]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/hv/vmbus_drv.c
Merge 4.11-rc4 into char-misc-next
[linux.git] / drivers / hv / vmbus_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38
39 #include <asm/hyperv.h>
40 #include <asm/hypervisor.h>
41 #include <asm/mshyperv.h>
42 #include <linux/notifier.h>
43 #include <linux/ptrace.h>
44 #include <linux/screen_info.h>
45 #include <linux/kdebug.h>
46 #include <linux/efi.h>
47 #include <linux/random.h>
48 #include "hyperv_vmbus.h"
49
50 struct vmbus_dynid {
51         struct list_head node;
52         struct hv_vmbus_device_id id;
53 };
54
55 static struct acpi_device  *hv_acpi_dev;
56
57 static struct completion probe_event;
58
59 static int hyperv_cpuhp_online;
60
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62                               void *args)
63 {
64         struct pt_regs *regs;
65
66         regs = current_pt_regs();
67
68         hyperv_report_panic(regs);
69         return NOTIFY_DONE;
70 }
71
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73                             void *args)
74 {
75         struct die_args *die = (struct die_args *)args;
76         struct pt_regs *regs = die->regs;
77
78         hyperv_report_panic(regs);
79         return NOTIFY_DONE;
80 }
81
82 static struct notifier_block hyperv_die_block = {
83         .notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86         .notifier_call = hyperv_panic_event,
87 };
88
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93
94 static int vmbus_exists(void)
95 {
96         if (hv_acpi_dev == NULL)
97                 return -ENODEV;
98
99         return 0;
100 }
101
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105         int i;
106         for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107                 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109
110 static u8 channel_monitor_group(struct vmbus_channel *channel)
111 {
112         return (u8)channel->offermsg.monitorid / 32;
113 }
114
115 static u8 channel_monitor_offset(struct vmbus_channel *channel)
116 {
117         return (u8)channel->offermsg.monitorid % 32;
118 }
119
120 static u32 channel_pending(struct vmbus_channel *channel,
121                            struct hv_monitor_page *monitor_page)
122 {
123         u8 monitor_group = channel_monitor_group(channel);
124         return monitor_page->trigger_group[monitor_group].pending;
125 }
126
127 static u32 channel_latency(struct vmbus_channel *channel,
128                            struct hv_monitor_page *monitor_page)
129 {
130         u8 monitor_group = channel_monitor_group(channel);
131         u8 monitor_offset = channel_monitor_offset(channel);
132         return monitor_page->latency[monitor_group][monitor_offset];
133 }
134
135 static u32 channel_conn_id(struct vmbus_channel *channel,
136                            struct hv_monitor_page *monitor_page)
137 {
138         u8 monitor_group = channel_monitor_group(channel);
139         u8 monitor_offset = channel_monitor_offset(channel);
140         return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
141 }
142
143 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
144                        char *buf)
145 {
146         struct hv_device *hv_dev = device_to_hv_device(dev);
147
148         if (!hv_dev->channel)
149                 return -ENODEV;
150         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
151 }
152 static DEVICE_ATTR_RO(id);
153
154 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
155                           char *buf)
156 {
157         struct hv_device *hv_dev = device_to_hv_device(dev);
158
159         if (!hv_dev->channel)
160                 return -ENODEV;
161         return sprintf(buf, "%d\n", hv_dev->channel->state);
162 }
163 static DEVICE_ATTR_RO(state);
164
165 static ssize_t monitor_id_show(struct device *dev,
166                                struct device_attribute *dev_attr, char *buf)
167 {
168         struct hv_device *hv_dev = device_to_hv_device(dev);
169
170         if (!hv_dev->channel)
171                 return -ENODEV;
172         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
173 }
174 static DEVICE_ATTR_RO(monitor_id);
175
176 static ssize_t class_id_show(struct device *dev,
177                                struct device_attribute *dev_attr, char *buf)
178 {
179         struct hv_device *hv_dev = device_to_hv_device(dev);
180
181         if (!hv_dev->channel)
182                 return -ENODEV;
183         return sprintf(buf, "{%pUl}\n",
184                        hv_dev->channel->offermsg.offer.if_type.b);
185 }
186 static DEVICE_ATTR_RO(class_id);
187
188 static ssize_t device_id_show(struct device *dev,
189                               struct device_attribute *dev_attr, char *buf)
190 {
191         struct hv_device *hv_dev = device_to_hv_device(dev);
192
193         if (!hv_dev->channel)
194                 return -ENODEV;
195         return sprintf(buf, "{%pUl}\n",
196                        hv_dev->channel->offermsg.offer.if_instance.b);
197 }
198 static DEVICE_ATTR_RO(device_id);
199
200 static ssize_t modalias_show(struct device *dev,
201                              struct device_attribute *dev_attr, char *buf)
202 {
203         struct hv_device *hv_dev = device_to_hv_device(dev);
204         char alias_name[VMBUS_ALIAS_LEN + 1];
205
206         print_alias_name(hv_dev, alias_name);
207         return sprintf(buf, "vmbus:%s\n", alias_name);
208 }
209 static DEVICE_ATTR_RO(modalias);
210
211 static ssize_t server_monitor_pending_show(struct device *dev,
212                                            struct device_attribute *dev_attr,
213                                            char *buf)
214 {
215         struct hv_device *hv_dev = device_to_hv_device(dev);
216
217         if (!hv_dev->channel)
218                 return -ENODEV;
219         return sprintf(buf, "%d\n",
220                        channel_pending(hv_dev->channel,
221                                        vmbus_connection.monitor_pages[1]));
222 }
223 static DEVICE_ATTR_RO(server_monitor_pending);
224
225 static ssize_t client_monitor_pending_show(struct device *dev,
226                                            struct device_attribute *dev_attr,
227                                            char *buf)
228 {
229         struct hv_device *hv_dev = device_to_hv_device(dev);
230
231         if (!hv_dev->channel)
232                 return -ENODEV;
233         return sprintf(buf, "%d\n",
234                        channel_pending(hv_dev->channel,
235                                        vmbus_connection.monitor_pages[1]));
236 }
237 static DEVICE_ATTR_RO(client_monitor_pending);
238
239 static ssize_t server_monitor_latency_show(struct device *dev,
240                                            struct device_attribute *dev_attr,
241                                            char *buf)
242 {
243         struct hv_device *hv_dev = device_to_hv_device(dev);
244
245         if (!hv_dev->channel)
246                 return -ENODEV;
247         return sprintf(buf, "%d\n",
248                        channel_latency(hv_dev->channel,
249                                        vmbus_connection.monitor_pages[0]));
250 }
251 static DEVICE_ATTR_RO(server_monitor_latency);
252
253 static ssize_t client_monitor_latency_show(struct device *dev,
254                                            struct device_attribute *dev_attr,
255                                            char *buf)
256 {
