]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/infiniband/hw/hfi1/verbs.c
Merge tag 'block-5.6-2020-02-22' of git://git.kernel.dk/linux-block
[linux.git] / drivers / infiniband / hw / hfi1 / verbs.c
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <rdma/opa_addr.h>
57 #include <linux/nospec.h>
58
59 #include "hfi.h"
60 #include "common.h"
61 #include "device.h"
62 #include "trace.h"
63 #include "qp.h"
64 #include "verbs_txreq.h"
65 #include "debugfs.h"
66 #include "vnic.h"
67 #include "fault.h"
68 #include "affinity.h"
69
70 static unsigned int hfi1_lkey_table_size = 16;
71 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
72                    S_IRUGO);
73 MODULE_PARM_DESC(lkey_table_size,
74                  "LKEY table size in bits (2^n, 1 <= n <= 23)");
75
76 static unsigned int hfi1_max_pds = 0xFFFF;
77 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
78 MODULE_PARM_DESC(max_pds,
79                  "Maximum number of protection domains to support");
80
81 static unsigned int hfi1_max_ahs = 0xFFFF;
82 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
83 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
84
85 unsigned int hfi1_max_cqes = 0x2FFFFF;
86 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
87 MODULE_PARM_DESC(max_cqes,
88                  "Maximum number of completion queue entries to support");
89
90 unsigned int hfi1_max_cqs = 0x1FFFF;
91 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
92 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
93
94 unsigned int hfi1_max_qp_wrs = 0x3FFF;
95 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
96 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
97
98 unsigned int hfi1_max_qps = 32768;
99 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
100 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
101
102 unsigned int hfi1_max_sges = 0x60;
103 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
104 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
105
106 unsigned int hfi1_max_mcast_grps = 16384;
107 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
108 MODULE_PARM_DESC(max_mcast_grps,
109                  "Maximum number of multicast groups to support");
110
111 unsigned int hfi1_max_mcast_qp_attached = 16;
112 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
113                    uint, S_IRUGO);
114 MODULE_PARM_DESC(max_mcast_qp_attached,
115                  "Maximum number of attached QPs to support");
116
117 unsigned int hfi1_max_srqs = 1024;
118 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
119 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
120
121 unsigned int hfi1_max_srq_sges = 128;
122 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
123 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
124
125 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
126 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
127 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
128
129 unsigned short piothreshold = 256;
130 module_param(piothreshold, ushort, S_IRUGO);
131 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
132
133 static unsigned int sge_copy_mode;
134 module_param(sge_copy_mode, uint, S_IRUGO);
135 MODULE_PARM_DESC(sge_copy_mode,
136                  "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
137
138 static void verbs_sdma_complete(
139         struct sdma_txreq *cookie,
140         int status);
141
142 static int pio_wait(struct rvt_qp *qp,
143                     struct send_context *sc,
144                     struct hfi1_pkt_state *ps,
145                     u32 flag);
146
147 /* Length of buffer to create verbs txreq cache name */
148 #define TXREQ_NAME_LEN 24
149
150 static uint wss_threshold = 80;
151 module_param(wss_threshold, uint, S_IRUGO);
152 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
153 static uint wss_clean_period = 256;
154 module_param(wss_clean_period, uint, S_IRUGO);
155 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
156
157 /*
158  * Translate ib_wr_opcode into ib_wc_opcode.
159  */
160 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
161         [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
162         [IB_WR_TID_RDMA_WRITE] = IB_WC_RDMA_WRITE,
163         [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
164         [IB_WR_SEND] = IB_WC_SEND,
165         [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
166         [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
167         [IB_WR_TID_RDMA_READ] = IB_WC_RDMA_READ,
168         [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
169         [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
170         [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
171         [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
172         [IB_WR_REG_MR] = IB_WC_REG_MR
173 };
174
175 /*
176  * Length of header by opcode, 0 --> not supported
177  */
178 const u8 hdr_len_by_opcode[256] = {
179         /* RC */
180         [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
181         [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
182         [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
183         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
184         [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
185         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
186         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
187         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
188         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
189         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
190         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
191         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
192         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
193         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
194         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
195         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
196         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
197         [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
198         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
199         [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
200         [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
201         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
202         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
203         [IB_OPCODE_TID_RDMA_READ_REQ]                 = 12 + 8 + 36,
204         [IB_OPCODE_TID_RDMA_READ_RESP]                = 12 + 8 + 36,
205         [IB_OPCODE_TID_RDMA_WRITE_REQ]                = 12 + 8 + 36,
206         [IB_OPCODE_TID_RDMA_WRITE_RESP]               = 12 + 8 + 36,
207         [IB_OPCODE_TID_RDMA_WRITE_DATA]               = 12 + 8 + 36,
208         [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST]          = 12 + 8 + 36,
209         [IB_OPCODE_TID_RDMA_ACK]                      = 12 + 8 + 36,
210         [IB_OPCODE_TID_RDMA_RESYNC]                   = 12 + 8 + 36,
211         /* UC */
212         [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
213         [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
214         [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
215         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
216         [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
217         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
218         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
219         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
220         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
221         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
222         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
223         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
224         /* UD */
225         [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
226         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
227 };
228
229 static const opcode_handler opcode_handler_tbl[256] = {
230         /* RC */
231         [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
232         [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
233         [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
234         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
235         [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
236         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
237         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
238         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
239         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
240         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
241         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
242         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
243         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
244         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
245         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
246         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
247         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
248         [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
249         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
250         [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
251         [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
252         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
253         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
254
255         /* TID RDMA has separate handlers for different opcodes.*/
256         [IB_OPCODE_TID_RDMA_WRITE_REQ]       = &hfi1_rc_rcv_tid_rdma_write_req,
257         [IB_OPCODE_TID_RDMA_WRITE_RESP]      = &hfi1_rc_rcv_tid_rdma_write_resp,
258         [IB_OPCODE_TID_RDMA_WRITE_DATA]      = &hfi1_rc_rcv_tid_rdma_write_data,
259         [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = &hfi1_rc_rcv_tid_rdma_write_data,
260         [IB_OPCODE_TID_RDMA_READ_REQ]        = &hfi1_rc_rcv_tid_rdma_read_req,
261         [IB_OPCODE_TID_RDMA_READ_RESP]       = &hfi1_rc_rcv_tid_rdma_read_resp,
262         [IB_OPCODE_TID_RDMA_RESYNC]          = &hfi1_rc_rcv_tid_rdma_resync,
263         [IB_OPCODE_TID_RDMA_ACK]             = &hfi1_rc_rcv_tid_rdma_ack,
264
265         /* UC */
266         [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
267         [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
268         [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
269         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
270         [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
271         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
272         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
273         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
274         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
275         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
276         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
277         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
278         /* UD */
279         [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
280         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
281         /* CNP */
282         [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
283 };
284
285 #define OPMASK 0x1f
286
287 static const u32 pio_opmask[BIT(3)] = {
288         /* RC */
289         [IB_OPCODE_RC >> 5] =
290                 BIT(RC_OP(SEND_ONLY) & OPMASK) |
291                 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
292                 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
293                 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
294                 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
295                 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
296                 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
297                 BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
298                 BIT(RC_OP(FETCH_ADD) & OPMASK),
299         /* UC */
300         [IB_OPCODE_UC >> 5] =
301                 BIT(UC_OP(SEND_ONLY) & OPMASK) |
302                 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
303                 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
304                 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
305 };
306
307 /*
308  * System image GUID.
309  */
310 __be64 ib_hfi1_sys_image_guid;
311
312 /*
313  * Make sure the QP is ready and able to accept the given opcode.
