]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/iommu/arm-smmu-v3.c
iommu/arm-smmu: Make use of the iommu_register interface
[linux.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0                   0x0
46 #define IDR0_ST_LVL_SHIFT               27
47 #define IDR0_ST_LVL_MASK                0x3
48 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT          24
50 #define IDR0_STALL_MODEL_MASK           0x3
51 #define IDR0_STALL_MODEL_STALL          (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE          (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT             21
54 #define IDR0_TTENDIAN_MASK              0x3
55 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L                       (1 << 19)
59 #define IDR0_VMID16                     (1 << 18)
60 #define IDR0_PRI                        (1 << 16)
61 #define IDR0_SEV                        (1 << 14)
62 #define IDR0_MSI                        (1 << 13)
63 #define IDR0_ASID16                     (1 << 12)
64 #define IDR0_ATS                        (1 << 10)
65 #define IDR0_HYP                        (1 << 9)
66 #define IDR0_COHACC                     (1 << 4)
67 #define IDR0_TTF_SHIFT                  2
68 #define IDR0_TTF_MASK                   0x3
69 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P                        (1 << 1)
72 #define IDR0_S2P                        (1 << 0)
73
74 #define ARM_SMMU_IDR1                   0x4
75 #define IDR1_TABLES_PRESET              (1 << 30)
76 #define IDR1_QUEUES_PRESET              (1 << 29)
77 #define IDR1_REL                        (1 << 28)
78 #define IDR1_CMDQ_SHIFT                 21
79 #define IDR1_CMDQ_MASK                  0x1f
80 #define IDR1_EVTQ_SHIFT                 16
81 #define IDR1_EVTQ_MASK                  0x1f
82 #define IDR1_PRIQ_SHIFT                 11
83 #define IDR1_PRIQ_MASK                  0x1f
84 #define IDR1_SSID_SHIFT                 6
85 #define IDR1_SSID_MASK                  0x1f
86 #define IDR1_SID_SHIFT                  0
87 #define IDR1_SID_MASK                   0x3f
88
89 #define ARM_SMMU_IDR5                   0x14
90 #define IDR5_STALL_MAX_SHIFT            16
91 #define IDR5_STALL_MAX_MASK             0xffff
92 #define IDR5_GRAN64K                    (1 << 6)
93 #define IDR5_GRAN16K                    (1 << 5)
94 #define IDR5_GRAN4K                     (1 << 4)
95 #define IDR5_OAS_SHIFT                  0
96 #define IDR5_OAS_MASK                   0x7
97 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0                    0x20
105 #define CR0_CMDQEN                      (1 << 3)
106 #define CR0_EVTQEN                      (1 << 2)
107 #define CR0_PRIQEN                      (1 << 1)
108 #define CR0_SMMUEN                      (1 << 0)
109
110 #define ARM_SMMU_CR0ACK                 0x24
111
112 #define ARM_SMMU_CR1                    0x28
113 #define CR1_SH_NSH                      0
114 #define CR1_SH_OSH                      2
115 #define CR1_SH_ISH                      3
116 #define CR1_CACHE_NC                    0
117 #define CR1_CACHE_WB                    1
118 #define CR1_CACHE_WT                    2
119 #define CR1_TABLE_SH_SHIFT              10
120 #define CR1_TABLE_OC_SHIFT              8
121 #define CR1_TABLE_IC_SHIFT              6
122 #define CR1_QUEUE_SH_SHIFT              4
123 #define CR1_QUEUE_OC_SHIFT              2
124 #define CR1_QUEUE_IC_SHIFT              0
125
126 #define ARM_SMMU_CR2                    0x2c
127 #define CR2_PTM                         (1 << 2)
128 #define CR2_RECINVSID                   (1 << 1)
129 #define CR2_E2H                         (1 << 0)
130
131 #define ARM_SMMU_GBPA                   0x44
132 #define GBPA_ABORT                      (1 << 20)
133 #define GBPA_UPDATE                     (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL               0x50
136 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK            0x54
141
142 #define ARM_SMMU_GERROR                 0x60
143 #define GERROR_SFM_ERR                  (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
150 #define GERROR_CMDQ_ERR                 (1 << 0)
151 #define GERROR_ERR_MASK                 0xfd
152
153 #define ARM_SMMU_GERRORN                0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
158
159 #define ARM_SMMU_STRTAB_BASE            0x80
160 #define STRTAB_BASE_RA                  (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT          6
162 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
168 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT       16
170 #define STRTAB_BASE_CFG_FMT_MASK        0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE              0x90
175 #define ARM_SMMU_CMDQ_PROD              0x98
176 #define ARM_SMMU_CMDQ_CONS              0x9c
177
178 #define ARM_SMMU_EVTQ_BASE              0xa0
179 #define ARM_SMMU_EVTQ_PROD              0x100a8
180 #define ARM_SMMU_EVTQ_CONS              0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
184
185 #define ARM_SMMU_PRIQ_BASE              0xc0
186 #define ARM_SMMU_PRIQ_PROD              0x100c8
187 #define ARM_SMMU_PRIQ_CONS              0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT             2
194 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT               4
196 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT          0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG                 (1 << 31)
205 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p)                     ((q)->base +                    \
207                                          Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA                      (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT               5
211 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT           0
213 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
214
215 /*
216  * Stream table.