257         struct hv_device *hv_dev = device_to_hv_device(dev);
258
259         if (!hv_dev->channel)
260                 return -ENODEV;
261         return sprintf(buf, "%d\n",
262                        channel_latency(hv_dev->channel,
263                                        vmbus_connection.monitor_pages[1]));
264 }
265 static DEVICE_ATTR_RO(client_monitor_latency);
266
267 static ssize_t server_monitor_conn_id_show(struct device *dev,
268                                            struct device_attribute *dev_attr,
269                                            char *buf)
270 {
271         struct hv_device *hv_dev = device_to_hv_device(dev);
272
273         if (!hv_dev->channel)
274                 return -ENODEV;
275         return sprintf(buf, "%d\n",
276                        channel_conn_id(hv_dev->channel,
277                                        vmbus_connection.monitor_pages[0]));
278 }
279 static DEVICE_ATTR_RO(server_monitor_conn_id);
280
281 static ssize_t client_monitor_conn_id_show(struct device *dev,
282                                            struct device_attribute *dev_attr,
283                                            char *buf)
284 {
285         struct hv_device *hv_dev = device_to_hv_device(dev);
286
287         if (!hv_dev->channel)
288                 return -ENODEV;
289         return sprintf(buf, "%d\n",
290                        channel_conn_id(hv_dev->channel,
291                                        vmbus_connection.monitor_pages[1]));
292 }
293 static DEVICE_ATTR_RO(client_monitor_conn_id);
294
295 static ssize_t out_intr_mask_show(struct device *dev,
296                                   struct device_attribute *dev_attr, char *buf)
297 {
298         struct hv_device *hv_dev = device_to_hv_device(dev);
299         struct hv_ring_buffer_debug_info outbound;
300
301         if (!hv_dev->channel)
302                 return -ENODEV;
303         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
304         return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
305 }
306 static DEVICE_ATTR_RO(out_intr_mask);
307
308 static ssize_t out_read_index_show(struct device *dev,
309                                    struct device_attribute *dev_attr, char *buf)
310 {
311         struct hv_device *hv_dev = device_to_hv_device(dev);
312         struct hv_ring_buffer_debug_info outbound;
313
314         if (!hv_dev->channel)
315                 return -ENODEV;
316         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
317         return sprintf(buf, "%d\n", outbound.current_read_index);
318 }
319 static DEVICE_ATTR_RO(out_read_index);
320
321 static ssize_t out_write_index_show(struct device *dev,
322                                     struct device_attribute *dev_attr,
323                                     char *buf)
324 {
325         struct hv_device *hv_dev = device_to_hv_device(dev);
326         struct hv_ring_buffer_debug_info outbound;
327
328         if (!hv_dev->channel)
329                 return -ENODEV;
330         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
331         return sprintf(buf, "%d\n", outbound.current_write_index);
332 }
333 static DEVICE_ATTR_RO(out_write_index);
334
335 static ssize_t out_read_bytes_avail_show(struct device *dev,
336                                          struct device_attribute *dev_attr,
337                                          char *buf)
338 {
339         struct hv_device *hv_dev = device_to_hv_device(dev);
340         struct hv_ring_buffer_debug_info outbound;
341
342         if (!hv_dev->channel)
343                 return -ENODEV;
344         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
345         return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
346 }
347 static DEVICE_ATTR_RO(out_read_bytes_avail);
348
349 static ssize_t out_write_bytes_avail_show(struct device *dev,
350                                           struct device_attribute *dev_attr,
351                                           char *buf)
352 {
353         struct hv_device *hv_dev = device_to_hv_device(dev);
354         struct hv_ring_buffer_debug_info outbound;
355
356         if (!hv_dev->channel)
357                 return -ENODEV;
358         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
359         return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
360 }
361 static DEVICE_ATTR_RO(out_write_bytes_avail);
362
363 static ssize_t in_intr_mask_show(struct device *dev,
364                                  struct device_attribute *dev_attr, char *buf)
365 {
366         struct hv_device *hv_dev = device_to_hv_device(dev);
367         struct hv_ring_buffer_debug_info inbound;
368
369         if (!hv_dev->channel)
370                 return -ENODEV;
371         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
372         return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
373 }
374 static DEVICE_ATTR_RO(in_intr_mask);
375
376 static ssize_t in_read_index_show(struct device *dev,
377                                   struct device_attribute *dev_attr, char *buf)
378 {
379         struct hv_device *hv_dev = device_to_hv_device(dev);
380         struct hv_ring_buffer_debug_info inbound;
381
382         if (!hv_dev->channel)
383                 return -ENODEV;
384         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
385         return sprintf(buf, "%d\n", inbound.current_read_index);
386 }
387 static DEVICE_ATTR_RO(in_read_index);
388
389 static ssize_t in_write_index_show(struct device *dev,
390                                    struct device_attribute *dev_attr, char *buf)
391 {
392         struct hv_device *hv_dev = device_to_hv_device(dev);
393         struct hv_ring_buffer_debug_info inbound;
394
395         if (!hv_dev->channel)
396                 return -ENODEV;
397         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
398         return sprintf(buf, "%d\n", inbound.current_write_index);
399 }
400 static DEVICE_ATTR_RO(in_write_index);
401
402 static ssize_t in_read_bytes_avail_show(struct device *dev,
403                                         struct device_attribute *dev_attr,
404                                         char *buf)
405 {
406         struct hv_device *hv_dev = device_to_hv_device(dev);
407         struct hv_ring_buffer_debug_info inbound;
408
409         if (!hv_dev->channel)
410                 return -ENODEV;
411         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
412         return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
413 }
414 static DEVICE_ATTR_RO(in_read_bytes_avail);
415
416 static ssize_t in_write_bytes_avail_show(struct device *dev,
417                                          struct device_attribute *dev_attr,
418                                          char *buf)
419 {
420         struct hv_device *hv_dev = device_to_hv_device(dev);
421         struct hv_ring_buffer_debug_info inbound;
422
423         if (!hv_dev->channel)
424                 return -ENODEV;
425         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
426         return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
427 }
428 static DEVICE_ATTR_RO(in_write_bytes_avail);
429
430 static ssize_t channel_vp_mapping_show(struct device *dev,
431                                        struct device_attribute *dev_attr,
432                                        char *buf)
433 {
434         struct hv_device *hv_dev = device_to_hv_device(dev);
435         struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
