]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/infiniband/hw/hfi1/driver.c
Merge tag 'block-5.6-2020-02-22' of git://git.kernel.dk/linux-block
[linux.git] / drivers / infiniband / hw / hfi1 / driver.c
1 /*
2  * Copyright(c) 2015-2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include <linux/io.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
57
58 #include "hfi.h"
59 #include "trace.h"
60 #include "qp.h"
61 #include "sdma.h"
62 #include "debugfs.h"
63 #include "vnic.h"
64 #include "fault.h"
65
66 #undef pr_fmt
67 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
68
69 /*
70  * The size has to be longer than this string, so we can append
71  * board/chip information to it in the initialization code.
72  */
73 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
74
75 DEFINE_MUTEX(hfi1_mutex);       /* general driver use */
76
77 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
78 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
79 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
80                  HFI1_DEFAULT_MAX_MTU));
81
82 unsigned int hfi1_cu = 1;
83 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
84 MODULE_PARM_DESC(cu, "Credit return units");
85
86 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
87 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
88 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
89 static const struct kernel_param_ops cap_ops = {
90         .set = hfi1_caps_set,
91         .get = hfi1_caps_get
92 };
93 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
94 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
95
96 MODULE_LICENSE("Dual BSD/GPL");
97 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
98
99 /*
100  * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
101  */
102 #define MAX_PKT_RECV 64
103 /*
104  * MAX_PKT_THREAD_RCV is the max # of packets processed before
105  * the qp_wait_list queue is flushed.
106  */
107 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
108 #define EGR_HEAD_UPDATE_THRESHOLD 16
109
110 struct hfi1_ib_stats hfi1_stats;
111
112 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
113 {
114         int ret = 0;
115         unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
116                 cap_mask = *cap_mask_ptr, value, diff,
117                 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
118                               HFI1_CAP_WRITABLE_MASK);
119
120         ret = kstrtoul(val, 0, &value);
121         if (ret) {
122                 pr_warn("Invalid module parameter value for 'cap_mask'\n");
123                 goto done;
124         }
125         /* Get the changed bits (except the locked bit) */
126         diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
127
128         /* Remove any bits that are not allowed to change after driver load */
129         if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
130                 pr_warn("Ignoring non-writable capability bits %#lx\n",
131                         diff & ~write_mask);
132                 diff &= write_mask;
133         }
134
135         /* Mask off any reserved bits */
136         diff &= ~HFI1_CAP_RESERVED_MASK;
137         /* Clear any previously set and changing bits */
138         cap_mask &= ~diff;
139         /* Update the bits with the new capability */
140         cap_mask |= (value & diff);
141         /* Check for any kernel/user restrictions */
142         diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
143                 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
144         cap_mask &= ~diff;
145         /* Set the bitmask to the final set */
146         *cap_mask_ptr = cap_mask;
147 done:
148         return ret;
149 }
150
151 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
152 {
153         unsigned long cap_mask = *(unsigned long *)kp->arg;
154
155         cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
156         cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
157
158         return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
159 }
160
161 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
162 {
163         struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
164         struct hfi1_devdata *dd = container_of(ibdev,
165                                                struct hfi1_devdata, verbs_dev);
166         return dd->pcidev;
167 }
168
169 /*
170  * Return count of units with at least one port ACTIVE.
171  */
172 int hfi1_count_active_units(void)
173 {
174         struct hfi1_devdata *dd;
175         struct hfi1_pportdata *ppd;
176         unsigned long index, flags;
177         int pidx, nunits_active = 0;
178
179         xa_lock_irqsave(&hfi1_dev_table, flags);
180         xa_for_each(&hfi1_dev_table, index, dd) {
181                 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
182                         continue;
183                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
184                         ppd = dd->pport + pidx;
185                         if (ppd->lid && ppd->linkup) {
186                                 nunits_active++;
187                                 break;
188                         }
189                 }
190         }
191         xa_unlock_irqrestore(&hfi1_dev_table, flags);
192         return nunits_active;
193 }
194
195 /*
196  * Get address of eager buffer from it's index (allocated in chunks, not
197  * contiguous).
198  */
199 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
200                                u8 *update)
201 {
202         u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
203
204         *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
205         return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
206                         (offset * RCV_BUF_BLOCK_SIZE));
207 }
208
209 static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
210                                     __le32 *rhf_addr)
211 {
212         u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
213
214         return (void *)(rhf_addr - rcd->rhf_offset + offset);
215 }
216
217 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
218                                                    __le32 *rhf_addr)
219 {
220         return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
221 }
222
223 static inline struct hfi1_16b_header
224                 *hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
225                                      __le32 *rhf_addr)
226 {
227         return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
228 }
229
230 /*
231  * Validate and encode the a given RcvArray Buffer size.
232  * The function will check whether the given size falls within
233  * allowed size ranges for the respective type and, optionally,
234  * return the proper encoding.
235  */
236 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
237 {
238         if (unlikely(!PAGE_ALIGNED(size)))
239                 return 0;
240         if (unlikely(size < MIN_EAGER_BUFFER))
241                 return 0;
242         if (size >
243             (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
244                 return 0;
245         if (encoded)
246                 *encoded = ilog2(size / PAGE_SIZE) + 1;
247         return 1;
248 }
249
250 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
251                        struct hfi1_packet *packet)
252 {
253         struct ib_header *rhdr = packet->hdr;
254         u32 rte = rhf_rcv_type_err(packet->rhf);
255         u32 mlid_base;
256         struct hfi1_ibport *ibp = rcd_to_iport(rcd);
257         struct hfi1_devdata *dd = ppd->dd;
258         struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
259         struct rvt_dev_info *rdi = &verbs_dev->rdi;
260
261         if ((packet->rhf & RHF_DC_ERR) &&
262             hfi1_dbg_fault_suppress_err(verbs_dev))
263                 return;
264
265         if (packet->rhf & RHF_ICRC_ERR)
266                 return;
267
268         if (packet->etype == RHF_RCV_TYPE_BYPASS) {
269                 goto drop;
270         } else {
271                 u8 lnh = ib_get_lnh(rhdr);
272
273                 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
274                 if (lnh == HFI1_LRH_BTH) {
275                         packet->ohdr = &rhdr->u.oth;
276                 } else if (lnh == HFI1_LRH_GRH) {
277                         packet->ohdr = &rhdr->u.l.oth;
278                         packet->grh = &rhdr->u.l.grh;
279                 } else {
280                         goto drop;
281                 }
282         }
283
284         if (packet->rhf & RHF_TID_ERR) {
285                 /* For TIDERR and RC QPs preemptively schedule a NAK */
286                 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
287                 u32 dlid = ib_get_dlid(rhdr);
288                 u32 qp_num;
289
290                 /* Sanity check packet */
291                 if (tlen < 24)
292                         goto drop;
293
294                 /* Check for GRH */
295                 if (packet->grh) {
296                         u32 vtf;
297                         struct ib_grh *grh = packet->grh;
298
299                         if (grh->next_hdr != IB_GRH_NEXT_HDR)
300                                 goto drop;
301                         vtf = be32_to_cpu(grh->version_tclass_flow);
302                         if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
303                                 goto drop;
304                 }
305
306                 /* Get the destination QP number. */
307                 qp_num = ib_bth_get_qpn(packet->ohdr);
308                 if (dlid < mlid_base) {
309                         struct rvt_qp *qp;
310                         unsigned long flags;
311
312                         rcu_read_lock();
313                         qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
314                         if (!qp) {
315                                 rcu_read_unlock();
316                                 goto drop;
317                         }
318
319                         /*
320                          * Handle only RC QPs - for other QP types drop error
321                          * packet.