314  */
315 static inline opcode_handler qp_ok(struct hfi1_packet *packet)
316 {
317         if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
318                 return NULL;
319         if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
320              packet->qp->allowed_ops) ||
321             (packet->opcode == IB_OPCODE_CNP))
322                 return opcode_handler_tbl[packet->opcode];
323
324         return NULL;
325 }
326
327 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
328 {
329 #ifdef CONFIG_FAULT_INJECTION
330         if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) {
331                 /*
332                  * In order to drop non-IB traffic we
333                  * set PbcInsertHrc to NONE (0x2).
334                  * The packet will still be delivered
335                  * to the receiving node but a
336                  * KHdrHCRCErr (KDETH packet with a bad
337                  * HCRC) will be triggered and the
338                  * packet will not be delivered to the
339                  * correct context.
340                  */
341                 pbc &= ~PBC_INSERT_HCRC_SMASK;
342                 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
343         } else {
344                 /*
345                  * In order to drop regular verbs
346                  * traffic we set the PbcTestEbp
347                  * flag. The packet will still be
348                  * delivered to the receiving node but
349                  * a 'late ebp error' will be
350                  * triggered and will be dropped.
351                  */
352                 pbc |= PBC_TEST_EBP;
353         }
354 #endif
355         return pbc;
356 }
357
358 static opcode_handler tid_qp_ok(int opcode, struct hfi1_packet *packet)
359 {
360         if (packet->qp->ibqp.qp_type != IB_QPT_RC ||
361             !(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
362                 return NULL;
363         if ((opcode & RVT_OPCODE_QP_MASK) == IB_OPCODE_TID_RDMA)
364                 return opcode_handler_tbl[opcode];
365         return NULL;
366 }
367
368 void hfi1_kdeth_eager_rcv(struct hfi1_packet *packet)
369 {
370         struct hfi1_ctxtdata *rcd = packet->rcd;
371         struct ib_header *hdr = packet->hdr;
372         u32 tlen = packet->tlen;
373         struct hfi1_pportdata *ppd = rcd->ppd;
374         struct hfi1_ibport *ibp = &ppd->ibport_data;
375         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
376         opcode_handler opcode_handler;
377         unsigned long flags;
378         u32 qp_num;
379         int lnh;
380         u8 opcode;
381
382         /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
383         if (unlikely(tlen < 15 * sizeof(u32)))
384                 goto drop;
385
386         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
387         if (lnh != HFI1_LRH_BTH)
388                 goto drop;
389
390         packet->ohdr = &hdr->u.oth;
391         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
392
393         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
394         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
395
396         /* verbs_qp can be picked up from any tid_rdma header struct */
397         qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_req.verbs_qp) &
398                 RVT_QPN_MASK;
399
400         rcu_read_lock();
401         packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
402         if (!packet->qp)
403                 goto drop_rcu;
404         spin_lock_irqsave(&packet->qp->r_lock, flags);
405         opcode_handler = tid_qp_ok(opcode, packet);
406         if (likely(opcode_handler))
407                 opcode_handler(packet);
408         else
409                 goto drop_unlock;
410         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
411         rcu_read_unlock();
412
413         return;
414 drop_unlock:
415         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
416 drop_rcu:
417         rcu_read_unlock();
418 drop:
419         ibp->rvp.n_pkt_drops++;
420 }
421
422 void hfi1_kdeth_expected_rcv(struct hfi1_packet *packet)
423 {
424         struct hfi1_ctxtdata *rcd = packet->rcd;
425         struct ib_header *hdr = packet->hdr;
426         u32 tlen = packet->tlen;
427         struct hfi1_pportdata *ppd = rcd->ppd;
428         struct hfi1_ibport *ibp = &ppd->ibport_data;
429         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
430         opcode_handler opcode_handler;
431         unsigned long flags;
432         u32 qp_num;
433         int lnh;
434         u8 opcode;
435
436         /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
437         if (unlikely(tlen < 15 * sizeof(u32)))
438                 goto drop;
439
440         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
441         if (lnh != HFI1_LRH_BTH)
442                 goto drop;
443
444         packet->ohdr = &hdr->u.oth;
445         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
446
447         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
448         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
449
450         /* verbs_qp can be picked up from any tid_rdma header struct */
451         qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_rsp.verbs_qp) &
452                 RVT_QPN_MASK;
453
454         rcu_read_lock();
455         packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
456         if (!packet->qp)
457                 goto drop_rcu;
458         spin_lock_irqsave(&packet->qp->r_lock, flags);
459         opcode_handler = tid_qp_ok(opcode, packet);
460         if (likely(opcode_handler))
461                 opcode_handler(packet);
462         else
463                 goto drop_unlock;
464         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
465         rcu_read_unlock();
466
467         return;
468 drop_unlock:
469         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
470 drop_rcu:
471         rcu_read_unlock();
472 drop:
473         ibp->rvp.n_pkt_drops++;
474 }
475
476 static int hfi1_do_pkey_check(struct hfi1_packet *packet)
477 {
478         struct hfi1_ctxtdata *rcd = packet->rcd;
479         struct hfi1_pportdata *ppd = rcd->ppd;
480         struct hfi1_16b_header *hdr = packet->hdr;
481         u16 pkey;
482
483         /* Pkey check needed only for bypass packets */
484         if (packet->etype != RHF_RCV_TYPE_BYPASS)
485                 return 0;
486
487         /* Perform pkey check */
488         pkey = hfi1_16B_get_pkey(hdr);
489         return ingress_pkey_check(ppd, pkey, packet->sc,
490                                   packet->qp->s_pkey_index,
491                                   packet->slid, true);
492 }
493
494 static inline void hfi1_handle_packet(struct hfi1_packet *packet,
495                                       bool is_mcast)
496 {
497         u32 qp_num;
498         struct hfi1_ctxtdata *rcd = packet->rcd;
499         struct hfi1_pportdata *ppd = rcd->ppd;
500         struct hfi1_ibport *ibp = rcd_to_iport(rcd);
501         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
502         opcode_handler packet_handler;
503         unsigned long flags;
504
505         inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
506
507         if (unlikely(is_mcast)) {
508                 struct rvt_mcast *mcast;
509                 struct rvt_mcast_qp *p;
510
511                 if (!packet->grh)
512                         goto drop;
513                 mcast = rvt_mcast_find(&ibp->rvp,
514                                        &packet->grh->dgid,
515                                        opa_get_lid(packet->dlid, 9B));
516                 if (!mcast)
517                         goto drop;
518                 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
519                         packet->qp = p->qp;
520                         if (hfi1_do_pkey_check(packet))
521                                 goto drop;
522                         spin_lock_irqsave(&packet->qp->r_lock, flags);
523                         packet_handler = qp_ok(packet);
524                         if (likely(packet_handler))
525                                 packet_handler(packet);
526                         else
527                                 ibp->rvp.n_pkt_drops++;
528                         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
529                 }
530                 /*
531                  * Notify rvt_multicast_detach() if it is waiting for us
532                  * to finish.
533                  */
534                 if (atomic_dec_return(&mcast->refcount) <= 1)
535                         wake_up(&mcast->wait);
536         } else {
537                 /* Get the destination QP number. */
538                 if (packet->etype == RHF_RCV_TYPE_BYPASS &&
539                     hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM)
540                         qp_num = hfi1_16B_get_dest_qpn(packet->mgmt);
541                 else
542                         qp_num = ib_bth_get_qpn(packet->ohdr);
543
544                 rcu_read_lock();
545                 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
546                 if (!packet->qp)
547                         goto unlock_drop;
548
549                 if (hfi1_do_pkey_check(packet))
550                         goto unlock_drop;
551
552                 spin_lock_irqsave(&packet->qp->r_lock, flags);
553                 packet_handler = qp_ok(packet);
554                 if (likely(packet_handler))
555                         packet_handler(packet);
556                 else
557                         ibp->rvp.n_pkt_drops++;
558                 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
559                 rcu_read_unlock();
560         }
561         return;
562 unlock_drop:
563         rcu_read_unlock();
564 drop:
565         ibp->rvp.n_pkt_drops++;
566 }
567
568 /**
569  * hfi1_ib_rcv - process an incoming packet
570  * @packet: data packet information
571  *
572  * This is called to process an incoming packet at interrupt level.
