]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/i2c/busses/i2c-designware-core.c
Merge tag 'regmap-v4.10' into regmap-next
[linux.git] / drivers / i2c / busses / i2c-designware-core.c
1 /*
2  * Synopsys DesignWare I2C adapter driver (master only).
3  *
4  * Based on the TI DAVINCI I2C adapter driver.
5  *
6  * Copyright (C) 2006 Texas Instruments.
7  * Copyright (C) 2007 MontaVista Software Inc.
8  * Copyright (C) 2009 Provigent Ltd.
9  *
10  * ----------------------------------------------------------------------------
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  * ----------------------------------------------------------------------------
22  *
23  */
24 #include <linux/export.h>
25 #include <linux/errno.h>
26 #include <linux/err.h>
27 #include <linux/i2c.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/delay.h>
32 #include <linux/module.h>
33 #include "i2c-designware-core.h"
34
35 /*
36  * Registers offset
37  */
38 #define DW_IC_CON               0x0
39 #define DW_IC_TAR               0x4
40 #define DW_IC_DATA_CMD          0x10
41 #define DW_IC_SS_SCL_HCNT       0x14
42 #define DW_IC_SS_SCL_LCNT       0x18
43 #define DW_IC_FS_SCL_HCNT       0x1c
44 #define DW_IC_FS_SCL_LCNT       0x20
45 #define DW_IC_HS_SCL_HCNT       0x24
46 #define DW_IC_HS_SCL_LCNT       0x28
47 #define DW_IC_INTR_STAT         0x2c
48 #define DW_IC_INTR_MASK         0x30
49 #define DW_IC_RAW_INTR_STAT     0x34
50 #define DW_IC_RX_TL             0x38
51 #define DW_IC_TX_TL             0x3c
52 #define DW_IC_CLR_INTR          0x40
53 #define DW_IC_CLR_RX_UNDER      0x44
54 #define DW_IC_CLR_RX_OVER       0x48
55 #define DW_IC_CLR_TX_OVER       0x4c
56 #define DW_IC_CLR_RD_REQ        0x50
57 #define DW_IC_CLR_TX_ABRT       0x54
58 #define DW_IC_CLR_RX_DONE       0x58
59 #define DW_IC_CLR_ACTIVITY      0x5c
60 #define DW_IC_CLR_STOP_DET      0x60
61 #define DW_IC_CLR_START_DET     0x64
62 #define DW_IC_CLR_GEN_CALL      0x68
63 #define DW_IC_ENABLE            0x6c
64 #define DW_IC_STATUS            0x70
65 #define DW_IC_TXFLR             0x74
66 #define DW_IC_RXFLR             0x78
67 #define DW_IC_SDA_HOLD          0x7c
68 #define DW_IC_TX_ABRT_SOURCE    0x80
69 #define DW_IC_ENABLE_STATUS     0x9c
70 #define DW_IC_COMP_PARAM_1      0xf4
71 #define DW_IC_COMP_VERSION      0xf8
72 #define DW_IC_SDA_HOLD_MIN_VERS 0x3131312A
73 #define DW_IC_COMP_TYPE         0xfc
74 #define DW_IC_COMP_TYPE_VALUE   0x44570140
75
76 #define DW_IC_INTR_RX_UNDER     0x001
77 #define DW_IC_INTR_RX_OVER      0x002
78 #define DW_IC_INTR_RX_FULL      0x004
79 #define DW_IC_INTR_TX_OVER      0x008
80 #define DW_IC_INTR_TX_EMPTY     0x010
81 #define DW_IC_INTR_RD_REQ       0x020
82 #define DW_IC_INTR_TX_ABRT      0x040
83 #define DW_IC_INTR_RX_DONE      0x080
84 #define DW_IC_INTR_ACTIVITY     0x100
85 #define DW_IC_INTR_STOP_DET     0x200
86 #define DW_IC_INTR_START_DET    0x400
87 #define DW_IC_INTR_GEN_CALL     0x800
88
89 #define DW_IC_INTR_DEFAULT_MASK         (DW_IC_INTR_RX_FULL | \
90                                          DW_IC_INTR_TX_EMPTY | \
91                                          DW_IC_INTR_TX_ABRT | \
92                                          DW_IC_INTR_STOP_DET)
93
94 #define DW_IC_STATUS_ACTIVITY   0x1
95
96 #define DW_IC_SDA_HOLD_RX_SHIFT         16
97 #define DW_IC_SDA_HOLD_RX_MASK          GENMASK(23, DW_IC_SDA_HOLD_RX_SHIFT)
98
99 #define DW_IC_ERR_TX_ABRT       0x1
100
101 #define DW_IC_TAR_10BITADDR_MASTER BIT(12)
102
103 #define DW_IC_COMP_PARAM_1_SPEED_MODE_HIGH      (BIT(2) | BIT(3))
104 #define DW_IC_COMP_PARAM_1_SPEED_MODE_MASK      GENMASK(3, 2)
105
106 /*
107  * status codes
108  */
109 #define STATUS_IDLE                     0x0
110 #define STATUS_WRITE_IN_PROGRESS        0x1
111 #define STATUS_READ_IN_PROGRESS         0x2
112
113 #define TIMEOUT                 20 /* ms */
114
115 /*
116  * hardware abort codes from the DW_IC_TX_ABRT_SOURCE register
117  *
118  * only expected abort codes are listed here
119  * refer to the datasheet for the full list
120  */
121 #define ABRT_7B_ADDR_NOACK      0
122 #define ABRT_10ADDR1_NOACK      1
123 #define ABRT_10ADDR2_NOACK      2
124 #define ABRT_TXDATA_NOACK       3
125 #define ABRT_GCALL_NOACK        4
