]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/iommu/arm-smmu-v3.c
029fe0cffee7631a5cb495c18b0e089b966f527b
[linux.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0                   0x0
46 #define IDR0_ST_LVL_SHIFT               27
47 #define IDR0_ST_LVL_MASK                0x3
48 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT          24
50 #define IDR0_STALL_MODEL_MASK           0x3
51 #define IDR0_STALL_MODEL_STALL          (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE          (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT             21
54 #define IDR0_TTENDIAN_MASK              0x3
55 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L                       (1 << 19)
59 #define IDR0_VMID16                     (1 << 18)
60 #define IDR0_PRI                        (1 << 16)
61 #define IDR0_SEV                        (1 << 14)
62 #define IDR0_MSI                        (1 << 13)
63 #define IDR0_ASID16                     (1 << 12)
64 #define IDR0_ATS                        (1 << 10)
65 #define IDR0_HYP                        (1 << 9)
66 #define IDR0_COHACC                     (1 << 4)
67 #define IDR0_TTF_SHIFT                  2
68 #define IDR0_TTF_MASK                   0x3
69 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P                        (1 << 1)
72 #define IDR0_S2P                        (1 << 0)
73
74 #define ARM_SMMU_IDR1                   0x4
75 #define IDR1_TABLES_PRESET              (1 << 30)
76 #define IDR1_QUEUES_PRESET              (1 << 29)
77 #define IDR1_REL                        (1 << 28)
78 #define IDR1_CMDQ_SHIFT                 21
79 #define IDR1_CMDQ_MASK                  0x1f
80 #define IDR1_EVTQ_SHIFT                 16
81 #define IDR1_EVTQ_MASK                  0x1f
82 #define IDR1_PRIQ_SHIFT                 11
83 #define IDR1_PRIQ_MASK                  0x1f
84 #define IDR1_SSID_SHIFT                 6
85 #define IDR1_SSID_MASK                  0x1f
86 #define IDR1_SID_SHIFT                  0
87 #define IDR1_SID_MASK                   0x3f
88
89 #define ARM_SMMU_IDR5                   0x14
90 #define IDR5_STALL_MAX_SHIFT            16
91 #define IDR5_STALL_MAX_MASK             0xffff
92 #define IDR5_GRAN64K                    (1 << 6)
93 #define IDR5_GRAN16K                    (1 << 5)
94 #define IDR5_GRAN4K                     (1 << 4)
95 #define IDR5_OAS_SHIFT                  0
96 #define IDR5_OAS_MASK                   0x7
97 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0                    0x20
105 #define CR0_CMDQEN                      (1 << 3)
106 #define CR0_EVTQEN                      (1 << 2)
107 #define CR0_PRIQEN                      (1 << 1)
108 #define CR0_SMMUEN                      (1 << 0)
109
110 #define ARM_SMMU_CR0ACK                 0x24
111
112 #define ARM_SMMU_CR1                    0x28
113 #define CR1_SH_NSH                      0
114 #define CR1_SH_OSH                      2
115 #define CR1_SH_ISH                      3
116 #define CR1_CACHE_NC                    0
117 #define CR1_CACHE_WB                    1
118 #define CR1_CACHE_WT                    2
119 #define CR1_TABLE_SH_SHIFT              10
120 #define CR1_TABLE_OC_SHIFT              8
121 #define CR1_TABLE_IC_SHIFT              6
122 #define CR1_QUEUE_SH_SHIFT              4
123 #define CR1_QUEUE_OC_SHIFT              2
124 #define CR1_QUEUE_IC_SHIFT              0
125
126 #define ARM_SMMU_CR2                    0x2c
127 #define CR2_PTM                         (1 << 2)
128 #define CR2_RECINVSID                   (1 << 1)
129 #define CR2_E2H                         (1 << 0)
130
131 #define ARM_SMMU_GBPA                   0x44
132 #define GBPA_ABORT                      (1 << 20)
133 #define GBPA_UPDATE                     (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL               0x50
136 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK            0x54
141
142 #define ARM_SMMU_GERROR                 0x60
143 #define GERROR_SFM_ERR                  (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
150 #define GERROR_CMDQ_ERR                 (1 << 0)
151 #define GERROR_ERR_MASK                 0xfd
152
153 #define ARM_SMMU_GERRORN                0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
158
159 #define ARM_SMMU_STRTAB_BASE            0x80
160 #define STRTAB_BASE_RA                  (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT          6
162 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
168 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT       16
170 #define STRTAB_BASE_CFG_FMT_MASK        0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE              0x90
175 #define ARM_SMMU_CMDQ_PROD              0x98
176 #define ARM_SMMU_CMDQ_CONS              0x9c
177
178 #define ARM_SMMU_EVTQ_BASE              0xa0
179 #define ARM_SMMU_EVTQ_PROD              0x100a8
180 #define ARM_SMMU_EVTQ_CONS              0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
184
185 #define ARM_SMMU_PRIQ_BASE              0xc0
186 #define ARM_SMMU_PRIQ_PROD              0x100c8
187 #define ARM_SMMU_PRIQ_CONS              0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT             2
194 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT               4
196 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT          0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG                 (1 << 31)
205 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p)                     ((q)->base +                    \
207                                          Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA                      (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT               5
211 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT           0
213 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
214
215 /*
216  * Stream table.
217  *
218  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219  * 2lvl: 128k L1 entries,
220  *       256 lazy entries per table (each table covers a PCI bus)
221  */
222 #define STRTAB_L1_SZ_SHIFT              20
223 #define STRTAB_SPLIT                    8
224
225 #define STRTAB_L1_DESC_DWORDS           1
226 #define STRTAB_L1_DESC_SPAN_SHIFT       0
227 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
229 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS               8
232 #define STRTAB_STE_0_V                  (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT          1
234 #define STRTAB_STE_0_CFG_MASK           0x7UL
235 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT        4
241 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
243 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
245 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
251 #define STRTAB_STE_1_S1C_SH_NSH         0UL
252 #define STRTAB_STE_1_S1C_SH_OSH         2UL
253 #define STRTAB_STE_1_S1C_SH_ISH         3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT        2
255 #define STRTAB_STE_1_S1COR_SHIFT        4
256 #define STRTAB_STE_1_S1CSH_SHIFT        6
257
258 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT           0UL
261 #define STRTAB_STE_1_EATS_TRANS         1UL
262 #define STRTAB_STE_1_EATS_S1CHK         2UL
263 #define STRTAB_STE_1_EATS_SHIFT         28
264
265 #define STRTAB_STE_1_STRW_NSEL1         0UL
266 #define STRTAB_STE_1_STRW_EL2           2UL
267 #define STRTAB_STE_1_STRW_SHIFT         30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT        44
271
272 #define STRTAB_STE_2_S2VMID_SHIFT       0
273 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
274 #define STRTAB_STE_2_VTCR_SHIFT         32
275 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
276 #define STRTAB_STE_2_S2AA64             (1UL << 51)
277 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
278 #define STRTAB_STE_2_S2PTW              (1UL << 54)
279 #define STRTAB_STE_2_S2R                (1UL << 58)
280
281 #define STRTAB_STE_3_S2TTB_SHIFT        4
282 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
283
284 /* Context descriptor (stage-1 only) */
285 #define CTXDESC_CD_DWORDS               8
286 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
287 #define ARM64_TCR_T0SZ_SHIFT            0
288 #define ARM64_TCR_T0SZ_MASK             0x1fUL
289 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
290 #define ARM64_TCR_TG0_SHIFT             14
291 #define ARM64_TCR_TG0_MASK              0x3UL
292 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
293 #define ARM64_TCR_IRGN0_SHIFT           8
294 #define ARM64_TCR_IRGN0_MASK            0x3UL
295 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
296 #define ARM64_TCR_ORGN0_SHIFT           10
297 #define ARM64_TCR_ORGN0_MASK            0x3UL
298 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
299 #define ARM64_TCR_SH0_SHIFT             12
300 #define ARM64_TCR_SH0_MASK              0x3UL
301 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
302 #define ARM64_TCR_EPD0_SHIFT            7
303 #define ARM64_TCR_EPD0_MASK             0x1UL
304 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
305 #define ARM64_TCR_EPD1_SHIFT            23
306 #define ARM64_TCR_EPD1_MASK             0x1UL
307
308 #define CTXDESC_CD_0_ENDI               (1UL << 15)
309 #define CTXDESC_CD_0_V                  (1UL << 31)
310
311 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
312 #define ARM64_TCR_IPS_SHIFT             32
313 #define ARM64_TCR_IPS_MASK              0x7UL
314 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