573  */
574 void hfi1_ib_rcv(struct hfi1_packet *packet)
575 {
576         struct hfi1_ctxtdata *rcd = packet->rcd;
577
578         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
579         hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
580 }
581
582 void hfi1_16B_rcv(struct hfi1_packet *packet)
583 {
584         struct hfi1_ctxtdata *rcd = packet->rcd;
585
586         trace_input_ibhdr(rcd->dd, packet, false);
587         hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
588 }
589
590 /*
591  * This is called from a timer to check for QPs
592  * which need kernel memory in order to send a packet.
593  */
594 static void mem_timer(struct timer_list *t)
595 {
596         struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
597         struct list_head *list = &dev->memwait;
598         struct rvt_qp *qp = NULL;
599         struct iowait *wait;
600         unsigned long flags;
601         struct hfi1_qp_priv *priv;
602
603         write_seqlock_irqsave(&dev->iowait_lock, flags);
604         if (!list_empty(list)) {
605                 wait = list_first_entry(list, struct iowait, list);
606                 qp = iowait_to_qp(wait);
607                 priv = qp->priv;
608                 list_del_init(&priv->s_iowait.list);
609                 priv->s_iowait.lock = NULL;
610                 /* refcount held until actual wake up */
611                 if (!list_empty(list))
612                         mod_timer(&dev->mem_timer, jiffies + 1);
613         }
614         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
615
616         if (qp)
617                 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
618 }
619
620 /*
621  * This is called with progress side lock held.
622  */
623 /* New API */
624 static void verbs_sdma_complete(
625         struct sdma_txreq *cookie,
626         int status)
627 {
628         struct verbs_txreq *tx =
629                 container_of(cookie, struct verbs_txreq, txreq);
630         struct rvt_qp *qp = tx->qp;
631
632         spin_lock(&qp->s_lock);
633         if (tx->wqe) {
634                 rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
635         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
636                 struct hfi1_opa_header *hdr;
637
638                 hdr = &tx->phdr.hdr;
639                 if (unlikely(status == SDMA_TXREQ_S_ABORTED))
640                         hfi1_rc_verbs_aborted(qp, hdr);
641                 hfi1_rc_send_complete(qp, hdr);
642         }
643         spin_unlock(&qp->s_lock);
644
645         hfi1_put_txreq(tx);
646 }
647
648 void hfi1_wait_kmem(struct rvt_qp *qp)
649 {
650         struct hfi1_qp_priv *priv = qp->priv;
651         struct ib_qp *ibqp = &qp->ibqp;
652         struct ib_device *ibdev = ibqp->device;
653         struct hfi1_ibdev *dev = to_idev(ibdev);
654
655         if (list_empty(&priv->s_iowait.list)) {
656                 if (list_empty(&dev->memwait))
657                         mod_timer(&dev->mem_timer, jiffies + 1);
658                 qp->s_flags |= RVT_S_WAIT_KMEM;
659                 list_add_tail(&priv->s_iowait.list, &dev->memwait);
660                 priv->s_iowait.lock = &dev->iowait_lock;
661                 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
662                 rvt_get_qp(qp);
663         }
664 }
665
666 static int wait_kmem(struct hfi1_ibdev *dev,
667                      struct rvt_qp *qp,
668                      struct hfi1_pkt_state *ps)
669 {
670         unsigned long flags;
671         int ret = 0;
672
673         spin_lock_irqsave(&qp->s_lock, flags);
674         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
675                 write_seqlock(&dev->iowait_lock);
676                 list_add_tail(&ps->s_txreq->txreq.list,
677                               &ps->wait->tx_head);
678                 hfi1_wait_kmem(qp);
679                 write_sequnlock(&dev->iowait_lock);
680                 hfi1_qp_unbusy(qp, ps->wait);
681                 ret = -EBUSY;
682         }
683         spin_unlock_irqrestore(&qp->s_lock, flags);
684
685         return ret;
686 }
687
688 /*
689  * This routine calls txadds for each sg entry.
690  *
691  * Add failures will revert the sge cursor
692  */
693 static noinline int build_verbs_ulp_payload(
694         struct sdma_engine *sde,
695         u32 length,
696         struct verbs_txreq *tx)
697 {
698         struct rvt_sge_state *ss = tx->ss;
699         struct rvt_sge *sg_list = ss->sg_list;
700         struct rvt_sge sge = ss->sge;
701         u8 num_sge = ss->num_sge;
702         u32 len;
703         int ret = 0;
704
705         while (length) {
706                 len = rvt_get_sge_length(&ss->sge, length);
707                 WARN_ON_ONCE(len == 0);
708                 ret = sdma_txadd_kvaddr(
709                         sde->dd,
710                         &tx->txreq,
711                         ss->sge.vaddr,
712                         len);
713                 if (ret)
714                         goto bail_txadd;
715                 rvt_update_sge(ss, len, false);
716                 length -= len;
717         }
718         return ret;
719 bail_txadd:
720         /* unwind cursor */
721         ss->sge = sge;
722         ss->num_sge = num_sge;
723         ss->sg_list = sg_list;
724         return ret;
725 }
726
727 /**
728  * update_tx_opstats - record stats by opcode
729  * @qp; the qp
730  * @ps: transmit packet state
731  * @plen: the plen in dwords
732  *
733  * This is a routine to record the tx opstats after a
734  * packet has been presented to the egress mechanism.
735  */
736 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
737                               u32 plen)
738 {
739 #ifdef CONFIG_DEBUG_FS
740         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
741         struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
742
743         inc_opstats(plen * 4, &s->stats[ps->opcode]);
744         put_cpu_ptr(s);
745 #endif
746 }
747
748 /*
749  * Build the number of DMA descriptors needed to send length bytes of data.
750  *
751  * NOTE: DMA mapping is held in the tx until completed in the ring or
752  *       the tx desc is freed without having been submitted to the ring
753  *
754  * This routine ensures all the helper routine calls succeed.
755  */
756 /* New API */
757 static int build_verbs_tx_desc(
758         struct sdma_engine *sde,
759         u32 length,
760         struct verbs_txreq *tx,
761         struct hfi1_ahg_info *ahg_info,
762         u64 pbc)
763 {
764         int ret = 0;
765         struct hfi1_sdma_header *phdr = &tx->phdr;
766         u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2;
767         u8 extra_bytes = 0;
768
769         if (tx->phdr.hdr.hdr_type) {
770                 /*
771                  * hdrbytes accounts for PBC. Need to subtract 8 bytes
772                  * before calculating padding.
