]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/iio/accel/bmc150-accel-core.c
Merge tag 'devicetree-fixes-for-4.20-1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / drivers / iio / accel / bmc150-accel-core.c
1 /*
2  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3  *  - BMC150
4  *  - BMI055
5  *  - BMA255
6  *  - BMA250E
7  *  - BMA222E
8  *  - BMA280
9  *
10  * Copyright (c) 2014, Intel Corporation.
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  */
21
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <linux/pm.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/iio/iio.h>
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/buffer.h>
33 #include <linux/iio/events.h>
34 #include <linux/iio/trigger.h>
35 #include <linux/iio/trigger_consumer.h>
36 #include <linux/iio/triggered_buffer.h>
37 #include <linux/regmap.h>
38
39 #include "bmc150-accel.h"
40
41 #define BMC150_ACCEL_DRV_NAME                   "bmc150_accel"
42 #define BMC150_ACCEL_IRQ_NAME                   "bmc150_accel_event"
43
44 #define BMC150_ACCEL_REG_CHIP_ID                0x00
45
46 #define BMC150_ACCEL_REG_INT_STATUS_2           0x0B
47 #define BMC150_ACCEL_ANY_MOTION_MASK            0x07
48 #define BMC150_ACCEL_ANY_MOTION_BIT_X           BIT(0)
49 #define BMC150_ACCEL_ANY_MOTION_BIT_Y           BIT(1)
50 #define BMC150_ACCEL_ANY_MOTION_BIT_Z           BIT(2)
51 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN        BIT(3)
52
53 #define BMC150_ACCEL_REG_PMU_LPW                0x11
54 #define BMC150_ACCEL_PMU_MODE_MASK              0xE0
55 #define BMC150_ACCEL_PMU_MODE_SHIFT             5
56 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK     0x17
57 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT    1
58
59 #define BMC150_ACCEL_REG_PMU_RANGE              0x0F
60
61 #define BMC150_ACCEL_DEF_RANGE_2G               0x03
62 #define BMC150_ACCEL_DEF_RANGE_4G               0x05
63 #define BMC150_ACCEL_DEF_RANGE_8G               0x08
64 #define BMC150_ACCEL_DEF_RANGE_16G              0x0C
65
66 /* Default BW: 125Hz */
67 #define BMC150_ACCEL_REG_PMU_BW         0x10
68 #define BMC150_ACCEL_DEF_BW                     125
69
70 #define BMC150_ACCEL_REG_RESET                  0x14
71 #define BMC150_ACCEL_RESET_VAL                  0xB6
72
73 #define BMC150_ACCEL_REG_INT_MAP_0              0x19
74 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE        BIT(2)
75
76 #define BMC150_ACCEL_REG_INT_MAP_1              0x1A
77 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA         BIT(0)
78 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM          BIT(1)
79 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL        BIT(2)
80
81 #define BMC150_ACCEL_REG_INT_RST_LATCH          0x21
82 #define BMC150_ACCEL_INT_MODE_LATCH_RESET       0x80
83 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
84 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT     0x00
85
86 #define BMC150_ACCEL_REG_INT_EN_0               0x16
87 #define BMC150_ACCEL_INT_EN_BIT_SLP_X           BIT(0)
88 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y           BIT(1)
89 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z           BIT(2)
90
91 #define BMC150_ACCEL_REG_INT_EN_1               0x17
92 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN         BIT(4)
93 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN        BIT(5)
94 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN          BIT(6)
95
96 #define BMC150_ACCEL_REG_INT_OUT_CTRL           0x20
97 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL      BIT(0)
98
99 #define BMC150_ACCEL_REG_INT_5                  0x27
100 #define BMC150_ACCEL_SLOPE_DUR_MASK             0x03
101
102 #define BMC150_ACCEL_REG_INT_6                  0x28
103 #define BMC150_ACCEL_SLOPE_THRES_MASK           0xFF
104
105 /* Slope duration in terms of number of samples */
106 #define BMC150_ACCEL_DEF_SLOPE_DURATION         1
107 /* in terms of multiples of g's/LSB, based on range */
108 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD        1
109
110 #define BMC150_ACCEL_REG_XOUT_L         0x02
111
112 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS        100
113
114 /* Sleep Duration values */
115 #define BMC150_ACCEL_SLEEP_500_MICRO            0x05
116 #define BMC150_ACCEL_SLEEP_1_MS         0x06
117 #define BMC150_ACCEL_SLEEP_2_MS         0x07
118 #define BMC150_ACCEL_SLEEP_4_MS         0x08
119 #define BMC150_ACCEL_SLEEP_6_MS         0x09
120 #define BMC150_ACCEL_SLEEP_10_MS                0x0A
121 #define BMC150_ACCEL_SLEEP_25_MS                0x0B
122 #define BMC150_ACCEL_SLEEP_50_MS                0x0C
123 #define BMC150_ACCEL_SLEEP_100_MS               0x0D
124 #define BMC150_ACCEL_SLEEP_500_MS               0x0E
125 #define BMC150_ACCEL_SLEEP_1_SEC                0x0F
126
127 #define BMC150_ACCEL_REG_TEMP                   0x08
128 #define BMC150_ACCEL_TEMP_CENTER_VAL            24
129
130 #define BMC150_ACCEL_AXIS_TO_REG(axis)  (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
131 #define BMC150_AUTO_SUSPEND_DELAY_MS            2000
132
133 #define BMC150_ACCEL_REG_FIFO_STATUS            0x0E
134 #define BMC150_ACCEL_REG_FIFO_CONFIG0           0x30
135 #define BMC150_ACCEL_REG_FIFO_CONFIG1           0x3E
136 #define BMC150_ACCEL_REG_FIFO_DATA              0x3F
137 #define BMC150_ACCEL_FIFO_LENGTH                32
138
139 enum bmc150_accel_axis {
140         AXIS_X,
141         AXIS_Y,
142         AXIS_Z,
143         AXIS_MAX,
144 };
145
146 enum bmc150_power_modes {
147         BMC150_ACCEL_SLEEP_MODE_NORMAL,
148         BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
149         BMC150_ACCEL_SLEEP_MODE_LPM,
150         BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
151 };
152
153 struct bmc150_scale_info {
154         int scale;
155         u8 reg_range;
156 };
157
158 struct bmc150_accel_chip_info {
159         const char *name;
160         u8 chip_id;
161         const struct iio_chan_spec *channels;
162         int num_channels;
163         const struct bmc150_scale_info scale_table[4];
164 };
165
166 struct bmc150_accel_interrupt {
167         const struct bmc150_accel_interrupt_info *info;
168         atomic_t users;
169 };
170
171 struct bmc150_accel_trigger {
172         struct bmc150_accel_data *data;
173         struct iio_trigger *indio_trig;
174         int (*setup)(struct bmc150_accel_trigger *t, bool state);
175         int intr;
176         bool enabled;
177 };
178
179 enum bmc150_accel_interrupt_id {
180         BMC150_ACCEL_INT_DATA_READY,
181         BMC150_ACCEL_INT_ANY_MOTION,
182         BMC150_ACCEL_INT_WATERMARK,
183         BMC150_ACCEL_INTERRUPTS,
184 };
185
186 enum bmc150_accel_trigger_id {
187         BMC150_ACCEL_TRIGGER_DATA_READY,
188         BMC150_ACCEL_TRIGGER_ANY_MOTION,
189         BMC150_ACCEL_TRIGGERS,
190 };
191
192 struct bmc150_accel_data {
193         struct regmap *regmap;
194         int irq;
195         struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
196         struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
197         struct mutex mutex;
198         u8 fifo_mode, watermark;
199         s16 buffer[8];
200         u8 bw_bits;
201         u32 slope_dur;
202         u32 slope_thres;
203         u32 range;
204         int ev_enable_state;
205         int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
206         const struct bmc150_accel_chip_info *chip_info;
207 };
208
209 static const struct {
210         int val;
211         int val2;
212         u8 bw_bits;
213 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
214                                      {31, 260000, 0x09},
215                                      {62, 500000, 0x0A},
216                                      {125, 0, 0x0B},
217                                      {250, 0, 0x0C},
218                                      {500, 0, 0x0D},
219                                      {1000, 0, 0x0E},
220                                      {2000, 0, 0x0F} };
221
222 static const struct {
223         int bw_bits;
224         int msec;
225 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
226                                      {0x09, 32},
227                                      {0x0A, 16},
228                                      {0x0B, 8},
229                                      {0x0C, 4},
230                                      {0x0D, 2},
231                                      {0x0E, 1},
232                                      {0x0F, 1} };
233
234 static const struct {
235         int sleep_dur;
236         u8 reg_value;
237 } bmc150_accel_sleep_value_table[] = { {0, 0},
238                                        {500, BMC150_ACCEL_SLEEP_500_MICRO},