217  *
218  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219  * 2lvl: 128k L1 entries,
220  *       256 lazy entries per table (each table covers a PCI bus)
221  */
222 #define STRTAB_L1_SZ_SHIFT              20
223 #define STRTAB_SPLIT                    8
224
225 #define STRTAB_L1_DESC_DWORDS           1
226 #define STRTAB_L1_DESC_SPAN_SHIFT       0
227 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
229 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS               8
232 #define STRTAB_STE_0_V                  (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT          1
234 #define STRTAB_STE_0_CFG_MASK           0x7UL
235 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT        4
241 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
243 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
245 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
251 #define STRTAB_STE_1_S1C_SH_NSH         0UL
252 #define STRTAB_STE_1_S1C_SH_OSH         2UL
253 #define STRTAB_STE_1_S1C_SH_ISH         3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT        2
255 #define STRTAB_STE_1_S1COR_SHIFT        4
256 #define STRTAB_STE_1_S1CSH_SHIFT        6
257
258 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT           0UL
261 #define STRTAB_STE_1_EATS_TRANS         1UL
262 #define STRTAB_STE_1_EATS_S1CHK         2UL
263 #define STRTAB_STE_1_EATS_SHIFT         28
264
265 #define STRTAB_STE_1_STRW_NSEL1         0UL
266 #define STRTAB_STE_1_STRW_EL2           2UL
267 #define STRTAB_STE_1_STRW_SHIFT         30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT        44
271
272 #define STRTAB_STE_1_PRIVCFG_UNPRIV     2UL
273 #define STRTAB_STE_1_PRIVCFG_SHIFT      48
274
275 #define STRTAB_STE_2_S2VMID_SHIFT       0
276 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
277 #define STRTAB_STE_2_VTCR_SHIFT         32
278 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
279 #define STRTAB_STE_2_S2AA64             (1UL << 51)
280 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
281 #define STRTAB_STE_2_S2PTW              (1UL << 54)
282 #define STRTAB_STE_2_S2R                (1UL << 58)
283
284 #define STRTAB_STE_3_S2TTB_SHIFT        4
285 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
286
287 /* Context descriptor (stage-1 only) */
288 #define CTXDESC_CD_DWORDS               8
289 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
290 #define ARM64_TCR_T0SZ_SHIFT            0
291 #define ARM64_TCR_T0SZ_MASK             0x1fUL
292 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
293 #define ARM64_TCR_TG0_SHIFT             14
294 #define ARM64_TCR_TG0_MASK              0x3UL
295 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
296 #define ARM64_TCR_IRGN0_SHIFT           8
297 #define ARM64_TCR_IRGN0_MASK            0x3UL
298 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
299 #define ARM64_TCR_ORGN0_SHIFT           10
300 #define ARM64_TCR_ORGN0_MASK            0x3UL
301 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
302 #define ARM64_TCR_SH0_SHIFT             12
303 #define ARM64_TCR_SH0_MASK              0x3UL
304 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
305 #define ARM64_TCR_EPD0_SHIFT            7
306 #define ARM64_TCR_EPD0_MASK             0x1UL
307 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
308 #define ARM64_TCR_EPD1_SHIFT            23
309 #define ARM64_TCR_EPD1_MASK             0x1UL
310
311 #define CTXDESC_CD_0_ENDI               (1UL << 15)
312 #define CTXDESC_CD_0_V                  (1UL << 31)
313
314 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
315 #define ARM64_TCR_IPS_SHIFT             32
316 #define ARM64_TCR_IPS_MASK              0x7UL
317 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
318 #define ARM64_TCR_TBI0_SHIFT            37
319 #define ARM64_TCR_TBI0_MASK             0x1UL
320
321 #define CTXDESC_CD_0_AA64               (1UL << 41)
322 #define CTXDESC_CD_0_R                  (1UL << 45)
323 #define CTXDESC_CD_0_A                  (1UL << 46)
324 #define CTXDESC_CD_0_ASET_SHIFT         47
325 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
326 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
327 #define CTXDESC_CD_0_ASID_SHIFT         48
328 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
329
330 #define CTXDESC_CD_1_TTB0_SHIFT         4
331 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
332
333 #define CTXDESC_CD_3_MAIR_SHIFT         0
334
335 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
336 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
337         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
338          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
339
340 /* Command queue */
341 #define CMDQ_ENT_DWORDS                 2
342 #define CMDQ_MAX_SZ_SHIFT               8
343
344 #define CMDQ_ERR_SHIFT                  24
345 #define CMDQ_ERR_MASK                   0x7f
346 #define CMDQ_ERR_CERROR_NONE_IDX        0
347 #define CMDQ_ERR_CERROR_ILL_IDX         1
348 #define CMDQ_ERR_CERROR_ABT_IDX         2
349
350 #define CMDQ_0_OP_SHIFT                 0
351 #define CMDQ_0_OP_MASK                  0xffUL
352 #define CMDQ_0_SSV                      (1UL << 11)
353
354 #define CMDQ_PREFETCH_0_SID_SHIFT       32
355 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
356 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
357
358 #define CMDQ_CFGI_0_SID_SHIFT           32
359 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
360 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
361 #define CMDQ_CFGI_1_RANGE_SHIFT         0
362 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
363
364 #define CMDQ_TLBI_0_VMID_SHIFT          32
365 #define CMDQ_TLBI_0_ASID_SHIFT          48
366 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
367 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
368 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
369
370 #define CMDQ_PRI_0_SSID_SHIFT           12
371 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
372 #define CMDQ_PRI_0_SID_SHIFT            32
373 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
374 #define CMDQ_PRI_1_GRPID_SHIFT          0
375 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
376 #define CMDQ_PRI_1_RESP_SHIFT           12
