]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/iio/accel/bmc150-accel-core.c
Linux 5.6-rc7
[linux.git] / drivers / iio / accel / bmc150-accel-core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
4  *  - BMC150
5  *  - BMI055
6  *  - BMA255
7  *  - BMA250E
8  *  - BMA222E
9  *  - BMA280
10  *
11  * Copyright (c) 2014, Intel Corporation.
12  */
13
14 #include <linux/module.h>
15 #include <linux/i2c.h>
16 #include <linux/interrupt.h>
17 #include <linux/delay.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/pm.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/iio/iio.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/buffer.h>
25 #include <linux/iio/events.h>
26 #include <linux/iio/trigger.h>
27 #include <linux/iio/trigger_consumer.h>
28 #include <linux/iio/triggered_buffer.h>
29 #include <linux/regmap.h>
30
31 #include "bmc150-accel.h"
32
33 #define BMC150_ACCEL_DRV_NAME                   "bmc150_accel"
34 #define BMC150_ACCEL_IRQ_NAME                   "bmc150_accel_event"
35
36 #define BMC150_ACCEL_REG_CHIP_ID                0x00
37
38 #define BMC150_ACCEL_REG_INT_STATUS_2           0x0B
39 #define BMC150_ACCEL_ANY_MOTION_MASK            0x07
40 #define BMC150_ACCEL_ANY_MOTION_BIT_X           BIT(0)
41 #define BMC150_ACCEL_ANY_MOTION_BIT_Y           BIT(1)
42 #define BMC150_ACCEL_ANY_MOTION_BIT_Z           BIT(2)
43 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN        BIT(3)
44
45 #define BMC150_ACCEL_REG_PMU_LPW                0x11
46 #define BMC150_ACCEL_PMU_MODE_MASK              0xE0
47 #define BMC150_ACCEL_PMU_MODE_SHIFT             5
48 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK     0x17
49 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT    1
50
51 #define BMC150_ACCEL_REG_PMU_RANGE              0x0F
52
53 #define BMC150_ACCEL_DEF_RANGE_2G               0x03
54 #define BMC150_ACCEL_DEF_RANGE_4G               0x05
55 #define BMC150_ACCEL_DEF_RANGE_8G               0x08
56 #define BMC150_ACCEL_DEF_RANGE_16G              0x0C
57
58 /* Default BW: 125Hz */
59 #define BMC150_ACCEL_REG_PMU_BW         0x10
60 #define BMC150_ACCEL_DEF_BW                     125
61
62 #define BMC150_ACCEL_REG_RESET                  0x14
63 #define BMC150_ACCEL_RESET_VAL                  0xB6
64
65 #define BMC150_ACCEL_REG_INT_MAP_0              0x19
66 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE        BIT(2)
67
68 #define BMC150_ACCEL_REG_INT_MAP_1              0x1A
69 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA         BIT(0)
70 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM          BIT(1)
71 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL        BIT(2)
72
73 #define BMC150_ACCEL_REG_INT_RST_LATCH          0x21
74 #define BMC150_ACCEL_INT_MODE_LATCH_RESET       0x80
75 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
76 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT     0x00
77
78 #define BMC150_ACCEL_REG_INT_EN_0               0x16
79 #define BMC150_ACCEL_INT_EN_BIT_SLP_X           BIT(0)
80 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y           BIT(1)
81 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z           BIT(2)
82
83 #define BMC150_ACCEL_REG_INT_EN_1               0x17
84 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN         BIT(4)
85 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN        BIT(5)
86 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN          BIT(6)
87
88 #define BMC150_ACCEL_REG_INT_OUT_CTRL           0x20
89 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL      BIT(0)
90
91 #define BMC150_ACCEL_REG_INT_5                  0x27
92 #define BMC150_ACCEL_SLOPE_DUR_MASK             0x03
93
94 #define BMC150_ACCEL_REG_INT_6                  0x28
95 #define BMC150_ACCEL_SLOPE_THRES_MASK           0xFF
96
97 /* Slope duration in terms of number of samples */
98 #define BMC150_ACCEL_DEF_SLOPE_DURATION         1
99 /* in terms of multiples of g's/LSB, based on range */
100 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD        1
101
102 #define BMC150_ACCEL_REG_XOUT_L         0x02
103
104 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS        100
105
106 /* Sleep Duration values */
107 #define BMC150_ACCEL_SLEEP_500_MICRO            0x05
108 #define BMC150_ACCEL_SLEEP_1_MS         0x06
109 #define BMC150_ACCEL_SLEEP_2_MS         0x07
110 #define BMC150_ACCEL_SLEEP_4_MS         0x08
111 #define BMC150_ACCEL_SLEEP_6_MS         0x09
112 #define BMC150_ACCEL_SLEEP_10_MS                0x0A
113 #define BMC150_ACCEL_SLEEP_25_MS                0x0B
114 #define BMC150_ACCEL_SLEEP_50_MS                0x0C
115 #define BMC150_ACCEL_SLEEP_100_MS               0x0D
116 #define BMC150_ACCEL_SLEEP_500_MS               0x0E
117 #define BMC150_ACCEL_SLEEP_1_SEC                0x0F
118
119 #define BMC150_ACCEL_REG_TEMP                   0x08
120 #define BMC150_ACCEL_TEMP_CENTER_VAL            23
121
122 #define BMC150_ACCEL_AXIS_TO_REG(axis)  (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
123 #define BMC150_AUTO_SUSPEND_DELAY_MS            2000
124
125 #define BMC150_ACCEL_REG_FIFO_STATUS            0x0E
126 #define BMC150_ACCEL_REG_FIFO_CONFIG0           0x30
127 #define BMC150_ACCEL_REG_FIFO_CONFIG1           0x3E
128 #define BMC150_ACCEL_REG_FIFO_DATA              0x3F
129 #define BMC150_ACCEL_FIFO_LENGTH                32
130
131 enum bmc150_accel_axis {
132         AXIS_X,
133         AXIS_Y,
134         AXIS_Z,
135         AXIS_MAX,
136 };
137
138 enum bmc150_power_modes {
139         BMC150_ACCEL_SLEEP_MODE_NORMAL,
140         BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
141         BMC150_ACCEL_SLEEP_MODE_LPM,
142         BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
143 };
144
145 struct bmc150_scale_info {
146         int scale;
147         u8 reg_range;
148 };
149
150 struct bmc150_accel_chip_info {
151         const char *name;
152         u8 chip_id;
153         const struct iio_chan_spec *channels;
154         int num_channels;
155         const struct bmc150_scale_info scale_table[4];
156 };
157
158 struct bmc150_accel_interrupt {
159         const struct bmc150_accel_interrupt_info *info;
160         atomic_t users;
161 };
162
163 struct bmc150_accel_trigger {
164         struct bmc150_accel_data *data;
165         struct iio_trigger *indio_trig;
166         int (*setup)(struct bmc150_accel_trigger *t, bool state);
167         int intr;
168         bool enabled;
169 };
170
171 enum bmc150_accel_interrupt_id {
172         BMC150_ACCEL_INT_DATA_READY,
173         BMC150_ACCEL_INT_ANY_MOTION,
174         BMC150_ACCEL_INT_WATERMARK,
175         BMC150_ACCEL_INTERRUPTS,
176 };
177
178 enum bmc150_accel_trigger_id {
179         BMC150_ACCEL_TRIGGER_DATA_READY,
180         BMC150_ACCEL_TRIGGER_ANY_MOTION,
181         BMC150_ACCEL_TRIGGERS,
182 };
183
184 struct bmc150_accel_data {
185         struct regmap *regmap;
186         int irq;
187         struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
188         struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
189         struct mutex mutex;
190         u8 fifo_mode, watermark;
191         s16 buffer[8];
192         u8 bw_bits;
193         u32 slope_dur;
194         u32 slope_thres;
195         u32 range;
196         int ev_enable_state;
197         int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
198         const struct bmc150_accel_chip_info *chip_info;
199         struct iio_mount_matrix orientation;
200 };
201
202 static const struct {
203         int val;
204         int val2;
205         u8 bw_bits;
206 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
207                                      {31, 260000, 0x09},
208                                      {62, 500000, 0x0A},
209                                      {125, 0, 0x0B},
210                                      {250, 0, 0x0C},
211                                      {500, 0, 0x0D},
212                                      {1000, 0, 0x0E},
213                                      {2000, 0, 0x0F} };
214
215 static const struct {
216         int bw_bits;
217         int msec;
218 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
219                                      {0x09, 32},
220                                      {0x0A, 16},
221                                      {0x0B, 8},
222                                      {0x0C, 4},
223                                      {0x0D, 2},
224                                      {0x0E, 1},
225                                      {0x0F, 1} };
226
227 static const struct {
228         int sleep_dur;
229         u8 reg_value;
230 } bmc150_accel_sleep_value_table[] = { {0, 0},
231                                        {500, BMC150_ACCEL_SLEEP_500_MICRO},