322                          */
323                         spin_lock_irqsave(&qp->r_lock, flags);
324
325                         /* Check for valid receive state. */
326                         if (!(ib_rvt_state_ops[qp->state] &
327                               RVT_PROCESS_RECV_OK)) {
328                                 ibp->rvp.n_pkt_drops++;
329                         }
330
331                         switch (qp->ibqp.qp_type) {
332                         case IB_QPT_RC:
333                                 hfi1_rc_hdrerr(rcd, packet, qp);
334                                 break;
335                         default:
336                                 /* For now don't handle any other QP types */
337                                 break;
338                         }
339
340                         spin_unlock_irqrestore(&qp->r_lock, flags);
341                         rcu_read_unlock();
342                 } /* Unicast QP */
343         } /* Valid packet with TIDErr */
344
345         /* handle "RcvTypeErr" flags */
346         switch (rte) {
347         case RHF_RTE_ERROR_OP_CODE_ERR:
348         {
349                 void *ebuf = NULL;
350                 u8 opcode;
351
352                 if (rhf_use_egr_bfr(packet->rhf))
353                         ebuf = packet->ebuf;
354
355                 if (!ebuf)
356                         goto drop; /* this should never happen */
357
358                 opcode = ib_bth_get_opcode(packet->ohdr);
359                 if (opcode == IB_OPCODE_CNP) {
360                         /*
361                          * Only in pre-B0 h/w is the CNP_OPCODE handled
362                          * via this code path.
363                          */
364                         struct rvt_qp *qp = NULL;
365                         u32 lqpn, rqpn;
366                         u16 rlid;
367                         u8 svc_type, sl, sc5;
368
369                         sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
370                         sl = ibp->sc_to_sl[sc5];
371
372                         lqpn = ib_bth_get_qpn(packet->ohdr);
373                         rcu_read_lock();
374                         qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
375                         if (!qp) {
376                                 rcu_read_unlock();
377                                 goto drop;
378                         }
379
380                         switch (qp->ibqp.qp_type) {
381                         case IB_QPT_UD:
382                                 rlid = 0;
383                                 rqpn = 0;
384                                 svc_type = IB_CC_SVCTYPE_UD;
385                                 break;
386                         case IB_QPT_UC:
387                                 rlid = ib_get_slid(rhdr);
388                                 rqpn = qp->remote_qpn;
389                                 svc_type = IB_CC_SVCTYPE_UC;
390                                 break;
391                         default:
392                                 rcu_read_unlock();
393                                 goto drop;
394                         }
395
396                         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
397                         rcu_read_unlock();
398                 }
399
400                 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
401                 break;
402         }
403         default:
404                 break;
405         }
406
407 drop:
408         return;
409 }
410
411 static inline void init_packet(struct hfi1_ctxtdata *rcd,
412                                struct hfi1_packet *packet)
413 {
414         packet->rsize = get_hdrqentsize(rcd); /* words */
415         packet->maxcnt = get_hdrq_cnt(rcd) * packet->rsize; /* words */
416         packet->rcd = rcd;
417         packet->updegr = 0;
418         packet->etail = -1;
419         packet->rhf_addr = get_rhf_addr(rcd);
420         packet->rhf = rhf_to_cpu(packet->rhf_addr);
421         packet->rhqoff = hfi1_rcd_head(rcd);
422         packet->numpkt = 0;
423 }
424
425 /* We support only two types - 9B and 16B for now */
426 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
427         [HFI1_PKT_TYPE_9B] = &return_cnp,
428         [HFI1_PKT_TYPE_16B] = &return_cnp_16B
429 };
430
431 /**
432  * hfi1_process_ecn_slowpath - Process FECN or BECN bits
433  * @qp: The packet's destination QP
434  * @pkt: The packet itself.
435  * @prescan: Is the caller the RXQ prescan
436  *
437  * Process the packet's FECN or BECN bits. By now, the packet
438  * has already been evaluated whether processing of those bit should
439  * be done.
440  * The significance of the @prescan argument is that if the caller
441  * is the RXQ prescan, a CNP will be send out instead of waiting for the
442  * normal packet processing to send an ACK with BECN set (or a CNP).
443  */
444 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
445                                bool prescan)
446 {
447         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
448         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
449         struct ib_other_headers *ohdr = pkt->ohdr;
450         struct ib_grh *grh = pkt->grh;
451         u32 rqpn = 0;
452         u16 pkey;
453         u32 rlid, slid, dlid = 0;
454         u8 hdr_type, sc, svc_type, opcode;
455         bool is_mcast = false, ignore_fecn = false, do_cnp = false,
456                 fecn, becn;
457
458         /* can be called from prescan */
459         if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
460                 pkey = hfi1_16B_get_pkey(pkt->hdr);
461                 sc = hfi1_16B_get_sc(pkt->hdr);
462                 dlid = hfi1_16B_get_dlid(pkt->hdr);
463                 slid = hfi1_16B_get_slid(pkt->hdr);
464                 is_mcast = hfi1_is_16B_mcast(dlid);
465                 opcode = ib_bth_get_opcode(ohdr);
466                 hdr_type = HFI1_PKT_TYPE_16B;
467                 fecn = hfi1_16B_get_fecn(pkt->hdr);
468                 becn = hfi1_16B_get_becn(pkt->hdr);
469         } else {
470                 pkey = ib_bth_get_pkey(ohdr);
471                 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
472                 dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) :
473                         ppd->lid;
474                 slid = ib_get_slid(pkt->hdr);
475                 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
476                            (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
477                 opcode = ib_bth_get_opcode(ohdr);
478                 hdr_type = HFI1_PKT_TYPE_9B;
479                 fecn = ib_bth_get_fecn(ohdr);
480                 becn = ib_bth_get_becn(ohdr);
481         }
482
483         switch (qp->ibqp.qp_type) {
484         case IB_QPT_UD:
485                 rlid = slid;
486                 rqpn = ib_get_sqpn(pkt->ohdr);
487                 svc_type = IB_CC_SVCTYPE_UD;
488                 break;
489         case IB_QPT_SMI:
490         case IB_QPT_GSI:
491                 rlid = slid;
492                 rqpn = ib_get_sqpn(pkt->ohdr);
493                 svc_type = IB_CC_SVCTYPE_UD;
494                 break;
495         case IB_QPT_UC:
496                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
497                 rqpn = qp->remote_qpn;
498                 svc_type = IB_CC_SVCTYPE_UC;
499                 break;
500         case IB_QPT_RC:
501                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
502                 rqpn = qp->remote_qpn;
503                 svc_type = IB_CC_SVCTYPE_RC;
504                 break;
505         default:
506                 return false;
507         }
508
509         ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) ||
510                 (opcode == IB_OPCODE_RC_ACKNOWLEDGE);
511         /*
512          * ACKNOWLEDGE packets do not get a CNP but this will be
513          * guarded by ignore_fecn above.
