]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/iommu/arm-smmu-v3.c
iommu/arm-smmu-v3: Clear prior settings when updating STEs
[linux.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0                   0x0
46 #define IDR0_ST_LVL_SHIFT               27
47 #define IDR0_ST_LVL_MASK                0x3
48 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT          24
50 #define IDR0_STALL_MODEL_MASK           0x3
51 #define IDR0_STALL_MODEL_STALL          (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE          (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT             21
54 #define IDR0_TTENDIAN_MASK              0x3
55 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L                       (1 << 19)
59 #define IDR0_VMID16                     (1 << 18)
60 #define IDR0_PRI                        (1 << 16)
61 #define IDR0_SEV                        (1 << 14)
62 #define IDR0_MSI                        (1 << 13)
63 #define IDR0_ASID16                     (1 << 12)
64 #define IDR0_ATS                        (1 << 10)
65 #define IDR0_HYP                        (1 << 9)
66 #define IDR0_COHACC                     (1 << 4)
67 #define IDR0_TTF_SHIFT                  2
68 #define IDR0_TTF_MASK                   0x3
69 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P                        (1 << 1)
72 #define IDR0_S2P                        (1 << 0)
73
74 #define ARM_SMMU_IDR1                   0x4
75 #define IDR1_TABLES_PRESET              (1 << 30)
76 #define IDR1_QUEUES_PRESET              (1 << 29)
77 #define IDR1_REL                        (1 << 28)
78 #define IDR1_CMDQ_SHIFT                 21
79 #define IDR1_CMDQ_MASK                  0x1f
80 #define IDR1_EVTQ_SHIFT                 16
81 #define IDR1_EVTQ_MASK                  0x1f
82 #define IDR1_PRIQ_SHIFT                 11
83 #define IDR1_PRIQ_MASK                  0x1f
84 #define IDR1_SSID_SHIFT                 6
85 #define IDR1_SSID_MASK                  0x1f
86 #define IDR1_SID_SHIFT                  0
87 #define IDR1_SID_MASK                   0x3f
88
89 #define ARM_SMMU_IDR5                   0x14
90 #define IDR5_STALL_MAX_SHIFT            16
91 #define IDR5_STALL_MAX_MASK             0xffff
92 #define IDR5_GRAN64K                    (1 << 6)
93 #define IDR5_GRAN16K                    (1 << 5)
94 #define IDR5_GRAN4K                     (1 << 4)
95 #define IDR5_OAS_SHIFT                  0
96 #define IDR5_OAS_MASK                   0x7
97 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0                    0x20
105 #define CR0_CMDQEN                      (1 << 3)
106 #define CR0_EVTQEN                      (1 << 2)
107 #define CR0_PRIQEN                      (1 << 1)
108 #define CR0_SMMUEN                      (1 << 0)
109
110 #define ARM_SMMU_CR0ACK                 0x24
111
112 #define ARM_SMMU_CR1                    0x28
113 #define CR1_SH_NSH                      0
114 #define CR1_SH_OSH                      2
115 #define CR1_SH_ISH                      3
116 #define CR1_CACHE_NC                    0
117 #define CR1_CACHE_WB                    1
118 #define CR1_CACHE_WT                    2
119 #define CR1_TABLE_SH_SHIFT              10
120 #define CR1_TABLE_OC_SHIFT              8
121 #define CR1_TABLE_IC_SHIFT              6
122 #define CR1_QUEUE_SH_SHIFT              4
123 #define CR1_QUEUE_OC_SHIFT              2
124 #define CR1_QUEUE_IC_SHIFT              0
125
126 #define ARM_SMMU_CR2                    0x2c
127 #define CR2_PTM                         (1 << 2)
128 #define CR2_RECINVSID                   (1 << 1)
129 #define CR2_E2H                         (1 << 0)
130
131 #define ARM_SMMU_GBPA                   0x44
132 #define GBPA_ABORT                      (1 << 20)
133 #define GBPA_UPDATE                     (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL               0x50
136 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK            0x54
141
142 #define ARM_SMMU_GERROR                 0x60
143 #define GERROR_SFM_ERR                  (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
150 #define GERROR_CMDQ_ERR                 (1 << 0)
151 #define GERROR_ERR_MASK                 0xfd
152
153 #define ARM_SMMU_GERRORN                0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
158
159 #define ARM_SMMU_STRTAB_BASE            0x80
160 #define STRTAB_BASE_RA                  (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT          6
162 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
168 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT       16
170 #define STRTAB_BASE_CFG_FMT_MASK        0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE              0x90
175 #define ARM_SMMU_CMDQ_PROD              0x98
176 #define ARM_SMMU_CMDQ_CONS              0x9c
177
178 #define ARM_SMMU_EVTQ_BASE              0xa0
179 #define ARM_SMMU_EVTQ_PROD              0x100a8
180 #define ARM_SMMU_EVTQ_CONS              0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
184
185 #define ARM_SMMU_PRIQ_BASE              0xc0
186 #define ARM_SMMU_PRIQ_PROD              0x100c8
187 #define ARM_SMMU_PRIQ_CONS              0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT             2
194 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT               4
196 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT          0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG                 (1 << 31)
205 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p)                     ((q)->base +                    \
207                                          Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA                      (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT               5
211 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT           0
213 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
214
215 /*
216  * Stream table.
217  *
218  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219  * 2lvl: 128k L1 entries,
220  *       256 lazy entries per table (each table covers a PCI bus)
221  */
222 #define STRTAB_L1_SZ_SHIFT              20
223 #define STRTAB_SPLIT                    8
224
225 #define STRTAB_L1_DESC_DWORDS           1
226 #define STRTAB_L1_DESC_SPAN_SHIFT       0
227 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
229 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS               8
232 #define STRTAB_STE_0_V                  (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT          1
234 #define STRTAB_STE_0_CFG_MASK           0x7UL
235 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT        4
241 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
243 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
245 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
251 #define STRTAB_STE_1_S1C_SH_NSH         0UL
252 #define STRTAB_STE_1_S1C_SH_OSH         2UL
253 #define STRTAB_STE_1_S1C_SH_ISH         3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT        2
255 #define STRTAB_STE_1_S1COR_SHIFT        4
256 #define STRTAB_STE_1_S1CSH_SHIFT        6
257
258 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT           0UL
261 #define STRTAB_STE_1_EATS_TRANS         1UL
262 #define STRTAB_STE_1_EATS_S1CHK         2UL
263 #define STRTAB_STE_1_EATS_SHIFT         28
264
265 #define STRTAB_STE_1_STRW_NSEL1         0UL
266 #define STRTAB_STE_1_STRW_EL2           2UL
267 #define STRTAB_STE_1_STRW_SHIFT         30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT        44
271
272 #define STRTAB_STE_1_PRIVCFG_UNPRIV     2UL
273 #define STRTAB_STE_1_PRIVCFG_SHIFT      48
274
275 #define STRTAB_STE_2_S2VMID_SHIFT       0
276 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
277 #define STRTAB_STE_2_VTCR_SHIFT         32
278 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
279 #define STRTAB_STE_2_S2AA64             (1UL << 51)
280 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
281 #define STRTAB_STE_2_S2PTW              (1UL << 54)
282 #define STRTAB_STE_2_S2R                (1UL << 58)
283
284 #define STRTAB_STE_3_S2TTB_SHIFT        4
285 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
286
287 /* Context descriptor (stage-1 only) */
288 #define CTXDESC_CD_DWORDS               8
289 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
290 #define ARM64_TCR_T0SZ_SHIFT            0
291 #define ARM64_TCR_T0SZ_MASK             0x1fUL
292 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
293 #define ARM64_TCR_TG0_SHIFT             14
294 #define ARM64_TCR_TG0_MASK              0x3UL
295 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
296 #define ARM64_TCR_IRGN0_SHIFT           8
297 #define ARM64_TCR_IRGN0_MASK            0x3UL
298 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
299 #define ARM64_TCR_ORGN0_SHIFT           10
300 #define ARM64_TCR_ORGN0_MASK            0x3UL
301 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
302 #define ARM64_TCR_SH0_SHIFT             12
303 #define ARM64_TCR_SH0_MASK              0x3UL
304 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
305 #define ARM64_TCR_EPD0_SHIFT            7
306 #define ARM64_TCR_EPD0_MASK             0x1UL
307 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
308 #define ARM64_TCR_EPD1_SHIFT            23
309 #define ARM64_TCR_EPD1_MASK             0x1UL
310
311 #define CTXDESC_CD_0_ENDI               (1UL << 15)
312 #define CTXDESC_CD_0_V                  (1UL << 31)
313
314 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
315 #define ARM64_TCR_IPS_SHIFT             32
316 #define ARM64_TCR_IPS_MASK              0x7UL
317 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
318 #define ARM64_TCR_TBI0_SHIFT            37
319 #define ARM64_TCR_TBI0_MASK             0x1UL
320
321 #define CTXDESC_CD_0_AA64               (1UL << 41)
322 #define CTXDESC_CD_0_R                  (1UL << 45)
323 #define CTXDESC_CD_0_A                  (1UL << 46)
324 #define CTXDESC_CD_0_ASET_SHIFT         47
325 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
326 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
327 #define CTXDESC_CD_0_ASID_SHIFT         48
328 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
329
330 #define CTXDESC_CD_1_TTB0_SHIFT         4
331 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
332
333 #define CTXDESC_CD_3_MAIR_SHIFT         0
334
335 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
336 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
337         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
338          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
339
340 /* Command queue */
341 #define CMDQ_ENT_DWORDS                 2
342 #define CMDQ_MAX_SZ_SHIFT               8
343
344 #define CMDQ_ERR_SHIFT                  24
345 #define CMDQ_ERR_MASK                   0x7f
346 #define CMDQ_ERR_CERROR_NONE_IDX        0
347 #define CMDQ_ERR_CERROR_ILL_IDX         1
348 #define CMDQ_ERR_CERROR_ABT_IDX         2
349
350 #define CMDQ_0_OP_SHIFT                 0
351 #define CMDQ_0_OP_MASK                  0xffUL
352 #define CMDQ_0_SSV                      (1UL << 11)
353
354 #define CMDQ_PREFETCH_0_SID_SHIFT       32
355 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
356 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
357
358 #define CMDQ_CFGI_0_SID_SHIFT           32
359 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
360 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
361 #define CMDQ_CFGI_1_RANGE_SHIFT         0
362 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
363
364 #define CMDQ_TLBI_0_VMID_SHIFT          32
365 #define CMDQ_TLBI_0_ASID_SHIFT          48
366 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
367 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
368 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
369
370 #define CMDQ_PRI_0_SSID_SHIFT           12
371 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
372 #define CMDQ_PRI_0_SID_SHIFT            32
373 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
374 #define CMDQ_PRI_1_GRPID_SHIFT          0
375 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
376 #define CMDQ_PRI_1_RESP_SHIFT           12
377 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
378 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
379 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
380