315 #define ARM64_TCR_TBI0_SHIFT            37
316 #define ARM64_TCR_TBI0_MASK             0x1UL
317
318 #define CTXDESC_CD_0_AA64               (1UL << 41)
319 #define CTXDESC_CD_0_R                  (1UL << 45)
320 #define CTXDESC_CD_0_A                  (1UL << 46)
321 #define CTXDESC_CD_0_ASET_SHIFT         47
322 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
323 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
324 #define CTXDESC_CD_0_ASID_SHIFT         48
325 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
326
327 #define CTXDESC_CD_1_TTB0_SHIFT         4
328 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
329
330 #define CTXDESC_CD_3_MAIR_SHIFT         0
331
332 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
333 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
334         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
335          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
336
337 /* Command queue */
338 #define CMDQ_ENT_DWORDS                 2
339 #define CMDQ_MAX_SZ_SHIFT               8
340
341 #define CMDQ_ERR_SHIFT                  24
342 #define CMDQ_ERR_MASK                   0x7f
343 #define CMDQ_ERR_CERROR_NONE_IDX        0
344 #define CMDQ_ERR_CERROR_ILL_IDX         1
345 #define CMDQ_ERR_CERROR_ABT_IDX         2
346
347 #define CMDQ_0_OP_SHIFT                 0
348 #define CMDQ_0_OP_MASK                  0xffUL
349 #define CMDQ_0_SSV                      (1UL << 11)
350
351 #define CMDQ_PREFETCH_0_SID_SHIFT       32
352 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
353 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
354
355 #define CMDQ_CFGI_0_SID_SHIFT           32
356 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
357 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
358 #define CMDQ_CFGI_1_RANGE_SHIFT         0
359 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
360
361 #define CMDQ_TLBI_0_VMID_SHIFT          32
362 #define CMDQ_TLBI_0_ASID_SHIFT          48
363 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
364 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
365 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
366
367 #define CMDQ_PRI_0_SSID_SHIFT           12
368 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
369 #define CMDQ_PRI_0_SID_SHIFT            32
370 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
371 #define CMDQ_PRI_1_GRPID_SHIFT          0
372 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
373 #define CMDQ_PRI_1_RESP_SHIFT           12
374 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
375 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
376 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
377
378 #define CMDQ_SYNC_0_CS_SHIFT            12
379 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
380 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
381
382 /* Event queue */
383 #define EVTQ_ENT_DWORDS                 4
384 #define EVTQ_MAX_SZ_SHIFT               7
385
386 #define EVTQ_0_ID_SHIFT                 0
387 #define EVTQ_0_ID_MASK                  0xffUL
388
389 /* PRI queue */
390 #define PRIQ_ENT_DWORDS                 2
391 #define PRIQ_MAX_SZ_SHIFT               8
392
393 #define PRIQ_0_SID_SHIFT                0
394 #define PRIQ_0_SID_MASK                 0xffffffffUL
395 #define PRIQ_0_SSID_SHIFT               32
396 #define PRIQ_0_SSID_MASK                0xfffffUL
397 #define PRIQ_0_PERM_PRIV                (1UL << 58)
398 #define PRIQ_0_PERM_EXEC                (1UL << 59)
399 #define PRIQ_0_PERM_READ                (1UL << 60)
400 #define PRIQ_0_PERM_WRITE               (1UL << 61)
401 #define PRIQ_0_PRG_LAST                 (1UL << 62)
402 #define PRIQ_0_SSID_V                   (1UL << 63)
403
404 #define PRIQ_1_PRG_IDX_SHIFT            0
405 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
406 #define PRIQ_1_ADDR_SHIFT               12
407 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
408
409 /* High-level queue structures */
410 #define ARM_SMMU_POLL_TIMEOUT_US        100
411 #define ARM_SMMU_CMDQ_DRAIN_TIMEOUT_US  1000000 /* 1s! */
412
413 #define MSI_IOVA_BASE                   0x8000000
414 #define MSI_IOVA_LENGTH                 0x100000
415
416 static bool disable_bypass;
417 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
418 MODULE_PARM_DESC(disable_bypass,
419         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
420
421 enum pri_resp {
422         PRI_RESP_DENY,
423         PRI_RESP_FAIL,
424         PRI_RESP_SUCC,
425 };
426
427 enum arm_smmu_msi_index {
428         EVTQ_MSI_INDEX,
429         GERROR_MSI_INDEX,
430         PRIQ_MSI_INDEX,
431         ARM_SMMU_MAX_MSIS,
432 };
433
434 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
435         [EVTQ_MSI_INDEX] = {
436                 ARM_SMMU_EVTQ_IRQ_CFG0,
437                 ARM_SMMU_EVTQ_IRQ_CFG1,
438                 ARM_SMMU_EVTQ_IRQ_CFG2,
439         },
440         [GERROR_MSI_INDEX] = {
441                 ARM_SMMU_GERROR_IRQ_CFG0,
442                 ARM_SMMU_GERROR_IRQ_CFG1,
443                 ARM_SMMU_GERROR_IRQ_CFG2,
444         },
445         [PRIQ_MSI_INDEX] = {
446                 ARM_SMMU_PRIQ_IRQ_CFG0,
447                 ARM_SMMU_PRIQ_IRQ_CFG1,
448                 ARM_SMMU_PRIQ_IRQ_CFG2,
449         },
450 };
451
452 struct arm_smmu_cmdq_ent {
453         /* Common fields */
454         u8                              opcode;
455         bool                            substream_valid;
456
457         /* Command-specific fields */
458         union {
459                 #define CMDQ_OP_PREFETCH_CFG    0x1
460                 struct {
461                         u32                     sid;
462                         u8                      size;
463                         u64                     addr;
464                 } prefetch;
465
466                 #define CMDQ_OP_CFGI_STE        0x3
467                 #define CMDQ_OP_CFGI_ALL        0x4
468                 struct {
469                         u32                     sid;
470                         union {
471                                 bool            leaf;
472                                 u8              span;
473                         };
474                 } cfgi;
475
476                 #define CMDQ_OP_TLBI_NH_ASID    0x11
477                 #define CMDQ_OP_TLBI_NH_VA      0x12
478                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
479                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
480                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
481                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
482                 struct {
483                         u16                     asid;
484                         u16                     vmid;
485                         bool                    leaf;
486                         u64                     addr;
487                 } tlbi;
488
489                 #define CMDQ_OP_PRI_RESP        0x41
490                 struct {
491                         u32                     sid;
492                         u32                     ssid;
493                         u16                     grpid;
494                         enum pri_resp           resp;
495                 } pri;
496
497                 #define CMDQ_OP_CMD_SYNC        0x46
498         };
499 };
500
501 struct arm_smmu_queue {
502         int                             irq; /* Wired interrupt */
503
504         __le64                          *base;
505         dma_addr_t                      base_dma;
506         u64                             q_base;
507
508         size_t                          ent_dwords;
509         u32                             max_n_shift;
510         u32                             prod;
511         u32                             cons;
512
513         u32 __iomem                     *prod_reg;
514         u32 __iomem                     *cons_reg;
515 };
516
517 struct arm_smmu_cmdq {
518         struct arm_smmu_queue           q;
519         spinlock_t                      lock;
520 };
521
522 struct arm_smmu_evtq {
523         struct arm_smmu_queue           q;
524         u32                             max_stalls;
525 };
526
527 struct arm_smmu_priq {
528         struct arm_smmu_queue           q;
529 };
530
531 /* High-level stream table and context descriptor structures */
532 struct arm_smmu_strtab_l1_desc {
533         u8                              span;
534
535         __le64                          *l2ptr;
536         dma_addr_t                      l2ptr_dma;
537 };
538
539 struct arm_smmu_s1_cfg {
540         __le64                          *cdptr;
541         dma_addr_t                      cdptr_dma;
542
543         struct arm_smmu_ctx_desc {
544                 u16     asid;
545                 u64     ttbr;
546                 u64     tcr;
547                 u64     mair;
548         }                               cd;
549 };
550
551 struct arm_smmu_s2_cfg {
552         u16                             vmid;
553         u64                             vttbr;
554         u64                             vtcr;
555 };
556
557 struct arm_smmu_strtab_ent {
558         /*
559          * An STE is "assigned" if the master emitting the corresponding SID
560          * is attached to a domain. The behaviour of an unassigned STE is
561          * determined by the disable_bypass parameter, whereas an assigned
562          * STE behaves according to s1_cfg/s2_cfg, which themselves are
563          * configured according to the domain type.