773                  */
774                 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
775                               (SIZE_OF_CRC << 2) + SIZE_OF_LT;
776         }
777         if (!ahg_info->ahgcount) {
778                 ret = sdma_txinit_ahg(
779                         &tx->txreq,
780                         ahg_info->tx_flags,
781                         hdrbytes + length +
782                         extra_bytes,
783                         ahg_info->ahgidx,
784                         0,
785                         NULL,
786                         0,
787                         verbs_sdma_complete);
788                 if (ret)
789                         goto bail_txadd;
790                 phdr->pbc = cpu_to_le64(pbc);
791                 ret = sdma_txadd_kvaddr(
792                         sde->dd,
793                         &tx->txreq,
794                         phdr,
795                         hdrbytes);
796                 if (ret)
797                         goto bail_txadd;
798         } else {
799                 ret = sdma_txinit_ahg(
800                         &tx->txreq,
801                         ahg_info->tx_flags,
802                         length,
803                         ahg_info->ahgidx,
804                         ahg_info->ahgcount,
805                         ahg_info->ahgdesc,
806                         hdrbytes,
807                         verbs_sdma_complete);
808                 if (ret)
809                         goto bail_txadd;
810         }
811         /* add the ulp payload - if any. tx->ss can be NULL for acks */
812         if (tx->ss) {
813                 ret = build_verbs_ulp_payload(sde, length, tx);
814                 if (ret)
815                         goto bail_txadd;
816         }
817
818         /* add icrc, lt byte, and padding to flit */
819         if (extra_bytes)
820                 ret = sdma_txadd_daddr(sde->dd, &tx->txreq,
821                                        sde->dd->sdma_pad_phys, extra_bytes);
822
823 bail_txadd:
824         return ret;
825 }
826
827 static u64 update_hcrc(u8 opcode, u64 pbc)
828 {
829         if ((opcode & IB_OPCODE_TID_RDMA) == IB_OPCODE_TID_RDMA) {
830                 pbc &= ~PBC_INSERT_HCRC_SMASK;
831                 pbc |= (u64)PBC_IHCRC_LKDETH << PBC_INSERT_HCRC_SHIFT;
832         }
833         return pbc;
834 }
835
836 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
837                         u64 pbc)
838 {
839         struct hfi1_qp_priv *priv = qp->priv;
840         struct hfi1_ahg_info *ahg_info = priv->s_ahg;
841         u32 hdrwords = ps->s_txreq->hdr_dwords;
842         u32 len = ps->s_txreq->s_cur_size;
843         u32 plen;
844         struct hfi1_ibdev *dev = ps->dev;
845         struct hfi1_pportdata *ppd = ps->ppd;
846         struct verbs_txreq *tx;
847         u8 sc5 = priv->s_sc;
848         int ret;
849         u32 dwords;
850
851         if (ps->s_txreq->phdr.hdr.hdr_type) {
852                 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
853
854                 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
855                           SIZE_OF_LT) >> 2;
856         } else {
857                 dwords = (len + 3) >> 2;
858         }
859         plen = hdrwords + dwords + sizeof(pbc) / 4;
860
861         tx = ps->s_txreq;
862         if (!sdma_txreq_built(&tx->txreq)) {
863                 if (likely(pbc == 0)) {
864                         u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
865
866                         /* No vl15 here */
867                         /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
868                         if (ps->s_txreq->phdr.hdr.hdr_type)
869                                 pbc |= PBC_PACKET_BYPASS |
870                                        PBC_INSERT_BYPASS_ICRC;
871                         else
872                                 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
873
874                         pbc = create_pbc(ppd,
875                                          pbc,
876                                          qp->srate_mbps,
877                                          vl,
878                                          plen);
879
880                         if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
881                                 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
882                         else
883                                 /* Update HCRC based on packet opcode */
884                                 pbc = update_hcrc(ps->opcode, pbc);
885                 }
886                 tx->wqe = qp->s_wqe;
887                 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
888                 if (unlikely(ret))
889                         goto bail_build;
890         }
891         ret =  sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent);
892         if (unlikely(ret < 0)) {
893                 if (ret == -ECOMM)
894                         goto bail_ecomm;
895                 return ret;
896         }
897
898         update_tx_opstats(qp, ps, plen);
899         trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
900                                 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
901         return ret;
902
903 bail_ecomm:
904         /* The current one got "sent" */
905         return 0;
906 bail_build:
907         ret = wait_kmem(dev, qp, ps);
908         if (!ret) {
909                 /* free txreq - bad state */
910                 hfi1_put_txreq(ps->s_txreq);
911                 ps->s_txreq = NULL;
912         }
913         return ret;
914 }
915
916 /*
917  * If we are now in the error state, return zero to flush the
918  * send work request.
919  */
920 static int pio_wait(struct rvt_qp *qp,
921                     struct send_context *sc,
922                     struct hfi1_pkt_state *ps,
923                     u32 flag)
924 {
925         struct hfi1_qp_priv *priv = qp->priv;
926         struct hfi1_devdata *dd = sc->dd;
927         unsigned long flags;
928         int ret = 0;
929
930         /*
931          * Note that as soon as want_buffer() is called and
932          * possibly before it returns, sc_piobufavail()
933          * could be called. Therefore, put QP on the I/O wait list before
934          * enabling the PIO avail interrupt.
935          */
936         spin_lock_irqsave(&qp->s_lock, flags);
937         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
938                 write_seqlock(&sc->waitlock);
939                 list_add_tail(&ps->s_txreq->txreq.list,
940                               &ps->wait->tx_head);
941                 if (list_empty(&priv->s_iowait.list)) {
942                         struct hfi1_ibdev *dev = &dd->verbs_dev;
943                         int was_empty;
944
945                         dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
946                         dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN);
947                         qp->s_flags |= flag;
948                         was_empty = list_empty(&sc->piowait);
949                         iowait_get_priority(&priv->s_iowait);
950                         iowait_queue(ps->pkts_sent, &priv->s_iowait,
951                                      &sc->piowait);
952                         priv->s_iowait.lock = &sc->waitlock;
953                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
954                         rvt_get_qp(qp);
955                         /* counting: only call wantpiobuf_intr if first user */
956                         if (was_empty)
957                                 hfi1_sc_wantpiobuf_intr(sc, 1);
958                 }
959                 write_sequnlock(&sc->waitlock);
960                 hfi1_qp_unbusy(qp, ps->wait);
961                 ret = -EBUSY;
962         }
963         spin_unlock_irqrestore(&qp->s_lock, flags);
964         return ret;
965 }
966
967 static void verbs_pio_complete(void *arg, int code)
968 {
969         struct rvt_qp *qp = (struct rvt_qp *)arg;
970         struct hfi1_qp_priv *priv = qp->priv;
971
972         if (iowait_pio_dec(&priv->s_iowait))
973                 iowait_drain_wakeup(&priv->s_iowait);
974 }
975
976 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
977                         u64 pbc)
978 {
979         struct hfi1_qp_priv *priv = qp->priv;
980         u32 hdrwords = ps->s_txreq->hdr_dwords;
981         struct rvt_sge_state *ss = ps->s_txreq->ss;
982         u32 len = ps->s_txreq->s_cur_size;
983         u32 dwords;
984         u32 plen;
985         struct hfi1_pportdata *ppd = ps->ppd;
986         u32 *hdr;
987         u8 sc5;
988         unsigned long flags = 0;
989         struct send_context *sc;
990         struct pio_buf *pbuf;
991         int wc_status = IB_WC_SUCCESS;
992         int ret = 0;
993         pio_release_cb cb = NULL;
994         u8 extra_bytes = 0;
995
996         if (ps->s_txreq->phdr.hdr.hdr_type) {
997                 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
998
999                 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
1000                 dwords = (len + extra_bytes) >> 2;
1001                 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
1002         } else {
1003                 dwords = (len + 3) >> 2;
1004                 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
1005         }
1006         plen = hdrwords + dwords + sizeof(pbc) / 4;
1007
1008         /* only RC/UC use complete */
1009         switch (qp->ibqp.qp_type) {
1010         case IB_QPT_RC:
1011         case IB_QPT_UC:
1012                 cb = verbs_pio_complete;
1013                 break;
1014         default:
1015                 break;
1016         }
1017
1018         /* vl15 special case taken care of in ud.c */
1019         sc5 = priv->s_sc;
1020         sc = ps->s_txreq->psc;
1021
1022         if (likely(pbc == 0)) {
1023                 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1024
1025                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
1026                 if (ps->s_txreq->phdr.hdr.hdr_type)
1027                         pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
1028                 else
1029                         pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
1030
1031                 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
1032                 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
1033                         pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
1034                 else
1035                         /* Update HCRC based on packet opcode */
1036                         pbc = update_hcrc(ps->opcode, pbc);
1037         }
1038         if (cb)
1039                 iowait_pio_inc(&priv->s_iowait);
1040         pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1041         if (IS_ERR_OR_NULL(pbuf)) {
1042                 if (cb)
1043                         verbs_pio_complete(qp, 0);
1044                 if (IS_ERR(pbuf)) {
1045                         /*
1046                          * If we have filled the PIO buffers to capacity and are
1047                          * not in an active state this request is not going to
1048                          * go out to so just complete it with an error or else a
1049                          * ULP or the core may be stuck waiting.
