]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/infiniband/core/verbs.c
davinci_cpdma: make cpdma_chan_split_pool static
[linux.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53
54 #include "core_priv.h"
55
56 static int ib_resolve_eth_dmac(struct ib_device *device,
57                                struct rdma_ah_attr *ah_attr);
58
59 static const char * const ib_events[] = {
60         [IB_EVENT_CQ_ERR]               = "CQ error",
61         [IB_EVENT_QP_FATAL]             = "QP fatal error",
62         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
63         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
64         [IB_EVENT_COMM_EST]             = "communication established",
65         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
66         [IB_EVENT_PATH_MIG]             = "path migration successful",
67         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
68         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
69         [IB_EVENT_PORT_ACTIVE]          = "port active",
70         [IB_EVENT_PORT_ERR]             = "port error",
71         [IB_EVENT_LID_CHANGE]           = "LID change",
72         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
73         [IB_EVENT_SM_CHANGE]            = "SM change",
74         [IB_EVENT_SRQ_ERR]              = "SRQ error",
75         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
76         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
77         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
78         [IB_EVENT_GID_CHANGE]           = "GID changed",
79 };
80
81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
82 {
83         size_t index = event;
84
85         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
86                         ib_events[index] : "unrecognized event";
87 }
88 EXPORT_SYMBOL(ib_event_msg);
89
90 static const char * const wc_statuses[] = {
91         [IB_WC_SUCCESS]                 = "success",
92         [IB_WC_LOC_LEN_ERR]             = "local length error",
93         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
94         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
95         [IB_WC_LOC_PROT_ERR]            = "local protection error",
96         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
97         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
98         [IB_WC_BAD_RESP_ERR]            = "bad response error",
99         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
100         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
101         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
102         [IB_WC_REM_OP_ERR]              = "remote operation error",
103         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
104         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
105         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
106         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
107         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
108         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
109         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
110         [IB_WC_FATAL_ERR]               = "fatal error",
111         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
112         [IB_WC_GENERAL_ERR]             = "general error",
113 };
114
115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
116 {
117         size_t index = status;
118
119         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
120                         wc_statuses[index] : "unrecognized status";
121 }
122 EXPORT_SYMBOL(ib_wc_status_msg);
123
124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
125 {
126         switch (rate) {
127         case IB_RATE_2_5_GBPS: return   1;
128         case IB_RATE_5_GBPS:   return   2;
129         case IB_RATE_10_GBPS:  return   4;
130         case IB_RATE_20_GBPS:  return   8;
131         case IB_RATE_30_GBPS:  return  12;
132         case IB_RATE_40_GBPS:  return  16;
133         case IB_RATE_60_GBPS:  return  24;
134         case IB_RATE_80_GBPS:  return  32;
135         case IB_RATE_120_GBPS: return  48;
136         case IB_RATE_14_GBPS:  return   6;
137         case IB_RATE_56_GBPS:  return  22;
138         case IB_RATE_112_GBPS: return  45;
139         case IB_RATE_168_GBPS: return  67;
140         case IB_RATE_25_GBPS:  return  10;
141         case IB_RATE_100_GBPS: return  40;
142         case IB_RATE_200_GBPS: return  80;
143         case IB_RATE_300_GBPS: return 120;
144         case IB_RATE_28_GBPS:  return  11;
145         case IB_RATE_50_GBPS:  return  20;
146         case IB_RATE_400_GBPS: return 160;
147         case IB_RATE_600_GBPS: return 240;
148         default:               return  -1;
149         }
150 }
151 EXPORT_SYMBOL(ib_rate_to_mult);
152
153 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
154 {
155         switch (mult) {
156         case 1:   return IB_RATE_2_5_GBPS;
157         case 2:   return IB_RATE_5_GBPS;
158         case 4:   return IB_RATE_10_GBPS;
159         case 8:   return IB_RATE_20_GBPS;
160         case 12:  return IB_RATE_30_GBPS;
161         case 16:  return IB_RATE_40_GBPS;
162         case 24:  return IB_RATE_60_GBPS;
163         case 32:  return IB_RATE_80_GBPS;
164         case 48:  return IB_RATE_120_GBPS;
165         case 6:   return IB_RATE_14_GBPS;
166         case 22:  return IB_RATE_56_GBPS;
167         case 45:  return IB_RATE_112_GBPS;
168         case 67:  return IB_RATE_168_GBPS;
169         case 10:  return IB_RATE_25_GBPS;
170         case 40:  return IB_RATE_100_GBPS;
171         case 80:  return IB_RATE_200_GBPS;
172         case 120: return IB_RATE_300_GBPS;
173         case 11:  return IB_RATE_28_GBPS;
174         case 20:  return IB_RATE_50_GBPS;
175         case 160: return IB_RATE_400_GBPS;
176         case 240: return IB_RATE_600_GBPS;
177         default:  return IB_RATE_PORT_CURRENT;
178         }
179 }
180 EXPORT_SYMBOL(mult_to_ib_rate);
181
182 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
183 {
184         switch (rate) {
185         case IB_RATE_2_5_GBPS: return 2500;
186         case IB_RATE_5_GBPS:   return 5000;
187         case IB_RATE_10_GBPS:  return 10000;
188         case IB_RATE_20_GBPS:  return 20000;
189         case IB_RATE_30_GBPS:  return 30000;
190         case IB_RATE_40_GBPS:  return 40000;
191         case IB_RATE_60_GBPS:  return 60000;
192         case IB_RATE_80_GBPS:  return 80000;
193         case IB_RATE_120_GBPS: return 120000;
194         case IB_RATE_14_GBPS:  return 14062;
195         case IB_RATE_56_GBPS:  return 56250;
196         case IB_RATE_112_GBPS: return 112500;
197         case IB_RATE_168_GBPS: return 168750;
198         case IB_RATE_25_GBPS:  return 25781;
199         case IB_RATE_100_GBPS: return 103125;
200         case IB_RATE_200_GBPS: return 206250;
201         case IB_RATE_300_GBPS: return 309375;
202         case IB_RATE_28_GBPS:  return 28125;
203         case IB_RATE_50_GBPS:  return 53125;
204         case IB_RATE_400_GBPS: return 425000;
205         case IB_RATE_600_GBPS: return 637500;
206         default:               return -1;
207         }
208 }
209 EXPORT_SYMBOL(ib_rate_to_mbps);
210
211 __attribute_const__ enum rdma_transport_type
212 rdma_node_get_transport(unsigned int node_type)
213 {
214
215         if (node_type == RDMA_NODE_USNIC)
216                 return RDMA_TRANSPORT_USNIC;
217         if (node_type == RDMA_NODE_USNIC_UDP)
218                 return RDMA_TRANSPORT_USNIC_UDP;
219         if (node_type == RDMA_NODE_RNIC)
220                 return RDMA_TRANSPORT_IWARP;
221         if (node_type == RDMA_NODE_UNSPECIFIED)
222                 return RDMA_TRANSPORT_UNSPECIFIED;
223
224         return RDMA_TRANSPORT_IB;
225 }
226 EXPORT_SYMBOL(rdma_node_get_transport);
227
228 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
229 {
230         enum rdma_transport_type lt;
231         if (device->ops.get_link_layer)
232                 return device->ops.get_link_layer(device, port_num);
233
234         lt = rdma_node_get_transport(device->node_type);
235         if (lt == RDMA_TRANSPORT_IB)
236                 return IB_LINK_LAYER_INFINIBAND;
237
238         return IB_LINK_LAYER_ETHERNET;
239 }
240 EXPORT_SYMBOL(rdma_port_get_link_layer);
241
242 /* Protection domains */
243
244 /**
245  * ib_alloc_pd - Allocates an unused protection domain.
246  * @device: The device on which to allocate the protection domain.
247  *
248  * A protection domain object provides an association between QPs, shared
249  * receive queues, address handles, memory regions, and memory windows.
250  *
251  * Every PD has a local_dma_lkey which can be used as the lkey value for local
252  * memory operations.
253  */
254 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
255                 const char *caller)
256 {
257         struct ib_pd *pd;
258         int mr_access_flags = 0;
259         int ret;
260
261         pd = rdma_zalloc_drv_obj(device, ib_pd);
262         if (!pd)
263                 return ERR_PTR(-ENOMEM);
264
265         pd->device = device;
266         pd->uobject = NULL;
267         pd->__internal_mr = NULL;
268         atomic_set(&pd->usecnt, 0);
269         pd->flags = flags;
270
271         pd->res.type = RDMA_RESTRACK_PD;
272         rdma_restrack_set_task(&pd->res, caller);
273
274         ret = device->ops.alloc_pd(pd, NULL);
275         if (ret) {
276                 kfree(pd);
277                 return ERR_PTR(ret);
278         }
279         rdma_restrack_kadd(&pd->res);
280
281         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
282                 pd->local_dma_lkey = device->local_dma_lkey;
283         else
284                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
285
286         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
287                 pr_warn("%s: enabling unsafe global rkey\n", caller);
288                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
289         }
290
291         if (mr_access_flags) {
292                 struct ib_mr *mr;
293
294                 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
295                 if (IS_ERR(mr)) {
296                         ib_dealloc_pd(pd);
297                         return ERR_CAST(mr);
298                 }
299
300                 mr->device      = pd->device;
301                 mr->pd          = pd;
302                 mr->type        = IB_MR_TYPE_DMA;
303                 mr->uobject     = NULL;
304                 mr->need_inval  = false;
305
306                 pd->__internal_mr = mr;
307
308                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
309                         pd->local_dma_lkey = pd->__internal_mr->lkey;
310
311                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
312                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
313         }
314
315         return pd;
316 }
317 EXPORT_SYMBOL(__ib_alloc_pd);
318
319 /**
320  * ib_dealloc_pd_user - Deallocates a protection domain.
321  * @pd: The protection domain to deallocate.
322  * @udata: Valid user data or NULL for kernel object
323  *
324  * It is an error to call this function while any resources in the pd still
325  * exist.  The caller is responsible to synchronously destroy them and
326  * guarantee no new allocations will happen.
327  */
328 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
329 {
330         int ret;
331
332         if (pd->__internal_mr) {
333                 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
334                 WARN_ON(ret);
335                 pd->__internal_mr = NULL;
336         }
337
338         /* uverbs manipulates usecnt with proper locking, while the kabi
339            requires the caller to guarantee we can't race here. */
340         WARN_ON(atomic_read(&pd->usecnt));
341
342         rdma_restrack_del(&pd->res);
343         pd->device->ops.dealloc_pd(pd, udata);
344         kfree(pd);
345 }
346 EXPORT_SYMBOL(ib_dealloc_pd_user);
347
348 /* Address handles */
349
350 /**
351  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
352  * @dest:       Pointer to destination ah_attr. Contents of the destination
353  *              pointer is assumed to be invalid and attribute are overwritten.
354  * @src:        Pointer to source ah_attr.
355  */
356 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
357                        const struct rdma_ah_attr *src)
358 {
359         *dest = *src;
360         if (dest->grh.sgid_attr)
361                 rdma_hold_gid_attr(dest->grh.sgid_attr);
362 }
363 EXPORT_SYMBOL(rdma_copy_ah_attr);
364
365 /**
366  * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
367  * @old:        Pointer to existing ah_attr which needs to be replaced.
368  *              old is assumed to be valid or zero'd
369  * @new:        Pointer to the new ah_attr.
370  *
371  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
372  * old the ah_attr is valid; after that it copies the new attribute and holds
373  * the reference to the replaced ah_attr.
