]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/iommu/arm-smmu-v3.c
iommu/arm-smmu-v3: Implement reserved region get/put callbacks
[linux.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0                   0x0
46 #define IDR0_ST_LVL_SHIFT               27
47 #define IDR0_ST_LVL_MASK                0x3
48 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT          24
50 #define IDR0_STALL_MODEL_MASK           0x3
51 #define IDR0_STALL_MODEL_STALL          (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE          (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT             21
54 #define IDR0_TTENDIAN_MASK              0x3
55 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L                       (1 << 19)
59 #define IDR0_VMID16                     (1 << 18)
60 #define IDR0_PRI                        (1 << 16)
61 #define IDR0_SEV                        (1 << 14)
62 #define IDR0_MSI                        (1 << 13)
63 #define IDR0_ASID16                     (1 << 12)
64 #define IDR0_ATS                        (1 << 10)
65 #define IDR0_HYP                        (1 << 9)
66 #define IDR0_COHACC                     (1 << 4)
67 #define IDR0_TTF_SHIFT                  2
68 #define IDR0_TTF_MASK                   0x3
69 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P                        (1 << 1)
72 #define IDR0_S2P                        (1 << 0)
73
74 #define ARM_SMMU_IDR1                   0x4
75 #define IDR1_TABLES_PRESET              (1 << 30)
76 #define IDR1_QUEUES_PRESET              (1 << 29)
77 #define IDR1_REL                        (1 << 28)
78 #define IDR1_CMDQ_SHIFT                 21
79 #define IDR1_CMDQ_MASK                  0x1f
80 #define IDR1_EVTQ_SHIFT                 16
81 #define IDR1_EVTQ_MASK                  0x1f
82 #define IDR1_PRIQ_SHIFT                 11
83 #define IDR1_PRIQ_MASK                  0x1f
84 #define IDR1_SSID_SHIFT                 6
85 #define IDR1_SSID_MASK                  0x1f
86 #define IDR1_SID_SHIFT                  0
87 #define IDR1_SID_MASK                   0x3f
88
89 #define ARM_SMMU_IDR5                   0x14
90 #define IDR5_STALL_MAX_SHIFT            16
91 #define IDR5_STALL_MAX_MASK             0xffff
92 #define IDR5_GRAN64K                    (1 << 6)
93 #define IDR5_GRAN16K                    (1 << 5)
94 #define IDR5_GRAN4K                     (1 << 4)
95 #define IDR5_OAS_SHIFT                  0
96 #define IDR5_OAS_MASK                   0x7
97 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0                    0x20
105 #define CR0_CMDQEN                      (1 << 3)
106 #define CR0_EVTQEN                      (1 << 2)
107 #define CR0_PRIQEN                      (1 << 1)
108 #define CR0_SMMUEN                      (1 << 0)
109
110 #define ARM_SMMU_CR0ACK                 0x24
111
112 #define ARM_SMMU_CR1                    0x28
113 #define CR1_SH_NSH                      0
114 #define CR1_SH_OSH                      2
115 #define CR1_SH_ISH                      3
116 #define CR1_CACHE_NC                    0
117 #define CR1_CACHE_WB                    1
118 #define CR1_CACHE_WT                    2
119 #define CR1_TABLE_SH_SHIFT              10
120 #define CR1_TABLE_OC_SHIFT              8
121 #define CR1_TABLE_IC_SHIFT              6
122 #define CR1_QUEUE_SH_SHIFT              4
123 #define CR1_QUEUE_OC_SHIFT              2
124 #define CR1_QUEUE_IC_SHIFT              0
125
126 #define ARM_SMMU_CR2                    0x2c
127 #define CR2_PTM                         (1 << 2)
128 #define CR2_RECINVSID                   (1 << 1)
129 #define CR2_E2H                         (1 << 0)
130
131 #define ARM_SMMU_GBPA                   0x44
132 #define GBPA_ABORT                      (1 << 20)
133 #define GBPA_UPDATE                     (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL               0x50
136 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK            0x54
141
142 #define ARM_SMMU_GERROR                 0x60
143 #define GERROR_SFM_ERR                  (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
150 #define GERROR_CMDQ_ERR                 (1 << 0)
151 #define GERROR_ERR_MASK                 0xfd
152
153 #define ARM_SMMU_GERRORN                0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
158
159 #define ARM_SMMU_STRTAB_BASE            0x80
160 #define STRTAB_BASE_RA                  (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT          6
162 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
168 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT       16
170 #define STRTAB_BASE_CFG_FMT_MASK        0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE              0x90
175 #define ARM_SMMU_CMDQ_PROD              0x98
176 #define ARM_SMMU_CMDQ_CONS              0x9c
177
178 #define ARM_SMMU_EVTQ_BASE              0xa0
179 #define ARM_SMMU_EVTQ_PROD              0x100a8
180 #define ARM_SMMU_EVTQ_CONS              0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
184
185 #define ARM_SMMU_PRIQ_BASE              0xc0
186 #define ARM_SMMU_PRIQ_PROD              0x100c8
187 #define ARM_SMMU_PRIQ_CONS              0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT             2
194 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT               4
196 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT          0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG                 (1 << 31)
205 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p)                     ((q)->base +                    \
207                                          Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA                      (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT               5
211 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT           0
213 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
214
215 /*
216  * Stream table.
217  *
218  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219  * 2lvl: 128k L1 entries,
220  *       256 lazy entries per table (each table covers a PCI bus)
221  */
222 #define STRTAB_L1_SZ_SHIFT              20
223 #define STRTAB_SPLIT                    8
224
225 #define STRTAB_L1_DESC_DWORDS           1
226 #define STRTAB_L1_DESC_SPAN_SHIFT       0
227 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
229 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS               8
232 #define STRTAB_STE_0_V                  (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT          1
234 #define STRTAB_STE_0_CFG_MASK           0x7UL
235 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT        4
241 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
243 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
245 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
251 #define STRTAB_STE_1_S1C_SH_NSH         0UL
252 #define STRTAB_STE_1_S1C_SH_OSH         2UL
253 #define STRTAB_STE_1_S1C_SH_ISH         3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT        2
255 #define STRTAB_STE_1_S1COR_SHIFT        4
256 #define STRTAB_STE_1_S1CSH_SHIFT        6
257
258 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT           0UL
261 #define STRTAB_STE_1_EATS_TRANS         1UL
262 #define STRTAB_STE_1_EATS_S1CHK         2UL
263 #define STRTAB_STE_1_EATS_SHIFT         28
264
265 #define STRTAB_STE_1_STRW_NSEL1         0UL
266 #define STRTAB_STE_1_STRW_EL2           2UL
267 #define STRTAB_STE_1_STRW_SHIFT         30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT        44
271
272 #define STRTAB_STE_1_PRIVCFG_UNPRIV     2UL
273 #define STRTAB_STE_1_PRIVCFG_SHIFT      48
274
275 #define STRTAB_STE_2_S2VMID_SHIFT       0
276 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
277 #define STRTAB_STE_2_VTCR_SHIFT         32
278 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
279 #define STRTAB_STE_2_S2AA64             (1UL << 51)
280 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
281 #define STRTAB_STE_2_S2PTW              (1UL << 54)
282 #define STRTAB_STE_2_S2R                (1UL << 58)
283
284 #define STRTAB_STE_3_S2TTB_SHIFT        4
285 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
286
287 /* Context descriptor (stage-1 only) */
288 #define CTXDESC_CD_DWORDS               8
289 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
290 #define ARM64_TCR_T0SZ_SHIFT            0
291 #define ARM64_TCR_T0SZ_MASK             0x1fUL
292 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
293 #define ARM64_TCR_TG0_SHIFT             14
294 #define ARM64_TCR_TG0_MASK              0x3UL
295 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
296 #define ARM64_TCR_IRGN0_SHIFT           8
297 #define ARM64_TCR_IRGN0_MASK            0x3UL
298 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
299 #define ARM64_TCR_ORGN0_SHIFT           10
300 #define ARM64_TCR_ORGN0_MASK            0x3UL
301 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
302 #define ARM64_TCR_SH0_SHIFT             12
303 #define ARM64_TCR_SH0_MASK              0x3UL
304 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
305 #define ARM64_TCR_EPD0_SHIFT            7
306 #define ARM64_TCR_EPD0_MASK             0x1UL
307 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
308 #define ARM64_TCR_EPD1_SHIFT            23
309 #define ARM64_TCR_EPD1_MASK             0x1UL
310
311 #define CTXDESC_CD_0_ENDI               (1UL << 15)
312 #define CTXDESC_CD_0_V                  (1UL << 31)
313
314 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
315 #define ARM64_TCR_IPS_SHIFT             32
316 #define ARM64_TCR_IPS_MASK              0x7UL
317 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
318 #define ARM64_TCR_TBI0_SHIFT            37
319 #define ARM64_TCR_TBI0_MASK             0x1UL
320
321 #define CTXDESC_CD_0_AA64               (1UL << 41)
322 #define CTXDESC_CD_0_R                  (1UL << 45)
323 #define CTXDESC_CD_0_A                  (1UL << 46)
324 #define CTXDESC_CD_0_ASET_SHIFT         47
325 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
326 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
327 #define CTXDESC_CD_0_ASID_SHIFT         48
328 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
329
330 #define CTXDESC_CD_1_TTB0_SHIFT         4
331 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
332
333 #define CTXDESC_CD_3_MAIR_SHIFT         0
334
335 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
336 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
337         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
338          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
339
340 /* Command queue */
341 #define CMDQ_ENT_DWORDS                 2
342 #define CMDQ_MAX_SZ_SHIFT               8
343
344 #define CMDQ_ERR_SHIFT                  24
345 #define CMDQ_ERR_MASK                   0x7f
346 #define CMDQ_ERR_CERROR_NONE_IDX        0
347 #define CMDQ_ERR_CERROR_ILL_IDX         1
348 #define CMDQ_ERR_CERROR_ABT_IDX         2
349
350 #define CMDQ_0_OP_SHIFT                 0
351 #define CMDQ_0_OP_MASK                  0xffUL
352 #define CMDQ_0_SSV                      (1UL << 11)
353
354 #define CMDQ_PREFETCH_0_SID_SHIFT       32
355 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
356 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
357
358 #define CMDQ_CFGI_0_SID_SHIFT           32
359 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
360 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
361 #define CMDQ_CFGI_1_RANGE_SHIFT         0
362 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
363
364 #define CMDQ_TLBI_0_VMID_SHIFT          32
365 #define CMDQ_TLBI_0_ASID_SHIFT          48
366 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
367 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
368 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
369
370 #define CMDQ_PRI_0_SSID_SHIFT           12
371 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
372 #define CMDQ_PRI_0_SID_SHIFT            32
373 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
374 #define CMDQ_PRI_1_GRPID_SHIFT          0
375 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
376 #define CMDQ_PRI_1_RESP_SHIFT           12
377 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
378 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
379 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
380
381 #define CMDQ_SYNC_0_CS_SHIFT            12