1050                          */
1051                         hfi1_cdbg(
1052                                 PIO,
1053                                 "alloc failed. state not active, completing");
1054                         wc_status = IB_WC_GENERAL_ERR;
1055                         goto pio_bail;
1056                 } else {
1057                         /*
1058                          * This is a normal occurrence. The PIO buffs are full
1059                          * up but we are still happily sending, well we could be
1060                          * so lets continue to queue the request.
1061                          */
1062                         hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1063                         ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1064                         if (!ret)
1065                                 /* txreq not queued - free */
1066                                 goto bail;
1067                         /* tx consumed in wait */
1068                         return ret;
1069                 }
1070         }
1071
1072         if (dwords == 0) {
1073                 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1074         } else {
1075                 seg_pio_copy_start(pbuf, pbc,
1076                                    hdr, hdrwords * 4);
1077                 if (ss) {
1078                         while (len) {
1079                                 void *addr = ss->sge.vaddr;
1080                                 u32 slen = rvt_get_sge_length(&ss->sge, len);
1081
1082                                 rvt_update_sge(ss, slen, false);
1083                                 seg_pio_copy_mid(pbuf, addr, slen);
1084                                 len -= slen;
1085                         }
1086                 }
1087                 /* add icrc, lt byte, and padding to flit */
1088                 if (extra_bytes)
1089                         seg_pio_copy_mid(pbuf, ppd->dd->sdma_pad_dma,
1090                                          extra_bytes);
1091
1092                 seg_pio_copy_end(pbuf);
1093         }
1094
1095         update_tx_opstats(qp, ps, plen);
1096         trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1097                                &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
1098
1099 pio_bail:
1100         spin_lock_irqsave(&qp->s_lock, flags);
1101         if (qp->s_wqe) {
1102                 rvt_send_complete(qp, qp->s_wqe, wc_status);
1103         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1104                 if (unlikely(wc_status == IB_WC_GENERAL_ERR))
1105                         hfi1_rc_verbs_aborted(qp, &ps->s_txreq->phdr.hdr);
1106                 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1107         }
1108         spin_unlock_irqrestore(&qp->s_lock, flags);
1109
1110         ret = 0;
1111
1112 bail:
1113         hfi1_put_txreq(ps->s_txreq);
1114         return ret;
1115 }
1116
1117 /*
1118  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1119  * being an entry from the partition key table), return 0
1120  * otherwise. Use the matching criteria for egress partition keys
1121  * specified in the OPAv1 spec., section 9.1l.7.
1122  */
1123 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1124 {
1125         u16 mkey = pkey & PKEY_LOW_15_MASK;
1126         u16 mentry = ent & PKEY_LOW_15_MASK;
1127
1128         if (mkey == mentry) {
1129                 /*
1130                  * If pkey[15] is set (full partition member),
1131                  * is bit 15 in the corresponding table element
1132                  * clear (limited member)?
1133                  */
1134                 if (pkey & PKEY_MEMBER_MASK)
1135                         return !!(ent & PKEY_MEMBER_MASK);
1136                 return 1;
1137         }
1138         return 0;
1139 }
1140
1141 /**
1142  * egress_pkey_check - check P_KEY of a packet
1143  * @ppd:  Physical IB port data
1144  * @slid: SLID for packet
1145  * @bkey: PKEY for header
1146  * @sc5:  SC for packet
1147  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1148  * only. If it is negative value, then it means user contexts is calling this
1149  * function.
1150  *
1151  * It checks if hdr's pkey is valid.
1152  *
1153  * Return: 0 on success, otherwise, 1
1154  */
1155 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1156                       u8 sc5, int8_t s_pkey_index)
1157 {
1158         struct hfi1_devdata *dd;
1159         int i;
1160         int is_user_ctxt_mechanism = (s_pkey_index < 0);
1161
1162         if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1163                 return 0;
1164
1165         /* If SC15, pkey[0:14] must be 0x7fff */
1166         if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1167                 goto bad;
1168
1169         /* Is the pkey = 0x0, or 0x8000? */
1170         if ((pkey & PKEY_LOW_15_MASK) == 0)
1171                 goto bad;
1172
1173         /*
1174          * For the kernel contexts only, if a qp is passed into the function,
1175          * the most likely matching pkey has index qp->s_pkey_index
1176          */
1177         if (!is_user_ctxt_mechanism &&
1178             egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1179                 return 0;
1180         }
1181
1182         for (i = 0; i < MAX_PKEY_VALUES; i++) {
1183                 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1184                         return 0;
1185         }
1186 bad:
1187         /*
1188          * For the user-context mechanism, the P_KEY check would only happen
1189          * once per SDMA request, not once per packet.  Therefore, there's no
1190          * need to increment the counter for the user-context mechanism.
1191          */
1192         if (!is_user_ctxt_mechanism) {
1193                 incr_cntr64(&ppd->port_xmit_constraint_errors);
1194                 dd = ppd->dd;
1195                 if (!(dd->err_info_xmit_constraint.status &
1196                       OPA_EI_STATUS_SMASK)) {
1197                         dd->err_info_xmit_constraint.status |=
1198                                 OPA_EI_STATUS_SMASK;
1199                         dd->err_info_xmit_constraint.slid = slid;
1200                         dd->err_info_xmit_constraint.pkey = pkey;
1201                 }
1202         }
1203         return 1;
1204 }
1205
1206 /**
1207  * get_send_routine - choose an egress routine
1208  *
1209  * Choose an egress routine based on QP type
1210  * and size
1211  */
1212 static inline send_routine get_send_routine(struct rvt_qp *qp,
1213                                             struct hfi1_pkt_state *ps)
1214 {
1215         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1216         struct hfi1_qp_priv *priv = qp->priv;
1217         struct verbs_txreq *tx = ps->s_txreq;
1218
1219         if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1220                 return dd->process_pio_send;
1221         switch (qp->ibqp.qp_type) {
1222         case IB_QPT_SMI:
1223                 return dd->process_pio_send;
1224         case IB_QPT_GSI:
1225         case IB_QPT_UD:
1226                 break;
1227         case IB_QPT_UC:
1228         case IB_QPT_RC:
1229                 priv->s_running_pkt_size =
1230                         (tx->s_cur_size + priv->s_running_pkt_size) / 2;
1231                 if (piothreshold &&
1232                     priv->s_running_pkt_size <= min(piothreshold, qp->pmtu) &&
1233                     (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1234                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1235                     !sdma_txreq_built(&tx->txreq))
1236                         return dd->process_pio_send;
1237                 break;
1238         default:
1239                 break;
1240         }
1241         return dd->process_dma_send;
1242 }
1243
1244 /**
1245  * hfi1_verbs_send - send a packet
1246  * @qp: the QP to send on
1247  * @ps: the state of the packet to send
1248  *
1249  * Return zero if packet is sent or queued OK.