436         unsigned long flags;
437         int buf_size = PAGE_SIZE, n_written, tot_written;
438         struct list_head *cur;
439
440         if (!channel)
441                 return -ENODEV;
442
443         tot_written = snprintf(buf, buf_size, "%u:%u\n",
444                 channel->offermsg.child_relid, channel->target_cpu);
445
446         spin_lock_irqsave(&channel->lock, flags);
447
448         list_for_each(cur, &channel->sc_list) {
449                 if (tot_written >= buf_size - 1)
450                         break;
451
452                 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
453                 n_written = scnprintf(buf + tot_written,
454                                      buf_size - tot_written,
455                                      "%u:%u\n",
456                                      cur_sc->offermsg.child_relid,
457                                      cur_sc->target_cpu);
458                 tot_written += n_written;
459         }
460
461         spin_unlock_irqrestore(&channel->lock, flags);
462
463         return tot_written;
464 }
465 static DEVICE_ATTR_RO(channel_vp_mapping);
466
467 static ssize_t vendor_show(struct device *dev,
468                            struct device_attribute *dev_attr,
469                            char *buf)
470 {
471         struct hv_device *hv_dev = device_to_hv_device(dev);
472         return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
473 }
474 static DEVICE_ATTR_RO(vendor);
475
476 static ssize_t device_show(struct device *dev,
477                            struct device_attribute *dev_attr,
478                            char *buf)
479 {
480         struct hv_device *hv_dev = device_to_hv_device(dev);
481         return sprintf(buf, "0x%x\n", hv_dev->device_id);
482 }
483 static DEVICE_ATTR_RO(device);
484
485 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
486 static struct attribute *vmbus_dev_attrs[] = {
487         &dev_attr_id.attr,
488         &dev_attr_state.attr,
489         &dev_attr_monitor_id.attr,
490         &dev_attr_class_id.attr,
491         &dev_attr_device_id.attr,
492         &dev_attr_modalias.attr,
493         &dev_attr_server_monitor_pending.attr,
494         &dev_attr_client_monitor_pending.attr,
495         &dev_attr_server_monitor_latency.attr,
496         &dev_attr_client_monitor_latency.attr,
497         &dev_attr_server_monitor_conn_id.attr,
498         &dev_attr_client_monitor_conn_id.attr,
499         &dev_attr_out_intr_mask.attr,
500         &dev_attr_out_read_index.attr,
501         &dev_attr_out_write_index.attr,
502         &dev_attr_out_read_bytes_avail.attr,
503         &dev_attr_out_write_bytes_avail.attr,
504         &dev_attr_in_intr_mask.attr,
505         &dev_attr_in_read_index.attr,
506         &dev_attr_in_write_index.attr,
507         &dev_attr_in_read_bytes_avail.attr,
508         &dev_attr_in_write_bytes_avail.attr,
509         &dev_attr_channel_vp_mapping.attr,
510         &dev_attr_vendor.attr,
511         &dev_attr_device.attr,
512         NULL,
513 };
514 ATTRIBUTE_GROUPS(vmbus_dev);
515
516 /*
517  * vmbus_uevent - add uevent for our device
518  *
519  * This routine is invoked when a device is added or removed on the vmbus to
520  * generate a uevent to udev in the userspace. The udev will then look at its
521  * rule and the uevent generated here to load the appropriate driver
522  *
523  * The alias string will be of the form vmbus:guid where guid is the string
524  * representation of the device guid (each byte of the guid will be
525  * represented with two hex characters.
526  */
527 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
528 {
529         struct hv_device *dev = device_to_hv_device(device);
530         int ret;
531         char alias_name[VMBUS_ALIAS_LEN + 1];
532
533         print_alias_name(dev, alias_name);
534         ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
535         return ret;
536 }
537
538 static const uuid_le null_guid;
539
540 static inline bool is_null_guid(const uuid_le *guid)
541 {
542         if (uuid_le_cmp(*guid, null_guid))
543                 return false;
544         return true;
545 }
546
547 /*
548  * Return a matching hv_vmbus_device_id pointer.
549  * If there is no match, return NULL.
550  */
551 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
552                                         const uuid_le *guid)
553 {
554         const struct hv_vmbus_device_id *id = NULL;
555         struct vmbus_dynid *dynid;
556
557         /* Look at the dynamic ids first, before the static ones */
558         spin_lock(&drv->dynids.lock);
559         list_for_each_entry(dynid, &drv->dynids.list, node) {
560                 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
561                         id = &dynid->id;
562                         break;
563                 }
564         }
565         spin_unlock(&drv->dynids.lock);
566
567         if (id)
568                 return id;
569
570         id = drv->id_table;
571         if (id == NULL)
572                 return NULL; /* empty device table */
573
574         for (; !is_null_guid(&id->guid); id++)
575                 if (!uuid_le_cmp(id->guid, *guid))
576                         return id;
577
578         return NULL;
579 }
580
581 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
582 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
583 {
584         struct vmbus_dynid *dynid;
585
586         dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
587         if (!dynid)
588                 return -ENOMEM;
589
590         dynid->id.guid = *guid;
591
592         spin_lock(&drv->dynids.lock);
593         list_add_tail(&dynid->node, &drv->dynids.list);
594         spin_unlock(&drv->dynids.lock);
595
596         return driver_attach(&drv->driver);
597 }
598
599 static void vmbus_free_dynids(struct hv_driver *drv)
600 {
601         struct vmbus_dynid *dynid, *n;
602
603         spin_lock(&drv->dynids.lock);
604         list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
605                 list_del(&dynid->node);
606                 kfree(dynid);
607         }
608         spin_unlock(&drv->dynids.lock);
609 }
610
611 /* Parse string of form: 1b4e28ba-2fa1-11d2-883f-b9a761bde3f */
612 static int get_uuid_le(const char *str, uuid_le *uu)
613 {
614         unsigned int b[16];
615         int i;
616
617         if (strlen(str) < 37)
618                 return -1;
619
620         for (i = 0; i < 36; i++) {
621                 switch (i) {
622                 case 8: case 13: case 18: case 23:
623                         if (str[i] != '-')
624                                 return -1;
625                         break;
626                 default:
627                         if (!isxdigit(str[i]))
628                                 return -1;
629                 }
630         }
631
632         /* unparse little endian output byte order */
633         if (sscanf(str,
634                    "%2x%2x%2x%2x-%2x%2x-%2x%2x-%2x%2x-%2x%2x%2x%2x%2x%2x",
635                    &b[3], &b[2], &b[1], &b[0],
636                    &b[5], &b[4], &b[7], &b[6], &b[8], &b[9],
637                    &b[10], &b[11], &b[12], &b[13], &b[14], &b[15]) != 16)
638                 return -1;
639
640         for (i = 0; i < 16; i++)
641                 uu->b[i] = b[i];
642         return 0;
643 }
644
645 /*
646  * store_new_id - sysfs frontend to vmbus_add_dynid()
647  *
648  * Allow GUIDs to be added to an existing driver via sysfs.
