]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/infiniband/core/verbs.c
7a69e4bbe87704bca440edbfa974a87b7cf6c30e
[linux.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53
54 #include "core_priv.h"
55
56 static int ib_resolve_eth_dmac(struct ib_device *device,
57                                struct rdma_ah_attr *ah_attr);
58
59 static const char * const ib_events[] = {
60         [IB_EVENT_CQ_ERR]               = "CQ error",
61         [IB_EVENT_QP_FATAL]             = "QP fatal error",
62         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
63         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
64         [IB_EVENT_COMM_EST]             = "communication established",
65         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
66         [IB_EVENT_PATH_MIG]             = "path migration successful",
67         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
68         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
69         [IB_EVENT_PORT_ACTIVE]          = "port active",
70         [IB_EVENT_PORT_ERR]             = "port error",
71         [IB_EVENT_LID_CHANGE]           = "LID change",
72         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
73         [IB_EVENT_SM_CHANGE]            = "SM change",
74         [IB_EVENT_SRQ_ERR]              = "SRQ error",
75         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
76         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
77         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
78         [IB_EVENT_GID_CHANGE]           = "GID changed",
79 };
80
81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
82 {
83         size_t index = event;
84
85         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
86                         ib_events[index] : "unrecognized event";
87 }
88 EXPORT_SYMBOL(ib_event_msg);
89
90 static const char * const wc_statuses[] = {
91         [IB_WC_SUCCESS]                 = "success",
92         [IB_WC_LOC_LEN_ERR]             = "local length error",
93         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
94         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
95         [IB_WC_LOC_PROT_ERR]            = "local protection error",
96         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
97         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
98         [IB_WC_BAD_RESP_ERR]            = "bad response error",
99         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
100         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
101         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
102         [IB_WC_REM_OP_ERR]              = "remote operation error",
103         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
104         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
105         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
106         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
107         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
108         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
109         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
110         [IB_WC_FATAL_ERR]               = "fatal error",
111         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
112         [IB_WC_GENERAL_ERR]             = "general error",
113 };
114
115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
116 {
117         size_t index = status;
118
119         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
120                         wc_statuses[index] : "unrecognized status";
121 }
122 EXPORT_SYMBOL(ib_wc_status_msg);
123
124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
125 {
126         switch (rate) {
127         case IB_RATE_2_5_GBPS: return   1;
128         case IB_RATE_5_GBPS:   return   2;
129         case IB_RATE_10_GBPS:  return   4;
130         case IB_RATE_20_GBPS:  return   8;
131         case IB_RATE_30_GBPS:  return  12;
132         case IB_RATE_40_GBPS:  return  16;
133         case IB_RATE_60_GBPS:  return  24;
134         case IB_RATE_80_GBPS:  return  32;
135         case IB_RATE_120_GBPS: return  48;
136         case IB_RATE_14_GBPS:  return   6;
137         case IB_RATE_56_GBPS:  return  22;
138         case IB_RATE_112_GBPS: return  45;
139         case IB_RATE_168_GBPS: return  67;
140         case IB_RATE_25_GBPS:  return  10;
141         case IB_RATE_100_GBPS: return  40;
142         case IB_RATE_200_GBPS: return  80;
143         case IB_RATE_300_GBPS: return 120;
144         case IB_RATE_28_GBPS:  return  11;
145         case IB_RATE_50_GBPS:  return  20;
146         case IB_RATE_400_GBPS: return 160;
147         case IB_RATE_600_GBPS: return 240;
148         default:               return  -1;
149         }
150 }
151 EXPORT_SYMBOL(ib_rate_to_mult);
152
153 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
154 {
155         switch (mult) {
156         case 1:   return IB_RATE_2_5_GBPS;
157         case 2:   return IB_RATE_5_GBPS;
158         case 4:   return IB_RATE_10_GBPS;
159         case 8:   return IB_RATE_20_GBPS;
160         case 12:  return IB_RATE_30_GBPS;
161         case 16:  return IB_RATE_40_GBPS;
162         case 24:  return IB_RATE_60_GBPS;
163         case 32:  return IB_RATE_80_GBPS;
164         case 48:  return IB_RATE_120_GBPS;
165         case 6:   return IB_RATE_14_GBPS;
166         case 22:  return IB_RATE_56_GBPS;
167         case 45:  return IB_RATE_112_GBPS;
168         case 67:  return IB_RATE_168_GBPS;
169         case 10:  return IB_RATE_25_GBPS;
170         case 40:  return IB_RATE_100_GBPS;
171         case 80:  return IB_RATE_200_GBPS;
172         case 120: return IB_RATE_300_GBPS;
173         case 11:  return IB_RATE_28_GBPS;
174         case 20:  return IB_RATE_50_GBPS;
175         case 160: return IB_RATE_400_GBPS;
176         case 240: return IB_RATE_600_GBPS;
177         default:  return IB_RATE_PORT_CURRENT;
178         }
179 }
180 EXPORT_SYMBOL(mult_to_ib_rate);
181
182 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
183 {
184         switch (rate) {
185         case IB_RATE_2_5_GBPS: return 2500;
186         case IB_RATE_5_GBPS:   return 5000;
187         case IB_RATE_10_GBPS:  return 10000;
188         case IB_RATE_20_GBPS:  return 20000;
189         case IB_RATE_30_GBPS:  return 30000;
190         case IB_RATE_40_GBPS:  return 40000;
191         case IB_RATE_60_GBPS:  return 60000;
192         case IB_RATE_80_GBPS:  return 80000;
193         case IB_RATE_120_GBPS: return 120000;
194         case IB_RATE_14_GBPS:  return 14062;
195         case IB_RATE_56_GBPS:  return 56250;
196         case IB_RATE_112_GBPS: return 112500;
197         case IB_RATE_168_GBPS: return 168750;
198         case IB_RATE_25_GBPS:  return 25781;
199         case IB_RATE_100_GBPS: return 103125;
200         case IB_RATE_200_GBPS: return 206250;
201         case IB_RATE_300_GBPS: return 309375;
202         case IB_RATE_28_GBPS:  return 28125;
203         case IB_RATE_50_GBPS:  return 53125;
204         case IB_RATE_400_GBPS: return 425000;
205         case IB_RATE_600_GBPS: return 637500;
206         default:               return -1;
207         }
208 }
209 EXPORT_SYMBOL(ib_rate_to_mbps);
210
211 __attribute_const__ enum rdma_transport_type
212 rdma_node_get_transport(unsigned int node_type)
213 {
214
215         if (node_type == RDMA_NODE_USNIC)
216                 return RDMA_TRANSPORT_USNIC;
217         if (node_type == RDMA_NODE_USNIC_UDP)
218                 return RDMA_TRANSPORT_USNIC_UDP;
219         if (node_type == RDMA_NODE_RNIC)
220                 return RDMA_TRANSPORT_IWARP;
221         if (node_type == RDMA_NODE_UNSPECIFIED)
222                 return RDMA_TRANSPORT_UNSPECIFIED;
223
224         return RDMA_TRANSPORT_IB;
225 }
226 EXPORT_SYMBOL(rdma_node_get_transport);
227
228 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
229 {
230         enum rdma_transport_type lt;
231         if (device->ops.get_link_layer)
232                 return device->ops.get_link_layer(device, port_num);
233
234         lt = rdma_node_get_transport(device->node_type);
235         if (lt == RDMA_TRANSPORT_IB)
236                 return IB_LINK_LAYER_INFINIBAND;
237
238         return IB_LINK_LAYER_ETHERNET;
239 }
240 EXPORT_SYMBOL(rdma_port_get_link_layer);
241
242 /* Protection domains */
243
244 /**
245  * ib_alloc_pd - Allocates an unused protection domain.
246  * @device: The device on which to allocate the protection domain.
247  * @flags: protection domain flags
248  * @caller: caller's build-time module name
249  *
250  * A protection domain object provides an association between QPs, shared
251  * receive queues, address handles, memory regions, and memory windows.
252  *
253  * Every PD has a local_dma_lkey which can be used as the lkey value for local
254  * memory operations.
255  */
256 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
257                 const char *caller)
258 {
259         struct ib_pd *pd;
260         int mr_access_flags = 0;
261         int ret;
262
263         pd = rdma_zalloc_drv_obj(device, ib_pd);
264         if (!pd)
265                 return ERR_PTR(-ENOMEM);
266
267         pd->device = device;
268         pd->uobject = NULL;
269         pd->__internal_mr = NULL;
270         atomic_set(&pd->usecnt, 0);
271         pd->flags = flags;
272
273         pd->res.type = RDMA_RESTRACK_PD;
274         rdma_restrack_set_task(&pd->res, caller);
275
276         ret = device->ops.alloc_pd(pd, NULL);
277         if (ret) {
278                 kfree(pd);
279                 return ERR_PTR(ret);
280         }
281         rdma_restrack_kadd(&pd->res);
282
283         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
284                 pd->local_dma_lkey = device->local_dma_lkey;
285         else
286                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
287
288         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
289                 pr_warn("%s: enabling unsafe global rkey\n", caller);
290                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
291         }
292
293         if (mr_access_flags) {
294                 struct ib_mr *mr;
295
296                 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
297                 if (IS_ERR(mr)) {
298                         ib_dealloc_pd(pd);
299                         return ERR_CAST(mr);
300                 }
301
302                 mr->device      = pd->device;
303                 mr->pd          = pd;
304                 mr->type        = IB_MR_TYPE_DMA;
305                 mr->uobject     = NULL;
306                 mr->need_inval  = false;
307
308                 pd->__internal_mr = mr;
309
310                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
311                         pd->local_dma_lkey = pd->__internal_mr->lkey;
312
313                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
314                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
315         }
316
317         return pd;
318 }
319 EXPORT_SYMBOL(__ib_alloc_pd);
320
321 /**
322  * ib_dealloc_pd_user - Deallocates a protection domain.
323  * @pd: The protection domain to deallocate.
324  * @udata: Valid user data or NULL for kernel object
325  *
326  * It is an error to call this function while any resources in the pd still
327  * exist.  The caller is responsible to synchronously destroy them and
328  * guarantee no new allocations will happen.
329  */
330 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
331 {
332         int ret;
333
334         if (pd->__internal_mr) {
335                 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
336                 WARN_ON(ret);
337                 pd->__internal_mr = NULL;
338         }
339
340         /* uverbs manipulates usecnt with proper locking, while the kabi
341            requires the caller to guarantee we can't race here. */
342         WARN_ON(atomic_read(&pd->usecnt));
343
344         rdma_restrack_del(&pd->res);
345         pd->device->ops.dealloc_pd(pd, udata);
346         kfree(pd);
347 }
348 EXPORT_SYMBOL(ib_dealloc_pd_user);
349
350 /* Address handles */
351
352 /**
353  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
354  * @dest:       Pointer to destination ah_attr. Contents of the destination
355  *              pointer is assumed to be invalid and attribute are overwritten.
356  * @src:        Pointer to source ah_attr.
357  */
358 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
359                        const struct rdma_ah_attr *src)
360 {
361         *dest = *src;
362         if (dest->grh.sgid_attr)
363                 rdma_hold_gid_attr(dest->grh.sgid_attr);
364 }
365 EXPORT_SYMBOL(rdma_copy_ah_attr);
366
367 /**
368  * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
369  * @old:        Pointer to existing ah_attr which needs to be replaced.
370  *              old is assumed to be valid or zero'd
371  * @new:        Pointer to the new ah_attr.
372  *
373  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
374  * old the ah_attr is valid; after that it copies the new attribute and holds
375  * the reference to the replaced ah_attr.