382 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
383 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
384
385 /* Event queue */
386 #define EVTQ_ENT_DWORDS                 4
387 #define EVTQ_MAX_SZ_SHIFT               7
388
389 #define EVTQ_0_ID_SHIFT                 0
390 #define EVTQ_0_ID_MASK                  0xffUL
391
392 /* PRI queue */
393 #define PRIQ_ENT_DWORDS                 2
394 #define PRIQ_MAX_SZ_SHIFT               8
395
396 #define PRIQ_0_SID_SHIFT                0
397 #define PRIQ_0_SID_MASK                 0xffffffffUL
398 #define PRIQ_0_SSID_SHIFT               32
399 #define PRIQ_0_SSID_MASK                0xfffffUL
400 #define PRIQ_0_PERM_PRIV                (1UL << 58)
401 #define PRIQ_0_PERM_EXEC                (1UL << 59)
402 #define PRIQ_0_PERM_READ                (1UL << 60)
403 #define PRIQ_0_PERM_WRITE               (1UL << 61)
404 #define PRIQ_0_PRG_LAST                 (1UL << 62)
405 #define PRIQ_0_SSID_V                   (1UL << 63)
406
407 #define PRIQ_1_PRG_IDX_SHIFT            0
408 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
409 #define PRIQ_1_ADDR_SHIFT               12
410 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
411
412 /* High-level queue structures */
413 #define ARM_SMMU_POLL_TIMEOUT_US        100
414
415 #define MSI_IOVA_BASE                   0x8000000
416 #define MSI_IOVA_LENGTH                 0x100000
417
418 static bool disable_bypass;
419 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
420 MODULE_PARM_DESC(disable_bypass,
421         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
422
423 enum pri_resp {
424         PRI_RESP_DENY,
425         PRI_RESP_FAIL,
426         PRI_RESP_SUCC,
427 };
428
429 enum arm_smmu_msi_index {
430         EVTQ_MSI_INDEX,
431         GERROR_MSI_INDEX,
432         PRIQ_MSI_INDEX,
433         ARM_SMMU_MAX_MSIS,
434 };
435
436 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
437         [EVTQ_MSI_INDEX] = {
438                 ARM_SMMU_EVTQ_IRQ_CFG0,
439                 ARM_SMMU_EVTQ_IRQ_CFG1,
440                 ARM_SMMU_EVTQ_IRQ_CFG2,
441         },
442         [GERROR_MSI_INDEX] = {
443                 ARM_SMMU_GERROR_IRQ_CFG0,
444                 ARM_SMMU_GERROR_IRQ_CFG1,
445                 ARM_SMMU_GERROR_IRQ_CFG2,
446         },
447         [PRIQ_MSI_INDEX] = {
448                 ARM_SMMU_PRIQ_IRQ_CFG0,
449                 ARM_SMMU_PRIQ_IRQ_CFG1,
450                 ARM_SMMU_PRIQ_IRQ_CFG2,
451         },
452 };
453
454 struct arm_smmu_cmdq_ent {
455         /* Common fields */
456         u8                              opcode;
457         bool                            substream_valid;
458
459         /* Command-specific fields */
460         union {
461                 #define CMDQ_OP_PREFETCH_CFG    0x1
462                 struct {
463                         u32                     sid;
464                         u8                      size;
465                         u64                     addr;
466                 } prefetch;
467
468                 #define CMDQ_OP_CFGI_STE        0x3
469                 #define CMDQ_OP_CFGI_ALL        0x4
470                 struct {
471                         u32                     sid;
472                         union {
473                                 bool            leaf;
474                                 u8              span;
475                         };
476                 } cfgi;
477
478                 #define CMDQ_OP_TLBI_NH_ASID    0x11
479                 #define CMDQ_OP_TLBI_NH_VA      0x12
480                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
481                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
482                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
483                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
484                 struct {
485                         u16                     asid;
486                         u16                     vmid;
487                         bool                    leaf;
488                         u64                     addr;
489                 } tlbi;
490
491                 #define CMDQ_OP_PRI_RESP        0x41
492                 struct {
493                         u32                     sid;
494                         u32                     ssid;
495                         u16                     grpid;
496                         enum pri_resp           resp;
497                 } pri;
498
499                 #define CMDQ_OP_CMD_SYNC        0x46
500         };
501 };
502
503 struct arm_smmu_queue {
504         int                             irq; /* Wired interrupt */
505
506         __le64                          *base;
507         dma_addr_t                      base_dma;
508         u64                             q_base;
509
510         size_t                          ent_dwords;
511         u32                             max_n_shift;
512         u32                             prod;
513         u32                             cons;
514
515         u32 __iomem                     *prod_reg;
516         u32 __iomem                     *cons_reg;
517 };
518
519 struct arm_smmu_cmdq {
520         struct arm_smmu_queue           q;
521         spinlock_t                      lock;
522 };
523
524 struct arm_smmu_evtq {
525         struct arm_smmu_queue           q;
526         u32                             max_stalls;
527 };
528
529 struct arm_smmu_priq {
530         struct arm_smmu_queue           q;
531 };
532
533 /* High-level stream table and context descriptor structures */
534 struct arm_smmu_strtab_l1_desc {
535         u8                              span;
536
537         __le64                          *l2ptr;
538         dma_addr_t                      l2ptr_dma;
539 };
540
541 struct arm_smmu_s1_cfg {
542         __le64                          *cdptr;
543         dma_addr_t                      cdptr_dma;
544
545         struct arm_smmu_ctx_desc {
546                 u16     asid;
547                 u64     ttbr;
548                 u64     tcr;
549                 u64     mair;
550         }                               cd;
551 };
552
553 struct arm_smmu_s2_cfg {
554         u16                             vmid;
555         u64                             vttbr;
556         u64                             vtcr;
557 };
558
559 struct arm_smmu_strtab_ent {
560         bool                            valid;
561
562         bool                            bypass; /* Overrides s1/s2 config */
563         struct arm_smmu_s1_cfg          *s1_cfg;
564         struct arm_smmu_s2_cfg          *s2_cfg;
565 };
566
567 struct arm_smmu_strtab_cfg {
568         __le64                          *strtab;
569         dma_addr_t                      strtab_dma;
570         struct arm_smmu_strtab_l1_desc  *l1_desc;
571         unsigned int                    num_l1_ents;
572
573         u64                             strtab_base;
574         u32                             strtab_base_cfg;
575 };
576
577 /* An SMMUv3 instance */
578 struct arm_smmu_device {
579         struct device                   *dev;
580         void __iomem                    *base;
581
582 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
583 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
584 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
585 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
586 #define ARM_SMMU_FEAT_PRI               (1 << 4)
587 #define ARM_SMMU_FEAT_ATS               (1 << 5)
588 #define ARM_SMMU_FEAT_SEV               (1 << 6)
589 #define ARM_SMMU_FEAT_MSI               (1 << 7)
590 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
591 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
592 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
593 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
594 #define ARM_SMMU_FEAT_HYP               (1 << 12)
595         u32                             features;
596
597 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
598         u32                             options;
599
600         struct arm_smmu_cmdq            cmdq;
601         struct arm_smmu_evtq            evtq;
602         struct arm_smmu_priq            priq;
603
604         int                             gerr_irq;
605
606         unsigned long                   ias; /* IPA */
607         unsigned long                   oas; /* PA */
608         unsigned long                   pgsize_bitmap;
609
610 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
611         unsigned int                    asid_bits;
612         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
613
614 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
615         unsigned int                    vmid_bits;
616         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
617
618         unsigned int                    ssid_bits;
619         unsigned int                    sid_bits;
620
621         struct arm_smmu_strtab_cfg      strtab_cfg;
622 };
623
624 /* SMMU private data for each master */
625 struct arm_smmu_master_data {
626         struct arm_smmu_device          *smmu;
627         struct arm_smmu_strtab_ent      ste;
628 };
629
630 /* SMMU private data for an IOMMU domain */
631 enum arm_smmu_domain_stage {
632         ARM_SMMU_DOMAIN_S1 = 0,
633         ARM_SMMU_DOMAIN_S2,
634         ARM_SMMU_DOMAIN_NESTED,
635 };
636
637 struct arm_smmu_domain {
638         struct arm_smmu_device          *smmu;
639         struct mutex                    init_mutex; /* Protects smmu pointer */
640
641         struct io_pgtable_ops           *pgtbl_ops;
642         spinlock_t                      pgtbl_lock;
643
644         enum arm_smmu_domain_stage      stage;
645         union {
646                 struct arm_smmu_s1_cfg  s1_cfg;
647                 struct arm_smmu_s2_cfg  s2_cfg;
648         };
649
650         struct iommu_domain             domain;
651 };
652
653 struct arm_smmu_option_prop {
654         u32 opt;
655         const char *prop;
656 };
657
658 static struct arm_smmu_option_prop arm_smmu_options[] = {
659         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
660         { 0, NULL},
661 };
662
663 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
664 {
665         return container_of(dom, struct arm_smmu_domain, domain);
666 }
667
668 static void parse_driver_options(struct arm_smmu_device *smmu)
669 {
670         int i = 0;
671
672         do {
673                 if (of_property_read_bool(smmu->dev->of_node,
674                                                 arm_smmu_options[i].prop)) {
675                         smmu->options |= arm_smmu_options[i].opt;
676                         dev_notice(smmu->dev, "option %s\n",
677                                 arm_smmu_options[i].prop);
678                 }
679         } while (arm_smmu_options[++i].opt);
680 }
681
682 /* Low-level queue manipulation functions */
683 static bool queue_full(struct arm_smmu_queue *q)
684 {
685         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
686                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
687 }
688
689 static bool queue_empty(struct arm_smmu_queue *q)
690 {
691         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
692                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
693 }
694
695 static void queue_sync_cons(struct arm_smmu_queue *q)
696 {
697         q->cons = readl_relaxed(q->cons_reg);
698 }
699
700 static void queue_inc_cons(struct arm_smmu_queue *q)
701 {
702         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
703
704         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
705         writel(q->cons, q->cons_reg);
706 }
707
708 static int queue_sync_prod(struct arm_smmu_queue *q)
709 {
710         int ret = 0;
711         u32 prod = readl_relaxed(q->prod_reg);
712
713         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
714                 ret = -EOVERFLOW;
715
716         q->prod = prod;
717         return ret;
718 }
719
720 static void queue_inc_prod(struct arm_smmu_queue *q)
721 {
722         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
723
724         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
725         writel(q->prod, q->prod_reg);
726 }
727
728 /*
729  * Wait for the SMMU to consume items. If drain is true, wait until the queue
730  * is empty. Otherwise, wait until there is at least one free slot.
