]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/infiniband/core/verbs.c
Merge tag 'drm/tegra/for-5.5-rc1-fixes' of git://anongit.freedesktop.org/tegra/linux...
[linux.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53
54 #include "core_priv.h"
55
56 static int ib_resolve_eth_dmac(struct ib_device *device,
57                                struct rdma_ah_attr *ah_attr);
58
59 static const char * const ib_events[] = {
60         [IB_EVENT_CQ_ERR]               = "CQ error",
61         [IB_EVENT_QP_FATAL]             = "QP fatal error",
62         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
63         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
64         [IB_EVENT_COMM_EST]             = "communication established",
65         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
66         [IB_EVENT_PATH_MIG]             = "path migration successful",
67         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
68         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
69         [IB_EVENT_PORT_ACTIVE]          = "port active",
70         [IB_EVENT_PORT_ERR]             = "port error",
71         [IB_EVENT_LID_CHANGE]           = "LID change",
72         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
73         [IB_EVENT_SM_CHANGE]            = "SM change",
74         [IB_EVENT_SRQ_ERR]              = "SRQ error",
75         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
76         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
77         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
78         [IB_EVENT_GID_CHANGE]           = "GID changed",
79 };
80
81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
82 {
83         size_t index = event;
84
85         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
86                         ib_events[index] : "unrecognized event";
87 }
88 EXPORT_SYMBOL(ib_event_msg);
89
90 static const char * const wc_statuses[] = {
91         [IB_WC_SUCCESS]                 = "success",
92         [IB_WC_LOC_LEN_ERR]             = "local length error",
93         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
94         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
95         [IB_WC_LOC_PROT_ERR]            = "local protection error",
96         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
97         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
98         [IB_WC_BAD_RESP_ERR]            = "bad response error",
99         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
100         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
101         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
102         [IB_WC_REM_OP_ERR]              = "remote operation error",
103         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
104         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
105         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
106         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
107         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
108         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
109         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
110         [IB_WC_FATAL_ERR]               = "fatal error",
111         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
112         [IB_WC_GENERAL_ERR]             = "general error",
113 };
114
115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
116 {
117         size_t index = status;
118
119         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
120                         wc_statuses[index] : "unrecognized status";
121 }
122 EXPORT_SYMBOL(ib_wc_status_msg);
123
124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
125 {
126         switch (rate) {
127         case IB_RATE_2_5_GBPS: return   1;
128         case IB_RATE_5_GBPS:   return   2;
129         case IB_RATE_10_GBPS:  return   4;
130         case IB_RATE_20_GBPS:  return   8;
131         case IB_RATE_30_GBPS:  return  12;
132         case IB_RATE_40_GBPS:  return  16;
133         case IB_RATE_60_GBPS:  return  24;
134         case IB_RATE_80_GBPS:  return  32;
135         case IB_RATE_120_GBPS: return  48;
136         case IB_RATE_14_GBPS:  return   6;
137         case IB_RATE_56_GBPS:  return  22;
138         case IB_RATE_112_GBPS: return  45;
139         case IB_RATE_168_GBPS: return  67;
140         case IB_RATE_25_GBPS:  return  10;
141         case IB_RATE_100_GBPS: return  40;
142         case IB_RATE_200_GBPS: return  80;
143         case IB_RATE_300_GBPS: return 120;
144         case IB_RATE_28_GBPS:  return  11;
145         case IB_RATE_50_GBPS:  return  20;
146         case IB_RATE_400_GBPS: return 160;
147         case IB_RATE_600_GBPS: return 240;
148         default:               return  -1;
149         }
150 }
151 EXPORT_SYMBOL(ib_rate_to_mult);
152
153 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
154 {
155         switch (mult) {
156         case 1:   return IB_RATE_2_5_GBPS;
157         case 2:   return IB_RATE_5_GBPS;
158         case 4:   return IB_RATE_10_GBPS;
159         case 8:   return IB_RATE_20_GBPS;
160         case 12:  return IB_RATE_30_GBPS;
161         case 16:  return IB_RATE_40_GBPS;
162         case 24:  return IB_RATE_60_GBPS;
163         case 32:  return IB_RATE_80_GBPS;
164         case 48:  return IB_RATE_120_GBPS;
165         case 6:   return IB_RATE_14_GBPS;
166         case 22:  return IB_RATE_56_GBPS;
167         case 45:  return IB_RATE_112_GBPS;
168         case 67:  return IB_RATE_168_GBPS;
169         case 10:  return IB_RATE_25_GBPS;
170         case 40:  return IB_RATE_100_GBPS;
171         case 80:  return IB_RATE_200_GBPS;
172         case 120: return IB_RATE_300_GBPS;
173         case 11:  return IB_RATE_28_GBPS;
174         case 20:  return IB_RATE_50_GBPS;
175         case 160: return IB_RATE_400_GBPS;
176         case 240: return IB_RATE_600_GBPS;
177         default:  return IB_RATE_PORT_CURRENT;
178         }
179 }
180 EXPORT_SYMBOL(mult_to_ib_rate);
181
182 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
183 {
184         switch (rate) {
185         case IB_RATE_2_5_GBPS: return 2500;
186         case IB_RATE_5_GBPS:   return 5000;
187         case IB_RATE_10_GBPS:  return 10000;
188         case IB_RATE_20_GBPS:  return 20000;
189         case IB_RATE_30_GBPS:  return 30000;
190         case IB_RATE_40_GBPS:  return 40000;
191         case IB_RATE_60_GBPS:  return 60000;
192         case IB_RATE_80_GBPS:  return 80000;
193         case IB_RATE_120_GBPS: return 120000;
194         case IB_RATE_14_GBPS:  return 14062;
195         case IB_RATE_56_GBPS:  return 56250;
196         case IB_RATE_112_GBPS: return 112500;
197         case IB_RATE_168_GBPS: return 168750;
198         case IB_RATE_25_GBPS:  return 25781;
199         case IB_RATE_100_GBPS: return 103125;
200         case IB_RATE_200_GBPS: return 206250;
201         case IB_RATE_300_GBPS: return 309375;
202         case IB_RATE_28_GBPS:  return 28125;
203         case IB_RATE_50_GBPS:  return 53125;
204         case IB_RATE_400_GBPS: return 425000;
205         case IB_RATE_600_GBPS: return 637500;
206         default:               return -1;
207         }
208 }
209 EXPORT_SYMBOL(ib_rate_to_mbps);
210
211 __attribute_const__ enum rdma_transport_type
212 rdma_node_get_transport(unsigned int node_type)
213 {
214
215         if (node_type == RDMA_NODE_USNIC)
216                 return RDMA_TRANSPORT_USNIC;
217         if (node_type == RDMA_NODE_USNIC_UDP)
218                 return RDMA_TRANSPORT_USNIC_UDP;
219         if (node_type == RDMA_NODE_RNIC)
220                 return RDMA_TRANSPORT_IWARP;
221         if (node_type == RDMA_NODE_UNSPECIFIED)
222                 return RDMA_TRANSPORT_UNSPECIFIED;
223
224         return RDMA_TRANSPORT_IB;
225 }
226 EXPORT_SYMBOL(rdma_node_get_transport);
227
228 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
229 {
230         enum rdma_transport_type lt;
231         if (device->ops.get_link_layer)
232                 return device->ops.get_link_layer(device, port_num);
233
234         lt = rdma_node_get_transport(device->node_type);
235         if (lt == RDMA_TRANSPORT_IB)
236                 return IB_LINK_LAYER_INFINIBAND;
237
238         return IB_LINK_LAYER_ETHERNET;
239 }
240 EXPORT_SYMBOL(rdma_port_get_link_layer);
241
242 /* Protection domains */
243
244 /**
245  * ib_alloc_pd - Allocates an unused protection domain.
246  * @device: The device on which to allocate the protection domain.
247  *
248  * A protection domain object provides an association between QPs, shared
249  * receive queues, address handles, memory regions, and memory windows.
250  *
251  * Every PD has a local_dma_lkey which can be used as the lkey value for local
252  * memory operations.
253  */
254 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
255                 const char *caller)
256 {
257         struct ib_pd *pd;
258         int mr_access_flags = 0;
259         int ret;
260
261         pd = rdma_zalloc_drv_obj(device, ib_pd);
262         if (!pd)
263                 return ERR_PTR(-ENOMEM);
264
265         pd->device = device;
266         pd->uobject = NULL;
267         pd->__internal_mr = NULL;
268         atomic_set(&pd->usecnt, 0);
269         pd->flags = flags;
270
271         pd->res.type = RDMA_RESTRACK_PD;
272         rdma_restrack_set_task(&pd->res, caller);
273
274         ret = device->ops.alloc_pd(pd, NULL);
275         if (ret) {
276                 kfree(pd);
277                 return ERR_PTR(ret);
278         }
279         rdma_restrack_kadd(&pd->res);
280
281         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
282                 pd->local_dma_lkey = device->local_dma_lkey;
283         else
284                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
285
286         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
287                 pr_warn("%s: enabling unsafe global rkey\n", caller);
288                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
289         }
290
291         if (mr_access_flags) {
292                 struct ib_mr *mr;
293
294                 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
295                 if (IS_ERR(mr)) {
296                         ib_dealloc_pd(pd);
297                         return ERR_CAST(mr);
298                 }
299
300                 mr->device      = pd->device;
301                 mr->pd          = pd;
302                 mr->type        = IB_MR_TYPE_DMA;
303                 mr->uobject     = NULL;
304                 mr->need_inval  = false;
305
306                 pd->__internal_mr = mr;
307
308                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
309                         pd->local_dma_lkey = pd->__internal_mr->lkey;
310
311                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
312                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
313         }
314
315         return pd;
316 }
317 EXPORT_SYMBOL(__ib_alloc_pd);
318
319 /**
320  * ib_dealloc_pd_user - Deallocates a protection domain.
321  * @pd: The protection domain to deallocate.
322  * @udata: Valid user data or NULL for kernel object
323  *
324  * It is an error to call this function while any resources in the pd still
325  * exist.  The caller is responsible to synchronously destroy them and
326  * guarantee no new allocations will happen.
327  */
328 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
329 {
330         int ret;
331
332         if (pd->__internal_mr) {
333                 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
334                 WARN_ON(ret);
335                 pd->__internal_mr = NULL;
336         }
337
338         /* uverbs manipulates usecnt with proper locking, while the kabi
339            requires the caller to guarantee we can't race here. */
340         WARN_ON(atomic_read(&pd->usecnt));
341
342         rdma_restrack_del(&pd->res);
343         pd->device->ops.dealloc_pd(pd, udata);
344         kfree(pd);
345 }
346 EXPORT_SYMBOL(ib_dealloc_pd_user);
347
348 /* Address handles */
349
350 /**
351  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
352  * @dest:       Pointer to destination ah_attr. Contents of the destination
353  *              pointer is assumed to be invalid and attribute are overwritten.
354  * @src:        Pointer to source ah_attr.
355  */
356 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
357                        const struct rdma_ah_attr *src)
358 {
359         *dest = *src;
360         if (dest->grh.sgid_attr)
361                 rdma_hold_gid_attr(dest->grh.sgid_attr);
362 }
363 EXPORT_SYMBOL(rdma_copy_ah_attr);
364
365 /**
366  * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
367  * @old:        Pointer to existing ah_attr which needs to be replaced.
368  *              old is assumed to be valid or zero'd
369  * @new:        Pointer to the new ah_attr.