374  */
375 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
376                           const struct rdma_ah_attr *new)
377 {
378         rdma_destroy_ah_attr(old);
379         *old = *new;
380         if (old->grh.sgid_attr)
381                 rdma_hold_gid_attr(old->grh.sgid_attr);
382 }
383 EXPORT_SYMBOL(rdma_replace_ah_attr);
384
385 /**
386  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
387  * @dest:       Pointer to destination ah_attr to copy to.
388  *              dest is assumed to be valid or zero'd
389  * @src:        Pointer to the new ah_attr.
390  *
391  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
392  * if it is valid. This also transfers ownership of internal references from
393  * src to dest, making src invalid in the process. No new reference of the src
394  * ah_attr is taken.
395  */
396 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
397 {
398         rdma_destroy_ah_attr(dest);
399         *dest = *src;
400         src->grh.sgid_attr = NULL;
401 }
402 EXPORT_SYMBOL(rdma_move_ah_attr);
403
404 /*
405  * Validate that the rdma_ah_attr is valid for the device before passing it
406  * off to the driver.
407  */
408 static int rdma_check_ah_attr(struct ib_device *device,
409                               struct rdma_ah_attr *ah_attr)
410 {
411         if (!rdma_is_port_valid(device, ah_attr->port_num))
412                 return -EINVAL;
413
414         if ((rdma_is_grh_required(device, ah_attr->port_num) ||
415              ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
416             !(ah_attr->ah_flags & IB_AH_GRH))
417                 return -EINVAL;
418
419         if (ah_attr->grh.sgid_attr) {
420                 /*
421                  * Make sure the passed sgid_attr is consistent with the
422                  * parameters
423                  */
424                 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
425                     ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
426                         return -EINVAL;
427         }
428         return 0;
429 }
430
431 /*
432  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
433  * On success the caller is responsible to call rdma_unfill_sgid_attr().
434  */
435 static int rdma_fill_sgid_attr(struct ib_device *device,
436                                struct rdma_ah_attr *ah_attr,
437                                const struct ib_gid_attr **old_sgid_attr)
438 {
439         const struct ib_gid_attr *sgid_attr;
440         struct ib_global_route *grh;
441         int ret;
442
443         *old_sgid_attr = ah_attr->grh.sgid_attr;
444
445         ret = rdma_check_ah_attr(device, ah_attr);
446         if (ret)
447                 return ret;
448
449         if (!(ah_attr->ah_flags & IB_AH_GRH))
450                 return 0;
451
452         grh = rdma_ah_retrieve_grh(ah_attr);
453         if (grh->sgid_attr)
454                 return 0;
455
456         sgid_attr =
457                 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
458         if (IS_ERR(sgid_attr))
459                 return PTR_ERR(sgid_attr);
460
461         /* Move ownerhip of the kref into the ah_attr */
462         grh->sgid_attr = sgid_attr;
463         return 0;
464 }
465
466 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
467                                   const struct ib_gid_attr *old_sgid_attr)
468 {
469         /*
470          * Fill didn't change anything, the caller retains ownership of
471          * whatever it passed
472          */
473         if (ah_attr->grh.sgid_attr == old_sgid_attr)
474                 return;
475
476         /*
477          * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
478          * doesn't see any change in the rdma_ah_attr. If we get here
479          * old_sgid_attr is NULL.
480          */
481         rdma_destroy_ah_attr(ah_attr);
482 }
483
484 static const struct ib_gid_attr *
485 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
486                       const struct ib_gid_attr *old_attr)
487 {
488         if (old_attr)
489                 rdma_put_gid_attr(old_attr);
490         if (ah_attr->ah_flags & IB_AH_GRH) {
491                 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
492                 return ah_attr->grh.sgid_attr;
493         }
494         return NULL;
495 }
496
497 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
498                                      struct rdma_ah_attr *ah_attr,
499                                      u32 flags,
500                                      struct ib_udata *udata)
501 {
502         struct ib_device *device = pd->device;
503         struct ib_ah *ah;
504         int ret;
505
506         might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
507
508         if (!device->ops.create_ah)
509                 return ERR_PTR(-EOPNOTSUPP);
510
511         ah = rdma_zalloc_drv_obj_gfp(
512                 device, ib_ah,
513                 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
514         if (!ah)
515                 return ERR_PTR(-ENOMEM);
516
517         ah->device = device;
518         ah->pd = pd;
519         ah->type = ah_attr->type;
520         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
521
522         ret = device->ops.create_ah(ah, ah_attr, flags, udata);
523         if (ret) {
524                 kfree(ah);
525                 return ERR_PTR(ret);
526         }
527
528         atomic_inc(&pd->usecnt);
529         return ah;
530 }
531
532 /**
533  * rdma_create_ah - Creates an address handle for the
534  * given address vector.
535  * @pd: The protection domain associated with the address handle.
536  * @ah_attr: The attributes of the address vector.
537  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
538  *
539  * It returns 0 on success and returns appropriate error code on error.
540  * The address handle is used to reference a local or global destination
541  * in all UD QP post sends.
542  */
543 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
544                              u32 flags)
545 {
546         const struct ib_gid_attr *old_sgid_attr;
547         struct ib_ah *ah;
548         int ret;
549
550         ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
551         if (ret)
552                 return ERR_PTR(ret);
553
554         ah = _rdma_create_ah(pd, ah_attr, flags, NULL);
555
556         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
557         return ah;
558 }
559 EXPORT_SYMBOL(rdma_create_ah);
560
561 /**
562  * rdma_create_user_ah - Creates an address handle for the
563  * given address vector.
564  * It resolves destination mac address for ah attribute of RoCE type.
565  * @pd: The protection domain associated with the address handle.
566  * @ah_attr: The attributes of the address vector.
567  * @udata: pointer to user's input output buffer information need by
568  *         provider driver.
569  *
570  * It returns 0 on success and returns appropriate error code on error.
571  * The address handle is used to reference a local or global destination
572  * in all UD QP post sends.
573  */
574 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
575                                   struct rdma_ah_attr *ah_attr,
576                                   struct ib_udata *udata)
577 {
578         const struct ib_gid_attr *old_sgid_attr;
579         struct ib_ah *ah;
580         int err;
581
582         err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
583         if (err)
584                 return ERR_PTR(err);
585
586         if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
587                 err = ib_resolve_eth_dmac(pd->device, ah_attr);
588                 if (err) {
589                         ah = ERR_PTR(err);
590                         goto out;
591                 }
592         }
593
594         ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata);
595
596 out:
597         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
598         return ah;
599 }
600 EXPORT_SYMBOL(rdma_create_user_ah);
601
602 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
603 {
604         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
605         struct iphdr ip4h_checked;
606         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
607
608         /* If it's IPv6, the version must be 6, otherwise, the first
609          * 20 bytes (before the IPv4 header) are garbled.
610          */
611         if (ip6h->version != 6)
612                 return (ip4h->version == 4) ? 4 : 0;
613         /* version may be 6 or 4 because the first 20 bytes could be garbled */
614
615         /* RoCE v2 requires no options, thus header length
616          * must be 5 words
617          */
618         if (ip4h->ihl != 5)
619                 return 6;
620
621         /* Verify checksum.
622          * We can't write on scattered buffers so we need to copy to
623          * temp buffer.
624          */
625         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
626         ip4h_checked.check = 0;
627         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
628         /* if IPv4 header checksum is OK, believe it */
629         if (ip4h->check == ip4h_checked.check)
630                 return 4;
631         return 6;
632 }
633 EXPORT_SYMBOL(ib_get_rdma_header_version);
634
635 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
636                                                      u8 port_num,
637                                                      const struct ib_grh *grh)
638 {
639         int grh_version;
640
641         if (rdma_protocol_ib(device, port_num))
642                 return RDMA_NETWORK_IB;
643
644         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
645
646         if (grh_version == 4)
647                 return RDMA_NETWORK_IPV4;
648
649         if (grh->next_hdr == IPPROTO_UDP)
650                 return RDMA_NETWORK_IPV6;
651
652         return RDMA_NETWORK_ROCE_V1;
653 }
654
655 struct find_gid_index_context {
656         u16 vlan_id;
657         enum ib_gid_type gid_type;
658 };
659
660 static bool find_gid_index(const union ib_gid *gid,
661                            const struct ib_gid_attr *gid_attr,
662                            void *context)
663 {
664         struct find_gid_index_context *ctx = context;
665
666         if (ctx->gid_type != gid_attr->gid_type)
667                 return false;
668
669         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
670             (is_vlan_dev(gid_attr->ndev) &&
671              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
672                 return false;
673
674         return true;
675 }
676
677 static const struct ib_gid_attr *
678 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
679                        u16 vlan_id, const union ib_gid *sgid,
680                        enum ib_gid_type gid_type)
681 {
682         struct find_gid_index_context context = {.vlan_id = vlan_id,
683                                                  .gid_type = gid_type};
684
685         return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
686                                        &context);
687 }
688
689 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
690                               enum rdma_network_type net_type,
691                               union ib_gid *sgid, union ib_gid *dgid)
692 {
693         struct sockaddr_in  src_in;
694         struct sockaddr_in  dst_in;
695         __be32 src_saddr, dst_saddr;
696
697         if (!sgid || !dgid)
698                 return -EINVAL;
699
700         if (net_type == RDMA_NETWORK_IPV4) {
701                 memcpy(&src_in.sin_addr.s_addr,
702                        &hdr->roce4grh.saddr, 4);
703                 memcpy(&dst_in.sin_addr.s_addr,
704                        &hdr->roce4grh.daddr, 4);
705                 src_saddr = src_in.sin_addr.s_addr;
706                 dst_saddr = dst_in.sin_addr.s_addr;
707                 ipv6_addr_set_v4mapped(src_saddr,
708                                        (struct in6_addr *)sgid);
709                 ipv6_addr_set_v4mapped(dst_saddr,
710                                        (struct in6_addr *)dgid);
711                 return 0;
712         } else if (net_type == RDMA_NETWORK_IPV6 ||
713                    net_type == RDMA_NETWORK_IB) {
714                 *dgid = hdr->ibgrh.dgid;
715                 *sgid = hdr->ibgrh.sgid;
716                 return 0;
717         } else {
718                 return -EINVAL;
719         }
720 }
721 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
722
723 /* Resolve destination mac address and hop limit for unicast destination
724  * GID entry, considering the source GID entry as well.
725  * ah_attribute must have have valid port_num, sgid_index.
726  */
727 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
728                                        struct rdma_ah_attr *ah_attr)
729 {
730         struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
731         const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
732         int hop_limit = 0xff;
733         int ret = 0;
734
735         /* If destination is link local and source GID is RoCEv1,
736          * IP stack is not used.
737          */
738         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
739             sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
740                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
741                                 ah_attr->roce.dmac);
742                 return ret;
743         }
744
745         ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
746                                            ah_attr->roce.dmac,
747                                            sgid_attr, &hop_limit);
748
749         grh->hop_limit = hop_limit;
750         return ret;
751 }
752
753 /*
754  * This function initializes address handle attributes from the incoming packet.
755  * Incoming packet has dgid of the receiver node on which this code is
756  * getting executed and, sgid contains the GID of the sender.
757  *
758  * When resolving mac address of destination, the arrived dgid is used
759  * as sgid and, sgid is used as dgid because sgid contains destinations
760  * GID whom to respond to.
761  *
762  * On success the caller is responsible to call rdma_destroy_ah_attr on the
763  * attr.