731  */
732 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
733 {
734         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
735
736         while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
737                 if (ktime_compare(ktime_get(), timeout) > 0)
738                         return -ETIMEDOUT;
739
740                 if (wfe) {
741                         wfe();
742                 } else {
743                         cpu_relax();
744                         udelay(1);
745                 }
746         }
747
748         return 0;
749 }
750
751 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
752 {
753         int i;
754
755         for (i = 0; i < n_dwords; ++i)
756                 *dst++ = cpu_to_le64(*src++);
757 }
758
759 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
760 {
761         if (queue_full(q))
762                 return -ENOSPC;
763
764         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
765         queue_inc_prod(q);
766         return 0;
767 }
768
769 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
770 {
771         int i;
772
773         for (i = 0; i < n_dwords; ++i)
774                 *dst++ = le64_to_cpu(*src++);
775 }
776
777 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
778 {
779         if (queue_empty(q))
780                 return -EAGAIN;
781
782         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
783         queue_inc_cons(q);
784         return 0;
785 }
786
787 /* High-level queue accessors */
788 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
789 {
790         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
791         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
792
793         switch (ent->opcode) {
794         case CMDQ_OP_TLBI_EL2_ALL:
795         case CMDQ_OP_TLBI_NSNH_ALL:
796                 break;
797         case CMDQ_OP_PREFETCH_CFG:
798                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
799                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
800                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
801                 break;
802         case CMDQ_OP_CFGI_STE:
803                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
804                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
805                 break;
806         case CMDQ_OP_CFGI_ALL:
807                 /* Cover the entire SID range */
808                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
809                 break;
810         case CMDQ_OP_TLBI_NH_VA:
811                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
812                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
813                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
814                 break;
815         case CMDQ_OP_TLBI_S2_IPA:
816                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
817                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
818                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
819                 break;
820         case CMDQ_OP_TLBI_NH_ASID:
821                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
822                 /* Fallthrough */
823         case CMDQ_OP_TLBI_S12_VMALL:
824                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
825                 break;
826         case CMDQ_OP_PRI_RESP:
827                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
828                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
829                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
830                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
831                 switch (ent->pri.resp) {
832                 case PRI_RESP_DENY:
833                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
834                         break;
835                 case PRI_RESP_FAIL:
836                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
837                         break;
838                 case PRI_RESP_SUCC:
839                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
840                         break;
841                 default:
842                         return -EINVAL;
843                 }
844                 break;
845         case CMDQ_OP_CMD_SYNC:
846                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
847                 break;
848         default:
849                 return -ENOENT;
850         }
851
852         return 0;
853 }
854
855 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
856 {
857         static const char *cerror_str[] = {
858                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
859                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
860                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
861         };
862
863         int i;
864         u64 cmd[CMDQ_ENT_DWORDS];
865         struct arm_smmu_queue *q = &smmu->cmdq.q;
866         u32 cons = readl_relaxed(q->cons_reg);
867         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
868         struct arm_smmu_cmdq_ent cmd_sync = {
869                 .opcode = CMDQ_OP_CMD_SYNC,
870         };
871
872         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
873                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
874
875         switch (idx) {
876         case CMDQ_ERR_CERROR_ABT_IDX:
877                 dev_err(smmu->dev, "retrying command fetch\n");
878         case CMDQ_ERR_CERROR_NONE_IDX:
879                 return;
880         case CMDQ_ERR_CERROR_ILL_IDX:
881                 /* Fallthrough */
882         default:
883                 break;
884         }
885
886         /*
887          * We may have concurrent producers, so we need to be careful
888          * not to touch any of the shadow cmdq state.
889          */
890         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
891         dev_err(smmu->dev, "skipping command in error state:\n");
892         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
893                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
894
895         /* Convert the erroneous command into a CMD_SYNC */
896         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
897                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
898                 return;
899         }
900
901         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
902 }
903
904 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
905                                     struct arm_smmu_cmdq_ent *ent)
906 {
907         u64 cmd[CMDQ_ENT_DWORDS];
908         unsigned long flags;
909         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
910         struct arm_smmu_queue *q = &smmu->cmdq.q;
911
912         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
913                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
914                          ent->opcode);
915                 return;
916         }
917
918         spin_lock_irqsave(&smmu->cmdq.lock, flags);
919         while (queue_insert_raw(q, cmd) == -ENOSPC) {
920                 if (queue_poll_cons(q, false, wfe))
921                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
922         }
923
924         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
925                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
926         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
927 }
928
929 /* Context descriptor manipulation functions */
930 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
931 {
932         u64 val = 0;
933
934         /* Repack the TCR. Just care about TTBR0 for now */
935         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
936         val |= ARM_SMMU_TCR2CD(tcr, TG0);
937         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
938         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
939         val |= ARM_SMMU_TCR2CD(tcr, SH0);
940         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
941         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
942         val |= ARM_SMMU_TCR2CD(tcr, IPS);
943         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
944
945         return val;
946 }
947
948 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
949                                     struct arm_smmu_s1_cfg *cfg)
950 {
951         u64 val;
952
953         /*
954          * We don't need to issue any invalidation here, as we'll invalidate
955          * the STE when installing the new entry anyway.