1250  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1251  */
1252 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1253 {
1254         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1255         struct hfi1_qp_priv *priv = qp->priv;
1256         struct ib_other_headers *ohdr = NULL;
1257         send_routine sr;
1258         int ret;
1259         u16 pkey;
1260         u32 slid;
1261         u8 l4 = 0;
1262
1263         /* locate the pkey within the headers */
1264         if (ps->s_txreq->phdr.hdr.hdr_type) {
1265                 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1266
1267                 l4 = hfi1_16B_get_l4(hdr);
1268                 if (l4 == OPA_16B_L4_IB_LOCAL)
1269                         ohdr = &hdr->u.oth;
1270                 else if (l4 == OPA_16B_L4_IB_GLOBAL)
1271                         ohdr = &hdr->u.l.oth;
1272
1273                 slid = hfi1_16B_get_slid(hdr);
1274                 pkey = hfi1_16B_get_pkey(hdr);
1275         } else {
1276                 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1277                 u8 lnh = ib_get_lnh(hdr);
1278
1279                 if (lnh == HFI1_LRH_GRH)
1280                         ohdr = &hdr->u.l.oth;
1281                 else
1282                         ohdr = &hdr->u.oth;
1283                 slid = ib_get_slid(hdr);
1284                 pkey = ib_bth_get_pkey(ohdr);
1285         }
1286
1287         if (likely(l4 != OPA_16B_L4_FM))
1288                 ps->opcode = ib_bth_get_opcode(ohdr);
1289         else
1290                 ps->opcode = IB_OPCODE_UD_SEND_ONLY;
1291
1292         sr = get_send_routine(qp, ps);
1293         ret = egress_pkey_check(dd->pport, slid, pkey,
1294                                 priv->s_sc, qp->s_pkey_index);
1295         if (unlikely(ret)) {
1296                 /*
1297                  * The value we are returning here does not get propagated to
1298                  * the verbs caller. Thus we need to complete the request with
1299                  * error otherwise the caller could be sitting waiting on the
1300                  * completion event. Only do this for PIO. SDMA has its own
1301                  * mechanism for handling the errors. So for SDMA we can just
1302                  * return.
1303                  */
1304                 if (sr == dd->process_pio_send) {
1305                         unsigned long flags;
1306
1307                         hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1308                                   __func__);
1309                         spin_lock_irqsave(&qp->s_lock, flags);
1310                         rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1311                         spin_unlock_irqrestore(&qp->s_lock, flags);
1312                 }
1313                 return -EINVAL;
1314         }
1315         if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1316                 return pio_wait(qp,
1317                                 ps->s_txreq->psc,
1318                                 ps,
1319                                 HFI1_S_WAIT_PIO_DRAIN);
1320         return sr(qp, ps, 0);
1321 }
1322
1323 /**
1324  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1325  * @dd: the device data structure
1326  */
1327 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1328 {
1329         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1330         u32 ver = dd->dc8051_ver;
1331
1332         memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1333
1334         rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1335                 ((u64)(dc8051_ver_min(ver)) << 16) |
1336                 (u64)dc8051_ver_patch(ver);
1337
1338         rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1339                         IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1340                         IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1341                         IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1342                         IB_DEVICE_MEM_MGT_EXTENSIONS |
1343                         IB_DEVICE_RDMA_NETDEV_OPA_VNIC;
1344         rdi->dparms.props.page_size_cap = PAGE_SIZE;
1345         rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1346         rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1347         rdi->dparms.props.hw_ver = dd->minrev;
1348         rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1349         rdi->dparms.props.max_mr_size = U64_MAX;
1350         rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1351         rdi->dparms.props.max_qp = hfi1_max_qps;
1352         rdi->dparms.props.max_qp_wr =
1353                 (hfi1_max_qp_wrs >= HFI1_QP_WQE_INVALID ?
1354                  HFI1_QP_WQE_INVALID - 1 : hfi1_max_qp_wrs);
1355         rdi->dparms.props.max_send_sge = hfi1_max_sges;
1356         rdi->dparms.props.max_recv_sge = hfi1_max_sges;
1357         rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1358         rdi->dparms.props.max_cq = hfi1_max_cqs;
1359         rdi->dparms.props.max_ah = hfi1_max_ahs;
1360         rdi->dparms.props.max_cqe = hfi1_max_cqes;
1361         rdi->dparms.props.max_map_per_fmr = 32767;
1362         rdi->dparms.props.max_pd = hfi1_max_pds;
1363         rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1364         rdi->dparms.props.max_qp_init_rd_atom = 255;
1365         rdi->dparms.props.max_srq = hfi1_max_srqs;
1366         rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1367         rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1368         rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1369         rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1370         rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1371         rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1372         rdi->dparms.props.max_total_mcast_qp_attach =
1373                                         rdi->dparms.props.max_mcast_qp_attach *
1374                                         rdi->dparms.props.max_mcast_grp;
1375 }
1376
1377 static inline u16 opa_speed_to_ib(u16 in)
1378 {
1379         u16 out = 0;
1380
1381         if (in & OPA_LINK_SPEED_25G)
1382                 out |= IB_SPEED_EDR;
1383         if (in & OPA_LINK_SPEED_12_5G)
1384                 out |= IB_SPEED_FDR;
1385
1386         return out;
1387 }
1388
1389 /*
1390  * Convert a single OPA link width (no multiple flags) to an IB value.
1391  * A zero OPA link width means link down, which means the IB width value
1392  * is a don't care.
1393  */
1394 static inline u16 opa_width_to_ib(u16 in)
1395 {
1396         switch (in) {
1397         case OPA_LINK_WIDTH_1X:
1398         /* map 2x and 3x to 1x as they don't exist in IB */
1399         case OPA_LINK_WIDTH_2X:
1400         case OPA_LINK_WIDTH_3X:
1401                 return IB_WIDTH_1X;
1402         default: /* link down or unknown, return our largest width */
1403         case OPA_LINK_WIDTH_4X:
1404                 return IB_WIDTH_4X;
1405         }
1406 }
1407
1408 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1409                       struct ib_port_attr *props)
1410 {
1411         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1412         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1413         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1414         u32 lid = ppd->lid;
1415
1416         /* props being zeroed by the caller, avoid zeroing it here */
1417         props->lid = lid ? lid : 0;
1418         props->lmc = ppd->lmc;
1419         /* OPA logical states match IB logical states */
1420         props->state = driver_lstate(ppd);
1421         props->phys_state = driver_pstate(ppd);
1422         props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1423         props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1424         /* see rate_show() in ib core/sysfs.c */
1425         props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1426         props->max_vl_num = ppd->vls_supported;
1427
1428         /* Once we are a "first class" citizen and have added the OPA MTUs to
1429          * the core we can advertise the larger MTU enum to the ULPs, for now
1430          * advertise only 4K.
1431          *
1432          * Those applications which are either OPA aware or pass the MTU enum
1433          * from the Path Records to us will get the new 8k MTU.  Those that
1434          * attempt to process the MTU enum may fail in various ways.