764  */
765 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
766                             const struct ib_wc *wc, const struct ib_grh *grh,
767                             struct rdma_ah_attr *ah_attr)
768 {
769         u32 flow_class;
770         int ret;
771         enum rdma_network_type net_type = RDMA_NETWORK_IB;
772         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
773         const struct ib_gid_attr *sgid_attr;
774         int hoplimit = 0xff;
775         union ib_gid dgid;
776         union ib_gid sgid;
777
778         might_sleep();
779
780         memset(ah_attr, 0, sizeof *ah_attr);
781         ah_attr->type = rdma_ah_find_type(device, port_num);
782         if (rdma_cap_eth_ah(device, port_num)) {
783                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
784                         net_type = wc->network_hdr_type;
785                 else
786                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
787                 gid_type = ib_network_to_gid_type(net_type);
788         }
789         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
790                                         &sgid, &dgid);
791         if (ret)
792                 return ret;
793
794         rdma_ah_set_sl(ah_attr, wc->sl);
795         rdma_ah_set_port_num(ah_attr, port_num);
796
797         if (rdma_protocol_roce(device, port_num)) {
798                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
799                                 wc->vlan_id : 0xffff;
800
801                 if (!(wc->wc_flags & IB_WC_GRH))
802                         return -EPROTOTYPE;
803
804                 sgid_attr = get_sgid_attr_from_eth(device, port_num,
805                                                    vlan_id, &dgid,
806                                                    gid_type);
807                 if (IS_ERR(sgid_attr))
808                         return PTR_ERR(sgid_attr);
809
810                 flow_class = be32_to_cpu(grh->version_tclass_flow);
811                 rdma_move_grh_sgid_attr(ah_attr,
812                                         &sgid,
813                                         flow_class & 0xFFFFF,
814                                         hoplimit,
815                                         (flow_class >> 20) & 0xFF,
816                                         sgid_attr);
817
818                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
819                 if (ret)
820                         rdma_destroy_ah_attr(ah_attr);
821
822                 return ret;
823         } else {
824                 rdma_ah_set_dlid(ah_attr, wc->slid);
825                 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
826
827                 if ((wc->wc_flags & IB_WC_GRH) == 0)
828                         return 0;
829
830                 if (dgid.global.interface_id !=
831                                         cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
832                         sgid_attr = rdma_find_gid_by_port(
833                                 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
834                 } else
835                         sgid_attr = rdma_get_gid_attr(device, port_num, 0);
836
837                 if (IS_ERR(sgid_attr))
838                         return PTR_ERR(sgid_attr);
839                 flow_class = be32_to_cpu(grh->version_tclass_flow);
840                 rdma_move_grh_sgid_attr(ah_attr,
841                                         &sgid,
842                                         flow_class & 0xFFFFF,
843                                         hoplimit,
844                                         (flow_class >> 20) & 0xFF,
845                                         sgid_attr);
846
847                 return 0;
848         }
849 }
850 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
851
852 /**
853  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
854  * of the reference
855  *
856  * @attr:       Pointer to AH attribute structure
857  * @dgid:       Destination GID
858  * @flow_label: Flow label
859  * @hop_limit:  Hop limit
860  * @traffic_class: traffic class
861  * @sgid_attr:  Pointer to SGID attribute
862  *
863  * This takes ownership of the sgid_attr reference. The caller must ensure
864  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
865  * calling this function.
866  */
867 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
868                              u32 flow_label, u8 hop_limit, u8 traffic_class,
869                              const struct ib_gid_attr *sgid_attr)
870 {
871         rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
872                         traffic_class);
873         attr->grh.sgid_attr = sgid_attr;
874 }
875 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
876
877 /**
878  * rdma_destroy_ah_attr - Release reference to SGID attribute of
879  * ah attribute.
880  * @ah_attr: Pointer to ah attribute
881  *
882  * Release reference to the SGID attribute of the ah attribute if it is
883  * non NULL. It is safe to call this multiple times, and safe to call it on
884  * a zero initialized ah_attr.
885  */
886 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
887 {
888         if (ah_attr->grh.sgid_attr) {
889                 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
890                 ah_attr->grh.sgid_attr = NULL;
891         }
892 }
893 EXPORT_SYMBOL(rdma_destroy_ah_attr);
894
895 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
896                                    const struct ib_grh *grh, u8 port_num)
897 {
898         struct rdma_ah_attr ah_attr;
899         struct ib_ah *ah;
900         int ret;
901
902         ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
903         if (ret)
904                 return ERR_PTR(ret);
905
906         ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
907
908         rdma_destroy_ah_attr(&ah_attr);
909         return ah;
910 }
911 EXPORT_SYMBOL(ib_create_ah_from_wc);
912
913 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
914 {
915         const struct ib_gid_attr *old_sgid_attr;
916         int ret;
917
918         if (ah->type != ah_attr->type)
919                 return -EINVAL;
920
921         ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
922         if (ret)
923                 return ret;
924
925         ret = ah->device->ops.modify_ah ?
926                 ah->device->ops.modify_ah(ah, ah_attr) :
927                 -EOPNOTSUPP;
928
929         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
930         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
931         return ret;
932 }
933 EXPORT_SYMBOL(rdma_modify_ah);
934
935 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
936 {
937         ah_attr->grh.sgid_attr = NULL;
938
939         return ah->device->ops.query_ah ?
940                 ah->device->ops.query_ah(ah, ah_attr) :
941                 -EOPNOTSUPP;
942 }
943 EXPORT_SYMBOL(rdma_query_ah);
944
945 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
946 {
947         const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
948         struct ib_pd *pd;
949
950         might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
951
952         pd = ah->pd;
953
954         ah->device->ops.destroy_ah(ah, flags);
955         atomic_dec(&pd->usecnt);
956         if (sgid_attr)
957                 rdma_put_gid_attr(sgid_attr);
958
959         kfree(ah);
960         return 0;
961 }
962 EXPORT_SYMBOL(rdma_destroy_ah_user);
963
964 /* Shared receive queues */
965
966 struct ib_srq *ib_create_srq(struct ib_pd *pd,
967                              struct ib_srq_init_attr *srq_init_attr)
968 {
969         struct ib_srq *srq;
970         int ret;
971
972         if (!pd->device->ops.create_srq)
973                 return ERR_PTR(-EOPNOTSUPP);
974
975         srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
976         if (!srq)
977                 return ERR_PTR(-ENOMEM);
978
979         srq->device = pd->device;
980         srq->pd = pd;
981         srq->event_handler = srq_init_attr->event_handler;
982         srq->srq_context = srq_init_attr->srq_context;
983         srq->srq_type = srq_init_attr->srq_type;
984
985         if (ib_srq_has_cq(srq->srq_type)) {
986                 srq->ext.cq = srq_init_attr->ext.cq;
987                 atomic_inc(&srq->ext.cq->usecnt);
988         }
989         if (srq->srq_type == IB_SRQT_XRC) {
990                 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
991                 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
992         }
993         atomic_inc(&pd->usecnt);
994
995         ret = pd->device->ops.create_srq(srq, srq_init_attr, NULL);
996         if (ret) {
997                 atomic_dec(&srq->pd->usecnt);
998                 if (srq->srq_type == IB_SRQT_XRC)
999                         atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1000                 if (ib_srq_has_cq(srq->srq_type))
1001                         atomic_dec(&srq->ext.cq->usecnt);
1002                 kfree(srq);
1003                 return ERR_PTR(ret);
1004         }
1005
1006         return srq;
1007 }
1008 EXPORT_SYMBOL(ib_create_srq);
1009
1010 int ib_modify_srq(struct ib_srq *srq,
1011                   struct ib_srq_attr *srq_attr,
1012                   enum ib_srq_attr_mask srq_attr_mask)
1013 {
1014         return srq->device->ops.modify_srq ?
1015                 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1016                                             NULL) : -EOPNOTSUPP;
1017 }
1018 EXPORT_SYMBOL(ib_modify_srq);
1019
1020 int ib_query_srq(struct ib_srq *srq,
1021                  struct ib_srq_attr *srq_attr)
1022 {
1023         return srq->device->ops.query_srq ?
1024                 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1025 }
1026 EXPORT_SYMBOL(ib_query_srq);
1027
1028 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1029 {
1030         if (atomic_read(&srq->usecnt))
1031                 return -EBUSY;
1032
1033         srq->device->ops.destroy_srq(srq, udata);
1034
1035         atomic_dec(&srq->pd->usecnt);
1036         if (srq->srq_type == IB_SRQT_XRC)
1037                 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1038         if (ib_srq_has_cq(srq->srq_type))
1039                 atomic_dec(&srq->ext.cq->usecnt);
1040         kfree(srq);
1041
1042         return 0;
1043 }
1044 EXPORT_SYMBOL(ib_destroy_srq_user);
1045
1046 /* Queue pairs */
1047
1048 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1049 {
1050         struct ib_qp *qp = context;
1051         unsigned long flags;
1052
1053         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
1054         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1055                 if (event->element.qp->event_handler)
1056                         event->element.qp->event_handler(event, event->element.qp->qp_context);
1057         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
1058 }
1059
1060 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
1061 {
1062         mutex_lock(&xrcd->tgt_qp_mutex);
1063         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
1064         mutex_unlock(&xrcd->tgt_qp_mutex);
1065 }
1066
1067 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1068                                   void (*event_handler)(struct ib_event *, void *),
1069                                   void *qp_context)
1070 {
1071         struct ib_qp *qp;
1072         unsigned long flags;
1073         int err;
1074
1075         qp = kzalloc(sizeof *qp, GFP_KERNEL);
1076         if (!qp)
1077                 return ERR_PTR(-ENOMEM);
1078
1079         qp->real_qp = real_qp;
1080         err = ib_open_shared_qp_security(qp, real_qp->device);
1081         if (err) {
1082                 kfree(qp);
1083                 return ERR_PTR(err);
1084         }
1085
1086         qp->real_qp = real_qp;
1087         atomic_inc(&real_qp->usecnt);
1088         qp->device = real_qp->device;
1089         qp->event_handler = event_handler;
1090         qp->qp_context = qp_context;
1091         qp->qp_num = real_qp->qp_num;
1092         qp->qp_type = real_qp->qp_type;
1093
1094         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1095         list_add(&qp->open_list, &real_qp->open_list);
1096         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1097
1098         return qp;
1099 }
1100
1101 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1102                          struct ib_qp_open_attr *qp_open_attr)
1103 {
1104         struct ib_qp *qp, *real_qp;
1105
1106         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1107                 return ERR_PTR(-EINVAL);
1108
1109         qp = ERR_PTR(-EINVAL);
1110         mutex_lock(&xrcd->tgt_qp_mutex);
1111         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
1112                 if (real_qp->qp_num == qp_open_attr->qp_num) {
1113                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1114                                           qp_open_attr->qp_context);
1115                         break;
1116                 }
1117         }
1118         mutex_unlock(&xrcd->tgt_qp_mutex);
1119         return qp;
1120 }
1121 EXPORT_SYMBOL(ib_open_qp);
1122
1123 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1124                                         struct ib_qp_init_attr *qp_init_attr,
1125                                         struct ib_udata *udata)
1126 {
1127         struct ib_qp *real_qp = qp;
1128
1129         qp->event_handler = __ib_shared_qp_event_handler;
1130         qp->qp_context = qp;
1131         qp->pd = NULL;
1132         qp->send_cq = qp->recv_cq = NULL;
1133         qp->srq = NULL;
1134         qp->xrcd = qp_init_attr->xrcd;
1135         atomic_inc(&qp_init_attr->xrcd->usecnt);
1136         INIT_LIST_HEAD(&qp->open_list);
1137
1138         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1139                           qp_init_attr->qp_context);
1140         if (IS_ERR(qp))
1141                 return qp;
1142
1143         __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
1144         return qp;
1145 }
1146
1147 struct ib_qp *ib_create_qp_user(struct ib_pd *pd,
1148                                 struct ib_qp_init_attr *qp_init_attr,
1149                                 struct ib_udata *udata)
1150 {
1151         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1152         struct ib_qp *qp;
1153         int ret;
1154
1155         if (qp_init_attr->rwq_ind_tbl &&
1156             (qp_init_attr->recv_cq ||
1157             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1158             qp_init_attr->cap.max_recv_sge))
1159                 return ERR_PTR(-EINVAL);
1160
1161         if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1162             !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1163                 return ERR_PTR(-EINVAL);
1164
1165         /*
1166          * If the callers is using the RDMA API calculate the resources
1167          * needed for the RDMA READ/WRITE operations.