239                                        {1000, BMC150_ACCEL_SLEEP_1_MS},
240                                        {2000, BMC150_ACCEL_SLEEP_2_MS},
241                                        {4000, BMC150_ACCEL_SLEEP_4_MS},
242                                        {6000, BMC150_ACCEL_SLEEP_6_MS},
243                                        {10000, BMC150_ACCEL_SLEEP_10_MS},
244                                        {25000, BMC150_ACCEL_SLEEP_25_MS},
245                                        {50000, BMC150_ACCEL_SLEEP_50_MS},
246                                        {100000, BMC150_ACCEL_SLEEP_100_MS},
247                                        {500000, BMC150_ACCEL_SLEEP_500_MS},
248                                        {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
249
250 const struct regmap_config bmc150_regmap_conf = {
251         .reg_bits = 8,
252         .val_bits = 8,
253         .max_register = 0x3f,
254 };
255 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
256
257 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
258                                  enum bmc150_power_modes mode,
259                                  int dur_us)
260 {
261         struct device *dev = regmap_get_device(data->regmap);
262         int i;
263         int ret;
264         u8 lpw_bits;
265         int dur_val = -1;
266
267         if (dur_us > 0) {
268                 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
269                                                                          ++i) {
270                         if (bmc150_accel_sleep_value_table[i].sleep_dur ==
271                                                                         dur_us)
272                                 dur_val =
273                                 bmc150_accel_sleep_value_table[i].reg_value;
274                 }
275         } else {
276                 dur_val = 0;
277         }
278
279         if (dur_val < 0)
280                 return -EINVAL;
281
282         lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
283         lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
284
285         dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
286
287         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
288         if (ret < 0) {
289                 dev_err(dev, "Error writing reg_pmu_lpw\n");
290                 return ret;
291         }
292
293         return 0;
294 }
295
296 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
297                                int val2)
298 {
299         int i;
300         int ret;
301
302         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
303                 if (bmc150_accel_samp_freq_table[i].val == val &&
304                     bmc150_accel_samp_freq_table[i].val2 == val2) {
305                         ret = regmap_write(data->regmap,
306                                 BMC150_ACCEL_REG_PMU_BW,
307                                 bmc150_accel_samp_freq_table[i].bw_bits);
308                         if (ret < 0)
309                                 return ret;
310
311                         data->bw_bits =
312                                 bmc150_accel_samp_freq_table[i].bw_bits;
313                         return 0;
314                 }
315         }
316
317         return -EINVAL;
318 }
319
320 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
321 {
322         struct device *dev = regmap_get_device(data->regmap);
323         int ret;
324
325         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
326                                         data->slope_thres);
327         if (ret < 0) {
328                 dev_err(dev, "Error writing reg_int_6\n");
329                 return ret;
330         }
331
332         ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
333                                  BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
334         if (ret < 0) {
335                 dev_err(dev, "Error updating reg_int_5\n");
336                 return ret;
337         }
338
339         dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
340
341         return ret;
342 }
343
344 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
345                                          bool state)
346 {
347         if (state)
348                 return bmc150_accel_update_slope(t->data);
349
350         return 0;
351 }
352
353 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
354                                int *val2)
355 {
356         int i;
357
358         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
359                 if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
360                         *val = bmc150_accel_samp_freq_table[i].val;
361                         *val2 = bmc150_accel_samp_freq_table[i].val2;
362                         return IIO_VAL_INT_PLUS_MICRO;
363                 }
364         }
365
366         return -EINVAL;
367 }
368
369 #ifdef CONFIG_PM
370 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
371 {
372         int i;
373
374         for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
375                 if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
376                         return bmc150_accel_sample_upd_time[i].msec;
377         }
378
379         return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
380 }
381
382 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
383 {
384         struct device *dev = regmap_get_device(data->regmap);
385         int ret;
386
387         if (on) {
388                 ret = pm_runtime_get_sync(dev);
389         } else {
390                 pm_runtime_mark_last_busy(dev);
391                 ret = pm_runtime_put_autosuspend(dev);
392         }
393
394         if (ret < 0) {
395                 dev_err(dev,
396                         "Failed: bmc150_accel_set_power_state for %d\n", on);
397                 if (on)
398                         pm_runtime_put_noidle(dev);
399
400                 return ret;
401         }
402
403         return 0;
404 }
405 #else
406 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
407 {
408         return 0;
409 }
410 #endif
411
412 static const struct bmc150_accel_interrupt_info {
413         u8 map_reg;
414         u8 map_bitmask;
415         u8 en_reg;
416         u8 en_bitmask;
417 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
418         { /* data ready interrupt */
419                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
420                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
421                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
422                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
423         },
424         {  /* motion interrupt */
425                 .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
426                 .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
427                 .en_reg = BMC150_ACCEL_REG_INT_EN_0,
428                 .en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
429                         BMC150_ACCEL_INT_EN_BIT_SLP_Y |
430                         BMC150_ACCEL_INT_EN_BIT_SLP_Z
431         },
432         { /* fifo watermark interrupt */
433                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
434                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
435                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
436                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
437         },
438 };
439
440 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
441                                           struct bmc150_accel_data *data)
442 {
443         int i;
444
445         for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
446                 data->interrupts[i].info = &bmc150_accel_interrupts[i];
447 }
448
449 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
450                                       bool state)
451 {
452         struct device *dev = regmap_get_device(data->regmap);
453         struct bmc150_accel_interrupt *intr = &data->interrupts[i];
454         const struct bmc150_accel_interrupt_info *info = intr->info;
455         int ret;
456
457         if (state) {
458                 if (atomic_inc_return(&intr->users) > 1)
459                         return 0;
460         } else {
461                 if (atomic_dec_return(&intr->users) > 0)
462                         return 0;
463         }
464
465         /*
466          * We will expect the enable and disable to do operation in reverse
467          * order. This will happen here anyway, as our resume operation uses
468          * sync mode runtime pm calls. The suspend operation will be delayed
469          * by autosuspend delay.