381 #define CMDQ_SYNC_0_CS_SHIFT            12
382 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
383 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
384
385 /* Event queue */
386 #define EVTQ_ENT_DWORDS                 4
387 #define EVTQ_MAX_SZ_SHIFT               7
388
389 #define EVTQ_0_ID_SHIFT                 0
390 #define EVTQ_0_ID_MASK                  0xffUL
391
392 /* PRI queue */
393 #define PRIQ_ENT_DWORDS                 2
394 #define PRIQ_MAX_SZ_SHIFT               8
395
396 #define PRIQ_0_SID_SHIFT                0
397 #define PRIQ_0_SID_MASK                 0xffffffffUL
398 #define PRIQ_0_SSID_SHIFT               32
399 #define PRIQ_0_SSID_MASK                0xfffffUL
400 #define PRIQ_0_PERM_PRIV                (1UL << 58)
401 #define PRIQ_0_PERM_EXEC                (1UL << 59)
402 #define PRIQ_0_PERM_READ                (1UL << 60)
403 #define PRIQ_0_PERM_WRITE               (1UL << 61)
404 #define PRIQ_0_PRG_LAST                 (1UL << 62)
405 #define PRIQ_0_SSID_V                   (1UL << 63)
406
407 #define PRIQ_1_PRG_IDX_SHIFT            0
408 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
409 #define PRIQ_1_ADDR_SHIFT               12
410 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
411
412 /* High-level queue structures */
413 #define ARM_SMMU_POLL_TIMEOUT_US        100
414
415 static bool disable_bypass;
416 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
417 MODULE_PARM_DESC(disable_bypass,
418         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
419
420 enum pri_resp {
421         PRI_RESP_DENY,
422         PRI_RESP_FAIL,
423         PRI_RESP_SUCC,
424 };
425
426 enum arm_smmu_msi_index {
427         EVTQ_MSI_INDEX,
428         GERROR_MSI_INDEX,
429         PRIQ_MSI_INDEX,
430         ARM_SMMU_MAX_MSIS,
431 };
432
433 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
434         [EVTQ_MSI_INDEX] = {
435                 ARM_SMMU_EVTQ_IRQ_CFG0,
436                 ARM_SMMU_EVTQ_IRQ_CFG1,
437                 ARM_SMMU_EVTQ_IRQ_CFG2,
438         },
439         [GERROR_MSI_INDEX] = {
440                 ARM_SMMU_GERROR_IRQ_CFG0,
441                 ARM_SMMU_GERROR_IRQ_CFG1,
442                 ARM_SMMU_GERROR_IRQ_CFG2,
443         },
444         [PRIQ_MSI_INDEX] = {
445                 ARM_SMMU_PRIQ_IRQ_CFG0,
446                 ARM_SMMU_PRIQ_IRQ_CFG1,
447                 ARM_SMMU_PRIQ_IRQ_CFG2,
448         },
449 };
450
451 struct arm_smmu_cmdq_ent {
452         /* Common fields */
453         u8                              opcode;
454         bool                            substream_valid;
455
456         /* Command-specific fields */
457         union {
458                 #define CMDQ_OP_PREFETCH_CFG    0x1
459                 struct {
460                         u32                     sid;
461                         u8                      size;
462                         u64                     addr;
463                 } prefetch;
464
465                 #define CMDQ_OP_CFGI_STE        0x3
466                 #define CMDQ_OP_CFGI_ALL        0x4
467                 struct {
468                         u32                     sid;
469                         union {
470                                 bool            leaf;
471                                 u8              span;
472                         };
473                 } cfgi;
474
475                 #define CMDQ_OP_TLBI_NH_ASID    0x11
476                 #define CMDQ_OP_TLBI_NH_VA      0x12
477                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
478                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
479                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
480                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
481                 struct {
482                         u16                     asid;
483                         u16                     vmid;
484                         bool                    leaf;
485                         u64                     addr;
486                 } tlbi;
487
488                 #define CMDQ_OP_PRI_RESP        0x41
489                 struct {
490                         u32                     sid;
491                         u32                     ssid;
492                         u16                     grpid;
493                         enum pri_resp           resp;
494                 } pri;
495
496                 #define CMDQ_OP_CMD_SYNC        0x46
497         };
498 };
499
500 struct arm_smmu_queue {
501         int                             irq; /* Wired interrupt */
502
503         __le64                          *base;
504         dma_addr_t                      base_dma;
505         u64                             q_base;
506
507         size_t                          ent_dwords;
508         u32                             max_n_shift;
509         u32                             prod;
510         u32                             cons;
511
512         u32 __iomem                     *prod_reg;
513         u32 __iomem                     *cons_reg;
514 };
515
516 struct arm_smmu_cmdq {
517         struct arm_smmu_queue           q;
518         spinlock_t                      lock;
519 };
520
521 struct arm_smmu_evtq {
522         struct arm_smmu_queue           q;
523         u32                             max_stalls;
524 };
525
526 struct arm_smmu_priq {
527         struct arm_smmu_queue           q;
528 };
529
530 /* High-level stream table and context descriptor structures */
531 struct arm_smmu_strtab_l1_desc {
532         u8                              span;
533
534         __le64                          *l2ptr;
535         dma_addr_t                      l2ptr_dma;
536 };
537
538 struct arm_smmu_s1_cfg {
539         __le64                          *cdptr;
540         dma_addr_t                      cdptr_dma;
541
542         struct arm_smmu_ctx_desc {
543                 u16     asid;
544                 u64     ttbr;
545                 u64     tcr;
546                 u64     mair;
547         }                               cd;
548 };
549
550 struct arm_smmu_s2_cfg {
551         u16                             vmid;
552         u64                             vttbr;
553         u64                             vtcr;
554 };
555
556 struct arm_smmu_strtab_ent {
557         bool                            valid;
558
559         bool                            bypass; /* Overrides s1/s2 config */
560         struct arm_smmu_s1_cfg          *s1_cfg;
561         struct arm_smmu_s2_cfg          *s2_cfg;
562 };
563
564 struct arm_smmu_strtab_cfg {
565         __le64                          *strtab;
566         dma_addr_t                      strtab_dma;
567         struct arm_smmu_strtab_l1_desc  *l1_desc;
568         unsigned int                    num_l1_ents;
569
570         u64                             strtab_base;
571         u32                             strtab_base_cfg;
572 };
573
574 /* An SMMUv3 instance */
575 struct arm_smmu_device {
576         struct device                   *dev;
577         void __iomem                    *base;
578
579 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
580 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
581 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
582 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
583 #define ARM_SMMU_FEAT_PRI               (1 << 4)
584 #define ARM_SMMU_FEAT_ATS               (1 << 5)
585 #define ARM_SMMU_FEAT_SEV               (1 << 6)
586 #define ARM_SMMU_FEAT_MSI               (1 << 7)
587 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
588 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
589 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
590 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
591 #define ARM_SMMU_FEAT_HYP               (1 << 12)
592         u32                             features;
593
594 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
595         u32                             options;
596
597         struct arm_smmu_cmdq            cmdq;
598         struct arm_smmu_evtq            evtq;
599         struct arm_smmu_priq            priq;
600
601         int                             gerr_irq;
602
603         unsigned long                   ias; /* IPA */
604         unsigned long                   oas; /* PA */
605         unsigned long                   pgsize_bitmap;
606
607 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
608         unsigned int                    asid_bits;
609         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
610
611 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
612         unsigned int                    vmid_bits;
613         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
614
615         unsigned int                    ssid_bits;
616         unsigned int                    sid_bits;
617
618         struct arm_smmu_strtab_cfg      strtab_cfg;
619 };
620
621 /* SMMU private data for each master */
622 struct arm_smmu_master_data {
623         struct arm_smmu_device          *smmu;
624         struct arm_smmu_strtab_ent      ste;
625 };
626
627 /* SMMU private data for an IOMMU domain */
628 enum arm_smmu_domain_stage {
629         ARM_SMMU_DOMAIN_S1 = 0,
630         ARM_SMMU_DOMAIN_S2,
631         ARM_SMMU_DOMAIN_NESTED,
632 };
633
634 struct arm_smmu_domain {
635         struct arm_smmu_device          *smmu;
636         struct mutex                    init_mutex; /* Protects smmu pointer */
637
638         struct io_pgtable_ops           *pgtbl_ops;
639         spinlock_t                      pgtbl_lock;
640
641         enum arm_smmu_domain_stage      stage;
642         union {
643                 struct arm_smmu_s1_cfg  s1_cfg;
644                 struct arm_smmu_s2_cfg  s2_cfg;
645         };
646
647         struct iommu_domain             domain;
648 };
649
650 struct arm_smmu_option_prop {
651         u32 opt;
652         const char *prop;
653 };
654
655 static struct arm_smmu_option_prop arm_smmu_options[] = {
656         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
657         { 0, NULL},
658 };
659
660 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
661 {
662         return container_of(dom, struct arm_smmu_domain, domain);
663 }
664
665 static void parse_driver_options(struct arm_smmu_device *smmu)
666 {
667         int i = 0;
668
669         do {
670                 if (of_property_read_bool(smmu->dev->of_node,
671                                                 arm_smmu_options[i].prop)) {
672                         smmu->options |= arm_smmu_options[i].opt;
673                         dev_notice(smmu->dev, "option %s\n",
674                                 arm_smmu_options[i].prop);
675                 }
676         } while (arm_smmu_options[++i].opt);
677 }
678
679 /* Low-level queue manipulation functions */
680 static bool queue_full(struct arm_smmu_queue *q)
681 {
682         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
683                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
684 }
685
686 static bool queue_empty(struct arm_smmu_queue *q)
687 {
688         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
689                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
690 }
691
692 static void queue_sync_cons(struct arm_smmu_queue *q)
693 {
694         q->cons = readl_relaxed(q->cons_reg);
695 }
696
697 static void queue_inc_cons(struct arm_smmu_queue *q)
698 {
699         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
700
701         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
702         writel(q->cons, q->cons_reg);
703 }
704
705 static int queue_sync_prod(struct arm_smmu_queue *q)
706 {
707         int ret = 0;
708         u32 prod = readl_relaxed(q->prod_reg);
709
710         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
711                 ret = -EOVERFLOW;
712
713         q->prod = prod;
714         return ret;
715 }
716
717 static void queue_inc_prod(struct arm_smmu_queue *q)
718 {
719         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
720
721         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
722         writel(q->prod, q->prod_reg);
723 }
724
725 /*
726  * Wait for the SMMU to consume items. If drain is true, wait until the queue
727  * is empty. Otherwise, wait until there is at least one free slot.