370  *
371  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
372  * old the ah_attr is valid; after that it copies the new attribute and holds
373  * the reference to the replaced ah_attr.
374  */
375 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
376                           const struct rdma_ah_attr *new)
377 {
378         rdma_destroy_ah_attr(old);
379         *old = *new;
380         if (old->grh.sgid_attr)
381                 rdma_hold_gid_attr(old->grh.sgid_attr);
382 }
383 EXPORT_SYMBOL(rdma_replace_ah_attr);
384
385 /**
386  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
387  * @dest:       Pointer to destination ah_attr to copy to.
388  *              dest is assumed to be valid or zero'd
389  * @src:        Pointer to the new ah_attr.
390  *
391  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
392  * if it is valid. This also transfers ownership of internal references from
393  * src to dest, making src invalid in the process. No new reference of the src
394  * ah_attr is taken.
395  */
396 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
397 {
398         rdma_destroy_ah_attr(dest);
399         *dest = *src;
400         src->grh.sgid_attr = NULL;
401 }
402 EXPORT_SYMBOL(rdma_move_ah_attr);
403
404 /*
405  * Validate that the rdma_ah_attr is valid for the device before passing it
406  * off to the driver.
407  */
408 static int rdma_check_ah_attr(struct ib_device *device,
409                               struct rdma_ah_attr *ah_attr)
410 {
411         if (!rdma_is_port_valid(device, ah_attr->port_num))
412                 return -EINVAL;
413
414         if ((rdma_is_grh_required(device, ah_attr->port_num) ||
415              ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
416             !(ah_attr->ah_flags & IB_AH_GRH))
417                 return -EINVAL;
418
419         if (ah_attr->grh.sgid_attr) {
420                 /*
421                  * Make sure the passed sgid_attr is consistent with the
422                  * parameters
423                  */
424                 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
425                     ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
426                         return -EINVAL;
427         }
428         return 0;
429 }
430
431 /*
432  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
433  * On success the caller is responsible to call rdma_unfill_sgid_attr().
434  */
435 static int rdma_fill_sgid_attr(struct ib_device *device,
436                                struct rdma_ah_attr *ah_attr,
437                                const struct ib_gid_attr **old_sgid_attr)
438 {
439         const struct ib_gid_attr *sgid_attr;
440         struct ib_global_route *grh;
441         int ret;
442
443         *old_sgid_attr = ah_attr->grh.sgid_attr;
444
445         ret = rdma_check_ah_attr(device, ah_attr);
446         if (ret)
447                 return ret;
448
449         if (!(ah_attr->ah_flags & IB_AH_GRH))
450                 return 0;
451
452         grh = rdma_ah_retrieve_grh(ah_attr);
453         if (grh->sgid_attr)
454                 return 0;
455
456         sgid_attr =
457                 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
458         if (IS_ERR(sgid_attr))
459                 return PTR_ERR(sgid_attr);
460
461         /* Move ownerhip of the kref into the ah_attr */
462         grh->sgid_attr = sgid_attr;
463         return 0;
464 }
465
466 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
467                                   const struct ib_gid_attr *old_sgid_attr)
468 {
469         /*
470          * Fill didn't change anything, the caller retains ownership of
471          * whatever it passed
472          */
473         if (ah_attr->grh.sgid_attr == old_sgid_attr)
474                 return;
475
476         /*
477          * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
478          * doesn't see any change in the rdma_ah_attr. If we get here
479          * old_sgid_attr is NULL.
480          */
481         rdma_destroy_ah_attr(ah_attr);
482 }
483
484 static const struct ib_gid_attr *
485 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
486                       const struct ib_gid_attr *old_attr)
487 {
488         if (old_attr)
489                 rdma_put_gid_attr(old_attr);
490         if (ah_attr->ah_flags & IB_AH_GRH) {
491                 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
492                 return ah_attr->grh.sgid_attr;
493         }
494         return NULL;
495 }
496
497 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
498                                      struct rdma_ah_attr *ah_attr,
499                                      u32 flags,
500                                      struct ib_udata *udata)
501 {
502         struct ib_device *device = pd->device;
503         struct ib_ah *ah;
504         int ret;
505
506         might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
507
508         if (!device->ops.create_ah)
509                 return ERR_PTR(-EOPNOTSUPP);
510
511         ah = rdma_zalloc_drv_obj_gfp(
512                 device, ib_ah,
513                 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
514         if (!ah)
515                 return ERR_PTR(-ENOMEM);
516
517         ah->device = device;
518         ah->pd = pd;
519         ah->type = ah_attr->type;
520         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
521
522         ret = device->ops.create_ah(ah, ah_attr, flags, udata);
523         if (ret) {
524                 kfree(ah);
525                 return ERR_PTR(ret);
526         }
527
528         atomic_inc(&pd->usecnt);
529         return ah;
530 }
531
532 /**
533  * rdma_create_ah - Creates an address handle for the
534  * given address vector.
535  * @pd: The protection domain associated with the address handle.
536  * @ah_attr: The attributes of the address vector.
537  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
538  *
539  * It returns 0 on success and returns appropriate error code on error.
540  * The address handle is used to reference a local or global destination
541  * in all UD QP post sends.
542  */
543 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
544                              u32 flags)
545 {
546         const struct ib_gid_attr *old_sgid_attr;
547         struct ib_ah *ah;
548         int ret;
549
550         ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
551         if (ret)
552                 return ERR_PTR(ret);
553
554         ah = _rdma_create_ah(pd, ah_attr, flags, NULL);
555
556         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
557         return ah;
558 }
559 EXPORT_SYMBOL(rdma_create_ah);
560
561 /**
562  * rdma_create_user_ah - Creates an address handle for the
563  * given address vector.
564  * It resolves destination mac address for ah attribute of RoCE type.
565  * @pd: The protection domain associated with the address handle.
566  * @ah_attr: The attributes of the address vector.
567  * @udata: pointer to user's input output buffer information need by
568  *         provider driver.
569  *
570  * It returns 0 on success and returns appropriate error code on error.
571  * The address handle is used to reference a local or global destination
572  * in all UD QP post sends.
573  */
574 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
575                                   struct rdma_ah_attr *ah_attr,
576                                   struct ib_udata *udata)
577 {
578         const struct ib_gid_attr *old_sgid_attr;
579         struct ib_ah *ah;
580         int err;
581
582         err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
583         if (err)
584                 return ERR_PTR(err);
585
586         if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
587                 err = ib_resolve_eth_dmac(pd->device, ah_attr);
588                 if (err) {
589                         ah = ERR_PTR(err);
590                         goto out;
591                 }
592         }
593
594         ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata);
595
596 out:
597         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
598         return ah;
599 }
600 EXPORT_SYMBOL(rdma_create_user_ah);
601
602 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
603 {
604         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
605         struct iphdr ip4h_checked;
606         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
607
608         /* If it's IPv6, the version must be 6, otherwise, the first
609          * 20 bytes (before the IPv4 header) are garbled.
610          */
611         if (ip6h->version != 6)
612                 return (ip4h->version == 4) ? 4 : 0;
613         /* version may be 6 or 4 because the first 20 bytes could be garbled */
614
615         /* RoCE v2 requires no options, thus header length
616          * must be 5 words
617          */
618         if (ip4h->ihl != 5)
619                 return 6;
620
621         /* Verify checksum.
622          * We can't write on scattered buffers so we need to copy to
623          * temp buffer.
624          */
625         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
626         ip4h_checked.check = 0;
627         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
628         /* if IPv4 header checksum is OK, believe it */
629         if (ip4h->check == ip4h_checked.check)
630                 return 4;
631         return 6;
632 }
633 EXPORT_SYMBOL(ib_get_rdma_header_version);
634
635 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
636                                                      u8 port_num,
637                                                      const struct ib_grh *grh)
638 {
639         int grh_version;
640
641         if (rdma_protocol_ib(device, port_num))
642                 return RDMA_NETWORK_IB;
643
644         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
645
646         if (grh_version == 4)
647                 return RDMA_NETWORK_IPV4;
648
649         if (grh->next_hdr == IPPROTO_UDP)
650                 return RDMA_NETWORK_IPV6;
651
652         return RDMA_NETWORK_ROCE_V1;
653 }
654
655 struct find_gid_index_context {
656         u16 vlan_id;
657         enum ib_gid_type gid_type;
658 };
659
660 static bool find_gid_index(const union ib_gid *gid,
661                            const struct ib_gid_attr *gid_attr,
662                            void *context)
663 {
664         struct find_gid_index_context *ctx = context;
665         u16 vlan_id = 0xffff;
666         int ret;
667
668         if (ctx->gid_type != gid_attr->gid_type)
669                 return false;
670
671         ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
672         if (ret)
673                 return false;
674
675         return ctx->vlan_id == vlan_id;
676 }
677
678 static const struct ib_gid_attr *
679 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
680                        u16 vlan_id, const union ib_gid *sgid,
681                        enum ib_gid_type gid_type)
682 {
683         struct find_gid_index_context context = {.vlan_id = vlan_id,
684                                                  .gid_type = gid_type};
685
686         return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
687                                        &context);
688 }
689
690 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
691                               enum rdma_network_type net_type,
692                               union ib_gid *sgid, union ib_gid *dgid)
693 {
694         struct sockaddr_in  src_in;
695         struct sockaddr_in  dst_in;
696         __be32 src_saddr, dst_saddr;
697
698         if (!sgid || !dgid)
699                 return -EINVAL;
700
701         if (net_type == RDMA_NETWORK_IPV4) {
702                 memcpy(&src_in.sin_addr.s_addr,
703                        &hdr->roce4grh.saddr, 4);
704                 memcpy(&dst_in.sin_addr.s_addr,
705                        &hdr->roce4grh.daddr, 4);
706                 src_saddr = src_in.sin_addr.s_addr;
707                 dst_saddr = dst_in.sin_addr.s_addr;
708                 ipv6_addr_set_v4mapped(src_saddr,
709                                        (struct in6_addr *)sgid);
710                 ipv6_addr_set_v4mapped(dst_saddr,
711                                        (struct in6_addr *)dgid);
712                 return 0;
713         } else if (net_type == RDMA_NETWORK_IPV6 ||
714                    net_type == RDMA_NETWORK_IB) {
715                 *dgid = hdr->ibgrh.dgid;
716                 *sgid = hdr->ibgrh.sgid;
717                 return 0;
718         } else {
719                 return -EINVAL;
720         }
721 }
722 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
723
724 /* Resolve destination mac address and hop limit for unicast destination
725  * GID entry, considering the source GID entry as well.
726  * ah_attribute must have have valid port_num, sgid_index.
727  */
728 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
729                                        struct rdma_ah_attr *ah_attr)
730 {
731         struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
732         const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
733         int hop_limit = 0xff;
734         int ret = 0;
735
736         /* If destination is link local and source GID is RoCEv1,
737          * IP stack is not used.
738          */
739         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
740             sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
741                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
742                                 ah_attr->roce.dmac);
743                 return ret;
744         }
745
746         ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
747                                            ah_attr->roce.dmac,
748                                            sgid_attr, &hop_limit);
749
750         grh->hop_limit = hop_limit;
751         return ret;
752 }
753
754 /*
755  * This function initializes address handle attributes from the incoming packet.
756  * Incoming packet has dgid of the receiver node on which this code is
757  * getting executed and, sgid contains the GID of the sender.
758  *
759  * When resolving mac address of destination, the arrived dgid is used
760  * as sgid and, sgid is used as dgid because sgid contains destinations
761  * GID whom to respond to.