377 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
378 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
379 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
380
381 #define CMDQ_SYNC_0_CS_SHIFT            12
382 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
383 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
384
385 /* Event queue */
386 #define EVTQ_ENT_DWORDS                 4
387 #define EVTQ_MAX_SZ_SHIFT               7
388
389 #define EVTQ_0_ID_SHIFT                 0
390 #define EVTQ_0_ID_MASK                  0xffUL
391
392 /* PRI queue */
393 #define PRIQ_ENT_DWORDS                 2
394 #define PRIQ_MAX_SZ_SHIFT               8
395
396 #define PRIQ_0_SID_SHIFT                0
397 #define PRIQ_0_SID_MASK                 0xffffffffUL
398 #define PRIQ_0_SSID_SHIFT               32
399 #define PRIQ_0_SSID_MASK                0xfffffUL
400 #define PRIQ_0_PERM_PRIV                (1UL << 58)
401 #define PRIQ_0_PERM_EXEC                (1UL << 59)
402 #define PRIQ_0_PERM_READ                (1UL << 60)
403 #define PRIQ_0_PERM_WRITE               (1UL << 61)
404 #define PRIQ_0_PRG_LAST                 (1UL << 62)
405 #define PRIQ_0_SSID_V                   (1UL << 63)
406
407 #define PRIQ_1_PRG_IDX_SHIFT            0
408 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
409 #define PRIQ_1_ADDR_SHIFT               12
410 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
411
412 /* High-level queue structures */
413 #define ARM_SMMU_POLL_TIMEOUT_US        100
414
415 static bool disable_bypass;
416 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
417 MODULE_PARM_DESC(disable_bypass,
418         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
419
420 enum pri_resp {
421         PRI_RESP_DENY,
422         PRI_RESP_FAIL,
423         PRI_RESP_SUCC,
424 };
425
426 enum arm_smmu_msi_index {
427         EVTQ_MSI_INDEX,
428         GERROR_MSI_INDEX,
429         PRIQ_MSI_INDEX,
430         ARM_SMMU_MAX_MSIS,
431 };
432
433 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
434         [EVTQ_MSI_INDEX] = {
435                 ARM_SMMU_EVTQ_IRQ_CFG0,
436                 ARM_SMMU_EVTQ_IRQ_CFG1,
437                 ARM_SMMU_EVTQ_IRQ_CFG2,
438         },
439         [GERROR_MSI_INDEX] = {
440                 ARM_SMMU_GERROR_IRQ_CFG0,
441                 ARM_SMMU_GERROR_IRQ_CFG1,
442                 ARM_SMMU_GERROR_IRQ_CFG2,
443         },
444         [PRIQ_MSI_INDEX] = {
445                 ARM_SMMU_PRIQ_IRQ_CFG0,
446                 ARM_SMMU_PRIQ_IRQ_CFG1,
447                 ARM_SMMU_PRIQ_IRQ_CFG2,
448         },
449 };
450
451 struct arm_smmu_cmdq_ent {
452         /* Common fields */
453         u8                              opcode;
454         bool                            substream_valid;
455
456         /* Command-specific fields */
457         union {
458                 #define CMDQ_OP_PREFETCH_CFG    0x1
459                 struct {
460                         u32                     sid;
461                         u8                      size;
462                         u64                     addr;
463                 } prefetch;
464
465                 #define CMDQ_OP_CFGI_STE        0x3
466                 #define CMDQ_OP_CFGI_ALL        0x4
467                 struct {
468                         u32                     sid;
469                         union {
470                                 bool            leaf;
471                                 u8              span;
472                         };
473                 } cfgi;
474
475                 #define CMDQ_OP_TLBI_NH_ASID    0x11
476                 #define CMDQ_OP_TLBI_NH_VA      0x12
477                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
478                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
479                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
480                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
481                 struct {
482                         u16                     asid;
483                         u16                     vmid;
484                         bool                    leaf;
485                         u64                     addr;
486                 } tlbi;
487
488                 #define CMDQ_OP_PRI_RESP        0x41
489                 struct {
490                         u32                     sid;
491                         u32                     ssid;
492                         u16                     grpid;
493                         enum pri_resp           resp;
494                 } pri;
495
496                 #define CMDQ_OP_CMD_SYNC        0x46
497         };
498 };
499
500 struct arm_smmu_queue {
501         int                             irq; /* Wired interrupt */
502
503         __le64                          *base;
504         dma_addr_t                      base_dma;
505         u64                             q_base;
506
507         size_t                          ent_dwords;
508         u32                             max_n_shift;
509         u32                             prod;
510         u32                             cons;
511
512         u32 __iomem                     *prod_reg;
513         u32 __iomem                     *cons_reg;
514 };
515
516 struct arm_smmu_cmdq {
517         struct arm_smmu_queue           q;
518         spinlock_t                      lock;
519 };
520
521 struct arm_smmu_evtq {
522         struct arm_smmu_queue           q;
523         u32                             max_stalls;
524 };
525
526 struct arm_smmu_priq {
527         struct arm_smmu_queue           q;
528 };
529
530 /* High-level stream table and context descriptor structures */
531 struct arm_smmu_strtab_l1_desc {
532         u8                              span;
533
534         __le64                          *l2ptr;
535         dma_addr_t                      l2ptr_dma;
536 };
537
538 struct arm_smmu_s1_cfg {
539         __le64                          *cdptr;
540         dma_addr_t                      cdptr_dma;
541
542         struct arm_smmu_ctx_desc {
543                 u16     asid;
544                 u64     ttbr;
545                 u64     tcr;
546                 u64     mair;
547         }                               cd;
548 };
549
550 struct arm_smmu_s2_cfg {
551         u16                             vmid;