126 #define ABRT_GCALL_READ         5
127 #define ABRT_SBYTE_ACKDET       7
128 #define ABRT_SBYTE_NORSTRT      9
129 #define ABRT_10B_RD_NORSTRT     10
130 #define ABRT_MASTER_DIS         11
131 #define ARB_LOST                12
132
133 #define DW_IC_TX_ABRT_7B_ADDR_NOACK     (1UL << ABRT_7B_ADDR_NOACK)
134 #define DW_IC_TX_ABRT_10ADDR1_NOACK     (1UL << ABRT_10ADDR1_NOACK)
135 #define DW_IC_TX_ABRT_10ADDR2_NOACK     (1UL << ABRT_10ADDR2_NOACK)
136 #define DW_IC_TX_ABRT_TXDATA_NOACK      (1UL << ABRT_TXDATA_NOACK)
137 #define DW_IC_TX_ABRT_GCALL_NOACK       (1UL << ABRT_GCALL_NOACK)
138 #define DW_IC_TX_ABRT_GCALL_READ        (1UL << ABRT_GCALL_READ)
139 #define DW_IC_TX_ABRT_SBYTE_ACKDET      (1UL << ABRT_SBYTE_ACKDET)
140 #define DW_IC_TX_ABRT_SBYTE_NORSTRT     (1UL << ABRT_SBYTE_NORSTRT)
141 #define DW_IC_TX_ABRT_10B_RD_NORSTRT    (1UL << ABRT_10B_RD_NORSTRT)
142 #define DW_IC_TX_ABRT_MASTER_DIS        (1UL << ABRT_MASTER_DIS)
143 #define DW_IC_TX_ARB_LOST               (1UL << ARB_LOST)
144
145 #define DW_IC_TX_ABRT_NOACK             (DW_IC_TX_ABRT_7B_ADDR_NOACK | \
146                                          DW_IC_TX_ABRT_10ADDR1_NOACK | \
147                                          DW_IC_TX_ABRT_10ADDR2_NOACK | \
148                                          DW_IC_TX_ABRT_TXDATA_NOACK | \
149                                          DW_IC_TX_ABRT_GCALL_NOACK)
150
151 static char *abort_sources[] = {
152         [ABRT_7B_ADDR_NOACK] =
153                 "slave address not acknowledged (7bit mode)",
154         [ABRT_10ADDR1_NOACK] =
155                 "first address byte not acknowledged (10bit mode)",
156         [ABRT_10ADDR2_NOACK] =
157                 "second address byte not acknowledged (10bit mode)",
158         [ABRT_TXDATA_NOACK] =
159                 "data not acknowledged",
160         [ABRT_GCALL_NOACK] =
161                 "no acknowledgement for a general call",
162         [ABRT_GCALL_READ] =
163                 "read after general call",
164         [ABRT_SBYTE_ACKDET] =
165                 "start byte acknowledged",
166         [ABRT_SBYTE_NORSTRT] =
167                 "trying to send start byte when restart is disabled",
168         [ABRT_10B_RD_NORSTRT] =
169                 "trying to read when restart is disabled (10bit mode)",
170         [ABRT_MASTER_DIS] =
171                 "trying to use disabled adapter",
172         [ARB_LOST] =
173                 "lost arbitration",
174 };
175
176 static u32 dw_readl(struct dw_i2c_dev *dev, int offset)
177 {
178         u32 value;
179
180         if (dev->accessor_flags & ACCESS_16BIT)
181                 value = readw_relaxed(dev->base + offset) |
182                         (readw_relaxed(dev->base + offset + 2) << 16);
183         else
184                 value = readl_relaxed(dev->base + offset);
185
186         if (dev->accessor_flags & ACCESS_SWAP)
187                 return swab32(value);
188         else
189                 return value;
190 }
191
192 static void dw_writel(struct dw_i2c_dev *dev, u32 b, int offset)
193 {
194         if (dev->accessor_flags & ACCESS_SWAP)
195                 b = swab32(b);
196
197         if (dev->accessor_flags & ACCESS_16BIT) {
198                 writew_relaxed((u16)b, dev->base + offset);
199                 writew_relaxed((u16)(b >> 16), dev->base + offset + 2);
200         } else {
201                 writel_relaxed(b, dev->base + offset);
202         }
203 }
204
205 static u32
206 i2c_dw_scl_hcnt(u32 ic_clk, u32 tSYMBOL, u32 tf, int cond, int offset)
207 {
208         /*
209          * DesignWare I2C core doesn't seem to have solid strategy to meet
210          * the tHD;STA timing spec.  Configuring _HCNT based on tHIGH spec
211          * will result in violation of the tHD;STA spec.
212          */
213         if (cond)
214                 /*
215                  * Conditional expression:
216                  *
217                  *   IC_[FS]S_SCL_HCNT + (1+4+3) >= IC_CLK * tHIGH
218                  *
219                  * This is based on the DW manuals, and represents an ideal
220                  * configuration.  The resulting I2C bus speed will be
221                  * faster than any of the others.