514          */
515         do_cnp = prescan ||
516                 (opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST &&
517                  opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE) ||
518                 opcode == TID_OP(READ_RESP) ||
519                 opcode == TID_OP(ACK);
520
521         /* Call appropriate CNP handler */
522         if (!ignore_fecn && do_cnp && fecn)
523                 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
524                                               dlid, rlid, sc, grh);
525
526         if (becn) {
527                 u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
528                 u8 sl = ibp->sc_to_sl[sc];
529
530                 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
531         }
532         return !ignore_fecn && fecn;
533 }
534
535 struct ps_mdata {
536         struct hfi1_ctxtdata *rcd;
537         u32 rsize;
538         u32 maxcnt;
539         u32 ps_head;
540         u32 ps_tail;
541         u32 ps_seq;
542 };
543
544 static inline void init_ps_mdata(struct ps_mdata *mdata,
545                                  struct hfi1_packet *packet)
546 {
547         struct hfi1_ctxtdata *rcd = packet->rcd;
548
549         mdata->rcd = rcd;
550         mdata->rsize = packet->rsize;
551         mdata->maxcnt = packet->maxcnt;
552         mdata->ps_head = packet->rhqoff;
553
554         if (get_dma_rtail_setting(rcd)) {
555                 mdata->ps_tail = get_rcvhdrtail(rcd);
556                 if (rcd->ctxt == HFI1_CTRL_CTXT)
557                         mdata->ps_seq = hfi1_seq_cnt(rcd);
558                 else
559                         mdata->ps_seq = 0; /* not used with DMA_RTAIL */
560         } else {
561                 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
562                 mdata->ps_seq = hfi1_seq_cnt(rcd);
563         }
564 }
565
566 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
567                           struct hfi1_ctxtdata *rcd)
568 {
569         if (get_dma_rtail_setting(rcd))
570                 return mdata->ps_head == mdata->ps_tail;
571         return mdata->ps_seq != rhf_rcv_seq(rhf);
572 }
573
574 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
575                           struct hfi1_ctxtdata *rcd)
576 {
577         /*
578          * Control context can potentially receive an invalid rhf.
579          * Drop such packets.
580          */
581         if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
582                 return mdata->ps_seq != rhf_rcv_seq(rhf);
583
584         return 0;
585 }
586
587 static inline void update_ps_mdata(struct ps_mdata *mdata,
588                                    struct hfi1_ctxtdata *rcd)
589 {
590         mdata->ps_head += mdata->rsize;
591         if (mdata->ps_head >= mdata->maxcnt)
592                 mdata->ps_head = 0;
593
594         /* Control context must do seq counting */
595         if (!get_dma_rtail_setting(rcd) ||
596             rcd->ctxt == HFI1_CTRL_CTXT)
597                 mdata->ps_seq = hfi1_seq_incr_wrap(mdata->ps_seq);
598 }
599
600 /*
601  * prescan_rxq - search through the receive queue looking for packets
602  * containing Excplicit Congestion Notifications (FECNs, or BECNs).
603  * When an ECN is found, process the Congestion Notification, and toggle
604  * it off.
605  * This is declared as a macro to allow quick checking of the port to avoid
606  * the overhead of a function call if not enabled.
607  */
608 #define prescan_rxq(rcd, packet) \
609         do { \
610                 if (rcd->ppd->cc_prescan) \
611                         __prescan_rxq(packet); \
612         } while (0)
613 static void __prescan_rxq(struct hfi1_packet *packet)
614 {
615         struct hfi1_ctxtdata *rcd = packet->rcd;
616         struct ps_mdata mdata;
617
618         init_ps_mdata(&mdata, packet);
619
620         while (1) {
621                 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
622                 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
623                                          packet->rcd->rhf_offset;
624                 struct rvt_qp *qp;
625                 struct ib_header *hdr;
626                 struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
627                 u64 rhf = rhf_to_cpu(rhf_addr);
628                 u32 etype = rhf_rcv_type(rhf), qpn, bth1;
629                 u8 lnh;
630
631                 if (ps_done(&mdata, rhf, rcd))
632                         break;
633
634                 if (ps_skip(&mdata, rhf, rcd))
635                         goto next;
636
637                 if (etype != RHF_RCV_TYPE_IB)
638                         goto next;
639
640                 packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
641                 hdr = packet->hdr;
642                 lnh = ib_get_lnh(hdr);
643
644                 if (lnh == HFI1_LRH_BTH) {
645                         packet->ohdr = &hdr->u.oth;
646                         packet->grh = NULL;
647                 } else if (lnh == HFI1_LRH_GRH) {
648                         packet->ohdr = &hdr->u.l.oth;
649                         packet->grh = &hdr->u.l.grh;
650                 } else {
651                         goto next; /* just in case */
652                 }
653
654                 if (!hfi1_may_ecn(packet))
655                         goto next;
656
657                 bth1 = be32_to_cpu(packet->ohdr->bth[1]);
658                 qpn = bth1 & RVT_QPN_MASK;
659                 rcu_read_lock();
660                 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
661
662                 if (!qp) {
663                         rcu_read_unlock();
664                         goto next;
665                 }
666
667                 hfi1_process_ecn_slowpath(qp, packet, true);
668                 rcu_read_unlock();
669
670                 /* turn off BECN, FECN */
671                 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
672                 packet->ohdr->bth[1] = cpu_to_be32(bth1);
673 next:
674                 update_ps_mdata(&mdata, rcd);
675         }
676 }
677
678 static void process_rcv_qp_work(struct hfi1_packet *packet)
679 {
680         struct rvt_qp *qp, *nqp;
681         struct hfi1_ctxtdata *rcd = packet->rcd;
682
683         /*
684          * Iterate over all QPs waiting to respond.
685          * The list won't change since the IRQ is only run on one CPU.