552         u64                             vttbr;
553         u64                             vtcr;
554 };
555
556 struct arm_smmu_strtab_ent {
557         bool                            valid;
558
559         bool                            bypass; /* Overrides s1/s2 config */
560         struct arm_smmu_s1_cfg          *s1_cfg;
561         struct arm_smmu_s2_cfg          *s2_cfg;
562 };
563
564 struct arm_smmu_strtab_cfg {
565         __le64                          *strtab;
566         dma_addr_t                      strtab_dma;
567         struct arm_smmu_strtab_l1_desc  *l1_desc;
568         unsigned int                    num_l1_ents;
569
570         u64                             strtab_base;
571         u32                             strtab_base_cfg;
572 };
573
574 /* An SMMUv3 instance */
575 struct arm_smmu_device {
576         struct device                   *dev;
577         void __iomem                    *base;
578
579 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
580 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
581 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
582 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
583 #define ARM_SMMU_FEAT_PRI               (1 << 4)
584 #define ARM_SMMU_FEAT_ATS               (1 << 5)
585 #define ARM_SMMU_FEAT_SEV               (1 << 6)
586 #define ARM_SMMU_FEAT_MSI               (1 << 7)
587 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
588 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
589 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
590 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
591 #define ARM_SMMU_FEAT_HYP               (1 << 12)
592         u32                             features;
593
594 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
595         u32                             options;
596
597         struct arm_smmu_cmdq            cmdq;
598         struct arm_smmu_evtq            evtq;
599         struct arm_smmu_priq            priq;
600
601         int                             gerr_irq;
602
603         unsigned long                   ias; /* IPA */
604         unsigned long                   oas; /* PA */
605         unsigned long                   pgsize_bitmap;
606
607 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
608         unsigned int                    asid_bits;
609         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
610
611 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
612         unsigned int                    vmid_bits;
613         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
614
615         unsigned int                    ssid_bits;
616         unsigned int                    sid_bits;
617
618         struct arm_smmu_strtab_cfg      strtab_cfg;
619
620         /* IOMMU core code handle */
621         struct iommu_device             iommu;
622 };
623
624 /* SMMU private data for each master */
625 struct arm_smmu_master_data {
626         struct arm_smmu_device          *smmu;
627         struct arm_smmu_strtab_ent      ste;
628 };
629
630 /* SMMU private data for an IOMMU domain */
631 enum arm_smmu_domain_stage {
632         ARM_SMMU_DOMAIN_S1 = 0,
633         ARM_SMMU_DOMAIN_S2,
634         ARM_SMMU_DOMAIN_NESTED,
635 };
636
637 struct arm_smmu_domain {
638         struct arm_smmu_device          *smmu;
639         struct mutex                    init_mutex; /* Protects smmu pointer */
640
641         struct io_pgtable_ops           *pgtbl_ops;
642         spinlock_t                      pgtbl_lock;
643
644         enum arm_smmu_domain_stage      stage;
645         union {
646                 struct arm_smmu_s1_cfg  s1_cfg;
647                 struct arm_smmu_s2_cfg  s2_cfg;
648         };
649
650         struct iommu_domain             domain;
651 };
652
653 struct arm_smmu_option_prop {
654         u32 opt;
655         const char *prop;
656 };
657
658 static struct arm_smmu_option_prop arm_smmu_options[] = {
659         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
660         { 0, NULL},
661 };
662
663 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
664 {
665         return container_of(dom, struct arm_smmu_domain, domain);
666 }
667
668 static void parse_driver_options(struct arm_smmu_device *smmu)
669 {
670         int i = 0;
671
672         do {
673                 if (of_property_read_bool(smmu->dev->of_node,
674                                                 arm_smmu_options[i].prop)) {
675                         smmu->options |= arm_smmu_options[i].opt;
676                         dev_notice(smmu->dev, "option %s\n",
677                                 arm_smmu_options[i].prop);
678                 }
679         } while (arm_smmu_options[++i].opt);
680 }
681
682 /* Low-level queue manipulation functions */
683 static bool queue_full(struct arm_smmu_queue *q)
684 {
685         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
686                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
687 }
688
689 static bool queue_empty(struct arm_smmu_queue *q)
690 {
691         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
692                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
693 }
694
695 static void queue_sync_cons(struct arm_smmu_queue *q)
696 {
697         q->cons = readl_relaxed(q->cons_reg);
698 }
699
700 static void queue_inc_cons(struct arm_smmu_queue *q)
701 {
702         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
703
704         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
705         writel(q->cons, q->cons_reg);
706 }
707
708 static int queue_sync_prod(struct arm_smmu_queue *q)
709 {
710         int ret = 0;
711         u32 prod = readl_relaxed(q->prod_reg);
712
713         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
714                 ret = -EOVERFLOW;
715
716         q->prod = prod;
717         return ret;
718 }
719
720 static void queue_inc_prod(struct arm_smmu_queue *q)
721 {
722         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
723
724         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
725         writel(q->prod, q->prod_reg);
726 }
727
728 /*
729  * Wait for the SMMU to consume items. If drain is true, wait until the queue
730  * is empty. Otherwise, wait until there is at least one free slot.