728  */
729 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
730 {
731         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
732
733         while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
734                 if (ktime_compare(ktime_get(), timeout) > 0)
735                         return -ETIMEDOUT;
736
737                 if (wfe) {
738                         wfe();
739                 } else {
740                         cpu_relax();
741                         udelay(1);
742                 }
743         }
744
745         return 0;
746 }
747
748 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
749 {
750         int i;
751
752         for (i = 0; i < n_dwords; ++i)
753                 *dst++ = cpu_to_le64(*src++);
754 }
755
756 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
757 {
758         if (queue_full(q))
759                 return -ENOSPC;
760
761         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
762         queue_inc_prod(q);
763         return 0;
764 }
765
766 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
767 {
768         int i;
769
770         for (i = 0; i < n_dwords; ++i)
771                 *dst++ = le64_to_cpu(*src++);
772 }
773
774 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
775 {
776         if (queue_empty(q))
777                 return -EAGAIN;
778
779         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
780         queue_inc_cons(q);
781         return 0;
782 }
783
784 /* High-level queue accessors */
785 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
786 {
787         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
788         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
789
790         switch (ent->opcode) {
791         case CMDQ_OP_TLBI_EL2_ALL:
792         case CMDQ_OP_TLBI_NSNH_ALL:
793                 break;
794         case CMDQ_OP_PREFETCH_CFG:
795                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
796                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
797                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
798                 break;
799         case CMDQ_OP_CFGI_STE:
800                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
801                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
802                 break;
803         case CMDQ_OP_CFGI_ALL:
804                 /* Cover the entire SID range */
805                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
806                 break;
807         case CMDQ_OP_TLBI_NH_VA:
808                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
809                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
810                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
811                 break;
812         case CMDQ_OP_TLBI_S2_IPA:
813                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
814                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
815                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
816                 break;
817         case CMDQ_OP_TLBI_NH_ASID:
818                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
819                 /* Fallthrough */
820         case CMDQ_OP_TLBI_S12_VMALL:
821                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
822                 break;
823         case CMDQ_OP_PRI_RESP:
824                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
825                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
826                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
827                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
828                 switch (ent->pri.resp) {
829                 case PRI_RESP_DENY:
830                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
831                         break;
832                 case PRI_RESP_FAIL:
833                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
834                         break;
835                 case PRI_RESP_SUCC:
836                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
837                         break;
838                 default:
839                         return -EINVAL;
840                 }
841                 break;
842         case CMDQ_OP_CMD_SYNC:
843                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
844                 break;
845         default:
846                 return -ENOENT;
847         }
848
849         return 0;
850 }
851
852 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
853 {
854         static const char *cerror_str[] = {
855                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
856                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
857                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
858         };
859
860         int i;
861         u64 cmd[CMDQ_ENT_DWORDS];
862         struct arm_smmu_queue *q = &smmu->cmdq.q;
863         u32 cons = readl_relaxed(q->cons_reg);
864         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
865         struct arm_smmu_cmdq_ent cmd_sync = {
866                 .opcode = CMDQ_OP_CMD_SYNC,
867         };
868
869         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
870                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
871
872         switch (idx) {
873         case CMDQ_ERR_CERROR_ABT_IDX:
874                 dev_err(smmu->dev, "retrying command fetch\n");
875         case CMDQ_ERR_CERROR_NONE_IDX:
876                 return;
877         case CMDQ_ERR_CERROR_ILL_IDX:
878                 /* Fallthrough */
879         default:
880                 break;
881         }
882
883         /*
884          * We may have concurrent producers, so we need to be careful
885          * not to touch any of the shadow cmdq state.
886          */
887         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
888         dev_err(smmu->dev, "skipping command in error state:\n");
889         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
890                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
891
892         /* Convert the erroneous command into a CMD_SYNC */
893         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
894                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
895                 return;
896         }
897
898         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
899 }
900
901 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
902                                     struct arm_smmu_cmdq_ent *ent)
903 {
904         u64 cmd[CMDQ_ENT_DWORDS];
905         unsigned long flags;
906         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
907         struct arm_smmu_queue *q = &smmu->cmdq.q;
908
909         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
910                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
911                          ent->opcode);
912                 return;
913         }
914
915         spin_lock_irqsave(&smmu->cmdq.lock, flags);
916         while (queue_insert_raw(q, cmd) == -ENOSPC) {
917                 if (queue_poll_cons(q, false, wfe))
918                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
919         }
920
921         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
922                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
923         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
924 }
925
926 /* Context descriptor manipulation functions */
927 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
928 {
929         u64 val = 0;
930
931         /* Repack the TCR. Just care about TTBR0 for now */
932         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
933         val |= ARM_SMMU_TCR2CD(tcr, TG0);
934         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
935         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
936         val |= ARM_SMMU_TCR2CD(tcr, SH0);
937         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
938         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
939         val |= ARM_SMMU_TCR2CD(tcr, IPS);
940         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
941
942         return val;
943 }
944
945 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
946                                     struct arm_smmu_s1_cfg *cfg)
947 {
948         u64 val;
949
950         /*
951          * We don't need to issue any invalidation here, as we'll invalidate
952          * the STE when installing the new entry anyway.