686          */
687         list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
688                 list_del_init(&qp->rspwait);
689                 if (qp->r_flags & RVT_R_RSP_NAK) {
690                         qp->r_flags &= ~RVT_R_RSP_NAK;
691                         packet->qp = qp;
692                         hfi1_send_rc_ack(packet, 0);
693                 }
694                 if (qp->r_flags & RVT_R_RSP_SEND) {
695                         unsigned long flags;
696
697                         qp->r_flags &= ~RVT_R_RSP_SEND;
698                         spin_lock_irqsave(&qp->s_lock, flags);
699                         if (ib_rvt_state_ops[qp->state] &
700                                         RVT_PROCESS_OR_FLUSH_SEND)
701                                 hfi1_schedule_send(qp);
702                         spin_unlock_irqrestore(&qp->s_lock, flags);
703                 }
704                 rvt_put_qp(qp);
705         }
706 }
707
708 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
709 {
710         if (thread) {
711                 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
712                         /* allow defered processing */
713                         process_rcv_qp_work(packet);
714                 cond_resched();
715                 return RCV_PKT_OK;
716         } else {
717                 this_cpu_inc(*packet->rcd->dd->rcv_limit);
718                 return RCV_PKT_LIMIT;
719         }
720 }
721
722 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
723 {
724         int ret = RCV_PKT_OK;
725
726         if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
727                 ret = max_packet_exceeded(packet, thread);
728         return ret;
729 }
730
731 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
732 {
733         int ret;
734
735         packet->rcd->dd->ctx0_seq_drop++;
736         /* Set up for the next packet */
737         packet->rhqoff += packet->rsize;
738         if (packet->rhqoff >= packet->maxcnt)
739                 packet->rhqoff = 0;
740
741         packet->numpkt++;
742         ret = check_max_packet(packet, thread);
743
744         packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
745                                      packet->rcd->rhf_offset;
746         packet->rhf = rhf_to_cpu(packet->rhf_addr);
747
748         return ret;
749 }
750
751 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
752 {
753         int ret;
754
755         packet->etype = rhf_rcv_type(packet->rhf);
756
757         /* total length */
758         packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
759         /* retrieve eager buffer details */
760         packet->ebuf = NULL;
761         if (rhf_use_egr_bfr(packet->rhf)) {
762                 packet->etail = rhf_egr_index(packet->rhf);
763                 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
764                                  &packet->updegr);
765                 /*
766                  * Prefetch the contents of the eager buffer.  It is
767                  * OK to send a negative length to prefetch_range().
768                  * The +2 is the size of the RHF.
769                  */
770                 prefetch_range(packet->ebuf,
771                                packet->tlen - ((get_hdrqentsize(packet->rcd) -
772                                                (rhf_hdrq_offset(packet->rhf)
773                                                 + 2)) * 4));
774         }
775
776         /*
777          * Call a type specific handler for the packet. We
778          * should be able to trust that etype won't be beyond
779          * the range of valid indexes. If so something is really
780          * wrong and we can probably just let things come
781          * crashing down. There is no need to eat another
782          * comparison in this performance critical code.
783          */
784         packet->rcd->rhf_rcv_function_map[packet->etype](packet);
785         packet->numpkt++;
786
787         /* Set up for the next packet */
788         packet->rhqoff += packet->rsize;
789         if (packet->rhqoff >= packet->maxcnt)
790                 packet->rhqoff = 0;
791
792         ret = check_max_packet(packet, thread);
793
794         packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
795                                       packet->rcd->rhf_offset;
796         packet->rhf = rhf_to_cpu(packet->rhf_addr);
797
798         return ret;
799 }
800
801 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
802 {
803         /*
804          * Update head regs etc., every 16 packets, if not last pkt,
805          * to help prevent rcvhdrq overflows, when many packets
806          * are processed and queue is nearly full.
807          * Don't request an interrupt for intermediate updates.
808          */
809         if (!last && !(packet->numpkt & 0xf)) {
810                 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
811                                packet->etail, 0, 0);
812                 packet->updegr = 0;
813         }
814         packet->grh = NULL;
815 }
816
817 static inline void finish_packet(struct hfi1_packet *packet)
818 {
819         /*
820          * Nothing we need to free for the packet.
821          *
822          * The only thing we need to do is a final update and call for an
823          * interrupt
824          */
825         update_usrhead(packet->rcd, hfi1_rcd_head(packet->rcd), packet->updegr,
826                        packet->etail, rcv_intr_dynamic, packet->numpkt);
827 }
828
829 /*
830  * Handle receive interrupts when using the no dma rtail option.
831  */
832 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
833 {
834         int last = RCV_PKT_OK;
835         struct hfi1_packet packet;
836
837         init_packet(rcd, &packet);
838         if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
839                 last = RCV_PKT_DONE;
840                 goto bail;
841         }
842
843         prescan_rxq(rcd, &packet);
844
845         while (last == RCV_PKT_OK) {
846                 last = process_rcv_packet(&packet, thread);
847                 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
848                         last = RCV_PKT_DONE;
849                 process_rcv_update(last, &packet);
850         }
851         process_rcv_qp_work(&packet);
852         hfi1_set_rcd_head(rcd, packet.rhqoff);
853 bail:
854         finish_packet(&packet);
855         return last;
856 }
857
858 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
859 {
860         u32 hdrqtail;
861         int last = RCV_PKT_OK;
862         struct hfi1_packet packet;
863
864         init_packet(rcd, &packet);
865         hdrqtail = get_rcvhdrtail(rcd);
866         if (packet.rhqoff == hdrqtail) {
867                 last = RCV_PKT_DONE;
868                 goto bail;
869         }
870         smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
871
872         prescan_rxq(rcd, &packet);
873
874         while (last == RCV_PKT_OK) {
875                 last = process_rcv_packet(&packet, thread);
876                 if (packet.rhqoff == hdrqtail)
877                         last = RCV_PKT_DONE;
878                 process_rcv_update(last, &packet);
879         }
880         process_rcv_qp_work(&packet);
881         hfi1_set_rcd_head(rcd, packet.rhqoff);
882 bail:
883         finish_packet(&packet);
884         return last;
885 }
886
887 static void set_all_fastpath(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
888 {
889         u16 i;
890
891         /*
892          * For dynamically allocated kernel contexts (like vnic) switch
893          * interrupt handler only for that context. Otherwise, switch
894          * interrupt handler for all statically allocated kernel contexts.