731  */
732 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
733 {
734         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
735
736         while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
737                 if (ktime_compare(ktime_get(), timeout) > 0)
738                         return -ETIMEDOUT;
739
740                 if (wfe) {
741                         wfe();
742                 } else {
743                         cpu_relax();
744                         udelay(1);
745                 }
746         }
747
748         return 0;
749 }
750
751 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
752 {
753         int i;
754
755         for (i = 0; i < n_dwords; ++i)
756                 *dst++ = cpu_to_le64(*src++);
757 }
758
759 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
760 {
761         if (queue_full(q))
762                 return -ENOSPC;
763
764         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
765         queue_inc_prod(q);
766         return 0;
767 }
768
769 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
770 {
771         int i;
772
773         for (i = 0; i < n_dwords; ++i)
774                 *dst++ = le64_to_cpu(*src++);
775 }
776
777 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
778 {
779         if (queue_empty(q))
780                 return -EAGAIN;
781
782         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
783         queue_inc_cons(q);
784         return 0;
785 }
786
787 /* High-level queue accessors */
788 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
789 {
790         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
791         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
792
793         switch (ent->opcode) {
794         case CMDQ_OP_TLBI_EL2_ALL:
795         case CMDQ_OP_TLBI_NSNH_ALL:
796                 break;
797         case CMDQ_OP_PREFETCH_CFG:
798                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
799                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
800                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
801                 break;
802         case CMDQ_OP_CFGI_STE:
803                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
804                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
805                 break;
806         case CMDQ_OP_CFGI_ALL:
807                 /* Cover the entire SID range */
808                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
809                 break;
810         case CMDQ_OP_TLBI_NH_VA:
811                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
812                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
813                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
814                 break;
815         case CMDQ_OP_TLBI_S2_IPA:
816                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
817                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
818                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
819                 break;
820         case CMDQ_OP_TLBI_NH_ASID:
821                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
822                 /* Fallthrough */
823         case CMDQ_OP_TLBI_S12_VMALL:
824                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
825                 break;
826         case CMDQ_OP_PRI_RESP:
827                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
828                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
829                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
830                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
831                 switch (ent->pri.resp) {
832                 case PRI_RESP_DENY:
833                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
834                         break;
835                 case PRI_RESP_FAIL:
836                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
837                         break;
838                 case PRI_RESP_SUCC:
839                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
840                         break;
841                 default:
842                         return -EINVAL;
843                 }
844                 break;
845         case CMDQ_OP_CMD_SYNC:
846                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
847                 break;
848         default:
849                 return -ENOENT;
850         }
851
852         return 0;
853 }
854
855 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
856 {
857         static const char *cerror_str[] = {
858                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
859                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
860                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
861         };
862
863         int i;
864         u64 cmd[CMDQ_ENT_DWORDS];
865         struct arm_smmu_queue *q = &smmu->cmdq.q;
866         u32 cons = readl_relaxed(q->cons_reg);
867         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
868         struct arm_smmu_cmdq_ent cmd_sync = {
869                 .opcode = CMDQ_OP_CMD_SYNC,
870         };
871
872         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
873                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
874
875         switch (idx) {
876         case CMDQ_ERR_CERROR_ABT_IDX:
877                 dev_err(smmu->dev, "retrying command fetch\n");
878         case CMDQ_ERR_CERROR_NONE_IDX:
879                 return;
880         case CMDQ_ERR_CERROR_ILL_IDX:
881                 /* Fallthrough */
882         default:
883                 break;
884         }
885
886         /*
887          * We may have concurrent producers, so we need to be careful
888          * not to touch any of the shadow cmdq state.
889          */
890         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
891         dev_err(smmu->dev, "skipping command in error state:\n");
892         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
893                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
894
895         /* Convert the erroneous command into a CMD_SYNC */
896         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
897                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
898                 return;
899         }
900
901         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
902 }
903
904 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
905                                     struct arm_smmu_cmdq_ent *ent)
906 {
907         u64 cmd[CMDQ_ENT_DWORDS];
908         unsigned long flags;
909         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
910         struct arm_smmu_queue *q = &smmu->cmdq.q;
911
912         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
913                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
914                          ent->opcode);
915                 return;
916         }
917
918         spin_lock_irqsave(&smmu->cmdq.lock, flags);
919         while (queue_insert_raw(q, cmd) == -ENOSPC) {
920                 if (queue_poll_cons(q, false, wfe))
921                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
922         }
923
924         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
925                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
926         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
927 }
928
929 /* Context descriptor manipulation functions */
930 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
931 {
932         u64 val = 0;
933
934         /* Repack the TCR. Just care about TTBR0 for now */
935         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
936         val |= ARM_SMMU_TCR2CD(tcr, TG0);
937         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
938         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
939         val |= ARM_SMMU_TCR2CD(tcr, SH0);
940         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
941         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
942         val |= ARM_SMMU_TCR2CD(tcr, IPS);
943         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
944
945         return val;
946 }
947
948 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
949                                     struct arm_smmu_s1_cfg *cfg)
950 {
951         u64 val;
952
953         /*
954          * We don't need to issue any invalidation here, as we'll invalidate
955          * the STE when installing the new entry anyway.