564          */
565         bool                            assigned;
566         struct arm_smmu_s1_cfg          *s1_cfg;
567         struct arm_smmu_s2_cfg          *s2_cfg;
568 };
569
570 struct arm_smmu_strtab_cfg {
571         __le64                          *strtab;
572         dma_addr_t                      strtab_dma;
573         struct arm_smmu_strtab_l1_desc  *l1_desc;
574         unsigned int                    num_l1_ents;
575
576         u64                             strtab_base;
577         u32                             strtab_base_cfg;
578 };
579
580 /* An SMMUv3 instance */
581 struct arm_smmu_device {
582         struct device                   *dev;
583         void __iomem                    *base;
584
585 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
586 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
587 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
588 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
589 #define ARM_SMMU_FEAT_PRI               (1 << 4)
590 #define ARM_SMMU_FEAT_ATS               (1 << 5)
591 #define ARM_SMMU_FEAT_SEV               (1 << 6)
592 #define ARM_SMMU_FEAT_MSI               (1 << 7)
593 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
594 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
595 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
596 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
597 #define ARM_SMMU_FEAT_HYP               (1 << 12)
598         u32                             features;
599
600 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
601         u32                             options;
602
603         struct arm_smmu_cmdq            cmdq;
604         struct arm_smmu_evtq            evtq;
605         struct arm_smmu_priq            priq;
606
607         int                             gerr_irq;
608
609         unsigned long                   ias; /* IPA */
610         unsigned long                   oas; /* PA */
611         unsigned long                   pgsize_bitmap;
612
613 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
614         unsigned int                    asid_bits;
615         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
616
617 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
618         unsigned int                    vmid_bits;
619         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
620
621         unsigned int                    ssid_bits;
622         unsigned int                    sid_bits;
623
624         struct arm_smmu_strtab_cfg      strtab_cfg;
625
626         /* IOMMU core code handle */
627         struct iommu_device             iommu;
628 };
629
630 /* SMMU private data for each master */
631 struct arm_smmu_master_data {
632         struct arm_smmu_device          *smmu;
633         struct arm_smmu_strtab_ent      ste;
634 };
635
636 /* SMMU private data for an IOMMU domain */
637 enum arm_smmu_domain_stage {
638         ARM_SMMU_DOMAIN_S1 = 0,
639         ARM_SMMU_DOMAIN_S2,
640         ARM_SMMU_DOMAIN_NESTED,
641         ARM_SMMU_DOMAIN_BYPASS,
642 };
643
644 struct arm_smmu_domain {
645         struct arm_smmu_device          *smmu;
646         struct mutex                    init_mutex; /* Protects smmu pointer */
647
648         struct io_pgtable_ops           *pgtbl_ops;
649         spinlock_t                      pgtbl_lock;
650
651         enum arm_smmu_domain_stage      stage;
652         union {
653                 struct arm_smmu_s1_cfg  s1_cfg;
654                 struct arm_smmu_s2_cfg  s2_cfg;
655         };
656
657         struct iommu_domain             domain;
658 };
659
660 struct arm_smmu_option_prop {
661         u32 opt;
662         const char *prop;
663 };
664
665 static struct arm_smmu_option_prop arm_smmu_options[] = {
666         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
667         { 0, NULL},
668 };
669
670 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
671 {
672         return container_of(dom, struct arm_smmu_domain, domain);
673 }
674
675 static void parse_driver_options(struct arm_smmu_device *smmu)
676 {
677         int i = 0;
678
679         do {
680                 if (of_property_read_bool(smmu->dev->of_node,
681                                                 arm_smmu_options[i].prop)) {
682                         smmu->options |= arm_smmu_options[i].opt;
683                         dev_notice(smmu->dev, "option %s\n",
684                                 arm_smmu_options[i].prop);
685                 }
686         } while (arm_smmu_options[++i].opt);
687 }
688
689 /* Low-level queue manipulation functions */
690 static bool queue_full(struct arm_smmu_queue *q)
691 {
692         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
693                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
694 }
695
696 static bool queue_empty(struct arm_smmu_queue *q)
697 {
698         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
699                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
700 }
701
702 static void queue_sync_cons(struct arm_smmu_queue *q)
703 {
704         q->cons = readl_relaxed(q->cons_reg);
705 }
706
707 static void queue_inc_cons(struct arm_smmu_queue *q)
708 {
709         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
710
711         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
712         writel(q->cons, q->cons_reg);
713 }
714
715 static int queue_sync_prod(struct arm_smmu_queue *q)
716 {
717         int ret = 0;
718         u32 prod = readl_relaxed(q->prod_reg);
719
720         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
721                 ret = -EOVERFLOW;
722
723         q->prod = prod;
724         return ret;
725 }
726
727 static void queue_inc_prod(struct arm_smmu_queue *q)
728 {
729         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
730
731         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
732         writel(q->prod, q->prod_reg);
733 }
734
735 /*
736  * Wait for the SMMU to consume items. If drain is true, wait until the queue
737  * is empty. Otherwise, wait until there is at least one free slot.
738  */
739 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
740 {
741         ktime_t timeout;
742         unsigned int delay = 1;
743
744         /* Wait longer if it's queue drain */
745         timeout = ktime_add_us(ktime_get(), drain ?
746                                             ARM_SMMU_CMDQ_DRAIN_TIMEOUT_US :
747                                             ARM_SMMU_POLL_TIMEOUT_US);
748
749         while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
750                 if (ktime_compare(ktime_get(), timeout) > 0)
751                         return -ETIMEDOUT;
752
753                 if (wfe) {
754                         wfe();
755                 } else {
756                         cpu_relax();
757                         udelay(delay);
758                         delay *= 2;
759                 }
760         }
761
762         return 0;
763 }
764
765 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
766 {
767         int i;
768
769         for (i = 0; i < n_dwords; ++i)
770                 *dst++ = cpu_to_le64(*src++);
771 }
772
773 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
774 {
775         if (queue_full(q))
776                 return -ENOSPC;
777
778         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
779         queue_inc_prod(q);
780         return 0;
781 }
782
783 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
784 {
785         int i;
786
787         for (i = 0; i < n_dwords; ++i)
788                 *dst++ = le64_to_cpu(*src++);
789 }
790
791 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
792 {
793         if (queue_empty(q))
794                 return -EAGAIN;
795
796         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
797         queue_inc_cons(q);
798         return 0;
799 }
800
801 /* High-level queue accessors */
802 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
803 {
804         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
805         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
806
807         switch (ent->opcode) {
808         case CMDQ_OP_TLBI_EL2_ALL:
809         case CMDQ_OP_TLBI_NSNH_ALL:
810                 break;
811         case CMDQ_OP_PREFETCH_CFG:
812                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
813                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
814                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
815                 break;
816         case CMDQ_OP_CFGI_STE:
817                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
818                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
819                 break;
820         case CMDQ_OP_CFGI_ALL:
821                 /* Cover the entire SID range */
822                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
823                 break;
824         case CMDQ_OP_TLBI_NH_VA:
825                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
826                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
827                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
828                 break;
829         case CMDQ_OP_TLBI_S2_IPA:
830                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
831                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
832                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
833                 break;
834         case CMDQ_OP_TLBI_NH_ASID:
835                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
836                 /* Fallthrough */
837         case CMDQ_OP_TLBI_S12_VMALL:
838                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
839                 break;
840         case CMDQ_OP_PRI_RESP:
841                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
842                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
843                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
844                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
845                 switch (ent->pri.resp) {
846                 case PRI_RESP_DENY:
847                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
848                         break;
849                 case PRI_RESP_FAIL:
850                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
851                         break;
852                 case PRI_RESP_SUCC:
853                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
854                         break;
855                 default:
856                         return -EINVAL;
857                 }
858                 break;
859         case CMDQ_OP_CMD_SYNC:
860                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
861                 break;
862         default:
863                 return -ENOENT;
864         }
865
866         return 0;
867 }
868
869 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
870 {
871         static const char *cerror_str[] = {
872                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
873                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
874                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
875         };
876
877         int i;
878         u64 cmd[CMDQ_ENT_DWORDS];
879         struct arm_smmu_queue *q = &smmu->cmdq.q;
880         u32 cons = readl_relaxed(q->cons_reg);
881         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
882         struct arm_smmu_cmdq_ent cmd_sync = {
883                 .opcode = CMDQ_OP_CMD_SYNC,
884         };
885
886         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
887                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
888
889         switch (idx) {
890         case CMDQ_ERR_CERROR_ABT_IDX:
891                 dev_err(smmu->dev, "retrying command fetch\n");
892         case CMDQ_ERR_CERROR_NONE_IDX:
893                 return;
894         case CMDQ_ERR_CERROR_ILL_IDX:
895                 /* Fallthrough */
896         default:
897                 break;
898         }
899
900         /*
901          * We may have concurrent producers, so we need to be careful
902          * not to touch any of the shadow cmdq state.
903          */
904         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
905         dev_err(smmu->dev, "skipping command in error state:\n");
906         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
907                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
908
909         /* Convert the erroneous command into a CMD_SYNC */
910         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
911                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
912                 return;
913         }
914
915         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
916 }
917
918 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
919                                     struct arm_smmu_cmdq_ent *ent)
920 {
921         u64 cmd[CMDQ_ENT_DWORDS];
922         unsigned long flags;
923         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
924         struct arm_smmu_queue *q = &smmu->cmdq.q;
925
926         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
927                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
928                          ent->opcode);
929                 return;
930         }
931
932         spin_lock_irqsave(&smmu->cmdq.lock, flags);
933         while (queue_insert_raw(q, cmd) == -ENOSPC) {
934                 if (queue_poll_cons(q, false, wfe))
935                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
936         }
937
938         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
939                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
940         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
941 }
942
943 /* Context descriptor manipulation functions */
944 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
945 {
946         u64 val = 0;
947
948         /* Repack the TCR. Just care about TTBR0 for now */
949         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
950         val |= ARM_SMMU_TCR2CD(tcr, TG0);
951         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
952         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
953         val |= ARM_SMMU_TCR2CD(tcr, SH0);
954         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
955         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
956         val |= ARM_SMMU_TCR2CD(tcr, IPS);
957         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
958
959         return val;
960 }
961
962 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
963                                     struct arm_smmu_s1_cfg *cfg)
964 {
965         u64 val;
966
967         /*
968          * We don't need to issue any invalidation here, as we'll invalidate
969          * the STE when installing the new entry anyway.
