]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/infiniband/hw/hfi1/user_exp_rcv.c
Merge tag 'block-5.6-2020-02-22' of git://git.kernel.dk/linux-block
[linux.git] / drivers / infiniband / hw / hfi1 / user_exp_rcv.c
1 /*
2  * Copyright(c) 2015-2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <asm/page.h>
48 #include <linux/string.h>
49
50 #include "mmu_rb.h"
51 #include "user_exp_rcv.h"
52 #include "trace.h"
53
54 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
55                             struct exp_tid_set *set,
56                             struct hfi1_filedata *fd);
57 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages);
58 static int set_rcvarray_entry(struct hfi1_filedata *fd,
59                               struct tid_user_buf *tbuf,
60                               u32 rcventry, struct tid_group *grp,
61                               u16 pageidx, unsigned int npages);
62 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
63                                     struct tid_rb_node *tnode);
64 static bool tid_rb_invalidate(struct mmu_interval_notifier *mni,
65                               const struct mmu_notifier_range *range,
66                               unsigned long cur_seq);
67 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *,
68                             struct tid_group *grp,
69                             unsigned int start, u16 count,
70                             u32 *tidlist, unsigned int *tididx,
71                             unsigned int *pmapped);
72 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
73                               struct tid_group **grp);
74 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node);
75
76 static const struct mmu_interval_notifier_ops tid_mn_ops = {
77         .invalidate = tid_rb_invalidate,
78 };
79
80 /*
81  * Initialize context and file private data needed for Expected
82  * receive caching. This needs to be done after the context has
83  * been configured with the eager/expected RcvEntry counts.
84  */
85 int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd,
86                            struct hfi1_ctxtdata *uctxt)
87 {
88         int ret = 0;
89
90         fd->entry_to_rb = kcalloc(uctxt->expected_count,
91                                   sizeof(struct rb_node *),
92                                   GFP_KERNEL);
93         if (!fd->entry_to_rb)
94                 return -ENOMEM;
95
96         if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
97                 fd->invalid_tid_idx = 0;
98                 fd->invalid_tids = kcalloc(uctxt->expected_count,
99                                            sizeof(*fd->invalid_tids),
100                                            GFP_KERNEL);
101                 if (!fd->invalid_tids) {
102                         kfree(fd->entry_to_rb);
103                         fd->entry_to_rb = NULL;
104                         return -ENOMEM;
105                 }
106                 fd->use_mn = true;
107         }
108
109         /*
110          * PSM does not have a good way to separate, count, and
111          * effectively enforce a limit on RcvArray entries used by
112          * subctxts (when context sharing is used) when TID caching
113          * is enabled. To help with that, we calculate a per-process
114          * RcvArray entry share and enforce that.
115          * If TID caching is not in use, PSM deals with usage on its
116          * own. In that case, we allow any subctxt to take all of the
117          * entries.
118          *
119          * Make sure that we set the tid counts only after successful
120          * init.
121          */
122         spin_lock(&fd->tid_lock);
123         if (uctxt->subctxt_cnt && fd->use_mn) {
124                 u16 remainder;
125
126                 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
127                 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
128                 if (remainder && fd->subctxt < remainder)
129                         fd->tid_limit++;
130         } else {
131                 fd->tid_limit = uctxt->expected_count;
132         }
133         spin_unlock(&fd->tid_lock);
134
135         return ret;
136 }
137
138 void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
139 {
140         struct hfi1_ctxtdata *uctxt = fd->uctxt;
141
142         mutex_lock(&uctxt->exp_mutex);
143         if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
144                 unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
145         if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
146                 unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
147         mutex_unlock(&uctxt->exp_mutex);
148
149         kfree(fd->invalid_tids);
150         fd->invalid_tids = NULL;
151
152         kfree(fd->entry_to_rb);
153         fd->entry_to_rb = NULL;
154 }
155
156 /**
157  * Release pinned receive buffer pages.
158  *
159  * @mapped - true if the pages have been DMA mapped. false otherwise.