762  *
763  * On success the caller is responsible to call rdma_destroy_ah_attr on the
764  * attr.
765  */
766 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
767                             const struct ib_wc *wc, const struct ib_grh *grh,
768                             struct rdma_ah_attr *ah_attr)
769 {
770         u32 flow_class;
771         int ret;
772         enum rdma_network_type net_type = RDMA_NETWORK_IB;
773         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
774         const struct ib_gid_attr *sgid_attr;
775         int hoplimit = 0xff;
776         union ib_gid dgid;
777         union ib_gid sgid;
778
779         might_sleep();
780
781         memset(ah_attr, 0, sizeof *ah_attr);
782         ah_attr->type = rdma_ah_find_type(device, port_num);
783         if (rdma_cap_eth_ah(device, port_num)) {
784                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
785                         net_type = wc->network_hdr_type;
786                 else
787                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
788                 gid_type = ib_network_to_gid_type(net_type);
789         }
790         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
791                                         &sgid, &dgid);
792         if (ret)
793                 return ret;
794
795         rdma_ah_set_sl(ah_attr, wc->sl);
796         rdma_ah_set_port_num(ah_attr, port_num);
797
798         if (rdma_protocol_roce(device, port_num)) {
799                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
800                                 wc->vlan_id : 0xffff;
801
802                 if (!(wc->wc_flags & IB_WC_GRH))
803                         return -EPROTOTYPE;
804
805                 sgid_attr = get_sgid_attr_from_eth(device, port_num,
806                                                    vlan_id, &dgid,
807                                                    gid_type);
808                 if (IS_ERR(sgid_attr))
809                         return PTR_ERR(sgid_attr);
810
811                 flow_class = be32_to_cpu(grh->version_tclass_flow);
812                 rdma_move_grh_sgid_attr(ah_attr,
813                                         &sgid,
814                                         flow_class & 0xFFFFF,
815                                         hoplimit,
816                                         (flow_class >> 20) & 0xFF,
817                                         sgid_attr);
818
819                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
820                 if (ret)
821                         rdma_destroy_ah_attr(ah_attr);
822
823                 return ret;
824         } else {
825                 rdma_ah_set_dlid(ah_attr, wc->slid);
826                 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
827
828                 if ((wc->wc_flags & IB_WC_GRH) == 0)
829                         return 0;
830
831                 if (dgid.global.interface_id !=
832                                         cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
833                         sgid_attr = rdma_find_gid_by_port(
834                                 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
835                 } else
836                         sgid_attr = rdma_get_gid_attr(device, port_num, 0);
837
838                 if (IS_ERR(sgid_attr))
839                         return PTR_ERR(sgid_attr);
840                 flow_class = be32_to_cpu(grh->version_tclass_flow);
841                 rdma_move_grh_sgid_attr(ah_attr,
842                                         &sgid,
843                                         flow_class & 0xFFFFF,
844                                         hoplimit,
845                                         (flow_class >> 20) & 0xFF,
846                                         sgid_attr);
847
848                 return 0;
849         }
850 }
851 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
852
853 /**
854  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
855  * of the reference
856  *
857  * @attr:       Pointer to AH attribute structure
858  * @dgid:       Destination GID
859  * @flow_label: Flow label
860  * @hop_limit:  Hop limit
861  * @traffic_class: traffic class
862  * @sgid_attr:  Pointer to SGID attribute
863  *
864  * This takes ownership of the sgid_attr reference. The caller must ensure
865  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
866  * calling this function.
867  */
868 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
869                              u32 flow_label, u8 hop_limit, u8 traffic_class,
870                              const struct ib_gid_attr *sgid_attr)
871 {
872         rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
873                         traffic_class);
874         attr->grh.sgid_attr = sgid_attr;
875 }
876 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
877
878 /**
879  * rdma_destroy_ah_attr - Release reference to SGID attribute of
880  * ah attribute.
881  * @ah_attr: Pointer to ah attribute
882  *
883  * Release reference to the SGID attribute of the ah attribute if it is
884  * non NULL. It is safe to call this multiple times, and safe to call it on
885  * a zero initialized ah_attr.
886  */
887 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
888 {
889         if (ah_attr->grh.sgid_attr) {
890                 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
891                 ah_attr->grh.sgid_attr = NULL;
892         }
893 }
894 EXPORT_SYMBOL(rdma_destroy_ah_attr);
895
896 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
897                                    const struct ib_grh *grh, u8 port_num)
898 {
899         struct rdma_ah_attr ah_attr;
900         struct ib_ah *ah;
901         int ret;
902
903         ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
904         if (ret)
905                 return ERR_PTR(ret);
906
907         ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
908
909         rdma_destroy_ah_attr(&ah_attr);
910         return ah;
911 }
912 EXPORT_SYMBOL(ib_create_ah_from_wc);
913
914 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
915 {
916         const struct ib_gid_attr *old_sgid_attr;
917         int ret;
918
919         if (ah->type != ah_attr->type)
920                 return -EINVAL;
921
922         ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
923         if (ret)
924                 return ret;
925
926         ret = ah->device->ops.modify_ah ?
927                 ah->device->ops.modify_ah(ah, ah_attr) :
928                 -EOPNOTSUPP;
929
930         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
931         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
932         return ret;
933 }
934 EXPORT_SYMBOL(rdma_modify_ah);
935
936 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
937 {
938         ah_attr->grh.sgid_attr = NULL;
939
940         return ah->device->ops.query_ah ?
941                 ah->device->ops.query_ah(ah, ah_attr) :
942                 -EOPNOTSUPP;
943 }
944 EXPORT_SYMBOL(rdma_query_ah);
945
946 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
947 {
948         const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
949         struct ib_pd *pd;
950
951         might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
952
953         pd = ah->pd;
954
955         ah->device->ops.destroy_ah(ah, flags);
956         atomic_dec(&pd->usecnt);
957         if (sgid_attr)
958                 rdma_put_gid_attr(sgid_attr);
959
960         kfree(ah);
961         return 0;
962 }
963 EXPORT_SYMBOL(rdma_destroy_ah_user);
964
965 /* Shared receive queues */
966
967 struct ib_srq *ib_create_srq(struct ib_pd *pd,
968                              struct ib_srq_init_attr *srq_init_attr)
969 {
970         struct ib_srq *srq;
971         int ret;
972
973         if (!pd->device->ops.create_srq)
974                 return ERR_PTR(-EOPNOTSUPP);
975
976         srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
977         if (!srq)
978                 return ERR_PTR(-ENOMEM);
979
980         srq->device = pd->device;
981         srq->pd = pd;
982         srq->event_handler = srq_init_attr->event_handler;
983         srq->srq_context = srq_init_attr->srq_context;
984         srq->srq_type = srq_init_attr->srq_type;
985
986         if (ib_srq_has_cq(srq->srq_type)) {
987                 srq->ext.cq = srq_init_attr->ext.cq;
988                 atomic_inc(&srq->ext.cq->usecnt);
989         }
990         if (srq->srq_type == IB_SRQT_XRC) {
991                 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
992                 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
993         }
994         atomic_inc(&pd->usecnt);
995
996         ret = pd->device->ops.create_srq(srq, srq_init_attr, NULL);
997         if (ret) {
998                 atomic_dec(&srq->pd->usecnt);
999                 if (srq->srq_type == IB_SRQT_XRC)
1000                         atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1001                 if (ib_srq_has_cq(srq->srq_type))
1002                         atomic_dec(&srq->ext.cq->usecnt);
1003                 kfree(srq);
1004                 return ERR_PTR(ret);
1005         }
1006
1007         return srq;
1008 }
1009 EXPORT_SYMBOL(ib_create_srq);
1010
1011 int ib_modify_srq(struct ib_srq *srq,
1012                   struct ib_srq_attr *srq_attr,
1013                   enum ib_srq_attr_mask srq_attr_mask)
1014 {
1015         return srq->device->ops.modify_srq ?
1016                 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1017                                             NULL) : -EOPNOTSUPP;
1018 }
1019 EXPORT_SYMBOL(ib_modify_srq);
1020
1021 int ib_query_srq(struct ib_srq *srq,
1022                  struct ib_srq_attr *srq_attr)
1023 {
1024         return srq->device->ops.query_srq ?
1025                 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1026 }
1027 EXPORT_SYMBOL(ib_query_srq);
1028
1029 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1030 {
1031         if (atomic_read(&srq->usecnt))
1032                 return -EBUSY;
1033
1034         srq->device->ops.destroy_srq(srq, udata);
1035
1036         atomic_dec(&srq->pd->usecnt);
1037         if (srq->srq_type == IB_SRQT_XRC)
1038                 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1039         if (ib_srq_has_cq(srq->srq_type))
1040                 atomic_dec(&srq->ext.cq->usecnt);
1041         kfree(srq);
1042
1043         return 0;
1044 }
1045 EXPORT_SYMBOL(ib_destroy_srq_user);
1046
1047 /* Queue pairs */
1048
1049 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1050 {
1051         struct ib_qp *qp = context;
1052         unsigned long flags;
1053
1054         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
1055         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1056                 if (event->element.qp->event_handler)
1057                         event->element.qp->event_handler(event, event->element.qp->qp_context);
1058         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
1059 }
1060
1061 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
1062 {
1063         mutex_lock(&xrcd->tgt_qp_mutex);
1064         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
1065         mutex_unlock(&xrcd->tgt_qp_mutex);
1066 }
1067
1068 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1069                                   void (*event_handler)(struct ib_event *, void *),
1070                                   void *qp_context)
1071 {
1072         struct ib_qp *qp;
1073         unsigned long flags;
1074         int err;
1075
1076         qp = kzalloc(sizeof *qp, GFP_KERNEL);
1077         if (!qp)
1078                 return ERR_PTR(-ENOMEM);
1079
1080         qp->real_qp = real_qp;
1081         err = ib_open_shared_qp_security(qp, real_qp->device);
1082         if (err) {
1083                 kfree(qp);
1084                 return ERR_PTR(err);
1085         }
1086
1087         qp->real_qp = real_qp;
1088         atomic_inc(&real_qp->usecnt);
1089         qp->device = real_qp->device;
1090         qp->event_handler = event_handler;
1091         qp->qp_context = qp_context;
1092         qp->qp_num = real_qp->qp_num;
1093         qp->qp_type = real_qp->qp_type;
1094
1095         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1096         list_add(&qp->open_list, &real_qp->open_list);
1097         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1098
1099         return qp;
1100 }
1101
1102 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1103                          struct ib_qp_open_attr *qp_open_attr)
1104 {
1105         struct ib_qp *qp, *real_qp;
1106
1107         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1108                 return ERR_PTR(-EINVAL);
1109
1110         qp = ERR_PTR(-EINVAL);
1111         mutex_lock(&xrcd->tgt_qp_mutex);
1112         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
1113                 if (real_qp->qp_num == qp_open_attr->qp_num) {
1114                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1115                                           qp_open_attr->qp_context);
1116                         break;
1117                 }
1118         }
1119         mutex_unlock(&xrcd->tgt_qp_mutex);
1120         return qp;
1121 }
1122 EXPORT_SYMBOL(ib_open_qp);
1123
1124 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1125                                         struct ib_qp_init_attr *qp_init_attr,
1126                                         struct ib_udata *udata)
1127 {
1128         struct ib_qp *real_qp = qp;
1129
1130         qp->event_handler = __ib_shared_qp_event_handler;
1131         qp->qp_context = qp;
1132         qp->pd = NULL;
1133         qp->send_cq = qp->recv_cq = NULL;
1134         qp->srq = NULL;
1135         qp->xrcd = qp_init_attr->xrcd;
1136         atomic_inc(&qp_init_attr->xrcd->usecnt);
1137         INIT_LIST_HEAD(&qp->open_list);
1138
1139         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1140                           qp_init_attr->qp_context);
1141         if (IS_ERR(qp))
1142                 return qp;
1143
1144         __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
1145         return qp;
1146 }
1147
1148 struct ib_qp *ib_create_qp_user(struct ib_pd *pd,
1149                                 struct ib_qp_init_attr *qp_init_attr,
1150                                 struct ib_udata *udata)
1151 {
1152         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1153         struct ib_qp *qp;
1154         int ret;
1155
1156         if (qp_init_attr->rwq_ind_tbl &&
1157             (qp_init_attr->recv_cq ||
1158             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1159             qp_init_attr->cap.max_recv_sge))
1160                 return ERR_PTR(-EINVAL);
1161
1162         if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1163             !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1164                 return ERR_PTR(-EINVAL);
1165
1166         /*
1167          * If the callers is using the RDMA API calculate the resources
1168          * needed for the RDMA READ/WRITE operations.
