]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/iommu/arm-smmu-v3.c
Merge branch 'iommu/guest-msi' of git://git.kernel.org/pub/scm/linux/kernel/git/will...
[linux.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0                   0x0
46 #define IDR0_ST_LVL_SHIFT               27
47 #define IDR0_ST_LVL_MASK                0x3
48 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT          24
50 #define IDR0_STALL_MODEL_MASK           0x3
51 #define IDR0_STALL_MODEL_STALL          (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE          (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT             21
54 #define IDR0_TTENDIAN_MASK              0x3
55 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L                       (1 << 19)
59 #define IDR0_VMID16                     (1 << 18)
60 #define IDR0_PRI                        (1 << 16)
61 #define IDR0_SEV                        (1 << 14)
62 #define IDR0_MSI                        (1 << 13)
63 #define IDR0_ASID16                     (1 << 12)
64 #define IDR0_ATS                        (1 << 10)
65 #define IDR0_HYP                        (1 << 9)
66 #define IDR0_COHACC                     (1 << 4)
67 #define IDR0_TTF_SHIFT                  2
68 #define IDR0_TTF_MASK                   0x3
69 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P                        (1 << 1)
72 #define IDR0_S2P                        (1 << 0)
73
74 #define ARM_SMMU_IDR1                   0x4
75 #define IDR1_TABLES_PRESET              (1 << 30)
76 #define IDR1_QUEUES_PRESET              (1 << 29)
77 #define IDR1_REL                        (1 << 28)
78 #define IDR1_CMDQ_SHIFT                 21
79 #define IDR1_CMDQ_MASK                  0x1f
80 #define IDR1_EVTQ_SHIFT                 16
81 #define IDR1_EVTQ_MASK                  0x1f
82 #define IDR1_PRIQ_SHIFT                 11
83 #define IDR1_PRIQ_MASK                  0x1f
84 #define IDR1_SSID_SHIFT                 6
85 #define IDR1_SSID_MASK                  0x1f
86 #define IDR1_SID_SHIFT                  0
87 #define IDR1_SID_MASK                   0x3f
88
89 #define ARM_SMMU_IDR5                   0x14
90 #define IDR5_STALL_MAX_SHIFT            16
91 #define IDR5_STALL_MAX_MASK             0xffff
92 #define IDR5_GRAN64K                    (1 << 6)
93 #define IDR5_GRAN16K                    (1 << 5)
94 #define IDR5_GRAN4K                     (1 << 4)
95 #define IDR5_OAS_SHIFT                  0
96 #define IDR5_OAS_MASK                   0x7
97 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0                    0x20
105 #define CR0_CMDQEN                      (1 << 3)
106 #define CR0_EVTQEN                      (1 << 2)
107 #define CR0_PRIQEN                      (1 << 1)
108 #define CR0_SMMUEN                      (1 << 0)
109
110 #define ARM_SMMU_CR0ACK                 0x24
111
112 #define ARM_SMMU_CR1                    0x28
113 #define CR1_SH_NSH                      0
114 #define CR1_SH_OSH                      2
115 #define CR1_SH_ISH                      3
116 #define CR1_CACHE_NC                    0
117 #define CR1_CACHE_WB                    1
118 #define CR1_CACHE_WT                    2
119 #define CR1_TABLE_SH_SHIFT              10
120 #define CR1_TABLE_OC_SHIFT              8
121 #define CR1_TABLE_IC_SHIFT              6
122 #define CR1_QUEUE_SH_SHIFT              4
123 #define CR1_QUEUE_OC_SHIFT              2
124 #define CR1_QUEUE_IC_SHIFT              0
125
126 #define ARM_SMMU_CR2                    0x2c
127 #define CR2_PTM                         (1 << 2)
128 #define CR2_RECINVSID                   (1 << 1)
129 #define CR2_E2H                         (1 << 0)
130
131 #define ARM_SMMU_GBPA                   0x44
132 #define GBPA_ABORT                      (1 << 20)
133 #define GBPA_UPDATE                     (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL               0x50
136 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK            0x54
141
142 #define ARM_SMMU_GERROR                 0x60
143 #define GERROR_SFM_ERR                  (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
150 #define GERROR_CMDQ_ERR                 (1 << 0)
151 #define GERROR_ERR_MASK                 0xfd
152
153 #define ARM_SMMU_GERRORN                0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
158
159 #define ARM_SMMU_STRTAB_BASE            0x80
160 #define STRTAB_BASE_RA                  (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT          6
162 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
168 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT       16
170 #define STRTAB_BASE_CFG_FMT_MASK        0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE              0x90
175 #define ARM_SMMU_CMDQ_PROD              0x98
176 #define ARM_SMMU_CMDQ_CONS              0x9c
177
178 #define ARM_SMMU_EVTQ_BASE              0xa0
179 #define ARM_SMMU_EVTQ_PROD              0x100a8
180 #define ARM_SMMU_EVTQ_CONS              0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
184
185 #define ARM_SMMU_PRIQ_BASE              0xc0
186 #define ARM_SMMU_PRIQ_PROD              0x100c8
187 #define ARM_SMMU_PRIQ_CONS              0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT             2
194 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT               4
196 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT          0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG                 (1 << 31)
205 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p)                     ((q)->base +                    \
207                                          Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA                      (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT               5
211 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT           0
213 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
214
215 /*
216  * Stream table.
217  *
218  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219  * 2lvl: 128k L1 entries,
220  *       256 lazy entries per table (each table covers a PCI bus)
221  */
222 #define STRTAB_L1_SZ_SHIFT              20
223 #define STRTAB_SPLIT                    8
224
225 #define STRTAB_L1_DESC_DWORDS           1
226 #define STRTAB_L1_DESC_SPAN_SHIFT       0
227 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
229 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS               8
232 #define STRTAB_STE_0_V                  (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT          1
234 #define STRTAB_STE_0_CFG_MASK           0x7UL
235 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT        4
241 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
243 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
245 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
251 #define STRTAB_STE_1_S1C_SH_NSH         0UL
252 #define STRTAB_STE_1_S1C_SH_OSH         2UL
253 #define STRTAB_STE_1_S1C_SH_ISH         3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT        2
255 #define STRTAB_STE_1_S1COR_SHIFT        4
256 #define STRTAB_STE_1_S1CSH_SHIFT        6
257
258 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT           0UL
261 #define STRTAB_STE_1_EATS_TRANS         1UL
262 #define STRTAB_STE_1_EATS_S1CHK         2UL
263 #define STRTAB_STE_1_EATS_SHIFT         28
264
265 #define STRTAB_STE_1_STRW_NSEL1         0UL
266 #define STRTAB_STE_1_STRW_EL2           2UL
267 #define STRTAB_STE_1_STRW_SHIFT         30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT        44
271
272 #define STRTAB_STE_1_PRIVCFG_UNPRIV     2UL
273 #define STRTAB_STE_1_PRIVCFG_SHIFT      48
274
275 #define STRTAB_STE_2_S2VMID_SHIFT       0
276 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
277 #define STRTAB_STE_2_VTCR_SHIFT         32
278 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
279 #define STRTAB_STE_2_S2AA64             (1UL << 51)
280 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
281 #define STRTAB_STE_2_S2PTW              (1UL << 54)
282 #define STRTAB_STE_2_S2R                (1UL << 58)
283
284 #define STRTAB_STE_3_S2TTB_SHIFT        4
285 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
286
287 /* Context descriptor (stage-1 only) */
288 #define CTXDESC_CD_DWORDS               8
289 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
290 #define ARM64_TCR_T0SZ_SHIFT            0
291 #define ARM64_TCR_T0SZ_MASK             0x1fUL
292 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
293 #define ARM64_TCR_TG0_SHIFT             14
294 #define ARM64_TCR_TG0_MASK              0x3UL
295 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
296 #define ARM64_TCR_IRGN0_SHIFT           8
297 #define ARM64_TCR_IRGN0_MASK            0x3UL
298 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
299 #define ARM64_TCR_ORGN0_SHIFT           10
300 #define ARM64_TCR_ORGN0_MASK            0x3UL
301 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
302 #define ARM64_TCR_SH0_SHIFT             12
303 #define ARM64_TCR_SH0_MASK              0x3UL
304 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
305 #define ARM64_TCR_EPD0_SHIFT            7
306 #define ARM64_TCR_EPD0_MASK             0x1UL
307 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
308 #define ARM64_TCR_EPD1_SHIFT            23
309 #define ARM64_TCR_EPD1_MASK             0x1UL
310
311 #define CTXDESC_CD_0_ENDI               (1UL << 15)
312 #define CTXDESC_CD_0_V                  (1UL << 31)
313
314 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
315 #define ARM64_TCR_IPS_SHIFT             32
316 #define ARM64_TCR_IPS_MASK              0x7UL
317 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
318 #define ARM64_TCR_TBI0_SHIFT            37
319 #define ARM64_TCR_TBI0_MASK             0x1UL
320
321 #define CTXDESC_CD_0_AA64               (1UL << 41)
322 #define CTXDESC_CD_0_R                  (1UL << 45)
323 #define CTXDESC_CD_0_A                  (1UL << 46)
324 #define CTXDESC_CD_0_ASET_SHIFT         47
325 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
326 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
327 #define CTXDESC_CD_0_ASID_SHIFT         48
328 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
329
330 #define CTXDESC_CD_1_TTB0_SHIFT         4
331 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
332
333 #define CTXDESC_CD_3_MAIR_SHIFT         0
334
335 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
336 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
337         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
338          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
339
340 /* Command queue */
341 #define CMDQ_ENT_DWORDS                 2
342 #define CMDQ_MAX_SZ_SHIFT               8
343
344 #define CMDQ_ERR_SHIFT                  24
345 #define CMDQ_ERR_MASK                   0x7f
346 #define CMDQ_ERR_CERROR_NONE_IDX        0
347 #define CMDQ_ERR_CERROR_ILL_IDX         1
348 #define CMDQ_ERR_CERROR_ABT_IDX         2
349
350 #define CMDQ_0_OP_SHIFT                 0
351 #define CMDQ_0_OP_MASK                  0xffUL
352 #define CMDQ_0_SSV                      (1UL << 11)
353
354 #define CMDQ_PREFETCH_0_SID_SHIFT       32
355 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
356 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
357
358 #define CMDQ_CFGI_0_SID_SHIFT           32
359 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
360 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
361 #define CMDQ_CFGI_1_RANGE_SHIFT         0
362 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
363
364 #define CMDQ_TLBI_0_VMID_SHIFT          32
365 #define CMDQ_TLBI_0_ASID_SHIFT          48
366 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
367 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
368 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
369
370 #define CMDQ_PRI_0_SSID_SHIFT           12
371 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
372 #define CMDQ_PRI_0_SID_SHIFT            32
373 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
374 #define CMDQ_PRI_1_GRPID_SHIFT          0
375 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
376 #define CMDQ_PRI_1_RESP_SHIFT           12
377 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
378 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
379 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
380
381 #define CMDQ_SYNC_0_CS_SHIFT            12