956          */
957         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
958 #ifdef __BIG_ENDIAN
959               CTXDESC_CD_0_ENDI |
960 #endif
961               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
962               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
963               CTXDESC_CD_0_V;
964         cfg->cdptr[0] = cpu_to_le64(val);
965
966         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
967         cfg->cdptr[1] = cpu_to_le64(val);
968
969         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
970 }
971
972 /* Stream table manipulation functions */
973 static void
974 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
975 {
976         u64 val = 0;
977
978         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
979                 << STRTAB_L1_DESC_SPAN_SHIFT;
980         val |= desc->l2ptr_dma &
981                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
982
983         *dst = cpu_to_le64(val);
984 }
985
986 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
987 {
988         struct arm_smmu_cmdq_ent cmd = {
989                 .opcode = CMDQ_OP_CFGI_STE,
990                 .cfgi   = {
991                         .sid    = sid,
992                         .leaf   = true,
993                 },
994         };
995
996         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
997         cmd.opcode = CMDQ_OP_CMD_SYNC;
998         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
999 }
1000
1001 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
1002                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
1003 {
1004         /*
1005          * This is hideously complicated, but we only really care about
1006          * three cases at the moment:
1007          *
1008          * 1. Invalid (all zero) -> bypass  (init)
1009          * 2. Bypass -> translation (attach)
1010          * 3. Translation -> bypass (detach)
1011          *
1012          * Given that we can't update the STE atomically and the SMMU
1013          * doesn't read the thing in a defined order, that leaves us
1014          * with the following maintenance requirements:
1015          *
1016          * 1. Update Config, return (init time STEs aren't live)
1017          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1018          * 3. Update Config, sync
1019          */
1020         u64 val = le64_to_cpu(dst[0]);
1021         bool ste_live = false;
1022         struct arm_smmu_cmdq_ent prefetch_cmd = {
1023                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1024                 .prefetch       = {
1025                         .sid    = sid,
1026                 },
1027         };
1028
1029         if (val & STRTAB_STE_0_V) {
1030                 u64 cfg;
1031
1032                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1033                 switch (cfg) {
1034                 case STRTAB_STE_0_CFG_BYPASS:
1035                         break;
1036                 case STRTAB_STE_0_CFG_S1_TRANS:
1037                 case STRTAB_STE_0_CFG_S2_TRANS:
1038                         ste_live = true;
1039                         break;
1040                 case STRTAB_STE_0_CFG_ABORT:
1041                         if (disable_bypass)
1042                                 break;
1043                 default:
1044                         BUG(); /* STE corruption */
1045                 }
1046         }
1047
1048         /* Nuke the existing Config, as we're going to rewrite it */
1049         val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1050
1051         if (ste->valid)
1052                 val |= STRTAB_STE_0_V;
1053         else
1054                 val &= ~STRTAB_STE_0_V;
1055
1056         if (ste->bypass) {
1057                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1058                                       : STRTAB_STE_0_CFG_BYPASS;
1059                 dst[0] = cpu_to_le64(val);
1060                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1061                          << STRTAB_STE_1_SHCFG_SHIFT);
1062                 dst[2] = 0; /* Nuke the VMID */
1063                 if (ste_live)
1064                         arm_smmu_sync_ste_for_sid(smmu, sid);
1065                 return;
1066         }
1067
1068         if (ste->s1_cfg) {
1069                 BUG_ON(ste_live);
1070                 dst[1] = cpu_to_le64(
1071                          STRTAB_STE_1_S1C_CACHE_WBRA
1072                          << STRTAB_STE_1_S1CIR_SHIFT |
1073                          STRTAB_STE_1_S1C_CACHE_WBRA
1074                          << STRTAB_STE_1_S1COR_SHIFT |
1075                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1076 #ifdef CONFIG_PCI_ATS
1077                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1078 #endif
1079                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT |
1080                          STRTAB_STE_1_PRIVCFG_UNPRIV <<
1081                          STRTAB_STE_1_PRIVCFG_SHIFT);
1082
1083                 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1084                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1085
1086                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1087                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1088                         STRTAB_STE_0_CFG_S1_TRANS;
1089
1090         }
1091
1092         if (ste->s2_cfg) {
1093                 BUG_ON(ste_live);
1094                 dst[2] = cpu_to_le64(
1095                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1096                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1097                           << STRTAB_STE_2_VTCR_SHIFT |
1098 #ifdef __BIG_ENDIAN
1099                          STRTAB_STE_2_S2ENDI |
1100 #endif
1101                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1102                          STRTAB_STE_2_S2R);
1103
1104                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1105                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1106
1107                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1108         }
1109
1110         arm_smmu_sync_ste_for_sid(smmu, sid);
1111         dst[0] = cpu_to_le64(val);
1112         arm_smmu_sync_ste_for_sid(smmu, sid);
1113
1114         /* It's likely that we'll want to use the new STE soon */
1115         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1116                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1117 }
1118
1119 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1120 {
1121         unsigned int i;
1122         struct arm_smmu_strtab_ent ste = {
1123                 .valid  = true,
1124                 .bypass = true,
1125         };
1126
1127         for (i = 0; i < nent; ++i) {
1128                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1129                 strtab += STRTAB_STE_DWORDS;
1130         }
1131 }
1132
1133 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1134 {
1135         size_t size;
1136         void *strtab;
1137         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1138         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1139
1140         if (desc->l2ptr)
1141                 return 0;
1142
1143         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1144         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1145
1146         desc->span = STRTAB_SPLIT + 1;
1147         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1148                                           GFP_KERNEL | __GFP_ZERO);
1149         if (!desc->l2ptr) {
1150                 dev_err(smmu->dev,
1151                         "failed to allocate l2 stream table for SID %u\n",
1152                         sid);
1153                 return -ENOMEM;
1154         }
1155
1156         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1157         arm_smmu_write_strtab_l1_desc(strtab, desc);
1158         return 0;
1159 }
1160
1161 /* IRQ and event handlers */
1162 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1163 {
1164         int i;
1165         struct arm_smmu_device *smmu = dev;
1166         struct arm_smmu_queue *q = &smmu->evtq.q;
1167         u64 evt[EVTQ_ENT_DWORDS];
1168
1169         do {
1170                 while (!queue_remove_raw(q, evt)) {
1171                         u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1172
1173                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1174                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1175                                 dev_info(smmu->dev, "\t0x%016llx\n",
1176                                          (unsigned long long)evt[i]);
1177
1178                 }
1179
1180                 /*
1181                  * Not much we can do on overflow, so scream and pretend we're
1182                  * trying harder.