956          */
957         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
958 #ifdef __BIG_ENDIAN
959               CTXDESC_CD_0_ENDI |
960 #endif
961               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
962               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
963               CTXDESC_CD_0_V;
964         cfg->cdptr[0] = cpu_to_le64(val);
965
966         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
967         cfg->cdptr[1] = cpu_to_le64(val);
968
969         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
970 }
971
972 /* Stream table manipulation functions */
973 static void
974 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
975 {
976         u64 val = 0;
977
978         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
979                 << STRTAB_L1_DESC_SPAN_SHIFT;
980         val |= desc->l2ptr_dma &
981                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
982
983         *dst = cpu_to_le64(val);
984 }
985
986 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
987 {
988         struct arm_smmu_cmdq_ent cmd = {
989                 .opcode = CMDQ_OP_CFGI_STE,
990                 .cfgi   = {
991                         .sid    = sid,
992                         .leaf   = true,
993                 },
994         };
995
996         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
997         cmd.opcode = CMDQ_OP_CMD_SYNC;
998         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
999 }
1000
1001 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
1002                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
1003 {
1004         /*
1005          * This is hideously complicated, but we only really care about
1006          * three cases at the moment:
1007          *
1008          * 1. Invalid (all zero) -> bypass  (init)
1009          * 2. Bypass -> translation (attach)
1010          * 3. Translation -> bypass (detach)
1011          *
1012          * Given that we can't update the STE atomically and the SMMU
1013          * doesn't read the thing in a defined order, that leaves us
1014          * with the following maintenance requirements:
1015          *
1016          * 1. Update Config, return (init time STEs aren't live)
1017          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1018          * 3. Update Config, sync
1019          */
1020         u64 val = le64_to_cpu(dst[0]);
1021         bool ste_live = false;
1022         struct arm_smmu_cmdq_ent prefetch_cmd = {
1023                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1024                 .prefetch       = {
1025                         .sid    = sid,
1026                 },
1027         };
1028
1029         if (val & STRTAB_STE_0_V) {
1030                 u64 cfg;
1031
1032                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1033                 switch (cfg) {
1034                 case STRTAB_STE_0_CFG_BYPASS:
1035                         break;
1036                 case STRTAB_STE_0_CFG_S1_TRANS:
1037                 case STRTAB_STE_0_CFG_S2_TRANS:
1038                         ste_live = true;
1039                         break;
1040                 case STRTAB_STE_0_CFG_ABORT:
1041                         if (disable_bypass)
1042                                 break;
1043                 default:
1044                         BUG(); /* STE corruption */
1045                 }
1046         }
1047
1048         /* Nuke the existing Config, as we're going to rewrite it */
1049         val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1050
1051         if (ste->valid)
1052                 val |= STRTAB_STE_0_V;
1053         else
1054                 val &= ~STRTAB_STE_0_V;
1055
1056         if (ste->bypass) {
1057                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1058                                       : STRTAB_STE_0_CFG_BYPASS;
1059                 dst[0] = cpu_to_le64(val);
1060                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1061                          << STRTAB_STE_1_SHCFG_SHIFT);
1062                 dst[2] = 0; /* Nuke the VMID */
1063                 if (ste_live)
1064                         arm_smmu_sync_ste_for_sid(smmu, sid);
1065                 return;
1066         }
1067
1068         if (ste->s1_cfg) {
1069                 BUG_ON(ste_live);
1070                 dst[1] = cpu_to_le64(
1071                          STRTAB_STE_1_S1C_CACHE_WBRA
1072                          << STRTAB_STE_1_S1CIR_SHIFT |
1073                          STRTAB_STE_1_S1C_CACHE_WBRA
1074                          << STRTAB_STE_1_S1COR_SHIFT |
1075                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1076 #ifdef CONFIG_PCI_ATS
1077                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1078 #endif
1079                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT |
1080                          STRTAB_STE_1_PRIVCFG_UNPRIV <<
1081                          STRTAB_STE_1_PRIVCFG_SHIFT);
1082
1083                 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1084                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1085
1086                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1087                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1088                         STRTAB_STE_0_CFG_S1_TRANS;
1089
1090         }
1091
1092         if (ste->s2_cfg) {
1093                 BUG_ON(ste_live);
1094                 dst[2] = cpu_to_le64(
1095                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1096                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1097                           << STRTAB_STE_2_VTCR_SHIFT |
1098 #ifdef __BIG_ENDIAN
1099                          STRTAB_STE_2_S2ENDI |
1100 #endif
1101                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1102                          STRTAB_STE_2_S2R);
1103
1104                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1105                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1106
1107                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1108         }
1109
1110         arm_smmu_sync_ste_for_sid(smmu, sid);
1111         dst[0] = cpu_to_le64(val);
1112         arm_smmu_sync_ste_for_sid(smmu, sid);
1113
1114         /* It's likely that we'll want to use the new STE soon */
1115         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1116                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1117 }
1118
1119 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1120 {
1121         unsigned int i;
1122         struct arm_smmu_strtab_ent ste = {
1123                 .valid  = true,
1124                 .bypass = true,
1125         };
1126
1127         for (i = 0; i < nent; ++i) {
1128                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1129                 strtab += STRTAB_STE_DWORDS;
1130         }
1131 }
1132
1133 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1134 {
1135         size_t size;
1136         void *strtab;
1137         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1138         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1139
1140         if (desc->l2ptr)
1141                 return 0;
1142
1143         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1144         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1145
1146         desc->span = STRTAB_SPLIT + 1;
1147         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1148                                           GFP_KERNEL | __GFP_ZERO);
1149         if (!desc->l2ptr) {
1150                 dev_err(smmu->dev,
1151                         "failed to allocate l2 stream table for SID %u\n",
1152                         sid);
1153                 return -ENOMEM;
1154         }
1155
1156         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1157         arm_smmu_write_strtab_l1_desc(strtab, desc);
1158         return 0;
1159 }
1160
1161 /* IRQ and event handlers */
1162 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1163 {
1164         int i;
1165         struct arm_smmu_device *smmu = dev;
1166         struct arm_smmu_queue *q = &smmu->evtq.q;
1167         u64 evt[EVTQ_ENT_DWORDS];
1168
1169         do {
1170                 while (!queue_remove_raw(q, evt)) {
1171                         u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1172
1173                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1174                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1175                                 dev_info(smmu->dev, "\t0x%016llx\n",
1176                                          (unsigned long long)evt[i]);
1177
1178                 }
1179
1180                 /*
1181                  * Not much we can do on overflow, so scream and pretend we're
1182                  * trying harder.
1183                  */
1184                 if (queue_sync_prod(q) == -EOVERFLOW)
1185                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1186         } while (!queue_empty(q));
1187
1188         /* Sync our overflow flag, as we believe we're up to speed */
1189         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1190         return IRQ_HANDLED;
1191 }
1192
1193 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1194 {
1195         u32 sid, ssid;
1196         u16 grpid;
1197         bool ssv, last;
1198
1199         sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1200         ssv = evt[0] & PRIQ_0_SSID_V;
1201         ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1202         last = evt[0] & PRIQ_0_PRG_LAST;
1203         grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1204
1205         dev_info(smmu->dev, "unexpected PRI request received:\n");
1206         dev_info(smmu->dev,
1207                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1208                  sid, ssid, grpid, last ? "L" : "",
1209                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1210                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1211                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1212                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1213                  evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1214
1215         if (last) {
1216                 struct arm_smmu_cmdq_ent cmd = {
1217                         .opcode                 = CMDQ_OP_PRI_RESP,
1218                         .substream_valid        = ssv,
1219                         .pri                    = {
1220                                 .sid    = sid,
1221                                 .ssid   = ssid,
1222                                 .grpid  = grpid,
1223                                 .resp   = PRI_RESP_DENY,
1224                         },
1225                 };
1226
1227                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1228         }
1229 }
1230
1231 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1232 {
1233         struct arm_smmu_device *smmu = dev;
1234         struct arm_smmu_queue *q = &smmu->priq.q;
1235         u64 evt[PRIQ_ENT_DWORDS];
1236
1237         do {
1238                 while (!queue_remove_raw(q, evt))
1239                         arm_smmu_handle_ppr(smmu, evt);
1240
1241                 if (queue_sync_prod(q) == -EOVERFLOW)
1242                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1243         } while (!queue_empty(q));
1244
1245         /* Sync our overflow flag, as we believe we're up to speed */
1246         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1247         return IRQ_HANDLED;
1248 }
1249
1250 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1251 {
1252         /* We don't actually use CMD_SYNC interrupts for anything */
1253         return IRQ_HANDLED;
1254 }
1255
1256 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1257
1258 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1259 {
1260         u32 gerror, gerrorn, active;
1261         struct arm_smmu_device *smmu = dev;
1262
1263         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1264         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1265
1266         active = gerror ^ gerrorn;
1267         if (!(active & GERROR_ERR_MASK))
1268                 return IRQ_NONE; /* No errors pending */
1269
1270         dev_warn(smmu->dev,
1271                  "unexpected global error reported (0x%08x), this could be serious\n",
1272                  active);
1273
1274         if (active & GERROR_SFM_ERR) {
1275                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1276                 arm_smmu_device_disable(smmu);
1277         }
1278
1279         if (active & GERROR_MSI_GERROR_ABT_ERR)
1280                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1281
1282         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1283                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1284
1285         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1286                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1287
1288         if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1289                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1290                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1291         }
1292
1293         if (active & GERROR_PRIQ_ABT_ERR)
1294                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1295
1296         if (active & GERROR_EVTQ_ABT_ERR)
1297                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1298
1299         if (active & GERROR_CMDQ_ERR)
1300                 arm_smmu_cmdq_skip_err(smmu);
1301
1302         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1303         return IRQ_HANDLED;
1304 }
1305
1306 /* IO_PGTABLE API */
1307 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1308 {
1309         struct arm_smmu_cmdq_ent cmd;
1310
1311         cmd.opcode = CMDQ_OP_CMD_SYNC;
1312         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1313 }
1314
1315 static void arm_smmu_tlb_sync(void *cookie)
1316 {
1317         struct arm_smmu_domain *smmu_domain = cookie;
1318         __arm_smmu_tlb_sync(smmu_domain->smmu);
1319 }
1320
1321 static void arm_smmu_tlb_inv_context(void *cookie)
1322 {
1323         struct arm_smmu_domain *smmu_domain = cookie;
1324         struct arm_smmu_device *smmu = smmu_domain->smmu;
1325         struct arm_smmu_cmdq_ent cmd;
1326
1327         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1328                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1329                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1330                 cmd.tlbi.vmid   = 0;
1331         } else {
1332                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1333                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1334         }
1335
1336         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1337         __arm_smmu_tlb_sync(smmu);
1338 }
1339
1340 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1341                                           size_t granule, bool leaf, void *cookie)
1342 {
1343         struct arm_smmu_domain *smmu_domain = cookie;
1344         struct arm_smmu_device *smmu = smmu_domain->smmu;
1345         struct arm_smmu_cmdq_ent cmd = {
1346                 .tlbi = {
1347                         .leaf   = leaf,
1348                         .addr   = iova,
1349                 },
1350         };
1351
1352         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1353                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1354                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1355         } else {
1356                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1357                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1358         }
1359
1360         do {
1361                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1362                 cmd.tlbi.addr += granule;
1363         } while (size -= granule);
1364 }
1365
1366 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1367         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1368         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1369         .tlb_sync       = arm_smmu_tlb_sync,
1370 };
1371
1372 /* IOMMU API */
1373 static bool arm_smmu_capable(enum iommu_cap cap)
1374 {
1375         switch (cap) {
1376         case IOMMU_CAP_CACHE_COHERENCY:
1377                 return true;
1378         case IOMMU_CAP_INTR_REMAP:
1379                 return true; /* MSIs are just memory writes */
1380         case IOMMU_CAP_NOEXEC:
1381                 return true;
1382         default:
1383                 return false;
1384         }
1385 }
1386
1387 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1388 {
1389         struct arm_smmu_domain *smmu_domain;
1390
1391         if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1392                 return NULL;
1393
1394         /*
1395          * Allocate the domain and initialise some of its data structures.