953          */
954         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
955 #ifdef __BIG_ENDIAN
956               CTXDESC_CD_0_ENDI |
957 #endif
958               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
959               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
960               CTXDESC_CD_0_V;
961         cfg->cdptr[0] = cpu_to_le64(val);
962
963         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
964         cfg->cdptr[1] = cpu_to_le64(val);
965
966         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
967 }
968
969 /* Stream table manipulation functions */
970 static void
971 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
972 {
973         u64 val = 0;
974
975         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
976                 << STRTAB_L1_DESC_SPAN_SHIFT;
977         val |= desc->l2ptr_dma &
978                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
979
980         *dst = cpu_to_le64(val);
981 }
982
983 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
984 {
985         struct arm_smmu_cmdq_ent cmd = {
986                 .opcode = CMDQ_OP_CFGI_STE,
987                 .cfgi   = {
988                         .sid    = sid,
989                         .leaf   = true,
990                 },
991         };
992
993         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
994         cmd.opcode = CMDQ_OP_CMD_SYNC;
995         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
996 }
997
998 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
999                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
1000 {
1001         /*
1002          * This is hideously complicated, but we only really care about
1003          * three cases at the moment:
1004          *
1005          * 1. Invalid (all zero) -> bypass  (init)
1006          * 2. Bypass -> translation (attach)
1007          * 3. Translation -> bypass (detach)
1008          *
1009          * Given that we can't update the STE atomically and the SMMU
1010          * doesn't read the thing in a defined order, that leaves us
1011          * with the following maintenance requirements:
1012          *
1013          * 1. Update Config, return (init time STEs aren't live)
1014          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1015          * 3. Update Config, sync
1016          */
1017         u64 val = le64_to_cpu(dst[0]);
1018         bool ste_live = false;
1019         struct arm_smmu_cmdq_ent prefetch_cmd = {
1020                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1021                 .prefetch       = {
1022                         .sid    = sid,
1023                 },
1024         };
1025
1026         if (val & STRTAB_STE_0_V) {
1027                 u64 cfg;
1028
1029                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1030                 switch (cfg) {
1031                 case STRTAB_STE_0_CFG_BYPASS:
1032                         break;
1033                 case STRTAB_STE_0_CFG_S1_TRANS:
1034                 case STRTAB_STE_0_CFG_S2_TRANS:
1035                         ste_live = true;
1036                         break;
1037                 case STRTAB_STE_0_CFG_ABORT:
1038                         if (disable_bypass)
1039                                 break;
1040                 default:
1041                         BUG(); /* STE corruption */
1042                 }
1043         }
1044
1045         /* Nuke the existing STE_0 value, as we're going to rewrite it */
1046         val = ste->valid ? STRTAB_STE_0_V : 0;
1047
1048         if (ste->bypass) {
1049                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1050                                       : STRTAB_STE_0_CFG_BYPASS;
1051                 dst[0] = cpu_to_le64(val);
1052                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1053                          << STRTAB_STE_1_SHCFG_SHIFT);
1054                 dst[2] = 0; /* Nuke the VMID */
1055                 if (ste_live)
1056                         arm_smmu_sync_ste_for_sid(smmu, sid);
1057                 return;
1058         }
1059
1060         if (ste->s1_cfg) {
1061                 BUG_ON(ste_live);
1062                 dst[1] = cpu_to_le64(
1063                          STRTAB_STE_1_S1C_CACHE_WBRA
1064                          << STRTAB_STE_1_S1CIR_SHIFT |
1065                          STRTAB_STE_1_S1C_CACHE_WBRA
1066                          << STRTAB_STE_1_S1COR_SHIFT |
1067                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1068 #ifdef CONFIG_PCI_ATS
1069                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1070 #endif
1071                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT |
1072                          STRTAB_STE_1_PRIVCFG_UNPRIV <<
1073                          STRTAB_STE_1_PRIVCFG_SHIFT);
1074
1075                 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1076                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1077
1078                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1079                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1080                         STRTAB_STE_0_CFG_S1_TRANS;
1081         }
1082
1083         if (ste->s2_cfg) {
1084                 BUG_ON(ste_live);
1085                 dst[2] = cpu_to_le64(
1086                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1087                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1088                           << STRTAB_STE_2_VTCR_SHIFT |
1089 #ifdef __BIG_ENDIAN
1090                          STRTAB_STE_2_S2ENDI |
1091 #endif
1092                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1093                          STRTAB_STE_2_S2R);
1094
1095                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1096                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1097
1098                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1099         }
1100
1101         arm_smmu_sync_ste_for_sid(smmu, sid);
1102         dst[0] = cpu_to_le64(val);
1103         arm_smmu_sync_ste_for_sid(smmu, sid);
1104
1105         /* It's likely that we'll want to use the new STE soon */
1106         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1107                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1108 }
1109
1110 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1111 {
1112         unsigned int i;
1113         struct arm_smmu_strtab_ent ste = {
1114                 .valid  = true,
1115                 .bypass = true,
1116         };
1117
1118         for (i = 0; i < nent; ++i) {
1119                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1120                 strtab += STRTAB_STE_DWORDS;
1121         }
1122 }
1123
1124 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1125 {
1126         size_t size;
1127         void *strtab;
1128         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1129         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1130
1131         if (desc->l2ptr)
1132                 return 0;
1133
1134         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1135         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1136
1137         desc->span = STRTAB_SPLIT + 1;
1138         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1139                                           GFP_KERNEL | __GFP_ZERO);
1140         if (!desc->l2ptr) {
1141                 dev_err(smmu->dev,
1142                         "failed to allocate l2 stream table for SID %u\n",
1143                         sid);
1144                 return -ENOMEM;
1145         }
1146
1147         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1148         arm_smmu_write_strtab_l1_desc(strtab, desc);
1149         return 0;
1150 }
1151
1152 /* IRQ and event handlers */
1153 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1154 {
1155         int i;
1156         struct arm_smmu_device *smmu = dev;
1157         struct arm_smmu_queue *q = &smmu->evtq.q;
1158         u64 evt[EVTQ_ENT_DWORDS];
1159
1160         do {
1161                 while (!queue_remove_raw(q, evt)) {
1162                         u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1163
1164                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1165                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1166                                 dev_info(smmu->dev, "\t0x%016llx\n",
1167                                          (unsigned long long)evt[i]);
1168
1169                 }
1170
1171                 /*
1172                  * Not much we can do on overflow, so scream and pretend we're
1173                  * trying harder.
1174                  */
1175                 if (queue_sync_prod(q) == -EOVERFLOW)
1176                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1177         } while (!queue_empty(q));
1178
1179         /* Sync our overflow flag, as we believe we're up to speed */
1180         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1181         return IRQ_HANDLED;
1182 }
1183
1184 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1185 {
1186         u32 sid, ssid;
1187         u16 grpid;
1188         bool ssv, last;
1189
1190         sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1191         ssv = evt[0] & PRIQ_0_SSID_V;
1192         ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1193         last = evt[0] & PRIQ_0_PRG_LAST;
1194         grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1195
1196         dev_info(smmu->dev, "unexpected PRI request received:\n");
1197         dev_info(smmu->dev,
1198                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1199                  sid, ssid, grpid, last ? "L" : "",
1200                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1201                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1202                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1203                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1204                  evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1205
1206         if (last) {
1207                 struct arm_smmu_cmdq_ent cmd = {
1208                         .opcode                 = CMDQ_OP_PRI_RESP,
1209                         .substream_valid        = ssv,
1210                         .pri                    = {
1211                                 .sid    = sid,
1212                                 .ssid   = ssid,
1213                                 .grpid  = grpid,
1214                                 .resp   = PRI_RESP_DENY,
1215                         },
1216                 };
1217
1218                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1219         }
1220 }
1221
1222 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1223 {
1224         struct arm_smmu_device *smmu = dev;
1225         struct arm_smmu_queue *q = &smmu->priq.q;
1226         u64 evt[PRIQ_ENT_DWORDS];
1227
1228         do {
1229                 while (!queue_remove_raw(q, evt))
1230                         arm_smmu_handle_ppr(smmu, evt);
1231
1232                 if (queue_sync_prod(q) == -EOVERFLOW)
1233                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1234         } while (!queue_empty(q));
1235
1236         /* Sync our overflow flag, as we believe we're up to speed */
1237         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1238         return IRQ_HANDLED;
1239 }
1240
1241 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1242 {
1243         /* We don't actually use CMD_SYNC interrupts for anything */
1244         return IRQ_HANDLED;
1245 }
1246
1247 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1248
1249 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1250 {
1251         u32 gerror, gerrorn, active;
1252         struct arm_smmu_device *smmu = dev;
1253
1254         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1255         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1256
1257         active = gerror ^ gerrorn;
1258         if (!(active & GERROR_ERR_MASK))
1259                 return IRQ_NONE; /* No errors pending */
1260
1261         dev_warn(smmu->dev,
1262                  "unexpected global error reported (0x%08x), this could be serious\n",
1263                  active);
1264
1265         if (active & GERROR_SFM_ERR) {
1266                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1267                 arm_smmu_device_disable(smmu);
1268         }
1269
1270         if (active & GERROR_MSI_GERROR_ABT_ERR)
1271                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1272
1273         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1274                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1275
1276         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1277                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1278
1279         if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1280                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1281                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1282         }
1283
1284         if (active & GERROR_PRIQ_ABT_ERR)
1285                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1286
1287         if (active & GERROR_EVTQ_ABT_ERR)
1288                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1289
1290         if (active & GERROR_CMDQ_ERR)
1291                 arm_smmu_cmdq_skip_err(smmu);
1292
1293         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1294         return IRQ_HANDLED;
1295 }
1296
1297 /* IO_PGTABLE API */
1298 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1299 {
1300         struct arm_smmu_cmdq_ent cmd;
1301
1302         cmd.opcode = CMDQ_OP_CMD_SYNC;
1303         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1304 }
1305
1306 static void arm_smmu_tlb_sync(void *cookie)
1307 {
1308         struct arm_smmu_domain *smmu_domain = cookie;
1309         __arm_smmu_tlb_sync(smmu_domain->smmu);
1310 }
1311
1312 static void arm_smmu_tlb_inv_context(void *cookie)
1313 {
1314         struct arm_smmu_domain *smmu_domain = cookie;
1315         struct arm_smmu_device *smmu = smmu_domain->smmu;
1316         struct arm_smmu_cmdq_ent cmd;
1317
1318         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1319                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1320                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1321                 cmd.tlbi.vmid   = 0;
1322         } else {
1323                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1324                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1325         }
1326
1327         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1328         __arm_smmu_tlb_sync(smmu);
1329 }
1330
1331 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1332                                           size_t granule, bool leaf, void *cookie)
1333 {
1334         struct arm_smmu_domain *smmu_domain = cookie;
1335         struct arm_smmu_device *smmu = smmu_domain->smmu;
1336         struct arm_smmu_cmdq_ent cmd = {
1337                 .tlbi = {
1338                         .leaf   = leaf,
1339                         .addr   = iova,
1340                 },
1341         };
1342
1343         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1344                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1345                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1346         } else {
1347                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1348                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1349         }
1350
1351         do {
1352                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1353                 cmd.tlbi.addr += granule;
1354         } while (size -= granule);
1355 }
1356
1357 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1358         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1359         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1360         .tlb_sync       = arm_smmu_tlb_sync,
1361 };
1362
1363 /* IOMMU API */
1364 static bool arm_smmu_capable(enum iommu_cap cap)
1365 {
1366         switch (cap) {
1367         case IOMMU_CAP_CACHE_COHERENCY:
1368                 return true;
1369         case IOMMU_CAP_INTR_REMAP:
1370                 return true; /* MSIs are just memory writes */
1371         case IOMMU_CAP_NOEXEC:
1372                 return true;
1373         default:
1374                 return false;
1375         }
1376 }
1377
1378 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1379 {
1380         struct arm_smmu_domain *smmu_domain;
1381
1382         if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1383                 return NULL;
1384
1385         /*
1386          * Allocate the domain and initialise some of its data structures.