470          * So the disable operation will still happen in reverse order of
471          * enable operation. When runtime pm is disabled the mode is always on,
472          * so sequence doesn't matter.
473          */
474         ret = bmc150_accel_set_power_state(data, state);
475         if (ret < 0)
476                 return ret;
477
478         /* map the interrupt to the appropriate pins */
479         ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
480                                  (state ? info->map_bitmask : 0));
481         if (ret < 0) {
482                 dev_err(dev, "Error updating reg_int_map\n");
483                 goto out_fix_power_state;
484         }
485
486         /* enable/disable the interrupt */
487         ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
488                                  (state ? info->en_bitmask : 0));
489         if (ret < 0) {
490                 dev_err(dev, "Error updating reg_int_en\n");
491                 goto out_fix_power_state;
492         }
493
494         return 0;
495
496 out_fix_power_state:
497         bmc150_accel_set_power_state(data, false);
498         return ret;
499 }
500
501 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
502 {
503         struct device *dev = regmap_get_device(data->regmap);
504         int ret, i;
505
506         for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
507                 if (data->chip_info->scale_table[i].scale == val) {
508                         ret = regmap_write(data->regmap,
509                                      BMC150_ACCEL_REG_PMU_RANGE,
510                                      data->chip_info->scale_table[i].reg_range);
511                         if (ret < 0) {
512                                 dev_err(dev, "Error writing pmu_range\n");
513                                 return ret;
514                         }
515
516                         data->range = data->chip_info->scale_table[i].reg_range;
517                         return 0;
518                 }
519         }
520
521         return -EINVAL;
522 }
523
524 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
525 {
526         struct device *dev = regmap_get_device(data->regmap);
527         int ret;
528         unsigned int value;
529
530         mutex_lock(&data->mutex);
531
532         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
533         if (ret < 0) {
534                 dev_err(dev, "Error reading reg_temp\n");
535                 mutex_unlock(&data->mutex);
536                 return ret;
537         }
538         *val = sign_extend32(value, 7);
539
540         mutex_unlock(&data->mutex);
541
542         return IIO_VAL_INT;
543 }
544
545 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
546                                  struct iio_chan_spec const *chan,
547                                  int *val)
548 {
549         struct device *dev = regmap_get_device(data->regmap);
550         int ret;
551         int axis = chan->scan_index;
552         __le16 raw_val;
553
554         mutex_lock(&data->mutex);
555         ret = bmc150_accel_set_power_state(data, true);
556         if (ret < 0) {
557                 mutex_unlock(&data->mutex);
558                 return ret;
559         }
560
561         ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
562                                &raw_val, sizeof(raw_val));
563         if (ret < 0) {
564                 dev_err(dev, "Error reading axis %d\n", axis);
565                 bmc150_accel_set_power_state(data, false);
566                 mutex_unlock(&data->mutex);
567                 return ret;
568         }
569         *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
570                              chan->scan_type.realbits - 1);
571         ret = bmc150_accel_set_power_state(data, false);
572         mutex_unlock(&data->mutex);
573         if (ret < 0)
574                 return ret;
575
576         return IIO_VAL_INT;
577 }
578
579 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
580                                  struct iio_chan_spec const *chan,
581                                  int *val, int *val2, long mask)
582 {
583         struct bmc150_accel_data *data = iio_priv(indio_dev);
584         int ret;
585
586         switch (mask) {
587         case IIO_CHAN_INFO_RAW:
588                 switch (chan->type) {
589                 case IIO_TEMP:
590                         return bmc150_accel_get_temp(data, val);
591                 case IIO_ACCEL:
592                         if (iio_buffer_enabled(indio_dev))
593                                 return -EBUSY;
594                         else
595                                 return bmc150_accel_get_axis(data, chan, val);
596                 default:
597                         return -EINVAL;
598                 }
599         case IIO_CHAN_INFO_OFFSET:
600                 if (chan->type == IIO_TEMP) {
601                         *val = BMC150_ACCEL_TEMP_CENTER_VAL;
602                         return IIO_VAL_INT;
603                 } else {
604                         return -EINVAL;
605                 }
606         case IIO_CHAN_INFO_SCALE:
607                 *val = 0;
608                 switch (chan->type) {
609                 case IIO_TEMP:
610                         *val2 = 500000;
611                         return IIO_VAL_INT_PLUS_MICRO;
612                 case IIO_ACCEL:
613                 {
614                         int i;
615                         const struct bmc150_scale_info *si;
616                         int st_size = ARRAY_SIZE(data->chip_info->scale_table);
617
618                         for (i = 0; i < st_size; ++i) {
619                                 si = &data->chip_info->scale_table[i];
620                                 if (si->reg_range == data->range) {
621                                         *val2 = si->scale;
622                                         return IIO_VAL_INT_PLUS_MICRO;
623                                 }
624                         }
625                         return -EINVAL;
626                 }
627                 default:
628                         return -EINVAL;
629                 }
630         case IIO_CHAN_INFO_SAMP_FREQ:
631                 mutex_lock(&data->mutex);
632                 ret = bmc150_accel_get_bw(data, val, val2);
633                 mutex_unlock(&data->mutex);
634                 return ret;
635         default:
636                 return -EINVAL;
637         }
638 }
639
640 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
641                                   struct iio_chan_spec const *chan,
642                                   int val, int val2, long mask)
643 {
644         struct bmc150_accel_data *data = iio_priv(indio_dev);
645         int ret;
646
647         switch (mask) {
648         case IIO_CHAN_INFO_SAMP_FREQ:
649                 mutex_lock(&data->mutex);
650                 ret = bmc150_accel_set_bw(data, val, val2);
651                 mutex_unlock(&data->mutex);
652                 break;
653         case IIO_CHAN_INFO_SCALE:
654                 if (val)
655                         return -EINVAL;
656
657                 mutex_lock(&data->mutex);
658                 ret = bmc150_accel_set_scale(data, val2);
659                 mutex_unlock(&data->mutex);
660                 return ret;
661         default:
662                 ret = -EINVAL;
663         }
664
665         return ret;
666 }
667
668 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
669                                    const struct iio_chan_spec *chan,
670                                    enum iio_event_type type,
671                                    enum iio_event_direction dir,
672                                    enum iio_event_info info,
673                                    int *val, int *val2)