232                                        {1000, BMC150_ACCEL_SLEEP_1_MS},
233                                        {2000, BMC150_ACCEL_SLEEP_2_MS},
234                                        {4000, BMC150_ACCEL_SLEEP_4_MS},
235                                        {6000, BMC150_ACCEL_SLEEP_6_MS},
236                                        {10000, BMC150_ACCEL_SLEEP_10_MS},
237                                        {25000, BMC150_ACCEL_SLEEP_25_MS},
238                                        {50000, BMC150_ACCEL_SLEEP_50_MS},
239                                        {100000, BMC150_ACCEL_SLEEP_100_MS},
240                                        {500000, BMC150_ACCEL_SLEEP_500_MS},
241                                        {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
242
243 const struct regmap_config bmc150_regmap_conf = {
244         .reg_bits = 8,
245         .val_bits = 8,
246         .max_register = 0x3f,
247 };
248 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
249
250 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
251                                  enum bmc150_power_modes mode,
252                                  int dur_us)
253 {
254         struct device *dev = regmap_get_device(data->regmap);
255         int i;
256         int ret;
257         u8 lpw_bits;
258         int dur_val = -1;
259
260         if (dur_us > 0) {
261                 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
262                                                                          ++i) {
263                         if (bmc150_accel_sleep_value_table[i].sleep_dur ==
264                                                                         dur_us)
265                                 dur_val =
266                                 bmc150_accel_sleep_value_table[i].reg_value;
267                 }
268         } else {
269                 dur_val = 0;
270         }
271
272         if (dur_val < 0)
273                 return -EINVAL;
274
275         lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
276         lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
277
278         dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
279
280         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
281         if (ret < 0) {
282                 dev_err(dev, "Error writing reg_pmu_lpw\n");
283                 return ret;
284         }
285
286         return 0;
287 }
288
289 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
290                                int val2)
291 {
292         int i;
293         int ret;
294
295         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
296                 if (bmc150_accel_samp_freq_table[i].val == val &&
297                     bmc150_accel_samp_freq_table[i].val2 == val2) {
298                         ret = regmap_write(data->regmap,
299                                 BMC150_ACCEL_REG_PMU_BW,
300                                 bmc150_accel_samp_freq_table[i].bw_bits);
301                         if (ret < 0)
302                                 return ret;
303
304                         data->bw_bits =
305                                 bmc150_accel_samp_freq_table[i].bw_bits;
306                         return 0;
307                 }
308         }
309
310         return -EINVAL;
311 }
312
313 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
314 {
315         struct device *dev = regmap_get_device(data->regmap);
316         int ret;
317
318         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
319                                         data->slope_thres);
320         if (ret < 0) {
321                 dev_err(dev, "Error writing reg_int_6\n");
322                 return ret;
323         }
324
325         ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
326                                  BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
327         if (ret < 0) {
328                 dev_err(dev, "Error updating reg_int_5\n");
329                 return ret;
330         }
331
332         dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
333
334         return ret;
335 }
336
337 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
338                                          bool state)
339 {
340         if (state)
341                 return bmc150_accel_update_slope(t->data);
342
343         return 0;
344 }
345
346 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
347                                int *val2)
348 {
349         int i;
350
351         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
352                 if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
353                         *val = bmc150_accel_samp_freq_table[i].val;
354                         *val2 = bmc150_accel_samp_freq_table[i].val2;
355                         return IIO_VAL_INT_PLUS_MICRO;
356                 }
357         }
358
359         return -EINVAL;
360 }
361
362 #ifdef CONFIG_PM
363 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
364 {
365         int i;
366
367         for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
368                 if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
369                         return bmc150_accel_sample_upd_time[i].msec;
370         }
371
372         return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
373 }
374
375 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
376 {
377         struct device *dev = regmap_get_device(data->regmap);
378         int ret;
379
380         if (on) {
381                 ret = pm_runtime_get_sync(dev);
382         } else {
383                 pm_runtime_mark_last_busy(dev);
384                 ret = pm_runtime_put_autosuspend(dev);
385         }
386
387         if (ret < 0) {
388                 dev_err(dev,
389                         "Failed: %s for %d\n", __func__, on);
390                 if (on)
391                         pm_runtime_put_noidle(dev);
392
393                 return ret;
394         }
395
396         return 0;
397 }
398 #else
399 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
400 {
401         return 0;
402 }
403 #endif
404
405 static const struct bmc150_accel_interrupt_info {
406         u8 map_reg;
407         u8 map_bitmask;
408         u8 en_reg;
409         u8 en_bitmask;
410 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
411         { /* data ready interrupt */
412                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
413                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
414                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
415                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
416         },
417         {  /* motion interrupt */
418                 .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
419                 .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
420                 .en_reg = BMC150_ACCEL_REG_INT_EN_0,
421                 .en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
422                         BMC150_ACCEL_INT_EN_BIT_SLP_Y |
423                         BMC150_ACCEL_INT_EN_BIT_SLP_Z
424         },
425         { /* fifo watermark interrupt */
426                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
427                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
428                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
429                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
430         },
431 };
432
433 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
434                                           struct bmc150_accel_data *data)
435 {
436         int i;
437
438         for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
439                 data->interrupts[i].info = &bmc150_accel_interrupts[i];
440 }
441
442 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
443                                       bool state)
444 {
445         struct device *dev = regmap_get_device(data->regmap);
446         struct bmc150_accel_interrupt *intr = &data->interrupts[i];
447         const struct bmc150_accel_interrupt_info *info = intr->info;
448         int ret;
449
450         if (state) {
451                 if (atomic_inc_return(&intr->users) > 1)
452                         return 0;
453         } else {
454                 if (atomic_dec_return(&intr->users) > 0)
455                         return 0;
456         }
457
458         /*
459          * We will expect the enable and disable to do operation in reverse
460          * order. This will happen here anyway, as our resume operation uses
461          * sync mode runtime pm calls. The suspend operation will be delayed
462          * by autosuspend delay.