895          */
896         if (rcd->ctxt >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic) {
897                 hfi1_rcd_get(rcd);
898                 hfi1_set_fast(rcd);
899                 hfi1_rcd_put(rcd);
900                 return;
901         }
902
903         for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
904                 rcd = hfi1_rcd_get_by_index(dd, i);
905                 if (rcd && (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic))
906                         hfi1_set_fast(rcd);
907                 hfi1_rcd_put(rcd);
908         }
909 }
910
911 void set_all_slowpath(struct hfi1_devdata *dd)
912 {
913         struct hfi1_ctxtdata *rcd;
914         u16 i;
915
916         /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
917         for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
918                 rcd = hfi1_rcd_get_by_index(dd, i);
919                 if (!rcd)
920                         continue;
921                 if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
922                         rcd->do_interrupt = rcd->slow_handler;
923
924                 hfi1_rcd_put(rcd);
925         }
926 }
927
928 static bool __set_armed_to_active(struct hfi1_packet *packet)
929 {
930         u8 etype = rhf_rcv_type(packet->rhf);
931         u8 sc = SC15_PACKET;
932
933         if (etype == RHF_RCV_TYPE_IB) {
934                 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
935                                                            packet->rhf_addr);
936                 sc = hfi1_9B_get_sc5(hdr, packet->rhf);
937         } else if (etype == RHF_RCV_TYPE_BYPASS) {
938                 struct hfi1_16b_header *hdr = hfi1_get_16B_header(
939                                                 packet->rcd,
940                                                 packet->rhf_addr);
941                 sc = hfi1_16B_get_sc(hdr);
942         }
943         if (sc != SC15_PACKET) {
944                 int hwstate = driver_lstate(packet->rcd->ppd);
945                 struct work_struct *lsaw =
946                                 &packet->rcd->ppd->linkstate_active_work;
947
948                 if (hwstate != IB_PORT_ACTIVE) {
949                         dd_dev_info(packet->rcd->dd,
950                                     "Unexpected link state %s\n",
951                                     opa_lstate_name(hwstate));
952                         return false;
953                 }
954
955                 queue_work(packet->rcd->ppd->link_wq, lsaw);
956                 return true;
957         }
958         return false;
959 }
960
961 /**
962  * armed to active - the fast path for armed to active
963  * @packet: the packet structure
964  *
965  * Return true if packet processing needs to bail.
966  */
967 static bool set_armed_to_active(struct hfi1_packet *packet)
968 {
969         if (likely(packet->rcd->ppd->host_link_state != HLS_UP_ARMED))
970                 return false;
971         return __set_armed_to_active(packet);
972 }
973
974 /*
975  * handle_receive_interrupt - receive a packet
976  * @rcd: the context
977  *
978  * Called from interrupt handler for errors or receive interrupt.
979  * This is the slow path interrupt handler.
980  */
981 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
982 {
983         struct hfi1_devdata *dd = rcd->dd;
984         u32 hdrqtail;
985         int needset, last = RCV_PKT_OK;
986         struct hfi1_packet packet;
987         int skip_pkt = 0;
988
989         /* Control context will always use the slow path interrupt handler */
990         needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
991
992         init_packet(rcd, &packet);
993
994         if (!get_dma_rtail_setting(rcd)) {
995                 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
996                         last = RCV_PKT_DONE;
997                         goto bail;
998                 }
999                 hdrqtail = 0;
1000         } else {
1001                 hdrqtail = get_rcvhdrtail(rcd);
1002                 if (packet.rhqoff == hdrqtail) {
1003                         last = RCV_PKT_DONE;
1004                         goto bail;
1005                 }
1006                 smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
1007
1008                 /*
1009                  * Control context can potentially receive an invalid
1010                  * rhf. Drop such packets.
1011                  */
1012                 if (rcd->ctxt == HFI1_CTRL_CTXT)
1013                         if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1014                                 skip_pkt = 1;
1015         }
1016
1017         prescan_rxq(rcd, &packet);
1018
1019         while (last == RCV_PKT_OK) {
1020                 if (hfi1_need_drop(dd)) {
1021                         /* On to the next packet */
1022                         packet.rhqoff += packet.rsize;
1023                         packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1024                                           packet.rhqoff +
1025                                           rcd->rhf_offset;
1026                         packet.rhf = rhf_to_cpu(packet.rhf_addr);
1027
1028                 } else if (skip_pkt) {
1029                         last = skip_rcv_packet(&packet, thread);
1030                         skip_pkt = 0;
1031                 } else {
1032                         if (set_armed_to_active(&packet))
1033                                 goto bail;
1034                         last = process_rcv_packet(&packet, thread);
1035                 }
1036
1037                 if (!get_dma_rtail_setting(rcd)) {
1038                         if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1039                                 last = RCV_PKT_DONE;
1040                 } else {
1041                         if (packet.rhqoff == hdrqtail)
1042                                 last = RCV_PKT_DONE;
1043                         /*
1044                          * Control context can potentially receive an invalid
1045                          * rhf. Drop such packets.
1046                          */
1047                         if (rcd->ctxt == HFI1_CTRL_CTXT) {
1048                                 bool lseq;
1049
1050                                 lseq = hfi1_seq_incr(rcd,
1051                                                      rhf_rcv_seq(packet.rhf));
1052                                 if (!last && lseq)
1053                                         skip_pkt = 1;
1054                         }
1055                 }
1056
1057                 if (needset) {
1058                         needset = false;
1059                         set_all_fastpath(dd, rcd);
1060                 }
1061                 process_rcv_update(last, &packet);
1062         }
1063
1064         process_rcv_qp_work(&packet);
1065         hfi1_set_rcd_head(rcd, packet.rhqoff);
1066
1067 bail:
1068         /*
1069          * Always write head at end, and setup rcv interrupt, even
1070          * if no packets were processed.
1071          */
1072         finish_packet(&packet);
1073         return last;
1074 }
1075
1076 /*
1077  * We may discover in the interrupt that the hardware link state has
1078  * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1079  * and we need to update the driver's notion of the link state.  We cannot
1080  * run set_link_state from interrupt context, so we queue this function on
1081  * a workqueue.
1082  *
1083  * We delay the regular interrupt processing until after the state changes
1084  * so that the link will be in the correct state by the time any application
1085  * we wake up attempts to send a reply to any message it received.
1086  * (Subsequent receive interrupts may possibly force the wakeup before we
1087  * update the link state.)
1088  *
1089  * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1090  * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1091  * so we're safe from use-after-free of the rcd.
1092  */
1093 void receive_interrupt_work(struct work_struct *work)
1094 {
1095         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1096                                                   linkstate_active_work);
1097         struct hfi1_devdata *dd = ppd->dd;
1098         struct hfi1_ctxtdata *rcd;
1099         u16 i;
1100
1101         /* Received non-SC15 packet implies neighbor_normal */
1102         ppd->neighbor_normal = 1;
1103         set_link_state(ppd, HLS_UP_ACTIVE);
1104
1105         /*
1106          * Interrupt all statically allocated kernel contexts that could
1107          * have had an interrupt during auto activation.
1108          */
1109         for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1110                 rcd = hfi1_rcd_get_by_index(dd, i);
1111                 if (rcd)
1112                         force_recv_intr(rcd);
1113                 hfi1_rcd_put(rcd);
1114         }
1115 }
1116
1117 /*
1118  * Convert a given MTU size to the on-wire MAD packet enumeration.
1119  * Return -1 if the size is invalid.