674 {
675         struct bmc150_accel_data *data = iio_priv(indio_dev);
676
677         *val2 = 0;
678         switch (info) {
679         case IIO_EV_INFO_VALUE:
680                 *val = data->slope_thres;
681                 break;
682         case IIO_EV_INFO_PERIOD:
683                 *val = data->slope_dur;
684                 break;
685         default:
686                 return -EINVAL;
687         }
688
689         return IIO_VAL_INT;
690 }
691
692 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
693                                     const struct iio_chan_spec *chan,
694                                     enum iio_event_type type,
695                                     enum iio_event_direction dir,
696                                     enum iio_event_info info,
697                                     int val, int val2)
698 {
699         struct bmc150_accel_data *data = iio_priv(indio_dev);
700
701         if (data->ev_enable_state)
702                 return -EBUSY;
703
704         switch (info) {
705         case IIO_EV_INFO_VALUE:
706                 data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
707                 break;
708         case IIO_EV_INFO_PERIOD:
709                 data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
710                 break;
711         default:
712                 return -EINVAL;
713         }
714
715         return 0;
716 }
717
718 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
719                                           const struct iio_chan_spec *chan,
720                                           enum iio_event_type type,
721                                           enum iio_event_direction dir)
722 {
723         struct bmc150_accel_data *data = iio_priv(indio_dev);
724
725         return data->ev_enable_state;
726 }
727
728 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
729                                            const struct iio_chan_spec *chan,
730                                            enum iio_event_type type,
731                                            enum iio_event_direction dir,
732                                            int state)
733 {
734         struct bmc150_accel_data *data = iio_priv(indio_dev);
735         int ret;
736
737         if (state == data->ev_enable_state)
738                 return 0;
739
740         mutex_lock(&data->mutex);
741
742         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
743                                          state);
744         if (ret < 0) {
745                 mutex_unlock(&data->mutex);
746                 return ret;
747         }
748
749         data->ev_enable_state = state;
750         mutex_unlock(&data->mutex);
751
752         return 0;
753 }
754
755 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
756                                          struct iio_trigger *trig)
757 {
758         struct bmc150_accel_data *data = iio_priv(indio_dev);
759         int i;
760
761         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
762                 if (data->triggers[i].indio_trig == trig)
763                         return 0;
764         }
765
766         return -EINVAL;
767 }
768
769 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
770                                                struct device_attribute *attr,
771                                                char *buf)
772 {
773         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
774         struct bmc150_accel_data *data = iio_priv(indio_dev);
775         int wm;
776
777         mutex_lock(&data->mutex);
778         wm = data->watermark;
779         mutex_unlock(&data->mutex);
780
781         return sprintf(buf, "%d\n", wm);
782 }
783
784 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
785                                            struct device_attribute *attr,
786                                            char *buf)
787 {
788         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
789         struct bmc150_accel_data *data = iio_priv(indio_dev);
790         bool state;
791
792         mutex_lock(&data->mutex);
793         state = data->fifo_mode;
794         mutex_unlock(&data->mutex);
795
796         return sprintf(buf, "%d\n", state);
797 }
798
799 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
800 static IIO_CONST_ATTR(hwfifo_watermark_max,
801                       __stringify(BMC150_ACCEL_FIFO_LENGTH));
802 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
803                        bmc150_accel_get_fifo_state, NULL, 0);
804 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
805                        bmc150_accel_get_fifo_watermark, NULL, 0);
806
807 static const struct attribute *bmc150_accel_fifo_attributes[] = {
808         &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
809         &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
810         &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
811         &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
812         NULL,
813 };
814
815 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
816 {
817         struct bmc150_accel_data *data = iio_priv(indio_dev);
818
819         if (val > BMC150_ACCEL_FIFO_LENGTH)
820                 val = BMC150_ACCEL_FIFO_LENGTH;
821
822         mutex_lock(&data->mutex);
823         data->watermark = val;
824         mutex_unlock(&data->mutex);
825
826         return 0;
827 }
828
829 /*
830  * We must read at least one full frame in one burst, otherwise the rest of the
831  * frame data is discarded.
832  */
833 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
834                                       char *buffer, int samples)
835 {
836         struct device *dev = regmap_get_device(data->regmap);
837         int sample_length = 3 * 2;
838         int ret;
839         int total_length = samples * sample_length;
840
841         ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
842                               buffer, total_length);
843         if (ret)
844                 dev_err(dev,
845                         "Error transferring data from fifo: %d\n", ret);
846
847         return ret;
848 }
849
850 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
851                                      unsigned samples, bool irq)
852 {
853         struct bmc150_accel_data *data = iio_priv(indio_dev);
854         struct device *dev = regmap_get_device(data->regmap);
855         int ret, i;
856         u8 count;
857         u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
858         int64_t tstamp;
859         uint64_t sample_period;
860         unsigned int val;
861
862         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
863         if (ret < 0) {
864                 dev_err(dev, "Error reading reg_fifo_status\n");
865                 return ret;
866         }
867
868         count = val & 0x7F;
869
870         if (!count)
871                 return 0;
872
873         /*
874          * If we getting called from IRQ handler we know the stored timestamp is
875          * fairly accurate for the last stored sample. Otherwise, if we are
876          * called as a result of a read operation from userspace and hence
877          * before the watermark interrupt was triggered, take a timestamp
878          * now. We can fall anywhere in between two samples so the error in this
879          * case is at most one sample period.
880          */
881         if (!irq) {
882                 data->old_timestamp = data->timestamp;
883                 data->timestamp = iio_get_time_ns(indio_dev);
884         }
885
886         /*
887          * Approximate timestamps for each of the sample based on the sampling
888          * frequency, timestamp for last sample and number of samples.