649  */
650 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
651                             size_t count)
652 {
653         struct hv_driver *drv = drv_to_hv_drv(driver);
654         uuid_le guid = NULL_UUID_LE;
655         ssize_t retval;
656
657         if (get_uuid_le(buf, &guid) != 0)
658                 return -EINVAL;
659
660         if (hv_vmbus_get_id(drv, &guid))
661                 return -EEXIST;
662
663         retval = vmbus_add_dynid(drv, &guid);
664         if (retval)
665                 return retval;
666         return count;
667 }
668 static DRIVER_ATTR_WO(new_id);
669
670 /*
671  * store_remove_id - remove a PCI device ID from this driver
672  *
673  * Removes a dynamic pci device ID to this driver.
674  */
675 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
676                                size_t count)
677 {
678         struct hv_driver *drv = drv_to_hv_drv(driver);
679         struct vmbus_dynid *dynid, *n;
680         uuid_le guid = NULL_UUID_LE;
681         size_t retval = -ENODEV;
682
683         if (get_uuid_le(buf, &guid))
684                 return -EINVAL;
685
686         spin_lock(&drv->dynids.lock);
687         list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
688                 struct hv_vmbus_device_id *id = &dynid->id;
689
690                 if (!uuid_le_cmp(id->guid, guid)) {
691                         list_del(&dynid->node);
692                         kfree(dynid);
693                         retval = count;
694                         break;
695                 }
696         }
697         spin_unlock(&drv->dynids.lock);
698
699         return retval;
700 }
701 static DRIVER_ATTR_WO(remove_id);
702
703 static struct attribute *vmbus_drv_attrs[] = {
704         &driver_attr_new_id.attr,
705         &driver_attr_remove_id.attr,
706         NULL,
707 };
708 ATTRIBUTE_GROUPS(vmbus_drv);
709
710
711 /*
712  * vmbus_match - Attempt to match the specified device to the specified driver
713  */
714 static int vmbus_match(struct device *device, struct device_driver *driver)
715 {
716         struct hv_driver *drv = drv_to_hv_drv(driver);
717         struct hv_device *hv_dev = device_to_hv_device(device);
718
719         /* The hv_sock driver handles all hv_sock offers. */
720         if (is_hvsock_channel(hv_dev->channel))
721                 return drv->hvsock;
722
723         if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
724                 return 1;
725
726         return 0;
727 }
728
729 /*
730  * vmbus_probe - Add the new vmbus's child device
731  */
732 static int vmbus_probe(struct device *child_device)
733 {
734         int ret = 0;
735         struct hv_driver *drv =
736                         drv_to_hv_drv(child_device->driver);
737         struct hv_device *dev = device_to_hv_device(child_device);
738         const struct hv_vmbus_device_id *dev_id;
739
740         dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
741         if (drv->probe) {
742                 ret = drv->probe(dev, dev_id);
743                 if (ret != 0)
744                         pr_err("probe failed for device %s (%d)\n",
745                                dev_name(child_device), ret);
746
747         } else {
748                 pr_err("probe not set for driver %s\n",
749                        dev_name(child_device));
750                 ret = -ENODEV;
751         }
752         return ret;
753 }
754
755 /*
756  * vmbus_remove - Remove a vmbus device
757  */
758 static int vmbus_remove(struct device *child_device)
759 {
760         struct hv_driver *drv;
761         struct hv_device *dev = device_to_hv_device(child_device);
762
763         if (child_device->driver) {
764                 drv = drv_to_hv_drv(child_device->driver);
765                 if (drv->remove)
766                         drv->remove(dev);
767         }
768
769         return 0;
770 }
771
772
773 /*
774  * vmbus_shutdown - Shutdown a vmbus device
775  */
776 static void vmbus_shutdown(struct device *child_device)
777 {
778         struct hv_driver *drv;
779         struct hv_device *dev = device_to_hv_device(child_device);
780
781
782         /* The device may not be attached yet */
783         if (!child_device->driver)
784                 return;
785
786         drv = drv_to_hv_drv(child_device->driver);
787
788         if (drv->shutdown)
789                 drv->shutdown(dev);
790 }
791
792
793 /*
794  * vmbus_device_release - Final callback release of the vmbus child device
795  */
796 static void vmbus_device_release(struct device *device)
797 {
798         struct hv_device *hv_dev = device_to_hv_device(device);
799         struct vmbus_channel *channel = hv_dev->channel;
800
801         hv_process_channel_removal(channel,
802                                    channel->offermsg.child_relid);
803         kfree(hv_dev);
804
805 }
806
807 /* The one and only one */
808 static struct bus_type  hv_bus = {
809         .name =         "vmbus",
810         .match =                vmbus_match,
811         .shutdown =             vmbus_shutdown,
812         .remove =               vmbus_remove,
813         .probe =                vmbus_probe,
814         .uevent =               vmbus_uevent,
815         .dev_groups =           vmbus_dev_groups,
816         .drv_groups =           vmbus_drv_groups,
817 };
818
819 struct onmessage_work_context {
820         struct work_struct work;
821         struct hv_message msg;
822 };
823
824 static void vmbus_onmessage_work(struct work_struct *work)
825 {
826         struct onmessage_work_context *ctx;
827
828         /* Do not process messages if we're in DISCONNECTED state */
829         if (vmbus_connection.conn_state == DISCONNECTED)
830                 return;
831
832         ctx = container_of(work, struct onmessage_work_context,
833                            work);
834         vmbus_onmessage(&ctx->msg);
835         kfree(ctx);
836 }
837
838 static void hv_process_timer_expiration(struct hv_message *msg,
839                                         struct hv_per_cpu_context *hv_cpu)
840 {
841         struct clock_event_device *dev = hv_cpu->clk_evt;
842
843         if (dev->event_handler)
844                 dev->event_handler(dev);
845
846         vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
847 }
848
849 void vmbus_on_msg_dpc(unsigned long data)
850 {
851         struct hv_per_cpu_context *hv_cpu = (void *)data;