970          */
971         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
972 #ifdef __BIG_ENDIAN
973               CTXDESC_CD_0_ENDI |
974 #endif
975               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
976               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
977               CTXDESC_CD_0_V;
978         cfg->cdptr[0] = cpu_to_le64(val);
979
980         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
981         cfg->cdptr[1] = cpu_to_le64(val);
982
983         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
984 }
985
986 /* Stream table manipulation functions */
987 static void
988 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
989 {
990         u64 val = 0;
991
992         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
993                 << STRTAB_L1_DESC_SPAN_SHIFT;
994         val |= desc->l2ptr_dma &
995                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
996
997         *dst = cpu_to_le64(val);
998 }
999
1000 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
1001 {
1002         struct arm_smmu_cmdq_ent cmd = {
1003                 .opcode = CMDQ_OP_CFGI_STE,
1004                 .cfgi   = {
1005                         .sid    = sid,
1006                         .leaf   = true,
1007                 },
1008         };
1009
1010         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1011         cmd.opcode = CMDQ_OP_CMD_SYNC;
1012         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1013 }
1014
1015 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
1016                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
1017 {
1018         /*
1019          * This is hideously complicated, but we only really care about
1020          * three cases at the moment:
1021          *
1022          * 1. Invalid (all zero) -> bypass/fault (init)
1023          * 2. Bypass/fault -> translation/bypass (attach)
1024          * 3. Translation/bypass -> bypass/fault (detach)
1025          *
1026          * Given that we can't update the STE atomically and the SMMU
1027          * doesn't read the thing in a defined order, that leaves us
1028          * with the following maintenance requirements:
1029          *
1030          * 1. Update Config, return (init time STEs aren't live)
1031          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1032          * 3. Update Config, sync
1033          */
1034         u64 val = le64_to_cpu(dst[0]);
1035         bool ste_live = false;
1036         struct arm_smmu_cmdq_ent prefetch_cmd = {
1037                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1038                 .prefetch       = {
1039                         .sid    = sid,
1040                 },
1041         };
1042
1043         if (val & STRTAB_STE_0_V) {
1044                 u64 cfg;
1045
1046                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1047                 switch (cfg) {
1048                 case STRTAB_STE_0_CFG_BYPASS:
1049                         break;
1050                 case STRTAB_STE_0_CFG_S1_TRANS:
1051                 case STRTAB_STE_0_CFG_S2_TRANS:
1052                         ste_live = true;
1053                         break;
1054                 case STRTAB_STE_0_CFG_ABORT:
1055                         if (disable_bypass)
1056                                 break;
1057                 default:
1058                         BUG(); /* STE corruption */
1059                 }
1060         }
1061
1062         /* Nuke the existing STE_0 value, as we're going to rewrite it */
1063         val = STRTAB_STE_0_V;
1064
1065         /* Bypass/fault */
1066         if (!ste->assigned || !(ste->s1_cfg || ste->s2_cfg)) {
1067                 if (!ste->assigned && disable_bypass)
1068                         val |= STRTAB_STE_0_CFG_ABORT;
1069                 else
1070                         val |= STRTAB_STE_0_CFG_BYPASS;
1071
1072                 dst[0] = cpu_to_le64(val);
1073                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1074                          << STRTAB_STE_1_SHCFG_SHIFT);
1075                 dst[2] = 0; /* Nuke the VMID */
1076                 if (ste_live)
1077                         arm_smmu_sync_ste_for_sid(smmu, sid);
1078                 return;
1079         }
1080
1081         if (ste->s1_cfg) {
1082                 BUG_ON(ste_live);
1083                 dst[1] = cpu_to_le64(
1084                          STRTAB_STE_1_S1C_CACHE_WBRA
1085                          << STRTAB_STE_1_S1CIR_SHIFT |
1086                          STRTAB_STE_1_S1C_CACHE_WBRA
1087                          << STRTAB_STE_1_S1COR_SHIFT |
1088                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1089 #ifdef CONFIG_PCI_ATS
1090                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1091 #endif
1092                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1093
1094                 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1095                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1096
1097                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1098                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1099                         STRTAB_STE_0_CFG_S1_TRANS;
1100         }
1101
1102         if (ste->s2_cfg) {
1103                 BUG_ON(ste_live);
1104                 dst[2] = cpu_to_le64(
1105                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1106                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1107                           << STRTAB_STE_2_VTCR_SHIFT |
1108 #ifdef __BIG_ENDIAN
1109                          STRTAB_STE_2_S2ENDI |
1110 #endif
1111                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1112                          STRTAB_STE_2_S2R);
1113
1114                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1115                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1116
1117                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1118         }
1119
1120         arm_smmu_sync_ste_for_sid(smmu, sid);
1121         dst[0] = cpu_to_le64(val);
1122         arm_smmu_sync_ste_for_sid(smmu, sid);
1123
1124         /* It's likely that we'll want to use the new STE soon */
1125         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1126                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1127 }
1128
1129 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1130 {
1131         unsigned int i;
1132         struct arm_smmu_strtab_ent ste = { .assigned = false };
1133
1134         for (i = 0; i < nent; ++i) {
1135                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1136                 strtab += STRTAB_STE_DWORDS;
1137         }
1138 }
1139
1140 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1141 {
1142         size_t size;
1143         void *strtab;
1144         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1145         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1146
1147         if (desc->l2ptr)
1148                 return 0;
1149
1150         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1151         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1152
1153         desc->span = STRTAB_SPLIT + 1;
1154         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1155                                           GFP_KERNEL | __GFP_ZERO);
1156         if (!desc->l2ptr) {
1157                 dev_err(smmu->dev,
1158                         "failed to allocate l2 stream table for SID %u\n",
1159                         sid);
1160                 return -ENOMEM;
1161         }
1162
1163         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1164         arm_smmu_write_strtab_l1_desc(strtab, desc);
1165         return 0;
1166 }
1167
1168 /* IRQ and event handlers */
1169 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1170 {
1171         int i;
1172         struct arm_smmu_device *smmu = dev;
1173         struct arm_smmu_queue *q = &smmu->evtq.q;
1174         u64 evt[EVTQ_ENT_DWORDS];
1175
1176         do {
1177                 while (!queue_remove_raw(q, evt)) {
1178                         u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1179
1180                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1181                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1182                                 dev_info(smmu->dev, "\t0x%016llx\n",
1183                                          (unsigned long long)evt[i]);
1184
1185                 }
1186
1187                 /*
1188                  * Not much we can do on overflow, so scream and pretend we're
1189                  * trying harder.
1190                  */
1191                 if (queue_sync_prod(q) == -EOVERFLOW)
1192                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1193         } while (!queue_empty(q));
1194
1195         /* Sync our overflow flag, as we believe we're up to speed */
1196         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1197         return IRQ_HANDLED;
1198 }
1199
1200 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1201 {
1202         u32 sid, ssid;
1203         u16 grpid;
1204         bool ssv, last;
1205
1206         sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1207         ssv = evt[0] & PRIQ_0_SSID_V;
1208         ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1209         last = evt[0] & PRIQ_0_PRG_LAST;
1210         grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1211
1212         dev_info(smmu->dev, "unexpected PRI request received:\n");
1213         dev_info(smmu->dev,
1214                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1215                  sid, ssid, grpid, last ? "L" : "",
1216                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1217                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1218                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1219                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1220                  evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1221
1222         if (last) {
1223                 struct arm_smmu_cmdq_ent cmd = {
1224                         .opcode                 = CMDQ_OP_PRI_RESP,
1225                         .substream_valid        = ssv,
1226                         .pri                    = {
1227                                 .sid    = sid,
1228                                 .ssid   = ssid,
1229                                 .grpid  = grpid,
1230                                 .resp   = PRI_RESP_DENY,
1231                         },
1232                 };
1233
1234                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1235         }
1236 }
1237
1238 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1239 {
1240         struct arm_smmu_device *smmu = dev;
1241         struct arm_smmu_queue *q = &smmu->priq.q;
1242         u64 evt[PRIQ_ENT_DWORDS];
1243
1244         do {
1245                 while (!queue_remove_raw(q, evt))
1246                         arm_smmu_handle_ppr(smmu, evt);
1247
1248                 if (queue_sync_prod(q) == -EOVERFLOW)
1249                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1250         } while (!queue_empty(q));
1251
1252         /* Sync our overflow flag, as we believe we're up to speed */
1253         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1254         return IRQ_HANDLED;
1255 }
1256
1257 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1258 {
1259         /* We don't actually use CMD_SYNC interrupts for anything */
1260         return IRQ_HANDLED;
1261 }
1262
1263 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1264
1265 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1266 {
1267         u32 gerror, gerrorn, active;
1268         struct arm_smmu_device *smmu = dev;
1269
1270         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1271         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1272
1273         active = gerror ^ gerrorn;
1274         if (!(active & GERROR_ERR_MASK))
1275                 return IRQ_NONE; /* No errors pending */
1276
1277         dev_warn(smmu->dev,
1278                  "unexpected global error reported (0x%08x), this could be serious\n",
1279                  active);
1280
1281         if (active & GERROR_SFM_ERR) {
1282                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1283                 arm_smmu_device_disable(smmu);
1284         }
1285
1286         if (active & GERROR_MSI_GERROR_ABT_ERR)
1287                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1288
1289         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1290                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1291
1292         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1293                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1294
1295         if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1296                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1297                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1298         }
1299
1300         if (active & GERROR_PRIQ_ABT_ERR)
1301                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1302
1303         if (active & GERROR_EVTQ_ABT_ERR)
1304                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1305
1306         if (active & GERROR_CMDQ_ERR)
1307                 arm_smmu_cmdq_skip_err(smmu);
1308
1309         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1310         return IRQ_HANDLED;
1311 }
1312
1313 /* IO_PGTABLE API */
1314 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1315 {
1316         struct arm_smmu_cmdq_ent cmd;
1317
1318         cmd.opcode = CMDQ_OP_CMD_SYNC;
1319         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1320 }
1321
1322 static void arm_smmu_tlb_sync(void *cookie)
1323 {
1324         struct arm_smmu_domain *smmu_domain = cookie;
1325         __arm_smmu_tlb_sync(smmu_domain->smmu);
1326 }
1327
1328 static void arm_smmu_tlb_inv_context(void *cookie)
1329 {
1330         struct arm_smmu_domain *smmu_domain = cookie;
1331         struct arm_smmu_device *smmu = smmu_domain->smmu;
1332         struct arm_smmu_cmdq_ent cmd;
1333
1334         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1335                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1336                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1337                 cmd.tlbi.vmid   = 0;
1338         } else {
1339                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1340                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1341         }
1342
1343         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1344         __arm_smmu_tlb_sync(smmu);
1345 }
1346
1347 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1348                                           size_t granule, bool leaf, void *cookie)
1349 {
1350         struct arm_smmu_domain *smmu_domain = cookie;
1351         struct arm_smmu_device *smmu = smmu_domain->smmu;
1352         struct arm_smmu_cmdq_ent cmd = {
1353                 .tlbi = {
1354                         .leaf   = leaf,
1355                         .addr   = iova,
1356                 },
1357         };
1358
1359         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1360                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1361                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1362         } else {
1363                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1364                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1365         }
1366
1367         do {
1368                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1369                 cmd.tlbi.addr += granule;
1370         } while (size -= granule);
1371 }
1372
1373 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1374         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1375         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1376         .tlb_sync       = arm_smmu_tlb_sync,
1377 };
1378
1379 /* IOMMU API */
1380 static bool arm_smmu_capable(enum iommu_cap cap)
1381 {
1382         switch (cap) {
1383         case IOMMU_CAP_CACHE_COHERENCY:
1384                 return true;
1385         case IOMMU_CAP_NOEXEC:
1386                 return true;
1387         default:
1388                 return false;
1389         }
1390 }
1391
1392 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1393 {
1394         struct arm_smmu_domain *smmu_domain;
1395
1396         if (type != IOMMU_DOMAIN_UNMANAGED &&
1397             type != IOMMU_DOMAIN_DMA &&
1398             type != IOMMU_DOMAIN_IDENTITY)
1399                 return NULL;
1400
1401         /*
1402          * Allocate the domain and initialise some of its data structures.