160  * @idx - Index of the first page to unpin.
161  * @npages - No of pages to unpin.
162  *
163  * If the pages have been DMA mapped (indicated by mapped parameter), their
164  * info will be passed via a struct tid_rb_node. If they haven't been mapped,
165  * their info will be passed via a struct tid_user_buf.
166  */
167 static void unpin_rcv_pages(struct hfi1_filedata *fd,
168                             struct tid_user_buf *tidbuf,
169                             struct tid_rb_node *node,
170                             unsigned int idx,
171                             unsigned int npages,
172                             bool mapped)
173 {
174         struct page **pages;
175         struct hfi1_devdata *dd = fd->uctxt->dd;
176
177         if (mapped) {
178                 pci_unmap_single(dd->pcidev, node->dma_addr,
179                                  node->npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
180                 pages = &node->pages[idx];
181         } else {
182                 pages = &tidbuf->pages[idx];
183         }
184         hfi1_release_user_pages(fd->mm, pages, npages, mapped);
185         fd->tid_n_pinned -= npages;
186 }
187
188 /**
189  * Pin receive buffer pages.
190  */
191 static int pin_rcv_pages(struct hfi1_filedata *fd, struct tid_user_buf *tidbuf)
192 {
193         int pinned;
194         unsigned int npages;
195         unsigned long vaddr = tidbuf->vaddr;
196         struct page **pages = NULL;
197         struct hfi1_devdata *dd = fd->uctxt->dd;
198
199         /* Get the number of pages the user buffer spans */
200         npages = num_user_pages(vaddr, tidbuf->length);
201         if (!npages)
202                 return -EINVAL;
203
204         if (npages > fd->uctxt->expected_count) {
205                 dd_dev_err(dd, "Expected buffer too big\n");
206                 return -EINVAL;
207         }
208
209         /* Verify that access is OK for the user buffer */
210         if (!access_ok((void __user *)vaddr,
211                        npages * PAGE_SIZE)) {
212                 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
213                            (void *)vaddr, npages);
214                 return -EFAULT;
215         }
216         /* Allocate the array of struct page pointers needed for pinning */
217         pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
218         if (!pages)
219                 return -ENOMEM;
220
221         /*
222          * Pin all the pages of the user buffer. If we can't pin all the
223          * pages, accept the amount pinned so far and program only that.
224          * User space knows how to deal with partially programmed buffers.
225          */
226         if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) {
227                 kfree(pages);
228                 return -ENOMEM;
229         }
230
231         pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages);
232         if (pinned <= 0) {
233                 kfree(pages);
234                 return pinned;
235         }
236         tidbuf->pages = pages;
237         tidbuf->npages = npages;
238         fd->tid_n_pinned += pinned;
239         return pinned;
240 }
241
242 /*
243  * RcvArray entry allocation for Expected Receives is done by the
244  * following algorithm:
245  *
246  * The context keeps 3 lists of groups of RcvArray entries:
247  *   1. List of empty groups - tid_group_list
248  *      This list is created during user context creation and
249  *      contains elements which describe sets (of 8) of empty
250  *      RcvArray entries.
251  *   2. List of partially used groups - tid_used_list
252  *      This list contains sets of RcvArray entries which are
253  *      not completely used up. Another mapping request could
254  *      use some of all of the remaining entries.
255  *   3. List of full groups - tid_full_list
256  *      This is the list where sets that are completely used
257  *      up go.
258  *
259  * An attempt to optimize the usage of RcvArray entries is
260  * made by finding all sets of physically contiguous pages in a
261  * user's buffer.
262  * These physically contiguous sets are further split into
263  * sizes supported by the receive engine of the HFI. The
264  * resulting sets of pages are stored in struct tid_pageset,
265  * which describes the sets as:
266  *    * .count - number of pages in this set
267  *    * .idx - starting index into struct page ** array
268  *                    of this set
269  *
270  * From this point on, the algorithm deals with the page sets
271  * described above. The number of pagesets is divided by the
272  * RcvArray group size to produce the number of full groups
273  * needed.