376  */
377 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
378                           const struct rdma_ah_attr *new)
379 {
380         rdma_destroy_ah_attr(old);
381         *old = *new;
382         if (old->grh.sgid_attr)
383                 rdma_hold_gid_attr(old->grh.sgid_attr);
384 }
385 EXPORT_SYMBOL(rdma_replace_ah_attr);
386
387 /**
388  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
389  * @dest:       Pointer to destination ah_attr to copy to.
390  *              dest is assumed to be valid or zero'd
391  * @src:        Pointer to the new ah_attr.
392  *
393  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
394  * if it is valid. This also transfers ownership of internal references from
395  * src to dest, making src invalid in the process. No new reference of the src
396  * ah_attr is taken.
397  */
398 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
399 {
400         rdma_destroy_ah_attr(dest);
401         *dest = *src;
402         src->grh.sgid_attr = NULL;
403 }
404 EXPORT_SYMBOL(rdma_move_ah_attr);
405
406 /*
407  * Validate that the rdma_ah_attr is valid for the device before passing it
408  * off to the driver.
409  */
410 static int rdma_check_ah_attr(struct ib_device *device,
411                               struct rdma_ah_attr *ah_attr)
412 {
413         if (!rdma_is_port_valid(device, ah_attr->port_num))
414                 return -EINVAL;
415
416         if ((rdma_is_grh_required(device, ah_attr->port_num) ||
417              ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
418             !(ah_attr->ah_flags & IB_AH_GRH))
419                 return -EINVAL;
420
421         if (ah_attr->grh.sgid_attr) {
422                 /*
423                  * Make sure the passed sgid_attr is consistent with the
424                  * parameters
425                  */
426                 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
427                     ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
428                         return -EINVAL;
429         }
430         return 0;
431 }
432
433 /*
434  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
435  * On success the caller is responsible to call rdma_unfill_sgid_attr().
436  */
437 static int rdma_fill_sgid_attr(struct ib_device *device,
438                                struct rdma_ah_attr *ah_attr,
439                                const struct ib_gid_attr **old_sgid_attr)
440 {
441         const struct ib_gid_attr *sgid_attr;
442         struct ib_global_route *grh;
443         int ret;
444
445         *old_sgid_attr = ah_attr->grh.sgid_attr;
446
447         ret = rdma_check_ah_attr(device, ah_attr);
448         if (ret)
449                 return ret;
450
451         if (!(ah_attr->ah_flags & IB_AH_GRH))
452                 return 0;
453
454         grh = rdma_ah_retrieve_grh(ah_attr);
455         if (grh->sgid_attr)
456                 return 0;
457
458         sgid_attr =
459                 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
460         if (IS_ERR(sgid_attr))
461                 return PTR_ERR(sgid_attr);
462
463         /* Move ownerhip of the kref into the ah_attr */
464         grh->sgid_attr = sgid_attr;
465         return 0;
466 }
467
468 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
469                                   const struct ib_gid_attr *old_sgid_attr)
470 {
471         /*
472          * Fill didn't change anything, the caller retains ownership of
473          * whatever it passed
474          */
475         if (ah_attr->grh.sgid_attr == old_sgid_attr)
476                 return;
477
478         /*
479          * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
480          * doesn't see any change in the rdma_ah_attr. If we get here
481          * old_sgid_attr is NULL.
482          */
483         rdma_destroy_ah_attr(ah_attr);
484 }
485
486 static const struct ib_gid_attr *
487 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
488                       const struct ib_gid_attr *old_attr)
489 {
490         if (old_attr)
491                 rdma_put_gid_attr(old_attr);
492         if (ah_attr->ah_flags & IB_AH_GRH) {
493                 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
494                 return ah_attr->grh.sgid_attr;
495         }
496         return NULL;
497 }
498
499 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
500                                      struct rdma_ah_attr *ah_attr,
501                                      u32 flags,
502                                      struct ib_udata *udata)
503 {
504         struct ib_device *device = pd->device;
505         struct ib_ah *ah;
506         int ret;
507
508         might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
509
510         if (!device->ops.create_ah)
511                 return ERR_PTR(-EOPNOTSUPP);
512
513         ah = rdma_zalloc_drv_obj_gfp(
514                 device, ib_ah,
515                 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
516         if (!ah)
517                 return ERR_PTR(-ENOMEM);
518
519         ah->device = device;
520         ah->pd = pd;
521         ah->type = ah_attr->type;
522         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
523
524         ret = device->ops.create_ah(ah, ah_attr, flags, udata);
525         if (ret) {
526                 kfree(ah);
527                 return ERR_PTR(ret);
528         }
529
530         atomic_inc(&pd->usecnt);
531         return ah;
532 }
533
534 /**
535  * rdma_create_ah - Creates an address handle for the
536  * given address vector.
537  * @pd: The protection domain associated with the address handle.
538  * @ah_attr: The attributes of the address vector.
539  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
540  *
541  * It returns 0 on success and returns appropriate error code on error.
542  * The address handle is used to reference a local or global destination
543  * in all UD QP post sends.
544  */
545 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
546                              u32 flags)
547 {
548         const struct ib_gid_attr *old_sgid_attr;
549         struct ib_ah *ah;
550         int ret;
551
552         ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
553         if (ret)
554                 return ERR_PTR(ret);
555
556         ah = _rdma_create_ah(pd, ah_attr, flags, NULL);
557
558         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
559         return ah;
560 }
561 EXPORT_SYMBOL(rdma_create_ah);
562
563 /**
564  * rdma_create_user_ah - Creates an address handle for the
565  * given address vector.
566  * It resolves destination mac address for ah attribute of RoCE type.
567  * @pd: The protection domain associated with the address handle.
568  * @ah_attr: The attributes of the address vector.
569  * @udata: pointer to user's input output buffer information need by
570  *         provider driver.
571  *
572  * It returns 0 on success and returns appropriate error code on error.
573  * The address handle is used to reference a local or global destination
574  * in all UD QP post sends.
575  */
576 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
577                                   struct rdma_ah_attr *ah_attr,
578                                   struct ib_udata *udata)
579 {
580         const struct ib_gid_attr *old_sgid_attr;
581         struct ib_ah *ah;
582         int err;
583
584         err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
585         if (err)
586                 return ERR_PTR(err);
587
588         if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
589                 err = ib_resolve_eth_dmac(pd->device, ah_attr);
590                 if (err) {
591                         ah = ERR_PTR(err);
592                         goto out;
593                 }
594         }
595
596         ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata);
597
598 out:
599         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
600         return ah;
601 }
602 EXPORT_SYMBOL(rdma_create_user_ah);
603
604 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
605 {
606         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
607         struct iphdr ip4h_checked;
608         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
609
610         /* If it's IPv6, the version must be 6, otherwise, the first
611          * 20 bytes (before the IPv4 header) are garbled.
612          */
613         if (ip6h->version != 6)
614                 return (ip4h->version == 4) ? 4 : 0;
615         /* version may be 6 or 4 because the first 20 bytes could be garbled */
616
617         /* RoCE v2 requires no options, thus header length
618          * must be 5 words
619          */
620         if (ip4h->ihl != 5)
621                 return 6;
622
623         /* Verify checksum.
624          * We can't write on scattered buffers so we need to copy to
625          * temp buffer.
626          */
627         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
628         ip4h_checked.check = 0;
629         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
630         /* if IPv4 header checksum is OK, believe it */
631         if (ip4h->check == ip4h_checked.check)
632                 return 4;
633         return 6;
634 }
635 EXPORT_SYMBOL(ib_get_rdma_header_version);
636
637 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
638                                                      u8 port_num,
639                                                      const struct ib_grh *grh)
640 {
641         int grh_version;
642
643         if (rdma_protocol_ib(device, port_num))
644                 return RDMA_NETWORK_IB;
645
646         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
647
648         if (grh_version == 4)
649                 return RDMA_NETWORK_IPV4;
650
651         if (grh->next_hdr == IPPROTO_UDP)
652                 return RDMA_NETWORK_IPV6;
653
654         return RDMA_NETWORK_ROCE_V1;
655 }
656
657 struct find_gid_index_context {
658         u16 vlan_id;
659         enum ib_gid_type gid_type;
660 };
661
662 static bool find_gid_index(const union ib_gid *gid,
663                            const struct ib_gid_attr *gid_attr,
664                            void *context)
665 {
666         struct find_gid_index_context *ctx = context;
667         u16 vlan_id = 0xffff;
668         int ret;
669
670         if (ctx->gid_type != gid_attr->gid_type)
671                 return false;
672
673         ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
674         if (ret)
675                 return false;
676
677         return ctx->vlan_id == vlan_id;
678 }
679
680 static const struct ib_gid_attr *
681 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
682                        u16 vlan_id, const union ib_gid *sgid,
683                        enum ib_gid_type gid_type)
684 {
685         struct find_gid_index_context context = {.vlan_id = vlan_id,
686                                                  .gid_type = gid_type};
687
688         return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
689                                        &context);
690 }
691
692 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
693                               enum rdma_network_type net_type,
694                               union ib_gid *sgid, union ib_gid *dgid)
695 {
696         struct sockaddr_in  src_in;
697         struct sockaddr_in  dst_in;
698         __be32 src_saddr, dst_saddr;
699
700         if (!sgid || !dgid)
701                 return -EINVAL;
702
703         if (net_type == RDMA_NETWORK_IPV4) {
704                 memcpy(&src_in.sin_addr.s_addr,
705                        &hdr->roce4grh.saddr, 4);
706                 memcpy(&dst_in.sin_addr.s_addr,
707                        &hdr->roce4grh.daddr, 4);
708                 src_saddr = src_in.sin_addr.s_addr;
709                 dst_saddr = dst_in.sin_addr.s_addr;
710                 ipv6_addr_set_v4mapped(src_saddr,
711                                        (struct in6_addr *)sgid);
712                 ipv6_addr_set_v4mapped(dst_saddr,
713                                        (struct in6_addr *)dgid);
714                 return 0;
715         } else if (net_type == RDMA_NETWORK_IPV6 ||
716                    net_type == RDMA_NETWORK_IB) {
717                 *dgid = hdr->ibgrh.dgid;
718                 *sgid = hdr->ibgrh.sgid;
719                 return 0;
720         } else {
721                 return -EINVAL;
722         }
723 }
724 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
725
726 /* Resolve destination mac address and hop limit for unicast destination
727  * GID entry, considering the source GID entry as well.
728  * ah_attribute must have have valid port_num, sgid_index.
729  */
730 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
731                                        struct rdma_ah_attr *ah_attr)
732 {
733         struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
734         const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
735         int hop_limit = 0xff;
736         int ret = 0;
737
738         /* If destination is link local and source GID is RoCEv1,
739          * IP stack is not used.
740          */
741         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
742             sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
743                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
744                                 ah_attr->roce.dmac);
745                 return ret;
746         }
747
748         ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
749                                            ah_attr->roce.dmac,
750                                            sgid_attr, &hop_limit);
751
752         grh->hop_limit = hop_limit;
753         return ret;
754 }
755
756 /*
757  * This function initializes address handle attributes from the incoming packet.
758  * Incoming packet has dgid of the receiver node on which this code is
759  * getting executed and, sgid contains the GID of the sender.
760  *
761  * When resolving mac address of destination, the arrived dgid is used
762  * as sgid and, sgid is used as dgid because sgid contains destinations
763  * GID whom to respond to.
764  *
765  * On success the caller is responsible to call rdma_destroy_ah_attr on the
766  * attr.