463          * So the disable operation will still happen in reverse order of
464          * enable operation. When runtime pm is disabled the mode is always on,
465          * so sequence doesn't matter.
466          */
467         ret = bmc150_accel_set_power_state(data, state);
468         if (ret < 0)
469                 return ret;
470
471         /* map the interrupt to the appropriate pins */
472         ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
473                                  (state ? info->map_bitmask : 0));
474         if (ret < 0) {
475                 dev_err(dev, "Error updating reg_int_map\n");
476                 goto out_fix_power_state;
477         }
478
479         /* enable/disable the interrupt */
480         ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
481                                  (state ? info->en_bitmask : 0));
482         if (ret < 0) {
483                 dev_err(dev, "Error updating reg_int_en\n");
484                 goto out_fix_power_state;
485         }
486
487         return 0;
488
489 out_fix_power_state:
490         bmc150_accel_set_power_state(data, false);
491         return ret;
492 }
493
494 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
495 {
496         struct device *dev = regmap_get_device(data->regmap);
497         int ret, i;
498
499         for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
500                 if (data->chip_info->scale_table[i].scale == val) {
501                         ret = regmap_write(data->regmap,
502                                      BMC150_ACCEL_REG_PMU_RANGE,
503                                      data->chip_info->scale_table[i].reg_range);
504                         if (ret < 0) {
505                                 dev_err(dev, "Error writing pmu_range\n");
506                                 return ret;
507                         }
508
509                         data->range = data->chip_info->scale_table[i].reg_range;
510                         return 0;
511                 }
512         }
513
514         return -EINVAL;
515 }
516
517 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
518 {
519         struct device *dev = regmap_get_device(data->regmap);
520         int ret;
521         unsigned int value;
522
523         mutex_lock(&data->mutex);
524
525         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
526         if (ret < 0) {
527                 dev_err(dev, "Error reading reg_temp\n");
528                 mutex_unlock(&data->mutex);
529                 return ret;
530         }
531         *val = sign_extend32(value, 7);
532
533         mutex_unlock(&data->mutex);
534
535         return IIO_VAL_INT;
536 }
537
538 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
539                                  struct iio_chan_spec const *chan,
540                                  int *val)
541 {
542         struct device *dev = regmap_get_device(data->regmap);
543         int ret;
544         int axis = chan->scan_index;
545         __le16 raw_val;
546
547         mutex_lock(&data->mutex);
548         ret = bmc150_accel_set_power_state(data, true);
549         if (ret < 0) {
550                 mutex_unlock(&data->mutex);
551                 return ret;
552         }
553
554         ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
555                                &raw_val, sizeof(raw_val));
556         if (ret < 0) {
557                 dev_err(dev, "Error reading axis %d\n", axis);
558                 bmc150_accel_set_power_state(data, false);
559                 mutex_unlock(&data->mutex);
560                 return ret;
561         }
562         *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
563                              chan->scan_type.realbits - 1);
564         ret = bmc150_accel_set_power_state(data, false);
565         mutex_unlock(&data->mutex);
566         if (ret < 0)
567                 return ret;
568
569         return IIO_VAL_INT;
570 }
571
572 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
573                                  struct iio_chan_spec const *chan,
574                                  int *val, int *val2, long mask)
575 {
576         struct bmc150_accel_data *data = iio_priv(indio_dev);
577         int ret;
578
579         switch (mask) {
580         case IIO_CHAN_INFO_RAW:
581                 switch (chan->type) {
582                 case IIO_TEMP:
583                         return bmc150_accel_get_temp(data, val);
584                 case IIO_ACCEL:
585                         if (iio_buffer_enabled(indio_dev))
586                                 return -EBUSY;
587                         else
588                                 return bmc150_accel_get_axis(data, chan, val);
589                 default:
590                         return -EINVAL;
591                 }
592         case IIO_CHAN_INFO_OFFSET:
593                 if (chan->type == IIO_TEMP) {
594                         *val = BMC150_ACCEL_TEMP_CENTER_VAL;
595                         return IIO_VAL_INT;
596                 } else {
597                         return -EINVAL;
598                 }
599         case IIO_CHAN_INFO_SCALE:
600                 *val = 0;
601                 switch (chan->type) {
602                 case IIO_TEMP:
603                         *val2 = 500000;
604                         return IIO_VAL_INT_PLUS_MICRO;
605                 case IIO_ACCEL:
606                 {
607                         int i;
608                         const struct bmc150_scale_info *si;
609                         int st_size = ARRAY_SIZE(data->chip_info->scale_table);
610
611                         for (i = 0; i < st_size; ++i) {
612                                 si = &data->chip_info->scale_table[i];
613                                 if (si->reg_range == data->range) {
614                                         *val2 = si->scale;
615                                         return IIO_VAL_INT_PLUS_MICRO;
616                                 }
617                         }
618                         return -EINVAL;
619                 }
620                 default:
621                         return -EINVAL;
622                 }
623         case IIO_CHAN_INFO_SAMP_FREQ:
624                 mutex_lock(&data->mutex);
625                 ret = bmc150_accel_get_bw(data, val, val2);
626                 mutex_unlock(&data->mutex);
627                 return ret;
628         default:
629                 return -EINVAL;
630         }
631 }
632
633 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
634                                   struct iio_chan_spec const *chan,
635                                   int val, int val2, long mask)
636 {
637         struct bmc150_accel_data *data = iio_priv(indio_dev);
638         int ret;
639
640         switch (mask) {
641         case IIO_CHAN_INFO_SAMP_FREQ:
642                 mutex_lock(&data->mutex);
643                 ret = bmc150_accel_set_bw(data, val, val2);
644                 mutex_unlock(&data->mutex);
645                 break;
646         case IIO_CHAN_INFO_SCALE:
647                 if (val)
648                         return -EINVAL;
649
650                 mutex_lock(&data->mutex);
651                 ret = bmc150_accel_set_scale(data, val2);
652                 mutex_unlock(&data->mutex);
653                 return ret;
654         default:
655                 ret = -EINVAL;
656         }
657
658         return ret;
659 }
660
661 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
662                                    const struct iio_chan_spec *chan,
663                                    enum iio_event_type type,
664                                    enum iio_event_direction dir,
665                                    enum iio_event_info info,
666                                    int *val, int *val2)
667 {