889          *
890          * Note that we can't use the current bandwidth settings to compute the
891          * sample period because the sample rate varies with the device
892          * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
893          * small variation adds when we store a large number of samples and
894          * creates significant jitter between the last and first samples in
895          * different batches (e.g. 32ms vs 21ms).
896          *
897          * To avoid this issue we compute the actual sample period ourselves
898          * based on the timestamp delta between the last two flush operations.
899          */
900         sample_period = (data->timestamp - data->old_timestamp);
901         do_div(sample_period, count);
902         tstamp = data->timestamp - (count - 1) * sample_period;
903
904         if (samples && count > samples)
905                 count = samples;
906
907         ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
908         if (ret)
909                 return ret;
910
911         /*
912          * Ideally we want the IIO core to handle the demux when running in fifo
913          * mode but not when running in triggered buffer mode. Unfortunately
914          * this does not seem to be possible, so stick with driver demux for
915          * now.
916          */
917         for (i = 0; i < count; i++) {
918                 u16 sample[8];
919                 int j, bit;
920
921                 j = 0;
922                 for_each_set_bit(bit, indio_dev->active_scan_mask,
923                                  indio_dev->masklength)
924                         memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
925
926                 iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
927
928                 tstamp += sample_period;
929         }
930
931         return count;
932 }
933
934 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
935 {
936         struct bmc150_accel_data *data = iio_priv(indio_dev);
937         int ret;
938
939         mutex_lock(&data->mutex);
940         ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
941         mutex_unlock(&data->mutex);
942
943         return ret;
944 }
945
946 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
947                 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
948
949 static struct attribute *bmc150_accel_attributes[] = {
950         &iio_const_attr_sampling_frequency_available.dev_attr.attr,
951         NULL,
952 };
953
954 static const struct attribute_group bmc150_accel_attrs_group = {
955         .attrs = bmc150_accel_attributes,
956 };
957
958 static const struct iio_event_spec bmc150_accel_event = {
959                 .type = IIO_EV_TYPE_ROC,
960                 .dir = IIO_EV_DIR_EITHER,
961                 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
962                                  BIT(IIO_EV_INFO_ENABLE) |
963                                  BIT(IIO_EV_INFO_PERIOD)
964 };
965
966 #define BMC150_ACCEL_CHANNEL(_axis, bits) {                             \
967         .type = IIO_ACCEL,                                              \
968         .modified = 1,                                                  \
969         .channel2 = IIO_MOD_##_axis,                                    \
970         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),                   \
971         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |          \
972                                 BIT(IIO_CHAN_INFO_SAMP_FREQ),           \
973         .scan_index = AXIS_##_axis,                                     \
974         .scan_type = {                                                  \
975                 .sign = 's',                                            \
976                 .realbits = (bits),                                     \
977                 .storagebits = 16,                                      \
978                 .shift = 16 - (bits),                                   \
979                 .endianness = IIO_LE,                                   \
980         },                                                              \
981         .event_spec = &bmc150_accel_event,                              \
982         .num_event_specs = 1                                            \
983 }
984
985 #define BMC150_ACCEL_CHANNELS(bits) {                                   \
986         {                                                               \
987                 .type = IIO_TEMP,                                       \
988                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |          \
989                                       BIT(IIO_CHAN_INFO_SCALE) |        \
990                                       BIT(IIO_CHAN_INFO_OFFSET),        \
991                 .scan_index = -1,                                       \
992         },                                                              \
993         BMC150_ACCEL_CHANNEL(X, bits),                                  \
994         BMC150_ACCEL_CHANNEL(Y, bits),                                  \
995         BMC150_ACCEL_CHANNEL(Z, bits),                                  \
996         IIO_CHAN_SOFT_TIMESTAMP(3),                                     \
997 }
998
999 static const struct iio_chan_spec bma222e_accel_channels[] =
1000         BMC150_ACCEL_CHANNELS(8);
1001 static const struct iio_chan_spec bma250e_accel_channels[] =
1002         BMC150_ACCEL_CHANNELS(10);
1003 static const struct iio_chan_spec bmc150_accel_channels[] =
1004         BMC150_ACCEL_CHANNELS(12);
1005 static const struct iio_chan_spec bma280_accel_channels[] =
1006         BMC150_ACCEL_CHANNELS(14);
1007
1008 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1009         [bmc150] = {
1010                 .name = "BMC150A",
1011                 .chip_id = 0xFA,
1012                 .channels = bmc150_accel_channels,
1013                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1014                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1015                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1016                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1017                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1018         },
1019         [bmi055] = {
1020                 .name = "BMI055A",
1021                 .chip_id = 0xFA,
1022                 .channels = bmc150_accel_channels,
1023                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1024                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1025                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1026                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1027                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1028         },
1029         [bma255] = {
1030                 .name = "BMA0255",
1031                 .chip_id = 0xFA,
1032                 .channels = bmc150_accel_channels,
1033                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1034                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1035                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1036                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1037                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1038         },
1039         [bma250e] = {
1040                 .name = "BMA250E",
1041                 .chip_id = 0xF9,
1042                 .channels = bma250e_accel_channels,
1043                 .num_channels = ARRAY_SIZE(bma250e_accel_channels),
1044                 .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1045                                  {76590, BMC150_ACCEL_DEF_RANGE_4G},
1046                                  {153277, BMC150_ACCEL_DEF_RANGE_8G},
1047                                  {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1048         },
1049         [bma222e] = {
1050                 .name = "BMA222E",
1051                 .chip_id = 0xF8,