1396          * We can't really do anything meaningful until we've added a
1397          * master.
1398          */
1399         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1400         if (!smmu_domain)
1401                 return NULL;
1402
1403         if (type == IOMMU_DOMAIN_DMA &&
1404             iommu_get_dma_cookie(&smmu_domain->domain)) {
1405                 kfree(smmu_domain);
1406                 return NULL;
1407         }
1408
1409         mutex_init(&smmu_domain->init_mutex);
1410         spin_lock_init(&smmu_domain->pgtbl_lock);
1411         return &smmu_domain->domain;
1412 }
1413
1414 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1415 {
1416         int idx, size = 1 << span;
1417
1418         do {
1419                 idx = find_first_zero_bit(map, size);
1420                 if (idx == size)
1421                         return -ENOSPC;
1422         } while (test_and_set_bit(idx, map));
1423
1424         return idx;
1425 }
1426
1427 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1428 {
1429         clear_bit(idx, map);
1430 }
1431
1432 static void arm_smmu_domain_free(struct iommu_domain *domain)
1433 {
1434         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1435         struct arm_smmu_device *smmu = smmu_domain->smmu;
1436
1437         iommu_put_dma_cookie(domain);
1438         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1439
1440         /* Free the CD and ASID, if we allocated them */
1441         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1442                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1443
1444                 if (cfg->cdptr) {
1445                         dmam_free_coherent(smmu_domain->smmu->dev,
1446                                            CTXDESC_CD_DWORDS << 3,
1447                                            cfg->cdptr,
1448                                            cfg->cdptr_dma);
1449
1450                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1451                 }
1452         } else {
1453                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1454                 if (cfg->vmid)
1455                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1456         }
1457
1458         kfree(smmu_domain);
1459 }
1460
1461 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1462                                        struct io_pgtable_cfg *pgtbl_cfg)
1463 {
1464         int ret;
1465         int asid;
1466         struct arm_smmu_device *smmu = smmu_domain->smmu;
1467         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1468
1469         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1470         if (asid < 0)
1471                 return asid;
1472
1473         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1474                                          &cfg->cdptr_dma,
1475                                          GFP_KERNEL | __GFP_ZERO);
1476         if (!cfg->cdptr) {
1477                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1478                 ret = -ENOMEM;
1479                 goto out_free_asid;
1480         }
1481
1482         cfg->cd.asid    = (u16)asid;
1483         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1484         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1485         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1486         return 0;
1487
1488 out_free_asid:
1489         arm_smmu_bitmap_free(smmu->asid_map, asid);
1490         return ret;
1491 }
1492
1493 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1494                                        struct io_pgtable_cfg *pgtbl_cfg)
1495 {
1496         int vmid;
1497         struct arm_smmu_device *smmu = smmu_domain->smmu;
1498         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1499
1500         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1501         if (vmid < 0)
1502                 return vmid;
1503
1504         cfg->vmid       = (u16)vmid;
1505         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1506         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1507         return 0;
1508 }
1509
1510 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1511 {
1512         int ret;
1513         unsigned long ias, oas;
1514         enum io_pgtable_fmt fmt;
1515         struct io_pgtable_cfg pgtbl_cfg;
1516         struct io_pgtable_ops *pgtbl_ops;
1517         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1518                                  struct io_pgtable_cfg *);
1519         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1520         struct arm_smmu_device *smmu = smmu_domain->smmu;
1521
1522         /* Restrict the stage to what we can actually support */
1523         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1524                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1525         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1526                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1527
1528         switch (smmu_domain->stage) {
1529         case ARM_SMMU_DOMAIN_S1:
1530                 ias = VA_BITS;
1531                 oas = smmu->ias;
1532                 fmt = ARM_64_LPAE_S1;
1533                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1534                 break;
1535         case ARM_SMMU_DOMAIN_NESTED:
1536         case ARM_SMMU_DOMAIN_S2:
1537                 ias = smmu->ias;
1538                 oas = smmu->oas;
1539                 fmt = ARM_64_LPAE_S2;
1540                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1541                 break;
1542         default:
1543                 return -EINVAL;
1544         }
1545
1546         pgtbl_cfg = (struct io_pgtable_cfg) {
1547                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1548                 .ias            = ias,
1549                 .oas            = oas,
1550                 .tlb            = &arm_smmu_gather_ops,
1551                 .iommu_dev      = smmu->dev,
1552         };
1553
1554         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1555         if (!pgtbl_ops)
1556                 return -ENOMEM;
1557
1558         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1559         domain->geometry.aperture_end = (1UL << ias) - 1;
1560         domain->geometry.force_aperture = true;
1561         smmu_domain->pgtbl_ops = pgtbl_ops;
1562
1563         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1564         if (ret < 0)
1565                 free_io_pgtable_ops(pgtbl_ops);
1566
1567         return ret;
1568 }
1569
1570 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1571 {
1572         __le64 *step;
1573         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1574
1575         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1576                 struct arm_smmu_strtab_l1_desc *l1_desc;
1577                 int idx;
1578
1579                 /* Two-level walk */
1580                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1581                 l1_desc = &cfg->l1_desc[idx];
1582                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1583                 step = &l1_desc->l2ptr[idx];
1584         } else {
1585                 /* Simple linear lookup */
1586                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1587         }
1588
1589         return step;
1590 }
1591
1592 static int arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1593 {
1594         int i;
1595         struct arm_smmu_master_data *master = fwspec->iommu_priv;
1596         struct arm_smmu_device *smmu = master->smmu;
1597
1598         for (i = 0; i < fwspec->num_ids; ++i) {
1599                 u32 sid = fwspec->ids[i];
1600                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1601
1602                 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1603         }
1604
1605         return 0;
1606 }
1607
1608 static void arm_smmu_detach_dev(struct device *dev)
1609 {
1610         struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1611
1612         master->ste.bypass = true;
1613         if (arm_smmu_install_ste_for_dev(dev->iommu_fwspec) < 0)
1614                 dev_warn(dev, "failed to install bypass STE\n");
1615 }
1616
1617 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1618 {
1619         int ret = 0;
1620         struct arm_smmu_device *smmu;
1621         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1622         struct arm_smmu_master_data *master;
1623         struct arm_smmu_strtab_ent *ste;
1624
1625         if (!dev->iommu_fwspec)
1626                 return -ENOENT;
1627
1628         master = dev->iommu_fwspec->iommu_priv;
1629         smmu = master->smmu;
1630         ste = &master->ste;
1631
1632         /* Already attached to a different domain? */
1633         if (!ste->bypass)
1634                 arm_smmu_detach_dev(dev);
1635
1636         mutex_lock(&smmu_domain->init_mutex);
1637
1638         if (!smmu_domain->smmu) {
1639                 smmu_domain->smmu = smmu;
1640                 ret = arm_smmu_domain_finalise(domain);
1641                 if (ret) {
1642                         smmu_domain->smmu = NULL;
1643                         goto out_unlock;
1644                 }
1645         } else if (smmu_domain->smmu != smmu) {
1646                 dev_err(dev,
1647                         "cannot attach to SMMU %s (upstream of %s)\n",
1648                         dev_name(smmu_domain->smmu->dev),
1649                         dev_name(smmu->dev));
1650                 ret = -ENXIO;
1651                 goto out_unlock;
1652         }
1653
1654         ste->bypass = false;
1655         ste->valid = true;
1656
1657         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1658                 ste->s1_cfg = &smmu_domain->s1_cfg;
1659                 ste->s2_cfg = NULL;
1660                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1661         } else {
1662                 ste->s1_cfg = NULL;
1663                 ste->s2_cfg = &smmu_domain->s2_cfg;
1664         }
1665
1666         ret = arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1667         if (ret < 0)
1668                 ste->valid = false;
1669
1670 out_unlock:
1671         mutex_unlock(&smmu_domain->init_mutex);
1672         return ret;
1673 }
1674
1675 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1676                         phys_addr_t paddr, size_t size, int prot)
1677 {
1678         int ret;
1679         unsigned long flags;
1680         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1681         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1682
1683         if (!ops)
1684                 return -ENODEV;
1685
1686         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1687         ret = ops->map(ops, iova, paddr, size, prot);
1688         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1689         return ret;
1690 }
1691
1692 static size_t
1693 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1694 {
1695         size_t ret;
1696         unsigned long flags;
1697         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1698         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1699
1700         if (!ops)
1701                 return 0;
1702
1703         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1704         ret = ops->unmap(ops, iova, size);
1705         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1706         return ret;
1707 }
1708
1709 static phys_addr_t
1710 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1711 {
1712         phys_addr_t ret;
1713         unsigned long flags;
1714         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1715         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1716
1717         if (!ops)
1718                 return 0;
1719
1720         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1721         ret = ops->iova_to_phys(ops, iova);
1722         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1723
1724         return ret;
1725 }
1726
1727 static struct platform_driver arm_smmu_driver;
1728
1729 static int arm_smmu_match_node(struct device *dev, void *data)
1730 {
1731         return dev->fwnode == data;
1732 }
1733
1734 static
1735 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1736 {
1737         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1738                                                 fwnode, arm_smmu_match_node);
1739         put_device(dev);
1740         return dev ? dev_get_drvdata(dev) : NULL;
1741 }
1742
1743 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1744 {
1745         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1746
1747         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1748                 limit *= 1UL << STRTAB_SPLIT;
1749
1750         return sid < limit;
1751 }
1752
1753 static struct iommu_ops arm_smmu_ops;
1754
1755 static int arm_smmu_add_device(struct device *dev)
1756 {
1757         int i, ret;
1758         struct arm_smmu_device *smmu;
1759         struct arm_smmu_master_data *master;
1760         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1761         struct iommu_group *group;
1762
1763         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1764                 return -ENODEV;
1765         /*
1766          * We _can_ actually withstand dodgy bus code re-calling add_device()
1767          * without an intervening remove_device()/of_xlate() sequence, but
1768          * we're not going to do so quietly...