1168          *
1169          * Note that these callers need to pass in a port number.
1170          */
1171         if (qp_init_attr->cap.max_rdma_ctxs)
1172                 rdma_rw_init_qp(device, qp_init_attr);
1173
1174         qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1175         if (IS_ERR(qp))
1176                 return qp;
1177
1178         ret = ib_create_qp_security(qp, device);
1179         if (ret)
1180                 goto err;
1181
1182         qp->qp_type    = qp_init_attr->qp_type;
1183         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
1184
1185         atomic_set(&qp->usecnt, 0);
1186         qp->mrs_used = 0;
1187         spin_lock_init(&qp->mr_lock);
1188         INIT_LIST_HEAD(&qp->rdma_mrs);
1189         INIT_LIST_HEAD(&qp->sig_mrs);
1190         qp->port = 0;
1191
1192         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1193                 struct ib_qp *xrc_qp =
1194                         create_xrc_qp_user(qp, qp_init_attr, udata);
1195
1196                 if (IS_ERR(xrc_qp)) {
1197                         ret = PTR_ERR(xrc_qp);
1198                         goto err;
1199                 }
1200                 return xrc_qp;
1201         }
1202
1203         qp->event_handler = qp_init_attr->event_handler;
1204         qp->qp_context = qp_init_attr->qp_context;
1205         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1206                 qp->recv_cq = NULL;
1207                 qp->srq = NULL;
1208         } else {
1209                 qp->recv_cq = qp_init_attr->recv_cq;
1210                 if (qp_init_attr->recv_cq)
1211                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
1212                 qp->srq = qp_init_attr->srq;
1213                 if (qp->srq)
1214                         atomic_inc(&qp_init_attr->srq->usecnt);
1215         }
1216
1217         qp->send_cq = qp_init_attr->send_cq;
1218         qp->xrcd    = NULL;
1219
1220         atomic_inc(&pd->usecnt);
1221         if (qp_init_attr->send_cq)
1222                 atomic_inc(&qp_init_attr->send_cq->usecnt);
1223         if (qp_init_attr->rwq_ind_tbl)
1224                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1225
1226         if (qp_init_attr->cap.max_rdma_ctxs) {
1227                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1228                 if (ret)
1229                         goto err;
1230         }
1231
1232         /*
1233          * Note: all hw drivers guarantee that max_send_sge is lower than
1234          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1235          * max_send_sge <= max_sge_rd.
1236          */
1237         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1238         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1239                                  device->attrs.max_sge_rd);
1240         if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1241                 qp->integrity_en = true;
1242
1243         return qp;
1244
1245 err:
1246         ib_destroy_qp(qp);
1247         return ERR_PTR(ret);
1248
1249 }
1250 EXPORT_SYMBOL(ib_create_qp_user);
1251
1252 static const struct {
1253         int                     valid;
1254         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1255         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1256 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1257         [IB_QPS_RESET] = {
1258                 [IB_QPS_RESET] = { .valid = 1 },
1259                 [IB_QPS_INIT]  = {
1260                         .valid = 1,
1261                         .req_param = {
1262                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1263                                                 IB_QP_PORT                      |
1264                                                 IB_QP_QKEY),
1265                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1266                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1267                                                 IB_QP_PORT                      |
1268                                                 IB_QP_ACCESS_FLAGS),
1269                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1270                                                 IB_QP_PORT                      |
1271                                                 IB_QP_ACCESS_FLAGS),
1272                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1273                                                 IB_QP_PORT                      |
1274                                                 IB_QP_ACCESS_FLAGS),
1275                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1276                                                 IB_QP_PORT                      |
1277                                                 IB_QP_ACCESS_FLAGS),
1278                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1279                                                 IB_QP_QKEY),
1280                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1281                                                 IB_QP_QKEY),
1282                         }
1283                 },
1284         },
1285         [IB_QPS_INIT]  = {
1286                 [IB_QPS_RESET] = { .valid = 1 },
1287                 [IB_QPS_ERR] =   { .valid = 1 },
1288                 [IB_QPS_INIT]  = {
1289                         .valid = 1,
1290                         .opt_param = {
1291                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1292                                                 IB_QP_PORT                      |
1293                                                 IB_QP_QKEY),
1294                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1295                                                 IB_QP_PORT                      |
1296                                                 IB_QP_ACCESS_FLAGS),
1297                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1298                                                 IB_QP_PORT                      |
1299                                                 IB_QP_ACCESS_FLAGS),
1300                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1301                                                 IB_QP_PORT                      |
1302                                                 IB_QP_ACCESS_FLAGS),
1303                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1304                                                 IB_QP_PORT                      |
1305                                                 IB_QP_ACCESS_FLAGS),
1306                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1307                                                 IB_QP_QKEY),
1308                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1309                                                 IB_QP_QKEY),
1310                         }
1311                 },
1312                 [IB_QPS_RTR]   = {
1313                         .valid = 1,
1314                         .req_param = {
1315                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1316                                                 IB_QP_PATH_MTU                  |
1317                                                 IB_QP_DEST_QPN                  |
1318                                                 IB_QP_RQ_PSN),
1319                                 [IB_QPT_RC]  = (IB_QP_AV                        |
1320                                                 IB_QP_PATH_MTU                  |
1321                                                 IB_QP_DEST_QPN                  |
1322                                                 IB_QP_RQ_PSN                    |
1323                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1324                                                 IB_QP_MIN_RNR_TIMER),
1325                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1326                                                 IB_QP_PATH_MTU                  |
1327                                                 IB_QP_DEST_QPN                  |
1328                                                 IB_QP_RQ_PSN),
1329                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1330                                                 IB_QP_PATH_MTU                  |
1331                                                 IB_QP_DEST_QPN                  |
1332                                                 IB_QP_RQ_PSN                    |
1333                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1334                                                 IB_QP_MIN_RNR_TIMER),
1335                         },
1336                         .opt_param = {
1337                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1338                                                  IB_QP_QKEY),
1339                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1340                                                  IB_QP_ACCESS_FLAGS             |
1341                                                  IB_QP_PKEY_INDEX),
1342                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1343                                                  IB_QP_ACCESS_FLAGS             |
1344                                                  IB_QP_PKEY_INDEX),
1345                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1346                                                  IB_QP_ACCESS_FLAGS             |
1347                                                  IB_QP_PKEY_INDEX),
1348                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1349                                                  IB_QP_ACCESS_FLAGS             |
1350                                                  IB_QP_PKEY_INDEX),
1351                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1352                                                  IB_QP_QKEY),
1353                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1354                                                  IB_QP_QKEY),
1355                          },
1356                 },
1357         },
1358         [IB_QPS_RTR]   = {
1359                 [IB_QPS_RESET] = { .valid = 1 },
1360                 [IB_QPS_ERR] =   { .valid = 1 },
1361                 [IB_QPS_RTS]   = {
1362                         .valid = 1,
1363                         .req_param = {
1364                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
1365                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
1366                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1367                                                 IB_QP_RETRY_CNT                 |
1368                                                 IB_QP_RNR_RETRY                 |
1369                                                 IB_QP_SQ_PSN                    |
1370                                                 IB_QP_MAX_QP_RD_ATOMIC),
1371                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1372                                                 IB_QP_RETRY_CNT                 |
1373                                                 IB_QP_RNR_RETRY                 |
1374                                                 IB_QP_SQ_PSN                    |
1375                                                 IB_QP_MAX_QP_RD_ATOMIC),
1376                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1377                                                 IB_QP_SQ_PSN),
1378                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1379                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1380                         },
1381                         .opt_param = {
1382                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1383                                                  IB_QP_QKEY),
1384                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1385                                                  IB_QP_ALT_PATH                 |
1386                                                  IB_QP_ACCESS_FLAGS             |
1387                                                  IB_QP_PATH_MIG_STATE),
1388                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1389                                                  IB_QP_ALT_PATH                 |
1390                                                  IB_QP_ACCESS_FLAGS             |
1391                                                  IB_QP_MIN_RNR_TIMER            |
1392                                                  IB_QP_PATH_MIG_STATE),
1393                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1394                                                  IB_QP_ALT_PATH                 |
1395                                                  IB_QP_ACCESS_FLAGS             |
1396                                                  IB_QP_PATH_MIG_STATE),
1397                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1398                                                  IB_QP_ALT_PATH                 |
1399                                                  IB_QP_ACCESS_FLAGS             |
1400                                                  IB_QP_MIN_RNR_TIMER            |
1401                                                  IB_QP_PATH_MIG_STATE),
1402                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1403                                                  IB_QP_QKEY),
1404                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1405                                                  IB_QP_QKEY),
1406                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1407                          }
1408                 }
1409         },
1410         [IB_QPS_RTS]   = {
1411                 [IB_QPS_RESET] = { .valid = 1 },
1412                 [IB_QPS_ERR] =   { .valid = 1 },
1413                 [IB_QPS_RTS]   = {
1414                         .valid = 1,
1415                         .opt_param = {
1416                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1417                                                 IB_QP_QKEY),
1418                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1419                                                 IB_QP_ACCESS_FLAGS              |
1420                                                 IB_QP_ALT_PATH                  |
1421                                                 IB_QP_PATH_MIG_STATE),
1422                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1423                                                 IB_QP_ACCESS_FLAGS              |
1424                                                 IB_QP_ALT_PATH                  |
1425                                                 IB_QP_PATH_MIG_STATE            |
1426                                                 IB_QP_MIN_RNR_TIMER),
1427                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1428                                                 IB_QP_ACCESS_FLAGS              |
1429                                                 IB_QP_ALT_PATH                  |
1430                                                 IB_QP_PATH_MIG_STATE),
1431                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1432                                                 IB_QP_ACCESS_FLAGS              |
1433                                                 IB_QP_ALT_PATH                  |
1434                                                 IB_QP_PATH_MIG_STATE            |
1435                                                 IB_QP_MIN_RNR_TIMER),
1436                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1437                                                 IB_QP_QKEY),
1438                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1439                                                 IB_QP_QKEY),
1440                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1441                         }
1442                 },
1443                 [IB_QPS_SQD]   = {
1444                         .valid = 1,
1445                         .opt_param = {
1446                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1447                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1448                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1449                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1450                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1451                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1452                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1453                         }
1454                 },
1455         },
1456         [IB_QPS_SQD]   = {
1457                 [IB_QPS_RESET] = { .valid = 1 },
1458                 [IB_QPS_ERR] =   { .valid = 1 },
1459                 [IB_QPS_RTS]   = {