382 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
383 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
384
385 /* Event queue */
386 #define EVTQ_ENT_DWORDS                 4
387 #define EVTQ_MAX_SZ_SHIFT               7
388
389 #define EVTQ_0_ID_SHIFT                 0
390 #define EVTQ_0_ID_MASK                  0xffUL
391
392 /* PRI queue */
393 #define PRIQ_ENT_DWORDS                 2
394 #define PRIQ_MAX_SZ_SHIFT               8
395
396 #define PRIQ_0_SID_SHIFT                0
397 #define PRIQ_0_SID_MASK                 0xffffffffUL
398 #define PRIQ_0_SSID_SHIFT               32
399 #define PRIQ_0_SSID_MASK                0xfffffUL
400 #define PRIQ_0_PERM_PRIV                (1UL << 58)
401 #define PRIQ_0_PERM_EXEC                (1UL << 59)
402 #define PRIQ_0_PERM_READ                (1UL << 60)
403 #define PRIQ_0_PERM_WRITE               (1UL << 61)
404 #define PRIQ_0_PRG_LAST                 (1UL << 62)
405 #define PRIQ_0_SSID_V                   (1UL << 63)
406
407 #define PRIQ_1_PRG_IDX_SHIFT            0
408 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
409 #define PRIQ_1_ADDR_SHIFT               12
410 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
411
412 /* High-level queue structures */
413 #define ARM_SMMU_POLL_TIMEOUT_US        100
414
415 #define MSI_IOVA_BASE                   0x8000000
416 #define MSI_IOVA_LENGTH                 0x100000
417
418 static bool disable_bypass;
419 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
420 MODULE_PARM_DESC(disable_bypass,
421         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
422
423 enum pri_resp {
424         PRI_RESP_DENY,
425         PRI_RESP_FAIL,
426         PRI_RESP_SUCC,
427 };
428
429 enum arm_smmu_msi_index {
430         EVTQ_MSI_INDEX,
431         GERROR_MSI_INDEX,
432         PRIQ_MSI_INDEX,
433         ARM_SMMU_MAX_MSIS,
434 };
435
436 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
437         [EVTQ_MSI_INDEX] = {
438                 ARM_SMMU_EVTQ_IRQ_CFG0,
439                 ARM_SMMU_EVTQ_IRQ_CFG1,
440                 ARM_SMMU_EVTQ_IRQ_CFG2,
441         },
442         [GERROR_MSI_INDEX] = {
443                 ARM_SMMU_GERROR_IRQ_CFG0,
444                 ARM_SMMU_GERROR_IRQ_CFG1,
445                 ARM_SMMU_GERROR_IRQ_CFG2,
446         },
447         [PRIQ_MSI_INDEX] = {
448                 ARM_SMMU_PRIQ_IRQ_CFG0,
449                 ARM_SMMU_PRIQ_IRQ_CFG1,
450                 ARM_SMMU_PRIQ_IRQ_CFG2,
451         },
452 };
453
454 struct arm_smmu_cmdq_ent {
455         /* Common fields */
456         u8                              opcode;
457         bool                            substream_valid;
458
459         /* Command-specific fields */
460         union {
461                 #define CMDQ_OP_PREFETCH_CFG    0x1
462                 struct {
463                         u32                     sid;
464                         u8                      size;
465                         u64                     addr;
466                 } prefetch;
467
468                 #define CMDQ_OP_CFGI_STE        0x3
469                 #define CMDQ_OP_CFGI_ALL        0x4
470                 struct {
471                         u32                     sid;
472                         union {
473                                 bool            leaf;
474                                 u8              span;
475                         };
476                 } cfgi;
477
478                 #define CMDQ_OP_TLBI_NH_ASID    0x11
479                 #define CMDQ_OP_TLBI_NH_VA      0x12
480                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
481                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
482                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
483                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
484                 struct {
485                         u16                     asid;
486                         u16                     vmid;
487                         bool                    leaf;
488                         u64                     addr;
489                 } tlbi;
490
491                 #define CMDQ_OP_PRI_RESP        0x41
492                 struct {
493                         u32                     sid;
494                         u32                     ssid;
495                         u16                     grpid;
496                         enum pri_resp           resp;
497                 } pri;
498
499                 #define CMDQ_OP_CMD_SYNC        0x46
500         };
501 };
502
503 struct arm_smmu_queue {
504         int                             irq; /* Wired interrupt */
505
506         __le64                          *base;
507         dma_addr_t                      base_dma;
508         u64                             q_base;
509
510         size_t                          ent_dwords;
511         u32                             max_n_shift;
512         u32                             prod;
513         u32                             cons;
514
515         u32 __iomem                     *prod_reg;
516         u32 __iomem                     *cons_reg;
517 };
518
519 struct arm_smmu_cmdq {
520         struct arm_smmu_queue           q;
521         spinlock_t                      lock;
522 };
523
524 struct arm_smmu_evtq {
525         struct arm_smmu_queue           q;
526         u32                             max_stalls;
527 };
528
529 struct arm_smmu_priq {
530         struct arm_smmu_queue           q;
531 };
532
533 /* High-level stream table and context descriptor structures */
534 struct arm_smmu_strtab_l1_desc {
535         u8                              span;
536
537         __le64                          *l2ptr;
538         dma_addr_t                      l2ptr_dma;
539 };
540
541 struct arm_smmu_s1_cfg {
542         __le64                          *cdptr;
543         dma_addr_t                      cdptr_dma;
544
545         struct arm_smmu_ctx_desc {
546                 u16     asid;
547                 u64     ttbr;
548                 u64     tcr;
549                 u64     mair;
550         }                               cd;
551 };
552
553 struct arm_smmu_s2_cfg {
554         u16                             vmid;
555         u64                             vttbr;
556         u64                             vtcr;
557 };
558
559 struct arm_smmu_strtab_ent {
560         bool                            valid;
561
562         bool                            bypass; /* Overrides s1/s2 config */
563         struct arm_smmu_s1_cfg          *s1_cfg;
564         struct arm_smmu_s2_cfg          *s2_cfg;
565 };
566
567 struct arm_smmu_strtab_cfg {
568         __le64                          *strtab;
569         dma_addr_t                      strtab_dma;
570         struct arm_smmu_strtab_l1_desc  *l1_desc;
571         unsigned int                    num_l1_ents;
572
573         u64                             strtab_base;
574         u32                             strtab_base_cfg;
575 };
576
577 /* An SMMUv3 instance */
578 struct arm_smmu_device {
579         struct device                   *dev;
580         void __iomem                    *base;
581
582 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
583 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
584 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
585 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
586 #define ARM_SMMU_FEAT_PRI               (1 << 4)
587 #define ARM_SMMU_FEAT_ATS               (1 << 5)
588 #define ARM_SMMU_FEAT_SEV               (1 << 6)
589 #define ARM_SMMU_FEAT_MSI               (1 << 7)
590 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
591 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
592 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
593 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
594 #define ARM_SMMU_FEAT_HYP               (1 << 12)
595         u32                             features;
596
597 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
598         u32                             options;
599
600         struct arm_smmu_cmdq            cmdq;
601         struct arm_smmu_evtq            evtq;
602         struct arm_smmu_priq            priq;
603
604         int                             gerr_irq;
605
606         unsigned long                   ias; /* IPA */
607         unsigned long                   oas; /* PA */
608         unsigned long                   pgsize_bitmap;
609
610 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
611         unsigned int                    asid_bits;
612         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
613
614 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
615         unsigned int                    vmid_bits;
616         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
617
618         unsigned int                    ssid_bits;
619         unsigned int                    sid_bits;
620
621         struct arm_smmu_strtab_cfg      strtab_cfg;
622 };
623
624 /* SMMU private data for each master */
625 struct arm_smmu_master_data {
626         struct arm_smmu_device          *smmu;
627         struct arm_smmu_strtab_ent      ste;
628 };
629
630 /* SMMU private data for an IOMMU domain */
631 enum arm_smmu_domain_stage {
632         ARM_SMMU_DOMAIN_S1 = 0,
633         ARM_SMMU_DOMAIN_S2,
634         ARM_SMMU_DOMAIN_NESTED,
635 };
636
637 struct arm_smmu_domain {
638         struct arm_smmu_device          *smmu;
639         struct mutex                    init_mutex; /* Protects smmu pointer */
640
641         struct io_pgtable_ops           *pgtbl_ops;
642         spinlock_t                      pgtbl_lock;
643
644         enum arm_smmu_domain_stage      stage;
645         union {
646                 struct arm_smmu_s1_cfg  s1_cfg;
647                 struct arm_smmu_s2_cfg  s2_cfg;
648         };
649
650         struct iommu_domain             domain;
651 };
652
653 struct arm_smmu_option_prop {
654         u32 opt;
655         const char *prop;
656 };
657
658 static struct arm_smmu_option_prop arm_smmu_options[] = {
659         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
660         { 0, NULL},
661 };
662
663 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
664 {
665         return container_of(dom, struct arm_smmu_domain, domain);
666 }
667
668 static void parse_driver_options(struct arm_smmu_device *smmu)
669 {
670         int i = 0;
671
672         do {
673                 if (of_property_read_bool(smmu->dev->of_node,
674                                                 arm_smmu_options[i].prop)) {
675                         smmu->options |= arm_smmu_options[i].opt;
676                         dev_notice(smmu->dev, "option %s\n",
677                                 arm_smmu_options[i].prop);
678                 }
679         } while (arm_smmu_options[++i].opt);
680 }
681
682 /* Low-level queue manipulation functions */
683 static bool queue_full(struct arm_smmu_queue *q)
684 {
685         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
686                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
687 }
688
689 static bool queue_empty(struct arm_smmu_queue *q)
690 {
691         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
692                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
693 }
694
695 static void queue_sync_cons(struct arm_smmu_queue *q)
696 {
697         q->cons = readl_relaxed(q->cons_reg);
698 }
699
700 static void queue_inc_cons(struct arm_smmu_queue *q)
701 {
702         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
703
704         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
705         writel(q->cons, q->cons_reg);
706 }
707
708 static int queue_sync_prod(struct arm_smmu_queue *q)
709 {
710         int ret = 0;
711         u32 prod = readl_relaxed(q->prod_reg);
712
713         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
714                 ret = -EOVERFLOW;
715
716         q->prod = prod;
717         return ret;
718 }
719
720 static void queue_inc_prod(struct arm_smmu_queue *q)
721 {
722         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
723
724         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
725         writel(q->prod, q->prod_reg);
726 }
727
728 /*
729  * Wait for the SMMU to consume items. If drain is true, wait until the queue
730  * is empty. Otherwise, wait until there is at least one free slot.