668         struct bmc150_accel_data *data = iio_priv(indio_dev);
669
670         *val2 = 0;
671         switch (info) {
672         case IIO_EV_INFO_VALUE:
673                 *val = data->slope_thres;
674                 break;
675         case IIO_EV_INFO_PERIOD:
676                 *val = data->slope_dur;
677                 break;
678         default:
679                 return -EINVAL;
680         }
681
682         return IIO_VAL_INT;
683 }
684
685 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
686                                     const struct iio_chan_spec *chan,
687                                     enum iio_event_type type,
688                                     enum iio_event_direction dir,
689                                     enum iio_event_info info,
690                                     int val, int val2)
691 {
692         struct bmc150_accel_data *data = iio_priv(indio_dev);
693
694         if (data->ev_enable_state)
695                 return -EBUSY;
696
697         switch (info) {
698         case IIO_EV_INFO_VALUE:
699                 data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
700                 break;
701         case IIO_EV_INFO_PERIOD:
702                 data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
703                 break;
704         default:
705                 return -EINVAL;
706         }
707
708         return 0;
709 }
710
711 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
712                                           const struct iio_chan_spec *chan,
713                                           enum iio_event_type type,
714                                           enum iio_event_direction dir)
715 {
716         struct bmc150_accel_data *data = iio_priv(indio_dev);
717
718         return data->ev_enable_state;
719 }
720
721 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
722                                            const struct iio_chan_spec *chan,
723                                            enum iio_event_type type,
724                                            enum iio_event_direction dir,
725                                            int state)
726 {
727         struct bmc150_accel_data *data = iio_priv(indio_dev);
728         int ret;
729
730         if (state == data->ev_enable_state)
731                 return 0;
732
733         mutex_lock(&data->mutex);
734
735         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
736                                          state);
737         if (ret < 0) {
738                 mutex_unlock(&data->mutex);
739                 return ret;
740         }
741
742         data->ev_enable_state = state;
743         mutex_unlock(&data->mutex);
744
745         return 0;
746 }
747
748 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
749                                          struct iio_trigger *trig)
750 {
751         struct bmc150_accel_data *data = iio_priv(indio_dev);
752         int i;
753
754         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
755                 if (data->triggers[i].indio_trig == trig)
756                         return 0;
757         }
758
759         return -EINVAL;
760 }
761
762 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
763                                                struct device_attribute *attr,
764                                                char *buf)
765 {
766         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
767         struct bmc150_accel_data *data = iio_priv(indio_dev);
768         int wm;
769
770         mutex_lock(&data->mutex);
771         wm = data->watermark;
772         mutex_unlock(&data->mutex);
773
774         return sprintf(buf, "%d\n", wm);
775 }
776
777 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
778                                            struct device_attribute *attr,
779                                            char *buf)
780 {
781         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
782         struct bmc150_accel_data *data = iio_priv(indio_dev);
783         bool state;
784
785         mutex_lock(&data->mutex);
786         state = data->fifo_mode;
787         mutex_unlock(&data->mutex);
788
789         return sprintf(buf, "%d\n", state);
790 }
791
792 static const struct iio_mount_matrix *
793 bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
794                                 const struct iio_chan_spec *chan)
795 {
796         struct bmc150_accel_data *data = iio_priv(indio_dev);
797
798         return &data->orientation;
799 }
800
801 static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
802         IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
803         { }
804 };
805
806 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
807 static IIO_CONST_ATTR(hwfifo_watermark_max,
808                       __stringify(BMC150_ACCEL_FIFO_LENGTH));
809 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
810                        bmc150_accel_get_fifo_state, NULL, 0);
811 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
812                        bmc150_accel_get_fifo_watermark, NULL, 0);
813
814 static const struct attribute *bmc150_accel_fifo_attributes[] = {
815         &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
816         &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
817         &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
818         &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
819         NULL,
820 };
821
822 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
823 {
824         struct bmc150_accel_data *data = iio_priv(indio_dev);
825
826         if (val > BMC150_ACCEL_FIFO_LENGTH)
827                 val = BMC150_ACCEL_FIFO_LENGTH;
828
829         mutex_lock(&data->mutex);
830         data->watermark = val;
831         mutex_unlock(&data->mutex);
832
833         return 0;
834 }
835
836 /*
837  * We must read at least one full frame in one burst, otherwise the rest of the
838  * frame data is discarded.
839  */
840 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
841                                       char *buffer, int samples)
842 {
843         struct device *dev = regmap_get_device(data->regmap);
844         int sample_length = 3 * 2;
845         int ret;
846         int total_length = samples * sample_length;
847
848         ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
849                               buffer, total_length);
850         if (ret)
851                 dev_err(dev,
852                         "Error transferring data from fifo: %d\n", ret);
853
854         return ret;
855 }
856
857 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
858                                      unsigned samples, bool irq)
859 {
860         struct bmc150_accel_data *data = iio_priv(indio_dev);
861         struct device *dev = regmap_get_device(data->regmap);
862         int ret, i;
863         u8 count;
864         u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
865         int64_t tstamp;
866         uint64_t sample_period;
867         unsigned int val;
868
869         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
870         if (ret < 0) {
871                 dev_err(dev, "Error reading reg_fifo_status\n");
872                 return ret;
873         }
874
875         count = val & 0x7F;
876
877         if (!count)
878                 return 0;
879
880         /*
881          * If we getting called from IRQ handler we know the stored timestamp is
882          * fairly accurate for the last stored sample. Otherwise, if we are
883          * called as a result of a read operation from userspace and hence
884          * before the watermark interrupt was triggered, take a timestamp
885          * now. We can fall anywhere in between two samples so the error in this
886          * case is at most one sample period.