1769          */
1770         if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1771                 master = fwspec->iommu_priv;
1772                 smmu = master->smmu;
1773         } else {
1774                 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1775                 if (!smmu)
1776                         return -ENODEV;
1777                 master = kzalloc(sizeof(*master), GFP_KERNEL);
1778                 if (!master)
1779                         return -ENOMEM;
1780
1781                 master->smmu = smmu;
1782                 fwspec->iommu_priv = master;
1783         }
1784
1785         /* Check the SIDs are in range of the SMMU and our stream table */
1786         for (i = 0; i < fwspec->num_ids; i++) {
1787                 u32 sid = fwspec->ids[i];
1788
1789                 if (!arm_smmu_sid_in_range(smmu, sid))
1790                         return -ERANGE;
1791
1792                 /* Ensure l2 strtab is initialised */
1793                 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1794                         ret = arm_smmu_init_l2_strtab(smmu, sid);
1795                         if (ret)
1796                                 return ret;
1797                 }
1798         }
1799
1800         group = iommu_group_get_for_dev(dev);
1801         if (!IS_ERR(group))
1802                 iommu_group_put(group);
1803
1804         return PTR_ERR_OR_ZERO(group);
1805 }
1806
1807 static void arm_smmu_remove_device(struct device *dev)
1808 {
1809         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1810         struct arm_smmu_master_data *master;
1811
1812         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1813                 return;
1814
1815         master = fwspec->iommu_priv;
1816         if (master && master->ste.valid)
1817                 arm_smmu_detach_dev(dev);
1818         iommu_group_remove_device(dev);
1819         kfree(master);
1820         iommu_fwspec_free(dev);
1821 }
1822
1823 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1824 {
1825         struct iommu_group *group;
1826
1827         /*
1828          * We don't support devices sharing stream IDs other than PCI RID
1829          * aliases, since the necessary ID-to-device lookup becomes rather
1830          * impractical given a potential sparse 32-bit stream ID space.
1831          */
1832         if (dev_is_pci(dev))
1833                 group = pci_device_group(dev);
1834         else
1835                 group = generic_device_group(dev);
1836
1837         return group;
1838 }
1839
1840 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1841                                     enum iommu_attr attr, void *data)
1842 {
1843         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1844
1845         switch (attr) {
1846         case DOMAIN_ATTR_NESTING:
1847                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1848                 return 0;
1849         default:
1850                 return -ENODEV;
1851         }
1852 }
1853
1854 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1855                                     enum iommu_attr attr, void *data)
1856 {
1857         int ret = 0;
1858         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1859
1860         mutex_lock(&smmu_domain->init_mutex);
1861
1862         switch (attr) {
1863         case DOMAIN_ATTR_NESTING:
1864                 if (smmu_domain->smmu) {
1865                         ret = -EPERM;
1866                         goto out_unlock;
1867                 }
1868
1869                 if (*(int *)data)
1870                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1871                 else
1872                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1873
1874                 break;
1875         default:
1876                 ret = -ENODEV;
1877         }
1878
1879 out_unlock:
1880         mutex_unlock(&smmu_domain->init_mutex);
1881         return ret;
1882 }
1883
1884 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1885 {
1886         return iommu_fwspec_add_ids(dev, args->args, 1);
1887 }
1888
1889 static void arm_smmu_get_resv_regions(struct device *dev,
1890                                       struct list_head *head)
1891 {
1892         struct iommu_resv_region *region;
1893         int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1894
1895         region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1896                                          prot, IOMMU_RESV_MSI);
1897         if (!region)
1898                 return;
1899
1900         list_add_tail(&region->list, head);
1901 }
1902
1903 static void arm_smmu_put_resv_regions(struct device *dev,
1904                                       struct list_head *head)
1905 {
1906         struct iommu_resv_region *entry, *next;
1907
1908         list_for_each_entry_safe(entry, next, head, list)
1909                 kfree(entry);
1910 }
1911
1912 static struct iommu_ops arm_smmu_ops = {
1913         .capable                = arm_smmu_capable,
1914         .domain_alloc           = arm_smmu_domain_alloc,
1915         .domain_free            = arm_smmu_domain_free,
1916         .attach_dev             = arm_smmu_attach_dev,
1917         .map                    = arm_smmu_map,
1918         .unmap                  = arm_smmu_unmap,
1919         .map_sg                 = default_iommu_map_sg,
1920         .iova_to_phys           = arm_smmu_iova_to_phys,
1921         .add_device             = arm_smmu_add_device,
1922         .remove_device          = arm_smmu_remove_device,
1923         .device_group           = arm_smmu_device_group,
1924         .domain_get_attr        = arm_smmu_domain_get_attr,
1925         .domain_set_attr        = arm_smmu_domain_set_attr,
1926         .of_xlate               = arm_smmu_of_xlate,
1927         .get_resv_regions       = arm_smmu_get_resv_regions,
1928         .put_resv_regions       = arm_smmu_put_resv_regions,
1929         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1930 };
1931
1932 /* Probing and initialisation functions */
1933 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1934                                    struct arm_smmu_queue *q,
1935                                    unsigned long prod_off,
1936                                    unsigned long cons_off,
1937                                    size_t dwords)
1938 {
1939         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1940
1941         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1942         if (!q->base) {
1943                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1944                         qsz);
1945                 return -ENOMEM;
1946         }
1947
1948         q->prod_reg     = smmu->base + prod_off;
1949         q->cons_reg     = smmu->base + cons_off;
1950         q->ent_dwords   = dwords;
1951
1952         q->q_base  = Q_BASE_RWA;
1953         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1954         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1955                      << Q_BASE_LOG2SIZE_SHIFT;
1956
1957         q->prod = q->cons = 0;
1958         return 0;
1959 }
1960
1961 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1962 {
1963         int ret;
1964
1965         /* cmdq */
1966         spin_lock_init(&smmu->cmdq.lock);
1967         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1968                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1969         if (ret)
1970                 return ret;
1971
1972         /* evtq */
1973         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1974                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1975         if (ret)
1976                 return ret;
1977
1978         /* priq */
1979         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1980                 return 0;
1981
1982         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1983                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1984 }
1985
1986 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1987 {
1988         unsigned int i;
1989         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1990         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1991         void *strtab = smmu->strtab_cfg.strtab;
1992
1993         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1994         if (!cfg->l1_desc) {
1995                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1996                 return -ENOMEM;
1997         }
1998
1999         for (i = 0; i < cfg->num_l1_ents; ++i) {
2000                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2001                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2002         }
2003
2004         return 0;
2005 }
2006
2007 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2008 {
2009         void *strtab;
2010         u64 reg;
2011         u32 size, l1size;
2012         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2013
2014         /*
2015          * If we can resolve everything with a single L2 table, then we
2016          * just need a single L1 descriptor. Otherwise, calculate the L1
2017          * size, capped to the SIDSIZE.