274  *
275  * Groups from the 3 lists are manipulated using the following
276  * rules:
277  *   1. For each set of 8 pagesets, a complete group from
278  *      tid_group_list is taken, programmed, and moved to
279  *      the tid_full_list list.
280  *   2. For all remaining pagesets:
281  *      2.1 If the tid_used_list is empty and the tid_group_list
282  *          is empty, stop processing pageset and return only
283  *          what has been programmed up to this point.
284  *      2.2 If the tid_used_list is empty and the tid_group_list
285  *          is not empty, move a group from tid_group_list to
286  *          tid_used_list.
287  *      2.3 For each group is tid_used_group, program as much as
288  *          can fit into the group. If the group becomes fully
289  *          used, move it to tid_full_list.
290  */
291 int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd,
292                             struct hfi1_tid_info *tinfo)
293 {
294         int ret = 0, need_group = 0, pinned;
295         struct hfi1_ctxtdata *uctxt = fd->uctxt;
296         struct hfi1_devdata *dd = uctxt->dd;
297         unsigned int ngroups, pageidx = 0, pageset_count,
298                 tididx = 0, mapped, mapped_pages = 0;
299         u32 *tidlist = NULL;
300         struct tid_user_buf *tidbuf;
301
302         if (!PAGE_ALIGNED(tinfo->vaddr))
303                 return -EINVAL;
304
305         tidbuf = kzalloc(sizeof(*tidbuf), GFP_KERNEL);
306         if (!tidbuf)
307                 return -ENOMEM;
308
309         tidbuf->vaddr = tinfo->vaddr;
310         tidbuf->length = tinfo->length;
311         tidbuf->psets = kcalloc(uctxt->expected_count, sizeof(*tidbuf->psets),
312                                 GFP_KERNEL);
313         if (!tidbuf->psets) {
314                 kfree(tidbuf);
315                 return -ENOMEM;
316         }
317
318         pinned = pin_rcv_pages(fd, tidbuf);
319         if (pinned <= 0) {
320                 kfree(tidbuf->psets);
321                 kfree(tidbuf);
322                 return pinned;
323         }
324
325         /* Find sets of physically contiguous pages */
326         tidbuf->n_psets = find_phys_blocks(tidbuf, pinned);
327
328         /*
329          * We don't need to access this under a lock since tid_used is per
330          * process and the same process cannot be in hfi1_user_exp_rcv_clear()
331          * and hfi1_user_exp_rcv_setup() at the same time.
332          */
333         spin_lock(&fd->tid_lock);
334         if (fd->tid_used + tidbuf->n_psets > fd->tid_limit)
335                 pageset_count = fd->tid_limit - fd->tid_used;
336         else
337                 pageset_count = tidbuf->n_psets;
338         spin_unlock(&fd->tid_lock);
339
340         if (!pageset_count)
341                 goto bail;
342
343         ngroups = pageset_count / dd->rcv_entries.group_size;
344         tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
345         if (!tidlist) {
346                 ret = -ENOMEM;
347                 goto nomem;
348         }
349
350         tididx = 0;
351
352         /*
353          * From this point on, we are going to be using shared (between master
354          * and subcontexts) context resources. We need to take the lock.
355          */
356         mutex_lock(&uctxt->exp_mutex);
357         /*
358          * The first step is to program the RcvArray entries which are complete
359          * groups.
360          */
361         while (ngroups && uctxt->tid_group_list.count) {
362                 struct tid_group *grp =
363                         tid_group_pop(&uctxt->tid_group_list);
364
365                 ret = program_rcvarray(fd, tidbuf, grp,
366                                        pageidx, dd->rcv_entries.group_size,
367                                        tidlist, &tididx, &mapped);
368                 /*
369                  * If there was a failure to program the RcvArray
370                  * entries for the entire group, reset the grp fields
371                  * and add the grp back to the free group list.