731  */
732 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
733 {
734         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
735
736         while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
737                 if (ktime_compare(ktime_get(), timeout) > 0)
738                         return -ETIMEDOUT;
739
740                 if (wfe) {
741                         wfe();
742                 } else {
743                         cpu_relax();
744                         udelay(1);
745                 }
746         }
747
748         return 0;
749 }
750
751 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
752 {
753         int i;
754
755         for (i = 0; i < n_dwords; ++i)
756                 *dst++ = cpu_to_le64(*src++);
757 }
758
759 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
760 {
761         if (queue_full(q))
762                 return -ENOSPC;
763
764         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
765         queue_inc_prod(q);
766         return 0;
767 }
768
769 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
770 {
771         int i;
772
773         for (i = 0; i < n_dwords; ++i)
774                 *dst++ = le64_to_cpu(*src++);
775 }
776
777 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
778 {
779         if (queue_empty(q))
780                 return -EAGAIN;
781
782         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
783         queue_inc_cons(q);
784         return 0;
785 }
786
787 /* High-level queue accessors */
788 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
789 {
790         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
791         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
792
793         switch (ent->opcode) {
794         case CMDQ_OP_TLBI_EL2_ALL:
795         case CMDQ_OP_TLBI_NSNH_ALL:
796                 break;
797         case CMDQ_OP_PREFETCH_CFG:
798                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
799                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
800                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
801                 break;
802         case CMDQ_OP_CFGI_STE:
803                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
804                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
805                 break;
806         case CMDQ_OP_CFGI_ALL:
807                 /* Cover the entire SID range */
808                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
809                 break;
810         case CMDQ_OP_TLBI_NH_VA:
811                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
812                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
813                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
814                 break;
815         case CMDQ_OP_TLBI_S2_IPA:
816                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
817                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
818                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
819                 break;
820         case CMDQ_OP_TLBI_NH_ASID:
821                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
822                 /* Fallthrough */
823         case CMDQ_OP_TLBI_S12_VMALL:
824                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
825                 break;
826         case CMDQ_OP_PRI_RESP:
827                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
828                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
829                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
830                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
831                 switch (ent->pri.resp) {
832                 case PRI_RESP_DENY:
833                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
834                         break;
835                 case PRI_RESP_FAIL:
836                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
837                         break;
838                 case PRI_RESP_SUCC:
839                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
840                         break;
841                 default:
842                         return -EINVAL;
843                 }
844                 break;
845         case CMDQ_OP_CMD_SYNC:
846                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
847                 break;
848         default:
849                 return -ENOENT;
850         }
851
852         return 0;
853 }
854
855 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
856 {
857         static const char *cerror_str[] = {
858                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
859                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
860                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
861         };
862
863         int i;
864         u64 cmd[CMDQ_ENT_DWORDS];
865         struct arm_smmu_queue *q = &smmu->cmdq.q;
866         u32 cons = readl_relaxed(q->cons_reg);
867         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
868         struct arm_smmu_cmdq_ent cmd_sync = {
869                 .opcode = CMDQ_OP_CMD_SYNC,
870         };
871
872         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
873                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
874
875         switch (idx) {
876         case CMDQ_ERR_CERROR_ABT_IDX:
877                 dev_err(smmu->dev, "retrying command fetch\n");
878         case CMDQ_ERR_CERROR_NONE_IDX:
879                 return;
880         case CMDQ_ERR_CERROR_ILL_IDX:
881                 /* Fallthrough */
882         default:
883                 break;
884         }
885
886         /*
887          * We may have concurrent producers, so we need to be careful
888          * not to touch any of the shadow cmdq state.
889          */
890         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
891         dev_err(smmu->dev, "skipping command in error state:\n");
892         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
893                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
894
895         /* Convert the erroneous command into a CMD_SYNC */
896         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
897                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
898                 return;
899         }
900
901         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
902 }
903
904 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
905                                     struct arm_smmu_cmdq_ent *ent)
906 {
907         u64 cmd[CMDQ_ENT_DWORDS];
908         unsigned long flags;
909         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
910         struct arm_smmu_queue *q = &smmu->cmdq.q;
911
912         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
913                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
914                          ent->opcode);
915                 return;
916         }
917
918         spin_lock_irqsave(&smmu->cmdq.lock, flags);
919         while (queue_insert_raw(q, cmd) == -ENOSPC) {
920                 if (queue_poll_cons(q, false, wfe))
921                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
922         }
923
924         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
925                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
926         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
927 }
928
929 /* Context descriptor manipulation functions */
930 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
931 {
932         u64 val = 0;
933
934         /* Repack the TCR. Just care about TTBR0 for now */
935         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
936         val |= ARM_SMMU_TCR2CD(tcr, TG0);
937         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
938         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
939         val |= ARM_SMMU_TCR2CD(tcr, SH0);
940         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
941         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
942         val |= ARM_SMMU_TCR2CD(tcr, IPS);
943         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
944
945         return val;
946 }
947
948 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
949                                     struct arm_smmu_s1_cfg *cfg)
950 {
951         u64 val;
952
953         /*
954          * We don't need to issue any invalidation here, as we'll invalidate
955          * the STE when installing the new entry anyway.