2018          */
2019         if (smmu->sid_bits < STRTAB_SPLIT) {
2020                 size = 0;
2021         } else {
2022                 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2023                 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2024         }
2025         cfg->num_l1_ents = 1 << size;
2026
2027         size += STRTAB_SPLIT;
2028         if (size < smmu->sid_bits)
2029                 dev_warn(smmu->dev,
2030                          "2-level strtab only covers %u/%u bits of SID\n",
2031                          size, smmu->sid_bits);
2032
2033         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2034         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2035                                      GFP_KERNEL | __GFP_ZERO);
2036         if (!strtab) {
2037                 dev_err(smmu->dev,
2038                         "failed to allocate l1 stream table (%u bytes)\n",
2039                         size);
2040                 return -ENOMEM;
2041         }
2042         cfg->strtab = strtab;
2043
2044         /* Configure strtab_base_cfg for 2 levels */
2045         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2046         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2047                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2048         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2049                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2050         cfg->strtab_base_cfg = reg;
2051
2052         return arm_smmu_init_l1_strtab(smmu);
2053 }
2054
2055 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2056 {
2057         void *strtab;
2058         u64 reg;
2059         u32 size;
2060         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2061
2062         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2063         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2064                                      GFP_KERNEL | __GFP_ZERO);
2065         if (!strtab) {
2066                 dev_err(smmu->dev,
2067                         "failed to allocate linear stream table (%u bytes)\n",
2068                         size);
2069                 return -ENOMEM;
2070         }
2071         cfg->strtab = strtab;
2072         cfg->num_l1_ents = 1 << smmu->sid_bits;
2073
2074         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2075         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2076         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2077                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2078         cfg->strtab_base_cfg = reg;
2079
2080         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2081         return 0;
2082 }
2083
2084 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2085 {
2086         u64 reg;
2087         int ret;
2088
2089         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2090                 ret = arm_smmu_init_strtab_2lvl(smmu);
2091         else
2092                 ret = arm_smmu_init_strtab_linear(smmu);
2093
2094         if (ret)
2095                 return ret;
2096
2097         /* Set the strtab base address */
2098         reg  = smmu->strtab_cfg.strtab_dma &
2099                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2100         reg |= STRTAB_BASE_RA;
2101         smmu->strtab_cfg.strtab_base = reg;
2102
2103         /* Allocate the first VMID for stage-2 bypass STEs */
2104         set_bit(0, smmu->vmid_map);
2105         return 0;
2106 }
2107
2108 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2109 {
2110         int ret;
2111
2112         ret = arm_smmu_init_queues(smmu);
2113         if (ret)
2114                 return ret;
2115
2116         return arm_smmu_init_strtab(smmu);
2117 }
2118
2119 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2120                                    unsigned int reg_off, unsigned int ack_off)
2121 {
2122         u32 reg;
2123
2124         writel_relaxed(val, smmu->base + reg_off);
2125         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2126                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2127 }
2128
2129 /* GBPA is "special" */
2130 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2131 {
2132         int ret;
2133         u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2134
2135         ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2136                                          1, ARM_SMMU_POLL_TIMEOUT_US);
2137         if (ret)
2138                 return ret;
2139
2140         reg &= ~clr;
2141         reg |= set;
2142         writel_relaxed(reg | GBPA_UPDATE, gbpa);
2143         return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2144                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2145 }
2146
2147 static void arm_smmu_free_msis(void *data)
2148 {
2149         struct device *dev = data;
2150         platform_msi_domain_free_irqs(dev);
2151 }
2152
2153 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2154 {
2155         phys_addr_t doorbell;
2156         struct device *dev = msi_desc_to_dev(desc);
2157         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2158         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2159
2160         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2161         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2162
2163         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2164         writel_relaxed(msg->data, smmu->base + cfg[1]);
2165         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2166 }
2167
2168 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2169 {
2170         struct msi_desc *desc;
2171         int ret, nvec = ARM_SMMU_MAX_MSIS;
2172         struct device *dev = smmu->dev;
2173
2174         /* Clear the MSI address regs */
2175         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2176         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2177
2178         if (smmu->features & ARM_SMMU_FEAT_PRI)
2179                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2180         else
2181                 nvec--;
2182
2183         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2184                 return;
2185
2186         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2187         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2188         if (ret) {
2189                 dev_warn(dev, "failed to allocate MSIs\n");
2190                 return;
2191         }
2192
2193         for_each_msi_entry(desc, dev) {
2194                 switch (desc->platform.msi_index) {
2195                 case EVTQ_MSI_INDEX:
2196                         smmu->evtq.q.irq = desc->irq;
2197                         break;
2198                 case GERROR_MSI_INDEX:
2199                         smmu->gerr_irq = desc->irq;
2200                         break;
2201                 case PRIQ_MSI_INDEX:
2202                         smmu->priq.q.irq = desc->irq;
2203                         break;
2204                 default:        /* Unknown */
2205                         continue;
2206                 }
2207         }
2208
2209         /* Add callback to free MSIs on teardown */
2210         devm_add_action(dev, arm_smmu_free_msis, dev);
2211 }
2212
2213 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2214 {
2215         int ret, irq;
2216         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2217
2218         /* Disable IRQs first */
2219         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2220                                       ARM_SMMU_IRQ_CTRLACK);
2221         if (ret) {
2222                 dev_err(smmu->dev, "failed to disable irqs\n");
2223                 return ret;
2224         }
2225
2226         arm_smmu_setup_msis(smmu);
2227
2228         /* Request interrupt lines */
2229         irq = smmu->evtq.q.irq;
2230         if (irq) {
2231                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2232                                                 arm_smmu_evtq_thread,
2233                                                 IRQF_ONESHOT,
2234                                                 "arm-smmu-v3-evtq", smmu);
2235                 if (ret < 0)
2236                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2237         }
2238
2239         irq = smmu->cmdq.q.irq;
2240         if (irq) {
2241                 ret = devm_request_irq(smmu->dev, irq,
2242                                        arm_smmu_cmdq_sync_handler, 0,
2243                                        "arm-smmu-v3-cmdq-sync", smmu);
2244                 if (ret < 0)
2245                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2246         }
2247
2248         irq = smmu->gerr_irq;
2249         if (irq) {
2250                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2251                                        0, "arm-smmu-v3-gerror", smmu);
2252                 if (ret < 0)
2253                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2254         }
2255
2256         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2257                 irq = smmu->priq.q.irq;
2258                 if (irq) {
2259                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2260                                                         arm_smmu_priq_thread,
2261                                                         IRQF_ONESHOT,
2262                                                         "arm-smmu-v3-priq",
2263                                                         smmu);
2264                         if (ret < 0)
2265                                 dev_warn(smmu->dev,
2266                                          "failed to enable priq irq\n");
2267                         else
2268                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2269                 }
2270         }
2271
2272         /* Enable interrupt generation on the SMMU */
2273         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2274                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2275         if (ret)
2276                 dev_warn(smmu->dev, "failed to enable irqs\n");
2277
2278         return 0;
2279 }
2280
2281 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2282 {
2283         int ret;
2284
2285         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2286         if (ret)
2287                 dev_err(smmu->dev, "failed to clear cr0\n");
2288
2289         return ret;
2290 }
2291
2292 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2293 {
2294         int ret;
2295         u32 reg, enables;
2296         struct arm_smmu_cmdq_ent cmd;
2297
2298         /* Clear CR0 and sync (disables SMMU and queue processing) */
2299         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2300         if (reg & CR0_SMMUEN)
2301                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2302
2303         ret = arm_smmu_device_disable(smmu);
2304         if (ret)
2305                 return ret;
2306
2307         /* CR1 (table and queue memory attributes) */
2308         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2309               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2310               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2311               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2312               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2313               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2314         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2315
2316         /* CR2 (random crap) */
2317         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2318         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2319
2320         /* Stream table */
2321         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2322                        smmu->base + ARM_SMMU_STRTAB_BASE);
2323         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2324                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2325
2326         /* Command queue */
2327         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2328         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2329         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2330
2331         enables = CR0_CMDQEN;
2332         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2333                                       ARM_SMMU_CR0ACK);
2334         if (ret) {
2335                 dev_err(smmu->dev, "failed to enable command queue\n");
2336                 return ret;
2337         }
2338
2339         /* Invalidate any cached configuration */
2340         cmd.opcode = CMDQ_OP_CFGI_ALL;
2341         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2342         cmd.opcode = CMDQ_OP_CMD_SYNC;
2343         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2344
2345         /* Invalidate any stale TLB entries */
2346         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2347                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2348                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2349         }
2350
2351         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2352         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2353         cmd.opcode = CMDQ_OP_CMD_SYNC;
2354         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2355
2356         /* Event queue */
2357         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2358         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2359         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2360
2361         enables |= CR0_EVTQEN;
2362         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2363                                       ARM_SMMU_CR0ACK);
2364         if (ret) {
2365                 dev_err(smmu->dev, "failed to enable event queue\n");
2366                 return ret;
2367         }
2368
2369         /* PRI queue */
2370         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2371                 writeq_relaxed(smmu->priq.q.q_base,
2372                                smmu->base + ARM_SMMU_PRIQ_BASE);
2373                 writel_relaxed(smmu->priq.q.prod,
2374                                smmu->base + ARM_SMMU_PRIQ_PROD);
2375                 writel_relaxed(smmu->priq.q.cons,
2376                                smmu->base + ARM_SMMU_PRIQ_CONS);
2377
2378                 enables |= CR0_PRIQEN;
2379                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2380                                               ARM_SMMU_CR0ACK);
2381                 if (ret) {
2382                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2383                         return ret;
2384                 }
2385         }
2386
2387         ret = arm_smmu_setup_irqs(smmu);
2388         if (ret) {
2389                 dev_err(smmu->dev, "failed to setup irqs\n");
2390                 return ret;
2391         }
2392
2393
2394         /* Enable the SMMU interface, or ensure bypass */
2395         if (!bypass || disable_bypass) {
2396                 enables |= CR0_SMMUEN;
2397         } else {
2398                 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2399                 if (ret) {
2400                         dev_err(smmu->dev, "GBPA not responding to update\n");
2401                         return ret;
2402                 }
2403         }
2404         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2405                                       ARM_SMMU_CR0ACK);
2406         if (ret) {
2407                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2408                 return ret;
2409         }
2410
2411         return 0;
2412 }
2413
2414 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2415 {
2416         u32 reg;
2417         bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2418
2419         /* IDR0 */
2420         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2421
2422         /* 2-level structures */
2423         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2424                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2425
2426         if (reg & IDR0_CD2L)
2427                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2428
2429         /*
2430          * Translation table endianness.
2431          * We currently require the same endianness as the CPU, but this
2432          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2433          */
2434         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2435         case IDR0_TTENDIAN_MIXED:
2436                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2437                 break;
2438 #ifdef __BIG_ENDIAN
2439         case IDR0_TTENDIAN_BE:
2440                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2441                 break;
2442 #else
2443         case IDR0_TTENDIAN_LE:
2444                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2445                 break;
2446 #endif
2447         default:
2448                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2449                 return -ENXIO;
2450         }
2451
2452         /* Boolean feature flags */
2453         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2454                 smmu->features |= ARM_SMMU_FEAT_PRI;
2455
2456         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2457                 smmu->features |= ARM_SMMU_FEAT_ATS;
2458
2459         if (reg & IDR0_SEV)
2460                 smmu->features |= ARM_SMMU_FEAT_SEV;
2461
2462         if (reg & IDR0_MSI)
2463                 smmu->features |= ARM_SMMU_FEAT_MSI;
2464
2465         if (reg & IDR0_HYP)
2466                 smmu->features |= ARM_SMMU_FEAT_HYP;
2467
2468         /*
2469          * The coherency feature as set by FW is used in preference to the ID
2470          * register, but warn on mismatch.