887          */
888         if (!irq) {
889                 data->old_timestamp = data->timestamp;
890                 data->timestamp = iio_get_time_ns(indio_dev);
891         }
892
893         /*
894          * Approximate timestamps for each of the sample based on the sampling
895          * frequency, timestamp for last sample and number of samples.
896          *
897          * Note that we can't use the current bandwidth settings to compute the
898          * sample period because the sample rate varies with the device
899          * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
900          * small variation adds when we store a large number of samples and
901          * creates significant jitter between the last and first samples in
902          * different batches (e.g. 32ms vs 21ms).
903          *
904          * To avoid this issue we compute the actual sample period ourselves
905          * based on the timestamp delta between the last two flush operations.
906          */
907         sample_period = (data->timestamp - data->old_timestamp);
908         do_div(sample_period, count);
909         tstamp = data->timestamp - (count - 1) * sample_period;
910
911         if (samples && count > samples)
912                 count = samples;
913
914         ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
915         if (ret)
916                 return ret;
917
918         /*
919          * Ideally we want the IIO core to handle the demux when running in fifo
920          * mode but not when running in triggered buffer mode. Unfortunately
921          * this does not seem to be possible, so stick with driver demux for
922          * now.
923          */
924         for (i = 0; i < count; i++) {
925                 u16 sample[8];
926                 int j, bit;
927
928                 j = 0;
929                 for_each_set_bit(bit, indio_dev->active_scan_mask,
930                                  indio_dev->masklength)
931                         memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
932
933                 iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
934
935                 tstamp += sample_period;
936         }
937
938         return count;
939 }
940
941 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
942 {
943         struct bmc150_accel_data *data = iio_priv(indio_dev);
944         int ret;
945
946         mutex_lock(&data->mutex);
947         ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
948         mutex_unlock(&data->mutex);
949
950         return ret;
951 }
952
953 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
954                 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
955
956 static struct attribute *bmc150_accel_attributes[] = {
957         &iio_const_attr_sampling_frequency_available.dev_attr.attr,
958         NULL,
959 };
960
961 static const struct attribute_group bmc150_accel_attrs_group = {
962         .attrs = bmc150_accel_attributes,
963 };
964
965 static const struct iio_event_spec bmc150_accel_event = {
966                 .type = IIO_EV_TYPE_ROC,
967                 .dir = IIO_EV_DIR_EITHER,
968                 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
969                                  BIT(IIO_EV_INFO_ENABLE) |
970                                  BIT(IIO_EV_INFO_PERIOD)
971 };
972
973 #define BMC150_ACCEL_CHANNEL(_axis, bits) {                             \
974         .type = IIO_ACCEL,                                              \
975         .modified = 1,                                                  \
976         .channel2 = IIO_MOD_##_axis,                                    \
977         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),                   \
978         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |          \
979                                 BIT(IIO_CHAN_INFO_SAMP_FREQ),           \
980         .scan_index = AXIS_##_axis,                                     \
981         .scan_type = {                                                  \
982                 .sign = 's',                                            \
983                 .realbits = (bits),                                     \
984                 .storagebits = 16,                                      \
985                 .shift = 16 - (bits),                                   \
986                 .endianness = IIO_LE,                                   \
987         },                                                              \
988         .ext_info = bmc150_accel_ext_info,                              \
989         .event_spec = &bmc150_accel_event,                              \
990         .num_event_specs = 1                                            \
991 }
992
993 #define BMC150_ACCEL_CHANNELS(bits) {                                   \
994         {                                                               \
995                 .type = IIO_TEMP,                                       \
996                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |          \
997                                       BIT(IIO_CHAN_INFO_SCALE) |        \
998                                       BIT(IIO_CHAN_INFO_OFFSET),        \
999                 .scan_index = -1,                                       \
1000         },                                                              \
1001         BMC150_ACCEL_CHANNEL(X, bits),                                  \
1002         BMC150_ACCEL_CHANNEL(Y, bits),                                  \
1003         BMC150_ACCEL_CHANNEL(Z, bits),                                  \
1004         IIO_CHAN_SOFT_TIMESTAMP(3),                                     \
1005 }
1006
1007 static const struct iio_chan_spec bma222e_accel_channels[] =
1008         BMC150_ACCEL_CHANNELS(8);
1009 static const struct iio_chan_spec bma250e_accel_channels[] =
1010         BMC150_ACCEL_CHANNELS(10);
1011 static const struct iio_chan_spec bmc150_accel_channels[] =
1012         BMC150_ACCEL_CHANNELS(12);
1013 static const struct iio_chan_spec bma280_accel_channels[] =
1014         BMC150_ACCEL_CHANNELS(14);
1015
1016 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1017         [bmc150] = {
1018                 .name = "BMC150A",
1019                 .chip_id = 0xFA,
1020                 .channels = bmc150_accel_channels,
1021                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1022                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1023                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1024                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1025                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1026         },
1027         [bmi055] = {
1028                 .name = "BMI055A",
1029                 .chip_id = 0xFA,
1030                 .channels = bmc150_accel_channels,
1031                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1032                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1033                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1034                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1035                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1036         },
1037         [bma255] = {
1038                 .name = "BMA0255",
1039                 .chip_id = 0xFA,
1040                 .channels = bmc150_accel_channels,
1041                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1042                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1043                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1044                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1045                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1046         },
1047         [bma250e] = {
1048                 .name = "BMA250E",
1049                 .chip_id = 0xF9,
1050                 .channels = bma250e_accel_channels,
1051                 .num_channels = ARRAY_SIZE(bma250e_accel_channels),
1052                 .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1053                                  {76590, BMC150_ACCEL_DEF_RANGE_4G},