1169          *
1170          * Note that these callers need to pass in a port number.
1171          */
1172         if (qp_init_attr->cap.max_rdma_ctxs)
1173                 rdma_rw_init_qp(device, qp_init_attr);
1174
1175         qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1176         if (IS_ERR(qp))
1177                 return qp;
1178
1179         ret = ib_create_qp_security(qp, device);
1180         if (ret)
1181                 goto err;
1182
1183         qp->qp_type    = qp_init_attr->qp_type;
1184         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
1185
1186         atomic_set(&qp->usecnt, 0);
1187         qp->mrs_used = 0;
1188         spin_lock_init(&qp->mr_lock);
1189         INIT_LIST_HEAD(&qp->rdma_mrs);
1190         INIT_LIST_HEAD(&qp->sig_mrs);
1191         qp->port = 0;
1192
1193         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1194                 struct ib_qp *xrc_qp =
1195                         create_xrc_qp_user(qp, qp_init_attr, udata);
1196
1197                 if (IS_ERR(xrc_qp)) {
1198                         ret = PTR_ERR(xrc_qp);
1199                         goto err;
1200                 }
1201                 return xrc_qp;
1202         }
1203
1204         qp->event_handler = qp_init_attr->event_handler;
1205         qp->qp_context = qp_init_attr->qp_context;
1206         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1207                 qp->recv_cq = NULL;
1208                 qp->srq = NULL;
1209         } else {
1210                 qp->recv_cq = qp_init_attr->recv_cq;
1211                 if (qp_init_attr->recv_cq)
1212                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
1213                 qp->srq = qp_init_attr->srq;
1214                 if (qp->srq)
1215                         atomic_inc(&qp_init_attr->srq->usecnt);
1216         }
1217
1218         qp->send_cq = qp_init_attr->send_cq;
1219         qp->xrcd    = NULL;
1220
1221         atomic_inc(&pd->usecnt);
1222         if (qp_init_attr->send_cq)
1223                 atomic_inc(&qp_init_attr->send_cq->usecnt);
1224         if (qp_init_attr->rwq_ind_tbl)
1225                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1226
1227         if (qp_init_attr->cap.max_rdma_ctxs) {
1228                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1229                 if (ret)
1230                         goto err;
1231         }
1232
1233         /*
1234          * Note: all hw drivers guarantee that max_send_sge is lower than
1235          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1236          * max_send_sge <= max_sge_rd.
1237          */
1238         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1239         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1240                                  device->attrs.max_sge_rd);
1241         if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1242                 qp->integrity_en = true;
1243
1244         return qp;
1245
1246 err:
1247         ib_destroy_qp(qp);
1248         return ERR_PTR(ret);
1249
1250 }
1251 EXPORT_SYMBOL(ib_create_qp_user);
1252
1253 static const struct {
1254         int                     valid;
1255         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1256         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1257 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1258         [IB_QPS_RESET] = {
1259                 [IB_QPS_RESET] = { .valid = 1 },
1260                 [IB_QPS_INIT]  = {
1261                         .valid = 1,
1262                         .req_param = {
1263                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1264                                                 IB_QP_PORT                      |
1265                                                 IB_QP_QKEY),
1266                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1267                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1268                                                 IB_QP_PORT                      |
1269                                                 IB_QP_ACCESS_FLAGS),
1270                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1271                                                 IB_QP_PORT                      |
1272                                                 IB_QP_ACCESS_FLAGS),
1273                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1274                                                 IB_QP_PORT                      |
1275                                                 IB_QP_ACCESS_FLAGS),
1276                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1277                                                 IB_QP_PORT                      |
1278                                                 IB_QP_ACCESS_FLAGS),
1279                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1280                                                 IB_QP_QKEY),
1281                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1282                                                 IB_QP_QKEY),
1283                         }
1284                 },
1285         },
1286         [IB_QPS_INIT]  = {
1287                 [IB_QPS_RESET] = { .valid = 1 },
1288                 [IB_QPS_ERR] =   { .valid = 1 },
1289                 [IB_QPS_INIT]  = {
1290                         .valid = 1,
1291                         .opt_param = {
1292                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1293                                                 IB_QP_PORT                      |
1294                                                 IB_QP_QKEY),
1295                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1296                                                 IB_QP_PORT                      |
1297                                                 IB_QP_ACCESS_FLAGS),
1298                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1299                                                 IB_QP_PORT                      |
1300                                                 IB_QP_ACCESS_FLAGS),
1301                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1302                                                 IB_QP_PORT                      |
1303                                                 IB_QP_ACCESS_FLAGS),
1304                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1305                                                 IB_QP_PORT                      |
1306                                                 IB_QP_ACCESS_FLAGS),
1307                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1308                                                 IB_QP_QKEY),
1309                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1310                                                 IB_QP_QKEY),
1311                         }
1312                 },
1313                 [IB_QPS_RTR]   = {
1314                         .valid = 1,
1315                         .req_param = {
1316                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1317                                                 IB_QP_PATH_MTU                  |
1318                                                 IB_QP_DEST_QPN                  |
1319                                                 IB_QP_RQ_PSN),
1320                                 [IB_QPT_RC]  = (IB_QP_AV                        |
1321                                                 IB_QP_PATH_MTU                  |
1322                                                 IB_QP_DEST_QPN                  |
1323                                                 IB_QP_RQ_PSN                    |
1324                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1325                                                 IB_QP_MIN_RNR_TIMER),
1326                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1327                                                 IB_QP_PATH_MTU                  |
1328                                                 IB_QP_DEST_QPN                  |
1329                                                 IB_QP_RQ_PSN),
1330                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1331                                                 IB_QP_PATH_MTU                  |
1332                                                 IB_QP_DEST_QPN                  |
1333                                                 IB_QP_RQ_PSN                    |
1334                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1335                                                 IB_QP_MIN_RNR_TIMER),
1336                         },
1337                         .opt_param = {
1338                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1339                                                  IB_QP_QKEY),
1340                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1341                                                  IB_QP_ACCESS_FLAGS             |
1342                                                  IB_QP_PKEY_INDEX),
1343                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1344                                                  IB_QP_ACCESS_FLAGS             |
1345                                                  IB_QP_PKEY_INDEX),
1346                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1347                                                  IB_QP_ACCESS_FLAGS             |
1348                                                  IB_QP_PKEY_INDEX),
1349                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1350                                                  IB_QP_ACCESS_FLAGS             |
1351                                                  IB_QP_PKEY_INDEX),
1352                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1353                                                  IB_QP_QKEY),
1354                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1355                                                  IB_QP_QKEY),
1356                          },
1357                 },
1358         },
1359         [IB_QPS_RTR]   = {
1360                 [IB_QPS_RESET] = { .valid = 1 },
1361                 [IB_QPS_ERR] =   { .valid = 1 },
1362                 [IB_QPS_RTS]   = {
1363                         .valid = 1,
1364                         .req_param = {
1365                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
1366                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
1367                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1368                                                 IB_QP_RETRY_CNT                 |
1369                                                 IB_QP_RNR_RETRY                 |
1370                                                 IB_QP_SQ_PSN                    |
1371                                                 IB_QP_MAX_QP_RD_ATOMIC),
1372                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1373                                                 IB_QP_RETRY_CNT                 |
1374                                                 IB_QP_RNR_RETRY                 |
1375                                                 IB_QP_SQ_PSN                    |
1376                                                 IB_QP_MAX_QP_RD_ATOMIC),
1377                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1378                                                 IB_QP_SQ_PSN),
1379                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1380                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1381                         },
1382                         .opt_param = {
1383                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1384                                                  IB_QP_QKEY),
1385                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1386                                                  IB_QP_ALT_PATH                 |
1387                                                  IB_QP_ACCESS_FLAGS             |
1388                                                  IB_QP_PATH_MIG_STATE),
1389                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1390                                                  IB_QP_ALT_PATH                 |
1391                                                  IB_QP_ACCESS_FLAGS             |
1392                                                  IB_QP_MIN_RNR_TIMER            |
1393                                                  IB_QP_PATH_MIG_STATE),
1394                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1395                                                  IB_QP_ALT_PATH                 |
1396                                                  IB_QP_ACCESS_FLAGS             |
1397                                                  IB_QP_PATH_MIG_STATE),
1398                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1399                                                  IB_QP_ALT_PATH                 |
1400                                                  IB_QP_ACCESS_FLAGS             |
1401                                                  IB_QP_MIN_RNR_TIMER            |
1402                                                  IB_QP_PATH_MIG_STATE),
1403                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1404                                                  IB_QP_QKEY),
1405                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1406                                                  IB_QP_QKEY),
1407                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1408                          }
1409                 }
1410         },
1411         [IB_QPS_RTS]   = {
1412                 [IB_QPS_RESET] = { .valid = 1 },
1413                 [IB_QPS_ERR] =   { .valid = 1 },
1414                 [IB_QPS_RTS]   = {
1415                         .valid = 1,
1416                         .opt_param = {
1417                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1418                                                 IB_QP_QKEY),
1419                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1420                                                 IB_QP_ACCESS_FLAGS              |
1421                                                 IB_QP_ALT_PATH                  |
1422                                                 IB_QP_PATH_MIG_STATE),
1423                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1424                                                 IB_QP_ACCESS_FLAGS              |
1425                                                 IB_QP_ALT_PATH                  |
1426                                                 IB_QP_PATH_MIG_STATE            |
1427                                                 IB_QP_MIN_RNR_TIMER),
1428                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1429                                                 IB_QP_ACCESS_FLAGS              |
1430                                                 IB_QP_ALT_PATH                  |
1431                                                 IB_QP_PATH_MIG_STATE),
1432                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1433                                                 IB_QP_ACCESS_FLAGS              |
1434                                                 IB_QP_ALT_PATH                  |
1435                                                 IB_QP_PATH_MIG_STATE            |
1436                                                 IB_QP_MIN_RNR_TIMER),
1437                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1438                                                 IB_QP_QKEY),
1439                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1440                                                 IB_QP_QKEY),
1441                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1442                         }
1443                 },
1444                 [IB_QPS_SQD]   = {
1445                         .valid = 1,
1446                         .opt_param = {
1447                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1448                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1449                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1450                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1451                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1452                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1453                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1454                         }
1455                 },
1456         },
1457         [IB_QPS_SQD]   = {
1458                 [IB_QPS_RESET] = { .valid = 1 },
1459                 [IB_QPS_ERR] =   { .valid = 1 },
1460                 [IB_QPS_RTS]   = {