372                  */
373                 if (ret <= 0) {
374                         tid_group_add_tail(grp, &uctxt->tid_group_list);
375                         hfi1_cdbg(TID,
376                                   "Failed to program RcvArray group %d", ret);
377                         goto unlock;
378                 }
379
380                 tid_group_add_tail(grp, &uctxt->tid_full_list);
381                 ngroups--;
382                 pageidx += ret;
383                 mapped_pages += mapped;
384         }
385
386         while (pageidx < pageset_count) {
387                 struct tid_group *grp, *ptr;
388                 /*
389                  * If we don't have any partially used tid groups, check
390                  * if we have empty groups. If so, take one from there and
391                  * put in the partially used list.
392                  */
393                 if (!uctxt->tid_used_list.count || need_group) {
394                         if (!uctxt->tid_group_list.count)
395                                 goto unlock;
396
397                         grp = tid_group_pop(&uctxt->tid_group_list);
398                         tid_group_add_tail(grp, &uctxt->tid_used_list);
399                         need_group = 0;
400                 }
401                 /*
402                  * There is an optimization opportunity here - instead of
403                  * fitting as many page sets as we can, check for a group
404                  * later on in the list that could fit all of them.
405                  */
406                 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
407                                          list) {
408                         unsigned use = min_t(unsigned, pageset_count - pageidx,
409                                              grp->size - grp->used);
410
411                         ret = program_rcvarray(fd, tidbuf, grp,
412                                                pageidx, use, tidlist,
413                                                &tididx, &mapped);
414                         if (ret < 0) {
415                                 hfi1_cdbg(TID,
416                                           "Failed to program RcvArray entries %d",
417                                           ret);
418                                 goto unlock;
419                         } else if (ret > 0) {
420                                 if (grp->used == grp->size)
421                                         tid_group_move(grp,
422                                                        &uctxt->tid_used_list,
423                                                        &uctxt->tid_full_list);
424                                 pageidx += ret;
425                                 mapped_pages += mapped;
426                                 need_group = 0;
427                                 /* Check if we are done so we break out early */
428                                 if (pageidx >= pageset_count)
429                                         break;
430                         } else if (WARN_ON(ret == 0)) {
431                                 /*
432                                  * If ret is 0, we did not program any entries
433                                  * into this group, which can only happen if
434                                  * we've screwed up the accounting somewhere.
435                                  * Warn and try to continue.
436                                  */
437                                 need_group = 1;
438                         }
439                 }
440         }
441 unlock:
442         mutex_unlock(&uctxt->exp_mutex);
443 nomem:
444         hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
445                   mapped_pages, ret);
446         if (tididx) {
447                 spin_lock(&fd->tid_lock);
448                 fd->tid_used += tididx;
449                 spin_unlock(&fd->tid_lock);
450                 tinfo->tidcnt = tididx;
451                 tinfo->length = mapped_pages * PAGE_SIZE;
452
453                 if (copy_to_user(u64_to_user_ptr(tinfo->tidlist),
454                                  tidlist, sizeof(tidlist[0]) * tididx)) {
455                         /*
456                          * On failure to copy to the user level, we need to undo
457                          * everything done so far so we don't leak resources.
458                          */
459                         tinfo->tidlist = (unsigned long)&tidlist;
460                         hfi1_user_exp_rcv_clear(fd, tinfo);
461                         tinfo->tidlist = 0;
462                         ret = -EFAULT;
463                         goto bail;
464                 }
465         }
466
467         /*
468          * If not everything was mapped (due to insufficient RcvArray entries,
469          * for example), unpin all unmapped pages so we can pin them nex time.