1054                                  {153277, BMC150_ACCEL_DEF_RANGE_8G},
1055                                  {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1056         },
1057         [bma222e] = {
1058                 .name = "BMA222E",
1059                 .chip_id = 0xF8,
1060                 .channels = bma222e_accel_channels,
1061                 .num_channels = ARRAY_SIZE(bma222e_accel_channels),
1062                 .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1063                                  {306457, BMC150_ACCEL_DEF_RANGE_4G},
1064                                  {612915, BMC150_ACCEL_DEF_RANGE_8G},
1065                                  {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1066         },
1067         [bma280] = {
1068                 .name = "BMA0280",
1069                 .chip_id = 0xFB,
1070                 .channels = bma280_accel_channels,
1071                 .num_channels = ARRAY_SIZE(bma280_accel_channels),
1072                 .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1073                                  {4785, BMC150_ACCEL_DEF_RANGE_4G},
1074                                  {9581, BMC150_ACCEL_DEF_RANGE_8G},
1075                                  {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1076         },
1077 };
1078
1079 static const struct iio_info bmc150_accel_info = {
1080         .attrs                  = &bmc150_accel_attrs_group,
1081         .read_raw               = bmc150_accel_read_raw,
1082         .write_raw              = bmc150_accel_write_raw,
1083         .read_event_value       = bmc150_accel_read_event,
1084         .write_event_value      = bmc150_accel_write_event,
1085         .write_event_config     = bmc150_accel_write_event_config,
1086         .read_event_config      = bmc150_accel_read_event_config,
1087 };
1088
1089 static const struct iio_info bmc150_accel_info_fifo = {
1090         .attrs                  = &bmc150_accel_attrs_group,
1091         .read_raw               = bmc150_accel_read_raw,
1092         .write_raw              = bmc150_accel_write_raw,
1093         .read_event_value       = bmc150_accel_read_event,
1094         .write_event_value      = bmc150_accel_write_event,
1095         .write_event_config     = bmc150_accel_write_event_config,
1096         .read_event_config      = bmc150_accel_read_event_config,
1097         .validate_trigger       = bmc150_accel_validate_trigger,
1098         .hwfifo_set_watermark   = bmc150_accel_set_watermark,
1099         .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
1100 };
1101
1102 static const unsigned long bmc150_accel_scan_masks[] = {
1103                                         BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1104                                         0};
1105
1106 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1107 {
1108         struct iio_poll_func *pf = p;
1109         struct iio_dev *indio_dev = pf->indio_dev;
1110         struct bmc150_accel_data *data = iio_priv(indio_dev);
1111         int ret;
1112
1113         mutex_lock(&data->mutex);
1114         ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1115                                data->buffer, AXIS_MAX * 2);
1116         mutex_unlock(&data->mutex);
1117         if (ret < 0)
1118                 goto err_read;
1119
1120         iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1121                                            pf->timestamp);
1122 err_read:
1123         iio_trigger_notify_done(indio_dev->trig);
1124
1125         return IRQ_HANDLED;
1126 }
1127
1128 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1129 {
1130         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1131         struct bmc150_accel_data *data = t->data;
1132         struct device *dev = regmap_get_device(data->regmap);
1133         int ret;
1134
1135         /* new data interrupts don't need ack */
1136         if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1137                 return 0;
1138
1139         mutex_lock(&data->mutex);
1140         /* clear any latched interrupt */
1141         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1142                            BMC150_ACCEL_INT_MODE_LATCH_INT |
1143                            BMC150_ACCEL_INT_MODE_LATCH_RESET);
1144         mutex_unlock(&data->mutex);
1145         if (ret < 0) {
1146                 dev_err(dev, "Error writing reg_int_rst_latch\n");
1147                 return ret;
1148         }
1149
1150         return 0;
1151 }
1152
1153 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1154                                           bool state)
1155 {
1156         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1157         struct bmc150_accel_data *data = t->data;
1158         int ret;
1159
1160         mutex_lock(&data->mutex);
1161
1162         if (t->enabled == state) {
1163                 mutex_unlock(&data->mutex);
1164                 return 0;
1165         }
1166
1167         if (t->setup) {
1168                 ret = t->setup(t, state);
1169                 if (ret < 0) {
1170                         mutex_unlock(&data->mutex);
1171                         return ret;
1172                 }
1173         }
1174
1175         ret = bmc150_accel_set_interrupt(data, t->intr, state);
1176         if (ret < 0) {
1177                 mutex_unlock(&data->mutex);
1178                 return ret;
1179         }
1180
1181         t->enabled = state;
1182
1183         mutex_unlock(&data->mutex);
1184
1185         return ret;
1186 }
1187
1188 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1189         .set_trigger_state = bmc150_accel_trigger_set_state,
1190         .try_reenable = bmc150_accel_trig_try_reen,
1191 };
1192
1193 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1194 {
1195         struct bmc150_accel_data *data = iio_priv(indio_dev);
1196         struct device *dev = regmap_get_device(data->regmap);
1197         int dir;
1198         int ret;
1199         unsigned int val;
1200
1201         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1202         if (ret < 0) {
1203                 dev_err(dev, "Error reading reg_int_status_2\n");
1204                 return ret;
1205         }
1206
1207         if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1208                 dir = IIO_EV_DIR_FALLING;
1209         else
1210                 dir = IIO_EV_DIR_RISING;
1211
1212         if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1213                 iio_push_event(indio_dev,
1214                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1215                                                   0,
1216                                                   IIO_MOD_X,
1217                                                   IIO_EV_TYPE_ROC,
1218                                                   dir),
1219                                data->timestamp);
1220
1221         if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1222                 iio_push_event(indio_dev,
1223                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1224                                                   0,
1225                                                   IIO_MOD_Y,
1226                                                   IIO_EV_TYPE_ROC,
1227                                                   dir),
1228                                data->timestamp);
1229
1230         if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1231                 iio_push_event(indio_dev,
1232                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1233                                                   0,
1234                                                   IIO_MOD_Z,
1235                                                   IIO_EV_TYPE_ROC,
1236                                                   dir),
1237                                data->timestamp);
1238
1239         return ret;
1240 }
1241
1242 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1243 {
1244         struct iio_dev *indio_dev = private;
1245         struct bmc150_accel_data *data = iio_priv(indio_dev);
1246         struct device *dev = regmap_get_device(data->regmap);
