locks */
198 void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
199 {
200         mutex_init(&channel->inbound.ring_buffer_mutex);
201         mutex_init(&channel->outbound.ring_buffer_mutex);
202 }
203
204 /* Initialize the ring buffer. */
205 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
206                        struct page *pages, u32 page_cnt)
207 {
208         int i;
209         struct page **pages_wraparound;
210
211         BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
212
213         /*
214          * First page holds struct hv_ring_buffer, do wraparound mapping for
215          * the rest.
216          */
217         pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
218                                    GFP_KERNEL);
219         if (!pages_wraparound)
220                 return -ENOMEM;
221
222         pages_wraparound[0] = pages;
223         for (i = 0; i < 2 * (page_cnt - 1); i++)
224                 pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
225
226         ring_info->ring_buffer = (struct hv_ring_buffer *)
227                 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
228
229         kfree(pages_wraparound);
230
231
232         if (!ring_info->ring_buffer)
233                 return -ENOMEM;
234
235         ring_info->ring_buffer->read_index =
236                 ring_info->ring_buffer->write_index = 0;
237
238         /* Set the feature bit for enabling flow control. */
239         ring_info->ring_buffer->feature_bits.value = 1;
240
241         ring_info->ring_size = page_cnt << PAGE_SHIFT;
242         ring_info->ring_size_div10_reciprocal =
243                 reciprocal_value(ring_info->ring_size / 10);
244         ring_info->ring_datasize = ring_info->ring_size -
245                 sizeof(struct hv_ring_buffer);
246         ring_info->priv_read_index = 0;
247
248         spin_lock_init(&ring_info->ring_lock);
249
250         return 0;
251 }
252
253 /* Cleanup the ring buffer. */
254 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
255 {
256         mutex_lock(&ring_info->ring_buffer_mutex);
257         vunmap(ring_info->ring_buffer);
258         ring_info->ring_buffer = NULL;
259         mutex_unlock(&ring_info->ring_buffer_mutex);
260 }
261
262 /* Write to the ring buffer. */
263 int hv_ringbuffer_write(struct vmbus_channel *channel,
264                         const struct kvec *kv_list, u32 kv_count)
265 {
266         int i;
267         u32 bytes_avail_towrite;
268         u32 totalbytes_towrite = sizeof(u64);
269         u32 next_write_location;
270         u32 old_write;
271         u64 prev_indices;
272         unsigned long flags;
273         struct hv_ring_buffer_info *outring_info = &channel->outbound;
274
275         if (channel->rescind)
276                 return -ENODEV;
277
278         for (i = 0; i < kv_count; i++)
279                 totalbytes_towrite += kv_list[i].iov_len;
280
281         spin_lock_irqsave(&outring_info->ring_lock, flags);
282
283         bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
284
285         /*
286          * If there is only room for the packet, assume it is full.
287          * Otherwise, the next time around, we think the ring buffer
288          * is empty since the read index == write index.