222                  *
223                  * If your hardware is free from tHD;STA issue, try this one.
224                  */
225                 return (ic_clk * tSYMBOL + 500000) / 1000000 - 8 + offset;
226         else
227                 /*
228                  * Conditional expression:
229                  *
230                  *   IC_[FS]S_SCL_HCNT + 3 >= IC_CLK * (tHD;STA + tf)
231                  *
232                  * This is just experimental rule; the tHD;STA period turned
233                  * out to be proportinal to (_HCNT + 3).  With this setting,
234                  * we could meet both tHIGH and tHD;STA timing specs.
235                  *
236                  * If unsure, you'd better to take this alternative.
237                  *
238                  * The reason why we need to take into account "tf" here,
239                  * is the same as described in i2c_dw_scl_lcnt().
240                  */
241                 return (ic_clk * (tSYMBOL + tf) + 500000) / 1000000
242                         - 3 + offset;
243 }
244
245 static u32 i2c_dw_scl_lcnt(u32 ic_clk, u32 tLOW, u32 tf, int offset)
246 {
247         /*
248          * Conditional expression:
249          *
250          *   IC_[FS]S_SCL_LCNT + 1 >= IC_CLK * (tLOW + tf)
251          *
252          * DW I2C core starts counting the SCL CNTs for the LOW period
253          * of the SCL clock (tLOW) as soon as it pulls the SCL line.
254          * In order to meet the tLOW timing spec, we need to take into
255          * account the fall time of SCL signal (tf).  Default tf value
256          * should be 0.3 us, for safety.
257          */
258         return ((ic_clk * (tLOW + tf) + 500000) / 1000000) - 1 + offset;
259 }
260
261 static void __i2c_dw_enable(struct dw_i2c_dev *dev, bool enable)
262 {
263         dw_writel(dev, enable, DW_IC_ENABLE);
264 }
265
266 static void __i2c_dw_enable_and_wait(struct dw_i2c_dev *dev, bool enable)
267 {
268         int timeout = 100;
269
270         do {
271                 __i2c_dw_enable(dev, enable);
272                 if ((dw_readl(dev, DW_IC_ENABLE_STATUS) & 1) == enable)
273                         return;
274
275                 /*
276                  * Wait 10 times the signaling period of the highest I2C
277                  * transfer supported by the driver (for 400KHz this is
278                  * 25us) as described in the DesignWare I2C databook.
279                  */
280                 usleep_range(25, 250);
281         } while (timeout--);
282
283         dev_warn(dev->dev, "timeout in %sabling adapter\n",
284                  enable ? "en" : "dis");
285 }
286
287 static unsigned long i2c_dw_clk_rate(struct dw_i2c_dev *dev)
288 {
289         /*
290          * Clock is not necessary if we got LCNT/HCNT values directly from
291          * the platform code.
292          */
293         if (WARN_ON_ONCE(!dev->get_clk_rate_khz))
294                 return 0;
295         return dev->get_clk_rate_khz(dev);
296 }
297
298 static int i2c_dw_acquire_lock(struct dw_i2c_dev *dev)
299 {
300         int ret;
301
302         if (!dev->acquire_lock)
303                 return 0;
304
305         ret = dev->acquire_lock(dev);
306         if (!ret)
307                 return 0;
308
309         dev_err(dev->dev, "couldn't acquire bus ownership\n");
310
311         return ret;
312 }
313
314 static void i2c_dw_release_lock(struct dw_i2c_dev *dev)
315 {
316         if (dev->release_lock)
317                 dev->release_lock(dev);
318 }
319
320 /**
321  * i2c_dw_init() - initialize the designware i2c master hardware
322  * @dev: device private data
323  *
324  * This functions configures and enables the I2C master.
325  * This function is called during I2C init function, and in case of timeout at
326  * run time.