1460                         .valid = 1,
1461                         .opt_param = {
1462                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1463                                                 IB_QP_QKEY),
1464                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1465                                                 IB_QP_ALT_PATH                  |
1466                                                 IB_QP_ACCESS_FLAGS              |
1467                                                 IB_QP_PATH_MIG_STATE),
1468                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1469                                                 IB_QP_ALT_PATH                  |
1470                                                 IB_QP_ACCESS_FLAGS              |
1471                                                 IB_QP_MIN_RNR_TIMER             |
1472                                                 IB_QP_PATH_MIG_STATE),
1473                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1474                                                 IB_QP_ALT_PATH                  |
1475                                                 IB_QP_ACCESS_FLAGS              |
1476                                                 IB_QP_PATH_MIG_STATE),
1477                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1478                                                 IB_QP_ALT_PATH                  |
1479                                                 IB_QP_ACCESS_FLAGS              |
1480                                                 IB_QP_MIN_RNR_TIMER             |
1481                                                 IB_QP_PATH_MIG_STATE),
1482                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1483                                                 IB_QP_QKEY),
1484                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1485                                                 IB_QP_QKEY),
1486                         }
1487                 },
1488                 [IB_QPS_SQD]   = {
1489                         .valid = 1,
1490                         .opt_param = {
1491                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1492                                                 IB_QP_QKEY),
1493                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1494                                                 IB_QP_ALT_PATH                  |
1495                                                 IB_QP_ACCESS_FLAGS              |
1496                                                 IB_QP_PKEY_INDEX                |
1497                                                 IB_QP_PATH_MIG_STATE),
1498                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1499                                                 IB_QP_AV                        |
1500                                                 IB_QP_TIMEOUT                   |
1501                                                 IB_QP_RETRY_CNT                 |
1502                                                 IB_QP_RNR_RETRY                 |
1503                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1504                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1505                                                 IB_QP_ALT_PATH                  |
1506                                                 IB_QP_ACCESS_FLAGS              |
1507                                                 IB_QP_PKEY_INDEX                |
1508                                                 IB_QP_MIN_RNR_TIMER             |
1509                                                 IB_QP_PATH_MIG_STATE),
1510                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1511                                                 IB_QP_AV                        |
1512                                                 IB_QP_TIMEOUT                   |
1513                                                 IB_QP_RETRY_CNT                 |
1514                                                 IB_QP_RNR_RETRY                 |
1515                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1516                                                 IB_QP_ALT_PATH                  |
1517                                                 IB_QP_ACCESS_FLAGS              |
1518                                                 IB_QP_PKEY_INDEX                |
1519                                                 IB_QP_PATH_MIG_STATE),
1520                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1521                                                 IB_QP_AV                        |
1522                                                 IB_QP_TIMEOUT                   |
1523                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1524                                                 IB_QP_ALT_PATH                  |
1525                                                 IB_QP_ACCESS_FLAGS              |
1526                                                 IB_QP_PKEY_INDEX                |
1527                                                 IB_QP_MIN_RNR_TIMER             |
1528                                                 IB_QP_PATH_MIG_STATE),
1529                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1530                                                 IB_QP_QKEY),
1531                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1532                                                 IB_QP_QKEY),
1533                         }
1534                 }
1535         },
1536         [IB_QPS_SQE]   = {
1537                 [IB_QPS_RESET] = { .valid = 1 },
1538                 [IB_QPS_ERR] =   { .valid = 1 },
1539                 [IB_QPS_RTS]   = {
1540                         .valid = 1,
1541                         .opt_param = {
1542                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1543                                                 IB_QP_QKEY),
1544                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1545                                                 IB_QP_ACCESS_FLAGS),
1546                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1547                                                 IB_QP_QKEY),
1548                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1549                                                 IB_QP_QKEY),
1550                         }
1551                 }
1552         },
1553         [IB_QPS_ERR] = {
1554                 [IB_QPS_RESET] = { .valid = 1 },
1555                 [IB_QPS_ERR] =   { .valid = 1 }
1556         }
1557 };
1558
1559 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1560                         enum ib_qp_type type, enum ib_qp_attr_mask mask)
1561 {
1562         enum ib_qp_attr_mask req_param, opt_param;
1563
1564         if (mask & IB_QP_CUR_STATE  &&
1565             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1566             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1567                 return false;
1568
1569         if (!qp_state_table[cur_state][next_state].valid)
1570                 return false;
1571
1572         req_param = qp_state_table[cur_state][next_state].req_param[type];
1573         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1574
1575         if ((mask & req_param) != req_param)
1576                 return false;
1577
1578         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1579                 return false;
1580
1581         return true;
1582 }
1583 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1584
1585 /**
1586  * ib_resolve_eth_dmac - Resolve destination mac address
1587  * @device:             Device to consider
1588  * @ah_attr:            address handle attribute which describes the
1589  *                      source and destination parameters
1590  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1591  * returns 0 on success or appropriate error code. It initializes the
1592  * necessary ah_attr fields when call is successful.
1593  */
1594 static int ib_resolve_eth_dmac(struct ib_device *device,
1595                                struct rdma_ah_attr *ah_attr)
1596 {
1597         int ret = 0;
1598
1599         if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1600                 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1601                         __be32 addr = 0;
1602
1603                         memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1604                         ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1605                 } else {
1606                         ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1607                                         (char *)ah_attr->roce.dmac);
1608                 }
1609         } else {
1610                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1611         }
1612         return ret;
1613 }
1614
1615 static bool is_qp_type_connected(const struct ib_qp *qp)
1616 {
1617         return (qp->qp_type == IB_QPT_UC ||
1618                 qp->qp_type == IB_QPT_RC ||
1619                 qp->qp_type == IB_QPT_XRC_INI ||
1620                 qp->qp_type == IB_QPT_XRC_TGT);
1621 }
1622
1623 /**
1624  * IB core internal function to perform QP attributes modification.
1625  */
1626 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1627                          int attr_mask, struct ib_udata *udata)
1628 {
1629         u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1630         const struct ib_gid_attr *old_sgid_attr_av;
1631         const struct ib_gid_attr *old_sgid_attr_alt_av;
1632         int ret;
1633
1634         if (attr_mask & IB_QP_AV) {
1635                 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1636                                           &old_sgid_attr_av);
1637                 if (ret)
1638                         return ret;
1639         }
1640         if (attr_mask & IB_QP_ALT_PATH) {
1641                 /*
1642                  * FIXME: This does not track the migration state, so if the
1643                  * user loads a new alternate path after the HW has migrated
1644                  * from primary->alternate we will keep the wrong
1645                  * references. This is OK for IB because the reference
1646                  * counting does not serve any functional purpose.
1647                  */
1648                 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1649                                           &old_sgid_attr_alt_av);
1650                 if (ret)
1651                         goto out_av;
1652
1653                 /*
1654                  * Today the core code can only handle alternate paths and APM
1655                  * for IB. Ban them in roce mode.
1656                  */
1657                 if (!(rdma_protocol_ib(qp->device,
1658                                        attr->alt_ah_attr.port_num) &&
1659                       rdma_protocol_ib(qp->device, port))) {
1660                         ret = EINVAL;
1661                         goto out;
1662                 }
1663         }
1664
1665         /*
1666          * If the user provided the qp_attr then we have to resolve it. Kernel
1667          * users have to provide already resolved rdma_ah_attr's
1668          */
1669         if (udata && (attr_mask & IB_QP_AV) &&
1670             attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1671             is_qp_type_connected(qp)) {
1672                 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1673                 if (ret)
1674                         goto out;
1675         }
1676
1677         if (rdma_ib_or_roce(qp->device, port)) {
1678                 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1679                         dev_warn(&qp->device->dev,
1680                                  "%s rq_psn overflow, masking to 24 bits\n",
1681                                  __func__);
1682                         attr->rq_psn &= 0xffffff;
1683                 }
1684
1685                 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1686                         dev_warn(&qp->device->dev,
1687                                  " %s sq_psn overflow, masking to 24 bits\n",
1688                                  __func__);
1689                         attr->sq_psn &= 0xffffff;
1690                 }
1691         }
1692
1693         /*
1694          * Bind this qp to a counter automatically based on the rdma counter
1695          * rules. This only set in RST2INIT with port specified
1696          */
1697         if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1698             ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1699                 rdma_counter_bind_qp_auto(qp, attr->port_num);
1700
1701         ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1702         if (ret)
1703                 goto out;
1704
1705         if (attr_mask & IB_QP_PORT)
1706                 qp->port = attr->port_num;
1707         if (attr_mask & IB_QP_AV)
1708                 qp->av_sgid_attr =
1709                         rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1710         if (attr_mask & IB_QP_ALT_PATH)
1711                 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1712                         &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1713
1714 out:
1715         if (attr_mask & IB_QP_ALT_PATH)
1716                 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1717 out_av:
1718         if (attr_mask & IB_QP_AV)
1719                 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1720         return ret;
1721 }
1722
1723 /**
1724  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1725  * @ib_qp: The QP to modify.
1726  * @attr: On input, specifies the QP attributes to modify.  On output,
1727  *   the current values of selected QP attributes are returned.
1728  * @attr_mask: A bit-mask used to specify which attributes of the QP
1729  *   are being modified.
1730  * @udata: pointer to user's input output buffer information
1731  *   are being modified.
1732  * It returns 0 on success and returns appropriate error code on error.
1733  */
1734 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1735                             int attr_mask, struct ib_udata *udata)
1736 {
1737         return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1738 }
1739 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1740
1741 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1742 {
1743         int rc;
1744         u32 netdev_speed;
1745         struct net_device *netdev;
1746         struct ethtool_link_ksettings lksettings;
1747
1748         if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1749                 return -EINVAL;
1750
1751         netdev = ib_device_get_netdev(dev, port_num);
1752         if (!netdev)
1753                 return -ENODEV;
1754
1755         rtnl_lock();
1756         rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1757         rtnl_unlock();
1758
1759         dev_put(netdev);
1760
1761         if (!rc) {
1762                 netdev_speed = lksettings.base.speed;
1763         } else {
1764                 netdev_speed = SPEED_1000;
1765                 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1766                         netdev_speed);
1767         }
1768
1769         if (netdev_speed <= SPEED_1000) {
1770                 *width = IB_WIDTH_1X;
1771                 *speed = IB_SPEED_SDR;
1772         } else if (netdev_speed <= SPEED_10000) {
1773                 *width = IB_WIDTH_1X;
1774                 *speed = IB_SPEED_FDR10;
1775         } else if (netdev_speed <= SPEED_20000) {
1776                 *width = IB_WIDTH_4X;
1777                 *speed = IB_SPEED_DDR;
1778         } else if (netdev_speed <= SPEED_25000) {
1779                 *width = IB_WIDTH_1X;
1780                 *speed = IB_SPEED_EDR;
1781         } else if (netdev_speed <= SPEED_40000) {
1782                 *width = IB_WIDTH_4X;
1783                 *speed = IB_SPEED_FDR10;
1784         } else {
1785                 *width = IB_WIDTH_4X;
1786                 *speed = IB_SPEED_EDR;
1787         }
1788
1789         return 0;
1790 }
1791 EXPORT_SYMBOL(ib_get_eth_speed);
1792
1793 int ib_modify_qp(struct ib_qp *qp,
1794                  struct ib_qp_attr *qp_attr,
1795                  int qp_attr_mask)
1796 {
1797         return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1798 }
1799 EXPORT_SYMBOL(ib_modify_qp);
1800
1801 int ib_query_qp(struct ib_qp *qp,
1802                 struct ib_qp_attr *qp_attr,
1803                 int qp_attr_mask,
1804                 struct ib_qp_init_attr *qp_init_attr)
1805 {
1806         qp_attr->ah_attr.grh.sgid_attr = NULL;
1807         qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1808
1809         return qp->device->ops.query_qp ?