1387          * We can't really do anything meaningful until we've added a
1388          * master.
1389          */
1390         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1391         if (!smmu_domain)
1392                 return NULL;
1393
1394         if (type == IOMMU_DOMAIN_DMA &&
1395             iommu_get_dma_cookie(&smmu_domain->domain)) {
1396                 kfree(smmu_domain);
1397                 return NULL;
1398         }
1399
1400         mutex_init(&smmu_domain->init_mutex);
1401         spin_lock_init(&smmu_domain->pgtbl_lock);
1402         return &smmu_domain->domain;
1403 }
1404
1405 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1406 {
1407         int idx, size = 1 << span;
1408
1409         do {
1410                 idx = find_first_zero_bit(map, size);
1411                 if (idx == size)
1412                         return -ENOSPC;
1413         } while (test_and_set_bit(idx, map));
1414
1415         return idx;
1416 }
1417
1418 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1419 {
1420         clear_bit(idx, map);
1421 }
1422
1423 static void arm_smmu_domain_free(struct iommu_domain *domain)
1424 {
1425         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1426         struct arm_smmu_device *smmu = smmu_domain->smmu;
1427
1428         iommu_put_dma_cookie(domain);
1429         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1430
1431         /* Free the CD and ASID, if we allocated them */
1432         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1433                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1434
1435                 if (cfg->cdptr) {
1436                         dmam_free_coherent(smmu_domain->smmu->dev,
1437                                            CTXDESC_CD_DWORDS << 3,
1438                                            cfg->cdptr,
1439                                            cfg->cdptr_dma);
1440
1441                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1442                 }
1443         } else {
1444                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1445                 if (cfg->vmid)
1446                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1447         }
1448
1449         kfree(smmu_domain);
1450 }
1451
1452 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1453                                        struct io_pgtable_cfg *pgtbl_cfg)
1454 {
1455         int ret;
1456         int asid;
1457         struct arm_smmu_device *smmu = smmu_domain->smmu;
1458         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1459
1460         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1461         if (asid < 0)
1462                 return asid;
1463
1464         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1465                                          &cfg->cdptr_dma,
1466                                          GFP_KERNEL | __GFP_ZERO);
1467         if (!cfg->cdptr) {
1468                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1469                 ret = -ENOMEM;
1470                 goto out_free_asid;
1471         }
1472
1473         cfg->cd.asid    = (u16)asid;
1474         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1475         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1476         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1477         return 0;
1478
1479 out_free_asid:
1480         arm_smmu_bitmap_free(smmu->asid_map, asid);
1481         return ret;
1482 }
1483
1484 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1485                                        struct io_pgtable_cfg *pgtbl_cfg)
1486 {
1487         int vmid;
1488         struct arm_smmu_device *smmu = smmu_domain->smmu;
1489         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1490
1491         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1492         if (vmid < 0)
1493                 return vmid;
1494
1495         cfg->vmid       = (u16)vmid;
1496         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1497         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1498         return 0;
1499 }
1500
1501 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1502 {
1503         int ret;
1504         unsigned long ias, oas;
1505         enum io_pgtable_fmt fmt;
1506         struct io_pgtable_cfg pgtbl_cfg;
1507         struct io_pgtable_ops *pgtbl_ops;
1508         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1509                                  struct io_pgtable_cfg *);
1510         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1511         struct arm_smmu_device *smmu = smmu_domain->smmu;
1512
1513         /* Restrict the stage to what we can actually support */
1514         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1515                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1516         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1517                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1518
1519         switch (smmu_domain->stage) {
1520         case ARM_SMMU_DOMAIN_S1:
1521                 ias = VA_BITS;
1522                 oas = smmu->ias;
1523                 fmt = ARM_64_LPAE_S1;
1524                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1525                 break;
1526         case ARM_SMMU_DOMAIN_NESTED:
1527         case ARM_SMMU_DOMAIN_S2:
1528                 ias = smmu->ias;
1529                 oas = smmu->oas;
1530                 fmt = ARM_64_LPAE_S2;
1531                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1532                 break;
1533         default:
1534                 return -EINVAL;
1535         }
1536
1537         pgtbl_cfg = (struct io_pgtable_cfg) {
1538                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1539                 .ias            = ias,
1540                 .oas            = oas,
1541                 .tlb            = &arm_smmu_gather_ops,
1542                 .iommu_dev      = smmu->dev,
1543         };
1544
1545         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1546         if (!pgtbl_ops)
1547                 return -ENOMEM;
1548
1549         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1550         domain->geometry.aperture_end = (1UL << ias) - 1;
1551         domain->geometry.force_aperture = true;
1552         smmu_domain->pgtbl_ops = pgtbl_ops;
1553
1554         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1555         if (ret < 0)
1556                 free_io_pgtable_ops(pgtbl_ops);
1557
1558         return ret;
1559 }
1560
1561 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1562 {
1563         __le64 *step;
1564         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1565
1566         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1567                 struct arm_smmu_strtab_l1_desc *l1_desc;
1568                 int idx;
1569
1570                 /* Two-level walk */
1571                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1572                 l1_desc = &cfg->l1_desc[idx];
1573                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1574                 step = &l1_desc->l2ptr[idx];
1575         } else {
1576                 /* Simple linear lookup */
1577                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1578         }
1579
1580         return step;
1581 }
1582
1583 static int arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1584 {
1585         int i;
1586         struct arm_smmu_master_data *master = fwspec->iommu_priv;
1587         struct arm_smmu_device *smmu = master->smmu;
1588
1589         for (i = 0; i < fwspec->num_ids; ++i) {
1590                 u32 sid = fwspec->ids[i];
1591                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1592
1593                 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1594         }
1595
1596         return 0;
1597 }
1598
1599 static void arm_smmu_detach_dev(struct device *dev)
1600 {
1601         struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1602
1603         master->ste.bypass = true;
1604         if (arm_smmu_install_ste_for_dev(dev->iommu_fwspec) < 0)
1605                 dev_warn(dev, "failed to install bypass STE\n");
1606 }
1607
1608 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1609 {
1610         int ret = 0;
1611         struct arm_smmu_device *smmu;
1612         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1613         struct arm_smmu_master_data *master;
1614         struct arm_smmu_strtab_ent *ste;
1615
1616         if (!dev->iommu_fwspec)
1617                 return -ENOENT;
1618
1619         master = dev->iommu_fwspec->iommu_priv;
1620         smmu = master->smmu;
1621         ste = &master->ste;
1622
1623         /* Already attached to a different domain? */
1624         if (!ste->bypass)
1625                 arm_smmu_detach_dev(dev);
1626
1627         mutex_lock(&smmu_domain->init_mutex);
1628
1629         if (!smmu_domain->smmu) {
1630                 smmu_domain->smmu = smmu;
1631                 ret = arm_smmu_domain_finalise(domain);
1632                 if (ret) {
1633                         smmu_domain->smmu = NULL;
1634                         goto out_unlock;
1635                 }
1636         } else if (smmu_domain->smmu != smmu) {
1637                 dev_err(dev,
1638                         "cannot attach to SMMU %s (upstream of %s)\n",
1639                         dev_name(smmu_domain->smmu->dev),
1640                         dev_name(smmu->dev));
1641                 ret = -ENXIO;
1642                 goto out_unlock;
1643         }
1644
1645         ste->bypass = false;
1646         ste->valid = true;
1647
1648         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1649                 ste->s1_cfg = &smmu_domain->s1_cfg;
1650                 ste->s2_cfg = NULL;
1651                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1652         } else {
1653                 ste->s1_cfg = NULL;
1654                 ste->s2_cfg = &smmu_domain->s2_cfg;
1655         }
1656
1657         ret = arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1658         if (ret < 0)
1659                 ste->valid = false;
1660
1661 out_unlock:
1662         mutex_unlock(&smmu_domain->init_mutex);
1663         return ret;
1664 }
1665
1666 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1667                         phys_addr_t paddr, size_t size, int prot)
1668 {
1669         int ret;
1670         unsigned long flags;
1671         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1672         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1673
1674         if (!ops)
1675                 return -ENODEV;
1676
1677         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1678         ret = ops->map(ops, iova, paddr, size, prot);
1679         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1680         return ret;
1681 }
1682
1683 static size_t
1684 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1685 {
1686         size_t ret;
1687         unsigned long flags;
1688         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1689         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1690
1691         if (!ops)
1692                 return 0;
1693
1694         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1695         ret = ops->unmap(ops, iova, size);
1696         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1697         return ret;
1698 }
1699
1700 static phys_addr_t
1701 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1702 {
1703         phys_addr_t ret;
1704         unsigned long flags;
1705         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1706         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1707
1708         if (!ops)
1709                 return 0;
1710
1711         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1712         ret = ops->iova_to_phys(ops, iova);
1713         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1714
1715         return ret;
1716 }
1717
1718 static struct platform_driver arm_smmu_driver;
1719
1720 static int arm_smmu_match_node(struct device *dev, void *data)
1721 {
1722         return dev->fwnode == data;
1723 }
1724
1725 static
1726 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1727 {
1728         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1729                                                 fwnode, arm_smmu_match_node);
1730         put_device(dev);
1731         return dev ? dev_get_drvdata(dev) : NULL;
1732 }
1733
1734 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1735 {
1736         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1737
1738         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1739                 limit *= 1UL << STRTAB_SPLIT;
1740
1741         return sid < limit;
1742 }
1743
1744 static struct iommu_ops arm_smmu_ops;
1745
1746 static int arm_smmu_add_device(struct device *dev)
1747 {
1748         int i, ret;
1749         struct arm_smmu_device *smmu;
1750         struct arm_smmu_master_data *master;
1751         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1752         struct iommu_group *group;
1753
1754         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1755                 return -ENODEV;
1756         /*
1757          * We _can_ actually withstand dodgy bus code re-calling add_device()
1758          * without an intervening remove_device()/of_xlate() sequence, but
1759          * we're not going to do so quietly...