767  */
768 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
769                             const struct ib_wc *wc, const struct ib_grh *grh,
770                             struct rdma_ah_attr *ah_attr)
771 {
772         u32 flow_class;
773         int ret;
774         enum rdma_network_type net_type = RDMA_NETWORK_IB;
775         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
776         const struct ib_gid_attr *sgid_attr;
777         int hoplimit = 0xff;
778         union ib_gid dgid;
779         union ib_gid sgid;
780
781         might_sleep();
782
783         memset(ah_attr, 0, sizeof *ah_attr);
784         ah_attr->type = rdma_ah_find_type(device, port_num);
785         if (rdma_cap_eth_ah(device, port_num)) {
786                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
787                         net_type = wc->network_hdr_type;
788                 else
789                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
790                 gid_type = ib_network_to_gid_type(net_type);
791         }
792         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
793                                         &sgid, &dgid);
794         if (ret)
795                 return ret;
796
797         rdma_ah_set_sl(ah_attr, wc->sl);
798         rdma_ah_set_port_num(ah_attr, port_num);
799
800         if (rdma_protocol_roce(device, port_num)) {
801                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
802                                 wc->vlan_id : 0xffff;
803
804                 if (!(wc->wc_flags & IB_WC_GRH))
805                         return -EPROTOTYPE;
806
807                 sgid_attr = get_sgid_attr_from_eth(device, port_num,
808                                                    vlan_id, &dgid,
809                                                    gid_type);
810                 if (IS_ERR(sgid_attr))
811                         return PTR_ERR(sgid_attr);
812
813                 flow_class = be32_to_cpu(grh->version_tclass_flow);
814                 rdma_move_grh_sgid_attr(ah_attr,
815                                         &sgid,
816                                         flow_class & 0xFFFFF,
817                                         hoplimit,
818                                         (flow_class >> 20) & 0xFF,
819                                         sgid_attr);
820
821                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
822                 if (ret)
823                         rdma_destroy_ah_attr(ah_attr);
824
825                 return ret;
826         } else {
827                 rdma_ah_set_dlid(ah_attr, wc->slid);
828                 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
829
830                 if ((wc->wc_flags & IB_WC_GRH) == 0)
831                         return 0;
832
833                 if (dgid.global.interface_id !=
834                                         cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
835                         sgid_attr = rdma_find_gid_by_port(
836                                 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
837                 } else
838                         sgid_attr = rdma_get_gid_attr(device, port_num, 0);
839
840                 if (IS_ERR(sgid_attr))
841                         return PTR_ERR(sgid_attr);
842                 flow_class = be32_to_cpu(grh->version_tclass_flow);
843                 rdma_move_grh_sgid_attr(ah_attr,
844                                         &sgid,
845                                         flow_class & 0xFFFFF,
846                                         hoplimit,
847                                         (flow_class >> 20) & 0xFF,
848                                         sgid_attr);
849
850                 return 0;
851         }
852 }
853 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
854
855 /**
856  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
857  * of the reference
858  *
859  * @attr:       Pointer to AH attribute structure
860  * @dgid:       Destination GID
861  * @flow_label: Flow label
862  * @hop_limit:  Hop limit
863  * @traffic_class: traffic class
864  * @sgid_attr:  Pointer to SGID attribute
865  *
866  * This takes ownership of the sgid_attr reference. The caller must ensure
867  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
868  * calling this function.
869  */
870 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
871                              u32 flow_label, u8 hop_limit, u8 traffic_class,
872                              const struct ib_gid_attr *sgid_attr)
873 {
874         rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
875                         traffic_class);
876         attr->grh.sgid_attr = sgid_attr;
877 }
878 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
879
880 /**
881  * rdma_destroy_ah_attr - Release reference to SGID attribute of
882  * ah attribute.
883  * @ah_attr: Pointer to ah attribute
884  *
885  * Release reference to the SGID attribute of the ah attribute if it is
886  * non NULL. It is safe to call this multiple times, and safe to call it on
887  * a zero initialized ah_attr.
888  */
889 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
890 {
891         if (ah_attr->grh.sgid_attr) {
892                 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
893                 ah_attr->grh.sgid_attr = NULL;
894         }
895 }
896 EXPORT_SYMBOL(rdma_destroy_ah_attr);
897
898 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
899                                    const struct ib_grh *grh, u8 port_num)
900 {
901         struct rdma_ah_attr ah_attr;
902         struct ib_ah *ah;
903         int ret;
904
905         ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
906         if (ret)
907                 return ERR_PTR(ret);
908
909         ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
910
911         rdma_destroy_ah_attr(&ah_attr);
912         return ah;
913 }
914 EXPORT_SYMBOL(ib_create_ah_from_wc);
915
916 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
917 {
918         const struct ib_gid_attr *old_sgid_attr;
919         int ret;
920
921         if (ah->type != ah_attr->type)
922                 return -EINVAL;
923
924         ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
925         if (ret)
926                 return ret;
927
928         ret = ah->device->ops.modify_ah ?
929                 ah->device->ops.modify_ah(ah, ah_attr) :
930                 -EOPNOTSUPP;
931
932         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
933         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
934         return ret;
935 }
936 EXPORT_SYMBOL(rdma_modify_ah);
937
938 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
939 {
940         ah_attr->grh.sgid_attr = NULL;
941
942         return ah->device->ops.query_ah ?
943                 ah->device->ops.query_ah(ah, ah_attr) :
944                 -EOPNOTSUPP;
945 }
946 EXPORT_SYMBOL(rdma_query_ah);
947
948 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
949 {
950         const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
951         struct ib_pd *pd;
952
953         might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
954
955         pd = ah->pd;
956
957         ah->device->ops.destroy_ah(ah, flags);
958         atomic_dec(&pd->usecnt);
959         if (sgid_attr)
960                 rdma_put_gid_attr(sgid_attr);
961
962         kfree(ah);
963         return 0;
964 }
965 EXPORT_SYMBOL(rdma_destroy_ah_user);
966
967 /* Shared receive queues */
968
969 struct ib_srq *ib_create_srq(struct ib_pd *pd,
970                              struct ib_srq_init_attr *srq_init_attr)
971 {
972         struct ib_srq *srq;
973         int ret;
974
975         if (!pd->device->ops.create_srq)
976                 return ERR_PTR(-EOPNOTSUPP);
977
978         srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
979         if (!srq)
980                 return ERR_PTR(-ENOMEM);
981
982         srq->device = pd->device;
983         srq->pd = pd;
984         srq->event_handler = srq_init_attr->event_handler;
985         srq->srq_context = srq_init_attr->srq_context;
986         srq->srq_type = srq_init_attr->srq_type;
987
988         if (ib_srq_has_cq(srq->srq_type)) {
989                 srq->ext.cq = srq_init_attr->ext.cq;
990                 atomic_inc(&srq->ext.cq->usecnt);
991         }
992         if (srq->srq_type == IB_SRQT_XRC) {
993                 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
994                 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
995         }
996         atomic_inc(&pd->usecnt);
997
998         ret = pd->device->ops.create_srq(srq, srq_init_attr, NULL);
999         if (ret) {
1000                 atomic_dec(&srq->pd->usecnt);
1001                 if (srq->srq_type == IB_SRQT_XRC)
1002                         atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1003                 if (ib_srq_has_cq(srq->srq_type))
1004                         atomic_dec(&srq->ext.cq->usecnt);
1005                 kfree(srq);
1006                 return ERR_PTR(ret);
1007         }
1008
1009         return srq;
1010 }
1011 EXPORT_SYMBOL(ib_create_srq);
1012
1013 int ib_modify_srq(struct ib_srq *srq,
1014                   struct ib_srq_attr *srq_attr,
1015                   enum ib_srq_attr_mask srq_attr_mask)
1016 {
1017         return srq->device->ops.modify_srq ?
1018                 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1019                                             NULL) : -EOPNOTSUPP;
1020 }
1021 EXPORT_SYMBOL(ib_modify_srq);
1022
1023 int ib_query_srq(struct ib_srq *srq,
1024                  struct ib_srq_attr *srq_attr)
1025 {
1026         return srq->device->ops.query_srq ?
1027                 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1028 }
1029 EXPORT_SYMBOL(ib_query_srq);
1030
1031 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1032 {
1033         if (atomic_read(&srq->usecnt))
1034                 return -EBUSY;
1035
1036         srq->device->ops.destroy_srq(srq, udata);
1037
1038         atomic_dec(&srq->pd->usecnt);
1039         if (srq->srq_type == IB_SRQT_XRC)
1040                 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1041         if (ib_srq_has_cq(srq->srq_type))
1042                 atomic_dec(&srq->ext.cq->usecnt);
1043         kfree(srq);
1044
1045         return 0;
1046 }
1047 EXPORT_SYMBOL(ib_destroy_srq_user);
1048
1049 /* Queue pairs */
1050
1051 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1052 {
1053         struct ib_qp *qp = context;
1054         unsigned long flags;
1055
1056         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
1057         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1058                 if (event->element.qp->event_handler)
1059                         event->element.qp->event_handler(event, event->element.qp->qp_context);
1060         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
1061 }
1062
1063 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
1064 {
1065         mutex_lock(&xrcd->tgt_qp_mutex);
1066         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
1067         mutex_unlock(&xrcd->tgt_qp_mutex);
1068 }
1069
1070 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1071                                   void (*event_handler)(struct ib_event *, void *),
1072                                   void *qp_context)
1073 {
1074         struct ib_qp *qp;
1075         unsigned long flags;
1076         int err;
1077
1078         qp = kzalloc(sizeof *qp, GFP_KERNEL);
1079         if (!qp)
1080                 return ERR_PTR(-ENOMEM);
1081
1082         qp->real_qp = real_qp;
1083         err = ib_open_shared_qp_security(qp, real_qp->device);
1084         if (err) {
1085                 kfree(qp);
1086                 return ERR_PTR(err);
1087         }
1088
1089         qp->real_qp = real_qp;
1090         atomic_inc(&real_qp->usecnt);
1091         qp->device = real_qp->device;
1092         qp->event_handler = event_handler;
1093         qp->qp_context = qp_context;
1094         qp->qp_num = real_qp->qp_num;
1095         qp->qp_type = real_qp->qp_type;
1096
1097         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1098         list_add(&qp->open_list, &real_qp->open_list);
1099         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1100
1101         return qp;
1102 }
1103
1104 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1105                          struct ib_qp_open_attr *qp_open_attr)
1106 {
1107         struct ib_qp *qp, *real_qp;
1108
1109         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1110                 return ERR_PTR(-EINVAL);
1111
1112         qp = ERR_PTR(-EINVAL);
1113         mutex_lock(&xrcd->tgt_qp_mutex);
1114         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
1115                 if (real_qp->qp_num == qp_open_attr->qp_num) {
1116                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1117                                           qp_open_attr->qp_context);
1118                         break;
1119                 }
1120         }
1121         mutex_unlock(&xrcd->tgt_qp_mutex);
1122         return qp;
1123 }
1124 EXPORT_SYMBOL(ib_open_qp);
1125
1126 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1127                                         struct ib_qp_init_attr *qp_init_attr,
1128                                         struct ib_udata *udata)
1129 {
1130         struct ib_qp *real_qp = qp;
1131
1132         qp->event_handler = __ib_shared_qp_event_handler;
1133         qp->qp_context = qp;
1134         qp->pd = NULL;
1135         qp->send_cq = qp->recv_cq = NULL;
1136         qp->srq = NULL;
1137         qp->xrcd = qp_init_attr->xrcd;
1138         atomic_inc(&qp_init_attr->xrcd->usecnt);
1139         INIT_LIST_HEAD(&qp->open_list);
1140
1141         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1142                           qp_init_attr->qp_context);
1143         if (IS_ERR(qp))
1144                 return qp;
1145
1146         __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
1147         return qp;
1148 }
1149
1150 struct ib_qp *ib_create_qp_user(struct ib_pd *pd,
1151                                 struct ib_qp_init_attr *qp_init_attr,
1152                                 struct ib_udata *udata)
1153 {
1154         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1155         struct ib_qp *qp;
1156         int ret;
1157
1158         if (qp_init_attr->rwq_ind_tbl &&
1159             (qp_init_attr->recv_cq ||
1160             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1161             qp_init_attr->cap.max_recv_sge))
1162                 return ERR_PTR(-EINVAL);
1163
1164         if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1165             !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1166                 return ERR_PTR(-EINVAL);
1167
1168         /*
1169          * If the callers is using the RDMA API calculate the resources
1170          * needed for the RDMA READ/WRITE operations.