852         void *page_addr = hv_cpu->synic_message_page;
853         struct hv_message *msg = (struct hv_message *)page_addr +
854                                   VMBUS_MESSAGE_SINT;
855         struct vmbus_channel_message_header *hdr;
856         const struct vmbus_channel_message_table_entry *entry;
857         struct onmessage_work_context *ctx;
858         u32 message_type = msg->header.message_type;
859
860         if (message_type == HVMSG_NONE)
861                 /* no msg */
862                 return;
863
864         hdr = (struct vmbus_channel_message_header *)msg->u.payload;
865
866         if (hdr->msgtype >= CHANNELMSG_COUNT) {
867                 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
868                 goto msg_handled;
869         }
870
871         entry = &channel_message_table[hdr->msgtype];
872         if (entry->handler_type == VMHT_BLOCKING) {
873                 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
874                 if (ctx == NULL)
875                         return;
876
877                 INIT_WORK(&ctx->work, vmbus_onmessage_work);
878                 memcpy(&ctx->msg, msg, sizeof(*msg));
879
880                 queue_work(vmbus_connection.work_queue, &ctx->work);
881         } else
882                 entry->message_handler(hdr);
883
884 msg_handled:
885         vmbus_signal_eom(msg, message_type);
886 }
887
888
889 /*
890  * Direct callback for channels using other deferred processing
891  */
892 static void vmbus_channel_isr(struct vmbus_channel *channel)
893 {
894         void (*callback_fn)(void *);
895
896         callback_fn = READ_ONCE(channel->onchannel_callback);
897         if (likely(callback_fn != NULL))
898                 (*callback_fn)(channel->channel_callback_context);
899 }
900
901 /*
902  * Schedule all channels with events pending
903  */
904 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
905 {
906         unsigned long *recv_int_page;
907         u32 maxbits, relid;
908
909         if (vmbus_proto_version < VERSION_WIN8) {
910                 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
911                 recv_int_page = vmbus_connection.recv_int_page;
912         } else {
913                 /*
914                  * When the host is win8 and beyond, the event page
915                  * can be directly checked to get the id of the channel
916                  * that has the interrupt pending.
917                  */
918                 void *page_addr = hv_cpu->synic_event_page;
919                 union hv_synic_event_flags *event
920                         = (union hv_synic_event_flags *)page_addr +
921                                                  VMBUS_MESSAGE_SINT;
922
923                 maxbits = HV_EVENT_FLAGS_COUNT;
924                 recv_int_page = event->flags;
925         }
926
927         if (unlikely(!recv_int_page))
928                 return;
929
930         for_each_set_bit(relid, recv_int_page, maxbits) {
931                 struct vmbus_channel *channel;
932
933                 if (!sync_test_and_clear_bit(relid, recv_int_page))
934                         continue;
935
936                 /* Special case - vmbus channel protocol msg */
937                 if (relid == 0)
938                         continue;
939
940                 rcu_read_lock();
941
942                 /* Find channel based on relid */
943                 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
944                         if (channel->offermsg.child_relid != relid)
945                                 continue;
946
947                         switch (channel->callback_mode) {
948                         case HV_CALL_ISR:
949                                 vmbus_channel_isr(channel);
950                                 break;
951
952                         case HV_CALL_BATCHED:
953                                 hv_begin_read(&channel->inbound);
954                                 /* fallthrough */
955                         case HV_CALL_DIRECT:
956                                 tasklet_schedule(&channel->callback_event);
957                         }
958                 }
959
960                 rcu_read_unlock();
961         }
962 }
963
964 static void vmbus_isr(void)
965 {
966         struct hv_per_cpu_context *hv_cpu
967                 = this_cpu_ptr(hv_context.cpu_context);
968         void *page_addr = hv_cpu->synic_event_page;
969         struct hv_message *msg;
970         union hv_synic_event_flags *event;
971         bool handled = false;
972
973         if (unlikely(page_addr == NULL))
974                 return;
975
976         event = (union hv_synic_event_flags *)page_addr +
977                                          VMBUS_MESSAGE_SINT;
978         /*
979          * Check for events before checking for messages. This is the order
980          * in which events and messages are checked in Windows guests on
981          * Hyper-V, and the Windows team suggested we do the same.
982          */
983
984         if ((vmbus_proto_version == VERSION_WS2008) ||
985                 (vmbus_proto_version == VERSION_WIN7)) {
986
987                 /* Since we are a child, we only need to check bit 0 */
988                 if (sync_test_and_clear_bit(0, event->flags))
989                         handled = true;
990         } else {
991                 /*
992                  * Our host is win8 or above. The signaling mechanism
993                  * has changed and we can directly look at the event page.
994                  * If bit n is set then we have an interrup on the channel
995                  * whose id is n.
996                  */
997                 handled = true;
998         }
999
1000         if (handled)
1001                 vmbus_chan_sched(hv_cpu);
1002
1003         page_addr = hv_cpu->synic_message_page;
1004         msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1005
1006         /* Check if there are actual msgs to be processed */
1007         if (msg->header.message_type != HVMSG_NONE) {
1008                 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1009                         hv_process_timer_expiration(msg, hv_cpu);
1010                 else
1011                         tasklet_schedule(&hv_cpu->msg_dpc);
1012         }
1013
1014         add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1015 }
1016
1017
1018 /*
1019  * vmbus_bus_init -Main vmbus driver initialization routine.