470          */
471         if (mapped_pages != pinned)
472                 unpin_rcv_pages(fd, tidbuf, NULL, mapped_pages,
473                                 (pinned - mapped_pages), false);
474 bail:
475         kfree(tidbuf->psets);
476         kfree(tidlist);
477         kfree(tidbuf->pages);
478         kfree(tidbuf);
479         return ret > 0 ? 0 : ret;
480 }
481
482 int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd,
483                             struct hfi1_tid_info *tinfo)
484 {
485         int ret = 0;
486         struct hfi1_ctxtdata *uctxt = fd->uctxt;
487         u32 *tidinfo;
488         unsigned tididx;
489
490         if (unlikely(tinfo->tidcnt > fd->tid_used))
491                 return -EINVAL;
492
493         tidinfo = memdup_user(u64_to_user_ptr(tinfo->tidlist),
494                               sizeof(tidinfo[0]) * tinfo->tidcnt);
495         if (IS_ERR(tidinfo))
496                 return PTR_ERR(tidinfo);
497
498         mutex_lock(&uctxt->exp_mutex);
499         for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
500                 ret = unprogram_rcvarray(fd, tidinfo[tididx], NULL);
501                 if (ret) {
502                         hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
503                                   ret);
504                         break;
505                 }
506         }
507         spin_lock(&fd->tid_lock);
508         fd->tid_used -= tididx;
509         spin_unlock(&fd->tid_lock);
510         tinfo->tidcnt = tididx;
511         mutex_unlock(&uctxt->exp_mutex);
512
513         kfree(tidinfo);
514         return ret;
515 }
516
517 int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd,
518                               struct hfi1_tid_info *tinfo)
519 {
520         struct hfi1_ctxtdata *uctxt = fd->uctxt;
521         unsigned long *ev = uctxt->dd->events +
522                 (uctxt_offset(uctxt) + fd->subctxt);
523         u32 *array;
524         int ret = 0;
525
526         /*
527          * copy_to_user() can sleep, which will leave the invalid_lock
528          * locked and cause the MMU notifier to be blocked on the lock
529          * for a long time.
530          * Copy the data to a local buffer so we can release the lock.
531          */
532         array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
533         if (!array)
534                 return -EFAULT;
535
536         spin_lock(&fd->invalid_lock);
537         if (fd->invalid_tid_idx) {
538                 memcpy(array, fd->invalid_tids, sizeof(*array) *
539                        fd->invalid_tid_idx);
540                 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
541                        fd->invalid_tid_idx);
542                 tinfo->tidcnt = fd->invalid_tid_idx;
543                 fd->invalid_tid_idx = 0;
544                 /*
545                  * Reset the user flag while still holding the lock.
546                  * Otherwise, PSM can miss events.
547                  */
548                 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
549         } else {
550                 tinfo->tidcnt = 0;
551         }
552         spin_unlock(&fd->invalid_lock);
553
554         if (tinfo->tidcnt) {
555                 if (copy_to_user((void __user *)tinfo->tidlist,
556                                  array, sizeof(*array) * tinfo->tidcnt))
557                         ret = -EFAULT;
558         }
559         kfree(array);
560
561         return ret;
562 }
563
564 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages)
565 {
566         unsigned pagecount, pageidx, setcount = 0, i;
567         unsigned long pfn, this_pfn;
568         struct page **pages = tidbuf->pages;
569         struct tid_pageset *list = tidbuf->psets;
570
571         if (!npages)
572                 return 0;
573
574         /*
575          * Look for sets of physically contiguous pages in the user buffer.
576          * This will allow us to optimize Expected RcvArray entry usage by
577          * using the bigger supported sizes.
578          */
579         pfn = page_to_pfn(pages[0]);
580         for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
581                 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
582
583                 /*
584                  * If the pfn's are not sequential, pages are not physically
585                  * contiguous.
586                  */
587                 if (this_pfn != ++pfn) {
588                         /*
589                          * At this point we have to loop over the set of
590                          * physically contiguous pages and break them down it
591                          * sizes supported by the HW.
592                          * There are two main constraints:
593                          *     1. The max buffer size is MAX_EXPECTED_BUFFER.
594                          *        If the total set size is bigger than that
595                          *        program only a MAX_EXPECTED_BUFFER chunk.