1171          *
1172          * Note that these callers need to pass in a port number.
1173          */
1174         if (qp_init_attr->cap.max_rdma_ctxs)
1175                 rdma_rw_init_qp(device, qp_init_attr);
1176
1177         qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1178         if (IS_ERR(qp))
1179                 return qp;
1180
1181         ret = ib_create_qp_security(qp, device);
1182         if (ret)
1183                 goto err;
1184
1185         qp->qp_type    = qp_init_attr->qp_type;
1186         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
1187
1188         atomic_set(&qp->usecnt, 0);
1189         qp->mrs_used = 0;
1190         spin_lock_init(&qp->mr_lock);
1191         INIT_LIST_HEAD(&qp->rdma_mrs);
1192         INIT_LIST_HEAD(&qp->sig_mrs);
1193         qp->port = 0;
1194
1195         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1196                 struct ib_qp *xrc_qp =
1197                         create_xrc_qp_user(qp, qp_init_attr, udata);
1198
1199                 if (IS_ERR(xrc_qp)) {
1200                         ret = PTR_ERR(xrc_qp);
1201                         goto err;
1202                 }
1203                 return xrc_qp;
1204         }
1205
1206         qp->event_handler = qp_init_attr->event_handler;
1207         qp->qp_context = qp_init_attr->qp_context;
1208         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1209                 qp->recv_cq = NULL;
1210                 qp->srq = NULL;
1211         } else {
1212                 qp->recv_cq = qp_init_attr->recv_cq;
1213                 if (qp_init_attr->recv_cq)
1214                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
1215                 qp->srq = qp_init_attr->srq;
1216                 if (qp->srq)
1217                         atomic_inc(&qp_init_attr->srq->usecnt);
1218         }
1219
1220         qp->send_cq = qp_init_attr->send_cq;
1221         qp->xrcd    = NULL;
1222
1223         atomic_inc(&pd->usecnt);
1224         if (qp_init_attr->send_cq)
1225                 atomic_inc(&qp_init_attr->send_cq->usecnt);
1226         if (qp_init_attr->rwq_ind_tbl)
1227                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1228
1229         if (qp_init_attr->cap.max_rdma_ctxs) {
1230                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1231                 if (ret)
1232                         goto err;
1233         }
1234
1235         /*
1236          * Note: all hw drivers guarantee that max_send_sge is lower than
1237          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1238          * max_send_sge <= max_sge_rd.
1239          */
1240         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1241         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1242                                  device->attrs.max_sge_rd);
1243         if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1244                 qp->integrity_en = true;
1245
1246         return qp;
1247
1248 err:
1249         ib_destroy_qp(qp);
1250         return ERR_PTR(ret);
1251
1252 }
1253 EXPORT_SYMBOL(ib_create_qp_user);
1254
1255 static const struct {
1256         int                     valid;
1257         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1258         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1259 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1260         [IB_QPS_RESET] = {
1261                 [IB_QPS_RESET] = { .valid = 1 },
1262                 [IB_QPS_INIT]  = {
1263                         .valid = 1,
1264                         .req_param = {
1265                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1266                                                 IB_QP_PORT                      |
1267                                                 IB_QP_QKEY),
1268                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1269                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1270                                                 IB_QP_PORT                      |
1271                                                 IB_QP_ACCESS_FLAGS),
1272                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1273                                                 IB_QP_PORT                      |
1274                                                 IB_QP_ACCESS_FLAGS),
1275                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1276                                                 IB_QP_PORT                      |
1277                                                 IB_QP_ACCESS_FLAGS),
1278                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1279                                                 IB_QP_PORT                      |
1280                                                 IB_QP_ACCESS_FLAGS),
1281                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1282                                                 IB_QP_QKEY),
1283                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1284                                                 IB_QP_QKEY),
1285                         }
1286                 },
1287         },
1288         [IB_QPS_INIT]  = {
1289                 [IB_QPS_RESET] = { .valid = 1 },
1290                 [IB_QPS_ERR] =   { .valid = 1 },
1291                 [IB_QPS_INIT]  = {
1292                         .valid = 1,
1293                         .opt_param = {
1294                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1295                                                 IB_QP_PORT                      |
1296                                                 IB_QP_QKEY),
1297                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1298                                                 IB_QP_PORT                      |
1299                                                 IB_QP_ACCESS_FLAGS),
1300                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1301                                                 IB_QP_PORT                      |
1302                                                 IB_QP_ACCESS_FLAGS),
1303                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1304                                                 IB_QP_PORT                      |
1305                                                 IB_QP_ACCESS_FLAGS),
1306                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1307                                                 IB_QP_PORT                      |
1308                                                 IB_QP_ACCESS_FLAGS),
1309                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1310                                                 IB_QP_QKEY),
1311                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1312                                                 IB_QP_QKEY),
1313                         }
1314                 },
1315                 [IB_QPS_RTR]   = {
1316                         .valid = 1,
1317                         .req_param = {
1318                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1319                                                 IB_QP_PATH_MTU                  |
1320                                                 IB_QP_DEST_QPN                  |
1321                                                 IB_QP_RQ_PSN),
1322                                 [IB_QPT_RC]  = (IB_QP_AV                        |
1323                                                 IB_QP_PATH_MTU                  |
1324                                                 IB_QP_DEST_QPN                  |
1325                                                 IB_QP_RQ_PSN                    |
1326                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1327                                                 IB_QP_MIN_RNR_TIMER),
1328                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1329                                                 IB_QP_PATH_MTU                  |
1330                                                 IB_QP_DEST_QPN                  |
1331                                                 IB_QP_RQ_PSN),
1332                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1333                                                 IB_QP_PATH_MTU                  |
1334                                                 IB_QP_DEST_QPN                  |
1335                                                 IB_QP_RQ_PSN                    |
1336                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1337                                                 IB_QP_MIN_RNR_TIMER),
1338                         },
1339                         .opt_param = {
1340                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1341                                                  IB_QP_QKEY),
1342                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1343                                                  IB_QP_ACCESS_FLAGS             |
1344                                                  IB_QP_PKEY_INDEX),
1345                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1346                                                  IB_QP_ACCESS_FLAGS             |
1347                                                  IB_QP_PKEY_INDEX),
1348                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1349                                                  IB_QP_ACCESS_FLAGS             |
1350                                                  IB_QP_PKEY_INDEX),
1351                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1352                                                  IB_QP_ACCESS_FLAGS             |
1353                                                  IB_QP_PKEY_INDEX),
1354                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1355                                                  IB_QP_QKEY),
1356                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1357                                                  IB_QP_QKEY),
1358                          },
1359                 },
1360         },
1361         [IB_QPS_RTR]   = {
1362                 [IB_QPS_RESET] = { .valid = 1 },
1363                 [IB_QPS_ERR] =   { .valid = 1 },
1364                 [IB_QPS_RTS]   = {
1365                         .valid = 1,
1366                         .req_param = {
1367                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
1368                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
1369                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1370                                                 IB_QP_RETRY_CNT                 |
1371                                                 IB_QP_RNR_RETRY                 |
1372                                                 IB_QP_SQ_PSN                    |
1373                                                 IB_QP_MAX_QP_RD_ATOMIC),
1374                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1375                                                 IB_QP_RETRY_CNT                 |
1376                                                 IB_QP_RNR_RETRY                 |
1377                                                 IB_QP_SQ_PSN                    |
1378                                                 IB_QP_MAX_QP_RD_ATOMIC),
1379                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1380                                                 IB_QP_SQ_PSN),
1381                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1382                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1383                         },
1384                         .opt_param = {
1385                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1386                                                  IB_QP_QKEY),
1387                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1388                                                  IB_QP_ALT_PATH                 |
1389                                                  IB_QP_ACCESS_FLAGS             |
1390                                                  IB_QP_PATH_MIG_STATE),
1391                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1392                                                  IB_QP_ALT_PATH                 |
1393                                                  IB_QP_ACCESS_FLAGS             |
1394                                                  IB_QP_MIN_RNR_TIMER            |
1395                                                  IB_QP_PATH_MIG_STATE),
1396                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1397                                                  IB_QP_ALT_PATH                 |
1398                                                  IB_QP_ACCESS_FLAGS             |
1399                                                  IB_QP_PATH_MIG_STATE),
1400                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1401                                                  IB_QP_ALT_PATH                 |
1402                                                  IB_QP_ACCESS_FLAGS             |
1403                                                  IB_QP_MIN_RNR_TIMER            |
1404                                                  IB_QP_PATH_MIG_STATE),
1405                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1406                                                  IB_QP_QKEY),
1407                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1408                                                  IB_QP_QKEY),
1409                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1410                          }
1411                 }
1412         },
1413         [IB_QPS_RTS]   = {
1414                 [IB_QPS_RESET] = { .valid = 1 },
1415                 [IB_QPS_ERR] =   { .valid = 1 },
1416                 [IB_QPS_RTS]   = {
1417                         .valid = 1,
1418                         .opt_param = {
1419                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1420                                                 IB_QP_QKEY),
1421                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1422                                                 IB_QP_ACCESS_FLAGS              |
1423                                                 IB_QP_ALT_PATH                  |
1424                                                 IB_QP_PATH_MIG_STATE),
1425                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1426                                                 IB_QP_ACCESS_FLAGS              |
1427                                                 IB_QP_ALT_PATH                  |
1428                                                 IB_QP_PATH_MIG_STATE            |
1429                                                 IB_QP_MIN_RNR_TIMER),
1430                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1431                                                 IB_QP_ACCESS_FLAGS              |
1432                                                 IB_QP_ALT_PATH                  |
1433                                                 IB_QP_PATH_MIG_STATE),
1434                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1435                                                 IB_QP_ACCESS_FLAGS              |
1436                                                 IB_QP_ALT_PATH                  |
1437                                                 IB_QP_PATH_MIG_STATE            |
1438                                                 IB_QP_MIN_RNR_TIMER),
1439                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1440                                                 IB_QP_QKEY),
1441                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1442                                                 IB_QP_QKEY),
1443                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1444                         }
1445                 },
1446                 [IB_QPS_SQD]   = {
1447                         .valid = 1,
1448                         .opt_param = {
1449                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1450                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1451                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1452                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1453                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1454                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1455                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1456                         }
1457                 },
1458         },
1459         [IB_QPS_SQD]   = {
1460                 [IB_QPS_RESET] = { .valid = 1 },
1461                 [IB_QPS_ERR] =   { .valid = 1 },
1462                 [IB_QPS_RTS]   = {