1020  *
1021  * Here, we
1022  *      - initialize the vmbus driver context
1023  *      - invoke the vmbus hv main init routine
1024  *      - retrieve the channel offers
1025  */
1026 static int vmbus_bus_init(void)
1027 {
1028         int ret;
1029
1030         /* Hypervisor initialization...setup hypercall page..etc */
1031         ret = hv_init();
1032         if (ret != 0) {
1033                 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1034                 return ret;
1035         }
1036
1037         ret = bus_register(&hv_bus);
1038         if (ret)
1039                 return ret;
1040
1041         hv_setup_vmbus_irq(vmbus_isr);
1042
1043         ret = hv_synic_alloc();
1044         if (ret)
1045                 goto err_alloc;
1046         /*
1047          * Initialize the per-cpu interrupt state and
1048          * connect to the host.
1049          */
1050         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online",
1051                                 hv_synic_init, hv_synic_cleanup);
1052         if (ret < 0)
1053                 goto err_alloc;
1054         hyperv_cpuhp_online = ret;
1055
1056         ret = vmbus_connect();
1057         if (ret)
1058                 goto err_connect;
1059
1060         /*
1061          * Only register if the crash MSRs are available
1062          */
1063         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1064                 register_die_notifier(&hyperv_die_block);
1065                 atomic_notifier_chain_register(&panic_notifier_list,
1066                                                &hyperv_panic_block);
1067         }
1068
1069         vmbus_request_offers();
1070
1071         return 0;
1072
1073 err_connect:
1074         cpuhp_remove_state(hyperv_cpuhp_online);
1075 err_alloc:
1076         hv_synic_free();
1077         hv_remove_vmbus_irq();
1078
1079         bus_unregister(&hv_bus);
1080
1081         return ret;
1082 }
1083
1084 /**
1085  * __vmbus_child_driver_register() - Register a vmbus's driver
1086  * @hv_driver: Pointer to driver structure you want to register
1087  * @owner: owner module of the drv
1088  * @mod_name: module name string
1089  *
1090  * Registers the given driver with Linux through the 'driver_register()' call
1091  * and sets up the hyper-v vmbus handling for this driver.
1092  * It will return the state of the 'driver_register()' call.
1093  *
1094  */
1095 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1096 {
1097         int ret;
1098
1099         pr_info("registering driver %s\n", hv_driver->name);
1100
1101         ret = vmbus_exists();
1102         if (ret < 0)
1103                 return ret;
1104
1105         hv_driver->driver.name = hv_driver->name;
1106         hv_driver->driver.owner = owner;
1107         hv_driver->driver.mod_name = mod_name;
1108         hv_driver->driver.bus = &hv_bus;
1109
1110         spin_lock_init(&hv_driver->dynids.lock);
1111         INIT_LIST_HEAD(&hv_driver->dynids.list);
1112
1113         ret = driver_register(&hv_driver->driver);
1114
1115         return ret;
1116 }
1117 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1118
1119 /**
1120  * vmbus_driver_unregister() - Unregister a vmbus's driver
1121  * @hv_driver: Pointer to driver structure you want to
1122  *             un-register
1123  *
1124  * Un-register the given driver that was previous registered with a call to
1125  * vmbus_driver_register()
1126  */
1127 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1128 {
1129         pr_info("unregistering driver %s\n", hv_driver->name);
1130
1131         if (!vmbus_exists()) {
1132                 driver_unregister(&hv_driver->driver);
1133                 vmbus_free_dynids(hv_driver);
1134         }
1135 }
1136 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1137
1138 /*
1139  * vmbus_device_create - Creates and registers a new child device
1140  * on the vmbus.
1141  */
1142 struct hv_device *vmbus_device_create(const uuid_le *type,
1143                                       const uuid_le *instance,
1144                                       struct vmbus_channel *channel)
1145 {
1146         struct hv_device *child_device_obj;
1147
1148         child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1149         if (!child_device_obj) {
1150                 pr_err("Unable to allocate device object for child device\n");
1151                 return NULL;
1152         }
1153
1154         child_device_obj->channel = channel;
1155         memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1156         memcpy(&child_device_obj->dev_instance, instance,
1157                sizeof(uuid_le));
1158         child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1159
1160
1161         return child_device_obj;
1162 }
1163
1164 /*
1165  * vmbus_device_register - Register the child device
1166  */
1167 int vmbus_device_register(struct hv_device *child_device_obj)
1168 {
1169         int ret = 0;
1170
1171         dev_set_name(&child_device_obj->device, "%pUl",
1172                      child_device_obj->channel->offermsg.offer.if_instance.b);
1173
1174         child_device_obj->device.bus = &hv_bus;
1175         child_device_obj->device.parent = &hv_acpi_dev->dev;
1176         child_device_obj->device.release = vmbus_device_release;
1177
1178         /*
1179          * Register with the LDM. This will kick off the driver/device
1180          * binding...which will eventually call vmbus_match() and vmbus_probe()
1181          */
1182         ret = device_register(&child_device_obj->device);
1183
1184         if (ret)
1185                 pr_err("Unable to register child device\n");
1186         else
1187                 pr_debug("child device %s registered\n",
1188                         dev_name(&child_device_obj->device));
1189
1190         return ret;
1191 }
1192
1193 /*
1194  * vmbus_device_unregister - Remove the specified child device
1195  * from the vmbus.
1196  */
1197 void vmbus_device_unregister(struct hv_device *device_obj)
1198 {
1199         pr_debug("child device %s unregistered\n",
1200                 dev_name(&device_obj->device));
1201
1202         /*
1203          * Kick off the process of unregistering the device.
1204          * This will call vmbus_remove() and eventually vmbus_device_release()
1205          */
1206         device_unregister(&device_obj->device);
1207 }
1208
1209
1210 /*
1211  * VMBUS is an acpi enumerated device. Get the information we
1212  * need from DSDT.