596                          *     2. The buffer size has to be a power of two. If
597                          *        it is not, round down to the closes power of
598                          *        2 and program that size.
599                          */
600                         while (pagecount) {
601                                 int maxpages = pagecount;
602                                 u32 bufsize = pagecount * PAGE_SIZE;
603
604                                 if (bufsize > MAX_EXPECTED_BUFFER)
605                                         maxpages =
606                                                 MAX_EXPECTED_BUFFER >>
607                                                 PAGE_SHIFT;
608                                 else if (!is_power_of_2(bufsize))
609                                         maxpages =
610                                                 rounddown_pow_of_two(bufsize) >>
611                                                 PAGE_SHIFT;
612
613                                 list[setcount].idx = pageidx;
614                                 list[setcount].count = maxpages;
615                                 pagecount -= maxpages;
616                                 pageidx += maxpages;
617                                 setcount++;
618                         }
619                         pageidx = i;
620                         pagecount = 1;
621                         pfn = this_pfn;
622                 } else {
623                         pagecount++;
624                 }
625         }
626         return setcount;
627 }
628
629 /**
630  * program_rcvarray() - program an RcvArray group with receive buffers
631  * @fd: filedata pointer
632  * @tbuf: pointer to struct tid_user_buf that has the user buffer starting
633  *        virtual address, buffer length, page pointers, pagesets (array of
634  *        struct tid_pageset holding information on physically contiguous
635  *        chunks from the user buffer), and other fields.
636  * @grp: RcvArray group
637  * @start: starting index into sets array
638  * @count: number of struct tid_pageset's to program
639  * @tidlist: the array of u32 elements when the information about the
640  *           programmed RcvArray entries is to be encoded.
641  * @tididx: starting offset into tidlist
642  * @pmapped: (output parameter) number of pages programmed into the RcvArray
643  *           entries.
644  *
645  * This function will program up to 'count' number of RcvArray entries from the
646  * group 'grp'. To make best use of write-combining writes, the function will
647  * perform writes to the unused RcvArray entries which will be ignored by the
648  * HW. Each RcvArray entry will be programmed with a physically contiguous
649  * buffer chunk from the user's virtual buffer.
650  *
651  * Return:
652  * -EINVAL if the requested count is larger than the size of the group,
653  * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
654  * number of RcvArray entries programmed.
655  */
656 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *tbuf,
657                             struct tid_group *grp,
658                             unsigned int start, u16 count,
659                             u32 *tidlist, unsigned int *tididx,
660                             unsigned int *pmapped)
661 {
662         struct hfi1_ctxtdata *uctxt = fd->uctxt;
663         struct hfi1_devdata *dd = uctxt->dd;
664         u16 idx;
665         u32 tidinfo = 0, rcventry, useidx = 0;
666         int mapped = 0;
667
668         /* Count should never be larger than the group size */
669         if (count > grp->size)
670                 return -EINVAL;
671
672         /* Find the first unused entry in the group */
673         for (idx = 0; idx < grp->size; idx++) {
674                 if (!(grp->map & (1 << idx))) {
675                         useidx = idx;
676                         break;
677                 }
678                 rcv_array_wc_fill(dd, grp->base + idx);
679         }
680
681         idx = 0;
682         while (idx < count) {
683                 u16 npages, pageidx, setidx = start + idx;
684                 int ret = 0;
685
686                 /*
687                  * If this entry in the group is used, move to the next one.
688                  * If we go past the end of the group, exit the loop.