1247         bool ack = false;
1248         int ret;
1249
1250         mutex_lock(&data->mutex);
1251
1252         if (data->fifo_mode) {
1253                 ret = __bmc150_accel_fifo_flush(indio_dev,
1254                                                 BMC150_ACCEL_FIFO_LENGTH, true);
1255                 if (ret > 0)
1256                         ack = true;
1257         }
1258
1259         if (data->ev_enable_state) {
1260                 ret = bmc150_accel_handle_roc_event(indio_dev);
1261                 if (ret > 0)
1262                         ack = true;
1263         }
1264
1265         if (ack) {
1266                 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1267                                    BMC150_ACCEL_INT_MODE_LATCH_INT |
1268                                    BMC150_ACCEL_INT_MODE_LATCH_RESET);
1269                 if (ret)
1270                         dev_err(dev, "Error writing reg_int_rst_latch\n");
1271
1272                 ret = IRQ_HANDLED;
1273         } else {
1274                 ret = IRQ_NONE;
1275         }
1276
1277         mutex_unlock(&data->mutex);
1278
1279         return ret;
1280 }
1281
1282 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1283 {
1284         struct iio_dev *indio_dev = private;
1285         struct bmc150_accel_data *data = iio_priv(indio_dev);
1286         bool ack = false;
1287         int i;
1288
1289         data->old_timestamp = data->timestamp;
1290         data->timestamp = iio_get_time_ns(indio_dev);
1291
1292         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1293                 if (data->triggers[i].enabled) {
1294                         iio_trigger_poll(data->triggers[i].indio_trig);
1295                         ack = true;
1296                         break;
1297                 }
1298         }
1299
1300         if (data->ev_enable_state || data->fifo_mode)
1301                 return IRQ_WAKE_THREAD;
1302
1303         if (ack)
1304                 return IRQ_HANDLED;
1305
1306         return IRQ_NONE;
1307 }
1308
1309 static const struct {
1310         int intr;
1311         const char *name;
1312         int (*setup)(struct bmc150_accel_trigger *t, bool state);
1313 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1314         {
1315                 .intr = 0,
1316                 .name = "%s-dev%d",
1317         },
1318         {
1319                 .intr = 1,
1320                 .name = "%s-any-motion-dev%d",
1321                 .setup = bmc150_accel_any_motion_setup,
1322         },
1323 };
1324
1325 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1326                                              int from)
1327 {
1328         int i;
1329
1330         for (i = from; i >= 0; i--) {
1331                 if (data->triggers[i].indio_trig) {
1332                         iio_trigger_unregister(data->triggers[i].indio_trig);
1333                         data->triggers[i].indio_trig = NULL;
1334                 }
1335         }
1336 }
1337
1338 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1339                                        struct bmc150_accel_data *data)
1340 {
1341         struct device *dev = regmap_get_device(data->regmap);
1342         int i, ret;
1343
1344         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1345                 struct bmc150_accel_trigger *t = &data->triggers[i];
1346
1347                 t->indio_trig = devm_iio_trigger_alloc(dev,
1348                                         bmc150_accel_triggers[i].name,
1349                                                        indio_dev->name,
1350                                                        indio_dev->id);
1351                 if (!t->indio_trig) {
1352                         ret = -ENOMEM;
1353                         break;
1354                 }
1355
1356                 t->indio_trig->dev.parent = dev;
1357                 t->indio_trig->ops = &bmc150_accel_trigger_ops;
1358                 t->intr = bmc150_accel_triggers[i].intr;
1359                 t->data = data;
1360                 t->setup = bmc150_accel_triggers[i].setup;
1361                 iio_trigger_set_drvdata(t->indio_trig, t);
1362
1363                 ret = iio_trigger_register(t->indio_trig);
1364                 if (ret)
1365                         break;
1366         }
1367
1368         if (ret)
1369                 bmc150_accel_unregister_triggers(data, i - 1);
1370
1371         return ret;
1372 }
1373
1374 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1375 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1376 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1377
1378 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1379 {
1380         struct device *dev = regmap_get_device(data->regmap);
1381         u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1382         int ret;
1383
1384         ret = regmap_write(data->regmap, reg, data->fifo_mode);
1385         if (ret < 0) {
1386                 dev_err(dev, "Error writing reg_fifo_config1\n");
1387                 return ret;
1388         }
1389
1390         if (!data->fifo_mode)
1391                 return 0;
1392
1393         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1394                            data->watermark);
1395         if (ret < 0)
1396                 dev_err(dev, "Error writing reg_fifo_config0\n");
1397
1398         return ret;
1399 }
1400
1401 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1402 {
1403         struct bmc150_accel_data *data = iio_priv(indio_dev);
1404
1405         return bmc150_accel_set_power_state(data, true);
1406 }
1407
1408 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1409 {
1410         struct bmc150_accel_data *data = iio_priv(indio_dev);
1411         int ret = 0;
1412
1413         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1414                 return iio_triggered_buffer_postenable(indio_dev);
1415
1416         mutex_lock(&data->mutex);
1417
1418         if (!data->watermark)
1419                 goto out;
1420
1421         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1422                                          true);
1423         if (ret)
1424                 goto out;
1425
1426         data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1427
1428         ret = bmc150_accel_fifo_set_mode(data);
1429         if (ret) {
1430                 data->fifo_mode = 0;
1431                 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1432                                            false);
1433         }
1434
1435 out:
1436         mutex_unlock(&data->mutex);
1437
1438         return ret;
1439 }
1440
1441 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1442 {
1443         struct bmc150_accel_data *data = iio_priv(indio_dev);
1444
1445         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1446                 return iio_triggered_buffer_predisable(indio_dev);
1447
1448         mutex_lock(&data->mutex);
1449
1450         if (!data->fifo_mode)
1451                 goto out;
1452
1453         bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1454         __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1455         data->fifo_mode = 0;
1456         bmc150_accel_fifo_set_mode(data);
1457
1458 out:
1459         mutex_unlock(&data->mutex);
1460
1461         return 0;
1462 }
1463
1464 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1465 {
1466         struct bmc150_accel_data *data = iio_priv(indio_dev);
1467
1468         return bmc150_accel_set_power_state(data, false);
1469 }
1470
1471 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1472         .preenable = bmc150_accel_buffer_preenable,
1473         .postenable = bmc150_accel_buffer_postenable,
1474         .predisable = bmc150_accel_buffer_predisable,
1475         .postdisable = bmc150_accel_buffer_postdisable,
1476 };
1477
1478 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1479 {
1480         struct device *dev = regmap_get_device(data->regmap);
1481         int ret, i;
1482         unsigned int val;
1483
1484         /*
1485          * Reset chip to get it in a known good state. A delay of 1.8ms after
1486          * reset is required according to the data sheets of supported chips.