289          */
290         if (bytes_avail_towrite <= totalbytes_towrite) {
291                 ++channel->out_full_total;
292
293                 if (!channel->out_full_flag) {
294                         ++channel->out_full_first;
295                         channel->out_full_flag = true;
296                 }
297
298                 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
299                 return -EAGAIN;
300         }
301
302         channel->out_full_flag = false;
303
304         /* Write to the ring buffer */
305         next_write_location = hv_get_next_write_location(outring_info);
306
307         old_write = next_write_location;
308
309         for (i = 0; i < kv_count; i++) {
310                 next_write_location = hv_copyto_ringbuffer(outring_info,
311                                                      next_write_location,
312                                                      kv_list[i].iov_base,
313                                                      kv_list[i].iov_len);
314         }
315
316         /* Set previous packet start */
317         prev_indices = hv_get_ring_bufferindices(outring_info);
318
319         next_write_location = hv_copyto_ringbuffer(outring_info,
320                                              next_write_location,
321                                              &prev_indices,
322                                              sizeof(u64));
323
324         /* Issue a full memory barrier before updating the write index */
325         virt_mb();
326
327         /* Now, update the write location */
328         hv_set_next_write_location(outring_info, next_write_location);
329
330
331         spin_unlock_irqrestore(&outring_info->ring_lock, flags);
332
333         hv_signal_on_write(old_write, channel);
334
335         if (channel->rescind)
336                 return -ENODEV;
337
338         return 0;
339 }
340
341 int hv_ringbuffer_read(struct vmbus_channel *channel,
342                        void *buffer, u32 buflen, u32 *buffer_actual_len,
343                        u64 *requestid, bool raw)
344 {
345         struct vmpacket_descriptor *desc;
346         u32 packetlen, offset;
347
348         if (unlikely(buflen == 0))
349                 return -EINVAL;
350
351         *buffer_actual_len = 0;
352         *requestid = 0;
353
354         /* Make sure there is something to read */
355         desc = hv_pkt_iter_first(channel);
356         if (desc == NULL) {
357                 /*
358                  * No error is set when there is even no header, drivers are
359                  * supposed to analyze buffer_actual_len.
360                  */
361                 return 0;
362         }
363
364         offset = raw ? 0 : (desc->offset8 << 3);
365         packetlen = (desc->len8 << 3) - offset;
366         *buffer_actual_len = packetlen;
367         *requestid = desc->trans_id;
368
369         if (unlikely(packetlen > buflen))
370                 return -ENOBUFS;
371
372         /* since ring is double mapped, only one copy is necessary */
373         memcpy(buffer, (const char *)desc + offset, packetlen);
374
375         /* Advance ring index to next packet descriptor */
376         __hv_pkt_iter_next(channel, desc);
377
378         /* Notify host of update */
379         hv_pkt_iter_close(channel);
380
381         return 0;
382 }
383
384 /*
385  * Determine number of bytes available in ring buffer after
386  * the current iterator (priv_read_index) location.
387  *
388  * This is similar to hv_get_bytes_to_read but with private
389  * read index instead.
390  */
391 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
392 {
393         u32 priv_read_loc = rbi->priv_read_index;
394         u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
395
396         if (write_loc >= priv_read_loc)
397                 return write_loc - priv_read_loc;
398         else
399                 return (rbi->ring_datasize - priv_read_loc) + write_loc;
400 }
401
402 /*
403  * Get first vmbus packet from ring buffer after read_index
404  *
405  * If ring buffer is empty, returns NULL and no other action needed.
406  */
407 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
408 {
409         struct hv_ring_buffer_info *rbi = &channel->inbound;
410         struct vmpacket_descriptor *desc;
411
412         if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
413                 return NULL;
414
415         desc = hv_get_ring_buffer(rbi) + rbi->priv_read_index;
416         if (desc)
417                 prefetch((char *)desc + (desc->len8 << 3));
418
419         return desc;
420 }
421 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
422
423 /*
424  * Get next vmbus packet from ring buffer.
425  *
426  * Advances the current location (priv_read_index) and checks for more
427  * data. If the end of the ring buffer is reached, then return NULL.
428  */
429 struct vmpacket_descriptor *
430 __hv_pkt_iter_next(struct vmbus_channel *channel,
431                    const struct vmpacket_descriptor *desc)
432 {
433         struct hv_ring_buffer_info *rbi = &channel->inbound;
434         u32 packetlen = desc->len8 << 3;
435         u32 dsize = rbi->ring_datasize;
436
437         /* bump offset to next potential packet */
438         rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
439         if (rbi->priv_read_index >= dsize)
440                 rbi->priv_read_index -= dsize;
441
442         /* more data? */
443         return hv_pkt_iter_first(channel);
444 }
445 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
446
447 /* How many bytes were read in this iterator cycle */
448 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
449                                         u32 start_read_index)
450 {
451         if (rbi->priv_read_index >= start_read_index)
452                 return rbi->priv_read_index - start_read_index;
453         else
454                 return rbi->ring_datasize - start_read_index +
455                         rbi->priv_read_index;
456 }
457
458 /*
459  * Update host ring buffer after iterating over packets. If the host has
460  * stopped queuing new entries because it found the ring buffer full, and
461  * sufficient space is being freed up, signal the host. But be careful to
462  * only signal the host when necessary, both for performance reasons and
463  * because Hyper-V protects itself by throttling guests that signal
464  * inappropriately.