1810                 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1811                                          qp_init_attr) : -EOPNOTSUPP;
1812 }
1813 EXPORT_SYMBOL(ib_query_qp);
1814
1815 int ib_close_qp(struct ib_qp *qp)
1816 {
1817         struct ib_qp *real_qp;
1818         unsigned long flags;
1819
1820         real_qp = qp->real_qp;
1821         if (real_qp == qp)
1822                 return -EINVAL;
1823
1824         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1825         list_del(&qp->open_list);
1826         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1827
1828         atomic_dec(&real_qp->usecnt);
1829         if (qp->qp_sec)
1830                 ib_close_shared_qp_security(qp->qp_sec);
1831         kfree(qp);
1832
1833         return 0;
1834 }
1835 EXPORT_SYMBOL(ib_close_qp);
1836
1837 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1838 {
1839         struct ib_xrcd *xrcd;
1840         struct ib_qp *real_qp;
1841         int ret;
1842
1843         real_qp = qp->real_qp;
1844         xrcd = real_qp->xrcd;
1845
1846         mutex_lock(&xrcd->tgt_qp_mutex);
1847         ib_close_qp(qp);
1848         if (atomic_read(&real_qp->usecnt) == 0)
1849                 list_del(&real_qp->xrcd_list);
1850         else
1851                 real_qp = NULL;
1852         mutex_unlock(&xrcd->tgt_qp_mutex);
1853
1854         if (real_qp) {
1855                 ret = ib_destroy_qp(real_qp);
1856                 if (!ret)
1857                         atomic_dec(&xrcd->usecnt);
1858                 else
1859                         __ib_insert_xrcd_qp(xrcd, real_qp);
1860         }
1861
1862         return 0;
1863 }
1864
1865 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1866 {
1867         const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1868         const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1869         struct ib_pd *pd;
1870         struct ib_cq *scq, *rcq;
1871         struct ib_srq *srq;
1872         struct ib_rwq_ind_table *ind_tbl;
1873         struct ib_qp_security *sec;
1874         int ret;
1875
1876         WARN_ON_ONCE(qp->mrs_used > 0);
1877
1878         if (atomic_read(&qp->usecnt))
1879                 return -EBUSY;
1880
1881         if (qp->real_qp != qp)
1882                 return __ib_destroy_shared_qp(qp);
1883
1884         pd   = qp->pd;
1885         scq  = qp->send_cq;
1886         rcq  = qp->recv_cq;
1887         srq  = qp->srq;
1888         ind_tbl = qp->rwq_ind_tbl;
1889         sec  = qp->qp_sec;
1890         if (sec)
1891                 ib_destroy_qp_security_begin(sec);
1892
1893         if (!qp->uobject)
1894                 rdma_rw_cleanup_mrs(qp);
1895
1896         rdma_counter_unbind_qp(qp, true);
1897         rdma_restrack_del(&qp->res);
1898         ret = qp->device->ops.destroy_qp(qp, udata);
1899         if (!ret) {
1900                 if (alt_path_sgid_attr)
1901                         rdma_put_gid_attr(alt_path_sgid_attr);
1902                 if (av_sgid_attr)
1903                         rdma_put_gid_attr(av_sgid_attr);
1904                 if (pd)
1905                         atomic_dec(&pd->usecnt);
1906                 if (scq)
1907                         atomic_dec(&scq->usecnt);
1908                 if (rcq)
1909                         atomic_dec(&rcq->usecnt);
1910                 if (srq)
1911                         atomic_dec(&srq->usecnt);
1912                 if (ind_tbl)
1913                         atomic_dec(&ind_tbl->usecnt);
1914                 if (sec)
1915                         ib_destroy_qp_security_end(sec);
1916         } else {
1917                 if (sec)
1918                         ib_destroy_qp_security_abort(sec);
1919         }
1920
1921         return ret;
1922 }
1923 EXPORT_SYMBOL(ib_destroy_qp_user);
1924
1925 /* Completion queues */
1926
1927 struct ib_cq *__ib_create_cq(struct ib_device *device,
1928                              ib_comp_handler comp_handler,
1929                              void (*event_handler)(struct ib_event *, void *),
1930                              void *cq_context,
1931                              const struct ib_cq_init_attr *cq_attr,
1932                              const char *caller)
1933 {
1934         struct ib_cq *cq;
1935         int ret;
1936
1937         cq = rdma_zalloc_drv_obj(device, ib_cq);
1938         if (!cq)
1939                 return ERR_PTR(-ENOMEM);
1940
1941         cq->device = device;
1942         cq->uobject = NULL;
1943         cq->comp_handler = comp_handler;
1944         cq->event_handler = event_handler;
1945         cq->cq_context = cq_context;
1946         atomic_set(&cq->usecnt, 0);
1947         cq->res.type = RDMA_RESTRACK_CQ;
1948         rdma_restrack_set_task(&cq->res, caller);
1949
1950         ret = device->ops.create_cq(cq, cq_attr, NULL);
1951         if (ret) {
1952                 kfree(cq);
1953                 return ERR_PTR(ret);
1954         }
1955
1956         rdma_restrack_kadd(&cq->res);
1957         return cq;
1958 }
1959 EXPORT_SYMBOL(__ib_create_cq);
1960
1961 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1962 {
1963         return cq->device->ops.modify_cq ?
1964                 cq->device->ops.modify_cq(cq, cq_count,
1965                                           cq_period) : -EOPNOTSUPP;
1966 }
1967 EXPORT_SYMBOL(rdma_set_cq_moderation);
1968
1969 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
1970 {
1971         if (atomic_read(&cq->usecnt))
1972                 return -EBUSY;
1973
1974         rdma_restrack_del(&cq->res);
1975         cq->device->ops.destroy_cq(cq, udata);
1976         kfree(cq);
1977         return 0;
1978 }
1979 EXPORT_SYMBOL(ib_destroy_cq_user);
1980
1981 int ib_resize_cq(struct ib_cq *cq, int cqe)
1982 {
1983         return cq->device->ops.resize_cq ?
1984                 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
1985 }
1986 EXPORT_SYMBOL(ib_resize_cq);
1987
1988 /* Memory regions */
1989
1990 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
1991 {
1992         struct ib_pd *pd = mr->pd;
1993         struct ib_dm *dm = mr->dm;
1994         struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
1995         int ret;
1996
1997         rdma_restrack_del(&mr->res);
1998         ret = mr->device->ops.dereg_mr(mr, udata);
1999         if (!ret) {
2000                 atomic_dec(&pd->usecnt);
2001                 if (dm)
2002                         atomic_dec(&dm->usecnt);
2003                 kfree(sig_attrs);
2004         }
2005
2006         return ret;
2007 }
2008 EXPORT_SYMBOL(ib_dereg_mr_user);
2009
2010 /**
2011  * ib_alloc_mr_user() - Allocates a memory region
2012  * @pd:            protection domain associated with the region
2013  * @mr_type:       memory region type
2014  * @max_num_sg:    maximum sg entries available for registration.
2015  * @udata:         user data or null for kernel objects
2016  *
2017  * Notes:
2018  * Memory registeration page/sg lists must not exceed max_num_sg.
2019  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2020  * max_num_sg * used_page_size.
2021  *
2022  */
2023 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
2024                                u32 max_num_sg, struct ib_udata *udata)
2025 {
2026         struct ib_mr *mr;
2027
2028         if (!pd->device->ops.alloc_mr)
2029                 return ERR_PTR(-EOPNOTSUPP);
2030
2031         if (WARN_ON_ONCE(mr_type == IB_MR_TYPE_INTEGRITY))
2032                 return ERR_PTR(-EINVAL);
2033
2034         mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg, udata);
2035         if (!IS_ERR(mr)) {
2036                 mr->device  = pd->device;
2037                 mr->pd      = pd;
2038                 mr->dm      = NULL;
2039                 mr->uobject = NULL;
2040                 atomic_inc(&pd->usecnt);
2041                 mr->need_inval = false;
2042                 mr->res.type = RDMA_RESTRACK_MR;
2043                 rdma_restrack_kadd(&mr->res);
2044                 mr->type = mr_type;
2045                 mr->sig_attrs = NULL;
2046         }
2047
2048         return mr;
2049 }
2050 EXPORT_SYMBOL(ib_alloc_mr_user);
2051
2052 /**
2053  * ib_alloc_mr_integrity() - Allocates an integrity memory region
2054  * @pd:                      protection domain associated with the region
2055  * @max_num_data_sg:         maximum data sg entries available for registration
2056  * @max_num_meta_sg:         maximum metadata sg entries available for
2057  *                           registration
2058  *
2059  * Notes:
2060  * Memory registration page/sg lists must not exceed max_num_sg,
2061  * also the integrity page/sg lists must not exceed max_num_meta_sg.
2062  *
2063  */
2064 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2065                                     u32 max_num_data_sg,
2066                                     u32 max_num_meta_sg)
2067 {
2068         struct ib_mr *mr;
2069         struct ib_sig_attrs *sig_attrs;
2070
2071         if (!pd->device->ops.alloc_mr_integrity ||
2072             !pd->device->ops.map_mr_sg_pi)
2073                 return ERR_PTR(-EOPNOTSUPP);
2074
2075         if (!max_num_meta_sg)
2076                 return ERR_PTR(-EINVAL);
2077
2078         sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2079         if (!sig_attrs)
2080                 return ERR_PTR(-ENOMEM);
2081
2082         mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2083                                                 max_num_meta_sg);
2084         if (IS_ERR(mr)) {
2085                 kfree(sig_attrs);
2086                 return mr;
2087         }
2088
2089         mr->device = pd->device;
2090         mr->pd = pd;
2091         mr->dm = NULL;
2092         mr->uobject = NULL;
2093         atomic_inc(&pd->usecnt);
2094         mr->need_inval = false;
2095         mr->res.type = RDMA_RESTRACK_MR;
2096         rdma_restrack_kadd(&mr->res);
2097         mr->type = IB_MR_TYPE_INTEGRITY;
2098         mr->sig_attrs = sig_attrs;
2099
2100         return mr;
2101 }
2102 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2103
2104 /* "Fast" memory regions */
2105
2106 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2107                             int mr_access_flags,
2108                             struct ib_fmr_attr *fmr_attr)
2109 {
2110         struct ib_fmr *fmr;
2111
2112         if (!pd->device->ops.alloc_fmr)
2113                 return ERR_PTR(-EOPNOTSUPP);
2114
2115         fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr);
2116         if (!IS_ERR(fmr)) {
2117                 fmr->device = pd->device;
2118                 fmr->pd     = pd;
2119                 atomic_inc(&pd->usecnt);
2120         }
2121
2122         return fmr;
2123 }
2124 EXPORT_SYMBOL(ib_alloc_fmr);
2125
2126 int ib_unmap_fmr(struct list_head *fmr_list)
2127 {
2128         struct ib_fmr *fmr;
2129
2130         if (list_empty(fmr_list))
2131                 return 0;
2132
2133         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
2134         return fmr->device->ops.unmap_fmr(fmr_list);
2135 }
2136 EXPORT_SYMBOL(ib_unmap_fmr);
2137
2138 int ib_dealloc_fmr(struct ib_fmr *fmr)
2139 {
2140         struct ib_pd *pd;
2141         int ret;
2142
2143         pd = fmr->pd;
2144         ret = fmr->device->ops.dealloc_fmr(fmr);
2145         if (!ret)
2146                 atomic_dec(&pd->usecnt);
2147
2148         return ret;
2149 }
2150 EXPORT_SYMBOL(ib_dealloc_fmr);
2151
2152 /* Multicast groups */
2153
2154 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2155 {
2156         struct ib_qp_init_attr init_attr = {};
2157         struct ib_qp_attr attr = {};
2158         int num_eth_ports = 0;
2159         int port;
2160
2161         /* If QP state >= init, it is assigned to a port and we can check this
2162          * port only.