1183                  */
1184                 if (queue_sync_prod(q) == -EOVERFLOW)
1185                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1186         } while (!queue_empty(q));
1187
1188         /* Sync our overflow flag, as we believe we're up to speed */
1189         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1190         return IRQ_HANDLED;
1191 }
1192
1193 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1194 {
1195         u32 sid, ssid;
1196         u16 grpid;
1197         bool ssv, last;
1198
1199         sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1200         ssv = evt[0] & PRIQ_0_SSID_V;
1201         ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1202         last = evt[0] & PRIQ_0_PRG_LAST;
1203         grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1204
1205         dev_info(smmu->dev, "unexpected PRI request received:\n");
1206         dev_info(smmu->dev,
1207                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1208                  sid, ssid, grpid, last ? "L" : "",
1209                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1210                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1211                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1212                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1213                  evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1214
1215         if (last) {
1216                 struct arm_smmu_cmdq_ent cmd = {
1217                         .opcode                 = CMDQ_OP_PRI_RESP,
1218                         .substream_valid        = ssv,
1219                         .pri                    = {
1220                                 .sid    = sid,
1221                                 .ssid   = ssid,
1222                                 .grpid  = grpid,
1223                                 .resp   = PRI_RESP_DENY,
1224                         },
1225                 };
1226
1227                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1228         }
1229 }
1230
1231 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1232 {
1233         struct arm_smmu_device *smmu = dev;
1234         struct arm_smmu_queue *q = &smmu->priq.q;
1235         u64 evt[PRIQ_ENT_DWORDS];
1236
1237         do {
1238                 while (!queue_remove_raw(q, evt))
1239                         arm_smmu_handle_ppr(smmu, evt);
1240
1241                 if (queue_sync_prod(q) == -EOVERFLOW)
1242                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1243         } while (!queue_empty(q));
1244
1245         /* Sync our overflow flag, as we believe we're up to speed */
1246         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1247         return IRQ_HANDLED;
1248 }
1249
1250 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1251 {
1252         /* We don't actually use CMD_SYNC interrupts for anything */
1253         return IRQ_HANDLED;
1254 }
1255
1256 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1257
1258 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1259 {
1260         u32 gerror, gerrorn, active;
1261         struct arm_smmu_device *smmu = dev;
1262
1263         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1264         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1265
1266         active = gerror ^ gerrorn;
1267         if (!(active & GERROR_ERR_MASK))
1268                 return IRQ_NONE; /* No errors pending */
1269
1270         dev_warn(smmu->dev,
1271                  "unexpected global error reported (0x%08x), this could be serious\n",
1272                  active);
1273
1274         if (active & GERROR_SFM_ERR) {
1275                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1276                 arm_smmu_device_disable(smmu);
1277         }
1278
1279         if (active & GERROR_MSI_GERROR_ABT_ERR)
1280                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1281
1282         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1283                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1284
1285         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1286                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1287
1288         if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1289                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1290                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1291         }
1292
1293         if (active & GERROR_PRIQ_ABT_ERR)
1294                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1295
1296         if (active & GERROR_EVTQ_ABT_ERR)
1297                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1298
1299         if (active & GERROR_CMDQ_ERR)
1300                 arm_smmu_cmdq_skip_err(smmu);
1301
1302         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1303         return IRQ_HANDLED;
1304 }
1305
1306 /* IO_PGTABLE API */
1307 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1308 {
1309         struct arm_smmu_cmdq_ent cmd;
1310
1311         cmd.opcode = CMDQ_OP_CMD_SYNC;
1312         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1313 }
1314
1315 static void arm_smmu_tlb_sync(void *cookie)
1316 {
1317         struct arm_smmu_domain *smmu_domain = cookie;
1318         __arm_smmu_tlb_sync(smmu_domain->smmu);
1319 }
1320
1321 static void arm_smmu_tlb_inv_context(void *cookie)
1322 {
1323         struct arm_smmu_domain *smmu_domain = cookie;
1324         struct arm_smmu_device *smmu = smmu_domain->smmu;
1325         struct arm_smmu_cmdq_ent cmd;
1326
1327         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1328                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1329                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1330                 cmd.tlbi.vmid   = 0;
1331         } else {
1332                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1333                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1334         }
1335
1336         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1337         __arm_smmu_tlb_sync(smmu);
1338 }
1339
1340 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1341                                           size_t granule, bool leaf, void *cookie)
1342 {
1343         struct arm_smmu_domain *smmu_domain = cookie;
1344         struct arm_smmu_device *smmu = smmu_domain->smmu;
1345         struct arm_smmu_cmdq_ent cmd = {
1346                 .tlbi = {
1347                         .leaf   = leaf,
1348                         .addr   = iova,
1349                 },
1350         };
1351
1352         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1353                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1354                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1355         } else {
1356                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1357                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1358         }
1359
1360         do {
1361                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1362                 cmd.tlbi.addr += granule;
1363         } while (size -= granule);
1364 }
1365
1366 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1367         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1368         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1369         .tlb_sync       = arm_smmu_tlb_sync,
1370 };
1371
1372 /* IOMMU API */
1373 static bool arm_smmu_capable(enum iommu_cap cap)
1374 {
1375         switch (cap) {
1376         case IOMMU_CAP_CACHE_COHERENCY:
1377                 return true;
1378         case IOMMU_CAP_INTR_REMAP:
1379                 return true; /* MSIs are just memory writes */
1380         case IOMMU_CAP_NOEXEC:
1381                 return true;
1382         default:
1383                 return false;
1384         }
1385 }
1386
1387 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1388 {
1389         struct arm_smmu_domain *smmu_domain;
1390
1391         if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1392                 return NULL;
1393
1394         /*
1395          * Allocate the domain and initialise some of its data structures.