327  */
328 int i2c_dw_init(struct dw_i2c_dev *dev)
329 {
330         u32 hcnt, lcnt;
331         u32 reg, comp_param1;
332         u32 sda_falling_time, scl_falling_time;
333         int ret;
334
335         ret = i2c_dw_acquire_lock(dev);
336         if (ret)
337                 return ret;
338
339         reg = dw_readl(dev, DW_IC_COMP_TYPE);
340         if (reg == ___constant_swab32(DW_IC_COMP_TYPE_VALUE)) {
341                 /* Configure register endianess access */
342                 dev->accessor_flags |= ACCESS_SWAP;
343         } else if (reg == (DW_IC_COMP_TYPE_VALUE & 0x0000ffff)) {
344                 /* Configure register access mode 16bit */
345                 dev->accessor_flags |= ACCESS_16BIT;
346         } else if (reg != DW_IC_COMP_TYPE_VALUE) {
347                 dev_err(dev->dev, "Unknown Synopsys component type: "
348                         "0x%08x\n", reg);
349                 i2c_dw_release_lock(dev);
350                 return -ENODEV;
351         }
352
353         comp_param1 = dw_readl(dev, DW_IC_COMP_PARAM_1);
354
355         /* Disable the adapter */
356         __i2c_dw_enable_and_wait(dev, false);
357
358         /* set standard and fast speed deviders for high/low periods */
359
360         sda_falling_time = dev->sda_falling_time ?: 300; /* ns */
361         scl_falling_time = dev->scl_falling_time ?: 300; /* ns */
362
363         /* Set SCL timing parameters for standard-mode */
364         if (dev->ss_hcnt && dev->ss_lcnt) {
365                 hcnt = dev->ss_hcnt;
366                 lcnt = dev->ss_lcnt;
367         } else {
368                 hcnt = i2c_dw_scl_hcnt(i2c_dw_clk_rate(dev),
369                                         4000,   /* tHD;STA = tHIGH = 4.0 us */
370                                         sda_falling_time,
371                                         0,      /* 0: DW default, 1: Ideal */
372                                         0);     /* No offset */
373                 lcnt = i2c_dw_scl_lcnt(i2c_dw_clk_rate(dev),
374                                         4700,   /* tLOW = 4.7 us */
375                                         scl_falling_time,
376                                         0);     /* No offset */
377         }
378         dw_writel(dev, hcnt, DW_IC_SS_SCL_HCNT);
379         dw_writel(dev, lcnt, DW_IC_SS_SCL_LCNT);
380         dev_dbg(dev->dev, "Standard-mode HCNT:LCNT = %d:%d\n", hcnt, lcnt);
381
382         /* Set SCL timing parameters for fast-mode or fast-mode plus */
383         if ((dev->clk_freq == 1000000) && dev->fp_hcnt && dev->fp_lcnt) {
384                 hcnt = dev->fp_hcnt;
385                 lcnt = dev->fp_lcnt;
386         } else if (dev->fs_hcnt && dev->fs_lcnt) {
387                 hcnt = dev->fs_hcnt;
388                 lcnt = dev->fs_lcnt;
389         } else {
390                 hcnt = i2c_dw_scl_hcnt(i2c_dw_clk_rate(dev),
391                                         600,    /* tHD;STA = tHIGH = 0.6 us */
392                                         sda_falling_time,
393                                         0,      /* 0: DW default, 1: Ideal */
394                                         0);     /* No offset */
395                 lcnt = i2c_dw_scl_lcnt(i2c_dw_clk_rate(dev),
396                                         1300,   /* tLOW = 1.3 us */
397                                         scl_falling_time,
398                                         0);     /* No offset */
399         }
400         dw_writel(dev, hcnt, DW_IC_FS_SCL_HCNT);
401         dw_writel(dev, lcnt, DW_IC_FS_SCL_LCNT);
402         dev_dbg(dev->dev, "Fast-mode HCNT:LCNT = %d:%d\n", hcnt, lcnt);
403
404         if ((dev->master_cfg & DW_IC_CON_SPEED_MASK) ==
405                 DW_IC_CON_SPEED_HIGH) {
406                 if ((comp_param1 & DW_IC_COMP_PARAM_1_SPEED_MODE_MASK)
407                         != DW_IC_COMP_PARAM_1_SPEED_MODE_HIGH) {
408                         dev_err(dev->dev, "High Speed not supported!\n");
409                         dev->master_cfg &= ~DW_IC_CON_SPEED_MASK;
410                         dev->master_cfg |= DW_IC_CON_SPEED_FAST;
411                 } else if (dev->hs_hcnt && dev->hs_lcnt) {
412                         hcnt = dev->hs_hcnt;
413                         lcnt = dev->hs_lcnt;
414                         dw_writel(dev, hcnt, DW_IC_HS_SCL_HCNT);
415                         dw_writel(dev, lcnt, DW_IC_HS_SCL_LCNT);
416                         dev_dbg(dev->dev, "HighSpeed-mode HCNT:LCNT = %d:%d\n",
417                                 hcnt, lcnt);
418                 }
419         }
420
421         /* Configure SDA Hold Time if required */
422         reg = dw_readl(dev, DW_IC_COMP_VERSION);
423         if (reg >= DW_IC_SDA_HOLD_MIN_VERS) {
424                 if (!dev->sda_hold_time) {
425                         /* Keep previous hold time setting if no one set it */
426                         dev->sda_hold_time = dw_readl(dev, DW_IC_SDA_HOLD);
427                 }
428                 /*
429                  * Workaround for avoiding TX arbitration lost in case I2C
430                  * slave pulls SDA down "too quickly" after falling egde of
431                  * SCL by enabling non-zero SDA RX hold. Specification says it
432                  * extends incoming SDA low to high transition while SCL is
433                  * high but it apprears to help also above issue.