1435          */
1436         props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1437                                       4096 : hfi1_max_mtu), IB_MTU_4096);
1438         props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1439                 mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
1440
1441         return 0;
1442 }
1443
1444 static int modify_device(struct ib_device *device,
1445                          int device_modify_mask,
1446                          struct ib_device_modify *device_modify)
1447 {
1448         struct hfi1_devdata *dd = dd_from_ibdev(device);
1449         unsigned i;
1450         int ret;
1451
1452         if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1453                                    IB_DEVICE_MODIFY_NODE_DESC)) {
1454                 ret = -EOPNOTSUPP;
1455                 goto bail;
1456         }
1457
1458         if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1459                 memcpy(device->node_desc, device_modify->node_desc,
1460                        IB_DEVICE_NODE_DESC_MAX);
1461                 for (i = 0; i < dd->num_pports; i++) {
1462                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1463
1464                         hfi1_node_desc_chg(ibp);
1465                 }
1466         }
1467
1468         if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1469                 ib_hfi1_sys_image_guid =
1470                         cpu_to_be64(device_modify->sys_image_guid);
1471                 for (i = 0; i < dd->num_pports; i++) {
1472                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1473
1474                         hfi1_sys_guid_chg(ibp);
1475                 }
1476         }
1477
1478         ret = 0;
1479
1480 bail:
1481         return ret;
1482 }
1483
1484 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1485 {
1486         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1487         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1488         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1489         int ret;
1490
1491         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1492                              OPA_LINKDOWN_REASON_UNKNOWN);
1493         ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1494         return ret;
1495 }
1496
1497 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1498                             int guid_index, __be64 *guid)
1499 {
1500         struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1501
1502         if (guid_index >= HFI1_GUIDS_PER_PORT)
1503                 return -EINVAL;
1504
1505         *guid = get_sguid(ibp, guid_index);
1506         return 0;
1507 }
1508
1509 /*
1510  * convert ah port,sl to sc
1511  */
1512 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1513 {
1514         struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1515
1516         return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1517 }
1518
1519 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1520 {
1521         struct hfi1_ibport *ibp;
1522         struct hfi1_pportdata *ppd;
1523         struct hfi1_devdata *dd;
1524         u8 sc5;
1525         u8 sl;
1526
1527         if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1528             !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1529                 return -EINVAL;
1530
1531         /* test the mapping for validity */
1532         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1533         ppd = ppd_from_ibp(ibp);
1534         dd = dd_from_ppd(ppd);
1535
1536         sl = rdma_ah_get_sl(ah_attr);
1537         if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1538                 return -EINVAL;
1539         sl = array_index_nospec(sl, ARRAY_SIZE(ibp->sl_to_sc));
1540
1541         sc5 = ibp->sl_to_sc[sl];
1542         if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1543                 return -EINVAL;
1544         return 0;
1545 }
1546
1547 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1548                                struct rdma_ah_attr *ah_attr,
1549                                struct rvt_ah *ah)
1550 {
1551         struct hfi1_ibport *ibp;
1552         struct hfi1_pportdata *ppd;
1553         struct hfi1_devdata *dd;
1554         u8 sc5;
1555         struct rdma_ah_attr *attr = &ah->attr;
1556
1557         /*
1558          * Do not trust reading anything from rvt_ah at this point as it is not
1559          * done being setup. We can however modify things which we need to set.
1560          */
1561
1562         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1563         ppd = ppd_from_ibp(ibp);
1564         sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1565         hfi1_update_ah_attr(ibdev, attr);
1566         hfi1_make_opa_lid(attr);
1567         dd = dd_from_ppd(ppd);
1568         ah->vl = sc_to_vlt(dd, sc5);
1569         if (ah->vl < num_vls || ah->vl == 15)
1570                 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1571 }
1572
1573 /**
1574  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1575  * @dd: the hfi1_ib device
1576  */
1577 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1578 {
1579         return ARRAY_SIZE(dd->pport[0].pkeys);
1580 }
1581
1582 static void init_ibport(struct hfi1_pportdata *ppd)
1583 {
1584         struct hfi1_ibport *ibp = &ppd->ibport_data;
1585         size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1586         int i;
1587
1588         for (i = 0; i < sz; i++) {
1589                 ibp->sl_to_sc[i] = i;
1590                 ibp->sc_to_sl[i] = i;
1591         }
1592
1593         for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1594                 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1595         timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
1596
1597         spin_lock_init(&ibp->rvp.lock);
1598         /* Set the prefix to the default value (see ch. 4.1.1) */
1599         ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1600         ibp->rvp.sm_lid = 0;
1601         /*
1602          * Below should only set bits defined in OPA PortInfo.CapabilityMask
1603          * and PortInfo.CapabilityMask3
1604          */
1605         ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1606                 IB_PORT_CAP_MASK_NOTICE_SUP;
1607         ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1608         ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1609         ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1610         ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1611         ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1612         ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1613
1614         RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1615         RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1616 }
1617
1618 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1619 {
1620         struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1621         struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1622         u32 ver = dd_from_dev(dev)->dc8051_ver;
1623
1624         snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1625                  dc8051_ver_min(ver), dc8051_ver_patch(ver));
1626 }
1627
1628 static const char * const driver_cntr_names[] = {
1629         /* must be element 0*/
1630         "DRIVER_KernIntr",
1631         "DRIVER_ErrorIntr",
1632         "DRIVER_Tx_Errs",
1633         "DRIVER_Rcv_Errs",
1634         "DRIVER_HW_Errs",
1635         "DRIVER_NoPIOBufs",
1636         "DRIVER_CtxtsOpen",
1637         "DRIVER_RcvLen_Errs",
1638         "DRIVER_EgrBufFull",
1639         "DRIVER_EgrHdrFull"
1640 };
1641
1642 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1643 static const char **dev_cntr_names;
1644 static const char **port_cntr_names;
1645 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1646 static int num_dev_cntrs;
1647 static int num_port_cntrs;
1648 static int cntr_names_initialized;
1649
1650 /*
1651  * Convert a list of names separated by '\n' into an array of NULL terminated
1652  * strings. Optionally some entries can be reserved in the array to hold extra
1653  * external strings.
1654  */
1655 static int init_cntr_names(const char *names_in,
1656                            const size_t names_len,
1657                            int num_extra_names,
1658                            int *num_cntrs,
1659                            const char ***cntr_names)
1660 {
1661         char *names_out, *p, **q;
1662         int i, n;
1663
1664         n = 0;
1665         for (i = 0; i < names_len; i++)
1666                 if (names_in[i] == '\n')
1667                         n++;
1668
1669         names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1670                             GFP_KERNEL);
1671         if (!names_out) {
1672                 *num_cntrs = 0;
1673                 *cntr_names = NULL;
1674                 return -ENOMEM;
1675         }
1676
1677         p = names_out + (n + num_extra_names) * sizeof(char *);
1678         memcpy(p, names_in, names_len);
1679
1680         q = (char **)names_out;
1681         for (i = 0; i < n; i++) {
1682                 q[i] = p;
1683                 p = strchr(p, '\n');
1684                 *p++ = '\0';
1685         }
1686
1687         *num_cntrs = n;
1688         *cntr_names = (const char **)names_out;
1689         return 0;
1690 }
1691
1692 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1693                                             u8 port_num)
1694 {
1695         int i, err;
1696
1697         mutex_lock(&cntr_names_lock);
1698         if (!cntr_names_initialized) {
1699                 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1700
1701                 err = init_cntr_names(dd->cntrnames,
1702                                       dd->cntrnameslen,
1703                                       num_driver_cntrs,
1704                                       &num_dev_cntrs,
1705                                       &dev_cntr_names);
1706                 if (err) {
1707                         mutex_unlock(&cntr_names_lock);
1708                         return NULL;
1709                 }
1710
1711                 for (i = 0; i < num_driver_cntrs; i++)
1712                         dev_cntr_names[num_dev_cntrs + i] =
1713                                 driver_cntr_names[i];
1714
1715                 err = init_cntr_names(dd->portcntrnames,
1716                                       dd->portcntrnameslen,
1717                                       0,
1718                                       &num_port_cntrs,
1719                                       &port_cntr_names);
1720                 if (err) {
1721                         kfree(dev_cntr_names);
1722                         dev_cntr_names = NULL;
1723                         mutex_unlock(&cntr_names_lock);
1724                         return NULL;
1725                 }
1726                 cntr_names_initialized = 1;
1727         }
1728         mutex_unlock(&cntr_names_lock);
1729
1730         if (!port_num)
1731                 return rdma_alloc_hw_stats_struct(
1732                                 dev_cntr_names,
1733                                 num_dev_cntrs + num_driver_cntrs,
1734                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1735         else
1736                 return rdma_alloc_hw_stats_struct(
1737                                 port_cntr_names,
1738                                 num_port_cntrs,
1739                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1740 }
1741
1742 static u64 hfi1_sps_ints(void)
1743 {
1744         unsigned long index, flags;
1745         struct hfi1_devdata *dd;
1746         u64 sps_ints = 0;
1747
1748         xa_lock_irqsave(&hfi1_dev_table, flags);
1749         xa_for_each(&hfi1_dev_table, index, dd) {
1750                 sps_ints += get_all_cpu_total(dd->int_counter);
1751         }
1752         xa_unlock_irqrestore(&hfi1_dev_table, flags);
1753         return sps_ints;
1754 }
1755
1756 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1757                         u8 port, int index)
1758 {
1759         u64 *values;
1760         int count;
1761
1762         if (!port) {
1763                 u64 *stats = (u64 *)&hfi1_stats;
1764                 int i;
1765
1766                 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1767                 values[num_dev_cntrs] = hfi1_sps_ints();
1768                 for (i = 1; i < num_driver_cntrs; i++)
1769                         values[num_dev_cntrs + i] = stats[i];
1770                 count = num_dev_cntrs + num_driver_cntrs;
1771         } else {
1772                 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1773
1774                 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1775                 count = num_port_cntrs;
1776         }
1777
1778         memcpy(stats->value, values, count * sizeof(u64));
1779         return count;
1780 }
1781
1782 static const struct ib_device_ops hfi1_dev_ops = {
1783         .owner = THIS_MODULE,
1784         .driver_id = RDMA_DRIVER_HFI1,
1785
1786         .alloc_hw_stats = alloc_hw_stats,
1787         .alloc_rdma_netdev = hfi1_vnic_alloc_rn,
1788         .get_dev_fw_str = hfi1_get_dev_fw_str,
1789         .get_hw_stats = get_hw_stats,
1790         .init_port = hfi1_create_port_files,
1791         .modify_device = modify_device,
1792         /* keep process mad in the driver */
1793         .process_mad = hfi1_process_mad,
1794 };
1795
1796 /**
1797  * hfi1_register_ib_device - register our device with the infiniband core
1798  * @dd: the device data structure
1799  * Return 0 if successful, errno if unsuccessful.