1461                         .valid = 1,
1462                         .opt_param = {
1463                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1464                                                 IB_QP_QKEY),
1465                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1466                                                 IB_QP_ALT_PATH                  |
1467                                                 IB_QP_ACCESS_FLAGS              |
1468                                                 IB_QP_PATH_MIG_STATE),
1469                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1470                                                 IB_QP_ALT_PATH                  |
1471                                                 IB_QP_ACCESS_FLAGS              |
1472                                                 IB_QP_MIN_RNR_TIMER             |
1473                                                 IB_QP_PATH_MIG_STATE),
1474                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1475                                                 IB_QP_ALT_PATH                  |
1476                                                 IB_QP_ACCESS_FLAGS              |
1477                                                 IB_QP_PATH_MIG_STATE),
1478                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1479                                                 IB_QP_ALT_PATH                  |
1480                                                 IB_QP_ACCESS_FLAGS              |
1481                                                 IB_QP_MIN_RNR_TIMER             |
1482                                                 IB_QP_PATH_MIG_STATE),
1483                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1484                                                 IB_QP_QKEY),
1485                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1486                                                 IB_QP_QKEY),
1487                         }
1488                 },
1489                 [IB_QPS_SQD]   = {
1490                         .valid = 1,
1491                         .opt_param = {
1492                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1493                                                 IB_QP_QKEY),
1494                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1495                                                 IB_QP_ALT_PATH                  |
1496                                                 IB_QP_ACCESS_FLAGS              |
1497                                                 IB_QP_PKEY_INDEX                |
1498                                                 IB_QP_PATH_MIG_STATE),
1499                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1500                                                 IB_QP_AV                        |
1501                                                 IB_QP_TIMEOUT                   |
1502                                                 IB_QP_RETRY_CNT                 |
1503                                                 IB_QP_RNR_RETRY                 |
1504                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1505                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1506                                                 IB_QP_ALT_PATH                  |
1507                                                 IB_QP_ACCESS_FLAGS              |
1508                                                 IB_QP_PKEY_INDEX                |
1509                                                 IB_QP_MIN_RNR_TIMER             |
1510                                                 IB_QP_PATH_MIG_STATE),
1511                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1512                                                 IB_QP_AV                        |
1513                                                 IB_QP_TIMEOUT                   |
1514                                                 IB_QP_RETRY_CNT                 |
1515                                                 IB_QP_RNR_RETRY                 |
1516                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1517                                                 IB_QP_ALT_PATH                  |
1518                                                 IB_QP_ACCESS_FLAGS              |
1519                                                 IB_QP_PKEY_INDEX                |
1520                                                 IB_QP_PATH_MIG_STATE),
1521                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1522                                                 IB_QP_AV                        |
1523                                                 IB_QP_TIMEOUT                   |
1524                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1525                                                 IB_QP_ALT_PATH                  |
1526                                                 IB_QP_ACCESS_FLAGS              |
1527                                                 IB_QP_PKEY_INDEX                |
1528                                                 IB_QP_MIN_RNR_TIMER             |
1529                                                 IB_QP_PATH_MIG_STATE),
1530                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1531                                                 IB_QP_QKEY),
1532                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1533                                                 IB_QP_QKEY),
1534                         }
1535                 }
1536         },
1537         [IB_QPS_SQE]   = {
1538                 [IB_QPS_RESET] = { .valid = 1 },
1539                 [IB_QPS_ERR] =   { .valid = 1 },
1540                 [IB_QPS_RTS]   = {
1541                         .valid = 1,
1542                         .opt_param = {
1543                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1544                                                 IB_QP_QKEY),
1545                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1546                                                 IB_QP_ACCESS_FLAGS),
1547                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1548                                                 IB_QP_QKEY),
1549                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1550                                                 IB_QP_QKEY),
1551                         }
1552                 }
1553         },
1554         [IB_QPS_ERR] = {
1555                 [IB_QPS_RESET] = { .valid = 1 },
1556                 [IB_QPS_ERR] =   { .valid = 1 }
1557         }
1558 };
1559
1560 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1561                         enum ib_qp_type type, enum ib_qp_attr_mask mask)
1562 {
1563         enum ib_qp_attr_mask req_param, opt_param;
1564
1565         if (mask & IB_QP_CUR_STATE  &&
1566             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1567             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1568                 return false;
1569
1570         if (!qp_state_table[cur_state][next_state].valid)
1571                 return false;
1572
1573         req_param = qp_state_table[cur_state][next_state].req_param[type];
1574         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1575
1576         if ((mask & req_param) != req_param)
1577                 return false;
1578
1579         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1580                 return false;
1581
1582         return true;
1583 }
1584 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1585
1586 /**
1587  * ib_resolve_eth_dmac - Resolve destination mac address
1588  * @device:             Device to consider
1589  * @ah_attr:            address handle attribute which describes the
1590  *                      source and destination parameters
1591  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1592  * returns 0 on success or appropriate error code. It initializes the
1593  * necessary ah_attr fields when call is successful.
1594  */
1595 static int ib_resolve_eth_dmac(struct ib_device *device,
1596                                struct rdma_ah_attr *ah_attr)
1597 {
1598         int ret = 0;
1599
1600         if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1601                 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1602                         __be32 addr = 0;
1603
1604                         memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1605                         ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1606                 } else {
1607                         ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1608                                         (char *)ah_attr->roce.dmac);
1609                 }
1610         } else {
1611                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1612         }
1613         return ret;
1614 }
1615
1616 static bool is_qp_type_connected(const struct ib_qp *qp)
1617 {
1618         return (qp->qp_type == IB_QPT_UC ||
1619                 qp->qp_type == IB_QPT_RC ||
1620                 qp->qp_type == IB_QPT_XRC_INI ||
1621                 qp->qp_type == IB_QPT_XRC_TGT);
1622 }
1623
1624 /**
1625  * IB core internal function to perform QP attributes modification.
1626  */
1627 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1628                          int attr_mask, struct ib_udata *udata)
1629 {
1630         u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1631         const struct ib_gid_attr *old_sgid_attr_av;
1632         const struct ib_gid_attr *old_sgid_attr_alt_av;
1633         int ret;
1634
1635         if (attr_mask & IB_QP_AV) {
1636                 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1637                                           &old_sgid_attr_av);
1638                 if (ret)
1639                         return ret;
1640         }
1641         if (attr_mask & IB_QP_ALT_PATH) {
1642                 /*
1643                  * FIXME: This does not track the migration state, so if the
1644                  * user loads a new alternate path after the HW has migrated
1645                  * from primary->alternate we will keep the wrong
1646                  * references. This is OK for IB because the reference
1647                  * counting does not serve any functional purpose.
1648                  */
1649                 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1650                                           &old_sgid_attr_alt_av);
1651                 if (ret)
1652                         goto out_av;
1653
1654                 /*
1655                  * Today the core code can only handle alternate paths and APM
1656                  * for IB. Ban them in roce mode.
1657                  */
1658                 if (!(rdma_protocol_ib(qp->device,
1659                                        attr->alt_ah_attr.port_num) &&
1660                       rdma_protocol_ib(qp->device, port))) {
1661                         ret = EINVAL;
1662                         goto out;
1663                 }
1664         }
1665
1666         /*
1667          * If the user provided the qp_attr then we have to resolve it. Kernel
1668          * users have to provide already resolved rdma_ah_attr's
1669          */
1670         if (udata && (attr_mask & IB_QP_AV) &&
1671             attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1672             is_qp_type_connected(qp)) {
1673                 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1674                 if (ret)
1675                         goto out;
1676         }
1677
1678         if (rdma_ib_or_roce(qp->device, port)) {
1679                 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1680                         dev_warn(&qp->device->dev,
1681                                  "%s rq_psn overflow, masking to 24 bits\n",
1682                                  __func__);
1683                         attr->rq_psn &= 0xffffff;
1684                 }
1685
1686                 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1687                         dev_warn(&qp->device->dev,
1688                                  " %s sq_psn overflow, masking to 24 bits\n",
1689                                  __func__);
1690                         attr->sq_psn &= 0xffffff;
1691                 }
1692         }
1693
1694         /*
1695          * Bind this qp to a counter automatically based on the rdma counter
1696          * rules. This only set in RST2INIT with port specified
1697          */
1698         if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1699             ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1700                 rdma_counter_bind_qp_auto(qp, attr->port_num);
1701
1702         ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1703         if (ret)
1704                 goto out;
1705
1706         if (attr_mask & IB_QP_PORT)
1707                 qp->port = attr->port_num;
1708         if (attr_mask & IB_QP_AV)
1709                 qp->av_sgid_attr =
1710                         rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1711         if (attr_mask & IB_QP_ALT_PATH)
1712                 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1713                         &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1714
1715 out:
1716         if (attr_mask & IB_QP_ALT_PATH)
1717                 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1718 out_av:
1719         if (attr_mask & IB_QP_AV)
1720                 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1721         return ret;
1722 }
1723
1724 /**
1725  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1726  * @ib_qp: The QP to modify.
1727  * @attr: On input, specifies the QP attributes to modify.  On output,
1728  *   the current values of selected QP attributes are returned.
1729  * @attr_mask: A bit-mask used to specify which attributes of the QP
1730  *   are being modified.
1731  * @udata: pointer to user's input output buffer information
1732  *   are being modified.
1733  * It returns 0 on success and returns appropriate error code on error.
1734  */
1735 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1736                             int attr_mask, struct ib_udata *udata)
1737 {
1738         return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1739 }
1740 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1741
1742 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1743 {
1744         int rc;
1745         u32 netdev_speed;
1746         struct net_device *netdev;
1747         struct ethtool_link_ksettings lksettings;
1748
1749         if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1750                 return -EINVAL;
1751
1752         netdev = ib_device_get_netdev(dev, port_num);
1753         if (!netdev)
1754                 return -ENODEV;
1755
1756         rtnl_lock();
1757         rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1758         rtnl_unlock();
1759
1760         dev_put(netdev);
1761
1762         if (!rc) {
1763                 netdev_speed = lksettings.base.speed;
1764         } else {
1765                 netdev_speed = SPEED_1000;
1766                 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1767                         netdev_speed);
1768         }
1769
1770         if (netdev_speed <= SPEED_1000) {
1771                 *width = IB_WIDTH_1X;
1772                 *speed = IB_SPEED_SDR;
1773         } else if (netdev_speed <= SPEED_10000) {
1774                 *width = IB_WIDTH_1X;
1775                 *speed = IB_SPEED_FDR10;
1776         } else if (netdev_speed <= SPEED_20000) {
1777                 *width = IB_WIDTH_4X;
1778                 *speed = IB_SPEED_DDR;
1779         } else if (netdev_speed <= SPEED_25000) {
1780                 *width = IB_WIDTH_1X;
1781                 *speed = IB_SPEED_EDR;
1782         } else if (netdev_speed <= SPEED_40000) {
1783                 *width = IB_WIDTH_4X;
1784                 *speed = IB_SPEED_FDR10;
1785         } else {
1786                 *width = IB_WIDTH_4X;
1787                 *speed = IB_SPEED_EDR;
1788         }
1789
1790         return 0;
1791 }
1792 EXPORT_SYMBOL(ib_get_eth_speed);
1793
1794 int ib_modify_qp(struct ib_qp *qp,
1795                  struct ib_qp_attr *qp_attr,
1796                  int qp_attr_mask)
1797 {
1798         return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1799 }
1800 EXPORT_SYMBOL(ib_modify_qp);
1801
1802 int ib_query_qp(struct ib_qp *qp,
1803                 struct ib_qp_attr *qp_attr,
1804                 int qp_attr_mask,
1805                 struct ib_qp_init_attr *qp_init_attr)
1806 {
1807         qp_attr->ah_attr.grh.sgid_attr = NULL;
1808         qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1809
1810         return qp->device->ops.query_qp ?