434                  */
435                 if (!(dev->sda_hold_time & DW_IC_SDA_HOLD_RX_MASK))
436                         dev->sda_hold_time |= 1 << DW_IC_SDA_HOLD_RX_SHIFT;
437                 dw_writel(dev, dev->sda_hold_time, DW_IC_SDA_HOLD);
438         } else {
439                 dev_warn(dev->dev,
440                         "Hardware too old to adjust SDA hold time.\n");
441         }
442
443         /* Configure Tx/Rx FIFO threshold levels */
444         dw_writel(dev, dev->tx_fifo_depth / 2, DW_IC_TX_TL);
445         dw_writel(dev, 0, DW_IC_RX_TL);
446
447         /* configure the i2c master */
448         dw_writel(dev, dev->master_cfg , DW_IC_CON);
449
450         i2c_dw_release_lock(dev);
451
452         return 0;
453 }
454 EXPORT_SYMBOL_GPL(i2c_dw_init);
455
456 /*
457  * Waiting for bus not busy
458  */
459 static int i2c_dw_wait_bus_not_busy(struct dw_i2c_dev *dev)
460 {
461         int timeout = TIMEOUT;
462
463         while (dw_readl(dev, DW_IC_STATUS) & DW_IC_STATUS_ACTIVITY) {
464                 if (timeout <= 0) {
465                         dev_warn(dev->dev, "timeout waiting for bus ready\n");
466                         return -ETIMEDOUT;
467                 }
468                 timeout--;
469                 usleep_range(1000, 1100);
470         }
471
472         return 0;
473 }
474
475 static void i2c_dw_xfer_init(struct dw_i2c_dev *dev)
476 {
477         struct i2c_msg *msgs = dev->msgs;
478         u32 ic_tar = 0;
479
480         /* Disable the adapter */
481         __i2c_dw_enable_and_wait(dev, false);
482
483         /* if the slave address is ten bit address, enable 10BITADDR */
484         if (dev->dynamic_tar_update_enabled) {
485                 /*
486                  * If I2C_DYNAMIC_TAR_UPDATE is set, the 10-bit addressing
487                  * mode has to be enabled via bit 12 of IC_TAR register,
488                  * otherwise bit 4 of IC_CON is used.
489                  */
490                 if (msgs[dev->msg_write_idx].flags & I2C_M_TEN)
491                         ic_tar = DW_IC_TAR_10BITADDR_MASTER;
492         } else {
493                 u32 ic_con = dw_readl(dev, DW_IC_CON);
494
495                 if (msgs[dev->msg_write_idx].flags & I2C_M_TEN)
496                         ic_con |= DW_IC_CON_10BITADDR_MASTER;
497                 else
498                         ic_con &= ~DW_IC_CON_10BITADDR_MASTER;
499                 dw_writel(dev, ic_con, DW_IC_CON);
500         }
501
502         /*
503          * Set the slave (target) address and enable 10-bit addressing mode
504          * if applicable.
505          */
506         dw_writel(dev, msgs[dev->msg_write_idx].addr | ic_tar, DW_IC_TAR);
507
508         /* enforce disabled interrupts (due to HW issues) */
509         i2c_dw_disable_int(dev);
510
511         /* Enable the adapter */
512         __i2c_dw_enable(dev, true);
513
514         /* Clear and enable interrupts */
515         dw_readl(dev, DW_IC_CLR_INTR);
516         dw_writel(dev, DW_IC_INTR_DEFAULT_MASK, DW_IC_INTR_MASK);
517 }
518
519 /*
520  * Initiate (and continue) low level master read/write transaction.
521  * This function is only called from i2c_dw_isr, and pumping i2c_msg
522  * messages into the tx buffer.  Even if the size of i2c_msg data is
523  * longer than the size of the tx buffer, it handles everything.
524  */
525 static void
526 i2c_dw_xfer_msg(struct dw_i2c_dev *dev)
527 {
528         struct i2c_msg *msgs = dev->msgs;
529         u32 intr_mask;
530         int tx_limit, rx_limit;
531         u32 addr = msgs[dev->msg_write_idx].addr;
532         u32 buf_len = dev->tx_buf_len;
533         u8 *buf = dev->tx_buf;
534         bool need_restart = false;
535
536         intr_mask = DW_IC_INTR_DEFAULT_MASK;
537
538         for (; dev->msg_write_idx < dev->msgs_num; dev->msg_write_idx++) {
539                 /*
540                  * if target address has changed, we need to
541                  * reprogram the target address in the i2c
542                  * adapter when we are done with this transfer
543                  */
544                 if (msgs[dev->msg_write_idx].addr != addr) {
545                         dev_err(dev->dev,
546                                 "%s: invalid target address\n", __func__);
547                         dev->msg_err = -EINVAL;
548                         break;
549                 }
550
551                 if (msgs[dev->msg_write_idx].len == 0) {
552                         dev_err(dev->dev,
553                                 "%s: invalid message length\n", __func__);
554                         dev->msg_err = -EINVAL;
555                         break;
556                 }
557
558                 if (!(dev->status & STATUS_WRITE_IN_PROGRESS)) {
559                         /* new i2c_msg */
560                         buf = msgs[dev->msg_write_idx].buf;
561                         buf_len = msgs[dev->msg_write_idx].len;
562
563                         /* If both IC_EMPTYFIFO_HOLD_MASTER_EN and
564                          * IC_RESTART_EN are set, we must manually
565                          * set restart bit between messages.
566                          */
567                         if ((dev->master_cfg & DW_IC_CON_RESTART_EN) &&
568                                         (dev->msg_write_idx > 0))
569                                 need_restart = true;
570                 }
571
572                 tx_limit = dev->tx_fifo_depth - dw_readl(dev, DW_IC_TXFLR);
573                 rx_limit = dev->rx_fifo_depth - dw_readl(dev, DW_IC_RXFLR);
574
575                 while (buf_len > 0 && tx_limit > 0 && rx_limit > 0) {
576                         u32 cmd = 0;
577
578                         /*
579                          * If IC_EMPTYFIFO_HOLD_MASTER_EN is set we must
580                          * manually set the stop bit. However, it cannot be
581                          * detected from the registers so we set it always
582                          * when writing/reading the last byte.