1760          */
1761         if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1762                 master = fwspec->iommu_priv;
1763                 smmu = master->smmu;
1764         } else {
1765                 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1766                 if (!smmu)
1767                         return -ENODEV;
1768                 master = kzalloc(sizeof(*master), GFP_KERNEL);
1769                 if (!master)
1770                         return -ENOMEM;
1771
1772                 master->smmu = smmu;
1773                 fwspec->iommu_priv = master;
1774         }
1775
1776         /* Check the SIDs are in range of the SMMU and our stream table */
1777         for (i = 0; i < fwspec->num_ids; i++) {
1778                 u32 sid = fwspec->ids[i];
1779
1780                 if (!arm_smmu_sid_in_range(smmu, sid))
1781                         return -ERANGE;
1782
1783                 /* Ensure l2 strtab is initialised */
1784                 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1785                         ret = arm_smmu_init_l2_strtab(smmu, sid);
1786                         if (ret)
1787                                 return ret;
1788                 }
1789         }
1790
1791         group = iommu_group_get_for_dev(dev);
1792         if (!IS_ERR(group))
1793                 iommu_group_put(group);
1794
1795         return PTR_ERR_OR_ZERO(group);
1796 }
1797
1798 static void arm_smmu_remove_device(struct device *dev)
1799 {
1800         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1801         struct arm_smmu_master_data *master;
1802
1803         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1804                 return;
1805
1806         master = fwspec->iommu_priv;
1807         if (master && master->ste.valid)
1808                 arm_smmu_detach_dev(dev);
1809         iommu_group_remove_device(dev);
1810         kfree(master);
1811         iommu_fwspec_free(dev);
1812 }
1813
1814 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1815 {
1816         struct iommu_group *group;
1817
1818         /*
1819          * We don't support devices sharing stream IDs other than PCI RID
1820          * aliases, since the necessary ID-to-device lookup becomes rather
1821          * impractical given a potential sparse 32-bit stream ID space.
1822          */
1823         if (dev_is_pci(dev))
1824                 group = pci_device_group(dev);
1825         else
1826                 group = generic_device_group(dev);
1827
1828         return group;
1829 }
1830
1831 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1832                                     enum iommu_attr attr, void *data)
1833 {
1834         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1835
1836         switch (attr) {
1837         case DOMAIN_ATTR_NESTING:
1838                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1839                 return 0;
1840         default:
1841                 return -ENODEV;
1842         }
1843 }
1844
1845 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1846                                     enum iommu_attr attr, void *data)
1847 {
1848         int ret = 0;
1849         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1850
1851         mutex_lock(&smmu_domain->init_mutex);
1852
1853         switch (attr) {
1854         case DOMAIN_ATTR_NESTING:
1855                 if (smmu_domain->smmu) {
1856                         ret = -EPERM;
1857                         goto out_unlock;
1858                 }
1859
1860                 if (*(int *)data)
1861                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1862                 else
1863                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1864
1865                 break;
1866         default:
1867                 ret = -ENODEV;
1868         }
1869
1870 out_unlock:
1871         mutex_unlock(&smmu_domain->init_mutex);
1872         return ret;
1873 }
1874
1875 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1876 {
1877         return iommu_fwspec_add_ids(dev, args->args, 1);
1878 }
1879
1880 static struct iommu_ops arm_smmu_ops = {
1881         .capable                = arm_smmu_capable,
1882         .domain_alloc           = arm_smmu_domain_alloc,
1883         .domain_free            = arm_smmu_domain_free,
1884         .attach_dev             = arm_smmu_attach_dev,
1885         .map                    = arm_smmu_map,
1886         .unmap                  = arm_smmu_unmap,
1887         .map_sg                 = default_iommu_map_sg,
1888         .iova_to_phys           = arm_smmu_iova_to_phys,
1889         .add_device             = arm_smmu_add_device,
1890         .remove_device          = arm_smmu_remove_device,
1891         .device_group           = arm_smmu_device_group,
1892         .domain_get_attr        = arm_smmu_domain_get_attr,
1893         .domain_set_attr        = arm_smmu_domain_set_attr,
1894         .of_xlate               = arm_smmu_of_xlate,
1895         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1896 };
1897
1898 /* Probing and initialisation functions */
1899 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1900                                    struct arm_smmu_queue *q,
1901                                    unsigned long prod_off,
1902                                    unsigned long cons_off,
1903                                    size_t dwords)
1904 {
1905         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1906
1907         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1908         if (!q->base) {
1909                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1910                         qsz);
1911                 return -ENOMEM;
1912         }
1913
1914         q->prod_reg     = smmu->base + prod_off;
1915         q->cons_reg     = smmu->base + cons_off;
1916         q->ent_dwords   = dwords;
1917
1918         q->q_base  = Q_BASE_RWA;
1919         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1920         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1921                      << Q_BASE_LOG2SIZE_SHIFT;
1922
1923         q->prod = q->cons = 0;
1924         return 0;
1925 }
1926
1927 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1928 {
1929         int ret;
1930
1931         /* cmdq */
1932         spin_lock_init(&smmu->cmdq.lock);
1933         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1934                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1935         if (ret)
1936                 return ret;
1937
1938         /* evtq */
1939         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1940                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1941         if (ret)
1942                 return ret;
1943
1944         /* priq */
1945         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1946                 return 0;
1947
1948         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1949                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1950 }
1951
1952 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1953 {
1954         unsigned int i;
1955         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1956         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1957         void *strtab = smmu->strtab_cfg.strtab;
1958
1959         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1960         if (!cfg->l1_desc) {
1961                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1962                 return -ENOMEM;
1963         }
1964
1965         for (i = 0; i < cfg->num_l1_ents; ++i) {
1966                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
1967                 strtab += STRTAB_L1_DESC_DWORDS << 3;
1968         }
1969
1970         return 0;
1971 }
1972
1973 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
1974 {
1975         void *strtab;
1976         u64 reg;
1977         u32 size, l1size;
1978         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1979
1980         /*
1981          * If we can resolve everything with a single L2 table, then we
1982          * just need a single L1 descriptor. Otherwise, calculate the L1
1983          * size, capped to the SIDSIZE.