1052                 .channels = bma222e_accel_channels,
1053                 .num_channels = ARRAY_SIZE(bma222e_accel_channels),
1054                 .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1055                                  {306457, BMC150_ACCEL_DEF_RANGE_4G},
1056                                  {612915, BMC150_ACCEL_DEF_RANGE_8G},
1057                                  {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1058         },
1059         [bma280] = {
1060                 .name = "BMA0280",
1061                 .chip_id = 0xFB,
1062                 .channels = bma280_accel_channels,
1063                 .num_channels = ARRAY_SIZE(bma280_accel_channels),
1064                 .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1065                                  {4785, BMC150_ACCEL_DEF_RANGE_4G},
1066                                  {9581, BMC150_ACCEL_DEF_RANGE_8G},
1067                                  {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1068         },
1069 };
1070
1071 static const struct iio_info bmc150_accel_info = {
1072         .attrs                  = &bmc150_accel_attrs_group,
1073         .read_raw               = bmc150_accel_read_raw,
1074         .write_raw              = bmc150_accel_write_raw,
1075         .read_event_value       = bmc150_accel_read_event,
1076         .write_event_value      = bmc150_accel_write_event,
1077         .write_event_config     = bmc150_accel_write_event_config,
1078         .read_event_config      = bmc150_accel_read_event_config,
1079 };
1080
1081 static const struct iio_info bmc150_accel_info_fifo = {
1082         .attrs                  = &bmc150_accel_attrs_group,
1083         .read_raw               = bmc150_accel_read_raw,
1084         .write_raw              = bmc150_accel_write_raw,
1085         .read_event_value       = bmc150_accel_read_event,
1086         .write_event_value      = bmc150_accel_write_event,
1087         .write_event_config     = bmc150_accel_write_event_config,
1088         .read_event_config      = bmc150_accel_read_event_config,
1089         .validate_trigger       = bmc150_accel_validate_trigger,
1090         .hwfifo_set_watermark   = bmc150_accel_set_watermark,
1091         .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
1092 };
1093
1094 static const unsigned long bmc150_accel_scan_masks[] = {
1095                                         BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1096                                         0};
1097
1098 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1099 {
1100         struct iio_poll_func *pf = p;
1101         struct iio_dev *indio_dev = pf->indio_dev;
1102         struct bmc150_accel_data *data = iio_priv(indio_dev);
1103         int ret;
1104
1105         mutex_lock(&data->mutex);
1106         ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1107                                data->buffer, AXIS_MAX * 2);
1108         mutex_unlock(&data->mutex);
1109         if (ret < 0)
1110                 goto err_read;
1111
1112         iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1113                                            pf->timestamp);
1114 err_read:
1115         iio_trigger_notify_done(indio_dev->trig);
1116
1117         return IRQ_HANDLED;
1118 }
1119
1120 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1121 {
1122         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1123         struct bmc150_accel_data *data = t->data;
1124         struct device *dev = regmap_get_device(data->regmap);
1125         int ret;
1126
1127         /* new data interrupts don't need ack */
1128         if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1129                 return 0;
1130
1131         mutex_lock(&data->mutex);
1132         /* clear any latched interrupt */
1133         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1134                            BMC150_ACCEL_INT_MODE_LATCH_INT |
1135                            BMC150_ACCEL_INT_MODE_LATCH_RESET);
1136         mutex_unlock(&data->mutex);
1137         if (ret < 0) {
1138                 dev_err(dev, "Error writing reg_int_rst_latch\n");
1139                 return ret;
1140         }
1141
1142         return 0;
1143 }
1144
1145 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1146                                           bool state)
1147 {
1148         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1149         struct bmc150_accel_data *data = t->data;
1150         int ret;
1151
1152         mutex_lock(&data->mutex);
1153
1154         if (t->enabled == state) {
1155                 mutex_unlock(&data->mutex);
1156                 return 0;
1157         }
1158
1159         if (t->setup) {
1160                 ret = t->setup(t, state);
1161                 if (ret < 0) {
1162                         mutex_unlock(&data->mutex);
1163                         return ret;
1164                 }
1165         }
1166
1167         ret = bmc150_accel_set_interrupt(data, t->intr, state);
1168         if (ret < 0) {
1169                 mutex_unlock(&data->mutex);
1170                 return ret;
1171         }
1172
1173         t->enabled = state;
1174
1175         mutex_unlock(&data->mutex);
1176
1177         return ret;
1178 }
1179
1180 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1181         .set_trigger_state = bmc150_accel_trigger_set_state,
1182         .try_reenable = bmc150_accel_trig_try_reen,
1183 };
1184
1185 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1186 {
1187         struct bmc150_accel_data *data = iio_priv(indio_dev);
1188         struct device *dev = regmap_get_device(data->regmap);
1189         int dir;
1190         int ret;
1191         unsigned int val;
1192
1193         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1194         if (ret < 0) {
1195                 dev_err(dev, "Error reading reg_int_status_2\n");
1196                 return ret;
1197         }
1198
1199         if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1200                 dir = IIO_EV_DIR_FALLING;
1201         else
1202                 dir = IIO_EV_DIR_RISING;
1203
1204         if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1205                 iio_push_event(indio_dev,
1206                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1207                                                   0,
1208                                                   IIO_MOD_X,
1209                                                   IIO_EV_TYPE_ROC,
1210                                                   dir),
1211                                data->timestamp);
1212
1213         if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1214                 iio_push_event(indio_dev,
1215                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1216                                                   0,
1217                                                   IIO_MOD_Y,
1218                                                   IIO_EV_TYPE_ROC,
1219                                                   dir),
1220                                data->timestamp);
1221
1222         if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1223                 iio_push_event(indio_dev,
1224                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1225                                                   0,
1226                                                   IIO_MOD_Z,
1227                                                   IIO_EV_TYPE_ROC,
1228                                                   dir),
1229                                data->timestamp);
1230
1231         return ret;
1232 }
1233
1234 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1235 {
1236         struct iio_dev *indio_dev = private;
1237         struct bmc150_accel_data *data = iio_priv(indio_dev);
1238         struct device *dev = regmap_get_device(data->regmap);
1239         bool ack = false;
1240         int ret;
1241
1242         mutex_lock(&data->mutex);
1243
1244         if (data->fifo_mode) {