583                          */
584                         if (dev->msg_write_idx == dev->msgs_num - 1 &&
585                             buf_len == 1)
586                                 cmd |= BIT(9);
587
588                         if (need_restart) {
589                                 cmd |= BIT(10);
590                                 need_restart = false;
591                         }
592
593                         if (msgs[dev->msg_write_idx].flags & I2C_M_RD) {
594
595                                 /* avoid rx buffer overrun */
596                                 if (dev->rx_outstanding >= dev->rx_fifo_depth)
597                                         break;
598
599                                 dw_writel(dev, cmd | 0x100, DW_IC_DATA_CMD);
600                                 rx_limit--;
601                                 dev->rx_outstanding++;
602                         } else
603                                 dw_writel(dev, cmd | *buf++, DW_IC_DATA_CMD);
604                         tx_limit--; buf_len--;
605                 }
606
607                 dev->tx_buf = buf;
608                 dev->tx_buf_len = buf_len;
609
610                 if (buf_len > 0) {
611                         /* more bytes to be written */
612                         dev->status |= STATUS_WRITE_IN_PROGRESS;
613                         break;
614                 } else
615                         dev->status &= ~STATUS_WRITE_IN_PROGRESS;
616         }
617
618         /*
619          * If i2c_msg index search is completed, we don't need TX_EMPTY
620          * interrupt any more.
621          */
622         if (dev->msg_write_idx == dev->msgs_num)
623                 intr_mask &= ~DW_IC_INTR_TX_EMPTY;
624
625         if (dev->msg_err)
626                 intr_mask = 0;
627
628         dw_writel(dev, intr_mask,  DW_IC_INTR_MASK);
629 }
630
631 static void
632 i2c_dw_read(struct dw_i2c_dev *dev)
633 {
634         struct i2c_msg *msgs = dev->msgs;
635         int rx_valid;
636
637         for (; dev->msg_read_idx < dev->msgs_num; dev->msg_read_idx++) {
638                 u32 len;
639                 u8 *buf;
640
641                 if (!(msgs[dev->msg_read_idx].flags & I2C_M_RD))
642                         continue;
643
644                 if (!(dev->status & STATUS_READ_IN_PROGRESS)) {
645                         len = msgs[dev->msg_read_idx].len;
646                         buf = msgs[dev->msg_read_idx].buf;
647                 } else {
648                         len = dev->rx_buf_len;
649                         buf = dev->rx_buf;
650                 }
651
652                 rx_valid = dw_readl(dev, DW_IC_RXFLR);
653
654                 for (; len > 0 && rx_valid > 0; len--, rx_valid--) {
655                         *buf++ = dw_readl(dev, DW_IC_DATA_CMD);
656                         dev->rx_outstanding--;
657                 }
658
659                 if (len > 0) {
660                         dev->status |= STATUS_READ_IN_PROGRESS;
661                         dev->rx_buf_len = len;
662                         dev->rx_buf = buf;
663                         return;
664                 } else
665                         dev->status &= ~STATUS_READ_IN_PROGRESS;
666         }
667 }
668
669 static int i2c_dw_handle_tx_abort(struct dw_i2c_dev *dev)
670 {
671         unsigned long abort_source = dev->abort_source;
672         int i;
673
674         if (abort_source & DW_IC_TX_ABRT_NOACK) {
675                 for_each_set_bit(i, &abort_source, ARRAY_SIZE(abort_sources))
676                         dev_dbg(dev->dev,
677                                 "%s: %s\n", __func__, abort_sources[i]);
678                 return -EREMOTEIO;
679         }
680
681         for_each_set_bit(i, &abort_source, ARRAY_SIZE(abort_sources))
682                 dev_err(dev->dev, "%s: %s\n", __func__, abort_sources[i]);
683
684         if (abort_source & DW_IC_TX_ARB_LOST)
685                 return -EAGAIN;
686         else if (abort_source & DW_IC_TX_ABRT_GCALL_READ)
687                 return -EINVAL; /* wrong msgs[] data */
688         else
689                 return -EIO;
690 }
691
692 /*
693  * Prepare controller for a transaction and call i2c_dw_xfer_msg
694  */
695 static int
696 i2c_dw_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
697 {
698         struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
699         int ret;
700
701         dev_dbg(dev->dev, "%s: msgs: %d\n", __func__, num);
702
703         pm_runtime_get_sync(dev->dev);
704
705         reinit_completion(&dev->cmd_complete);
706         dev->msgs = msgs;
707         dev->msgs_num = num;
708         dev->cmd_err = 0;
709         dev->msg_write_idx = 0;
710         dev->msg_read_idx = 0;
711         dev->msg_err = 0;
712         dev->status = STATUS_IDLE;
713         dev->abort_source = 0;
714         dev->rx_outstanding = 0;
715
716         ret = i2c_dw_acquire_lock(dev);
717         if (ret)
718                 goto done_nolock;
719
720         ret = i2c_dw_wait_bus_not_busy(dev);
721         if (ret < 0)
722                 goto done;
723
724         /* start the transfers */
725         i2c_dw_xfer_init(dev);
726
727         /* wait for tx to complete */
728         if (!wait_for_completion_timeout(&dev->cmd_complete, adap->timeout)) {
729                 dev_err(dev->dev, "controller timed out\n");
730                 /* i2c_dw_init implicitly disables the adapter */
731                 i2c_dw_init(dev);
732                 ret = -ETIMEDOUT;
733                 goto done;
734         }
735
736         /*
737          * We must disable the adapter before returning and signaling the end
738          * of the current transfer. Otherwise the hardware might continue
739          * generating interrupts which in turn causes a race condition with
740          * the following transfer.  Needs some more investigation if the
741          * additional interrupts are a hardware bug or this driver doesn't
742          * handle them correctly yet.