1213  */
1214 #define VTPM_BASE_ADDRESS 0xfed40000
1215 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1216 {
1217         resource_size_t start = 0;
1218         resource_size_t end = 0;
1219         struct resource *new_res;
1220         struct resource **old_res = &hyperv_mmio;
1221         struct resource **prev_res = NULL;
1222
1223         switch (res->type) {
1224
1225         /*
1226          * "Address" descriptors are for bus windows. Ignore
1227          * "memory" descriptors, which are for registers on
1228          * devices.
1229          */
1230         case ACPI_RESOURCE_TYPE_ADDRESS32:
1231                 start = res->data.address32.address.minimum;
1232                 end = res->data.address32.address.maximum;
1233                 break;
1234
1235         case ACPI_RESOURCE_TYPE_ADDRESS64:
1236                 start = res->data.address64.address.minimum;
1237                 end = res->data.address64.address.maximum;
1238                 break;
1239
1240         default:
1241                 /* Unused resource type */
1242                 return AE_OK;
1243
1244         }
1245         /*
1246          * Ignore ranges that are below 1MB, as they're not
1247          * necessary or useful here.
1248          */
1249         if (end < 0x100000)
1250                 return AE_OK;
1251
1252         new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1253         if (!new_res)
1254                 return AE_NO_MEMORY;
1255
1256         /* If this range overlaps the virtual TPM, truncate it. */
1257         if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1258                 end = VTPM_BASE_ADDRESS;
1259
1260         new_res->name = "hyperv mmio";
1261         new_res->flags = IORESOURCE_MEM;
1262         new_res->start = start;
1263         new_res->end = end;
1264
1265         /*
1266          * If two ranges are adjacent, merge them.
1267          */
1268         do {
1269                 if (!*old_res) {
1270                         *old_res = new_res;
1271                         break;
1272                 }
1273
1274                 if (((*old_res)->end + 1) == new_res->start) {
1275                         (*old_res)->end = new_res->end;
1276                         kfree(new_res);
1277                         break;
1278                 }
1279
1280                 if ((*old_res)->start == new_res->end + 1) {
1281                         (*old_res)->start = new_res->start;
1282                         kfree(new_res);
1283                         break;
1284                 }
1285
1286                 if ((*old_res)->start > new_res->end) {
1287                         new_res->sibling = *old_res;
1288                         if (prev_res)
1289                                 (*prev_res)->sibling = new_res;
1290                         *old_res = new_res;
1291                         break;
1292                 }
1293
1294                 prev_res = old_res;
1295                 old_res = &(*old_res)->sibling;
1296
1297         } while (1);
1298
1299         return AE_OK;
1300 }
1301
1302 static int vmbus_acpi_remove(struct acpi_device *device)
1303 {
1304         struct resource *cur_res;
1305         struct resource *next_res;
1306
1307         if (hyperv_mmio) {
1308                 if (fb_mmio) {
1309                         __release_region(hyperv_mmio, fb_mmio->start,
1310                                          resource_size(fb_mmio));
1311                         fb_mmio = NULL;
1312                 }
1313
1314                 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1315                         next_res = cur_res->sibling;
1316                         kfree(cur_res);
1317                 }
1318         }
1319
1320         return 0;
1321 }
1322
1323 static void vmbus_reserve_fb(void)
1324 {
1325         int size;
1326         /*
1327          * Make a claim for the frame buffer in the resource tree under the
1328          * first node, which will be the one below 4GB.  The length seems to
1329          * be underreported, particularly in a Generation 1 VM.  So start out
1330          * reserving a larger area and make it smaller until it succeeds.
1331          */
1332
1333         if (screen_info.lfb_base) {
1334                 if (efi_enabled(EFI_BOOT))
1335                         size = max_t(__u32, screen_info.lfb_size, 0x800000);
1336                 else
1337                         size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1338
1339                 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1340                         fb_mmio = __request_region(hyperv_mmio,
1341                                                    screen_info.lfb_base, size,
1342                                                    fb_mmio_name, 0);
1343                 }
1344         }
1345 }
1346
1347 /**
1348  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1349  * @new:                If successful, supplied a pointer to the
1350  *                      allocated MMIO space.
1351  * @device_obj:         Identifies the caller
1352  * @min:                Minimum guest physical address of the
1353  *                      allocation
1354  * @max:                Maximum guest physical address
1355  * @size:               Size of the range to be allocated
1356  * @align:              Alignment of the range to be allocated
1357  * @fb_overlap_ok:      Whether this allocation can be allowed
1358  *                      to overlap the video frame buffer.
1359  *
1360  * This function walks the resources granted to VMBus by the
1361  * _CRS object in the ACPI namespace underneath the parent
1362  * "bridge" whether that's a root PCI bus in the Generation 1
1363  * case or a Module Device in the Generation 2 case.  It then
1364  * attempts to allocate from the global MMIO pool in a way that
1365  * matches the constraints supplied in these parameters and by
1366  * that _CRS.
1367  *
1368  * Return: 0 on success, -errno on failure
1369  */
1370 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1371                         resource_size_t min, resource_size_t max,
1372                         resource_size_t size, resource_size_t align,
1373                         bool fb_overlap_ok)
1374 {
1375         struct resource *iter, *shadow;
1376         resource_size_t range_min, range_max, start;
1377         const char *dev_n = dev_name(&device_obj->device);
1378         int retval;
1379
1380         retval = -ENXIO;
1381         down(&hyperv_mmio_lock);
1382
1383         /*
1384          * If overlaps with frame buffers are allowed, then first attempt to
1385          * make the allocation from within the reserved region.  Because it
1386          * is already reserved, no shadow allocation is necessary.
1387          */
1388         if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1389             !(max < fb_mmio->start)) {
1390
1391                 range_min = fb_mmio->start;
1392                 range_max = fb_mmio->end;
1393                 start = (range_min + align - 1) & ~(align - 1);
1394                 for (; start + size - 1 <= range_max; start += align) {
1395                         *new = request_mem_region_exclusive(start, size, dev_n);
1396                         if (*new) {
1397                                 retval = 0;
1398                                 goto exit;
1399                         }
1400                 }
1401         }
1402
1403         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1404                 if ((iter->start >= max) || (iter->end <= min))
1405                         continue;
1406
1407                 range_min = iter->start;
1408                 range_max = iter->end;
1409                 start = (range_min + align - 1) & ~(align - 1);
1410                 for (; start + size - 1 <= range_max; start += align) {
1411                         shadow = __request_region(iter, start, size, NULL,
1412                                                   IORESOURCE_BUSY);
1413                         if (!shadow)
1414                                 continue;
1415
1416                         *new = request_mem_region_exclusive(start, size, dev_n);
1417                         if (*new) {
1418                                 shadow->name = (char *)*new;
1419                                 retval = 0;
1420                                 goto exit;
1421                         }
1422
1423                         __release_region(iter, start, size);
1424                 }
1425         }
1426
1427 exit:
1428         up(&hyperv_mmio_lock);
1429         return retval;
1430 }
1431 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1432
1433 /**
1434  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1435  * @start:              Base address of region to release.