2163          */
2164         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2165                 if (attr.qp_state >= IB_QPS_INIT) {
2166                         if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2167                             IB_LINK_LAYER_INFINIBAND)
2168                                 return true;
2169                         goto lid_check;
2170                 }
2171         }
2172
2173         /* Can't get a quick answer, iterate over all ports */
2174         for (port = 0; port < qp->device->phys_port_cnt; port++)
2175                 if (rdma_port_get_link_layer(qp->device, port) !=
2176                     IB_LINK_LAYER_INFINIBAND)
2177                         num_eth_ports++;
2178
2179         /* If we have at lease one Ethernet port, RoCE annex declares that
2180          * multicast LID should be ignored. We can't tell at this step if the
2181          * QP belongs to an IB or Ethernet port.
2182          */
2183         if (num_eth_ports)
2184                 return true;
2185
2186         /* If all the ports are IB, we can check according to IB spec. */
2187 lid_check:
2188         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2189                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
2190 }
2191
2192 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2193 {
2194         int ret;
2195
2196         if (!qp->device->ops.attach_mcast)
2197                 return -EOPNOTSUPP;
2198
2199         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2200             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2201                 return -EINVAL;
2202
2203         ret = qp->device->ops.attach_mcast(qp, gid, lid);
2204         if (!ret)
2205                 atomic_inc(&qp->usecnt);
2206         return ret;
2207 }
2208 EXPORT_SYMBOL(ib_attach_mcast);
2209
2210 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2211 {
2212         int ret;
2213
2214         if (!qp->device->ops.detach_mcast)
2215                 return -EOPNOTSUPP;
2216
2217         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2218             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2219                 return -EINVAL;
2220
2221         ret = qp->device->ops.detach_mcast(qp, gid, lid);
2222         if (!ret)
2223                 atomic_dec(&qp->usecnt);
2224         return ret;
2225 }
2226 EXPORT_SYMBOL(ib_detach_mcast);
2227
2228 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
2229 {
2230         struct ib_xrcd *xrcd;
2231
2232         if (!device->ops.alloc_xrcd)
2233                 return ERR_PTR(-EOPNOTSUPP);
2234
2235         xrcd = device->ops.alloc_xrcd(device, NULL);
2236         if (!IS_ERR(xrcd)) {
2237                 xrcd->device = device;
2238                 xrcd->inode = NULL;
2239                 atomic_set(&xrcd->usecnt, 0);
2240                 mutex_init(&xrcd->tgt_qp_mutex);
2241                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
2242         }
2243
2244         return xrcd;
2245 }
2246 EXPORT_SYMBOL(__ib_alloc_xrcd);
2247
2248 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata)
2249 {
2250         struct ib_qp *qp;
2251         int ret;
2252
2253         if (atomic_read(&xrcd->usecnt))
2254                 return -EBUSY;
2255
2256         while (!list_empty(&xrcd->tgt_qp_list)) {
2257                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
2258                 ret = ib_destroy_qp(qp);
2259                 if (ret)
2260                         return ret;
2261         }
2262         mutex_destroy(&xrcd->tgt_qp_mutex);
2263
2264         return xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2265 }
2266 EXPORT_SYMBOL(ib_dealloc_xrcd);
2267
2268 /**
2269  * ib_create_wq - Creates a WQ associated with the specified protection
2270  * domain.
2271  * @pd: The protection domain associated with the WQ.
2272  * @wq_attr: A list of initial attributes required to create the
2273  * WQ. If WQ creation succeeds, then the attributes are updated to
2274  * the actual capabilities of the created WQ.
2275  *
2276  * wq_attr->max_wr and wq_attr->max_sge determine
2277  * the requested size of the WQ, and set to the actual values allocated
2278  * on return.
2279  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2280  * at least as large as the requested values.
2281  */
2282 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2283                            struct ib_wq_init_attr *wq_attr)
2284 {
2285         struct ib_wq *wq;
2286
2287         if (!pd->device->ops.create_wq)
2288                 return ERR_PTR(-EOPNOTSUPP);
2289
2290         wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2291         if (!IS_ERR(wq)) {
2292                 wq->event_handler = wq_attr->event_handler;
2293                 wq->wq_context = wq_attr->wq_context;
2294                 wq->wq_type = wq_attr->wq_type;
2295                 wq->cq = wq_attr->cq;
2296                 wq->device = pd->device;
2297                 wq->pd = pd;
2298                 wq->uobject = NULL;
2299                 atomic_inc(&pd->usecnt);
2300                 atomic_inc(&wq_attr->cq->usecnt);
2301                 atomic_set(&wq->usecnt, 0);
2302         }
2303         return wq;
2304 }
2305 EXPORT_SYMBOL(ib_create_wq);
2306
2307 /**
2308  * ib_destroy_wq - Destroys the specified user WQ.
2309  * @wq: The WQ to destroy.
2310  * @udata: Valid user data
2311  */
2312 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata)
2313 {
2314         struct ib_cq *cq = wq->cq;
2315         struct ib_pd *pd = wq->pd;
2316
2317         if (atomic_read(&wq->usecnt))
2318                 return -EBUSY;
2319
2320         wq->device->ops.destroy_wq(wq, udata);
2321         atomic_dec(&pd->usecnt);
2322         atomic_dec(&cq->usecnt);
2323
2324         return 0;
2325 }
2326 EXPORT_SYMBOL(ib_destroy_wq);
2327
2328 /**
2329  * ib_modify_wq - Modifies the specified WQ.
2330  * @wq: The WQ to modify.
2331  * @wq_attr: On input, specifies the WQ attributes to modify.
2332  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2333  *   are being modified.
2334  * On output, the current values of selected WQ attributes are returned.
2335  */
2336 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2337                  u32 wq_attr_mask)
2338 {
2339         int err;
2340
2341         if (!wq->device->ops.modify_wq)
2342                 return -EOPNOTSUPP;
2343
2344         err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2345         return err;
2346 }
2347 EXPORT_SYMBOL(ib_modify_wq);
2348
2349 /*
2350  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2351  * @device: The device on which to create the rwq indirection table.
2352  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2353  * create the Indirection Table.
2354  *
2355  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2356  *      than the created ib_rwq_ind_table object and the caller is responsible
2357  *      for its memory allocation/free.
2358  */
2359 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
2360                                                  struct ib_rwq_ind_table_init_attr *init_attr)
2361 {
2362         struct ib_rwq_ind_table *rwq_ind_table;
2363         int i;
2364         u32 table_size;
2365
2366         if (!device->ops.create_rwq_ind_table)
2367                 return ERR_PTR(-EOPNOTSUPP);
2368
2369         table_size = (1 << init_attr->log_ind_tbl_size);
2370         rwq_ind_table = device->ops.create_rwq_ind_table(device,
2371                                                          init_attr, NULL);
2372         if (IS_ERR(rwq_ind_table))
2373                 return rwq_ind_table;
2374
2375         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
2376         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
2377         rwq_ind_table->device = device;
2378         rwq_ind_table->uobject = NULL;
2379         atomic_set(&rwq_ind_table->usecnt, 0);
2380
2381         for (i = 0; i < table_size; i++)
2382                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
2383
2384         return rwq_ind_table;
2385 }
2386 EXPORT_SYMBOL(ib_create_rwq_ind_table);
2387
2388 /*
2389  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2390  * @wq_ind_table: The Indirection Table to destroy.
2391 */
2392 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2393 {
2394         int err, i;
2395         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2396         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2397
2398         if (atomic_read(&rwq_ind_table->usecnt))
2399                 return -EBUSY;
2400
2401         err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table);
2402         if (!err) {
2403                 for (i = 0; i < table_size; i++)
2404                         atomic_dec(&ind_tbl[i]->usecnt);
2405         }
2406
2407         return err;
2408 }
2409 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2410
2411 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2412                        struct ib_mr_status *mr_status)
2413 {
2414         if (!mr->device->ops.check_mr_status)
2415                 return -EOPNOTSUPP;
2416
2417         return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2418 }
2419 EXPORT_SYMBOL(ib_check_mr_status);
2420
2421 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2422                          int state)
2423 {
2424         if (!device->ops.set_vf_link_state)
2425                 return -EOPNOTSUPP;
2426
2427         return device->ops.set_vf_link_state(device, vf, port, state);
2428 }
2429 EXPORT_SYMBOL(ib_set_vf_link_state);
2430
2431 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2432                      struct ifla_vf_info *info)
2433 {
2434         if (!device->ops.get_vf_config)
2435                 return -EOPNOTSUPP;
2436
2437         return device->ops.get_vf_config(device, vf, port, info);
2438 }
2439 EXPORT_SYMBOL(ib_get_vf_config);
2440
2441 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2442                     struct ifla_vf_stats *stats)
2443 {
2444         if (!device->ops.get_vf_stats)
2445                 return -EOPNOTSUPP;
2446
2447         return device->ops.get_vf_stats(device, vf, port, stats);
2448 }
2449 EXPORT_SYMBOL(ib_get_vf_stats);
2450
2451 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2452                    int type)
2453 {
2454         if (!device->ops.set_vf_guid)
2455                 return -EOPNOTSUPP;
2456
2457         return device->ops.set_vf_guid(device, vf, port, guid, type);
2458 }
2459 EXPORT_SYMBOL(ib_set_vf_guid);
2460
2461 /**
2462  * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2463  *     information) and set an appropriate memory region for registration.
2464  * @mr:             memory region
2465  * @data_sg:        dma mapped scatterlist for data
2466  * @data_sg_nents:  number of entries in data_sg
2467  * @data_sg_offset: offset in bytes into data_sg
2468  * @meta_sg:        dma mapped scatterlist for metadata
2469  * @meta_sg_nents:  number of entries in meta_sg
2470  * @meta_sg_offset: offset in bytes into meta_sg
2471  * @page_size:      page vector desired page size
2472  *
2473  * Constraints:
2474  * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2475  *
2476  * Return: 0 on success.
2477  *
2478  * After this completes successfully, the  memory region
2479  * is ready for registration.
2480  */
2481 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2482                     int data_sg_nents, unsigned int *data_sg_offset,
2483                     struct scatterlist *meta_sg, int meta_sg_nents,
2484                     unsigned int *meta_sg_offset, unsigned int page_size)
2485 {
2486         if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2487                      WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2488                 return -EOPNOTSUPP;
2489
2490         mr->page_size = page_size;
2491
2492         return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2493                                             data_sg_offset, meta_sg,
2494                                             meta_sg_nents, meta_sg_offset);
2495 }
2496 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2497
2498 /**
2499  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2500  *     and set it the memory region.