1120  */
1121 int mtu_to_enum(u32 mtu, int default_if_bad)
1122 {
1123         switch (mtu) {
1124         case     0: return OPA_MTU_0;
1125         case   256: return OPA_MTU_256;
1126         case   512: return OPA_MTU_512;
1127         case  1024: return OPA_MTU_1024;
1128         case  2048: return OPA_MTU_2048;
1129         case  4096: return OPA_MTU_4096;
1130         case  8192: return OPA_MTU_8192;
1131         case 10240: return OPA_MTU_10240;
1132         }
1133         return default_if_bad;
1134 }
1135
1136 u16 enum_to_mtu(int mtu)
1137 {
1138         switch (mtu) {
1139         case OPA_MTU_0:     return 0;
1140         case OPA_MTU_256:   return 256;
1141         case OPA_MTU_512:   return 512;
1142         case OPA_MTU_1024:  return 1024;
1143         case OPA_MTU_2048:  return 2048;
1144         case OPA_MTU_4096:  return 4096;
1145         case OPA_MTU_8192:  return 8192;
1146         case OPA_MTU_10240: return 10240;
1147         default: return 0xffff;
1148         }
1149 }
1150
1151 /*
1152  * set_mtu - set the MTU
1153  * @ppd: the per port data
1154  *
1155  * We can handle "any" incoming size, the issue here is whether we
1156  * need to restrict our outgoing size.  We do not deal with what happens
1157  * to programs that are already running when the size changes.
1158  */
1159 int set_mtu(struct hfi1_pportdata *ppd)
1160 {
1161         struct hfi1_devdata *dd = ppd->dd;
1162         int i, drain, ret = 0, is_up = 0;
1163
1164         ppd->ibmtu = 0;
1165         for (i = 0; i < ppd->vls_supported; i++)
1166                 if (ppd->ibmtu < dd->vld[i].mtu)
1167                         ppd->ibmtu = dd->vld[i].mtu;
1168         ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1169
1170         mutex_lock(&ppd->hls_lock);
1171         if (ppd->host_link_state == HLS_UP_INIT ||
1172             ppd->host_link_state == HLS_UP_ARMED ||
1173             ppd->host_link_state == HLS_UP_ACTIVE)
1174                 is_up = 1;
1175
1176         drain = !is_ax(dd) && is_up;
1177
1178         if (drain)
1179                 /*
1180                  * MTU is specified per-VL. To ensure that no packet gets
1181                  * stuck (due, e.g., to the MTU for the packet's VL being
1182                  * reduced), empty the per-VL FIFOs before adjusting MTU.
1183                  */
1184                 ret = stop_drain_data_vls(dd);
1185
1186         if (ret) {
1187                 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1188                            __func__);
1189                 goto err;
1190         }
1191
1192         hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1193
1194         if (drain)
1195                 open_fill_data_vls(dd); /* reopen all VLs */
1196
1197 err:
1198         mutex_unlock(&ppd->hls_lock);
1199
1200         return ret;
1201 }
1202
1203 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1204 {
1205         struct hfi1_devdata *dd = ppd->dd;
1206
1207         ppd->lid = lid;
1208         ppd->lmc = lmc;
1209         hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1210
1211         dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1212
1213         return 0;
1214 }
1215
1216 void shutdown_led_override(struct hfi1_pportdata *ppd)
1217 {
1218         struct hfi1_devdata *dd = ppd->dd;
1219
1220         /*
1221          * This pairs with the memory barrier in hfi1_start_led_override to
1222          * ensure that we read the correct state of LED beaconing represented
1223          * by led_override_timer_active
1224          */
1225         smp_rmb();
1226         if (atomic_read(&ppd->led_override_timer_active)) {
1227                 del_timer_sync(&ppd->led_override_timer);
1228                 atomic_set(&ppd->led_override_timer_active, 0);
1229                 /* Ensure the atomic_set is visible to all CPUs */
1230                 smp_wmb();
1231         }
1232
1233         /* Hand control of the LED to the DC for normal operation */
1234         write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1235 }
1236
1237 static void run_led_override(struct timer_list *t)
1238 {
1239         struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1240         struct hfi1_devdata *dd = ppd->dd;
1241         unsigned long timeout;
1242         int phase_idx;
1243
1244         if (!(dd->flags & HFI1_INITTED))
1245                 return;
1246
1247         phase_idx = ppd->led_override_phase & 1;
1248
1249         setextled(dd, phase_idx);
1250
1251         timeout = ppd->led_override_vals[phase_idx];
1252
1253         /* Set up for next phase */
1254         ppd->led_override_phase = !ppd->led_override_phase;
1255
1256         mod_timer(&ppd->led_override_timer, jiffies + timeout);
1257 }
1258
1259 /*
1260  * To have the LED blink in a particular pattern, provide timeon and timeoff
1261  * in milliseconds.
1262  * To turn off custom blinking and return to normal operation, use
1263  * shutdown_led_override()
1264  */
1265 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1266                              unsigned int timeoff)
1267 {
1268         if (!(ppd->dd->flags & HFI1_INITTED))
1269                 return;
1270
1271         /* Convert to jiffies for direct use in timer */
1272         ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1273         ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1274
1275         /* Arbitrarily start from LED on phase */
1276         ppd->led_override_phase = 1;
1277
1278         /*
1279          * If the timer has not already been started, do so. Use a "quick"
1280          * timeout so the handler will be called soon to look at our request.