1463                         .valid = 1,
1464                         .opt_param = {
1465                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1466                                                 IB_QP_QKEY),
1467                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1468                                                 IB_QP_ALT_PATH                  |
1469                                                 IB_QP_ACCESS_FLAGS              |
1470                                                 IB_QP_PATH_MIG_STATE),
1471                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1472                                                 IB_QP_ALT_PATH                  |
1473                                                 IB_QP_ACCESS_FLAGS              |
1474                                                 IB_QP_MIN_RNR_TIMER             |
1475                                                 IB_QP_PATH_MIG_STATE),
1476                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1477                                                 IB_QP_ALT_PATH                  |
1478                                                 IB_QP_ACCESS_FLAGS              |
1479                                                 IB_QP_PATH_MIG_STATE),
1480                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1481                                                 IB_QP_ALT_PATH                  |
1482                                                 IB_QP_ACCESS_FLAGS              |
1483                                                 IB_QP_MIN_RNR_TIMER             |
1484                                                 IB_QP_PATH_MIG_STATE),
1485                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1486                                                 IB_QP_QKEY),
1487                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1488                                                 IB_QP_QKEY),
1489                         }
1490                 },
1491                 [IB_QPS_SQD]   = {
1492                         .valid = 1,
1493                         .opt_param = {
1494                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1495                                                 IB_QP_QKEY),
1496                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1497                                                 IB_QP_ALT_PATH                  |
1498                                                 IB_QP_ACCESS_FLAGS              |
1499                                                 IB_QP_PKEY_INDEX                |
1500                                                 IB_QP_PATH_MIG_STATE),
1501                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1502                                                 IB_QP_AV                        |
1503                                                 IB_QP_TIMEOUT                   |
1504                                                 IB_QP_RETRY_CNT                 |
1505                                                 IB_QP_RNR_RETRY                 |
1506                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1507                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1508                                                 IB_QP_ALT_PATH                  |
1509                                                 IB_QP_ACCESS_FLAGS              |
1510                                                 IB_QP_PKEY_INDEX                |
1511                                                 IB_QP_MIN_RNR_TIMER             |
1512                                                 IB_QP_PATH_MIG_STATE),
1513                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1514                                                 IB_QP_AV                        |
1515                                                 IB_QP_TIMEOUT                   |
1516                                                 IB_QP_RETRY_CNT                 |
1517                                                 IB_QP_RNR_RETRY                 |
1518                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1519                                                 IB_QP_ALT_PATH                  |
1520                                                 IB_QP_ACCESS_FLAGS              |
1521                                                 IB_QP_PKEY_INDEX                |
1522                                                 IB_QP_PATH_MIG_STATE),
1523                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1524                                                 IB_QP_AV                        |
1525                                                 IB_QP_TIMEOUT                   |
1526                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1527                                                 IB_QP_ALT_PATH                  |
1528                                                 IB_QP_ACCESS_FLAGS              |
1529                                                 IB_QP_PKEY_INDEX                |
1530                                                 IB_QP_MIN_RNR_TIMER             |
1531                                                 IB_QP_PATH_MIG_STATE),
1532                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1533                                                 IB_QP_QKEY),
1534                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1535                                                 IB_QP_QKEY),
1536                         }
1537                 }
1538         },
1539         [IB_QPS_SQE]   = {
1540                 [IB_QPS_RESET] = { .valid = 1 },
1541                 [IB_QPS_ERR] =   { .valid = 1 },
1542                 [IB_QPS_RTS]   = {
1543                         .valid = 1,
1544                         .opt_param = {
1545                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1546                                                 IB_QP_QKEY),
1547                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1548                                                 IB_QP_ACCESS_FLAGS),
1549                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1550                                                 IB_QP_QKEY),
1551                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1552                                                 IB_QP_QKEY),
1553                         }
1554                 }
1555         },
1556         [IB_QPS_ERR] = {
1557                 [IB_QPS_RESET] = { .valid = 1 },
1558                 [IB_QPS_ERR] =   { .valid = 1 }
1559         }
1560 };
1561
1562 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1563                         enum ib_qp_type type, enum ib_qp_attr_mask mask)
1564 {
1565         enum ib_qp_attr_mask req_param, opt_param;
1566
1567         if (mask & IB_QP_CUR_STATE  &&
1568             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1569             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1570                 return false;
1571
1572         if (!qp_state_table[cur_state][next_state].valid)
1573                 return false;
1574
1575         req_param = qp_state_table[cur_state][next_state].req_param[type];
1576         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1577
1578         if ((mask & req_param) != req_param)
1579                 return false;
1580
1581         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1582                 return false;
1583
1584         return true;
1585 }
1586 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1587
1588 /**
1589  * ib_resolve_eth_dmac - Resolve destination mac address
1590  * @device:             Device to consider
1591  * @ah_attr:            address handle attribute which describes the
1592  *                      source and destination parameters
1593  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1594  * returns 0 on success or appropriate error code. It initializes the
1595  * necessary ah_attr fields when call is successful.
1596  */
1597 static int ib_resolve_eth_dmac(struct ib_device *device,
1598                                struct rdma_ah_attr *ah_attr)
1599 {
1600         int ret = 0;
1601
1602         if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1603                 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1604                         __be32 addr = 0;
1605
1606                         memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1607                         ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1608                 } else {
1609                         ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1610                                         (char *)ah_attr->roce.dmac);
1611                 }
1612         } else {
1613                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1614         }
1615         return ret;
1616 }
1617
1618 static bool is_qp_type_connected(const struct ib_qp *qp)
1619 {
1620         return (qp->qp_type == IB_QPT_UC ||
1621                 qp->qp_type == IB_QPT_RC ||
1622                 qp->qp_type == IB_QPT_XRC_INI ||
1623                 qp->qp_type == IB_QPT_XRC_TGT);
1624 }
1625
1626 /**
1627  * IB core internal function to perform QP attributes modification.
1628  */
1629 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1630                          int attr_mask, struct ib_udata *udata)
1631 {
1632         u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1633         const struct ib_gid_attr *old_sgid_attr_av;
1634         const struct ib_gid_attr *old_sgid_attr_alt_av;
1635         int ret;
1636
1637         if (attr_mask & IB_QP_AV) {
1638                 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1639                                           &old_sgid_attr_av);
1640                 if (ret)
1641                         return ret;
1642         }
1643         if (attr_mask & IB_QP_ALT_PATH) {
1644                 /*
1645                  * FIXME: This does not track the migration state, so if the
1646                  * user loads a new alternate path after the HW has migrated
1647                  * from primary->alternate we will keep the wrong
1648                  * references. This is OK for IB because the reference
1649                  * counting does not serve any functional purpose.
1650                  */
1651                 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1652                                           &old_sgid_attr_alt_av);
1653                 if (ret)
1654                         goto out_av;
1655
1656                 /*
1657                  * Today the core code can only handle alternate paths and APM
1658                  * for IB. Ban them in roce mode.
1659                  */
1660                 if (!(rdma_protocol_ib(qp->device,
1661                                        attr->alt_ah_attr.port_num) &&
1662                       rdma_protocol_ib(qp->device, port))) {
1663                         ret = EINVAL;
1664                         goto out;
1665                 }
1666         }
1667
1668         /*
1669          * If the user provided the qp_attr then we have to resolve it. Kernel
1670          * users have to provide already resolved rdma_ah_attr's
1671          */
1672         if (udata && (attr_mask & IB_QP_AV) &&
1673             attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1674             is_qp_type_connected(qp)) {
1675                 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1676                 if (ret)
1677                         goto out;
1678         }
1679
1680         if (rdma_ib_or_roce(qp->device, port)) {
1681                 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1682                         dev_warn(&qp->device->dev,
1683                                  "%s rq_psn overflow, masking to 24 bits\n",
1684                                  __func__);
1685                         attr->rq_psn &= 0xffffff;
1686                 }
1687
1688                 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1689                         dev_warn(&qp->device->dev,
1690                                  " %s sq_psn overflow, masking to 24 bits\n",
1691                                  __func__);
1692                         attr->sq_psn &= 0xffffff;
1693                 }
1694         }
1695
1696         /*
1697          * Bind this qp to a counter automatically based on the rdma counter
1698          * rules. This only set in RST2INIT with port specified
1699          */
1700         if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1701             ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1702                 rdma_counter_bind_qp_auto(qp, attr->port_num);
1703
1704         ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1705         if (ret)
1706                 goto out;
1707
1708         if (attr_mask & IB_QP_PORT)
1709                 qp->port = attr->port_num;
1710         if (attr_mask & IB_QP_AV)
1711                 qp->av_sgid_attr =
1712                         rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1713         if (attr_mask & IB_QP_ALT_PATH)
1714                 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1715                         &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1716
1717 out:
1718         if (attr_mask & IB_QP_ALT_PATH)
1719                 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1720 out_av:
1721         if (attr_mask & IB_QP_AV)
1722                 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1723         return ret;
1724 }
1725
1726 /**
1727  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1728  * @ib_qp: The QP to modify.
1729  * @attr: On input, specifies the QP attributes to modify.  On output,
1730  *   the current values of selected QP attributes are returned.
1731  * @attr_mask: A bit-mask used to specify which attributes of the QP
1732  *   are being modified.
1733  * @udata: pointer to user's input output buffer information
1734  *   are being modified.
1735  * It returns 0 on success and returns appropriate error code on error.
1736  */
1737 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1738                             int attr_mask, struct ib_udata *udata)
1739 {
1740         return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1741 }
1742 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1743
1744 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1745 {
1746         int rc;
1747         u32 netdev_speed;
1748         struct net_device *netdev;
1749         struct ethtool_link_ksettings lksettings;
1750
1751         if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1752                 return -EINVAL;
1753
1754         netdev = ib_device_get_netdev(dev, port_num);
1755         if (!netdev)
1756                 return -ENODEV;
1757
1758         rtnl_lock();
1759         rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1760         rtnl_unlock();
1761
1762         dev_put(netdev);
1763
1764         if (!rc) {
1765                 netdev_speed = lksettings.base.speed;
1766         } else {
1767                 netdev_speed = SPEED_1000;
1768                 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1769                         netdev_speed);
1770         }
1771
1772         if (netdev_speed <= SPEED_1000) {
1773                 *width = IB_WIDTH_1X;
1774                 *speed = IB_SPEED_SDR;
1775         } else if (netdev_speed <= SPEED_10000) {
1776                 *width = IB_WIDTH_1X;
1777                 *speed = IB_SPEED_FDR10;
1778         } else if (netdev_speed <= SPEED_20000) {
1779                 *width = IB_WIDTH_4X;
1780                 *speed = IB_SPEED_DDR;
1781         } else if (netdev_speed <= SPEED_25000) {
1782                 *width = IB_WIDTH_1X;
1783                 *speed = IB_SPEED_EDR;
1784         } else if (netdev_speed <= SPEED_40000) {
1785                 *width = IB_WIDTH_4X;
1786                 *speed = IB_SPEED_FDR10;
1787         } else {
1788                 *width = IB_WIDTH_4X;
1789                 *speed = IB_SPEED_EDR;
1790         }
1791
1792         return 0;
1793 }
1794 EXPORT_SYMBOL(ib_get_eth_speed);
1795
1796 int ib_modify_qp(struct ib_qp *qp,
1797                  struct ib_qp_attr *qp_attr,
1798                  int qp_attr_mask)
1799 {
1800         return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1801 }
1802 EXPORT_SYMBOL(ib_modify_qp);
1803
1804 int ib_query_qp(struct ib_qp *qp,
1805                 struct ib_qp_attr *qp_attr,
1806                 int qp_attr_mask,
1807                 struct ib_qp_init_attr *qp_init_attr)
1808 {
1809         qp_attr->ah_attr.grh.sgid_attr = NULL;
1810         qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1811
1812         return qp->device->ops.query_qp ?