956          */
957         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
958 #ifdef __BIG_ENDIAN
959               CTXDESC_CD_0_ENDI |
960 #endif
961               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
962               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
963               CTXDESC_CD_0_V;
964         cfg->cdptr[0] = cpu_to_le64(val);
965
966         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
967         cfg->cdptr[1] = cpu_to_le64(val);
968
969         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
970 }
971
972 /* Stream table manipulation functions */
973 static void
974 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
975 {
976         u64 val = 0;
977
978         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
979                 << STRTAB_L1_DESC_SPAN_SHIFT;
980         val |= desc->l2ptr_dma &
981                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
982
983         *dst = cpu_to_le64(val);
984 }
985
986 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
987 {
988         struct arm_smmu_cmdq_ent cmd = {
989                 .opcode = CMDQ_OP_CFGI_STE,
990                 .cfgi   = {
991                         .sid    = sid,
992                         .leaf   = true,
993                 },
994         };
995
996         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
997         cmd.opcode = CMDQ_OP_CMD_SYNC;
998         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
999 }
1000
1001 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
1002                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
1003 {
1004         /*
1005          * This is hideously complicated, but we only really care about
1006          * three cases at the moment:
1007          *
1008          * 1. Invalid (all zero) -> bypass  (init)
1009          * 2. Bypass -> translation (attach)
1010          * 3. Translation -> bypass (detach)
1011          *
1012          * Given that we can't update the STE atomically and the SMMU
1013          * doesn't read the thing in a defined order, that leaves us
1014          * with the following maintenance requirements:
1015          *
1016          * 1. Update Config, return (init time STEs aren't live)
1017          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1018          * 3. Update Config, sync
1019          */
1020         u64 val = le64_to_cpu(dst[0]);
1021         bool ste_live = false;
1022         struct arm_smmu_cmdq_ent prefetch_cmd = {
1023                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1024                 .prefetch       = {
1025                         .sid    = sid,
1026                 },
1027         };
1028
1029         if (val & STRTAB_STE_0_V) {
1030                 u64 cfg;
1031
1032                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1033                 switch (cfg) {
1034                 case STRTAB_STE_0_CFG_BYPASS:
1035                         break;
1036                 case STRTAB_STE_0_CFG_S1_TRANS:
1037                 case STRTAB_STE_0_CFG_S2_TRANS:
1038                         ste_live = true;
1039                         break;
1040                 case STRTAB_STE_0_CFG_ABORT:
1041                         if (disable_bypass)
1042                                 break;
1043                 default:
1044                         BUG(); /* STE corruption */
1045                 }
1046         }
1047
1048         /* Nuke the existing Config, as we're going to rewrite it */
1049         val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1050
1051         if (ste->valid)
1052                 val |= STRTAB_STE_0_V;
1053         else
1054                 val &= ~STRTAB_STE_0_V;
1055
1056         if (ste->bypass) {
1057                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1058                                       : STRTAB_STE_0_CFG_BYPASS;
1059                 dst[0] = cpu_to_le64(val);
1060                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1061                          << STRTAB_STE_1_SHCFG_SHIFT);
1062                 dst[2] = 0; /* Nuke the VMID */
1063                 if (ste_live)
1064                         arm_smmu_sync_ste_for_sid(smmu, sid);
1065                 return;
1066         }
1067
1068         if (ste->s1_cfg) {
1069                 BUG_ON(ste_live);
1070                 dst[1] = cpu_to_le64(
1071                          STRTAB_STE_1_S1C_CACHE_WBRA
1072                          << STRTAB_STE_1_S1CIR_SHIFT |
1073                          STRTAB_STE_1_S1C_CACHE_WBRA
1074                          << STRTAB_STE_1_S1COR_SHIFT |
1075                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1076 #ifdef CONFIG_PCI_ATS
1077                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1078 #endif
1079                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT |
1080                          STRTAB_STE_1_PRIVCFG_UNPRIV <<
1081                          STRTAB_STE_1_PRIVCFG_SHIFT);
1082
1083                 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1084                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1085
1086                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1087                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1088                         STRTAB_STE_0_CFG_S1_TRANS;
1089
1090         }
1091
1092         if (ste->s2_cfg) {
1093                 BUG_ON(ste_live);
1094                 dst[2] = cpu_to_le64(
1095                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1096                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1097                           << STRTAB_STE_2_VTCR_SHIFT |
1098 #ifdef __BIG_ENDIAN
1099                          STRTAB_STE_2_S2ENDI |
1100 #endif
1101                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1102                          STRTAB_STE_2_S2R);
1103
1104                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1105                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1106
1107                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1108         }
1109
1110         arm_smmu_sync_ste_for_sid(smmu, sid);
1111         dst[0] = cpu_to_le64(val);
1112         arm_smmu_sync_ste_for_sid(smmu, sid);
1113
1114         /* It's likely that we'll want to use the new STE soon */
1115         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1116                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1117 }
1118
1119 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1120 {
1121         unsigned int i;
1122         struct arm_smmu_strtab_ent ste = {
1123                 .valid  = true,
1124                 .bypass = true,
1125         };
1126
1127         for (i = 0; i < nent; ++i) {
1128                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1129                 strtab += STRTAB_STE_DWORDS;
1130         }
1131 }
1132
1133 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1134 {
1135         size_t size;
1136         void *strtab;
1137         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1138         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1139
1140         if (desc->l2ptr)
1141                 return 0;
1142
1143         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1144         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1145
1146         desc->span = STRTAB_SPLIT + 1;
1147         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1148                                           GFP_KERNEL | __GFP_ZERO);
1149         if (!desc->l2ptr) {
1150                 dev_err(smmu->dev,
1151                         "failed to allocate l2 stream table for SID %u\n",
1152                         sid);
1153                 return -ENOMEM;
1154         }
1155
1156         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1157         arm_smmu_write_strtab_l1_desc(strtab, desc);
1158         return 0;
1159 }
1160
1161 /* IRQ and event handlers */
1162 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1163 {
1164         int i;
1165         struct arm_smmu_device *smmu = dev;
1166         struct arm_smmu_queue *q = &smmu->evtq.q;
1167         u64 evt[EVTQ_ENT_DWORDS];
1168
1169         do {
1170                 while (!queue_remove_raw(q, evt)) {
1171                         u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1172
1173                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1174                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1175                                 dev_info(smmu->dev, "\t0x%016llx\n",
1176                                          (unsigned long long)evt[i]);
1177
1178                 }
1179
1180                 /*
1181                  * Not much we can do on overflow, so scream and pretend we're
1182                  * trying harder.
1183                  */
1184                 if (queue_sync_prod(q) == -EOVERFLOW)
1185                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1186         } while (!queue_empty(q));
1187
1188         /* Sync our overflow flag, as we believe we're up to speed */
1189         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1190         return IRQ_HANDLED;
1191 }
1192
1193 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1194 {
1195         u32 sid, ssid;
1196         u16 grpid;
1197         bool ssv, last;
1198
1199         sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1200         ssv = evt[0] & PRIQ_0_SSID_V;
1201         ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1202         last = evt[0] & PRIQ_0_PRG_LAST;
1203         grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1204
1205         dev_info(smmu->dev, "unexpected PRI request received:\n");
1206         dev_info(smmu->dev,
1207                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1208                  sid, ssid, grpid, last ? "L" : "",
1209                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1210                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1211                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1212                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1213                  evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1214
1215         if (last) {
1216                 struct arm_smmu_cmdq_ent cmd = {
1217                         .opcode                 = CMDQ_OP_PRI_RESP,
1218                         .substream_valid        = ssv,
1219                         .pri                    = {
1220                                 .sid    = sid,
1221                                 .ssid   = ssid,
1222                                 .grpid  = grpid,
1223                                 .resp   = PRI_RESP_DENY,
1224                         },
1225                 };
1226
1227                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1228         }
1229 }
1230
1231 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1232 {
1233         struct arm_smmu_device *smmu = dev;
1234         struct arm_smmu_queue *q = &smmu->priq.q;
1235         u64 evt[PRIQ_ENT_DWORDS];
1236
1237         do {
1238                 while (!queue_remove_raw(q, evt))
1239                         arm_smmu_handle_ppr(smmu, evt);
1240
1241                 if (queue_sync_prod(q) == -EOVERFLOW)
1242                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1243         } while (!queue_empty(q));
1244
1245         /* Sync our overflow flag, as we believe we're up to speed */
1246         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1247         return IRQ_HANDLED;
1248 }
1249
1250 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1251 {
1252         /* We don't actually use CMD_SYNC interrupts for anything */
1253         return IRQ_HANDLED;
1254 }
1255
1256 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1257
1258 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1259 {
1260         u32 gerror, gerrorn, active;
1261         struct arm_smmu_device *smmu = dev;
1262
1263         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1264         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1265
1266         active = gerror ^ gerrorn;
1267         if (!(active & GERROR_ERR_MASK))
1268                 return IRQ_NONE; /* No errors pending */
1269
1270         dev_warn(smmu->dev,
1271                  "unexpected global error reported (0x%08x), this could be serious\n",
1272                  active);
1273
1274         if (active & GERROR_SFM_ERR) {
1275                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1276                 arm_smmu_device_disable(smmu);
1277         }
1278
1279         if (active & GERROR_MSI_GERROR_ABT_ERR)
1280                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1281
1282         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1283                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1284
1285         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1286                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1287
1288         if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1289                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1290                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1291         }
1292
1293         if (active & GERROR_PRIQ_ABT_ERR)
1294                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1295
1296         if (active & GERROR_EVTQ_ABT_ERR)
1297                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1298
1299         if (active & GERROR_CMDQ_ERR)
1300                 arm_smmu_cmdq_skip_err(smmu);
1301
1302         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1303         return IRQ_HANDLED;
1304 }
1305
1306 /* IO_PGTABLE API */
1307 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1308 {
1309         struct arm_smmu_cmdq_ent cmd;
1310
1311         cmd.opcode = CMDQ_OP_CMD_SYNC;
1312         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1313 }
1314
1315 static void arm_smmu_tlb_sync(void *cookie)
1316 {
1317         struct arm_smmu_domain *smmu_domain = cookie;
1318         __arm_smmu_tlb_sync(smmu_domain->smmu);
1319 }
1320
1321 static void arm_smmu_tlb_inv_context(void *cookie)
1322 {
1323         struct arm_smmu_domain *smmu_domain = cookie;
1324         struct arm_smmu_device *smmu = smmu_domain->smmu;
1325         struct arm_smmu_cmdq_ent cmd;
1326
1327         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1328                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1329                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1330                 cmd.tlbi.vmid   = 0;
1331         } else {
1332                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1333                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1334         }
1335
1336         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1337         __arm_smmu_tlb_sync(smmu);
1338 }
1339
1340 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1341                                           size_t granule, bool leaf, void *cookie)
1342 {
1343         struct arm_smmu_domain *smmu_domain = cookie;
1344         struct arm_smmu_device *smmu = smmu_domain->smmu;
1345         struct arm_smmu_cmdq_ent cmd = {
1346                 .tlbi = {
1347                         .leaf   = leaf,
1348                         .addr   = iova,
1349                 },
1350         };
1351
1352         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1353                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1354                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1355         } else {
1356                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1357                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1358         }
1359
1360         do {
1361                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1362                 cmd.tlbi.addr += granule;
1363         } while (size -= granule);
1364 }
1365
1366 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1367         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1368         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1369         .tlb_sync       = arm_smmu_tlb_sync,
1370 };
1371
1372 /* IOMMU API */
1373 static bool arm_smmu_capable(enum iommu_cap cap)
1374 {
1375         switch (cap) {
1376         case IOMMU_CAP_CACHE_COHERENCY:
1377                 return true;
1378         case IOMMU_CAP_NOEXEC:
1379                 return true;
1380         default:
1381                 return false;
1382         }
1383 }
1384
1385 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1386 {
1387         struct arm_smmu_domain *smmu_domain;
1388
1389         if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1390                 return NULL;
1391
1392         /*
1393          * Allocate the domain and initialise some of its data structures.