1245                 ret = __bmc150_accel_fifo_flush(indio_dev,
1246                                                 BMC150_ACCEL_FIFO_LENGTH, true);
1247                 if (ret > 0)
1248                         ack = true;
1249         }
1250
1251         if (data->ev_enable_state) {
1252                 ret = bmc150_accel_handle_roc_event(indio_dev);
1253                 if (ret > 0)
1254                         ack = true;
1255         }
1256
1257         if (ack) {
1258                 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1259                                    BMC150_ACCEL_INT_MODE_LATCH_INT |
1260                                    BMC150_ACCEL_INT_MODE_LATCH_RESET);
1261                 if (ret)
1262                         dev_err(dev, "Error writing reg_int_rst_latch\n");
1263
1264                 ret = IRQ_HANDLED;
1265         } else {
1266                 ret = IRQ_NONE;
1267         }
1268
1269         mutex_unlock(&data->mutex);
1270
1271         return ret;
1272 }
1273
1274 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1275 {
1276         struct iio_dev *indio_dev = private;
1277         struct bmc150_accel_data *data = iio_priv(indio_dev);
1278         bool ack = false;
1279         int i;
1280
1281         data->old_timestamp = data->timestamp;
1282         data->timestamp = iio_get_time_ns(indio_dev);
1283
1284         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1285                 if (data->triggers[i].enabled) {
1286                         iio_trigger_poll(data->triggers[i].indio_trig);
1287                         ack = true;
1288                         break;
1289                 }
1290         }
1291
1292         if (data->ev_enable_state || data->fifo_mode)
1293                 return IRQ_WAKE_THREAD;
1294
1295         if (ack)
1296                 return IRQ_HANDLED;
1297
1298         return IRQ_NONE;
1299 }
1300
1301 static const struct {
1302         int intr;
1303         const char *name;
1304         int (*setup)(struct bmc150_accel_trigger *t, bool state);
1305 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1306         {
1307                 .intr = 0,
1308                 .name = "%s-dev%d",
1309         },
1310         {
1311                 .intr = 1,
1312                 .name = "%s-any-motion-dev%d",
1313                 .setup = bmc150_accel_any_motion_setup,
1314         },
1315 };
1316
1317 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1318                                              int from)
1319 {
1320         int i;
1321
1322         for (i = from; i >= 0; i--) {
1323                 if (data->triggers[i].indio_trig) {
1324                         iio_trigger_unregister(data->triggers[i].indio_trig);
1325                         data->triggers[i].indio_trig = NULL;
1326                 }
1327         }
1328 }
1329
1330 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1331                                        struct bmc150_accel_data *data)
1332 {
1333         struct device *dev = regmap_get_device(data->regmap);
1334         int i, ret;
1335
1336         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1337                 struct bmc150_accel_trigger *t = &data->triggers[i];
1338
1339                 t->indio_trig = devm_iio_trigger_alloc(dev,
1340                                         bmc150_accel_triggers[i].name,
1341                                                        indio_dev->name,
1342                                                        indio_dev->id);
1343                 if (!t->indio_trig) {
1344                         ret = -ENOMEM;
1345                         break;
1346                 }
1347
1348                 t->indio_trig->dev.parent = dev;
1349                 t->indio_trig->ops = &bmc150_accel_trigger_ops;
1350                 t->intr = bmc150_accel_triggers[i].intr;
1351                 t->data = data;
1352                 t->setup = bmc150_accel_triggers[i].setup;
1353                 iio_trigger_set_drvdata(t->indio_trig, t);
1354
1355                 ret = iio_trigger_register(t->indio_trig);
1356                 if (ret)
1357                         break;
1358         }
1359
1360         if (ret)
1361                 bmc150_accel_unregister_triggers(data, i - 1);
1362
1363         return ret;
1364 }
1365
1366 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1367 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1368 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1369
1370 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1371 {
1372         struct device *dev = regmap_get_device(data->regmap);
1373         u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1374         int ret;
1375
1376         ret = regmap_write(data->regmap, reg, data->fifo_mode);
1377         if (ret < 0) {
1378                 dev_err(dev, "Error writing reg_fifo_config1\n");
1379                 return ret;
1380         }
1381
1382         if (!data->fifo_mode)
1383                 return 0;
1384
1385         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1386                            data->watermark);
1387         if (ret < 0)
1388                 dev_err(dev, "Error writing reg_fifo_config0\n");
1389
1390         return ret;
1391 }
1392
1393 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1394 {
1395         struct bmc150_accel_data *data = iio_priv(indio_dev);
1396
1397         return bmc150_accel_set_power_state(data, true);
1398 }
1399
1400 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1401 {
1402         struct bmc150_accel_data *data = iio_priv(indio_dev);
1403         int ret = 0;
1404
1405         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1406                 return iio_triggered_buffer_postenable(indio_dev);
1407
1408         mutex_lock(&data->mutex);
1409
1410         if (!data->watermark)
1411                 goto out;
1412
1413         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1414                                          true);
1415         if (ret)
1416                 goto out;
1417
1418         data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1419
1420         ret = bmc150_accel_fifo_set_mode(data);
1421         if (ret) {
1422                 data->fifo_mode = 0;
1423                 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1424                                            false);
1425         }
1426
1427 out:
1428         mutex_unlock(&data->mutex);
1429
1430         return ret;
1431 }
1432
1433 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1434 {
1435         struct bmc150_accel_data *data = iio_priv(indio_dev);
1436
1437         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1438                 return iio_triggered_buffer_predisable(indio_dev);
1439
1440         mutex_lock(&data->mutex);
1441
1442         if (!data->fifo_mode)
1443                 goto out;
1444
1445         bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1446         __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1447         data->fifo_mode = 0;
1448         bmc150_accel_fifo_set_mode(data);
1449
1450 out:
1451         mutex_unlock(&data->mutex);
1452
1453         return 0;
1454 }
1455
1456 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1457 {
1458         struct bmc150_accel_data *data = iio_priv(indio_dev);
1459
1460         return bmc150_accel_set_power_state(data, false);
1461 }
1462
1463 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1464         .preenable = bmc150_accel_buffer_preenable,
1465         .postenable = bmc150_accel_buffer_postenable,
1466         .predisable = bmc150_accel_buffer_predisable,
1467         .postdisable = bmc150_accel_buffer_postdisable,
1468 };
1469
1470 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1471 {
1472         struct device *dev = regmap_get_device(data->regmap);
1473         int ret, i;
1474         unsigned int val;
1475
1476         /*
1477          * Reset chip to get it in a known good state. A delay of 1.8ms after
1478          * reset is required according to the data sheets of supported chips.