1811                 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1812                                          qp_init_attr) : -EOPNOTSUPP;
1813 }
1814 EXPORT_SYMBOL(ib_query_qp);
1815
1816 int ib_close_qp(struct ib_qp *qp)
1817 {
1818         struct ib_qp *real_qp;
1819         unsigned long flags;
1820
1821         real_qp = qp->real_qp;
1822         if (real_qp == qp)
1823                 return -EINVAL;
1824
1825         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1826         list_del(&qp->open_list);
1827         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1828
1829         atomic_dec(&real_qp->usecnt);
1830         if (qp->qp_sec)
1831                 ib_close_shared_qp_security(qp->qp_sec);
1832         kfree(qp);
1833
1834         return 0;
1835 }
1836 EXPORT_SYMBOL(ib_close_qp);
1837
1838 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1839 {
1840         struct ib_xrcd *xrcd;
1841         struct ib_qp *real_qp;
1842         int ret;
1843
1844         real_qp = qp->real_qp;
1845         xrcd = real_qp->xrcd;
1846
1847         mutex_lock(&xrcd->tgt_qp_mutex);
1848         ib_close_qp(qp);
1849         if (atomic_read(&real_qp->usecnt) == 0)
1850                 list_del(&real_qp->xrcd_list);
1851         else
1852                 real_qp = NULL;
1853         mutex_unlock(&xrcd->tgt_qp_mutex);
1854
1855         if (real_qp) {
1856                 ret = ib_destroy_qp(real_qp);
1857                 if (!ret)
1858                         atomic_dec(&xrcd->usecnt);
1859                 else
1860                         __ib_insert_xrcd_qp(xrcd, real_qp);
1861         }
1862
1863         return 0;
1864 }
1865
1866 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1867 {
1868         const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1869         const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1870         struct ib_pd *pd;
1871         struct ib_cq *scq, *rcq;
1872         struct ib_srq *srq;
1873         struct ib_rwq_ind_table *ind_tbl;
1874         struct ib_qp_security *sec;
1875         int ret;
1876
1877         WARN_ON_ONCE(qp->mrs_used > 0);
1878
1879         if (atomic_read(&qp->usecnt))
1880                 return -EBUSY;
1881
1882         if (qp->real_qp != qp)
1883                 return __ib_destroy_shared_qp(qp);
1884
1885         pd   = qp->pd;
1886         scq  = qp->send_cq;
1887         rcq  = qp->recv_cq;
1888         srq  = qp->srq;
1889         ind_tbl = qp->rwq_ind_tbl;
1890         sec  = qp->qp_sec;
1891         if (sec)
1892                 ib_destroy_qp_security_begin(sec);
1893
1894         if (!qp->uobject)
1895                 rdma_rw_cleanup_mrs(qp);
1896
1897         rdma_counter_unbind_qp(qp, true);
1898         rdma_restrack_del(&qp->res);
1899         ret = qp->device->ops.destroy_qp(qp, udata);
1900         if (!ret) {
1901                 if (alt_path_sgid_attr)
1902                         rdma_put_gid_attr(alt_path_sgid_attr);
1903                 if (av_sgid_attr)
1904                         rdma_put_gid_attr(av_sgid_attr);
1905                 if (pd)
1906                         atomic_dec(&pd->usecnt);
1907                 if (scq)
1908                         atomic_dec(&scq->usecnt);
1909                 if (rcq)
1910                         atomic_dec(&rcq->usecnt);
1911                 if (srq)
1912                         atomic_dec(&srq->usecnt);
1913                 if (ind_tbl)
1914                         atomic_dec(&ind_tbl->usecnt);
1915                 if (sec)
1916                         ib_destroy_qp_security_end(sec);
1917         } else {
1918                 if (sec)
1919                         ib_destroy_qp_security_abort(sec);
1920         }
1921
1922         return ret;
1923 }
1924 EXPORT_SYMBOL(ib_destroy_qp_user);
1925
1926 /* Completion queues */
1927
1928 struct ib_cq *__ib_create_cq(struct ib_device *device,
1929                              ib_comp_handler comp_handler,
1930                              void (*event_handler)(struct ib_event *, void *),
1931                              void *cq_context,
1932                              const struct ib_cq_init_attr *cq_attr,
1933                              const char *caller)
1934 {
1935         struct ib_cq *cq;
1936         int ret;
1937
1938         cq = rdma_zalloc_drv_obj(device, ib_cq);
1939         if (!cq)
1940                 return ERR_PTR(-ENOMEM);
1941
1942         cq->device = device;
1943         cq->uobject = NULL;
1944         cq->comp_handler = comp_handler;
1945         cq->event_handler = event_handler;
1946         cq->cq_context = cq_context;
1947         atomic_set(&cq->usecnt, 0);
1948         cq->res.type = RDMA_RESTRACK_CQ;
1949         rdma_restrack_set_task(&cq->res, caller);
1950
1951         ret = device->ops.create_cq(cq, cq_attr, NULL);
1952         if (ret) {
1953                 kfree(cq);
1954                 return ERR_PTR(ret);
1955         }
1956
1957         rdma_restrack_kadd(&cq->res);
1958         return cq;
1959 }
1960 EXPORT_SYMBOL(__ib_create_cq);
1961
1962 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1963 {
1964         return cq->device->ops.modify_cq ?
1965                 cq->device->ops.modify_cq(cq, cq_count,
1966                                           cq_period) : -EOPNOTSUPP;
1967 }
1968 EXPORT_SYMBOL(rdma_set_cq_moderation);
1969
1970 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
1971 {
1972         if (atomic_read(&cq->usecnt))
1973                 return -EBUSY;
1974
1975         rdma_restrack_del(&cq->res);
1976         cq->device->ops.destroy_cq(cq, udata);
1977         kfree(cq);
1978         return 0;
1979 }
1980 EXPORT_SYMBOL(ib_destroy_cq_user);
1981
1982 int ib_resize_cq(struct ib_cq *cq, int cqe)
1983 {
1984         return cq->device->ops.resize_cq ?
1985                 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
1986 }
1987 EXPORT_SYMBOL(ib_resize_cq);
1988
1989 /* Memory regions */
1990
1991 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
1992 {
1993         struct ib_pd *pd = mr->pd;
1994         struct ib_dm *dm = mr->dm;
1995         struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
1996         int ret;
1997
1998         rdma_restrack_del(&mr->res);
1999         ret = mr->device->ops.dereg_mr(mr, udata);
2000         if (!ret) {
2001                 atomic_dec(&pd->usecnt);
2002                 if (dm)
2003                         atomic_dec(&dm->usecnt);
2004                 kfree(sig_attrs);
2005         }
2006
2007         return ret;
2008 }
2009 EXPORT_SYMBOL(ib_dereg_mr_user);
2010
2011 /**
2012  * ib_alloc_mr_user() - Allocates a memory region
2013  * @pd:            protection domain associated with the region
2014  * @mr_type:       memory region type
2015  * @max_num_sg:    maximum sg entries available for registration.
2016  * @udata:         user data or null for kernel objects
2017  *
2018  * Notes:
2019  * Memory registeration page/sg lists must not exceed max_num_sg.
2020  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2021  * max_num_sg * used_page_size.
2022  *
2023  */
2024 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
2025                                u32 max_num_sg, struct ib_udata *udata)
2026 {
2027         struct ib_mr *mr;
2028
2029         if (!pd->device->ops.alloc_mr)
2030                 return ERR_PTR(-EOPNOTSUPP);
2031
2032         if (WARN_ON_ONCE(mr_type == IB_MR_TYPE_INTEGRITY))
2033                 return ERR_PTR(-EINVAL);
2034
2035         mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg, udata);
2036         if (!IS_ERR(mr)) {
2037                 mr->device  = pd->device;
2038                 mr->pd      = pd;
2039                 mr->dm      = NULL;
2040                 mr->uobject = NULL;
2041                 atomic_inc(&pd->usecnt);
2042                 mr->need_inval = false;
2043                 mr->res.type = RDMA_RESTRACK_MR;
2044                 rdma_restrack_kadd(&mr->res);
2045                 mr->type = mr_type;
2046                 mr->sig_attrs = NULL;
2047         }
2048
2049         return mr;
2050 }
2051 EXPORT_SYMBOL(ib_alloc_mr_user);
2052
2053 /**
2054  * ib_alloc_mr_integrity() - Allocates an integrity memory region
2055  * @pd:                      protection domain associated with the region
2056  * @max_num_data_sg:         maximum data sg entries available for registration
2057  * @max_num_meta_sg:         maximum metadata sg entries available for
2058  *                           registration
2059  *
2060  * Notes:
2061  * Memory registration page/sg lists must not exceed max_num_sg,
2062  * also the integrity page/sg lists must not exceed max_num_meta_sg.
2063  *
2064  */
2065 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2066                                     u32 max_num_data_sg,
2067                                     u32 max_num_meta_sg)
2068 {
2069         struct ib_mr *mr;
2070         struct ib_sig_attrs *sig_attrs;
2071
2072         if (!pd->device->ops.alloc_mr_integrity ||
2073             !pd->device->ops.map_mr_sg_pi)
2074                 return ERR_PTR(-EOPNOTSUPP);
2075
2076         if (!max_num_meta_sg)
2077                 return ERR_PTR(-EINVAL);
2078
2079         sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2080         if (!sig_attrs)
2081                 return ERR_PTR(-ENOMEM);
2082
2083         mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2084                                                 max_num_meta_sg);
2085         if (IS_ERR(mr)) {
2086                 kfree(sig_attrs);
2087                 return mr;
2088         }
2089
2090         mr->device = pd->device;
2091         mr->pd = pd;
2092         mr->dm = NULL;
2093         mr->uobject = NULL;
2094         atomic_inc(&pd->usecnt);
2095         mr->need_inval = false;
2096         mr->res.type = RDMA_RESTRACK_MR;
2097         rdma_restrack_kadd(&mr->res);
2098         mr->type = IB_MR_TYPE_INTEGRITY;
2099         mr->sig_attrs = sig_attrs;
2100
2101         return mr;
2102 }
2103 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2104
2105 /* "Fast" memory regions */
2106
2107 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2108                             int mr_access_flags,
2109                             struct ib_fmr_attr *fmr_attr)
2110 {
2111         struct ib_fmr *fmr;
2112
2113         if (!pd->device->ops.alloc_fmr)
2114                 return ERR_PTR(-EOPNOTSUPP);
2115
2116         fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr);
2117         if (!IS_ERR(fmr)) {
2118                 fmr->device = pd->device;
2119                 fmr->pd     = pd;
2120                 atomic_inc(&pd->usecnt);
2121         }
2122
2123         return fmr;
2124 }
2125 EXPORT_SYMBOL(ib_alloc_fmr);
2126
2127 int ib_unmap_fmr(struct list_head *fmr_list)
2128 {
2129         struct ib_fmr *fmr;
2130
2131         if (list_empty(fmr_list))
2132                 return 0;
2133
2134         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
2135         return fmr->device->ops.unmap_fmr(fmr_list);
2136 }
2137 EXPORT_SYMBOL(ib_unmap_fmr);
2138
2139 int ib_dealloc_fmr(struct ib_fmr *fmr)
2140 {
2141         struct ib_pd *pd;
2142         int ret;
2143
2144         pd = fmr->pd;
2145         ret = fmr->device->ops.dealloc_fmr(fmr);
2146         if (!ret)
2147                 atomic_dec(&pd->usecnt);
2148
2149         return ret;
2150 }
2151 EXPORT_SYMBOL(ib_dealloc_fmr);
2152
2153 /* Multicast groups */
2154
2155 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2156 {
2157         struct ib_qp_init_attr init_attr = {};
2158         struct ib_qp_attr attr = {};
2159         int num_eth_ports = 0;
2160         int port;
2161
2162         /* If QP state >= init, it is assigned to a port and we can check this
2163          * port only.