1394          * We can't really do anything meaningful until we've added a
1395          * master.
1396          */
1397         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1398         if (!smmu_domain)
1399                 return NULL;
1400
1401         if (type == IOMMU_DOMAIN_DMA &&
1402             iommu_get_dma_cookie(&smmu_domain->domain)) {
1403                 kfree(smmu_domain);
1404                 return NULL;
1405         }
1406
1407         mutex_init(&smmu_domain->init_mutex);
1408         spin_lock_init(&smmu_domain->pgtbl_lock);
1409         return &smmu_domain->domain;
1410 }
1411
1412 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1413 {
1414         int idx, size = 1 << span;
1415
1416         do {
1417                 idx = find_first_zero_bit(map, size);
1418                 if (idx == size)
1419                         return -ENOSPC;
1420         } while (test_and_set_bit(idx, map));
1421
1422         return idx;
1423 }
1424
1425 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1426 {
1427         clear_bit(idx, map);
1428 }
1429
1430 static void arm_smmu_domain_free(struct iommu_domain *domain)
1431 {
1432         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1433         struct arm_smmu_device *smmu = smmu_domain->smmu;
1434
1435         iommu_put_dma_cookie(domain);
1436         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1437
1438         /* Free the CD and ASID, if we allocated them */
1439         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1440                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1441
1442                 if (cfg->cdptr) {
1443                         dmam_free_coherent(smmu_domain->smmu->dev,
1444                                            CTXDESC_CD_DWORDS << 3,
1445                                            cfg->cdptr,
1446                                            cfg->cdptr_dma);
1447
1448                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1449                 }
1450         } else {
1451                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1452                 if (cfg->vmid)
1453                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1454         }
1455
1456         kfree(smmu_domain);
1457 }
1458
1459 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1460                                        struct io_pgtable_cfg *pgtbl_cfg)
1461 {
1462         int ret;
1463         int asid;
1464         struct arm_smmu_device *smmu = smmu_domain->smmu;
1465         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1466
1467         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1468         if (asid < 0)
1469                 return asid;
1470
1471         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1472                                          &cfg->cdptr_dma,
1473                                          GFP_KERNEL | __GFP_ZERO);
1474         if (!cfg->cdptr) {
1475                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1476                 ret = -ENOMEM;
1477                 goto out_free_asid;
1478         }
1479
1480         cfg->cd.asid    = (u16)asid;
1481         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1482         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1483         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1484         return 0;
1485
1486 out_free_asid:
1487         arm_smmu_bitmap_free(smmu->asid_map, asid);
1488         return ret;
1489 }
1490
1491 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1492                                        struct io_pgtable_cfg *pgtbl_cfg)
1493 {
1494         int vmid;
1495         struct arm_smmu_device *smmu = smmu_domain->smmu;
1496         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1497
1498         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1499         if (vmid < 0)
1500                 return vmid;
1501
1502         cfg->vmid       = (u16)vmid;
1503         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1504         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1505         return 0;
1506 }
1507
1508 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1509 {
1510         int ret;
1511         unsigned long ias, oas;
1512         enum io_pgtable_fmt fmt;
1513         struct io_pgtable_cfg pgtbl_cfg;
1514         struct io_pgtable_ops *pgtbl_ops;
1515         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1516                                  struct io_pgtable_cfg *);
1517         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1518         struct arm_smmu_device *smmu = smmu_domain->smmu;
1519
1520         /* Restrict the stage to what we can actually support */
1521         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1522                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1523         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1524                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1525
1526         switch (smmu_domain->stage) {
1527         case ARM_SMMU_DOMAIN_S1:
1528                 ias = VA_BITS;
1529                 oas = smmu->ias;
1530                 fmt = ARM_64_LPAE_S1;
1531                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1532                 break;
1533         case ARM_SMMU_DOMAIN_NESTED:
1534         case ARM_SMMU_DOMAIN_S2:
1535                 ias = smmu->ias;
1536                 oas = smmu->oas;
1537                 fmt = ARM_64_LPAE_S2;
1538                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1539                 break;
1540         default:
1541                 return -EINVAL;
1542         }
1543
1544         pgtbl_cfg = (struct io_pgtable_cfg) {
1545                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1546                 .ias            = ias,
1547                 .oas            = oas,
1548                 .tlb            = &arm_smmu_gather_ops,
1549                 .iommu_dev      = smmu->dev,
1550         };
1551
1552         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1553         if (!pgtbl_ops)
1554                 return -ENOMEM;
1555
1556         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1557         domain->geometry.aperture_end = (1UL << ias) - 1;
1558         domain->geometry.force_aperture = true;
1559         smmu_domain->pgtbl_ops = pgtbl_ops;
1560
1561         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1562         if (ret < 0)
1563                 free_io_pgtable_ops(pgtbl_ops);
1564
1565         return ret;
1566 }
1567
1568 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1569 {
1570         __le64 *step;
1571         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1572
1573         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1574                 struct arm_smmu_strtab_l1_desc *l1_desc;
1575                 int idx;
1576
1577                 /* Two-level walk */
1578                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1579                 l1_desc = &cfg->l1_desc[idx];
1580                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1581                 step = &l1_desc->l2ptr[idx];
1582         } else {
1583                 /* Simple linear lookup */
1584                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1585         }
1586
1587         return step;
1588 }
1589
1590 static int arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1591 {
1592         int i;
1593         struct arm_smmu_master_data *master = fwspec->iommu_priv;
1594         struct arm_smmu_device *smmu = master->smmu;
1595
1596         for (i = 0; i < fwspec->num_ids; ++i) {
1597                 u32 sid = fwspec->ids[i];
1598                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1599
1600                 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1601         }
1602
1603         return 0;
1604 }
1605
1606 static void arm_smmu_detach_dev(struct device *dev)
1607 {
1608         struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1609
1610         master->ste.bypass = true;
1611         if (arm_smmu_install_ste_for_dev(dev->iommu_fwspec) < 0)
1612                 dev_warn(dev, "failed to install bypass STE\n");
1613 }
1614
1615 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1616 {
1617         int ret = 0;
1618         struct arm_smmu_device *smmu;
1619         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1620         struct arm_smmu_master_data *master;
1621         struct arm_smmu_strtab_ent *ste;
1622
1623         if (!dev->iommu_fwspec)
1624                 return -ENOENT;
1625
1626         master = dev->iommu_fwspec->iommu_priv;
1627         smmu = master->smmu;
1628         ste = &master->ste;
1629
1630         /* Already attached to a different domain? */
1631         if (!ste->bypass)
1632                 arm_smmu_detach_dev(dev);
1633
1634         mutex_lock(&smmu_domain->init_mutex);
1635
1636         if (!smmu_domain->smmu) {
1637                 smmu_domain->smmu = smmu;
1638                 ret = arm_smmu_domain_finalise(domain);
1639                 if (ret) {
1640                         smmu_domain->smmu = NULL;
1641                         goto out_unlock;
1642                 }
1643         } else if (smmu_domain->smmu != smmu) {
1644                 dev_err(dev,
1645                         "cannot attach to SMMU %s (upstream of %s)\n",
1646                         dev_name(smmu_domain->smmu->dev),
1647                         dev_name(smmu->dev));
1648                 ret = -ENXIO;
1649                 goto out_unlock;
1650         }
1651
1652         ste->bypass = false;
1653         ste->valid = true;
1654
1655         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1656                 ste->s1_cfg = &smmu_domain->s1_cfg;
1657                 ste->s2_cfg = NULL;
1658                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1659         } else {
1660                 ste->s1_cfg = NULL;
1661                 ste->s2_cfg = &smmu_domain->s2_cfg;
1662         }
1663
1664         ret = arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1665         if (ret < 0)
1666                 ste->valid = false;
1667
1668 out_unlock:
1669         mutex_unlock(&smmu_domain->init_mutex);
1670         return ret;
1671 }
1672
1673 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1674                         phys_addr_t paddr, size_t size, int prot)
1675 {
1676         int ret;
1677         unsigned long flags;
1678         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1679         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1680
1681         if (!ops)
1682                 return -ENODEV;
1683
1684         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1685         ret = ops->map(ops, iova, paddr, size, prot);
1686         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1687         return ret;
1688 }
1689
1690 static size_t
1691 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1692 {
1693         size_t ret;
1694         unsigned long flags;
1695         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1696         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1697
1698         if (!ops)
1699                 return 0;
1700
1701         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1702         ret = ops->unmap(ops, iova, size);
1703         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1704         return ret;
1705 }
1706
1707 static phys_addr_t
1708 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1709 {
1710         phys_addr_t ret;
1711         unsigned long flags;
1712         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1713         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1714
1715         if (!ops)
1716                 return 0;
1717
1718         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1719         ret = ops->iova_to_phys(ops, iova);
1720         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1721
1722         return ret;
1723 }
1724
1725 static struct platform_driver arm_smmu_driver;
1726
1727 static int arm_smmu_match_node(struct device *dev, void *data)
1728 {
1729         return dev->fwnode == data;
1730 }
1731
1732 static
1733 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1734 {
1735         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1736                                                 fwnode, arm_smmu_match_node);
1737         put_device(dev);
1738         return dev ? dev_get_drvdata(dev) : NULL;
1739 }
1740
1741 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1742 {
1743         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1744
1745         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1746                 limit *= 1UL << STRTAB_SPLIT;
1747
1748         return sid < limit;
1749 }
1750
1751 static struct iommu_ops arm_smmu_ops;
1752
1753 static int arm_smmu_add_device(struct device *dev)
1754 {
1755         int i, ret;
1756         struct arm_smmu_device *smmu;
1757         struct arm_smmu_master_data *master;
1758         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1759         struct iommu_group *group;
1760
1761         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1762                 return -ENODEV;
1763         /*
1764          * We _can_ actually withstand dodgy bus code re-calling add_device()
1765          * without an intervening remove_device()/of_xlate() sequence, but
1766          * we're not going to do so quietly...