1479          */
1480         regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1481                      BMC150_ACCEL_RESET_VAL);
1482         usleep_range(1800, 2500);
1483
1484         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1485         if (ret < 0) {
1486                 dev_err(dev, "Error: Reading chip id\n");
1487                 return ret;
1488         }
1489
1490         dev_dbg(dev, "Chip Id %x\n", val);
1491         for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1492                 if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1493                         data->chip_info = &bmc150_accel_chip_info_tbl[i];
1494                         break;
1495                 }
1496         }
1497
1498         if (!data->chip_info) {
1499                 dev_err(dev, "Invalid chip %x\n", val);
1500                 return -ENODEV;
1501         }
1502
1503         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1504         if (ret < 0)
1505                 return ret;
1506
1507         /* Set Bandwidth */
1508         ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1509         if (ret < 0)
1510                 return ret;
1511
1512         /* Set Default Range */
1513         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1514                            BMC150_ACCEL_DEF_RANGE_4G);
1515         if (ret < 0) {
1516                 dev_err(dev, "Error writing reg_pmu_range\n");
1517                 return ret;
1518         }
1519
1520         data->range = BMC150_ACCEL_DEF_RANGE_4G;
1521
1522         /* Set default slope duration and thresholds */
1523         data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1524         data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1525         ret = bmc150_accel_update_slope(data);
1526         if (ret < 0)
1527                 return ret;
1528
1529         /* Set default as latched interrupts */
1530         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1531                            BMC150_ACCEL_INT_MODE_LATCH_INT |
1532                            BMC150_ACCEL_INT_MODE_LATCH_RESET);
1533         if (ret < 0) {
1534                 dev_err(dev, "Error writing reg_int_rst_latch\n");
1535                 return ret;
1536         }
1537
1538         return 0;
1539 }
1540
1541 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1542                             const char *name, bool block_supported)
1543 {
1544         struct bmc150_accel_data *data;
1545         struct iio_dev *indio_dev;
1546         int ret;
1547
1548         indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1549         if (!indio_dev)
1550                 return -ENOMEM;
1551
1552         data = iio_priv(indio_dev);
1553         dev_set_drvdata(dev, indio_dev);
1554         data->irq = irq;
1555
1556         data->regmap = regmap;
1557
1558         ret = bmc150_accel_chip_init(data);
1559         if (ret < 0)
1560                 return ret;
1561
1562         mutex_init(&data->mutex);
1563
1564         indio_dev->dev.parent = dev;
1565         indio_dev->channels = data->chip_info->channels;
1566         indio_dev->num_channels = data->chip_info->num_channels;
1567         indio_dev->name = name ? name : data->chip_info->name;
1568         indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1569         indio_dev->modes = INDIO_DIRECT_MODE;
1570         indio_dev->info = &bmc150_accel_info;
1571
1572         ret = iio_triggered_buffer_setup(indio_dev,
1573                                          &iio_pollfunc_store_time,
1574                                          bmc150_accel_trigger_handler,
1575                                          &bmc150_accel_buffer_ops);
1576         if (ret < 0) {
1577                 dev_err(dev, "Failed: iio triggered buffer setup\n");
1578                 return ret;
1579         }
1580
1581         if (data->irq > 0) {
1582                 ret = devm_request_threaded_irq(
1583                                                 dev, data->irq,
1584                                                 bmc150_accel_irq_handler,
1585                                                 bmc150_accel_irq_thread_handler,
1586                                                 IRQF_TRIGGER_RISING,
1587                                                 BMC150_ACCEL_IRQ_NAME,
1588                                                 indio_dev);
1589                 if (ret)
1590                         goto err_buffer_cleanup;
1591
1592                 /*
1593                  * Set latched mode interrupt. While certain interrupts are
1594                  * non-latched regardless of this settings (e.g. new data) we
1595                  * want to use latch mode when we can to prevent interrupt
1596                  * flooding.
1597                  */
1598                 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1599                                    BMC150_ACCEL_INT_MODE_LATCH_RESET);
1600                 if (ret < 0) {
1601                         dev_err(dev, "Error writing reg_int_rst_latch\n");
1602                         goto err_buffer_cleanup;
1603                 }
1604
1605                 bmc150_accel_interrupts_setup(indio_dev, data);
1606
1607                 ret = bmc150_accel_triggers_setup(indio_dev, data);
1608                 if (ret)
1609                         goto err_buffer_cleanup;
1610
1611                 if (block_supported) {
1612                         indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1613                         indio_dev->info = &bmc150_accel_info_fifo;
1614                         iio_buffer_set_attrs(indio_dev->buffer,
1615                                              bmc150_accel_fifo_attributes);
1616                 }
1617         }
1618
1619         ret = pm_runtime_set_active(dev);
1620         if (ret)
1621                 goto err_trigger_unregister;
1622
1623         pm_runtime_enable(dev);
1624         pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1625         pm_runtime_use_autosuspend(dev);
1626
1627         ret = iio_device_register(indio_dev);
1628         if (ret < 0) {
1629                 dev_err(dev, "Unable to register iio device\n");
1630                 goto err_trigger_unregister;
1631         }
1632
1633         return 0;
1634
1635 err_trigger_unregister:
1636         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1637 err_buffer_cleanup:
1638         iio_triggered_buffer_cleanup(indio_dev);
1639
1640         return ret;
1641 }
1642 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1643
1644 int bmc150_accel_core_remove(struct device *dev)
1645 {
1646         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1647         struct bmc150_accel_data *data = iio_priv(indio_dev);
1648
1649         iio_device_unregister(indio_dev);
1650
1651         pm_runtime_disable(dev);
1652         pm_runtime_set_suspended(dev);
1653         pm_runtime_put_noidle(dev);
1654
1655         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1656
1657         iio_triggered_buffer_cleanup(indio_dev);
1658
1659         mutex_lock(&data->mutex);
1660         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1661         mutex_unlock(&data->mutex);
1662
1663         return 0;
1664 }
1665 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1666
1667 #ifdef CONFIG_PM_SLEEP
1668 static int bmc150_accel_suspend(struct device *dev)
1669 {
1670         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1671         struct bmc150_accel_data *data = iio_priv(indio_dev);
1672
1673         mutex_lock(&data->mutex);
1674         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1675         mutex_unlock(&data->mutex);
1676
1677         return 0;
1678 }
1679
1680 static int bmc150_accel_resume(struct device *dev)
1681 {
1682         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1683         struct bmc150_accel_data *data = iio_priv(indio_dev);
1684
1685         mutex_lock(&data->mutex);
1686         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1687         bmc150_accel_fifo_set_mode(data);
1688         mutex_unlock(&data->mutex);
1689
1690         return 0;
1691 }
1692 #endif
1693
1694 #ifdef CONFIG_PM
1695 static int bmc150_accel_runtime_suspend(struct device *dev)
1696 {
1697         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1698         struct bmc150_accel_data *data = iio_priv(indio_dev);
1699         int ret;
1700
1701         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1702         if (ret < 0)
1703                 return -EAGAIN;
1704
1705         return 0;
1706 }
1707
1708 static int bmc150_accel_runtime_resume(struct device *dev)
1709 {
1710         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1711         struct bmc150_accel_data *data = iio_priv(indio_dev);
1712         int ret;
1713         int sleep_val;
1714
1715         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1716         if (ret < 0)
1717                 return ret;
1718         ret = bmc150_accel_fifo_set_mode(data);
1719         if (ret < 0)
1720                 return ret;
1721
1722         sleep_val = bmc150_accel_get_startup_times(data);
1723         if (sleep_val < 20)
1724                 usleep_range(sleep_val * 1000, 20000);
1725         else
1726                 msleep_interruptible(sleep_val);
1727
1728         return 0;
1729 }
1730 #endif
1731
1732 const struct dev_pm_ops bmc150_accel_pm_ops = {
1733         SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1734         SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1735                            bmc150_accel_runtime_resume, NULL)
1736 };
1737 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1738
1739 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1740 MODULE_LICENSE("GPL v2");
1741 MODULE_DESCRIPTION("BMC150 accelerometer driver");