1403          * We can't really do anything meaningful until we've added a
1404          * master.
1405          */
1406         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1407         if (!smmu_domain)
1408                 return NULL;
1409
1410         if (type == IOMMU_DOMAIN_DMA &&
1411             iommu_get_dma_cookie(&smmu_domain->domain)) {
1412                 kfree(smmu_domain);
1413                 return NULL;
1414         }
1415
1416         mutex_init(&smmu_domain->init_mutex);
1417         spin_lock_init(&smmu_domain->pgtbl_lock);
1418         return &smmu_domain->domain;
1419 }
1420
1421 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1422 {
1423         int idx, size = 1 << span;
1424
1425         do {
1426                 idx = find_first_zero_bit(map, size);
1427                 if (idx == size)
1428                         return -ENOSPC;
1429         } while (test_and_set_bit(idx, map));
1430
1431         return idx;
1432 }
1433
1434 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1435 {
1436         clear_bit(idx, map);
1437 }
1438
1439 static void arm_smmu_domain_free(struct iommu_domain *domain)
1440 {
1441         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1442         struct arm_smmu_device *smmu = smmu_domain->smmu;
1443
1444         iommu_put_dma_cookie(domain);
1445         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1446
1447         /* Free the CD and ASID, if we allocated them */
1448         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1449                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1450
1451                 if (cfg->cdptr) {
1452                         dmam_free_coherent(smmu_domain->smmu->dev,
1453                                            CTXDESC_CD_DWORDS << 3,
1454                                            cfg->cdptr,
1455                                            cfg->cdptr_dma);
1456
1457                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1458                 }
1459         } else {
1460                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1461                 if (cfg->vmid)
1462                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1463         }
1464
1465         kfree(smmu_domain);
1466 }
1467
1468 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1469                                        struct io_pgtable_cfg *pgtbl_cfg)
1470 {
1471         int ret;
1472         int asid;
1473         struct arm_smmu_device *smmu = smmu_domain->smmu;
1474         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1475
1476         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1477         if (asid < 0)
1478                 return asid;
1479
1480         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1481                                          &cfg->cdptr_dma,
1482                                          GFP_KERNEL | __GFP_ZERO);
1483         if (!cfg->cdptr) {
1484                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1485                 ret = -ENOMEM;
1486                 goto out_free_asid;
1487         }
1488
1489         cfg->cd.asid    = (u16)asid;
1490         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1491         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1492         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1493         return 0;
1494
1495 out_free_asid:
1496         arm_smmu_bitmap_free(smmu->asid_map, asid);
1497         return ret;
1498 }
1499
1500 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1501                                        struct io_pgtable_cfg *pgtbl_cfg)
1502 {
1503         int vmid;
1504         struct arm_smmu_device *smmu = smmu_domain->smmu;
1505         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1506
1507         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1508         if (vmid < 0)
1509                 return vmid;
1510
1511         cfg->vmid       = (u16)vmid;
1512         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1513         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1514         return 0;
1515 }
1516
1517 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1518 {
1519         int ret;
1520         unsigned long ias, oas;
1521         enum io_pgtable_fmt fmt;
1522         struct io_pgtable_cfg pgtbl_cfg;
1523         struct io_pgtable_ops *pgtbl_ops;
1524         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1525                                  struct io_pgtable_cfg *);
1526         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1527         struct arm_smmu_device *smmu = smmu_domain->smmu;
1528
1529         if (domain->type == IOMMU_DOMAIN_IDENTITY) {
1530                 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
1531                 return 0;
1532         }
1533
1534         /* Restrict the stage to what we can actually support */
1535         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1536                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1537         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1538                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1539
1540         switch (smmu_domain->stage) {
1541         case ARM_SMMU_DOMAIN_S1:
1542                 ias = VA_BITS;
1543                 oas = smmu->ias;
1544                 fmt = ARM_64_LPAE_S1;
1545                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1546                 break;
1547         case ARM_SMMU_DOMAIN_NESTED:
1548         case ARM_SMMU_DOMAIN_S2:
1549                 ias = smmu->ias;
1550                 oas = smmu->oas;
1551                 fmt = ARM_64_LPAE_S2;
1552                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1553                 break;
1554         default:
1555                 return -EINVAL;
1556         }
1557
1558         pgtbl_cfg = (struct io_pgtable_cfg) {
1559                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1560                 .ias            = ias,
1561                 .oas            = oas,
1562                 .tlb            = &arm_smmu_gather_ops,
1563                 .iommu_dev      = smmu->dev,
1564         };
1565
1566         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1567         if (!pgtbl_ops)
1568                 return -ENOMEM;
1569
1570         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1571         domain->geometry.aperture_end = (1UL << ias) - 1;
1572         domain->geometry.force_aperture = true;
1573         smmu_domain->pgtbl_ops = pgtbl_ops;
1574
1575         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1576         if (ret < 0)
1577                 free_io_pgtable_ops(pgtbl_ops);
1578
1579         return ret;
1580 }
1581
1582 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1583 {
1584         __le64 *step;
1585         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1586
1587         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1588                 struct arm_smmu_strtab_l1_desc *l1_desc;
1589                 int idx;
1590
1591                 /* Two-level walk */
1592                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1593                 l1_desc = &cfg->l1_desc[idx];
1594                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1595                 step = &l1_desc->l2ptr[idx];
1596         } else {
1597                 /* Simple linear lookup */
1598                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1599         }
1600
1601         return step;
1602 }
1603
1604 static void arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1605 {
1606         int i;
1607         struct arm_smmu_master_data *master = fwspec->iommu_priv;
1608         struct arm_smmu_device *smmu = master->smmu;
1609
1610         for (i = 0; i < fwspec->num_ids; ++i) {
1611                 u32 sid = fwspec->ids[i];
1612                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1613
1614                 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1615         }
1616 }
1617
1618 static void arm_smmu_detach_dev(struct device *dev)
1619 {
1620         struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1621
1622         master->ste.assigned = false;
1623         arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1624 }
1625
1626 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1627 {
1628         int ret = 0;
1629         struct arm_smmu_device *smmu;
1630         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1631         struct arm_smmu_master_data *master;
1632         struct arm_smmu_strtab_ent *ste;
1633
1634         if (!dev->iommu_fwspec)
1635                 return -ENOENT;
1636
1637         master = dev->iommu_fwspec->iommu_priv;
1638         smmu = master->smmu;
1639         ste = &master->ste;
1640
1641         /* Already attached to a different domain? */
1642         if (ste->assigned)
1643                 arm_smmu_detach_dev(dev);
1644
1645         mutex_lock(&smmu_domain->init_mutex);
1646
1647         if (!smmu_domain->smmu) {
1648                 smmu_domain->smmu = smmu;
1649                 ret = arm_smmu_domain_finalise(domain);
1650                 if (ret) {
1651                         smmu_domain->smmu = NULL;
1652                         goto out_unlock;
1653                 }
1654         } else if (smmu_domain->smmu != smmu) {
1655                 dev_err(dev,
1656                         "cannot attach to SMMU %s (upstream of %s)\n",
1657                         dev_name(smmu_domain->smmu->dev),
1658                         dev_name(smmu->dev));
1659                 ret = -ENXIO;
1660                 goto out_unlock;
1661         }
1662
1663         ste->assigned = true;
1664
1665         if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS) {
1666                 ste->s1_cfg = NULL;
1667                 ste->s2_cfg = NULL;
1668         } else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1669                 ste->s1_cfg = &smmu_domain->s1_cfg;
1670                 ste->s2_cfg = NULL;
1671                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1672         } else {
1673                 ste->s1_cfg = NULL;
1674                 ste->s2_cfg = &smmu_domain->s2_cfg;
1675         }
1676
1677         arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1678 out_unlock:
1679         mutex_unlock(&smmu_domain->init_mutex);
1680         return ret;
1681 }
1682
1683 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1684                         phys_addr_t paddr, size_t size, int prot)
1685 {
1686         int ret;
1687         unsigned long flags;
1688         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1689         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1690
1691         if (!ops)
1692                 return -ENODEV;
1693
1694         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1695         ret = ops->map(ops, iova, paddr, size, prot);
1696         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1697         return ret;
1698 }
1699
1700 static size_t
1701 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1702 {
1703         size_t ret;
1704         unsigned long flags;
1705         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1706         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1707
1708         if (!ops)
1709                 return 0;
1710
1711         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1712         ret = ops->unmap(ops, iova, size);
1713         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1714         return ret;
1715 }
1716
1717 static phys_addr_t
1718 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1719 {
1720         phys_addr_t ret;
1721         unsigned long flags;
1722         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1723         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1724
1725         if (domain->type == IOMMU_DOMAIN_IDENTITY)
1726                 return iova;
1727
1728         if (!ops)
1729                 return 0;
1730
1731         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1732         ret = ops->iova_to_phys(ops, iova);
1733         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1734
1735         return ret;
1736 }
1737
1738 static struct platform_driver arm_smmu_driver;
1739
1740 static int arm_smmu_match_node(struct device *dev, void *data)
1741 {
1742         return dev->fwnode == data;
1743 }
1744
1745 static
1746 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1747 {
1748         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1749                                                 fwnode, arm_smmu_match_node);
1750         put_device(dev);
1751         return dev ? dev_get_drvdata(dev) : NULL;
1752 }
1753
1754 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1755 {
1756         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1757
1758         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1759                 limit *= 1UL << STRTAB_SPLIT;
1760
1761         return sid < limit;
1762 }
1763
1764 static struct iommu_ops arm_smmu_ops;
1765
1766 static int arm_smmu_add_device(struct device *dev)
1767 {
1768         int i, ret;
1769         struct arm_smmu_device *smmu;
1770         struct arm_smmu_master_data *master;
1771         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1772         struct iommu_group *group;
1773
1774         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1775                 return -ENODEV;
1776         /*
1777          * We _can_ actually withstand dodgy bus code re-calling add_device()
1778          * without an intervening remove_device()/of_xlate() sequence, but
1779          * we're not going to do so quietly...