689                  */
690                 if (useidx >= grp->size) {
691                         break;
692                 } else if (grp->map & (1 << useidx)) {
693                         rcv_array_wc_fill(dd, grp->base + useidx);
694                         useidx++;
695                         continue;
696                 }
697
698                 rcventry = grp->base + useidx;
699                 npages = tbuf->psets[setidx].count;
700                 pageidx = tbuf->psets[setidx].idx;
701
702                 ret = set_rcvarray_entry(fd, tbuf,
703                                          rcventry, grp, pageidx,
704                                          npages);
705                 if (ret)
706                         return ret;
707                 mapped += npages;
708
709                 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
710                         EXP_TID_SET(LEN, npages);
711                 tidlist[(*tididx)++] = tidinfo;
712                 grp->used++;
713                 grp->map |= 1 << useidx++;
714                 idx++;
715         }
716
717         /* Fill the rest of the group with "blank" writes */
718         for (; useidx < grp->size; useidx++)
719                 rcv_array_wc_fill(dd, grp->base + useidx);
720         *pmapped = mapped;
721         return idx;
722 }
723
724 static int set_rcvarray_entry(struct hfi1_filedata *fd,
725                               struct tid_user_buf *tbuf,
726                               u32 rcventry, struct tid_group *grp,
727                               u16 pageidx, unsigned int npages)
728 {
729         int ret;
730         struct hfi1_ctxtdata *uctxt = fd->uctxt;
731         struct tid_rb_node *node;
732         struct hfi1_devdata *dd = uctxt->dd;
733         dma_addr_t phys;
734         struct page **pages = tbuf->pages + pageidx;
735
736         /*
737          * Allocate the node first so we can handle a potential
738          * failure before we've programmed anything.
739          */
740         node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
741                        GFP_KERNEL);
742         if (!node)
743                 return -ENOMEM;
744
745         phys = pci_map_single(dd->pcidev,
746                               __va(page_to_phys(pages[0])),
747                               npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
748         if (dma_mapping_error(&dd->pcidev->dev, phys)) {
749                 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
750                            phys);
751                 kfree(node);
752                 return -EFAULT;
753         }
754
755         node->fdata = fd;
756         node->phys = page_to_phys(pages[0]);
757         node->npages = npages;
758         node->rcventry = rcventry;
759         node->dma_addr = phys;
760         node->grp = grp;
761         node->freed = false;
762         memcpy(node->pages, pages, sizeof(struct page *) * npages);
763
764         if (fd->use_mn) {
765                 ret = mmu_interval_notifier_insert(
766                         &node->notifier, fd->mm,
767                         tbuf->vaddr + (pageidx * PAGE_SIZE), npages * PAGE_SIZE,
768                         &tid_mn_ops);
769                 if (ret)
770                         goto out_unmap;
771                 /*
772                  * FIXME: This is in the wrong order, the notifier should be
773                  * established before the pages are pinned by pin_rcv_pages.
774                  */
775                 mmu_interval_read_begin(&node->notifier);
776         }
777         fd->entry_to_rb[node->rcventry - uctxt->expected_base] = node;
778
779         hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
780         trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
781                                node->notifier.interval_tree.start, node->phys,
782                                phys);
783         return 0;
784
785 out_unmap:
786         hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
787                   node->rcventry, node->notifier.interval_tree.start,
788                   node->phys, ret);
789         pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
790                          PCI_DMA_FROMDEVICE);
791         kfree(node);
792         return -EFAULT;
793 }
794
795 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
796                               struct tid_group **grp)
797 {
798         struct hfi1_ctxtdata *uctxt = fd->uctxt;
799         struct hfi1_devdata *dd = uctxt->dd;
800         struct tid_rb_node *node;
801         u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
802         u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
803
804         if (tididx >= uctxt->expected_count) {
805                 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
806                            tididx, uctxt->ctxt);
807                 return -EINVAL;
808         }
809
810         if (tidctrl == 0x3)
811                 return -EINVAL;
812
813         rcventry = tididx + (tidctrl - 1);
814
815         node = fd->entry_to_rb[rcventry];
816         if (!node || node->rcventry != (uctxt->expected_base + rcventry))
817                 return -EBADF;
818
819         if (grp)
820                 *grp = node->grp;
821
822         if (fd->use_mn)
823                 mmu_interval_notifier_remove(&node->notifier);
824         cacheless_tid_rb_remove(fd, node);
825
826         return 0;
827 }
828
829 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
830 {
831         struct hfi1_ctxtdata *uctxt = fd->uctxt;
832         struct hfi1_devdata *dd = uctxt->dd;
833
834         trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
835                                  node->npages,
836                                  node->notifier.interval_tree.start, node->phys,
837                                  node->dma_addr);
838
839         /*
840          * Make sure device has seen the write before we unpin the
841          * pages.