1813                 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1814                                          qp_init_attr) : -EOPNOTSUPP;
1815 }
1816 EXPORT_SYMBOL(ib_query_qp);
1817
1818 int ib_close_qp(struct ib_qp *qp)
1819 {
1820         struct ib_qp *real_qp;
1821         unsigned long flags;
1822
1823         real_qp = qp->real_qp;
1824         if (real_qp == qp)
1825                 return -EINVAL;
1826
1827         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1828         list_del(&qp->open_list);
1829         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1830
1831         atomic_dec(&real_qp->usecnt);
1832         if (qp->qp_sec)
1833                 ib_close_shared_qp_security(qp->qp_sec);
1834         kfree(qp);
1835
1836         return 0;
1837 }
1838 EXPORT_SYMBOL(ib_close_qp);
1839
1840 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1841 {
1842         struct ib_xrcd *xrcd;
1843         struct ib_qp *real_qp;
1844         int ret;
1845
1846         real_qp = qp->real_qp;
1847         xrcd = real_qp->xrcd;
1848
1849         mutex_lock(&xrcd->tgt_qp_mutex);
1850         ib_close_qp(qp);
1851         if (atomic_read(&real_qp->usecnt) == 0)
1852                 list_del(&real_qp->xrcd_list);
1853         else
1854                 real_qp = NULL;
1855         mutex_unlock(&xrcd->tgt_qp_mutex);
1856
1857         if (real_qp) {
1858                 ret = ib_destroy_qp(real_qp);
1859                 if (!ret)
1860                         atomic_dec(&xrcd->usecnt);
1861                 else
1862                         __ib_insert_xrcd_qp(xrcd, real_qp);
1863         }
1864
1865         return 0;
1866 }
1867
1868 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1869 {
1870         const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1871         const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1872         struct ib_pd *pd;
1873         struct ib_cq *scq, *rcq;
1874         struct ib_srq *srq;
1875         struct ib_rwq_ind_table *ind_tbl;
1876         struct ib_qp_security *sec;
1877         int ret;
1878
1879         WARN_ON_ONCE(qp->mrs_used > 0);
1880
1881         if (atomic_read(&qp->usecnt))
1882                 return -EBUSY;
1883
1884         if (qp->real_qp != qp)
1885                 return __ib_destroy_shared_qp(qp);
1886
1887         pd   = qp->pd;
1888         scq  = qp->send_cq;
1889         rcq  = qp->recv_cq;
1890         srq  = qp->srq;
1891         ind_tbl = qp->rwq_ind_tbl;
1892         sec  = qp->qp_sec;
1893         if (sec)
1894                 ib_destroy_qp_security_begin(sec);
1895
1896         if (!qp->uobject)
1897                 rdma_rw_cleanup_mrs(qp);
1898
1899         rdma_counter_unbind_qp(qp, true);
1900         rdma_restrack_del(&qp->res);
1901         ret = qp->device->ops.destroy_qp(qp, udata);
1902         if (!ret) {
1903                 if (alt_path_sgid_attr)
1904                         rdma_put_gid_attr(alt_path_sgid_attr);
1905                 if (av_sgid_attr)
1906                         rdma_put_gid_attr(av_sgid_attr);
1907                 if (pd)
1908                         atomic_dec(&pd->usecnt);
1909                 if (scq)
1910                         atomic_dec(&scq->usecnt);
1911                 if (rcq)
1912                         atomic_dec(&rcq->usecnt);
1913                 if (srq)
1914                         atomic_dec(&srq->usecnt);
1915                 if (ind_tbl)
1916                         atomic_dec(&ind_tbl->usecnt);
1917                 if (sec)
1918                         ib_destroy_qp_security_end(sec);
1919         } else {
1920                 if (sec)
1921                         ib_destroy_qp_security_abort(sec);
1922         }
1923
1924         return ret;
1925 }
1926 EXPORT_SYMBOL(ib_destroy_qp_user);
1927
1928 /* Completion queues */
1929
1930 struct ib_cq *__ib_create_cq(struct ib_device *device,
1931                              ib_comp_handler comp_handler,
1932                              void (*event_handler)(struct ib_event *, void *),
1933                              void *cq_context,
1934                              const struct ib_cq_init_attr *cq_attr,
1935                              const char *caller)
1936 {
1937         struct ib_cq *cq;
1938         int ret;
1939
1940         cq = rdma_zalloc_drv_obj(device, ib_cq);
1941         if (!cq)
1942                 return ERR_PTR(-ENOMEM);
1943
1944         cq->device = device;
1945         cq->uobject = NULL;
1946         cq->comp_handler = comp_handler;
1947         cq->event_handler = event_handler;
1948         cq->cq_context = cq_context;
1949         atomic_set(&cq->usecnt, 0);
1950         cq->res.type = RDMA_RESTRACK_CQ;
1951         rdma_restrack_set_task(&cq->res, caller);
1952
1953         ret = device->ops.create_cq(cq, cq_attr, NULL);
1954         if (ret) {
1955                 kfree(cq);
1956                 return ERR_PTR(ret);
1957         }
1958
1959         rdma_restrack_kadd(&cq->res);
1960         return cq;
1961 }
1962 EXPORT_SYMBOL(__ib_create_cq);
1963
1964 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1965 {
1966         return cq->device->ops.modify_cq ?
1967                 cq->device->ops.modify_cq(cq, cq_count,
1968                                           cq_period) : -EOPNOTSUPP;
1969 }
1970 EXPORT_SYMBOL(rdma_set_cq_moderation);
1971
1972 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
1973 {
1974         if (atomic_read(&cq->usecnt))
1975                 return -EBUSY;
1976
1977         rdma_restrack_del(&cq->res);
1978         cq->device->ops.destroy_cq(cq, udata);
1979         kfree(cq);
1980         return 0;
1981 }
1982 EXPORT_SYMBOL(ib_destroy_cq_user);
1983
1984 int ib_resize_cq(struct ib_cq *cq, int cqe)
1985 {
1986         return cq->device->ops.resize_cq ?
1987                 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
1988 }
1989 EXPORT_SYMBOL(ib_resize_cq);
1990
1991 /* Memory regions */
1992
1993 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1994                              u64 virt_addr, int access_flags)
1995 {
1996         struct ib_mr *mr;
1997
1998         if (access_flags & IB_ACCESS_ON_DEMAND) {
1999                 if (!(pd->device->attrs.device_cap_flags &
2000                       IB_DEVICE_ON_DEMAND_PAGING)) {
2001                         pr_debug("ODP support not available\n");
2002                         return ERR_PTR(-EINVAL);
2003                 }
2004         }
2005
2006         mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2007                                          access_flags, NULL);
2008
2009         if (IS_ERR(mr))
2010                 return mr;
2011
2012         mr->device = pd->device;
2013         mr->pd = pd;
2014         mr->dm = NULL;
2015         atomic_inc(&pd->usecnt);
2016         mr->res.type = RDMA_RESTRACK_MR;
2017         rdma_restrack_kadd(&mr->res);
2018
2019         return mr;
2020 }
2021 EXPORT_SYMBOL(ib_reg_user_mr);
2022
2023 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2024 {
2025         struct ib_pd *pd = mr->pd;
2026         struct ib_dm *dm = mr->dm;
2027         struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2028         int ret;
2029
2030         rdma_restrack_del(&mr->res);
2031         ret = mr->device->ops.dereg_mr(mr, udata);
2032         if (!ret) {
2033                 atomic_dec(&pd->usecnt);
2034                 if (dm)
2035                         atomic_dec(&dm->usecnt);
2036                 kfree(sig_attrs);
2037         }
2038
2039         return ret;
2040 }
2041 EXPORT_SYMBOL(ib_dereg_mr_user);
2042
2043 /**
2044  * ib_alloc_mr_user() - Allocates a memory region
2045  * @pd:            protection domain associated with the region
2046  * @mr_type:       memory region type
2047  * @max_num_sg:    maximum sg entries available for registration.
2048  * @udata:         user data or null for kernel objects
2049  *
2050  * Notes:
2051  * Memory registeration page/sg lists must not exceed max_num_sg.
2052  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2053  * max_num_sg * used_page_size.
2054  *
2055  */
2056 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
2057                                u32 max_num_sg, struct ib_udata *udata)
2058 {
2059         struct ib_mr *mr;
2060
2061         if (!pd->device->ops.alloc_mr)
2062                 return ERR_PTR(-EOPNOTSUPP);
2063
2064         if (WARN_ON_ONCE(mr_type == IB_MR_TYPE_INTEGRITY))
2065                 return ERR_PTR(-EINVAL);
2066
2067         mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg, udata);
2068         if (!IS_ERR(mr)) {
2069                 mr->device  = pd->device;
2070                 mr->pd      = pd;
2071                 mr->dm      = NULL;
2072                 mr->uobject = NULL;
2073                 atomic_inc(&pd->usecnt);
2074                 mr->need_inval = false;
2075                 mr->res.type = RDMA_RESTRACK_MR;
2076                 rdma_restrack_kadd(&mr->res);
2077                 mr->type = mr_type;
2078                 mr->sig_attrs = NULL;
2079         }
2080
2081         return mr;
2082 }
2083 EXPORT_SYMBOL(ib_alloc_mr_user);
2084
2085 /**
2086  * ib_alloc_mr_integrity() - Allocates an integrity memory region
2087  * @pd:                      protection domain associated with the region
2088  * @max_num_data_sg:         maximum data sg entries available for registration
2089  * @max_num_meta_sg:         maximum metadata sg entries available for
2090  *                           registration
2091  *
2092  * Notes:
2093  * Memory registration page/sg lists must not exceed max_num_sg,
2094  * also the integrity page/sg lists must not exceed max_num_meta_sg.
2095  *
2096  */
2097 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2098                                     u32 max_num_data_sg,
2099                                     u32 max_num_meta_sg)
2100 {
2101         struct ib_mr *mr;
2102         struct ib_sig_attrs *sig_attrs;
2103
2104         if (!pd->device->ops.alloc_mr_integrity ||
2105             !pd->device->ops.map_mr_sg_pi)
2106                 return ERR_PTR(-EOPNOTSUPP);
2107
2108         if (!max_num_meta_sg)
2109                 return ERR_PTR(-EINVAL);
2110
2111         sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2112         if (!sig_attrs)
2113                 return ERR_PTR(-ENOMEM);
2114
2115         mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2116                                                 max_num_meta_sg);
2117         if (IS_ERR(mr)) {
2118                 kfree(sig_attrs);
2119                 return mr;
2120         }
2121
2122         mr->device = pd->device;
2123         mr->pd = pd;
2124         mr->dm = NULL;
2125         mr->uobject = NULL;
2126         atomic_inc(&pd->usecnt);
2127         mr->need_inval = false;
2128         mr->res.type = RDMA_RESTRACK_MR;
2129         rdma_restrack_kadd(&mr->res);
2130         mr->type = IB_MR_TYPE_INTEGRITY;
2131         mr->sig_attrs = sig_attrs;
2132
2133         return mr;
2134 }
2135 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2136
2137 /* "Fast" memory regions */
2138
2139 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2140                             int mr_access_flags,
2141                             struct ib_fmr_attr *fmr_attr)
2142 {
2143         struct ib_fmr *fmr;
2144
2145         if (!pd->device->ops.alloc_fmr)
2146                 return ERR_PTR(-EOPNOTSUPP);
2147
2148         fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr);
2149         if (!IS_ERR(fmr)) {
2150                 fmr->device = pd->device;
2151                 fmr->pd     = pd;
2152                 atomic_inc(&pd->usecnt);
2153         }
2154
2155         return fmr;
2156 }
2157 EXPORT_SYMBOL(ib_alloc_fmr);
2158
2159 int ib_unmap_fmr(struct list_head *fmr_list)
2160 {
2161         struct ib_fmr *fmr;
2162
2163         if (list_empty(fmr_list))
2164                 return 0;
2165
2166         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
2167         return fmr->device->ops.unmap_fmr(fmr_list);
2168 }
2169 EXPORT_SYMBOL(ib_unmap_fmr);
2170
2171 int ib_dealloc_fmr(struct ib_fmr *fmr)
2172 {
2173         struct ib_pd *pd;
2174         int ret;
2175
2176         pd = fmr->pd;
2177         ret = fmr->device->ops.dealloc_fmr(fmr);
2178         if (!ret)
2179                 atomic_dec(&pd->usecnt);
2180
2181         return ret;
2182 }
2183 EXPORT_SYMBOL(ib_dealloc_fmr);
2184
2185 /* Multicast groups */
2186
2187 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2188 {
2189         struct ib_qp_init_attr init_attr = {};
2190         struct ib_qp_attr attr = {};
2191         int num_eth_ports = 0;
2192         int port;
2193
2194         /* If QP state >= init, it is assigned to a port and we can check this
2195          * port only.