1436  * @size:               Size of the range to be allocated
1437  *
1438  * This function releases anything requested by
1439  * vmbus_mmio_allocate().
1440  */
1441 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1442 {
1443         struct resource *iter;
1444
1445         down(&hyperv_mmio_lock);
1446         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1447                 if ((iter->start >= start + size) || (iter->end <= start))
1448                         continue;
1449
1450                 __release_region(iter, start, size);
1451         }
1452         release_mem_region(start, size);
1453         up(&hyperv_mmio_lock);
1454
1455 }
1456 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1457
1458 /**
1459  * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1460  * @cpu_number: CPU number in Linux terms
1461  *
1462  * This function returns the mapping between the Linux processor
1463  * number and the hypervisor's virtual processor number, useful
1464  * in making hypercalls and such that talk about specific
1465  * processors.
1466  *
1467  * Return: Virtual processor number in Hyper-V terms
1468  */
1469 int vmbus_cpu_number_to_vp_number(int cpu_number)
1470 {
1471         return hv_context.vp_index[cpu_number];
1472 }
1473 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1474
1475 static int vmbus_acpi_add(struct acpi_device *device)
1476 {
1477         acpi_status result;
1478         int ret_val = -ENODEV;
1479         struct acpi_device *ancestor;
1480
1481         hv_acpi_dev = device;
1482
1483         result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1484                                         vmbus_walk_resources, NULL);
1485
1486         if (ACPI_FAILURE(result))
1487                 goto acpi_walk_err;
1488         /*
1489          * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1490          * firmware) is the VMOD that has the mmio ranges. Get that.
1491          */
1492         for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1493                 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1494                                              vmbus_walk_resources, NULL);
1495
1496                 if (ACPI_FAILURE(result))
1497                         continue;
1498                 if (hyperv_mmio) {
1499                         vmbus_reserve_fb();
1500                         break;
1501                 }
1502         }
1503         ret_val = 0;
1504
1505 acpi_walk_err:
1506         complete(&probe_event);
1507         if (ret_val)
1508                 vmbus_acpi_remove(device);
1509         return ret_val;
1510 }
1511
1512 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1513         {"VMBUS", 0},
1514         {"VMBus", 0},
1515         {"", 0},
1516 };
1517 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1518
1519 static struct acpi_driver vmbus_acpi_driver = {
1520         .name = "vmbus",
1521         .ids = vmbus_acpi_device_ids,
1522         .ops = {
1523                 .add = vmbus_acpi_add,
1524                 .remove = vmbus_acpi_remove,
1525         },
1526 };
1527
1528 static void hv_kexec_handler(void)
1529 {
1530         hv_synic_clockevents_cleanup();
1531         vmbus_initiate_unload(false);
1532         vmbus_connection.conn_state = DISCONNECTED;
1533         /* Make sure conn_state is set as hv_synic_cleanup checks for it */
1534         mb();
1535         cpuhp_remove_state(hyperv_cpuhp_online);
1536         hyperv_cleanup();
1537 };
1538
1539 static void hv_crash_handler(struct pt_regs *regs)
1540 {
1541         vmbus_initiate_unload(true);
1542         /*
1543          * In crash handler we can't schedule synic cleanup for all CPUs,
1544          * doing the cleanup for current CPU only. This should be sufficient
1545          * for kdump.
1546          */
1547         vmbus_connection.conn_state = DISCONNECTED;
1548         hv_synic_cleanup(smp_processor_id());
1549         hyperv_cleanup();
1550 };
1551
1552 static int __init hv_acpi_init(void)
1553 {
1554         int ret, t;
1555
1556         if (x86_hyper != &x86_hyper_ms_hyperv)
1557                 return -ENODEV;
1558
1559         init_completion(&probe_event);
1560
1561         /*
1562          * Get ACPI resources first.
1563          */
1564         ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1565
1566         if (ret)
1567                 return ret;
1568
1569         t = wait_for_completion_timeout(&probe_event, 5*HZ);
1570         if (t == 0) {
1571                 ret = -ETIMEDOUT;
1572                 goto cleanup;
1573         }
1574
1575         ret = vmbus_bus_init();
1576         if (ret)
1577                 goto cleanup;
1578
1579         hv_setup_kexec_handler(hv_kexec_handler);
1580         hv_setup_crash_handler(hv_crash_handler);
1581
1582         return 0;
1583
1584 cleanup:
1585         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1586         hv_acpi_dev = NULL;
1587         return ret;
1588 }
1589
1590 static void __exit vmbus_exit(void)
1591 {
1592         int cpu;
1593
1594         hv_remove_kexec_handler();
1595         hv_remove_crash_handler();
1596         vmbus_connection.conn_state = DISCONNECTED;
1597         hv_synic_clockevents_cleanup();
1598         vmbus_disconnect();
1599         hv_remove_vmbus_irq();
1600         for_each_online_cpu(cpu) {
1601                 struct hv_per_cpu_context *hv_cpu
1602                         = per_cpu_ptr(hv_context.cpu_context, cpu);
1603
1604                 tasklet_kill(&hv_cpu->msg_dpc);
1605         }
1606         vmbus_free_channels();
1607
1608         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1609                 unregister_die_notifier(&hyperv_die_block);
1610                 atomic_notifier_chain_unregister(&panic_notifier_list,
1611                                                  &hyperv_panic_block);
1612         }
1613         bus_unregister(&hv_bus);
1614
1615         cpuhp_remove_state(hyperv_cpuhp_online);
1616         hv_synic_free();
1617         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1618 }
1619
1620
1621 MODULE_LICENSE("GPL");
1622
1623 subsys_initcall(hv_acpi_init);
1624 module_exit(vmbus_exit);