1984          */
1985         if (smmu->sid_bits < STRTAB_SPLIT) {
1986                 size = 0;
1987         } else {
1988                 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
1989                 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
1990         }
1991         cfg->num_l1_ents = 1 << size;
1992
1993         size += STRTAB_SPLIT;
1994         if (size < smmu->sid_bits)
1995                 dev_warn(smmu->dev,
1996                          "2-level strtab only covers %u/%u bits of SID\n",
1997                          size, smmu->sid_bits);
1998
1999         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2000         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2001                                      GFP_KERNEL | __GFP_ZERO);
2002         if (!strtab) {
2003                 dev_err(smmu->dev,
2004                         "failed to allocate l1 stream table (%u bytes)\n",
2005                         size);
2006                 return -ENOMEM;
2007         }
2008         cfg->strtab = strtab;
2009
2010         /* Configure strtab_base_cfg for 2 levels */
2011         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2012         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2013                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2014         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2015                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2016         cfg->strtab_base_cfg = reg;
2017
2018         return arm_smmu_init_l1_strtab(smmu);
2019 }
2020
2021 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2022 {
2023         void *strtab;
2024         u64 reg;
2025         u32 size;
2026         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2027
2028         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2029         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2030                                      GFP_KERNEL | __GFP_ZERO);
2031         if (!strtab) {
2032                 dev_err(smmu->dev,
2033                         "failed to allocate linear stream table (%u bytes)\n",
2034                         size);
2035                 return -ENOMEM;
2036         }
2037         cfg->strtab = strtab;
2038         cfg->num_l1_ents = 1 << smmu->sid_bits;
2039
2040         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2041         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2042         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2043                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2044         cfg->strtab_base_cfg = reg;
2045
2046         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2047         return 0;
2048 }
2049
2050 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2051 {
2052         u64 reg;
2053         int ret;
2054
2055         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2056                 ret = arm_smmu_init_strtab_2lvl(smmu);
2057         else
2058                 ret = arm_smmu_init_strtab_linear(smmu);
2059
2060         if (ret)
2061                 return ret;
2062
2063         /* Set the strtab base address */
2064         reg  = smmu->strtab_cfg.strtab_dma &
2065                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2066         reg |= STRTAB_BASE_RA;
2067         smmu->strtab_cfg.strtab_base = reg;
2068
2069         /* Allocate the first VMID for stage-2 bypass STEs */
2070         set_bit(0, smmu->vmid_map);
2071         return 0;
2072 }
2073
2074 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2075 {
2076         int ret;
2077
2078         ret = arm_smmu_init_queues(smmu);
2079         if (ret)
2080                 return ret;
2081
2082         return arm_smmu_init_strtab(smmu);
2083 }
2084
2085 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2086                                    unsigned int reg_off, unsigned int ack_off)
2087 {
2088         u32 reg;
2089
2090         writel_relaxed(val, smmu->base + reg_off);
2091         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2092                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2093 }
2094
2095 /* GBPA is "special" */
2096 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2097 {
2098         int ret;
2099         u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2100
2101         ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2102                                          1, ARM_SMMU_POLL_TIMEOUT_US);
2103         if (ret)
2104                 return ret;
2105
2106         reg &= ~clr;
2107         reg |= set;
2108         writel_relaxed(reg | GBPA_UPDATE, gbpa);
2109         return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2110                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2111 }
2112
2113 static void arm_smmu_free_msis(void *data)
2114 {
2115         struct device *dev = data;
2116         platform_msi_domain_free_irqs(dev);
2117 }
2118
2119 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2120 {
2121         phys_addr_t doorbell;
2122         struct device *dev = msi_desc_to_dev(desc);
2123         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2124         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2125
2126         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2127         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2128
2129         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2130         writel_relaxed(msg->data, smmu->base + cfg[1]);
2131         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2132 }
2133
2134 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2135 {
2136         struct msi_desc *desc;
2137         int ret, nvec = ARM_SMMU_MAX_MSIS;
2138         struct device *dev = smmu->dev;
2139
2140         /* Clear the MSI address regs */
2141         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2142         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2143
2144         if (smmu->features & ARM_SMMU_FEAT_PRI)
2145                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2146         else
2147                 nvec--;
2148
2149         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2150                 return;
2151
2152         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2153         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2154         if (ret) {
2155                 dev_warn(dev, "failed to allocate MSIs\n");
2156                 return;
2157         }
2158
2159         for_each_msi_entry(desc, dev) {
2160                 switch (desc->platform.msi_index) {
2161                 case EVTQ_MSI_INDEX:
2162                         smmu->evtq.q.irq = desc->irq;
2163                         break;
2164                 case GERROR_MSI_INDEX:
2165                         smmu->gerr_irq = desc->irq;
2166                         break;
2167                 case PRIQ_MSI_INDEX:
2168                         smmu->priq.q.irq = desc->irq;
2169                         break;
2170                 default:        /* Unknown */
2171                         continue;
2172                 }
2173         }
2174
2175         /* Add callback to free MSIs on teardown */
2176         devm_add_action(dev, arm_smmu_free_msis, dev);
2177 }
2178
2179 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2180 {
2181         int ret, irq;
2182         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2183
2184         /* Disable IRQs first */
2185         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2186                                       ARM_SMMU_IRQ_CTRLACK);
2187         if (ret) {
2188                 dev_err(smmu->dev, "failed to disable irqs\n");
2189                 return ret;
2190         }
2191
2192         arm_smmu_setup_msis(smmu);
2193
2194         /* Request interrupt lines */
2195         irq = smmu->evtq.q.irq;
2196         if (irq) {
2197                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2198                                                 arm_smmu_evtq_thread,
2199                                                 IRQF_ONESHOT,
2200                                                 "arm-smmu-v3-evtq", smmu);
2201                 if (ret < 0)
2202                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2203         }
2204
2205         irq = smmu->cmdq.q.irq;
2206         if (irq) {
2207                 ret = devm_request_irq(smmu->dev, irq,
2208                                        arm_smmu_cmdq_sync_handler, 0,
2209                                        "arm-smmu-v3-cmdq-sync", smmu);
2210                 if (ret < 0)
2211                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2212         }
2213
2214         irq = smmu->gerr_irq;
2215         if (irq) {
2216                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2217                                        0, "arm-smmu-v3-gerror", smmu);
2218                 if (ret < 0)
2219                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2220         }
2221
2222         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2223                 irq = smmu->priq.q.irq;
2224                 if (irq) {
2225                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2226                                                         arm_smmu_priq_thread,
2227                                                         IRQF_ONESHOT,
2228                                                         "arm-smmu-v3-priq",
2229                                                         smmu);
2230                         if (ret < 0)
2231                                 dev_warn(smmu->dev,
2232                                          "failed to enable priq irq\n");
2233                         else
2234                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2235                 }
2236         }
2237
2238         /* Enable interrupt generation on the SMMU */
2239         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2240                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2241         if (ret)
2242                 dev_warn(smmu->dev, "failed to enable irqs\n");
2243
2244         return 0;
2245 }
2246
2247 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2248 {
2249         int ret;
2250
2251         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2252         if (ret)
2253                 dev_err(smmu->dev, "failed to clear cr0\n");
2254
2255         return ret;
2256 }
2257
2258 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2259 {
2260         int ret;
2261         u32 reg, enables;
2262         struct arm_smmu_cmdq_ent cmd;
2263
2264         /* Clear CR0 and sync (disables SMMU and queue processing) */
2265         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2266         if (reg & CR0_SMMUEN)
2267                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2268
2269         ret = arm_smmu_device_disable(smmu);
2270         if (ret)
2271                 return ret;
2272
2273         /* CR1 (table and queue memory attributes) */
2274         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2275               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2276               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2277               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2278               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2279               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2280         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2281
2282         /* CR2 (random crap) */
2283         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2284         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2285
2286         /* Stream table */
2287         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2288                        smmu->base + ARM_SMMU_STRTAB_BASE);
2289         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2290                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2291
2292         /* Command queue */
2293         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2294         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2295         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2296
2297         enables = CR0_CMDQEN;
2298         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2299                                       ARM_SMMU_CR0ACK);
2300         if (ret) {
2301                 dev_err(smmu->dev, "failed to enable command queue\n");
2302                 return ret;
2303         }
2304
2305         /* Invalidate any cached configuration */
2306         cmd.opcode = CMDQ_OP_CFGI_ALL;
2307         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2308         cmd.opcode = CMDQ_OP_CMD_SYNC;
2309         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2310
2311         /* Invalidate any stale TLB entries */
2312         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2313                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2314                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2315         }
2316
2317         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2318         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2319         cmd.opcode = CMDQ_OP_CMD_SYNC;
2320         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2321
2322         /* Event queue */
2323         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2324         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2325         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2326
2327         enables |= CR0_EVTQEN;
2328         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2329                                       ARM_SMMU_CR0ACK);
2330         if (ret) {
2331                 dev_err(smmu->dev, "failed to enable event queue\n");
2332                 return ret;
2333         }
2334
2335         /* PRI queue */
2336         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2337                 writeq_relaxed(smmu->priq.q.q_base,
2338                                smmu->base + ARM_SMMU_PRIQ_BASE);
2339                 writel_relaxed(smmu->priq.q.prod,
2340                                smmu->base + ARM_SMMU_PRIQ_PROD);
2341                 writel_relaxed(smmu->priq.q.cons,
2342                                smmu->base + ARM_SMMU_PRIQ_CONS);
2343
2344                 enables |= CR0_PRIQEN;
2345                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2346                                               ARM_SMMU_CR0ACK);
2347                 if (ret) {
2348                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2349                         return ret;
2350                 }
2351         }
2352
2353         ret = arm_smmu_setup_irqs(smmu);
2354         if (ret) {
2355                 dev_err(smmu->dev, "failed to setup irqs\n");
2356                 return ret;
2357         }
2358
2359
2360         /* Enable the SMMU interface, or ensure bypass */
2361         if (!bypass || disable_bypass) {
2362                 enables |= CR0_SMMUEN;
2363         } else {
2364                 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2365                 if (ret) {
2366                         dev_err(smmu->dev, "GBPA not responding to update\n");
2367                         return ret;
2368                 }
2369         }
2370         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2371                                       ARM_SMMU_CR0ACK);
2372         if (ret) {
2373                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2374                 return ret;
2375         }
2376
2377         return 0;
2378 }
2379
2380 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2381 {
2382         u32 reg;
2383         bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2384
2385         /* IDR0 */
2386         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2387
2388         /* 2-level structures */
2389         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2390                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2391
2392         if (reg & IDR0_CD2L)
2393                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2394
2395         /*
2396          * Translation table endianness.
2397          * We currently require the same endianness as the CPU, but this
2398          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2399          */
2400         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2401         case IDR0_TTENDIAN_MIXED:
2402                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2403                 break;
2404 #ifdef __BIG_ENDIAN
2405         case IDR0_TTENDIAN_BE:
2406                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2407                 break;
2408 #else
2409         case IDR0_TTENDIAN_LE:
2410                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2411                 break;
2412 #endif
2413         default:
2414                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2415                 return -ENXIO;
2416         }
2417
2418         /* Boolean feature flags */
2419         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2420                 smmu->features |= ARM_SMMU_FEAT_PRI;
2421
2422         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2423                 smmu->features |= ARM_SMMU_FEAT_ATS;
2424
2425         if (reg & IDR0_SEV)
2426                 smmu->features |= ARM_SMMU_FEAT_SEV;
2427
2428         if (reg & IDR0_MSI)
2429                 smmu->features |= ARM_SMMU_FEAT_MSI;
2430
2431         if (reg & IDR0_HYP)
2432                 smmu->features |= ARM_SMMU_FEAT_HYP;
2433
2434         /*
2435          * The coherency feature as set by FW is used in preference to the ID
2436          * register, but warn on mismatch.