2196          */
2197         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2198                 if (attr.qp_state >= IB_QPS_INIT) {
2199                         if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2200                             IB_LINK_LAYER_INFINIBAND)
2201                                 return true;
2202                         goto lid_check;
2203                 }
2204         }
2205
2206         /* Can't get a quick answer, iterate over all ports */
2207         for (port = 0; port < qp->device->phys_port_cnt; port++)
2208                 if (rdma_port_get_link_layer(qp->device, port) !=
2209                     IB_LINK_LAYER_INFINIBAND)
2210                         num_eth_ports++;
2211
2212         /* If we have at lease one Ethernet port, RoCE annex declares that
2213          * multicast LID should be ignored. We can't tell at this step if the
2214          * QP belongs to an IB or Ethernet port.
2215          */
2216         if (num_eth_ports)
2217                 return true;
2218
2219         /* If all the ports are IB, we can check according to IB spec. */
2220 lid_check:
2221         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2222                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
2223 }
2224
2225 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2226 {
2227         int ret;
2228
2229         if (!qp->device->ops.attach_mcast)
2230                 return -EOPNOTSUPP;
2231
2232         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2233             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2234                 return -EINVAL;
2235
2236         ret = qp->device->ops.attach_mcast(qp, gid, lid);
2237         if (!ret)
2238                 atomic_inc(&qp->usecnt);
2239         return ret;
2240 }
2241 EXPORT_SYMBOL(ib_attach_mcast);
2242
2243 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2244 {
2245         int ret;
2246
2247         if (!qp->device->ops.detach_mcast)
2248                 return -EOPNOTSUPP;
2249
2250         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2251             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2252                 return -EINVAL;
2253
2254         ret = qp->device->ops.detach_mcast(qp, gid, lid);
2255         if (!ret)
2256                 atomic_dec(&qp->usecnt);
2257         return ret;
2258 }
2259 EXPORT_SYMBOL(ib_detach_mcast);
2260
2261 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
2262 {
2263         struct ib_xrcd *xrcd;
2264
2265         if (!device->ops.alloc_xrcd)
2266                 return ERR_PTR(-EOPNOTSUPP);
2267
2268         xrcd = device->ops.alloc_xrcd(device, NULL);
2269         if (!IS_ERR(xrcd)) {
2270                 xrcd->device = device;
2271                 xrcd->inode = NULL;
2272                 atomic_set(&xrcd->usecnt, 0);
2273                 mutex_init(&xrcd->tgt_qp_mutex);
2274                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
2275         }
2276
2277         return xrcd;
2278 }
2279 EXPORT_SYMBOL(__ib_alloc_xrcd);
2280
2281 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata)
2282 {
2283         struct ib_qp *qp;
2284         int ret;
2285
2286         if (atomic_read(&xrcd->usecnt))
2287                 return -EBUSY;
2288
2289         while (!list_empty(&xrcd->tgt_qp_list)) {
2290                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
2291                 ret = ib_destroy_qp(qp);
2292                 if (ret)
2293                         return ret;
2294         }
2295         mutex_destroy(&xrcd->tgt_qp_mutex);
2296
2297         return xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2298 }
2299 EXPORT_SYMBOL(ib_dealloc_xrcd);
2300
2301 /**
2302  * ib_create_wq - Creates a WQ associated with the specified protection
2303  * domain.
2304  * @pd: The protection domain associated with the WQ.
2305  * @wq_attr: A list of initial attributes required to create the
2306  * WQ. If WQ creation succeeds, then the attributes are updated to
2307  * the actual capabilities of the created WQ.
2308  *
2309  * wq_attr->max_wr and wq_attr->max_sge determine
2310  * the requested size of the WQ, and set to the actual values allocated
2311  * on return.
2312  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2313  * at least as large as the requested values.
2314  */
2315 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2316                            struct ib_wq_init_attr *wq_attr)
2317 {
2318         struct ib_wq *wq;
2319
2320         if (!pd->device->ops.create_wq)
2321                 return ERR_PTR(-EOPNOTSUPP);
2322
2323         wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2324         if (!IS_ERR(wq)) {
2325                 wq->event_handler = wq_attr->event_handler;
2326                 wq->wq_context = wq_attr->wq_context;
2327                 wq->wq_type = wq_attr->wq_type;
2328                 wq->cq = wq_attr->cq;
2329                 wq->device = pd->device;
2330                 wq->pd = pd;
2331                 wq->uobject = NULL;
2332                 atomic_inc(&pd->usecnt);
2333                 atomic_inc(&wq_attr->cq->usecnt);
2334                 atomic_set(&wq->usecnt, 0);
2335         }
2336         return wq;
2337 }
2338 EXPORT_SYMBOL(ib_create_wq);
2339
2340 /**
2341  * ib_destroy_wq - Destroys the specified user WQ.
2342  * @wq: The WQ to destroy.
2343  * @udata: Valid user data
2344  */
2345 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata)
2346 {
2347         struct ib_cq *cq = wq->cq;
2348         struct ib_pd *pd = wq->pd;
2349
2350         if (atomic_read(&wq->usecnt))
2351                 return -EBUSY;
2352
2353         wq->device->ops.destroy_wq(wq, udata);
2354         atomic_dec(&pd->usecnt);
2355         atomic_dec(&cq->usecnt);
2356
2357         return 0;
2358 }
2359 EXPORT_SYMBOL(ib_destroy_wq);
2360
2361 /**
2362  * ib_modify_wq - Modifies the specified WQ.
2363  * @wq: The WQ to modify.
2364  * @wq_attr: On input, specifies the WQ attributes to modify.
2365  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2366  *   are being modified.
2367  * On output, the current values of selected WQ attributes are returned.
2368  */
2369 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2370                  u32 wq_attr_mask)
2371 {
2372         int err;
2373
2374         if (!wq->device->ops.modify_wq)
2375                 return -EOPNOTSUPP;
2376
2377         err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2378         return err;
2379 }
2380 EXPORT_SYMBOL(ib_modify_wq);
2381
2382 /*
2383  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2384  * @device: The device on which to create the rwq indirection table.
2385  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2386  * create the Indirection Table.
2387  *
2388  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2389  *      than the created ib_rwq_ind_table object and the caller is responsible
2390  *      for its memory allocation/free.
2391  */
2392 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
2393                                                  struct ib_rwq_ind_table_init_attr *init_attr)
2394 {
2395         struct ib_rwq_ind_table *rwq_ind_table;
2396         int i;
2397         u32 table_size;
2398
2399         if (!device->ops.create_rwq_ind_table)
2400                 return ERR_PTR(-EOPNOTSUPP);
2401
2402         table_size = (1 << init_attr->log_ind_tbl_size);
2403         rwq_ind_table = device->ops.create_rwq_ind_table(device,
2404                                                          init_attr, NULL);
2405         if (IS_ERR(rwq_ind_table))
2406                 return rwq_ind_table;
2407
2408         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
2409         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
2410         rwq_ind_table->device = device;
2411         rwq_ind_table->uobject = NULL;
2412         atomic_set(&rwq_ind_table->usecnt, 0);
2413
2414         for (i = 0; i < table_size; i++)
2415                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
2416
2417         return rwq_ind_table;
2418 }
2419 EXPORT_SYMBOL(ib_create_rwq_ind_table);
2420
2421 /*
2422  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2423  * @wq_ind_table: The Indirection Table to destroy.
2424 */
2425 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2426 {
2427         int err, i;
2428         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2429         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2430
2431         if (atomic_read(&rwq_ind_table->usecnt))
2432                 return -EBUSY;
2433
2434         err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table);
2435         if (!err) {
2436                 for (i = 0; i < table_size; i++)
2437                         atomic_dec(&ind_tbl[i]->usecnt);
2438         }
2439
2440         return err;
2441 }
2442 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2443
2444 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2445                        struct ib_mr_status *mr_status)
2446 {
2447         if (!mr->device->ops.check_mr_status)
2448                 return -EOPNOTSUPP;
2449
2450         return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2451 }
2452 EXPORT_SYMBOL(ib_check_mr_status);
2453
2454 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2455                          int state)
2456 {
2457         if (!device->ops.set_vf_link_state)
2458                 return -EOPNOTSUPP;
2459
2460         return device->ops.set_vf_link_state(device, vf, port, state);
2461 }
2462 EXPORT_SYMBOL(ib_set_vf_link_state);
2463
2464 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2465                      struct ifla_vf_info *info)
2466 {
2467         if (!device->ops.get_vf_config)
2468                 return -EOPNOTSUPP;
2469
2470         return device->ops.get_vf_config(device, vf, port, info);
2471 }
2472 EXPORT_SYMBOL(ib_get_vf_config);
2473
2474 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2475                     struct ifla_vf_stats *stats)
2476 {
2477         if (!device->ops.get_vf_stats)
2478                 return -EOPNOTSUPP;
2479
2480         return device->ops.get_vf_stats(device, vf, port, stats);
2481 }
2482 EXPORT_SYMBOL(ib_get_vf_stats);
2483
2484 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2485                    int type)
2486 {
2487         if (!device->ops.set_vf_guid)
2488                 return -EOPNOTSUPP;
2489
2490         return device->ops.set_vf_guid(device, vf, port, guid, type);
2491 }
2492 EXPORT_SYMBOL(ib_set_vf_guid);
2493
2494 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
2495                    struct ifla_vf_guid *node_guid,
2496                    struct ifla_vf_guid *port_guid)
2497 {
2498         if (!device->ops.get_vf_guid)
2499                 return -EOPNOTSUPP;
2500
2501         return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2502 }
2503 EXPORT_SYMBOL(ib_get_vf_guid);
2504 /**
2505  * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2506  *     information) and set an appropriate memory region for registration.
2507  * @mr:             memory region
2508  * @data_sg:        dma mapped scatterlist for data
2509  * @data_sg_nents:  number of entries in data_sg
2510  * @data_sg_offset: offset in bytes into data_sg
2511  * @meta_sg:        dma mapped scatterlist for metadata
2512  * @meta_sg_nents:  number of entries in meta_sg
2513  * @meta_sg_offset: offset in bytes into meta_sg
2514  * @page_size:      page vector desired page size
2515  *
2516  * Constraints:
2517  * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2518  *
2519  * Return: 0 on success.
2520  *
2521  * After this completes successfully, the  memory region
2522  * is ready for registration.
2523  */
2524 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2525                     int data_sg_nents, unsigned int *data_sg_offset,
2526                     struct scatterlist *meta_sg, int meta_sg_nents,
2527                     unsigned int *meta_sg_offset, unsigned int page_size)
2528 {
2529         if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2530                      WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2531                 return -EOPNOTSUPP;
2532
2533         mr->page_size = page_size;
2534
2535         return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2536                                             data_sg_offset, meta_sg,
2537                                             meta_sg_nents, meta_sg_offset);
2538 }
2539 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2540
2541 /**
2542  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2543  *     and set it the memory region.