1780          */
1781         if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1782                 master = fwspec->iommu_priv;
1783                 smmu = master->smmu;
1784         } else {
1785                 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1786                 if (!smmu)
1787                         return -ENODEV;
1788                 master = kzalloc(sizeof(*master), GFP_KERNEL);
1789                 if (!master)
1790                         return -ENOMEM;
1791
1792                 master->smmu = smmu;
1793                 fwspec->iommu_priv = master;
1794         }
1795
1796         /* Check the SIDs are in range of the SMMU and our stream table */
1797         for (i = 0; i < fwspec->num_ids; i++) {
1798                 u32 sid = fwspec->ids[i];
1799
1800                 if (!arm_smmu_sid_in_range(smmu, sid))
1801                         return -ERANGE;
1802
1803                 /* Ensure l2 strtab is initialised */
1804                 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1805                         ret = arm_smmu_init_l2_strtab(smmu, sid);
1806                         if (ret)
1807                                 return ret;
1808                 }
1809         }
1810
1811         group = iommu_group_get_for_dev(dev);
1812         if (!IS_ERR(group)) {
1813                 iommu_group_put(group);
1814                 iommu_device_link(&smmu->iommu, dev);
1815         }
1816
1817         return PTR_ERR_OR_ZERO(group);
1818 }
1819
1820 static void arm_smmu_remove_device(struct device *dev)
1821 {
1822         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1823         struct arm_smmu_master_data *master;
1824         struct arm_smmu_device *smmu;
1825
1826         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1827                 return;
1828
1829         master = fwspec->iommu_priv;
1830         smmu = master->smmu;
1831         if (master && master->ste.assigned)
1832                 arm_smmu_detach_dev(dev);
1833         iommu_group_remove_device(dev);
1834         iommu_device_unlink(&smmu->iommu, dev);
1835         kfree(master);
1836         iommu_fwspec_free(dev);
1837 }
1838
1839 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1840 {
1841         struct iommu_group *group;
1842
1843         /*
1844          * We don't support devices sharing stream IDs other than PCI RID
1845          * aliases, since the necessary ID-to-device lookup becomes rather
1846          * impractical given a potential sparse 32-bit stream ID space.
1847          */
1848         if (dev_is_pci(dev))
1849                 group = pci_device_group(dev);
1850         else
1851                 group = generic_device_group(dev);
1852
1853         return group;
1854 }
1855
1856 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1857                                     enum iommu_attr attr, void *data)
1858 {
1859         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1860
1861         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1862                 return -EINVAL;
1863
1864         switch (attr) {
1865         case DOMAIN_ATTR_NESTING:
1866                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1867                 return 0;
1868         default:
1869                 return -ENODEV;
1870         }
1871 }
1872
1873 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1874                                     enum iommu_attr attr, void *data)
1875 {
1876         int ret = 0;
1877         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1878
1879         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1880                 return -EINVAL;
1881
1882         mutex_lock(&smmu_domain->init_mutex);
1883
1884         switch (attr) {
1885         case DOMAIN_ATTR_NESTING:
1886                 if (smmu_domain->smmu) {
1887                         ret = -EPERM;
1888                         goto out_unlock;
1889                 }
1890
1891                 if (*(int *)data)
1892                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1893                 else
1894                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1895
1896                 break;
1897         default:
1898                 ret = -ENODEV;
1899         }
1900
1901 out_unlock:
1902         mutex_unlock(&smmu_domain->init_mutex);
1903         return ret;
1904 }
1905
1906 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1907 {
1908         return iommu_fwspec_add_ids(dev, args->args, 1);
1909 }
1910
1911 static void arm_smmu_get_resv_regions(struct device *dev,
1912                                       struct list_head *head)
1913 {
1914         struct iommu_resv_region *region;
1915         int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1916
1917         region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1918                                          prot, IOMMU_RESV_SW_MSI);
1919         if (!region)
1920                 return;
1921
1922         list_add_tail(&region->list, head);
1923
1924         iommu_dma_get_resv_regions(dev, head);
1925 }
1926
1927 static void arm_smmu_put_resv_regions(struct device *dev,
1928                                       struct list_head *head)
1929 {
1930         struct iommu_resv_region *entry, *next;
1931
1932         list_for_each_entry_safe(entry, next, head, list)
1933                 kfree(entry);
1934 }
1935
1936 static struct iommu_ops arm_smmu_ops = {
1937         .capable                = arm_smmu_capable,
1938         .domain_alloc           = arm_smmu_domain_alloc,
1939         .domain_free            = arm_smmu_domain_free,
1940         .attach_dev             = arm_smmu_attach_dev,
1941         .map                    = arm_smmu_map,
1942         .unmap                  = arm_smmu_unmap,
1943         .map_sg                 = default_iommu_map_sg,
1944         .iova_to_phys           = arm_smmu_iova_to_phys,
1945         .add_device             = arm_smmu_add_device,
1946         .remove_device          = arm_smmu_remove_device,
1947         .device_group           = arm_smmu_device_group,
1948         .domain_get_attr        = arm_smmu_domain_get_attr,
1949         .domain_set_attr        = arm_smmu_domain_set_attr,
1950         .of_xlate               = arm_smmu_of_xlate,
1951         .get_resv_regions       = arm_smmu_get_resv_regions,
1952         .put_resv_regions       = arm_smmu_put_resv_regions,
1953         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1954 };
1955
1956 /* Probing and initialisation functions */
1957 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1958                                    struct arm_smmu_queue *q,
1959                                    unsigned long prod_off,
1960                                    unsigned long cons_off,
1961                                    size_t dwords)
1962 {
1963         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1964
1965         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1966         if (!q->base) {
1967                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1968                         qsz);
1969                 return -ENOMEM;
1970         }
1971
1972         q->prod_reg     = smmu->base + prod_off;
1973         q->cons_reg     = smmu->base + cons_off;
1974         q->ent_dwords   = dwords;
1975
1976         q->q_base  = Q_BASE_RWA;
1977         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1978         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1979                      << Q_BASE_LOG2SIZE_SHIFT;
1980
1981         q->prod = q->cons = 0;
1982         return 0;
1983 }
1984
1985 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1986 {
1987         int ret;
1988
1989         /* cmdq */
1990         spin_lock_init(&smmu->cmdq.lock);
1991         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1992                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1993         if (ret)
1994                 return ret;
1995
1996         /* evtq */
1997         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1998                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1999         if (ret)
2000                 return ret;
2001
2002         /* priq */
2003         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
2004                 return 0;
2005
2006         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2007                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2008 }
2009
2010 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2011 {
2012         unsigned int i;
2013         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2014         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2015         void *strtab = smmu->strtab_cfg.strtab;
2016
2017         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2018         if (!cfg->l1_desc) {
2019                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2020                 return -ENOMEM;
2021         }
2022
2023         for (i = 0; i < cfg->num_l1_ents; ++i) {
2024                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2025                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2026         }
2027
2028         return 0;
2029 }
2030
2031 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2032 {
2033         void *strtab;
2034         u64 reg;
2035         u32 size, l1size;
2036         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2037
2038         /* Calculate the L1 size, capped to the SIDSIZE. */
2039         size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2040         size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2041         cfg->num_l1_ents = 1 << size;
2042
2043         size += STRTAB_SPLIT;
2044         if (size < smmu->sid_bits)
2045                 dev_warn(smmu->dev,
2046                          "2-level strtab only covers %u/%u bits of SID\n",
2047                          size, smmu->sid_bits);
2048
2049         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2050         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2051                                      GFP_KERNEL | __GFP_ZERO);
2052         if (!strtab) {
2053                 dev_err(smmu->dev,
2054                         "failed to allocate l1 stream table (%u bytes)\n",
2055                         size);
2056                 return -ENOMEM;
2057         }
2058         cfg->strtab = strtab;
2059
2060         /* Configure strtab_base_cfg for 2 levels */
2061         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2062         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2063                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2064         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2065                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2066         cfg->strtab_base_cfg = reg;
2067
2068         return arm_smmu_init_l1_strtab(smmu);
2069 }
2070
2071 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2072 {
2073         void *strtab;
2074         u64 reg;
2075         u32 size;
2076         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2077
2078         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2079         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2080                                      GFP_KERNEL | __GFP_ZERO);
2081         if (!strtab) {
2082                 dev_err(smmu->dev,
2083                         "failed to allocate linear stream table (%u bytes)\n",
2084                         size);
2085                 return -ENOMEM;
2086         }
2087         cfg->strtab = strtab;
2088         cfg->num_l1_ents = 1 << smmu->sid_bits;
2089
2090         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2091         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2092         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2093                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2094         cfg->strtab_base_cfg = reg;
2095
2096         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2097         return 0;
2098 }
2099
2100 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2101 {
2102         u64 reg;
2103         int ret;
2104
2105         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2106                 ret = arm_smmu_init_strtab_2lvl(smmu);
2107         else
2108                 ret = arm_smmu_init_strtab_linear(smmu);
2109
2110         if (ret)
2111                 return ret;
2112
2113         /* Set the strtab base address */
2114         reg  = smmu->strtab_cfg.strtab_dma &
2115                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2116         reg |= STRTAB_BASE_RA;
2117         smmu->strtab_cfg.strtab_base = reg;
2118
2119         /* Allocate the first VMID for stage-2 bypass STEs */
2120         set_bit(0, smmu->vmid_map);
2121         return 0;