2437          */
2438         if (!!(reg & IDR0_COHACC) != coherent)
2439                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2440                          coherent ? "true" : "false");
2441
2442         switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2443         case IDR0_STALL_MODEL_STALL:
2444                 /* Fallthrough */
2445         case IDR0_STALL_MODEL_FORCE:
2446                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2447         }
2448
2449         if (reg & IDR0_S1P)
2450                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2451
2452         if (reg & IDR0_S2P)
2453                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2454
2455         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2456                 dev_err(smmu->dev, "no translation support!\n");
2457                 return -ENXIO;
2458         }
2459
2460         /* We only support the AArch64 table format at present */
2461         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2462         case IDR0_TTF_AARCH32_64:
2463                 smmu->ias = 40;
2464                 /* Fallthrough */
2465         case IDR0_TTF_AARCH64:
2466                 break;
2467         default:
2468                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2469                 return -ENXIO;
2470         }
2471
2472         /* ASID/VMID sizes */
2473         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2474         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2475
2476         /* IDR1 */
2477         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2478         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2479                 dev_err(smmu->dev, "embedded implementation not supported\n");
2480                 return -ENXIO;
2481         }
2482
2483         /* Queue sizes, capped at 4k */
2484         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2485                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2486         if (!smmu->cmdq.q.max_n_shift) {
2487                 /* Odd alignment restrictions on the base, so ignore for now */
2488                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2489                 return -ENXIO;
2490         }
2491
2492         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2493                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2494         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2495                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2496
2497         /* SID/SSID sizes */
2498         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2499         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2500
2501         /* IDR5 */
2502         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2503
2504         /* Maximum number of outstanding stalls */
2505         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2506                                 & IDR5_STALL_MAX_MASK;
2507
2508         /* Page sizes */
2509         if (reg & IDR5_GRAN64K)
2510                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2511         if (reg & IDR5_GRAN16K)
2512                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2513         if (reg & IDR5_GRAN4K)
2514                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2515
2516         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2517                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2518         else
2519                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2520
2521         /* Output address size */
2522         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2523         case IDR5_OAS_32_BIT:
2524                 smmu->oas = 32;
2525                 break;
2526         case IDR5_OAS_36_BIT:
2527                 smmu->oas = 36;
2528                 break;
2529         case IDR5_OAS_40_BIT:
2530                 smmu->oas = 40;
2531                 break;
2532         case IDR5_OAS_42_BIT:
2533                 smmu->oas = 42;
2534                 break;
2535         case IDR5_OAS_44_BIT:
2536                 smmu->oas = 44;
2537                 break;
2538         default:
2539                 dev_info(smmu->dev,
2540                         "unknown output address size. Truncating to 48-bit\n");
2541                 /* Fallthrough */
2542         case IDR5_OAS_48_BIT:
2543                 smmu->oas = 48;
2544         }
2545
2546         /* Set the DMA mask for our table walker */
2547         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2548                 dev_warn(smmu->dev,
2549                          "failed to set DMA mask for table walker\n");
2550
2551         smmu->ias = max(smmu->ias, smmu->oas);
2552
2553         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2554                  smmu->ias, smmu->oas, smmu->features);
2555         return 0;
2556 }
2557
2558 #ifdef CONFIG_ACPI
2559 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2560                                       struct arm_smmu_device *smmu)
2561 {
2562         struct acpi_iort_smmu_v3 *iort_smmu;
2563         struct device *dev = smmu->dev;
2564         struct acpi_iort_node *node;
2565
2566         node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2567
2568         /* Retrieve SMMUv3 specific data */
2569         iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2570
2571         if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2572                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2573
2574         return 0;
2575 }
2576 #else
2577 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2578                                              struct arm_smmu_device *smmu)
2579 {
2580         return -ENODEV;
2581 }
2582 #endif
2583
2584 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2585                                     struct arm_smmu_device *smmu)
2586 {
2587         struct device *dev = &pdev->dev;
2588         u32 cells;
2589         int ret = -EINVAL;
2590
2591         if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2592                 dev_err(dev, "missing #iommu-cells property\n");
2593         else if (cells != 1)
2594                 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2595         else
2596                 ret = 0;
2597
2598         parse_driver_options(smmu);
2599
2600         if (of_dma_is_coherent(dev->of_node))
2601                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2602
2603         return ret;
2604 }
2605
2606 static int arm_smmu_device_probe(struct platform_device *pdev)
2607 {
2608         int irq, ret;
2609         struct resource *res;
2610         struct arm_smmu_device *smmu;
2611         struct device *dev = &pdev->dev;
2612         bool bypass;
2613
2614         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2615         if (!smmu) {
2616                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2617                 return -ENOMEM;
2618         }
2619         smmu->dev = dev;
2620
2621         /* Base address */
2622         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2623         if (resource_size(res) + 1 < SZ_128K) {
2624                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2625                 return -EINVAL;
2626         }
2627
2628         smmu->base = devm_ioremap_resource(dev, res);
2629         if (IS_ERR(smmu->base))
2630                 return PTR_ERR(smmu->base);
2631
2632         /* Interrupt lines */
2633         irq = platform_get_irq_byname(pdev, "eventq");
2634         if (irq > 0)
2635                 smmu->evtq.q.irq = irq;
2636
2637         irq = platform_get_irq_byname(pdev, "priq");
2638         if (irq > 0)
2639                 smmu->priq.q.irq = irq;
2640
2641         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2642         if (irq > 0)
2643                 smmu->cmdq.q.irq = irq;
2644
2645         irq = platform_get_irq_byname(pdev, "gerror");
2646         if (irq > 0)
2647                 smmu->gerr_irq = irq;
2648
2649         if (dev->of_node) {
2650                 ret = arm_smmu_device_dt_probe(pdev, smmu);
2651         } else {
2652                 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2653                 if (ret == -ENODEV)
2654                         return ret;
2655         }
2656
2657         /* Set bypass mode according to firmware probing result */
2658         bypass = !!ret;
2659
2660         /* Probe the h/w */
2661         ret = arm_smmu_device_hw_probe(smmu);
2662         if (ret)
2663                 return ret;
2664
2665         /* Initialise in-memory data structures */
2666         ret = arm_smmu_init_structures(smmu);
2667         if (ret)
2668                 return ret;
2669
2670         /* Record our private device structure */
2671         platform_set_drvdata(pdev, smmu);
2672
2673         /* Reset the device */
2674         ret = arm_smmu_device_reset(smmu, bypass);
2675         if (ret)
2676                 return ret;
2677
2678         /* And we're up. Go go go! */
2679         iommu_register_instance(dev->fwnode, &arm_smmu_ops);
2680
2681 #ifdef CONFIG_PCI
2682         if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2683                 pci_request_acs();
2684                 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2685                 if (ret)
2686                         return ret;
2687         }
2688 #endif
2689 #ifdef CONFIG_ARM_AMBA
2690         if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2691                 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2692                 if (ret)
2693                         return ret;
2694         }
2695 #endif
2696         if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2697                 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2698                 if (ret)
2699                         return ret;
2700         }
2701         return 0;
2702 }
2703
2704 static int arm_smmu_device_remove(struct platform_device *pdev)
2705 {
2706         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2707
2708         arm_smmu_device_disable(smmu);
2709         return 0;
2710 }
2711
2712 static struct of_device_id arm_smmu_of_match[] = {
2713         { .compatible = "arm,smmu-v3", },
2714         { },
2715 };
2716 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2717
2718 static struct platform_driver arm_smmu_driver = {
2719         .driver = {
2720                 .name           = "arm-smmu-v3",
2721                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2722         },
2723         .probe  = arm_smmu_device_probe,
2724         .remove = arm_smmu_device_remove,
2725 };
2726
2727 static int __init arm_smmu_init(void)
2728 {
2729         static bool registered;
2730         int ret = 0;
2731
2732         if (!registered) {
2733                 ret = platform_driver_register(&arm_smmu_driver);
2734                 registered = !ret;
2735         }
2736         return ret;
2737 }
2738
2739 static void __exit arm_smmu_exit(void)
2740 {
2741         return platform_driver_unregister(&arm_smmu_driver);
2742 }
2743
2744 subsys_initcall(arm_smmu_init);
2745 module_exit(arm_smmu_exit);
2746
2747 static int __init arm_smmu_of_init(struct device_node *np)
2748 {
2749         int ret = arm_smmu_init();
2750
2751         if (ret)
2752                 return ret;
2753
2754         if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2755                 return -ENODEV;
2756
2757         return 0;
2758 }
2759 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", arm_smmu_of_init);
2760
2761 #ifdef CONFIG_ACPI
2762 static int __init acpi_smmu_v3_init(struct acpi_table_header *table)
2763 {
2764         if (iort_node_match(ACPI_IORT_NODE_SMMU_V3))
2765                 return arm_smmu_init();
2766
2767         return 0;
2768 }
2769 IORT_ACPI_DECLARE(arm_smmu_v3, ACPI_SIG_IORT, acpi_smmu_v3_init);
2770 #endif
2771
2772 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2773 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2774 MODULE_LICENSE("GPL v2");