1767          */
1768         if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1769                 master = fwspec->iommu_priv;
1770                 smmu = master->smmu;
1771         } else {
1772                 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1773                 if (!smmu)
1774                         return -ENODEV;
1775                 master = kzalloc(sizeof(*master), GFP_KERNEL);
1776                 if (!master)
1777                         return -ENOMEM;
1778
1779                 master->smmu = smmu;
1780                 fwspec->iommu_priv = master;
1781         }
1782
1783         /* Check the SIDs are in range of the SMMU and our stream table */
1784         for (i = 0; i < fwspec->num_ids; i++) {
1785                 u32 sid = fwspec->ids[i];
1786
1787                 if (!arm_smmu_sid_in_range(smmu, sid))
1788                         return -ERANGE;
1789
1790                 /* Ensure l2 strtab is initialised */
1791                 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1792                         ret = arm_smmu_init_l2_strtab(smmu, sid);
1793                         if (ret)
1794                                 return ret;
1795                 }
1796         }
1797
1798         group = iommu_group_get_for_dev(dev);
1799         if (!IS_ERR(group))
1800                 iommu_group_put(group);
1801
1802         return PTR_ERR_OR_ZERO(group);
1803 }
1804
1805 static void arm_smmu_remove_device(struct device *dev)
1806 {
1807         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1808         struct arm_smmu_master_data *master;
1809
1810         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1811                 return;
1812
1813         master = fwspec->iommu_priv;
1814         if (master && master->ste.valid)
1815                 arm_smmu_detach_dev(dev);
1816         iommu_group_remove_device(dev);
1817         kfree(master);
1818         iommu_fwspec_free(dev);
1819 }
1820
1821 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1822 {
1823         struct iommu_group *group;
1824
1825         /*
1826          * We don't support devices sharing stream IDs other than PCI RID
1827          * aliases, since the necessary ID-to-device lookup becomes rather
1828          * impractical given a potential sparse 32-bit stream ID space.
1829          */
1830         if (dev_is_pci(dev))
1831                 group = pci_device_group(dev);
1832         else
1833                 group = generic_device_group(dev);
1834
1835         return group;
1836 }
1837
1838 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1839                                     enum iommu_attr attr, void *data)
1840 {
1841         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1842
1843         switch (attr) {
1844         case DOMAIN_ATTR_NESTING:
1845                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1846                 return 0;
1847         default:
1848                 return -ENODEV;
1849         }
1850 }
1851
1852 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1853                                     enum iommu_attr attr, void *data)
1854 {
1855         int ret = 0;
1856         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1857
1858         mutex_lock(&smmu_domain->init_mutex);
1859
1860         switch (attr) {
1861         case DOMAIN_ATTR_NESTING:
1862                 if (smmu_domain->smmu) {
1863                         ret = -EPERM;
1864                         goto out_unlock;
1865                 }
1866
1867                 if (*(int *)data)
1868                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1869                 else
1870                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1871
1872                 break;
1873         default:
1874                 ret = -ENODEV;
1875         }
1876
1877 out_unlock:
1878         mutex_unlock(&smmu_domain->init_mutex);
1879         return ret;
1880 }
1881
1882 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1883 {
1884         return iommu_fwspec_add_ids(dev, args->args, 1);
1885 }
1886
1887 static void arm_smmu_get_resv_regions(struct device *dev,
1888                                       struct list_head *head)
1889 {
1890         struct iommu_resv_region *region;
1891         int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1892
1893         region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1894                                          prot, IOMMU_RESV_MSI);
1895         if (!region)
1896                 return;
1897
1898         list_add_tail(&region->list, head);
1899 }
1900
1901 static void arm_smmu_put_resv_regions(struct device *dev,
1902                                       struct list_head *head)
1903 {
1904         struct iommu_resv_region *entry, *next;
1905
1906         list_for_each_entry_safe(entry, next, head, list)
1907                 kfree(entry);
1908 }
1909
1910 static struct iommu_ops arm_smmu_ops = {
1911         .capable                = arm_smmu_capable,
1912         .domain_alloc           = arm_smmu_domain_alloc,
1913         .domain_free            = arm_smmu_domain_free,
1914         .attach_dev             = arm_smmu_attach_dev,
1915         .map                    = arm_smmu_map,
1916         .unmap                  = arm_smmu_unmap,
1917         .map_sg                 = default_iommu_map_sg,
1918         .iova_to_phys           = arm_smmu_iova_to_phys,
1919         .add_device             = arm_smmu_add_device,
1920         .remove_device          = arm_smmu_remove_device,
1921         .device_group           = arm_smmu_device_group,
1922         .domain_get_attr        = arm_smmu_domain_get_attr,
1923         .domain_set_attr        = arm_smmu_domain_set_attr,
1924         .of_xlate               = arm_smmu_of_xlate,
1925         .get_resv_regions       = arm_smmu_get_resv_regions,
1926         .put_resv_regions       = arm_smmu_put_resv_regions,
1927         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1928 };
1929
1930 /* Probing and initialisation functions */
1931 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1932                                    struct arm_smmu_queue *q,
1933                                    unsigned long prod_off,
1934                                    unsigned long cons_off,
1935                                    size_t dwords)
1936 {
1937         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1938
1939         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1940         if (!q->base) {
1941                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1942                         qsz);
1943                 return -ENOMEM;
1944         }
1945
1946         q->prod_reg     = smmu->base + prod_off;
1947         q->cons_reg     = smmu->base + cons_off;
1948         q->ent_dwords   = dwords;
1949
1950         q->q_base  = Q_BASE_RWA;
1951         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1952         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1953                      << Q_BASE_LOG2SIZE_SHIFT;
1954
1955         q->prod = q->cons = 0;
1956         return 0;
1957 }
1958
1959 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1960 {
1961         int ret;
1962
1963         /* cmdq */
1964         spin_lock_init(&smmu->cmdq.lock);
1965         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1966                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1967         if (ret)
1968                 return ret;
1969
1970         /* evtq */
1971         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1972                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1973         if (ret)
1974                 return ret;
1975
1976         /* priq */
1977         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1978                 return 0;
1979
1980         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1981                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1982 }
1983
1984 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1985 {
1986         unsigned int i;
1987         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1988         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1989         void *strtab = smmu->strtab_cfg.strtab;
1990
1991         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1992         if (!cfg->l1_desc) {
1993                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1994                 return -ENOMEM;
1995         }
1996
1997         for (i = 0; i < cfg->num_l1_ents; ++i) {
1998                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
1999                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2000         }
2001
2002         return 0;
2003 }
2004
2005 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2006 {
2007         void *strtab;
2008         u64 reg;
2009         u32 size, l1size;
2010         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2011
2012         /*
2013          * If we can resolve everything with a single L2 table, then we
2014          * just need a single L1 descriptor. Otherwise, calculate the L1
2015          * size, capped to the SIDSIZE.