2164          */
2165         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2166                 if (attr.qp_state >= IB_QPS_INIT) {
2167                         if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2168                             IB_LINK_LAYER_INFINIBAND)
2169                                 return true;
2170                         goto lid_check;
2171                 }
2172         }
2173
2174         /* Can't get a quick answer, iterate over all ports */
2175         for (port = 0; port < qp->device->phys_port_cnt; port++)
2176                 if (rdma_port_get_link_layer(qp->device, port) !=
2177                     IB_LINK_LAYER_INFINIBAND)
2178                         num_eth_ports++;
2179
2180         /* If we have at lease one Ethernet port, RoCE annex declares that
2181          * multicast LID should be ignored. We can't tell at this step if the
2182          * QP belongs to an IB or Ethernet port.
2183          */
2184         if (num_eth_ports)
2185                 return true;
2186
2187         /* If all the ports are IB, we can check according to IB spec. */
2188 lid_check:
2189         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2190                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
2191 }
2192
2193 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2194 {
2195         int ret;
2196
2197         if (!qp->device->ops.attach_mcast)
2198                 return -EOPNOTSUPP;
2199
2200         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2201             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2202                 return -EINVAL;
2203
2204         ret = qp->device->ops.attach_mcast(qp, gid, lid);
2205         if (!ret)
2206                 atomic_inc(&qp->usecnt);
2207         return ret;
2208 }
2209 EXPORT_SYMBOL(ib_attach_mcast);
2210
2211 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2212 {
2213         int ret;
2214
2215         if (!qp->device->ops.detach_mcast)
2216                 return -EOPNOTSUPP;
2217
2218         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2219             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2220                 return -EINVAL;
2221
2222         ret = qp->device->ops.detach_mcast(qp, gid, lid);
2223         if (!ret)
2224                 atomic_dec(&qp->usecnt);
2225         return ret;
2226 }
2227 EXPORT_SYMBOL(ib_detach_mcast);
2228
2229 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
2230 {
2231         struct ib_xrcd *xrcd;
2232
2233         if (!device->ops.alloc_xrcd)
2234                 return ERR_PTR(-EOPNOTSUPP);
2235
2236         xrcd = device->ops.alloc_xrcd(device, NULL);
2237         if (!IS_ERR(xrcd)) {
2238                 xrcd->device = device;
2239                 xrcd->inode = NULL;
2240                 atomic_set(&xrcd->usecnt, 0);
2241                 mutex_init(&xrcd->tgt_qp_mutex);
2242                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
2243         }
2244
2245         return xrcd;
2246 }
2247 EXPORT_SYMBOL(__ib_alloc_xrcd);
2248
2249 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata)
2250 {
2251         struct ib_qp *qp;
2252         int ret;
2253
2254         if (atomic_read(&xrcd->usecnt))
2255                 return -EBUSY;
2256
2257         while (!list_empty(&xrcd->tgt_qp_list)) {
2258                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
2259                 ret = ib_destroy_qp(qp);
2260                 if (ret)
2261                         return ret;
2262         }
2263         mutex_destroy(&xrcd->tgt_qp_mutex);
2264
2265         return xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2266 }
2267 EXPORT_SYMBOL(ib_dealloc_xrcd);
2268
2269 /**
2270  * ib_create_wq - Creates a WQ associated with the specified protection
2271  * domain.
2272  * @pd: The protection domain associated with the WQ.
2273  * @wq_attr: A list of initial attributes required to create the
2274  * WQ. If WQ creation succeeds, then the attributes are updated to
2275  * the actual capabilities of the created WQ.
2276  *
2277  * wq_attr->max_wr and wq_attr->max_sge determine
2278  * the requested size of the WQ, and set to the actual values allocated
2279  * on return.
2280  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2281  * at least as large as the requested values.
2282  */
2283 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2284                            struct ib_wq_init_attr *wq_attr)
2285 {
2286         struct ib_wq *wq;
2287
2288         if (!pd->device->ops.create_wq)
2289                 return ERR_PTR(-EOPNOTSUPP);
2290
2291         wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2292         if (!IS_ERR(wq)) {
2293                 wq->event_handler = wq_attr->event_handler;
2294                 wq->wq_context = wq_attr->wq_context;
2295                 wq->wq_type = wq_attr->wq_type;
2296                 wq->cq = wq_attr->cq;
2297                 wq->device = pd->device;
2298                 wq->pd = pd;
2299                 wq->uobject = NULL;
2300                 atomic_inc(&pd->usecnt);
2301                 atomic_inc(&wq_attr->cq->usecnt);
2302                 atomic_set(&wq->usecnt, 0);
2303         }
2304         return wq;
2305 }
2306 EXPORT_SYMBOL(ib_create_wq);
2307
2308 /**
2309  * ib_destroy_wq - Destroys the specified user WQ.
2310  * @wq: The WQ to destroy.
2311  * @udata: Valid user data
2312  */
2313 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata)
2314 {
2315         struct ib_cq *cq = wq->cq;
2316         struct ib_pd *pd = wq->pd;
2317
2318         if (atomic_read(&wq->usecnt))
2319                 return -EBUSY;
2320
2321         wq->device->ops.destroy_wq(wq, udata);
2322         atomic_dec(&pd->usecnt);
2323         atomic_dec(&cq->usecnt);
2324
2325         return 0;
2326 }
2327 EXPORT_SYMBOL(ib_destroy_wq);
2328
2329 /**
2330  * ib_modify_wq - Modifies the specified WQ.
2331  * @wq: The WQ to modify.
2332  * @wq_attr: On input, specifies the WQ attributes to modify.
2333  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2334  *   are being modified.
2335  * On output, the current values of selected WQ attributes are returned.
2336  */
2337 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2338                  u32 wq_attr_mask)
2339 {
2340         int err;
2341
2342         if (!wq->device->ops.modify_wq)
2343                 return -EOPNOTSUPP;
2344
2345         err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2346         return err;
2347 }
2348 EXPORT_SYMBOL(ib_modify_wq);
2349
2350 /*
2351  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2352  * @device: The device on which to create the rwq indirection table.
2353  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2354  * create the Indirection Table.
2355  *
2356  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2357  *      than the created ib_rwq_ind_table object and the caller is responsible
2358  *      for its memory allocation/free.
2359  */
2360 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
2361                                                  struct ib_rwq_ind_table_init_attr *init_attr)
2362 {
2363         struct ib_rwq_ind_table *rwq_ind_table;
2364         int i;
2365         u32 table_size;
2366
2367         if (!device->ops.create_rwq_ind_table)
2368                 return ERR_PTR(-EOPNOTSUPP);
2369
2370         table_size = (1 << init_attr->log_ind_tbl_size);
2371         rwq_ind_table = device->ops.create_rwq_ind_table(device,
2372                                                          init_attr, NULL);
2373         if (IS_ERR(rwq_ind_table))
2374                 return rwq_ind_table;
2375
2376         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
2377         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
2378         rwq_ind_table->device = device;
2379         rwq_ind_table->uobject = NULL;
2380         atomic_set(&rwq_ind_table->usecnt, 0);
2381
2382         for (i = 0; i < table_size; i++)
2383                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
2384
2385         return rwq_ind_table;
2386 }
2387 EXPORT_SYMBOL(ib_create_rwq_ind_table);
2388
2389 /*
2390  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2391  * @wq_ind_table: The Indirection Table to destroy.
2392 */
2393 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2394 {
2395         int err, i;
2396         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2397         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2398
2399         if (atomic_read(&rwq_ind_table->usecnt))
2400                 return -EBUSY;
2401
2402         err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table);
2403         if (!err) {
2404                 for (i = 0; i < table_size; i++)
2405                         atomic_dec(&ind_tbl[i]->usecnt);
2406         }
2407
2408         return err;
2409 }
2410 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2411
2412 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2413                        struct ib_mr_status *mr_status)
2414 {
2415         if (!mr->device->ops.check_mr_status)
2416                 return -EOPNOTSUPP;
2417
2418         return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2419 }
2420 EXPORT_SYMBOL(ib_check_mr_status);
2421
2422 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2423                          int state)
2424 {
2425         if (!device->ops.set_vf_link_state)
2426                 return -EOPNOTSUPP;
2427
2428         return device->ops.set_vf_link_state(device, vf, port, state);
2429 }
2430 EXPORT_SYMBOL(ib_set_vf_link_state);
2431
2432 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2433                      struct ifla_vf_info *info)
2434 {
2435         if (!device->ops.get_vf_config)
2436                 return -EOPNOTSUPP;
2437
2438         return device->ops.get_vf_config(device, vf, port, info);
2439 }
2440 EXPORT_SYMBOL(ib_get_vf_config);
2441
2442 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2443                     struct ifla_vf_stats *stats)
2444 {
2445         if (!device->ops.get_vf_stats)
2446                 return -EOPNOTSUPP;
2447
2448         return device->ops.get_vf_stats(device, vf, port, stats);
2449 }
2450 EXPORT_SYMBOL(ib_get_vf_stats);
2451
2452 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2453                    int type)
2454 {
2455         if (!device->ops.set_vf_guid)
2456                 return -EOPNOTSUPP;
2457
2458         return device->ops.set_vf_guid(device, vf, port, guid, type);
2459 }
2460 EXPORT_SYMBOL(ib_set_vf_guid);
2461
2462 /**
2463  * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2464  *     information) and set an appropriate memory region for registration.
2465  * @mr:             memory region
2466  * @data_sg:        dma mapped scatterlist for data
2467  * @data_sg_nents:  number of entries in data_sg
2468  * @data_sg_offset: offset in bytes into data_sg
2469  * @meta_sg:        dma mapped scatterlist for metadata
2470  * @meta_sg_nents:  number of entries in meta_sg
2471  * @meta_sg_offset: offset in bytes into meta_sg
2472  * @page_size:      page vector desired page size
2473  *
2474  * Constraints:
2475  * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2476  *
2477  * Return: 0 on success.
2478  *
2479  * After this completes successfully, the  memory region
2480  * is ready for registration.
2481  */
2482 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2483                     int data_sg_nents, unsigned int *data_sg_offset,
2484                     struct scatterlist *meta_sg, int meta_sg_nents,
2485                     unsigned int *meta_sg_offset, unsigned int page_size)
2486 {
2487         if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2488                      WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2489                 return -EOPNOTSUPP;
2490
2491         mr->page_size = page_size;
2492
2493         return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2494                                             data_sg_offset, meta_sg,
2495                                             meta_sg_nents, meta_sg_offset);
2496 }
2497 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2498
2499 /**
2500  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2501  *     and set it the memory region.