1281          */
1282         if (!timer_pending(&ppd->led_override_timer)) {
1283                 timer_setup(&ppd->led_override_timer, run_led_override, 0);
1284                 ppd->led_override_timer.expires = jiffies + 1;
1285                 add_timer(&ppd->led_override_timer);
1286                 atomic_set(&ppd->led_override_timer_active, 1);
1287                 /* Ensure the atomic_set is visible to all CPUs */
1288                 smp_wmb();
1289         }
1290 }
1291
1292 /**
1293  * hfi1_reset_device - reset the chip if possible
1294  * @unit: the device to reset
1295  *
1296  * Whether or not reset is successful, we attempt to re-initialize the chip
1297  * (that is, much like a driver unload/reload).  We clear the INITTED flag
1298  * so that the various entry points will fail until we reinitialize.  For
1299  * now, we only allow this if no user contexts are open that use chip resources
1300  */
1301 int hfi1_reset_device(int unit)
1302 {
1303         int ret;
1304         struct hfi1_devdata *dd = hfi1_lookup(unit);
1305         struct hfi1_pportdata *ppd;
1306         int pidx;
1307
1308         if (!dd) {
1309                 ret = -ENODEV;
1310                 goto bail;
1311         }
1312
1313         dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1314
1315         if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1316                 dd_dev_info(dd,
1317                             "Invalid unit number %u or not initialized or not present\n",
1318                             unit);
1319                 ret = -ENXIO;
1320                 goto bail;
1321         }
1322
1323         /* If there are any user/vnic contexts, we cannot reset */
1324         mutex_lock(&hfi1_mutex);
1325         if (dd->rcd)
1326                 if (hfi1_stats.sps_ctxts) {
1327                         mutex_unlock(&hfi1_mutex);
1328                         ret = -EBUSY;
1329                         goto bail;
1330                 }
1331         mutex_unlock(&hfi1_mutex);
1332
1333         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1334                 ppd = dd->pport + pidx;
1335
1336                 shutdown_led_override(ppd);
1337         }
1338         if (dd->flags & HFI1_HAS_SEND_DMA)
1339                 sdma_exit(dd);
1340
1341         hfi1_reset_cpu_counters(dd);
1342
1343         ret = hfi1_init(dd, 1);
1344
1345         if (ret)
1346                 dd_dev_err(dd,
1347                            "Reinitialize unit %u after reset failed with %d\n",
1348                            unit, ret);
1349         else
1350                 dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1351                             unit);
1352
1353 bail:
1354         return ret;
1355 }
1356
1357 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1358 {
1359         packet->hdr = (struct hfi1_ib_message_header *)
1360                         hfi1_get_msgheader(packet->rcd,
1361                                            packet->rhf_addr);
1362         packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1363 }
1364
1365 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1366 {
1367         struct hfi1_pportdata *ppd = packet->rcd->ppd;
1368
1369         /* slid and dlid cannot be 0 */
1370         if ((!packet->slid) || (!packet->dlid))
1371                 return -EINVAL;
1372
1373         /* Compare port lid with incoming packet dlid */
1374         if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1375             (packet->dlid !=
1376                 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1377                 if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid)
1378                         return -EINVAL;
1379         }
1380
1381         /* No multicast packets with SC15 */
1382         if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1383                 return -EINVAL;
1384
1385         /* Packets with permissive DLID always on SC15 */
1386         if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1387                                          16B)) &&
1388             (packet->sc != 0xF))
1389                 return -EINVAL;
1390
1391         return 0;
1392 }
1393
1394 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1395 {
1396         struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1397         struct ib_header *hdr;
1398         u8 lnh;
1399
1400         hfi1_setup_ib_header(packet);
1401         hdr = packet->hdr;
1402
1403         lnh = ib_get_lnh(hdr);
1404         if (lnh == HFI1_LRH_BTH) {
1405                 packet->ohdr = &hdr->u.oth;
1406                 packet->grh = NULL;
1407         } else if (lnh == HFI1_LRH_GRH) {
1408                 u32 vtf;
1409
1410                 packet->ohdr = &hdr->u.l.oth;
1411                 packet->grh = &hdr->u.l.grh;
1412                 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1413                         goto drop;
1414                 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1415                 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1416                         goto drop;
1417         } else {
1418                 goto drop;
1419         }
1420
1421         /* Query commonly used fields from packet header */
1422         packet->payload = packet->ebuf;
1423         packet->opcode = ib_bth_get_opcode(packet->ohdr);
1424         packet->slid = ib_get_slid(hdr);
1425         packet->dlid = ib_get_dlid(hdr);
1426         if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1427                      (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1428                 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1429                                 be16_to_cpu(IB_MULTICAST_LID_BASE);
1430         packet->sl = ib_get_sl(hdr);
1431         packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1432         packet->pad = ib_bth_get_pad(packet->ohdr);
1433         packet->extra_byte = 0;
1434         packet->pkey = ib_bth_get_pkey(packet->ohdr);
1435         packet->migrated = ib_bth_is_migration(packet->ohdr);
1436
1437         return 0;
1438 drop:
1439         ibp->rvp.n_pkt_drops++;
1440         return -EINVAL;
1441 }
1442
1443 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1444 {
1445         /*
1446          * Bypass packets have a different header/payload split
1447          * compared to an IB packet.
1448          * Current split is set such that 16 bytes of the actual
1449          * header is in the header buffer and the remining is in
1450          * the eager buffer. We chose 16 since hfi1 driver only
1451          * supports 16B bypass packets and we will be able to
1452          * receive the entire LRH with such a split.
1453          */
1454
1455         struct hfi1_ctxtdata *rcd = packet->rcd;
1456         struct hfi1_pportdata *ppd = rcd->ppd;
1457         struct hfi1_ibport *ibp = &ppd->ibport_data;
1458         u8 l4;
1459
1460         packet->hdr = (struct hfi1_16b_header *)
1461                         hfi1_get_16B_header(packet->rcd,
1462                                             packet->rhf_addr);
1463         l4 = hfi1_16B_get_l4(packet->hdr);
1464         if (l4 == OPA_16B_L4_IB_LOCAL) {
1465                 packet->ohdr = packet->ebuf;
1466                 packet->grh = NULL;
1467                 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1468                 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1469                 /* hdr_len_by_opcode already has an IB LRH factored in */
1470                 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1471                         (LRH_16B_BYTES - LRH_9B_BYTES);
1472                 packet->migrated = opa_bth_is_migration(packet->ohdr);
1473         } else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1474                 u32 vtf;
1475                 u8 grh_len = sizeof(struct ib_grh);
1476
1477                 packet->ohdr = packet->ebuf + grh_len;
1478                 packet->grh = packet->ebuf;
1479                 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1480                 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1481                 /* hdr_len_by_opcode already has an IB LRH factored in */
1482                 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1483                         (LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1484                 packet->migrated = opa_bth_is_migration(packet->ohdr);
1485
1486                 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1487                         goto drop;
1488                 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1489                 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1490                         goto drop;
1491         } else if (l4 == OPA_16B_L4_FM) {
1492                 packet->mgmt = packet->ebuf;
1493                 packet->ohdr = NULL;
1494                 packet->grh = NULL;
1495                 packet->opcode = IB_OPCODE_UD_SEND_ONLY;
1496                 packet->pad = OPA_16B_L4_FM_PAD;
1497                 packet->hlen = OPA_16B_L4_FM_HLEN;
1498                 packet->migrated = false;
1499         } else {
1500                 goto drop;
1501         }
1502
1503         /* Query commonly used fields from packet header */
1504         packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1505         packet->slid = hfi1_16B_get_slid(packet->hdr);
1506         packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1507         if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1508                 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1509                                 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1510                                             16B);
1511         packet->sc = hfi1_16B_get_sc(packet->hdr);
1512         packet->sl = ibp->sc_to_sl[packet->sc];
1513         packet->extra_byte = SIZE_OF_LT;
1514         packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1515
1516         if (hfi1_bypass_ingress_pkt_check(packet))
1517                 goto drop;
1518
1519         return 0;
1520 drop:
1521         hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1522         ibp->rvp.n_pkt_drops++;
1523         return -EINVAL;
1524 }
1525
1526 static void show_eflags_errs(struct hfi1_packet *packet)
1527 {
1528         struct hfi1_ctxtdata *rcd = packet->rcd;
1529         u32 rte = rhf_rcv_type_err(packet->rhf);
1530
1531         dd_dev_err(rcd->dd,
1532                    "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n",
1533                    rcd->ctxt, packet->rhf,
1534                    packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1535                    packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1536                    packet->rhf & RHF_DC_ERR ? "dc " : "",
1537                    packet->rhf & RHF_TID_ERR ? "tid " : "",
1538                    packet->rhf & RHF_LEN_ERR ? "len " : "",
1539                    packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1540                    packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1541                    rte);
1542 }
1543
1544 void handle_eflags(struct hfi1_packet *packet)
1545 {
1546         struct hfi1_ctxtdata *rcd = packet->rcd;
1547
1548         rcv_hdrerr(rcd, rcd->ppd, packet);
1549         if (rhf_err_flags(packet->rhf))
1550                 show_eflags_errs(packet);
1551 }
1552
1553 /*
1554  * The following functions are called by the interrupt handler. They are type
1555  * specific handlers for each packet type.