2016          */
2017         if (smmu->sid_bits < STRTAB_SPLIT) {
2018                 size = 0;
2019         } else {
2020                 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2021                 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2022         }
2023         cfg->num_l1_ents = 1 << size;
2024
2025         size += STRTAB_SPLIT;
2026         if (size < smmu->sid_bits)
2027                 dev_warn(smmu->dev,
2028                          "2-level strtab only covers %u/%u bits of SID\n",
2029                          size, smmu->sid_bits);
2030
2031         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2032         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2033                                      GFP_KERNEL | __GFP_ZERO);
2034         if (!strtab) {
2035                 dev_err(smmu->dev,
2036                         "failed to allocate l1 stream table (%u bytes)\n",
2037                         size);
2038                 return -ENOMEM;
2039         }
2040         cfg->strtab = strtab;
2041
2042         /* Configure strtab_base_cfg for 2 levels */
2043         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2044         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2045                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2046         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2047                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2048         cfg->strtab_base_cfg = reg;
2049
2050         return arm_smmu_init_l1_strtab(smmu);
2051 }
2052
2053 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2054 {
2055         void *strtab;
2056         u64 reg;
2057         u32 size;
2058         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2059
2060         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2061         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2062                                      GFP_KERNEL | __GFP_ZERO);
2063         if (!strtab) {
2064                 dev_err(smmu->dev,
2065                         "failed to allocate linear stream table (%u bytes)\n",
2066                         size);
2067                 return -ENOMEM;
2068         }
2069         cfg->strtab = strtab;
2070         cfg->num_l1_ents = 1 << smmu->sid_bits;
2071
2072         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2073         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2074         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2075                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2076         cfg->strtab_base_cfg = reg;
2077
2078         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2079         return 0;
2080 }
2081
2082 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2083 {
2084         u64 reg;
2085         int ret;
2086
2087         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2088                 ret = arm_smmu_init_strtab_2lvl(smmu);
2089         else
2090                 ret = arm_smmu_init_strtab_linear(smmu);
2091
2092         if (ret)
2093                 return ret;
2094
2095         /* Set the strtab base address */
2096         reg  = smmu->strtab_cfg.strtab_dma &
2097                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2098         reg |= STRTAB_BASE_RA;
2099         smmu->strtab_cfg.strtab_base = reg;
2100
2101         /* Allocate the first VMID for stage-2 bypass STEs */
2102         set_bit(0, smmu->vmid_map);
2103         return 0;
2104 }
2105
2106 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2107 {
2108         int ret;
2109
2110         ret = arm_smmu_init_queues(smmu);
2111         if (ret)
2112                 return ret;
2113
2114         return arm_smmu_init_strtab(smmu);
2115 }
2116
2117 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2118                                    unsigned int reg_off, unsigned int ack_off)
2119 {
2120         u32 reg;
2121
2122         writel_relaxed(val, smmu->base + reg_off);
2123         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2124                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2125 }
2126
2127 /* GBPA is "special" */
2128 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2129 {
2130         int ret;
2131         u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2132
2133         ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2134                                          1, ARM_SMMU_POLL_TIMEOUT_US);
2135         if (ret)
2136                 return ret;
2137
2138         reg &= ~clr;
2139         reg |= set;
2140         writel_relaxed(reg | GBPA_UPDATE, gbpa);
2141         return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2142                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2143 }
2144
2145 static void arm_smmu_free_msis(void *data)
2146 {
2147         struct device *dev = data;
2148         platform_msi_domain_free_irqs(dev);
2149 }
2150
2151 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2152 {
2153         phys_addr_t doorbell;
2154         struct device *dev = msi_desc_to_dev(desc);
2155         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2156         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2157
2158         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2159         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2160
2161         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2162         writel_relaxed(msg->data, smmu->base + cfg[1]);
2163         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2164 }
2165
2166 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2167 {
2168         struct msi_desc *desc;
2169         int ret, nvec = ARM_SMMU_MAX_MSIS;
2170         struct device *dev = smmu->dev;
2171
2172         /* Clear the MSI address regs */
2173         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2174         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2175
2176         if (smmu->features & ARM_SMMU_FEAT_PRI)
2177                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2178         else
2179                 nvec--;
2180
2181         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2182                 return;
2183
2184         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2185         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2186         if (ret) {
2187                 dev_warn(dev, "failed to allocate MSIs\n");
2188                 return;
2189         }
2190
2191         for_each_msi_entry(desc, dev) {
2192                 switch (desc->platform.msi_index) {
2193                 case EVTQ_MSI_INDEX:
2194                         smmu->evtq.q.irq = desc->irq;
2195                         break;
2196                 case GERROR_MSI_INDEX:
2197                         smmu->gerr_irq = desc->irq;
2198                         break;
2199                 case PRIQ_MSI_INDEX:
2200                         smmu->priq.q.irq = desc->irq;
2201                         break;
2202                 default:        /* Unknown */
2203                         continue;
2204                 }
2205         }
2206
2207         /* Add callback to free MSIs on teardown */
2208         devm_add_action(dev, arm_smmu_free_msis, dev);
2209 }
2210
2211 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2212 {
2213         int ret, irq;
2214         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2215
2216         /* Disable IRQs first */
2217         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2218                                       ARM_SMMU_IRQ_CTRLACK);
2219         if (ret) {
2220                 dev_err(smmu->dev, "failed to disable irqs\n");
2221                 return ret;
2222         }
2223
2224         arm_smmu_setup_msis(smmu);
2225
2226         /* Request interrupt lines */
2227         irq = smmu->evtq.q.irq;
2228         if (irq) {
2229                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2230                                                 arm_smmu_evtq_thread,
2231                                                 IRQF_ONESHOT,
2232                                                 "arm-smmu-v3-evtq", smmu);
2233                 if (ret < 0)
2234                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2235         }
2236
2237         irq = smmu->cmdq.q.irq;
2238         if (irq) {
2239                 ret = devm_request_irq(smmu->dev, irq,
2240                                        arm_smmu_cmdq_sync_handler, 0,
2241                                        "arm-smmu-v3-cmdq-sync", smmu);
2242                 if (ret < 0)
2243                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2244         }
2245
2246         irq = smmu->gerr_irq;
2247         if (irq) {
2248                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2249                                        0, "arm-smmu-v3-gerror", smmu);
2250                 if (ret < 0)
2251                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2252         }
2253
2254         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2255                 irq = smmu->priq.q.irq;
2256                 if (irq) {
2257                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2258                                                         arm_smmu_priq_thread,
2259                                                         IRQF_ONESHOT,
2260                                                         "arm-smmu-v3-priq",
2261                                                         smmu);
2262                         if (ret < 0)
2263                                 dev_warn(smmu->dev,
2264                                          "failed to enable priq irq\n");
2265                         else
2266                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2267                 }
2268         }
2269
2270         /* Enable interrupt generation on the SMMU */
2271         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2272                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2273         if (ret)
2274                 dev_warn(smmu->dev, "failed to enable irqs\n");
2275
2276         return 0;
2277 }
2278
2279 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2280 {
2281         int ret;
2282
2283         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2284         if (ret)
2285                 dev_err(smmu->dev, "failed to clear cr0\n");
2286
2287         return ret;
2288 }
2289
2290 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2291 {
2292         int ret;
2293         u32 reg, enables;
2294         struct arm_smmu_cmdq_ent cmd;
2295
2296         /* Clear CR0 and sync (disables SMMU and queue processing) */
2297         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2298         if (reg & CR0_SMMUEN)
2299                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2300
2301         ret = arm_smmu_device_disable(smmu);
2302         if (ret)
2303                 return ret;
2304
2305         /* CR1 (table and queue memory attributes) */
2306         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2307               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2308               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2309               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2310               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2311               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2312         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2313
2314         /* CR2 (random crap) */
2315         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2316         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2317
2318         /* Stream table */
2319         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2320                        smmu->base + ARM_SMMU_STRTAB_BASE);
2321         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2322                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2323
2324         /* Command queue */
2325         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2326         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2327         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2328
2329         enables = CR0_CMDQEN;
2330         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2331                                       ARM_SMMU_CR0ACK);
2332         if (ret) {
2333                 dev_err(smmu->dev, "failed to enable command queue\n");
2334                 return ret;
2335         }
2336
2337         /* Invalidate any cached configuration */
2338         cmd.opcode = CMDQ_OP_CFGI_ALL;
2339         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2340         cmd.opcode = CMDQ_OP_CMD_SYNC;
2341         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2342
2343         /* Invalidate any stale TLB entries */
2344         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2345                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2346                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2347         }
2348
2349         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2350         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2351         cmd.opcode = CMDQ_OP_CMD_SYNC;
2352         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2353
2354         /* Event queue */
2355         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2356         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2357         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2358
2359         enables |= CR0_EVTQEN;
2360         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2361                                       ARM_SMMU_CR0ACK);
2362         if (ret) {
2363                 dev_err(smmu->dev, "failed to enable event queue\n");
2364                 return ret;
2365         }
2366
2367         /* PRI queue */
2368         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2369                 writeq_relaxed(smmu->priq.q.q_base,
2370                                smmu->base + ARM_SMMU_PRIQ_BASE);
2371                 writel_relaxed(smmu->priq.q.prod,
2372                                smmu->base + ARM_SMMU_PRIQ_PROD);
2373                 writel_relaxed(smmu->priq.q.cons,
2374                                smmu->base + ARM_SMMU_PRIQ_CONS);
2375
2376                 enables |= CR0_PRIQEN;
2377                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2378                                               ARM_SMMU_CR0ACK);
2379                 if (ret) {
2380                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2381                         return ret;
2382                 }
2383         }
2384
2385         ret = arm_smmu_setup_irqs(smmu);
2386         if (ret) {
2387                 dev_err(smmu->dev, "failed to setup irqs\n");
2388                 return ret;
2389         }
2390
2391
2392         /* Enable the SMMU interface, or ensure bypass */
2393         if (!bypass || disable_bypass) {
2394                 enables |= CR0_SMMUEN;
2395         } else {
2396                 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2397                 if (ret) {
2398                         dev_err(smmu->dev, "GBPA not responding to update\n");
2399                         return ret;
2400                 }
2401         }
2402         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2403                                       ARM_SMMU_CR0ACK);
2404         if (ret) {
2405                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2406                 return ret;
2407         }
2408
2409         return 0;
2410 }
2411
2412 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2413 {
2414         u32 reg;
2415         bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2416
2417         /* IDR0 */
2418         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2419
2420         /* 2-level structures */
2421         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2422                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2423
2424         if (reg & IDR0_CD2L)
2425                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2426
2427         /*
2428          * Translation table endianness.
2429          * We currently require the same endianness as the CPU, but this
2430          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2431          */
2432         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2433         case IDR0_TTENDIAN_MIXED:
2434                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2435                 break;
2436 #ifdef __BIG_ENDIAN
2437         case IDR0_TTENDIAN_BE:
2438                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2439                 break;
2440 #else
2441         case IDR0_TTENDIAN_LE:
2442                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2443                 break;
2444 #endif
2445         default:
2446                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2447                 return -ENXIO;
2448         }
2449
2450         /* Boolean feature flags */
2451         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2452                 smmu->features |= ARM_SMMU_FEAT_PRI;
2453
2454         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2455                 smmu->features |= ARM_SMMU_FEAT_ATS;
2456
2457         if (reg & IDR0_SEV)
2458                 smmu->features |= ARM_SMMU_FEAT_SEV;
2459
2460         if (reg & IDR0_MSI)
2461                 smmu->features |= ARM_SMMU_FEAT_MSI;
2462
2463         if (reg & IDR0_HYP)
2464                 smmu->features |= ARM_SMMU_FEAT_HYP;
2465
2466         /*
2467          * The coherency feature as set by FW is used in preference to the ID
2468          * register, but warn on mismatch.