2502  * @mr:            memory region
2503  * @sg:            dma mapped scatterlist
2504  * @sg_nents:      number of entries in sg
2505  * @sg_offset:     offset in bytes into sg
2506  * @page_size:     page vector desired page size
2507  *
2508  * Constraints:
2509  * - The first sg element is allowed to have an offset.
2510  * - Each sg element must either be aligned to page_size or virtually
2511  *   contiguous to the previous element. In case an sg element has a
2512  *   non-contiguous offset, the mapping prefix will not include it.
2513  * - The last sg element is allowed to have length less than page_size.
2514  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2515  *   then only max_num_sg entries will be mapped.
2516  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2517  *   constraints holds and the page_size argument is ignored.
2518  *
2519  * Returns the number of sg elements that were mapped to the memory region.
2520  *
2521  * After this completes successfully, the  memory region
2522  * is ready for registration.
2523  */
2524 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2525                  unsigned int *sg_offset, unsigned int page_size)
2526 {
2527         if (unlikely(!mr->device->ops.map_mr_sg))
2528                 return -EOPNOTSUPP;
2529
2530         mr->page_size = page_size;
2531
2532         return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2533 }
2534 EXPORT_SYMBOL(ib_map_mr_sg);
2535
2536 /**
2537  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2538  *     to a page vector
2539  * @mr:            memory region
2540  * @sgl:           dma mapped scatterlist
2541  * @sg_nents:      number of entries in sg
2542  * @sg_offset_p:   IN:  start offset in bytes into sg
2543  *                 OUT: offset in bytes for element n of the sg of the first
2544  *                      byte that has not been processed where n is the return
2545  *                      value of this function.
2546  * @set_page:      driver page assignment function pointer
2547  *
2548  * Core service helper for drivers to convert the largest
2549  * prefix of given sg list to a page vector. The sg list
2550  * prefix converted is the prefix that meet the requirements
2551  * of ib_map_mr_sg.
2552  *
2553  * Returns the number of sg elements that were assigned to
2554  * a page vector.
2555  */
2556 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2557                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2558 {
2559         struct scatterlist *sg;
2560         u64 last_end_dma_addr = 0;
2561         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2562         unsigned int last_page_off = 0;
2563         u64 page_mask = ~((u64)mr->page_size - 1);
2564         int i, ret;
2565
2566         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2567                 return -EINVAL;
2568
2569         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2570         mr->length = 0;
2571
2572         for_each_sg(sgl, sg, sg_nents, i) {
2573                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2574                 u64 prev_addr = dma_addr;
2575                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2576                 u64 end_dma_addr = dma_addr + dma_len;
2577                 u64 page_addr = dma_addr & page_mask;
2578
2579                 /*
2580                  * For the second and later elements, check whether either the
2581                  * end of element i-1 or the start of element i is not aligned
2582                  * on a page boundary.
2583                  */
2584                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2585                         /* Stop mapping if there is a gap. */
2586                         if (last_end_dma_addr != dma_addr)
2587                                 break;
2588
2589                         /*
2590                          * Coalesce this element with the last. If it is small
2591                          * enough just update mr->length. Otherwise start
2592                          * mapping from the next page.
2593                          */
2594                         goto next_page;
2595                 }
2596
2597                 do {
2598                         ret = set_page(mr, page_addr);
2599                         if (unlikely(ret < 0)) {
2600                                 sg_offset = prev_addr - sg_dma_address(sg);
2601                                 mr->length += prev_addr - dma_addr;
2602                                 if (sg_offset_p)
2603                                         *sg_offset_p = sg_offset;
2604                                 return i || sg_offset ? i : ret;
2605                         }
2606                         prev_addr = page_addr;
2607 next_page:
2608                         page_addr += mr->page_size;
2609                 } while (page_addr < end_dma_addr);
2610
2611                 mr->length += dma_len;
2612                 last_end_dma_addr = end_dma_addr;
2613                 last_page_off = end_dma_addr & ~page_mask;
2614
2615                 sg_offset = 0;
2616         }
2617
2618         if (sg_offset_p)
2619                 *sg_offset_p = 0;
2620         return i;
2621 }
2622 EXPORT_SYMBOL(ib_sg_to_pages);
2623
2624 struct ib_drain_cqe {
2625         struct ib_cqe cqe;
2626         struct completion done;
2627 };
2628
2629 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2630 {
2631         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2632                                                 cqe);
2633
2634         complete(&cqe->done);
2635 }
2636
2637 /*
2638  * Post a WR and block until its completion is reaped for the SQ.
2639  */
2640 static void __ib_drain_sq(struct ib_qp *qp)
2641 {
2642         struct ib_cq *cq = qp->send_cq;
2643         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2644         struct ib_drain_cqe sdrain;
2645         struct ib_rdma_wr swr = {
2646                 .wr = {
2647                         .next = NULL,
2648                         { .wr_cqe       = &sdrain.cqe, },
2649                         .opcode = IB_WR_RDMA_WRITE,
2650                 },
2651         };
2652         int ret;
2653
2654         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2655         if (ret) {
2656                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2657                 return;
2658         }
2659
2660         sdrain.cqe.done = ib_drain_qp_done;
2661         init_completion(&sdrain.done);
2662
2663         ret = ib_post_send(qp, &swr.wr, NULL);
2664         if (ret) {
2665                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2666                 return;
2667         }
2668
2669         if (cq->poll_ctx == IB_POLL_DIRECT)
2670                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2671                         ib_process_cq_direct(cq, -1);
2672         else
2673                 wait_for_completion(&sdrain.done);
2674 }
2675
2676 /*
2677  * Post a WR and block until its completion is reaped for the RQ.
2678  */
2679 static void __ib_drain_rq(struct ib_qp *qp)
2680 {
2681         struct ib_cq *cq = qp->recv_cq;
2682         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2683         struct ib_drain_cqe rdrain;
2684         struct ib_recv_wr rwr = {};
2685         int ret;
2686
2687         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2688         if (ret) {
2689                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2690                 return;
2691         }
2692
2693         rwr.wr_cqe = &rdrain.cqe;
2694         rdrain.cqe.done = ib_drain_qp_done;
2695         init_completion(&rdrain.done);
2696
2697         ret = ib_post_recv(qp, &rwr, NULL);
2698         if (ret) {
2699                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2700                 return;
2701         }
2702
2703         if (cq->poll_ctx == IB_POLL_DIRECT)
2704                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2705                         ib_process_cq_direct(cq, -1);
2706         else
2707                 wait_for_completion(&rdrain.done);
2708 }
2709
2710 /**
2711  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2712  *                 application.
2713  * @qp:            queue pair to drain
2714  *
2715  * If the device has a provider-specific drain function, then
2716  * call that.  Otherwise call the generic drain function
2717  * __ib_drain_sq().
2718  *
2719  * The caller must:
2720  *
2721  * ensure there is room in the CQ and SQ for the drain work request and
2722  * completion.
2723  *
2724  * allocate the CQ using ib_alloc_cq().
2725  *
2726  * ensure that there are no other contexts that are posting WRs concurrently.
2727  * Otherwise the drain is not guaranteed.
2728  */
2729 void ib_drain_sq(struct ib_qp *qp)
2730 {
2731         if (qp->device->ops.drain_sq)
2732                 qp->device->ops.drain_sq(qp);
2733         else
2734                 __ib_drain_sq(qp);
2735 }
2736 EXPORT_SYMBOL(ib_drain_sq);
2737
2738 /**
2739  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2740  *                 application.
2741  * @qp:            queue pair to drain
2742  *
2743  * If the device has a provider-specific drain function, then
2744  * call that.  Otherwise call the generic drain function
2745  * __ib_drain_rq().
2746  *
2747  * The caller must:
2748  *
2749  * ensure there is room in the CQ and RQ for the drain work request and
2750  * completion.
2751  *
2752  * allocate the CQ using ib_alloc_cq().
2753  *
2754  * ensure that there are no other contexts that are posting WRs concurrently.
2755  * Otherwise the drain is not guaranteed.
2756  */
2757 void ib_drain_rq(struct ib_qp *qp)
2758 {
2759         if (qp->device->ops.drain_rq)
2760                 qp->device->ops.drain_rq(qp);
2761         else
2762                 __ib_drain_rq(qp);
2763 }
2764 EXPORT_SYMBOL(ib_drain_rq);
2765
2766 /**
2767  * ib_drain_qp() - Block until all CQEs have been consumed by the
2768  *                 application on both the RQ and SQ.
2769  * @qp:            queue pair to drain
2770  *
2771  * The caller must:
2772  *
2773  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2774  * and completions.
2775  *
2776  * allocate the CQs using ib_alloc_cq().
2777  *
2778  * ensure that there are no other contexts that are posting WRs concurrently.
2779  * Otherwise the drain is not guaranteed.
2780  */
2781 void ib_drain_qp(struct ib_qp *qp)
2782 {
2783         ib_drain_sq(qp);
2784         if (!qp->srq)
2785                 ib_drain_rq(qp);
2786 }
2787 EXPORT_SYMBOL(ib_drain_qp);
2788
2789 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2790                                      enum rdma_netdev_t type, const char *name,
2791                                      unsigned char name_assign_type,
2792                                      void (*setup)(struct net_device *))
2793 {
2794         struct rdma_netdev_alloc_params params;
2795         struct net_device *netdev;
2796         int rc;
2797
2798         if (!device->ops.rdma_netdev_get_params)
2799                 return ERR_PTR(-EOPNOTSUPP);
2800
2801         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2802                                                 &params);
2803         if (rc)
2804                 return ERR_PTR(rc);
2805
2806         netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2807                                   setup, params.txqs, params.rxqs);
2808         if (!netdev)
2809                 return ERR_PTR(-ENOMEM);
2810
2811         return netdev;
2812 }
2813 EXPORT_SYMBOL(rdma_alloc_netdev);
2814
2815 int rdma_init_netdev(struct ib_device *device, u8 port_num,
2816                      enum rdma_netdev_t type, const char *name,
2817                      unsigned char name_assign_type,
2818                      void (*setup)(struct net_device *),
2819                      struct net_device *netdev)
2820 {
2821         struct rdma_netdev_alloc_params params;
2822         int rc;
2823
2824         if (!device->ops.rdma_netdev_get_params)
2825                 return -EOPNOTSUPP;
2826
2827         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2828                                                 &params);
2829         if (rc)
2830                 return rc;
2831
2832         return params.initialize_rdma_netdev(device, port_num,
2833                                              netdev, params.param);
2834 }
2835 EXPORT_SYMBOL(rdma_init_netdev);
2836
2837 void __rdma_block_iter_start(struct ib_block_iter *biter,
2838                              struct scatterlist *sglist, unsigned int nents,
2839                              unsigned long pgsz)
2840 {
2841         memset(biter, 0, sizeof(struct ib_block_iter));
2842         biter->__sg = sglist;
2843         biter->__sg_nents = nents;
2844
2845         /* Driver provides best block size to use */
2846         biter->__pg_bit = __fls(pgsz);
2847 }
2848 EXPORT_SYMBOL(__rdma_block_iter_start);
2849
2850 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2851 {
2852         unsigned int block_offset;
2853
2854         if (!biter->__sg_nents || !biter->__sg)
2855                 return false;
2856
2857         biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2858         block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2859         biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2860
2861         if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2862                 biter->__sg_advance = 0;
2863                 biter->__sg = sg_next(biter->__sg);
2864                 biter->__sg_nents--;
2865         }
2866
2867         return true;
2868 }
2869 EXPORT_SYMBOL(__rdma_block_iter_next);