842          */
843         hfi1_put_tid(dd, node->rcventry, PT_INVALID_FLUSH, 0, 0);
844
845         unpin_rcv_pages(fd, NULL, node, 0, node->npages, true);
846
847         node->grp->used--;
848         node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
849
850         if (node->grp->used == node->grp->size - 1)
851                 tid_group_move(node->grp, &uctxt->tid_full_list,
852                                &uctxt->tid_used_list);
853         else if (!node->grp->used)
854                 tid_group_move(node->grp, &uctxt->tid_used_list,
855                                &uctxt->tid_group_list);
856         kfree(node);
857 }
858
859 /*
860  * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
861  * clearing nodes in the non-cached case.
862  */
863 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
864                             struct exp_tid_set *set,
865                             struct hfi1_filedata *fd)
866 {
867         struct tid_group *grp, *ptr;
868         int i;
869
870         list_for_each_entry_safe(grp, ptr, &set->list, list) {
871                 list_del_init(&grp->list);
872
873                 for (i = 0; i < grp->size; i++) {
874                         if (grp->map & (1 << i)) {
875                                 u16 rcventry = grp->base + i;
876                                 struct tid_rb_node *node;
877
878                                 node = fd->entry_to_rb[rcventry -
879                                                           uctxt->expected_base];
880                                 if (!node || node->rcventry != rcventry)
881                                         continue;
882
883                                 if (fd->use_mn)
884                                         mmu_interval_notifier_remove(
885                                                 &node->notifier);
886                                 cacheless_tid_rb_remove(fd, node);
887                         }
888                 }
889         }
890 }
891
892 static bool tid_rb_invalidate(struct mmu_interval_notifier *mni,
893                               const struct mmu_notifier_range *range,
894                               unsigned long cur_seq)
895 {
896         struct tid_rb_node *node =
897                 container_of(mni, struct tid_rb_node, notifier);
898         struct hfi1_filedata *fdata = node->fdata;
899         struct hfi1_ctxtdata *uctxt = fdata->uctxt;
900
901         if (node->freed)
902                 return true;
903
904         trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt,
905                                  node->notifier.interval_tree.start,
906                                  node->rcventry, node->npages, node->dma_addr);
907         node->freed = true;
908
909         spin_lock(&fdata->invalid_lock);
910         if (fdata->invalid_tid_idx < uctxt->expected_count) {
911                 fdata->invalid_tids[fdata->invalid_tid_idx] =
912                         rcventry2tidinfo(node->rcventry - uctxt->expected_base);
913                 fdata->invalid_tids[fdata->invalid_tid_idx] |=
914                         EXP_TID_SET(LEN, node->npages);
915                 if (!fdata->invalid_tid_idx) {
916                         unsigned long *ev;
917
918                         /*
919                          * hfi1_set_uevent_bits() sets a user event flag
920                          * for all processes. Because calling into the
921                          * driver to process TID cache invalidations is
922                          * expensive and TID cache invalidations are
923                          * handled on a per-process basis, we can
924                          * optimize this to set the flag only for the
925                          * process in question.
926                          */
927                         ev = uctxt->dd->events +
928                                 (uctxt_offset(uctxt) + fdata->subctxt);
929                         set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
930                 }
931                 fdata->invalid_tid_idx++;
932         }
933         spin_unlock(&fdata->invalid_lock);
934         return true;
935 }
936
937 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
938                                     struct tid_rb_node *tnode)
939 {
940         u32 base = fdata->uctxt->expected_base;
941
942         fdata->entry_to_rb[tnode->rcventry - base] = NULL;
943         clear_tid_node(fdata, tnode);
944 }