2469          */
2470         if (!!(reg & IDR0_COHACC) != coherent)
2471                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2472                          coherent ? "true" : "false");
2473
2474         switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2475         case IDR0_STALL_MODEL_STALL:
2476                 /* Fallthrough */
2477         case IDR0_STALL_MODEL_FORCE:
2478                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2479         }
2480
2481         if (reg & IDR0_S1P)
2482                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2483
2484         if (reg & IDR0_S2P)
2485                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2486
2487         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2488                 dev_err(smmu->dev, "no translation support!\n");
2489                 return -ENXIO;
2490         }
2491
2492         /* We only support the AArch64 table format at present */
2493         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2494         case IDR0_TTF_AARCH32_64:
2495                 smmu->ias = 40;
2496                 /* Fallthrough */
2497         case IDR0_TTF_AARCH64:
2498                 break;
2499         default:
2500                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2501                 return -ENXIO;
2502         }
2503
2504         /* ASID/VMID sizes */
2505         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2506         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2507
2508         /* IDR1 */
2509         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2510         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2511                 dev_err(smmu->dev, "embedded implementation not supported\n");
2512                 return -ENXIO;
2513         }
2514
2515         /* Queue sizes, capped at 4k */
2516         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2517                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2518         if (!smmu->cmdq.q.max_n_shift) {
2519                 /* Odd alignment restrictions on the base, so ignore for now */
2520                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2521                 return -ENXIO;
2522         }
2523
2524         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2525                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2526         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2527                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2528
2529         /* SID/SSID sizes */
2530         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2531         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2532
2533         /* IDR5 */
2534         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2535
2536         /* Maximum number of outstanding stalls */
2537         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2538                                 & IDR5_STALL_MAX_MASK;
2539
2540         /* Page sizes */
2541         if (reg & IDR5_GRAN64K)
2542                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2543         if (reg & IDR5_GRAN16K)
2544                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2545         if (reg & IDR5_GRAN4K)
2546                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2547
2548         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2549                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2550         else
2551                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2552
2553         /* Output address size */
2554         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2555         case IDR5_OAS_32_BIT:
2556                 smmu->oas = 32;
2557                 break;
2558         case IDR5_OAS_36_BIT:
2559                 smmu->oas = 36;
2560                 break;
2561         case IDR5_OAS_40_BIT:
2562                 smmu->oas = 40;
2563                 break;
2564         case IDR5_OAS_42_BIT:
2565                 smmu->oas = 42;
2566                 break;
2567         case IDR5_OAS_44_BIT:
2568                 smmu->oas = 44;
2569                 break;
2570         default:
2571                 dev_info(smmu->dev,
2572                         "unknown output address size. Truncating to 48-bit\n");
2573                 /* Fallthrough */
2574         case IDR5_OAS_48_BIT:
2575                 smmu->oas = 48;
2576         }
2577
2578         /* Set the DMA mask for our table walker */
2579         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2580                 dev_warn(smmu->dev,
2581                          "failed to set DMA mask for table walker\n");
2582
2583         smmu->ias = max(smmu->ias, smmu->oas);
2584
2585         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2586                  smmu->ias, smmu->oas, smmu->features);
2587         return 0;
2588 }
2589
2590 #ifdef CONFIG_ACPI
2591 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2592                                       struct arm_smmu_device *smmu)
2593 {
2594         struct acpi_iort_smmu_v3 *iort_smmu;
2595         struct device *dev = smmu->dev;
2596         struct acpi_iort_node *node;
2597
2598         node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2599
2600         /* Retrieve SMMUv3 specific data */
2601         iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2602
2603         if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2604                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2605
2606         return 0;
2607 }
2608 #else
2609 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2610                                              struct arm_smmu_device *smmu)
2611 {
2612         return -ENODEV;
2613 }
2614 #endif
2615
2616 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2617                                     struct arm_smmu_device *smmu)
2618 {
2619         struct device *dev = &pdev->dev;
2620         u32 cells;
2621         int ret = -EINVAL;
2622
2623         if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2624                 dev_err(dev, "missing #iommu-cells property\n");
2625         else if (cells != 1)
2626                 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2627         else
2628                 ret = 0;
2629
2630         parse_driver_options(smmu);
2631
2632         if (of_dma_is_coherent(dev->of_node))
2633                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2634
2635         return ret;
2636 }
2637
2638 static int arm_smmu_device_probe(struct platform_device *pdev)
2639 {
2640         int irq, ret;
2641         struct resource *res;
2642         struct arm_smmu_device *smmu;
2643         struct device *dev = &pdev->dev;
2644         bool bypass;
2645
2646         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2647         if (!smmu) {
2648                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2649                 return -ENOMEM;
2650         }
2651         smmu->dev = dev;
2652
2653         /* Base address */
2654         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2655         if (resource_size(res) + 1 < SZ_128K) {
2656                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2657                 return -EINVAL;
2658         }
2659
2660         smmu->base = devm_ioremap_resource(dev, res);
2661         if (IS_ERR(smmu->base))
2662                 return PTR_ERR(smmu->base);
2663
2664         /* Interrupt lines */
2665         irq = platform_get_irq_byname(pdev, "eventq");
2666         if (irq > 0)
2667                 smmu->evtq.q.irq = irq;
2668
2669         irq = platform_get_irq_byname(pdev, "priq");
2670         if (irq > 0)
2671                 smmu->priq.q.irq = irq;
2672
2673         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2674         if (irq > 0)
2675                 smmu->cmdq.q.irq = irq;
2676
2677         irq = platform_get_irq_byname(pdev, "gerror");
2678         if (irq > 0)
2679                 smmu->gerr_irq = irq;
2680
2681         if (dev->of_node) {
2682                 ret = arm_smmu_device_dt_probe(pdev, smmu);
2683         } else {
2684                 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2685                 if (ret == -ENODEV)
2686                         return ret;
2687         }
2688
2689         /* Set bypass mode according to firmware probing result */
2690         bypass = !!ret;
2691
2692         /* Probe the h/w */
2693         ret = arm_smmu_device_hw_probe(smmu);
2694         if (ret)
2695                 return ret;
2696
2697         /* Initialise in-memory data structures */
2698         ret = arm_smmu_init_structures(smmu);
2699         if (ret)
2700                 return ret;
2701
2702         /* Record our private device structure */
2703         platform_set_drvdata(pdev, smmu);
2704
2705         /* Reset the device */
2706         ret = arm_smmu_device_reset(smmu, bypass);
2707         if (ret)
2708                 return ret;
2709
2710         /* And we're up. Go go go! */
2711         iommu_register_instance(dev->fwnode, &arm_smmu_ops);
2712
2713 #ifdef CONFIG_PCI
2714         if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2715                 pci_request_acs();
2716                 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2717                 if (ret)
2718                         return ret;
2719         }
2720 #endif
2721 #ifdef CONFIG_ARM_AMBA
2722         if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2723                 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2724                 if (ret)
2725                         return ret;
2726         }
2727 #endif
2728         if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2729                 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2730                 if (ret)
2731                         return ret;
2732         }
2733         return 0;
2734 }
2735
2736 static int arm_smmu_device_remove(struct platform_device *pdev)
2737 {
2738         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2739
2740         arm_smmu_device_disable(smmu);
2741         return 0;
2742 }
2743
2744 static struct of_device_id arm_smmu_of_match[] = {
2745         { .compatible = "arm,smmu-v3", },
2746         { },
2747 };
2748 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2749
2750 static struct platform_driver arm_smmu_driver = {
2751         .driver = {
2752                 .name           = "arm-smmu-v3",
2753                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2754         },
2755         .probe  = arm_smmu_device_probe,
2756         .remove = arm_smmu_device_remove,
2757 };
2758
2759 static int __init arm_smmu_init(void)
2760 {
2761         static bool registered;
2762         int ret = 0;
2763
2764         if (!registered) {
2765                 ret = platform_driver_register(&arm_smmu_driver);
2766                 registered = !ret;
2767         }
2768         return ret;
2769 }
2770
2771 static void __exit arm_smmu_exit(void)
2772 {
2773         return platform_driver_unregister(&arm_smmu_driver);
2774 }
2775
2776 subsys_initcall(arm_smmu_init);
2777 module_exit(arm_smmu_exit);
2778
2779 static int __init arm_smmu_of_init(struct device_node *np)
2780 {
2781         int ret = arm_smmu_init();
2782
2783         if (ret)
2784                 return ret;
2785
2786         if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2787                 return -ENODEV;
2788
2789         return 0;
2790 }
2791 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", arm_smmu_of_init);
2792
2793 #ifdef CONFIG_ACPI
2794 static int __init acpi_smmu_v3_init(struct acpi_table_header *table)
2795 {
2796         if (iort_node_match(ACPI_IORT_NODE_SMMU_V3))
2797                 return arm_smmu_init();
2798
2799         return 0;
2800 }
2801 IORT_ACPI_DECLARE(arm_smmu_v3, ACPI_SIG_IORT, acpi_smmu_v3_init);
2802 #endif
2803
2804 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2805 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2806 MODULE_LICENSE("GPL v2");