743          */
744         __i2c_dw_enable(dev, false);
745
746         if (dev->msg_err) {
747                 ret = dev->msg_err;
748                 goto done;
749         }
750
751         /* no error */
752         if (likely(!dev->cmd_err && !dev->status)) {
753                 ret = num;
754                 goto done;
755         }
756
757         /* We have an error */
758         if (dev->cmd_err == DW_IC_ERR_TX_ABRT) {
759                 ret = i2c_dw_handle_tx_abort(dev);
760                 goto done;
761         }
762
763         if (dev->status)
764                 dev_err(dev->dev,
765                         "transfer terminated early - interrupt latency too high?\n");
766
767         ret = -EIO;
768
769 done:
770         i2c_dw_release_lock(dev);
771
772 done_nolock:
773         pm_runtime_mark_last_busy(dev->dev);
774         pm_runtime_put_autosuspend(dev->dev);
775
776         return ret;
777 }
778
779 static u32 i2c_dw_func(struct i2c_adapter *adap)
780 {
781         struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
782         return dev->functionality;
783 }
784
785 static struct i2c_algorithm i2c_dw_algo = {
786         .master_xfer    = i2c_dw_xfer,
787         .functionality  = i2c_dw_func,
788 };
789
790 static u32 i2c_dw_read_clear_intrbits(struct dw_i2c_dev *dev)
791 {
792         u32 stat;
793
794         /*
795          * The IC_INTR_STAT register just indicates "enabled" interrupts.
796          * Ths unmasked raw version of interrupt status bits are available
797          * in the IC_RAW_INTR_STAT register.
798          *
799          * That is,
800          *   stat = dw_readl(IC_INTR_STAT);
801          * equals to,
802          *   stat = dw_readl(IC_RAW_INTR_STAT) & dw_readl(IC_INTR_MASK);
803          *
804          * The raw version might be useful for debugging purposes.
805          */
806         stat = dw_readl(dev, DW_IC_INTR_STAT);
807
808         /*
809          * Do not use the IC_CLR_INTR register to clear interrupts, or
810          * you'll miss some interrupts, triggered during the period from
811          * dw_readl(IC_INTR_STAT) to dw_readl(IC_CLR_INTR).
812          *
813          * Instead, use the separately-prepared IC_CLR_* registers.
814          */
815         if (stat & DW_IC_INTR_RX_UNDER)
816                 dw_readl(dev, DW_IC_CLR_RX_UNDER);
817         if (stat & DW_IC_INTR_RX_OVER)
818                 dw_readl(dev, DW_IC_CLR_RX_OVER);
819         if (stat & DW_IC_INTR_TX_OVER)
820                 dw_readl(dev, DW_IC_CLR_TX_OVER);
821         if (stat & DW_IC_INTR_RD_REQ)
822                 dw_readl(dev, DW_IC_CLR_RD_REQ);
823         if (stat & DW_IC_INTR_TX_ABRT) {
824                 /*
825                  * The IC_TX_ABRT_SOURCE register is cleared whenever
826                  * the IC_CLR_TX_ABRT is read.  Preserve it beforehand.
827                  */
828                 dev->abort_source = dw_readl(dev, DW_IC_TX_ABRT_SOURCE);
829                 dw_readl(dev, DW_IC_CLR_TX_ABRT);
830         }
831         if (stat & DW_IC_INTR_RX_DONE)
832                 dw_readl(dev, DW_IC_CLR_RX_DONE);
833         if (stat & DW_IC_INTR_ACTIVITY)
834                 dw_readl(dev, DW_IC_CLR_ACTIVITY);
835         if (stat & DW_IC_INTR_STOP_DET)
836                 dw_readl(dev, DW_IC_CLR_STOP_DET);
837         if (stat & DW_IC_INTR_START_DET)
838                 dw_readl(dev, DW_IC_CLR_START_DET);
839         if (stat & DW_IC_INTR_GEN_CALL)
840                 dw_readl(dev, DW_IC_CLR_GEN_CALL);
841
842         return stat;
843 }
844
845 /*
846  * Interrupt service routine. This gets called whenever an I2C interrupt
847  * occurs.
848  */
849 static irqreturn_t i2c_dw_isr(int this_irq, void *dev_id)
850 {
851         struct dw_i2c_dev *dev = dev_id;
852         u32 stat, enabled;
853
854         enabled = dw_readl(dev, DW_IC_ENABLE);
855         stat = dw_readl(dev, DW_IC_RAW_INTR_STAT);
856         dev_dbg(dev->dev, "%s: enabled=%#x stat=%#x\n", __func__, enabled, stat);
857         if (!enabled || !(stat & ~DW_IC_INTR_ACTIVITY))
858                 return IRQ_NONE;
859
860         stat = i2c_dw_read_clear_intrbits(dev);
861
862         if (stat & DW_IC_INTR_TX_ABRT) {
863                 dev->cmd_err |= DW_IC_ERR_TX_ABRT;
864                 dev->status = STATUS_IDLE;
865
866                 /*
867                  * Anytime TX_ABRT is set, the contents of the tx/rx
868                  * buffers are flushed.  Make sure to skip them.