2501  * @mr:            memory region
2502  * @sg:            dma mapped scatterlist
2503  * @sg_nents:      number of entries in sg
2504  * @sg_offset:     offset in bytes into sg
2505  * @page_size:     page vector desired page size
2506  *
2507  * Constraints:
2508  * - The first sg element is allowed to have an offset.
2509  * - Each sg element must either be aligned to page_size or virtually
2510  *   contiguous to the previous element. In case an sg element has a
2511  *   non-contiguous offset, the mapping prefix will not include it.
2512  * - The last sg element is allowed to have length less than page_size.
2513  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2514  *   then only max_num_sg entries will be mapped.
2515  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2516  *   constraints holds and the page_size argument is ignored.
2517  *
2518  * Returns the number of sg elements that were mapped to the memory region.
2519  *
2520  * After this completes successfully, the  memory region
2521  * is ready for registration.
2522  */
2523 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2524                  unsigned int *sg_offset, unsigned int page_size)
2525 {
2526         if (unlikely(!mr->device->ops.map_mr_sg))
2527                 return -EOPNOTSUPP;
2528
2529         mr->page_size = page_size;
2530
2531         return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2532 }
2533 EXPORT_SYMBOL(ib_map_mr_sg);
2534
2535 /**
2536  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2537  *     to a page vector
2538  * @mr:            memory region
2539  * @sgl:           dma mapped scatterlist
2540  * @sg_nents:      number of entries in sg
2541  * @sg_offset_p:   IN:  start offset in bytes into sg
2542  *                 OUT: offset in bytes for element n of the sg of the first
2543  *                      byte that has not been processed where n is the return
2544  *                      value of this function.
2545  * @set_page:      driver page assignment function pointer
2546  *
2547  * Core service helper for drivers to convert the largest
2548  * prefix of given sg list to a page vector. The sg list
2549  * prefix converted is the prefix that meet the requirements
2550  * of ib_map_mr_sg.
2551  *
2552  * Returns the number of sg elements that were assigned to
2553  * a page vector.
2554  */
2555 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2556                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2557 {
2558         struct scatterlist *sg;
2559         u64 last_end_dma_addr = 0;
2560         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2561         unsigned int last_page_off = 0;
2562         u64 page_mask = ~((u64)mr->page_size - 1);
2563         int i, ret;
2564
2565         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2566                 return -EINVAL;
2567
2568         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2569         mr->length = 0;
2570
2571         for_each_sg(sgl, sg, sg_nents, i) {
2572                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2573                 u64 prev_addr = dma_addr;
2574                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2575                 u64 end_dma_addr = dma_addr + dma_len;
2576                 u64 page_addr = dma_addr & page_mask;
2577
2578                 /*
2579                  * For the second and later elements, check whether either the
2580                  * end of element i-1 or the start of element i is not aligned
2581                  * on a page boundary.
2582                  */
2583                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2584                         /* Stop mapping if there is a gap. */
2585                         if (last_end_dma_addr != dma_addr)
2586                                 break;
2587
2588                         /*
2589                          * Coalesce this element with the last. If it is small
2590                          * enough just update mr->length. Otherwise start
2591                          * mapping from the next page.
2592                          */
2593                         goto next_page;
2594                 }
2595
2596                 do {
2597                         ret = set_page(mr, page_addr);
2598                         if (unlikely(ret < 0)) {
2599                                 sg_offset = prev_addr - sg_dma_address(sg);
2600                                 mr->length += prev_addr - dma_addr;
2601                                 if (sg_offset_p)
2602                                         *sg_offset_p = sg_offset;
2603                                 return i || sg_offset ? i : ret;
2604                         }
2605                         prev_addr = page_addr;
2606 next_page:
2607                         page_addr += mr->page_size;
2608                 } while (page_addr < end_dma_addr);
2609
2610                 mr->length += dma_len;
2611                 last_end_dma_addr = end_dma_addr;
2612                 last_page_off = end_dma_addr & ~page_mask;
2613
2614                 sg_offset = 0;
2615         }
2616
2617         if (sg_offset_p)
2618                 *sg_offset_p = 0;
2619         return i;
2620 }
2621 EXPORT_SYMBOL(ib_sg_to_pages);
2622
2623 struct ib_drain_cqe {
2624         struct ib_cqe cqe;
2625         struct completion done;
2626 };
2627
2628 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2629 {
2630         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2631                                                 cqe);
2632
2633         complete(&cqe->done);
2634 }
2635
2636 /*
2637  * Post a WR and block until its completion is reaped for the SQ.
2638  */
2639 static void __ib_drain_sq(struct ib_qp *qp)
2640 {
2641         struct ib_cq *cq = qp->send_cq;
2642         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2643         struct ib_drain_cqe sdrain;
2644         struct ib_rdma_wr swr = {
2645                 .wr = {
2646                         .next = NULL,
2647                         { .wr_cqe       = &sdrain.cqe, },
2648                         .opcode = IB_WR_RDMA_WRITE,
2649                 },
2650         };
2651         int ret;
2652
2653         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2654         if (ret) {
2655                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2656                 return;
2657         }
2658
2659         sdrain.cqe.done = ib_drain_qp_done;
2660         init_completion(&sdrain.done);
2661
2662         ret = ib_post_send(qp, &swr.wr, NULL);
2663         if (ret) {
2664                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2665                 return;
2666         }
2667
2668         if (cq->poll_ctx == IB_POLL_DIRECT)
2669                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2670                         ib_process_cq_direct(cq, -1);
2671         else
2672                 wait_for_completion(&sdrain.done);
2673 }
2674
2675 /*
2676  * Post a WR and block until its completion is reaped for the RQ.
2677  */
2678 static void __ib_drain_rq(struct ib_qp *qp)
2679 {
2680         struct ib_cq *cq = qp->recv_cq;
2681         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2682         struct ib_drain_cqe rdrain;
2683         struct ib_recv_wr rwr = {};
2684         int ret;
2685
2686         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2687         if (ret) {
2688                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2689                 return;
2690         }
2691
2692         rwr.wr_cqe = &rdrain.cqe;
2693         rdrain.cqe.done = ib_drain_qp_done;
2694         init_completion(&rdrain.done);
2695
2696         ret = ib_post_recv(qp, &rwr, NULL);
2697         if (ret) {
2698                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2699                 return;
2700         }
2701
2702         if (cq->poll_ctx == IB_POLL_DIRECT)
2703                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2704                         ib_process_cq_direct(cq, -1);
2705         else
2706                 wait_for_completion(&rdrain.done);
2707 }
2708
2709 /**
2710  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2711  *                 application.
2712  * @qp:            queue pair to drain
2713  *
2714  * If the device has a provider-specific drain function, then
2715  * call that.  Otherwise call the generic drain function
2716  * __ib_drain_sq().
2717  *
2718  * The caller must:
2719  *
2720  * ensure there is room in the CQ and SQ for the drain work request and
2721  * completion.
2722  *
2723  * allocate the CQ using ib_alloc_cq().
2724  *
2725  * ensure that there are no other contexts that are posting WRs concurrently.
2726  * Otherwise the drain is not guaranteed.
2727  */
2728 void ib_drain_sq(struct ib_qp *qp)
2729 {
2730         if (qp->device->ops.drain_sq)
2731                 qp->device->ops.drain_sq(qp);
2732         else
2733                 __ib_drain_sq(qp);
2734 }
2735 EXPORT_SYMBOL(ib_drain_sq);
2736
2737 /**
2738  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2739  *                 application.
2740  * @qp:            queue pair to drain
2741  *
2742  * If the device has a provider-specific drain function, then
2743  * call that.  Otherwise call the generic drain function
2744  * __ib_drain_rq().
2745  *
2746  * The caller must:
2747  *
2748  * ensure there is room in the CQ and RQ for the drain work request and
2749  * completion.
2750  *
2751  * allocate the CQ using ib_alloc_cq().
2752  *
2753  * ensure that there are no other contexts that are posting WRs concurrently.
2754  * Otherwise the drain is not guaranteed.
2755  */
2756 void ib_drain_rq(struct ib_qp *qp)
2757 {
2758         if (qp->device->ops.drain_rq)
2759                 qp->device->ops.drain_rq(qp);
2760         else
2761                 __ib_drain_rq(qp);
2762 }
2763 EXPORT_SYMBOL(ib_drain_rq);
2764
2765 /**
2766  * ib_drain_qp() - Block until all CQEs have been consumed by the
2767  *                 application on both the RQ and SQ.
2768  * @qp:            queue pair to drain
2769  *
2770  * The caller must:
2771  *
2772  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2773  * and completions.
2774  *
2775  * allocate the CQs using ib_alloc_cq().
2776  *
2777  * ensure that there are no other contexts that are posting WRs concurrently.
2778  * Otherwise the drain is not guaranteed.
2779  */
2780 void ib_drain_qp(struct ib_qp *qp)
2781 {
2782         ib_drain_sq(qp);
2783         if (!qp->srq)
2784                 ib_drain_rq(qp);
2785 }
2786 EXPORT_SYMBOL(ib_drain_qp);
2787
2788 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2789                                      enum rdma_netdev_t type, const char *name,
2790                                      unsigned char name_assign_type,
2791                                      void (*setup)(struct net_device *))
2792 {
2793         struct rdma_netdev_alloc_params params;
2794         struct net_device *netdev;
2795         int rc;
2796
2797         if (!device->ops.rdma_netdev_get_params)
2798                 return ERR_PTR(-EOPNOTSUPP);
2799
2800         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2801                                                 &params);
2802         if (rc)
2803                 return ERR_PTR(rc);
2804
2805         netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2806                                   setup, params.txqs, params.rxqs);
2807         if (!netdev)
2808                 return ERR_PTR(-ENOMEM);
2809
2810         return netdev;
2811 }
2812 EXPORT_SYMBOL(rdma_alloc_netdev);
2813
2814 int rdma_init_netdev(struct ib_device *device, u8 port_num,
2815                      enum rdma_netdev_t type, const char *name,
2816                      unsigned char name_assign_type,
2817                      void (*setup)(struct net_device *),
2818                      struct net_device *netdev)
2819 {
2820         struct rdma_netdev_alloc_params params;
2821         int rc;
2822
2823         if (!device->ops.rdma_netdev_get_params)
2824                 return -EOPNOTSUPP;
2825
2826         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2827                                                 &params);
2828         if (rc)
2829                 return rc;
2830
2831         return params.initialize_rdma_netdev(device, port_num,
2832                                              netdev, params.param);
2833 }
2834 EXPORT_SYMBOL(rdma_init_netdev);
2835
2836 void __rdma_block_iter_start(struct ib_block_iter *biter,
2837                              struct scatterlist *sglist, unsigned int nents,
2838                              unsigned long pgsz)
2839 {
2840         memset(biter, 0, sizeof(struct ib_block_iter));
2841         biter->__sg = sglist;
2842         biter->__sg_nents = nents;
2843
2844         /* Driver provides best block size to use */
2845         biter->__pg_bit = __fls(pgsz);
2846 }
2847 EXPORT_SYMBOL(__rdma_block_iter_start);
2848
2849 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2850 {
2851         unsigned int block_offset;
2852
2853         if (!biter->__sg_nents || !biter->__sg)
2854                 return false;
2855
2856         biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2857         block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2858         biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2859
2860         if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2861                 biter->__sg_advance = 0;
2862                 biter->__sg = sg_next(biter->__sg);
2863                 biter->__sg_nents--;
2864         }
2865
2866         return true;
2867 }
2868 EXPORT_SYMBOL(__rdma_block_iter_next);