1556  */
1557 static void process_receive_ib(struct hfi1_packet *packet)
1558 {
1559         if (hfi1_setup_9B_packet(packet))
1560                 return;
1561
1562         if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1563                 return;
1564
1565         trace_hfi1_rcvhdr(packet);
1566
1567         if (unlikely(rhf_err_flags(packet->rhf))) {
1568                 handle_eflags(packet);
1569                 return;
1570         }
1571
1572         hfi1_ib_rcv(packet);
1573 }
1574
1575 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet)
1576 {
1577         /* Packet received in VNIC context via RSM */
1578         if (packet->rcd->is_vnic)
1579                 return true;
1580
1581         if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) &&
1582             (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR))
1583                 return true;
1584
1585         return false;
1586 }
1587
1588 static void process_receive_bypass(struct hfi1_packet *packet)
1589 {
1590         struct hfi1_devdata *dd = packet->rcd->dd;
1591
1592         if (hfi1_is_vnic_packet(packet)) {
1593                 hfi1_vnic_bypass_rcv(packet);
1594                 return;
1595         }
1596
1597         if (hfi1_setup_bypass_packet(packet))
1598                 return;
1599
1600         trace_hfi1_rcvhdr(packet);
1601
1602         if (unlikely(rhf_err_flags(packet->rhf))) {
1603                 handle_eflags(packet);
1604                 return;
1605         }
1606
1607         if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1608                 hfi1_16B_rcv(packet);
1609         } else {
1610                 dd_dev_err(dd,
1611                            "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1612                 incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1613                 if (!(dd->err_info_rcvport.status_and_code &
1614                       OPA_EI_STATUS_SMASK)) {
1615                         u64 *flits = packet->ebuf;
1616
1617                         if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1618                                 dd->err_info_rcvport.packet_flit1 = flits[0];
1619                                 dd->err_info_rcvport.packet_flit2 =
1620                                         packet->tlen > sizeof(flits[0]) ?
1621                                         flits[1] : 0;
1622                         }
1623                         dd->err_info_rcvport.status_and_code |=
1624                                 (OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1625                 }
1626         }
1627 }
1628
1629 static void process_receive_error(struct hfi1_packet *packet)
1630 {
1631         /* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1632         if (unlikely(
1633                  hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1634                  (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
1635                   packet->rhf & RHF_DC_ERR)))
1636                 return;
1637
1638         hfi1_setup_ib_header(packet);
1639         handle_eflags(packet);
1640
1641         if (unlikely(rhf_err_flags(packet->rhf)))
1642                 dd_dev_err(packet->rcd->dd,
1643                            "Unhandled error packet received. Dropping.\n");
1644 }
1645
1646 static void kdeth_process_expected(struct hfi1_packet *packet)
1647 {
1648         hfi1_setup_9B_packet(packet);
1649         if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1650                 return;
1651
1652         if (unlikely(rhf_err_flags(packet->rhf))) {
1653                 struct hfi1_ctxtdata *rcd = packet->rcd;
1654
1655                 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1656                         return;
1657         }
1658
1659         hfi1_kdeth_expected_rcv(packet);
1660 }
1661
1662 static void kdeth_process_eager(struct hfi1_packet *packet)
1663 {
1664         hfi1_setup_9B_packet(packet);
1665         if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1666                 return;
1667
1668         trace_hfi1_rcvhdr(packet);
1669         if (unlikely(rhf_err_flags(packet->rhf))) {
1670                 struct hfi1_ctxtdata *rcd = packet->rcd;
1671
1672                 show_eflags_errs(packet);
1673                 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1674                         return;
1675         }
1676
1677         hfi1_kdeth_eager_rcv(packet);
1678 }
1679
1680 static void process_receive_invalid(struct hfi1_packet *packet)
1681 {
1682         dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1683                    rhf_rcv_type(packet->rhf));
1684 }
1685
1686 #define HFI1_RCVHDR_DUMP_MAX    5
1687
1688 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1689 {
1690         struct hfi1_packet packet;
1691         struct ps_mdata mdata;
1692         int i;
1693
1694         seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s ctrl 0x%08llx status 0x%08llx, head %llu tail %llu  sw head %u\n",
1695                    rcd->ctxt, get_hdrq_cnt(rcd), get_hdrqentsize(rcd),
1696                    get_dma_rtail_setting(rcd) ?
1697                    "dma_rtail" : "nodma_rtail",
1698                    read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_CTRL),
1699                    read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_STATUS),
1700                    read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1701                    RCV_HDR_HEAD_HEAD_MASK,
1702                    read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL),
1703                    rcd->head);
1704
1705         init_packet(rcd, &packet);
1706         init_ps_mdata(&mdata, &packet);
1707
1708         for (i = 0; i < HFI1_RCVHDR_DUMP_MAX; i++) {
1709                 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1710                                          rcd->rhf_offset;
1711                 struct ib_header *hdr;
1712                 u64 rhf = rhf_to_cpu(rhf_addr);
1713                 u32 etype = rhf_rcv_type(rhf), qpn;
1714                 u8 opcode;
1715                 u32 psn;
1716                 u8 lnh;
1717
1718                 if (ps_done(&mdata, rhf, rcd))
1719                         break;
1720
1721                 if (ps_skip(&mdata, rhf, rcd))
1722                         goto next;
1723
1724                 if (etype > RHF_RCV_TYPE_IB)
1725                         goto next;
1726
1727                 packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
1728                 hdr = packet.hdr;
1729
1730                 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1731
1732                 if (lnh == HFI1_LRH_BTH)
1733                         packet.ohdr = &hdr->u.oth;
1734                 else if (lnh == HFI1_LRH_GRH)
1735                         packet.ohdr = &hdr->u.l.oth;
1736                 else
1737                         goto next; /* just in case */
1738
1739                 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1740                 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1741                 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1742
1743                 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1744                            mdata.ps_head, opcode, qpn, psn);
1745 next:
1746                 update_ps_mdata(&mdata, rcd);
1747         }
1748 }
1749
1750 const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
1751         [RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
1752         [RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
1753         [RHF_RCV_TYPE_IB] = process_receive_ib,
1754         [RHF_RCV_TYPE_ERROR] = process_receive_error,
1755         [RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
1756         [RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1757         [RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1758         [RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1759 };