1487          */
1488         regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1489                      BMC150_ACCEL_RESET_VAL);
1490         usleep_range(1800, 2500);
1491
1492         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1493         if (ret < 0) {
1494                 dev_err(dev, "Error: Reading chip id\n");
1495                 return ret;
1496         }
1497
1498         dev_dbg(dev, "Chip Id %x\n", val);
1499         for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1500                 if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1501                         data->chip_info = &bmc150_accel_chip_info_tbl[i];
1502                         break;
1503                 }
1504         }
1505
1506         if (!data->chip_info) {
1507                 dev_err(dev, "Invalid chip %x\n", val);
1508                 return -ENODEV;
1509         }
1510
1511         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1512         if (ret < 0)
1513                 return ret;
1514
1515         /* Set Bandwidth */
1516         ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1517         if (ret < 0)
1518                 return ret;
1519
1520         /* Set Default Range */
1521         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1522                            BMC150_ACCEL_DEF_RANGE_4G);
1523         if (ret < 0) {
1524                 dev_err(dev, "Error writing reg_pmu_range\n");
1525                 return ret;
1526         }
1527
1528         data->range = BMC150_ACCEL_DEF_RANGE_4G;
1529
1530         /* Set default slope duration and thresholds */
1531         data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1532         data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1533         ret = bmc150_accel_update_slope(data);
1534         if (ret < 0)
1535                 return ret;
1536
1537         /* Set default as latched interrupts */
1538         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1539                            BMC150_ACCEL_INT_MODE_LATCH_INT |
1540                            BMC150_ACCEL_INT_MODE_LATCH_RESET);
1541         if (ret < 0) {
1542                 dev_err(dev, "Error writing reg_int_rst_latch\n");
1543                 return ret;
1544         }
1545
1546         return 0;
1547 }
1548
1549 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1550                             const char *name, bool block_supported)
1551 {
1552         struct bmc150_accel_data *data;
1553         struct iio_dev *indio_dev;
1554         int ret;
1555
1556         indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1557         if (!indio_dev)
1558                 return -ENOMEM;
1559
1560         data = iio_priv(indio_dev);
1561         dev_set_drvdata(dev, indio_dev);
1562         data->irq = irq;
1563
1564         data->regmap = regmap;
1565
1566         ret = iio_read_mount_matrix(dev, "mount-matrix",
1567                                      &data->orientation);
1568         if (ret)
1569                 return ret;
1570
1571         ret = bmc150_accel_chip_init(data);
1572         if (ret < 0)
1573                 return ret;
1574
1575         mutex_init(&data->mutex);
1576
1577         indio_dev->dev.parent = dev;
1578         indio_dev->channels = data->chip_info->channels;
1579         indio_dev->num_channels = data->chip_info->num_channels;
1580         indio_dev->name = name ? name : data->chip_info->name;
1581         indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1582         indio_dev->modes = INDIO_DIRECT_MODE;
1583         indio_dev->info = &bmc150_accel_info;
1584
1585         ret = iio_triggered_buffer_setup(indio_dev,
1586                                          &iio_pollfunc_store_time,
1587                                          bmc150_accel_trigger_handler,
1588                                          &bmc150_accel_buffer_ops);
1589         if (ret < 0) {
1590                 dev_err(dev, "Failed: iio triggered buffer setup\n");
1591                 return ret;
1592         }
1593
1594         if (data->irq > 0) {
1595                 ret = devm_request_threaded_irq(
1596                                                 dev, data->irq,
1597                                                 bmc150_accel_irq_handler,
1598                                                 bmc150_accel_irq_thread_handler,
1599                                                 IRQF_TRIGGER_RISING,
1600                                                 BMC150_ACCEL_IRQ_NAME,
1601                                                 indio_dev);
1602                 if (ret)
1603                         goto err_buffer_cleanup;
1604
1605                 /*
1606                  * Set latched mode interrupt. While certain interrupts are
1607                  * non-latched regardless of this settings (e.g. new data) we
1608                  * want to use latch mode when we can to prevent interrupt
1609                  * flooding.
1610                  */
1611                 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1612                                    BMC150_ACCEL_INT_MODE_LATCH_RESET);
1613                 if (ret < 0) {
1614                         dev_err(dev, "Error writing reg_int_rst_latch\n");
1615                         goto err_buffer_cleanup;
1616                 }
1617
1618                 bmc150_accel_interrupts_setup(indio_dev, data);
1619
1620                 ret = bmc150_accel_triggers_setup(indio_dev, data);
1621                 if (ret)
1622                         goto err_buffer_cleanup;
1623
1624                 if (block_supported) {
1625                         indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1626                         indio_dev->info = &bmc150_accel_info_fifo;
1627                         iio_buffer_set_attrs(indio_dev->buffer,
1628                                              bmc150_accel_fifo_attributes);
1629                 }
1630         }
1631
1632         ret = pm_runtime_set_active(dev);
1633         if (ret)
1634                 goto err_trigger_unregister;
1635
1636         pm_runtime_enable(dev);
1637         pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1638         pm_runtime_use_autosuspend(dev);
1639
1640         ret = iio_device_register(indio_dev);
1641         if (ret < 0) {
1642                 dev_err(dev, "Unable to register iio device\n");
1643                 goto err_trigger_unregister;
1644         }
1645
1646         return 0;
1647
1648 err_trigger_unregister:
1649         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1650 err_buffer_cleanup:
1651         iio_triggered_buffer_cleanup(indio_dev);
1652
1653         return ret;
1654 }
1655 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1656
1657 int bmc150_accel_core_remove(struct device *dev)
1658 {
1659         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1660         struct bmc150_accel_data *data = iio_priv(indio_dev);
1661
1662         iio_device_unregister(indio_dev);
1663
1664         pm_runtime_disable(dev);
1665         pm_runtime_set_suspended(dev);
1666         pm_runtime_put_noidle(dev);
1667
1668         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1669
1670         iio_triggered_buffer_cleanup(indio_dev);
1671
1672         mutex_lock(&data->mutex);
1673         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1674         mutex_unlock(&data->mutex);
1675
1676         return 0;
1677 }
1678 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1679
1680 #ifdef CONFIG_PM_SLEEP
1681 static int bmc150_accel_suspend(struct device *dev)
1682 {
1683         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1684         struct bmc150_accel_data *data = iio_priv(indio_dev);
1685
1686         mutex_lock(&data->mutex);
1687         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1688         mutex_unlock(&data->mutex);
1689
1690         return 0;
1691 }
1692
1693 static int bmc150_accel_resume(struct device *dev)
1694 {
1695         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1696         struct bmc150_accel_data *data = iio_priv(indio_dev);
1697
1698         mutex_lock(&data->mutex);
1699         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1700         bmc150_accel_fifo_set_mode(data);
1701         mutex_unlock(&data->mutex);
1702
1703         return 0;
1704 }
1705 #endif
1706
1707 #ifdef CONFIG_PM
1708 static int bmc150_accel_runtime_suspend(struct device *dev)
1709 {
1710         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1711         struct bmc150_accel_data *data = iio_priv(indio_dev);
1712         int ret;
1713
1714         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1715         if (ret < 0)
1716                 return -EAGAIN;
1717
1718         return 0;
1719 }
1720
1721 static int bmc150_accel_runtime_resume(struct device *dev)
1722 {
1723         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1724         struct bmc150_accel_data *data = iio_priv(indio_dev);
1725         int ret;
1726         int sleep_val;
1727
1728         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1729         if (ret < 0)
1730                 return ret;
1731         ret = bmc150_accel_fifo_set_mode(data);
1732         if (ret < 0)
1733                 return ret;
1734
1735         sleep_val = bmc150_accel_get_startup_times(data);
1736         if (sleep_val < 20)
1737                 usleep_range(sleep_val * 1000, 20000);
1738         else
1739                 msleep_interruptible(sleep_val);
1740
1741         return 0;
1742 }
1743 #endif
1744
1745 const struct dev_pm_ops bmc150_accel_pm_ops = {
1746         SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1747         SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1748                            bmc150_accel_runtime_resume, NULL)
1749 };
1750 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1751
1752 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1753 MODULE_LICENSE("GPL v2");
1754 MODULE_DESCRIPTION("BMC150 accelerometer driver");