2544  * @mr:            memory region
2545  * @sg:            dma mapped scatterlist
2546  * @sg_nents:      number of entries in sg
2547  * @sg_offset:     offset in bytes into sg
2548  * @page_size:     page vector desired page size
2549  *
2550  * Constraints:
2551  * - The first sg element is allowed to have an offset.
2552  * - Each sg element must either be aligned to page_size or virtually
2553  *   contiguous to the previous element. In case an sg element has a
2554  *   non-contiguous offset, the mapping prefix will not include it.
2555  * - The last sg element is allowed to have length less than page_size.
2556  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2557  *   then only max_num_sg entries will be mapped.
2558  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2559  *   constraints holds and the page_size argument is ignored.
2560  *
2561  * Returns the number of sg elements that were mapped to the memory region.
2562  *
2563  * After this completes successfully, the  memory region
2564  * is ready for registration.
2565  */
2566 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2567                  unsigned int *sg_offset, unsigned int page_size)
2568 {
2569         if (unlikely(!mr->device->ops.map_mr_sg))
2570                 return -EOPNOTSUPP;
2571
2572         mr->page_size = page_size;
2573
2574         return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2575 }
2576 EXPORT_SYMBOL(ib_map_mr_sg);
2577
2578 /**
2579  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2580  *     to a page vector
2581  * @mr:            memory region
2582  * @sgl:           dma mapped scatterlist
2583  * @sg_nents:      number of entries in sg
2584  * @sg_offset_p:   IN:  start offset in bytes into sg
2585  *                 OUT: offset in bytes for element n of the sg of the first
2586  *                      byte that has not been processed where n is the return
2587  *                      value of this function.
2588  * @set_page:      driver page assignment function pointer
2589  *
2590  * Core service helper for drivers to convert the largest
2591  * prefix of given sg list to a page vector. The sg list
2592  * prefix converted is the prefix that meet the requirements
2593  * of ib_map_mr_sg.
2594  *
2595  * Returns the number of sg elements that were assigned to
2596  * a page vector.
2597  */
2598 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2599                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2600 {
2601         struct scatterlist *sg;
2602         u64 last_end_dma_addr = 0;
2603         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2604         unsigned int last_page_off = 0;
2605         u64 page_mask = ~((u64)mr->page_size - 1);
2606         int i, ret;
2607
2608         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2609                 return -EINVAL;
2610
2611         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2612         mr->length = 0;
2613
2614         for_each_sg(sgl, sg, sg_nents, i) {
2615                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2616                 u64 prev_addr = dma_addr;
2617                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2618                 u64 end_dma_addr = dma_addr + dma_len;
2619                 u64 page_addr = dma_addr & page_mask;
2620
2621                 /*
2622                  * For the second and later elements, check whether either the
2623                  * end of element i-1 or the start of element i is not aligned
2624                  * on a page boundary.
2625                  */
2626                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2627                         /* Stop mapping if there is a gap. */
2628                         if (last_end_dma_addr != dma_addr)
2629                                 break;
2630
2631                         /*
2632                          * Coalesce this element with the last. If it is small
2633                          * enough just update mr->length. Otherwise start
2634                          * mapping from the next page.
2635                          */
2636                         goto next_page;
2637                 }
2638
2639                 do {
2640                         ret = set_page(mr, page_addr);
2641                         if (unlikely(ret < 0)) {
2642                                 sg_offset = prev_addr - sg_dma_address(sg);
2643                                 mr->length += prev_addr - dma_addr;
2644                                 if (sg_offset_p)
2645                                         *sg_offset_p = sg_offset;
2646                                 return i || sg_offset ? i : ret;
2647                         }
2648                         prev_addr = page_addr;
2649 next_page:
2650                         page_addr += mr->page_size;
2651                 } while (page_addr < end_dma_addr);
2652
2653                 mr->length += dma_len;
2654                 last_end_dma_addr = end_dma_addr;
2655                 last_page_off = end_dma_addr & ~page_mask;
2656
2657                 sg_offset = 0;
2658         }
2659
2660         if (sg_offset_p)
2661                 *sg_offset_p = 0;
2662         return i;
2663 }
2664 EXPORT_SYMBOL(ib_sg_to_pages);
2665
2666 struct ib_drain_cqe {
2667         struct ib_cqe cqe;
2668         struct completion done;
2669 };
2670
2671 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2672 {
2673         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2674                                                 cqe);
2675
2676         complete(&cqe->done);
2677 }
2678
2679 /*
2680  * Post a WR and block until its completion is reaped for the SQ.
2681  */
2682 static void __ib_drain_sq(struct ib_qp *qp)
2683 {
2684         struct ib_cq *cq = qp->send_cq;
2685         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2686         struct ib_drain_cqe sdrain;
2687         struct ib_rdma_wr swr = {
2688                 .wr = {
2689                         .next = NULL,
2690                         { .wr_cqe       = &sdrain.cqe, },
2691                         .opcode = IB_WR_RDMA_WRITE,
2692                 },
2693         };
2694         int ret;
2695
2696         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2697         if (ret) {
2698                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2699                 return;
2700         }
2701
2702         sdrain.cqe.done = ib_drain_qp_done;
2703         init_completion(&sdrain.done);
2704
2705         ret = ib_post_send(qp, &swr.wr, NULL);
2706         if (ret) {
2707                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2708                 return;
2709         }
2710
2711         if (cq->poll_ctx == IB_POLL_DIRECT)
2712                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2713                         ib_process_cq_direct(cq, -1);
2714         else
2715                 wait_for_completion(&sdrain.done);
2716 }
2717
2718 /*
2719  * Post a WR and block until its completion is reaped for the RQ.
2720  */
2721 static void __ib_drain_rq(struct ib_qp *qp)
2722 {
2723         struct ib_cq *cq = qp->recv_cq;
2724         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2725         struct ib_drain_cqe rdrain;
2726         struct ib_recv_wr rwr = {};
2727         int ret;
2728
2729         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2730         if (ret) {
2731                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2732                 return;
2733         }
2734
2735         rwr.wr_cqe = &rdrain.cqe;
2736         rdrain.cqe.done = ib_drain_qp_done;
2737         init_completion(&rdrain.done);
2738
2739         ret = ib_post_recv(qp, &rwr, NULL);
2740         if (ret) {
2741                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2742                 return;
2743         }
2744
2745         if (cq->poll_ctx == IB_POLL_DIRECT)
2746                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2747                         ib_process_cq_direct(cq, -1);
2748         else
2749                 wait_for_completion(&rdrain.done);
2750 }
2751
2752 /**
2753  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2754  *                 application.
2755  * @qp:            queue pair to drain
2756  *
2757  * If the device has a provider-specific drain function, then
2758  * call that.  Otherwise call the generic drain function
2759  * __ib_drain_sq().
2760  *
2761  * The caller must:
2762  *
2763  * ensure there is room in the CQ and SQ for the drain work request and
2764  * completion.
2765  *
2766  * allocate the CQ using ib_alloc_cq().
2767  *
2768  * ensure that there are no other contexts that are posting WRs concurrently.
2769  * Otherwise the drain is not guaranteed.
2770  */
2771 void ib_drain_sq(struct ib_qp *qp)
2772 {
2773         if (qp->device->ops.drain_sq)
2774                 qp->device->ops.drain_sq(qp);
2775         else
2776                 __ib_drain_sq(qp);
2777 }
2778 EXPORT_SYMBOL(ib_drain_sq);
2779
2780 /**
2781  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2782  *                 application.
2783  * @qp:            queue pair to drain
2784  *
2785  * If the device has a provider-specific drain function, then
2786  * call that.  Otherwise call the generic drain function
2787  * __ib_drain_rq().
2788  *
2789  * The caller must:
2790  *
2791  * ensure there is room in the CQ and RQ for the drain work request and
2792  * completion.
2793  *
2794  * allocate the CQ using ib_alloc_cq().
2795  *
2796  * ensure that there are no other contexts that are posting WRs concurrently.
2797  * Otherwise the drain is not guaranteed.
2798  */
2799 void ib_drain_rq(struct ib_qp *qp)
2800 {
2801         if (qp->device->ops.drain_rq)
2802                 qp->device->ops.drain_rq(qp);
2803         else
2804                 __ib_drain_rq(qp);
2805 }
2806 EXPORT_SYMBOL(ib_drain_rq);
2807
2808 /**
2809  * ib_drain_qp() - Block until all CQEs have been consumed by the
2810  *                 application on both the RQ and SQ.
2811  * @qp:            queue pair to drain
2812  *
2813  * The caller must:
2814  *
2815  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2816  * and completions.
2817  *
2818  * allocate the CQs using ib_alloc_cq().
2819  *
2820  * ensure that there are no other contexts that are posting WRs concurrently.
2821  * Otherwise the drain is not guaranteed.
2822  */
2823 void ib_drain_qp(struct ib_qp *qp)
2824 {
2825         ib_drain_sq(qp);
2826         if (!qp->srq)
2827                 ib_drain_rq(qp);
2828 }
2829 EXPORT_SYMBOL(ib_drain_qp);
2830
2831 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2832                                      enum rdma_netdev_t type, const char *name,
2833                                      unsigned char name_assign_type,
2834                                      void (*setup)(struct net_device *))
2835 {
2836         struct rdma_netdev_alloc_params params;
2837         struct net_device *netdev;
2838         int rc;
2839
2840         if (!device->ops.rdma_netdev_get_params)
2841                 return ERR_PTR(-EOPNOTSUPP);
2842
2843         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2844                                                 &params);
2845         if (rc)
2846                 return ERR_PTR(rc);
2847
2848         netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2849                                   setup, params.txqs, params.rxqs);
2850         if (!netdev)
2851                 return ERR_PTR(-ENOMEM);
2852
2853         return netdev;
2854 }
2855 EXPORT_SYMBOL(rdma_alloc_netdev);
2856
2857 int rdma_init_netdev(struct ib_device *device, u8 port_num,
2858                      enum rdma_netdev_t type, const char *name,
2859                      unsigned char name_assign_type,
2860                      void (*setup)(struct net_device *),
2861                      struct net_device *netdev)
2862 {
2863         struct rdma_netdev_alloc_params params;
2864         int rc;
2865
2866         if (!device->ops.rdma_netdev_get_params)
2867                 return -EOPNOTSUPP;
2868
2869         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2870                                                 &params);
2871         if (rc)
2872                 return rc;
2873
2874         return params.initialize_rdma_netdev(device, port_num,
2875                                              netdev, params.param);
2876 }
2877 EXPORT_SYMBOL(rdma_init_netdev);
2878
2879 void __rdma_block_iter_start(struct ib_block_iter *biter,
2880                              struct scatterlist *sglist, unsigned int nents,
2881                              unsigned long pgsz)
2882 {
2883         memset(biter, 0, sizeof(struct ib_block_iter));
2884         biter->__sg = sglist;
2885         biter->__sg_nents = nents;
2886
2887         /* Driver provides best block size to use */
2888         biter->__pg_bit = __fls(pgsz);
2889 }
2890 EXPORT_SYMBOL(__rdma_block_iter_start);
2891
2892 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2893 {
2894         unsigned int block_offset;
2895
2896         if (!biter->__sg_nents || !biter->__sg)
2897                 return false;
2898
2899         biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2900         block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2901         biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2902
2903         if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2904                 biter->__sg_advance = 0;
2905                 biter->__sg = sg_next(biter->__sg);
2906                 biter->__sg_nents--;
2907         }
2908
2909         return true;
2910 }
2911 EXPORT_SYMBOL(__rdma_block_iter_next);