2122 }
2123
2124 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2125 {
2126         int ret;
2127
2128         ret = arm_smmu_init_queues(smmu);
2129         if (ret)
2130                 return ret;
2131
2132         return arm_smmu_init_strtab(smmu);
2133 }
2134
2135 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2136                                    unsigned int reg_off, unsigned int ack_off)
2137 {
2138         u32 reg;
2139
2140         writel_relaxed(val, smmu->base + reg_off);
2141         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2142                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2143 }
2144
2145 /* GBPA is "special" */
2146 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2147 {
2148         int ret;
2149         u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2150
2151         ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2152                                          1, ARM_SMMU_POLL_TIMEOUT_US);
2153         if (ret)
2154                 return ret;
2155
2156         reg &= ~clr;
2157         reg |= set;
2158         writel_relaxed(reg | GBPA_UPDATE, gbpa);
2159         return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2160                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2161 }
2162
2163 static void arm_smmu_free_msis(void *data)
2164 {
2165         struct device *dev = data;
2166         platform_msi_domain_free_irqs(dev);
2167 }
2168
2169 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2170 {
2171         phys_addr_t doorbell;
2172         struct device *dev = msi_desc_to_dev(desc);
2173         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2174         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2175
2176         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2177         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2178
2179         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2180         writel_relaxed(msg->data, smmu->base + cfg[1]);
2181         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2182 }
2183
2184 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2185 {
2186         struct msi_desc *desc;
2187         int ret, nvec = ARM_SMMU_MAX_MSIS;
2188         struct device *dev = smmu->dev;
2189
2190         /* Clear the MSI address regs */
2191         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2192         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2193
2194         if (smmu->features & ARM_SMMU_FEAT_PRI)
2195                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2196         else
2197                 nvec--;
2198
2199         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2200                 return;
2201
2202         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2203         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2204         if (ret) {
2205                 dev_warn(dev, "failed to allocate MSIs\n");
2206                 return;
2207         }
2208
2209         for_each_msi_entry(desc, dev) {
2210                 switch (desc->platform.msi_index) {
2211                 case EVTQ_MSI_INDEX:
2212                         smmu->evtq.q.irq = desc->irq;
2213                         break;
2214                 case GERROR_MSI_INDEX:
2215                         smmu->gerr_irq = desc->irq;
2216                         break;
2217                 case PRIQ_MSI_INDEX:
2218                         smmu->priq.q.irq = desc->irq;
2219                         break;
2220                 default:        /* Unknown */
2221                         continue;
2222                 }
2223         }
2224
2225         /* Add callback to free MSIs on teardown */
2226         devm_add_action(dev, arm_smmu_free_msis, dev);
2227 }
2228
2229 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2230 {
2231         int ret, irq;
2232         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2233
2234         /* Disable IRQs first */
2235         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2236                                       ARM_SMMU_IRQ_CTRLACK);
2237         if (ret) {
2238                 dev_err(smmu->dev, "failed to disable irqs\n");
2239                 return ret;
2240         }
2241
2242         arm_smmu_setup_msis(smmu);
2243
2244         /* Request interrupt lines */
2245         irq = smmu->evtq.q.irq;
2246         if (irq) {
2247                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2248                                                 arm_smmu_evtq_thread,
2249                                                 IRQF_ONESHOT,
2250                                                 "arm-smmu-v3-evtq", smmu);
2251                 if (ret < 0)
2252                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2253         }
2254
2255         irq = smmu->cmdq.q.irq;
2256         if (irq) {
2257                 ret = devm_request_irq(smmu->dev, irq,
2258                                        arm_smmu_cmdq_sync_handler, 0,
2259                                        "arm-smmu-v3-cmdq-sync", smmu);
2260                 if (ret < 0)
2261                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2262         }
2263
2264         irq = smmu->gerr_irq;
2265         if (irq) {
2266                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2267                                        0, "arm-smmu-v3-gerror", smmu);
2268                 if (ret < 0)
2269                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2270         }
2271
2272         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2273                 irq = smmu->priq.q.irq;
2274                 if (irq) {
2275                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2276                                                         arm_smmu_priq_thread,
2277                                                         IRQF_ONESHOT,
2278                                                         "arm-smmu-v3-priq",
2279                                                         smmu);
2280                         if (ret < 0)
2281                                 dev_warn(smmu->dev,
2282                                          "failed to enable priq irq\n");
2283                         else
2284                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2285                 }
2286         }
2287
2288         /* Enable interrupt generation on the SMMU */
2289         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2290                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2291         if (ret)
2292                 dev_warn(smmu->dev, "failed to enable irqs\n");
2293
2294         return 0;
2295 }
2296
2297 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2298 {
2299         int ret;
2300
2301         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2302         if (ret)
2303                 dev_err(smmu->dev, "failed to clear cr0\n");
2304
2305         return ret;
2306 }
2307
2308 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2309 {
2310         int ret;
2311         u32 reg, enables;
2312         struct arm_smmu_cmdq_ent cmd;
2313
2314         /* Clear CR0 and sync (disables SMMU and queue processing) */
2315         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2316         if (reg & CR0_SMMUEN)
2317                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2318
2319         ret = arm_smmu_device_disable(smmu);
2320         if (ret)
2321                 return ret;
2322
2323         /* CR1 (table and queue memory attributes) */
2324         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2325               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2326               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2327               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2328               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2329               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2330         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2331
2332         /* CR2 (random crap) */
2333         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2334         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2335
2336         /* Stream table */
2337         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2338                        smmu->base + ARM_SMMU_STRTAB_BASE);
2339         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2340                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2341
2342         /* Command queue */
2343         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2344         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2345         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2346
2347         enables = CR0_CMDQEN;
2348         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2349                                       ARM_SMMU_CR0ACK);
2350         if (ret) {
2351                 dev_err(smmu->dev, "failed to enable command queue\n");
2352                 return ret;
2353         }
2354
2355         /* Invalidate any cached configuration */
2356         cmd.opcode = CMDQ_OP_CFGI_ALL;
2357         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2358         cmd.opcode = CMDQ_OP_CMD_SYNC;
2359         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2360
2361         /* Invalidate any stale TLB entries */
2362         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2363                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2364                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2365         }
2366
2367         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2368         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2369         cmd.opcode = CMDQ_OP_CMD_SYNC;
2370         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2371
2372         /* Event queue */
2373         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2374         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2375         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2376
2377         enables |= CR0_EVTQEN;
2378         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2379                                       ARM_SMMU_CR0ACK);
2380         if (ret) {
2381                 dev_err(smmu->dev, "failed to enable event queue\n");
2382                 return ret;
2383         }
2384
2385         /* PRI queue */
2386         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2387                 writeq_relaxed(smmu->priq.q.q_base,
2388                                smmu->base + ARM_SMMU_PRIQ_BASE);
2389                 writel_relaxed(smmu->priq.q.prod,
2390                                smmu->base + ARM_SMMU_PRIQ_PROD);
2391                 writel_relaxed(smmu->priq.q.cons,
2392                                smmu->base + ARM_SMMU_PRIQ_CONS);
2393
2394                 enables |= CR0_PRIQEN;
2395                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2396                                               ARM_SMMU_CR0ACK);
2397                 if (ret) {
2398                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2399                         return ret;
2400                 }
2401         }
2402
2403         ret = arm_smmu_setup_irqs(smmu);
2404         if (ret) {
2405                 dev_err(smmu->dev, "failed to setup irqs\n");
2406                 return ret;
2407         }
2408
2409
2410         /* Enable the SMMU interface, or ensure bypass */
2411         if (!bypass || disable_bypass) {
2412                 enables |= CR0_SMMUEN;
2413         } else {
2414                 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2415                 if (ret) {
2416                         dev_err(smmu->dev, "GBPA not responding to update\n");
2417                         return ret;
2418                 }
2419         }
2420         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2421                                       ARM_SMMU_CR0ACK);
2422         if (ret) {
2423                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2424                 return ret;
2425         }
2426
2427         return 0;
2428 }
2429
2430 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2431 {
2432         u32 reg;
2433         bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2434
2435         /* IDR0 */
2436         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2437
2438         /* 2-level structures */
2439         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2440                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2441
2442         if (reg & IDR0_CD2L)
2443                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2444
2445         /*
2446          * Translation table endianness.