869                  */
870                 dw_writel(dev, 0, DW_IC_INTR_MASK);
871                 goto tx_aborted;
872         }
873
874         if (stat & DW_IC_INTR_RX_FULL)
875                 i2c_dw_read(dev);
876
877         if (stat & DW_IC_INTR_TX_EMPTY)
878                 i2c_dw_xfer_msg(dev);
879
880         /*
881          * No need to modify or disable the interrupt mask here.
882          * i2c_dw_xfer_msg() will take care of it according to
883          * the current transmit status.
884          */
885
886 tx_aborted:
887         if ((stat & (DW_IC_INTR_TX_ABRT | DW_IC_INTR_STOP_DET)) || dev->msg_err)
888                 complete(&dev->cmd_complete);
889         else if (unlikely(dev->accessor_flags & ACCESS_INTR_MASK)) {
890                 /* workaround to trigger pending interrupt */
891                 stat = dw_readl(dev, DW_IC_INTR_MASK);
892                 i2c_dw_disable_int(dev);
893                 dw_writel(dev, stat, DW_IC_INTR_MASK);
894         }
895
896         return IRQ_HANDLED;
897 }
898
899 void i2c_dw_disable(struct dw_i2c_dev *dev)
900 {
901         /* Disable controller */
902         __i2c_dw_enable_and_wait(dev, false);
903
904         /* Disable all interupts */
905         dw_writel(dev, 0, DW_IC_INTR_MASK);
906         dw_readl(dev, DW_IC_CLR_INTR);
907 }
908 EXPORT_SYMBOL_GPL(i2c_dw_disable);
909
910 void i2c_dw_disable_int(struct dw_i2c_dev *dev)
911 {
912         dw_writel(dev, 0, DW_IC_INTR_MASK);
913 }
914 EXPORT_SYMBOL_GPL(i2c_dw_disable_int);
915
916 u32 i2c_dw_read_comp_param(struct dw_i2c_dev *dev)
917 {
918         return dw_readl(dev, DW_IC_COMP_PARAM_1);
919 }
920 EXPORT_SYMBOL_GPL(i2c_dw_read_comp_param);
921
922 int i2c_dw_probe(struct dw_i2c_dev *dev)
923 {
924         struct i2c_adapter *adap = &dev->adapter;
925         int r;
926         u32 reg;
927
928         init_completion(&dev->cmd_complete);
929
930         r = i2c_dw_init(dev);
931         if (r)
932                 return r;
933
934         r = i2c_dw_acquire_lock(dev);
935         if (r)
936                 return r;
937
938         /*
939          * Test if dynamic TAR update is enabled in this controller by writing
940          * to IC_10BITADDR_MASTER field in IC_CON: when it is enabled this
941          * field is read-only so it should not succeed
942          */
943         reg = dw_readl(dev, DW_IC_CON);
944         dw_writel(dev, reg ^ DW_IC_CON_10BITADDR_MASTER, DW_IC_CON);
945
946         if ((dw_readl(dev, DW_IC_CON) & DW_IC_CON_10BITADDR_MASTER) ==
947             (reg & DW_IC_CON_10BITADDR_MASTER)) {
948                 dev->dynamic_tar_update_enabled = true;
949                 dev_dbg(dev->dev, "Dynamic TAR update enabled");
950         }
951
952         i2c_dw_release_lock(dev);
953
954         snprintf(adap->name, sizeof(adap->name),
955                  "Synopsys DesignWare I2C adapter");
956         adap->retries = 3;
957         adap->algo = &i2c_dw_algo;
958         adap->dev.parent = dev->dev;
959         i2c_set_adapdata(adap, dev);
960
961         i2c_dw_disable_int(dev);
962         r = devm_request_irq(dev->dev, dev->irq, i2c_dw_isr,
963                              IRQF_SHARED | IRQF_COND_SUSPEND,
964                              dev_name(dev->dev), dev);
965         if (r) {
966                 dev_err(dev->dev, "failure requesting irq %i: %d\n",
967                         dev->irq, r);
968                 return r;
969         }
970
971         /*
972          * Increment PM usage count during adapter registration in order to
973          * avoid possible spurious runtime suspend when adapter device is
974          * registered to the device core and immediate resume in case bus has
975          * registered I2C slaves that do I2C transfers in their probe.
976          */
977         pm_runtime_get_noresume(dev->dev);
978         r = i2c_add_numbered_adapter(adap);
979         if (r)
980                 dev_err(dev->dev, "failure adding adapter: %d\n", r);
981         pm_runtime_put_noidle(dev->dev);
982
983         return r;
984 }
985 EXPORT_SYMBOL_GPL(i2c_dw_probe);
986
987 MODULE_DESCRIPTION("Synopsys DesignWare I2C bus adapter core");
988 MODULE_LICENSE("GPL");