1800  */
1801 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1802 {
1803         struct hfi1_ibdev *dev = &dd->verbs_dev;
1804         struct ib_device *ibdev = &dev->rdi.ibdev;
1805         struct hfi1_pportdata *ppd = dd->pport;
1806         struct hfi1_ibport *ibp = &ppd->ibport_data;
1807         unsigned i;
1808         int ret;
1809
1810         for (i = 0; i < dd->num_pports; i++)
1811                 init_ibport(ppd + i);
1812
1813         /* Only need to initialize non-zero fields. */
1814
1815         timer_setup(&dev->mem_timer, mem_timer, 0);
1816
1817         seqlock_init(&dev->iowait_lock);
1818         seqlock_init(&dev->txwait_lock);
1819         INIT_LIST_HEAD(&dev->txwait);
1820         INIT_LIST_HEAD(&dev->memwait);
1821
1822         ret = verbs_txreq_init(dev);
1823         if (ret)
1824                 goto err_verbs_txreq;
1825
1826         /* Use first-port GUID as node guid */
1827         ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1828
1829         /*
1830          * The system image GUID is supposed to be the same for all
1831          * HFIs in a single system but since there can be other
1832          * device types in the system, we can't be sure this is unique.
1833          */
1834         if (!ib_hfi1_sys_image_guid)
1835                 ib_hfi1_sys_image_guid = ibdev->node_guid;
1836         ibdev->phys_port_cnt = dd->num_pports;
1837         ibdev->dev.parent = &dd->pcidev->dev;
1838
1839         ib_set_device_ops(ibdev, &hfi1_dev_ops);
1840
1841         strlcpy(ibdev->node_desc, init_utsname()->nodename,
1842                 sizeof(ibdev->node_desc));
1843
1844         /*
1845          * Fill in rvt info object.
1846          */
1847         dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1848         dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1849         dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1850         dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1851         dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1852         dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1853         dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1854         /*
1855          * Fill in rvt info device attributes.
1856          */
1857         hfi1_fill_device_attr(dd);
1858
1859         /* queue pair */
1860         dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1861         dd->verbs_dev.rdi.dparms.qpn_start = 0;
1862         dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1863         dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1864         dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1865         dd->verbs_dev.rdi.dparms.qpn_res_end =
1866         dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1867         dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1868         dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1869         dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1870         dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1871         dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1872                                                 RDMA_CORE_CAP_OPA_AH;
1873         dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1874
1875         dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1876         dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init;
1877         dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1878         dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1879         dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1880         dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1881         dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1882         dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1883         dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1884         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1885         dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1886         dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1887         dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1888         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1889         dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1890         dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1891         dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1892         dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1893         dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1894         dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe;
1895         dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup =
1896                                                 hfi1_comp_vect_mappings_lookup;
1897
1898         /* completeion queue */
1899         dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus;
1900         dd->verbs_dev.rdi.dparms.node = dd->node;
1901
1902         /* misc settings */
1903         dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1904         dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1905         dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1906         dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1907         dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode;
1908         dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold;
1909         dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period;
1910         dd->verbs_dev.rdi.dparms.reserved_operations = 1;
1911         dd->verbs_dev.rdi.dparms.extra_rdma_atomic = HFI1_TID_RDMA_WRITE_CNT;
1912
1913         /* post send table */
1914         dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1915
1916         /* opcode translation table */
1917         dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode;
1918
1919         ppd = dd->pport;
1920         for (i = 0; i < dd->num_pports; i++, ppd++)
1921                 rvt_init_port(&dd->verbs_dev.rdi,
1922                               &ppd->ibport_data.rvp,
1923                               i,
1924                               ppd->pkeys);
1925
1926         rdma_set_device_sysfs_group(&dd->verbs_dev.rdi.ibdev,
1927                                     &ib_hfi1_attr_group);
1928
1929         ret = rvt_register_device(&dd->verbs_dev.rdi);
1930         if (ret)
1931                 goto err_verbs_txreq;
1932
1933         ret = hfi1_verbs_register_sysfs(dd);
1934         if (ret)
1935                 goto err_class;
1936
1937         return ret;
1938
1939 err_class:
1940         rvt_unregister_device(&dd->verbs_dev.rdi);
1941 err_verbs_txreq:
1942         verbs_txreq_exit(dev);
1943         dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1944         return ret;
1945 }
1946
1947 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1948 {
1949         struct hfi1_ibdev *dev = &dd->verbs_dev;
1950
1951         hfi1_verbs_unregister_sysfs(dd);
1952
1953         rvt_unregister_device(&dd->verbs_dev.rdi);
1954
1955         if (!list_empty(&dev->txwait))
1956                 dd_dev_err(dd, "txwait list not empty!\n");
1957         if (!list_empty(&dev->memwait))
1958                 dd_dev_err(dd, "memwait list not empty!\n");
1959
1960         del_timer_sync(&dev->mem_timer);
1961         verbs_txreq_exit(dev);
1962
1963         mutex_lock(&cntr_names_lock);
1964         kfree(dev_cntr_names);
1965         kfree(port_cntr_names);
1966         dev_cntr_names = NULL;
1967         port_cntr_names = NULL;
1968         cntr_names_initialized = 0;
1969         mutex_unlock(&cntr_names_lock);
1970 }
1971
1972 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1973 {
1974         struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1975         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1976         struct ib_header *hdr = packet->hdr;
1977         struct rvt_qp *qp = packet->qp;
1978         u32 lqpn, rqpn = 0;
1979         u16 rlid = 0;
1980         u8 sl, sc5, svc_type;
1981
1982         switch (packet->qp->ibqp.qp_type) {
1983         case IB_QPT_UC:
1984                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1985                 rqpn = qp->remote_qpn;
1986                 svc_type = IB_CC_SVCTYPE_UC;
1987                 break;
1988         case IB_QPT_RC:
1989                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1990                 rqpn = qp->remote_qpn;
1991                 svc_type = IB_CC_SVCTYPE_RC;
1992                 break;
1993         case IB_QPT_SMI:
1994         case IB_QPT_GSI:
1995         case IB_QPT_UD:
1996                 svc_type = IB_CC_SVCTYPE_UD;
1997                 break;
1998         default:
1999                 ibp->rvp.n_pkt_drops++;
2000                 return;
2001         }
2002
2003         sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
2004         sl = ibp->sc_to_sl[sc5];
2005         lqpn = qp->ibqp.qp_num;
2006
2007         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
2008 }