2447          * We currently require the same endianness as the CPU, but this
2448          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2449          */
2450         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2451         case IDR0_TTENDIAN_MIXED:
2452                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2453                 break;
2454 #ifdef __BIG_ENDIAN
2455         case IDR0_TTENDIAN_BE:
2456                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2457                 break;
2458 #else
2459         case IDR0_TTENDIAN_LE:
2460                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2461                 break;
2462 #endif
2463         default:
2464                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2465                 return -ENXIO;
2466         }
2467
2468         /* Boolean feature flags */
2469         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2470                 smmu->features |= ARM_SMMU_FEAT_PRI;
2471
2472         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2473                 smmu->features |= ARM_SMMU_FEAT_ATS;
2474
2475         if (reg & IDR0_SEV)
2476                 smmu->features |= ARM_SMMU_FEAT_SEV;
2477
2478         if (reg & IDR0_MSI)
2479                 smmu->features |= ARM_SMMU_FEAT_MSI;
2480
2481         if (reg & IDR0_HYP)
2482                 smmu->features |= ARM_SMMU_FEAT_HYP;
2483
2484         /*
2485          * The coherency feature as set by FW is used in preference to the ID
2486          * register, but warn on mismatch.
2487          */
2488         if (!!(reg & IDR0_COHACC) != coherent)
2489                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2490                          coherent ? "true" : "false");
2491
2492         switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2493         case IDR0_STALL_MODEL_STALL:
2494                 /* Fallthrough */
2495         case IDR0_STALL_MODEL_FORCE:
2496                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2497         }
2498
2499         if (reg & IDR0_S1P)
2500                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2501
2502         if (reg & IDR0_S2P)
2503                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2504
2505         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2506                 dev_err(smmu->dev, "no translation support!\n");
2507                 return -ENXIO;
2508         }
2509
2510         /* We only support the AArch64 table format at present */
2511         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2512         case IDR0_TTF_AARCH32_64:
2513                 smmu->ias = 40;
2514                 /* Fallthrough */
2515         case IDR0_TTF_AARCH64:
2516                 break;
2517         default:
2518                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2519                 return -ENXIO;
2520         }
2521
2522         /* ASID/VMID sizes */
2523         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2524         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2525
2526         /* IDR1 */
2527         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2528         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2529                 dev_err(smmu->dev, "embedded implementation not supported\n");
2530                 return -ENXIO;
2531         }
2532
2533         /* Queue sizes, capped at 4k */
2534         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2535                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2536         if (!smmu->cmdq.q.max_n_shift) {
2537                 /* Odd alignment restrictions on the base, so ignore for now */
2538                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2539                 return -ENXIO;
2540         }
2541
2542         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2543                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2544         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2545                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2546
2547         /* SID/SSID sizes */
2548         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2549         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2550
2551         /*
2552          * If the SMMU supports fewer bits than would fill a single L2 stream
2553          * table, use a linear table instead.
2554          */
2555         if (smmu->sid_bits <= STRTAB_SPLIT)
2556                 smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;
2557
2558         /* IDR5 */
2559         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2560
2561         /* Maximum number of outstanding stalls */
2562         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2563                                 & IDR5_STALL_MAX_MASK;
2564
2565         /* Page sizes */
2566         if (reg & IDR5_GRAN64K)
2567                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2568         if (reg & IDR5_GRAN16K)
2569                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2570         if (reg & IDR5_GRAN4K)
2571                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2572
2573         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2574                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2575         else
2576                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2577
2578         /* Output address size */
2579         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2580         case IDR5_OAS_32_BIT:
2581                 smmu->oas = 32;
2582                 break;
2583         case IDR5_OAS_36_BIT:
2584                 smmu->oas = 36;
2585                 break;
2586         case IDR5_OAS_40_BIT:
2587                 smmu->oas = 40;
2588                 break;
2589         case IDR5_OAS_42_BIT:
2590                 smmu->oas = 42;
2591                 break;
2592         case IDR5_OAS_44_BIT:
2593                 smmu->oas = 44;
2594                 break;
2595         default:
2596                 dev_info(smmu->dev,
2597                         "unknown output address size. Truncating to 48-bit\n");
2598                 /* Fallthrough */
2599         case IDR5_OAS_48_BIT:
2600                 smmu->oas = 48;
2601         }
2602
2603         /* Set the DMA mask for our table walker */
2604         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2605                 dev_warn(smmu->dev,
2606                          "failed to set DMA mask for table walker\n");
2607
2608         smmu->ias = max(smmu->ias, smmu->oas);
2609
2610         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2611                  smmu->ias, smmu->oas, smmu->features);
2612         return 0;
2613 }
2614
2615 #ifdef CONFIG_ACPI
2616 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2617                                       struct arm_smmu_device *smmu)
2618 {
2619         struct acpi_iort_smmu_v3 *iort_smmu;
2620         struct device *dev = smmu->dev;
2621         struct acpi_iort_node *node;
2622
2623         node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2624
2625         /* Retrieve SMMUv3 specific data */
2626         iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2627
2628         if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2629                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2630
2631         return 0;
2632 }
2633 #else
2634 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2635                                              struct arm_smmu_device *smmu)
2636 {
2637         return -ENODEV;
2638 }
2639 #endif
2640
2641 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2642                                     struct arm_smmu_device *smmu)
2643 {
2644         struct device *dev = &pdev->dev;
2645         u32 cells;
2646         int ret = -EINVAL;
2647
2648         if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2649                 dev_err(dev, "missing #iommu-cells property\n");
2650         else if (cells != 1)
2651                 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2652         else
2653                 ret = 0;
2654
2655         parse_driver_options(smmu);
2656
2657         if (of_dma_is_coherent(dev->of_node))
2658                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2659
2660         return ret;
2661 }
2662
2663 static int arm_smmu_device_probe(struct platform_device *pdev)
2664 {
2665         int irq, ret;
2666         struct resource *res;
2667         resource_size_t ioaddr;
2668         struct arm_smmu_device *smmu;
2669         struct device *dev = &pdev->dev;
2670         bool bypass;
2671
2672         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2673         if (!smmu) {
2674                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2675                 return -ENOMEM;
2676         }
2677         smmu->dev = dev;
2678
2679         /* Base address */
2680         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2681         if (resource_size(res) + 1 < SZ_128K) {
2682                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2683                 return -EINVAL;
2684         }
2685         ioaddr = res->start;
2686
2687         smmu->base = devm_ioremap_resource(dev, res);
2688         if (IS_ERR(smmu->base))
2689                 return PTR_ERR(smmu->base);
2690
2691         /* Interrupt lines */
2692         irq = platform_get_irq_byname(pdev, "eventq");
2693         if (irq > 0)
2694                 smmu->evtq.q.irq = irq;
2695
2696         irq = platform_get_irq_byname(pdev, "priq");
2697         if (irq > 0)
2698                 smmu->priq.q.irq = irq;
2699
2700         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2701         if (irq > 0)
2702                 smmu->cmdq.q.irq = irq;
2703
2704         irq = platform_get_irq_byname(pdev, "gerror");
2705         if (irq > 0)
2706                 smmu->gerr_irq = irq;
2707
2708         if (dev->of_node) {
2709                 ret = arm_smmu_device_dt_probe(pdev, smmu);
2710         } else {
2711                 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2712                 if (ret == -ENODEV)
2713                         return ret;
2714         }
2715
2716         /* Set bypass mode according to firmware probing result */
2717         bypass = !!ret;
2718
2719         /* Probe the h/w */
2720         ret = arm_smmu_device_hw_probe(smmu);
2721         if (ret)
2722                 return ret;
2723
2724         /* Initialise in-memory data structures */
2725         ret = arm_smmu_init_structures(smmu);
2726         if (ret)
2727                 return ret;
2728
2729         /* Record our private device structure */
2730         platform_set_drvdata(pdev, smmu);
2731
2732         /* Reset the device */
2733         ret = arm_smmu_device_reset(smmu, bypass);
2734         if (ret)
2735                 return ret;
2736
2737         /* And we're up. Go go go! */
2738         ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
2739                                      "smmu3.%pa", &ioaddr);
2740         if (ret)
2741                 return ret;
2742
2743         iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2744         iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2745
2746         ret = iommu_device_register(&smmu->iommu);
2747         if (ret) {
2748                 dev_err(dev, "Failed to register iommu\n");
2749                 return ret;
2750         }
2751
2752 #ifdef CONFIG_PCI
2753         if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2754                 pci_request_acs();
2755                 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2756                 if (ret)
2757                         return ret;
2758         }
2759 #endif
2760 #ifdef CONFIG_ARM_AMBA
2761         if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2762                 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2763                 if (ret)
2764                         return ret;
2765         }
2766 #endif
2767         if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2768                 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2769                 if (ret)
2770                         return ret;
2771         }
2772         return 0;
2773 }
2774
2775 static int arm_smmu_device_remove(struct platform_device *pdev)
2776 {
2777         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2778
2779         arm_smmu_device_disable(smmu);
2780         return 0;
2781 }
2782
2783 static const struct of_device_id arm_smmu_of_match[] = {
2784         { .compatible = "arm,smmu-v3", },
2785         { },
2786 };
2787 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2788
2789 static struct platform_driver arm_smmu_driver = {
2790         .driver = {
2791                 .name           = "arm-smmu-v3",
2792                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2793         },
2794         .probe  = arm_smmu_device_probe,
2795         .remove = arm_smmu_device_remove,
2796 };
2797 module_platform_driver(arm_smmu_driver);
2798
2799 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", NULL);
2800
2801 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2802 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2803 MODULE_LICENSE("GPL v2");