465  *
466  * Determining when to signal is tricky. There are three key data inputs
467  * that must be handled in this order to avoid race conditions:
468  *
469  * 1. Update the read_index
470  * 2. Read the pending_send_sz
471  * 3. Read the current write_index
472  *
473  * The interrupt_mask is not used to determine when to signal. The
474  * interrupt_mask is used only on the guest->host ring buffer when
475  * sending requests to the host. The host does not use it on the host->
476  * guest ring buffer to indicate whether it should be signaled.
477  */
478 void hv_pkt_iter_close(struct vmbus_channel *channel)
479 {
480         struct hv_ring_buffer_info *rbi = &channel->inbound;
481         u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
482
483         /*
484          * Make sure all reads are done before we update the read index since
485          * the writer may start writing to the read area once the read index
486          * is updated.
487          */
488         virt_rmb();
489         start_read_index = rbi->ring_buffer->read_index;
490         rbi->ring_buffer->read_index = rbi->priv_read_index;
491
492         /*
493          * Older versions of Hyper-V (before WS2102 and Win8) do not
494          * implement pending_send_sz and simply poll if the host->guest
495          * ring buffer is full.  No signaling is needed or expected.
496          */
497         if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
498                 return;
499
500         /*
501          * Issue a full memory barrier before making the signaling decision.
502          * If reading pending_send_sz were to be reordered and happen
503          * before we commit the new read_index, a race could occur.  If the
504          * host were to set the pending_send_sz after we have sampled
505          * pending_send_sz, and the ring buffer blocks before we commit the
506          * read index, we could miss sending the interrupt. Issue a full
507          * memory barrier to address this.
508          */
509         virt_mb();
510
511         /*
512          * If the pending_send_sz is zero, then the ring buffer is not
513          * blocked and there is no need to signal.  This is far by the
514          * most common case, so exit quickly for best performance.
515          */
516         pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
517         if (!pending_sz)
518                 return;
519
520         /*
521          * Ensure the read of write_index in hv_get_bytes_to_write()
522          * happens after the read of pending_send_sz.
523          */
524         virt_rmb();
525         curr_write_sz = hv_get_bytes_to_write(rbi);
526         bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
527
528         /*
529          * We want to signal the host only if we're transitioning
530          * from a "not enough free space" state to a "enough free
531          * space" state.  For example, it's possible that this function
532          * could run and free up enough space to signal the host, and then
533          * run again and free up additional space before the host has a
534          * chance to clear the pending_send_sz.  The 2nd invocation would
535          * be a null transition from "enough free space" to "enough free
536          * space", which doesn't warrant a signal.
537          *
538          * Exactly filling the ring buffer is treated as "not enough
539          * space". The ring buffer always must have at least one byte
540          * empty so the empty and full conditions are distinguishable.
541          * hv_get_bytes_to_write() doesn't fully tell the truth in
542          * this regard.
543          *
544          * So first check if we were in the "enough free space" state
545          * before we began the iteration. If so, the host was not
546          * blocked, and there's no need to signal.
547          */
548         if (curr_write_sz - bytes_read > pending_sz)
549                 return;
550
551         /*
552          * Similarly, if the new state is "not enough space", then
553          * there's no need to signal.
554          */
555         if (curr_write_sz <= pending_sz)
556                 return;
557
558         ++channel->intr_in_full;
559         vmbus_setevent(channel);
560 }
561 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);