2471          */
2472         if (!!(reg & IDR0_COHACC) != coherent)
2473                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2474                          coherent ? "true" : "false");
2475
2476         switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2477         case IDR0_STALL_MODEL_STALL:
2478                 /* Fallthrough */
2479         case IDR0_STALL_MODEL_FORCE:
2480                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2481         }
2482
2483         if (reg & IDR0_S1P)
2484                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2485
2486         if (reg & IDR0_S2P)
2487                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2488
2489         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2490                 dev_err(smmu->dev, "no translation support!\n");
2491                 return -ENXIO;
2492         }
2493
2494         /* We only support the AArch64 table format at present */
2495         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2496         case IDR0_TTF_AARCH32_64:
2497                 smmu->ias = 40;
2498                 /* Fallthrough */
2499         case IDR0_TTF_AARCH64:
2500                 break;
2501         default:
2502                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2503                 return -ENXIO;
2504         }
2505
2506         /* ASID/VMID sizes */
2507         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2508         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2509
2510         /* IDR1 */
2511         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2512         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2513                 dev_err(smmu->dev, "embedded implementation not supported\n");
2514                 return -ENXIO;
2515         }
2516
2517         /* Queue sizes, capped at 4k */
2518         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2519                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2520         if (!smmu->cmdq.q.max_n_shift) {
2521                 /* Odd alignment restrictions on the base, so ignore for now */
2522                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2523                 return -ENXIO;
2524         }
2525
2526         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2527                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2528         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2529                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2530
2531         /* SID/SSID sizes */
2532         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2533         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2534
2535         /* IDR5 */
2536         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2537
2538         /* Maximum number of outstanding stalls */
2539         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2540                                 & IDR5_STALL_MAX_MASK;
2541
2542         /* Page sizes */
2543         if (reg & IDR5_GRAN64K)
2544                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2545         if (reg & IDR5_GRAN16K)
2546                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2547         if (reg & IDR5_GRAN4K)
2548                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2549
2550         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2551                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2552         else
2553                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2554
2555         /* Output address size */
2556         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2557         case IDR5_OAS_32_BIT:
2558                 smmu->oas = 32;
2559                 break;
2560         case IDR5_OAS_36_BIT:
2561                 smmu->oas = 36;
2562                 break;
2563         case IDR5_OAS_40_BIT:
2564                 smmu->oas = 40;
2565                 break;
2566         case IDR5_OAS_42_BIT:
2567                 smmu->oas = 42;
2568                 break;
2569         case IDR5_OAS_44_BIT:
2570                 smmu->oas = 44;
2571                 break;
2572         default:
2573                 dev_info(smmu->dev,
2574                         "unknown output address size. Truncating to 48-bit\n");
2575                 /* Fallthrough */
2576         case IDR5_OAS_48_BIT:
2577                 smmu->oas = 48;
2578         }
2579
2580         /* Set the DMA mask for our table walker */
2581         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2582                 dev_warn(smmu->dev,
2583                          "failed to set DMA mask for table walker\n");
2584
2585         smmu->ias = max(smmu->ias, smmu->oas);
2586
2587         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2588                  smmu->ias, smmu->oas, smmu->features);
2589         return 0;
2590 }
2591
2592 #ifdef CONFIG_ACPI
2593 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2594                                       struct arm_smmu_device *smmu)
2595 {
2596         struct acpi_iort_smmu_v3 *iort_smmu;
2597         struct device *dev = smmu->dev;
2598         struct acpi_iort_node *node;
2599
2600         node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2601
2602         /* Retrieve SMMUv3 specific data */
2603         iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2604
2605         if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2606                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2607
2608         return 0;
2609 }
2610 #else
2611 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2612                                              struct arm_smmu_device *smmu)
2613 {
2614         return -ENODEV;
2615 }
2616 #endif
2617
2618 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2619                                     struct arm_smmu_device *smmu)
2620 {
2621         struct device *dev = &pdev->dev;
2622         u32 cells;
2623         int ret = -EINVAL;
2624
2625         if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2626                 dev_err(dev, "missing #iommu-cells property\n");
2627         else if (cells != 1)
2628                 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2629         else
2630                 ret = 0;
2631
2632         parse_driver_options(smmu);
2633
2634         if (of_dma_is_coherent(dev->of_node))
2635                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2636
2637         return ret;
2638 }
2639
2640 static int arm_smmu_device_probe(struct platform_device *pdev)
2641 {
2642         int irq, ret;
2643         struct resource *res;
2644         struct arm_smmu_device *smmu;
2645         struct device *dev = &pdev->dev;
2646         bool bypass;
2647
2648         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2649         if (!smmu) {
2650                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2651                 return -ENOMEM;
2652         }
2653         smmu->dev = dev;
2654
2655         /* Base address */
2656         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2657         if (resource_size(res) + 1 < SZ_128K) {
2658                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2659                 return -EINVAL;
2660         }
2661
2662         smmu->base = devm_ioremap_resource(dev, res);
2663         if (IS_ERR(smmu->base))
2664                 return PTR_ERR(smmu->base);
2665
2666         /* Interrupt lines */
2667         irq = platform_get_irq_byname(pdev, "eventq");
2668         if (irq > 0)
2669                 smmu->evtq.q.irq = irq;
2670
2671         irq = platform_get_irq_byname(pdev, "priq");
2672         if (irq > 0)
2673                 smmu->priq.q.irq = irq;
2674
2675         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2676         if (irq > 0)
2677                 smmu->cmdq.q.irq = irq;
2678
2679         irq = platform_get_irq_byname(pdev, "gerror");
2680         if (irq > 0)
2681                 smmu->gerr_irq = irq;
2682
2683         if (dev->of_node) {
2684                 ret = arm_smmu_device_dt_probe(pdev, smmu);
2685         } else {
2686                 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2687                 if (ret == -ENODEV)
2688                         return ret;
2689         }
2690
2691         /* Set bypass mode according to firmware probing result */
2692         bypass = !!ret;
2693
2694         /* Probe the h/w */
2695         ret = arm_smmu_device_hw_probe(smmu);
2696         if (ret)
2697                 return ret;
2698
2699         /* Initialise in-memory data structures */
2700         ret = arm_smmu_init_structures(smmu);
2701         if (ret)
2702                 return ret;
2703
2704         /* Record our private device structure */
2705         platform_set_drvdata(pdev, smmu);
2706
2707         /* Reset the device */
2708         ret = arm_smmu_device_reset(smmu, bypass);
2709         if (ret)
2710                 return ret;
2711
2712         /* And we're up. Go go go! */
2713         iommu_register_instance(dev->fwnode, &arm_smmu_ops);
2714
2715 #ifdef CONFIG_PCI
2716         if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2717                 pci_request_acs();
2718                 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2719                 if (ret)
2720                         return ret;
2721         }
2722 #endif
2723 #ifdef CONFIG_ARM_AMBA
2724         if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2725                 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2726                 if (ret)
2727                         return ret;
2728         }
2729 #endif
2730         if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2731                 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2732                 if (ret)
2733                         return ret;
2734         }
2735         return 0;
2736 }
2737
2738 static int arm_smmu_device_remove(struct platform_device *pdev)
2739 {
2740         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2741
2742         arm_smmu_device_disable(smmu);
2743         return 0;
2744 }
2745
2746 static struct of_device_id arm_smmu_of_match[] = {
2747         { .compatible = "arm,smmu-v3", },
2748         { },
2749 };
2750 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2751
2752 static struct platform_driver arm_smmu_driver = {
2753         .driver = {
2754                 .name           = "arm-smmu-v3",
2755                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2756         },
2757         .probe  = arm_smmu_device_probe,
2758         .remove = arm_smmu_device_remove,
2759 };
2760
2761 static int __init arm_smmu_init(void)
2762 {
2763         static bool registered;
2764         int ret = 0;
2765
2766         if (!registered) {
2767                 ret = platform_driver_register(&arm_smmu_driver);
2768                 registered = !ret;
2769         }
2770         return ret;
2771 }
2772
2773 static void __exit arm_smmu_exit(void)
2774 {
2775         return platform_driver_unregister(&arm_smmu_driver);
2776 }
2777
2778 subsys_initcall(arm_smmu_init);
2779 module_exit(arm_smmu_exit);
2780
2781 static int __init arm_smmu_of_init(struct device_node *np)
2782 {
2783         int ret = arm_smmu_init();
2784
2785         if (ret)
2786                 return ret;
2787
2788         if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2789                 return -ENODEV;
2790
2791         return 0;
2792 }
2793 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", arm_smmu_of_init);
2794
2795 #ifdef CONFIG_ACPI
2796 static int __init acpi_smmu_v3_init(struct acpi_table_header *table)
2797 {
2798         if (iort_node_match(ACPI_IORT_NODE_SMMU_V3))
2799                 return arm_smmu_init();
2800
2801         return 0;
2802 }
2803 IORT_ACPI_DECLARE(arm_smmu_v3, ACPI_SIG_IORT, acpi_smmu_v3_init);
2804 #endif
2805
2806 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2807 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2808 MODULE_LICENSE("GPL v2");