1396          * We can't really do anything meaningful until we've added a
1397          * master.
1398          */
1399         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1400         if (!smmu_domain)
1401                 return NULL;
1402
1403         if (type == IOMMU_DOMAIN_DMA &&
1404             iommu_get_dma_cookie(&smmu_domain->domain)) {
1405                 kfree(smmu_domain);
1406                 return NULL;
1407         }
1408
1409         mutex_init(&smmu_domain->init_mutex);
1410         spin_lock_init(&smmu_domain->pgtbl_lock);
1411         return &smmu_domain->domain;
1412 }
1413
1414 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1415 {
1416         int idx, size = 1 << span;
1417
1418         do {
1419                 idx = find_first_zero_bit(map, size);
1420                 if (idx == size)
1421                         return -ENOSPC;
1422         } while (test_and_set_bit(idx, map));
1423
1424         return idx;
1425 }
1426
1427 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1428 {
1429         clear_bit(idx, map);
1430 }
1431
1432 static void arm_smmu_domain_free(struct iommu_domain *domain)
1433 {
1434         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1435         struct arm_smmu_device *smmu = smmu_domain->smmu;
1436
1437         iommu_put_dma_cookie(domain);
1438         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1439
1440         /* Free the CD and ASID, if we allocated them */
1441         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1442                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1443
1444                 if (cfg->cdptr) {
1445                         dmam_free_coherent(smmu_domain->smmu->dev,
1446                                            CTXDESC_CD_DWORDS << 3,
1447                                            cfg->cdptr,
1448                                            cfg->cdptr_dma);
1449
1450                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1451                 }
1452         } else {
1453                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1454                 if (cfg->vmid)
1455                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1456         }
1457
1458         kfree(smmu_domain);
1459 }
1460
1461 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1462                                        struct io_pgtable_cfg *pgtbl_cfg)
1463 {
1464         int ret;
1465         int asid;
1466         struct arm_smmu_device *smmu = smmu_domain->smmu;
1467         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1468
1469         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1470         if (asid < 0)
1471                 return asid;
1472
1473         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1474                                          &cfg->cdptr_dma,
1475                                          GFP_KERNEL | __GFP_ZERO);
1476         if (!cfg->cdptr) {
1477                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1478                 ret = -ENOMEM;
1479                 goto out_free_asid;
1480         }
1481
1482         cfg->cd.asid    = (u16)asid;
1483         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1484         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1485         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1486         return 0;
1487
1488 out_free_asid:
1489         arm_smmu_bitmap_free(smmu->asid_map, asid);
1490         return ret;
1491 }
1492
1493 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1494                                        struct io_pgtable_cfg *pgtbl_cfg)
1495 {
1496         int vmid;
1497         struct arm_smmu_device *smmu = smmu_domain->smmu;
1498         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1499
1500         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1501         if (vmid < 0)
1502                 return vmid;
1503
1504         cfg->vmid       = (u16)vmid;
1505         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1506         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1507         return 0;
1508 }
1509
1510 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1511 {
1512         int ret;
1513         unsigned long ias, oas;
1514         enum io_pgtable_fmt fmt;
1515         struct io_pgtable_cfg pgtbl_cfg;
1516         struct io_pgtable_ops *pgtbl_ops;
1517         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1518                                  struct io_pgtable_cfg *);
1519         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1520         struct arm_smmu_device *smmu = smmu_domain->smmu;
1521
1522         /* Restrict the stage to what we can actually support */
1523         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1524                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1525         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1526                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1527
1528         switch (smmu_domain->stage) {
1529         case ARM_SMMU_DOMAIN_S1:
1530                 ias = VA_BITS;
1531                 oas = smmu->ias;
1532                 fmt = ARM_64_LPAE_S1;
1533                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1534                 break;
1535         case ARM_SMMU_DOMAIN_NESTED:
1536         case ARM_SMMU_DOMAIN_S2:
1537                 ias = smmu->ias;
1538                 oas = smmu->oas;
1539                 fmt = ARM_64_LPAE_S2;
1540                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1541                 break;
1542         default:
1543                 return -EINVAL;
1544         }
1545
1546         pgtbl_cfg = (struct io_pgtable_cfg) {
1547                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1548                 .ias            = ias,
1549                 .oas            = oas,
1550                 .tlb            = &arm_smmu_gather_ops,
1551                 .iommu_dev      = smmu->dev,
1552         };
1553
1554         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1555         if (!pgtbl_ops)
1556                 return -ENOMEM;
1557
1558         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1559         domain->geometry.aperture_end = (1UL << ias) - 1;
1560         domain->geometry.force_aperture = true;
1561         smmu_domain->pgtbl_ops = pgtbl_ops;
1562
1563         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1564         if (ret < 0)
1565                 free_io_pgtable_ops(pgtbl_ops);
1566
1567         return ret;
1568 }
1569
1570 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1571 {
1572         __le64 *step;
1573         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1574
1575         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1576                 struct arm_smmu_strtab_l1_desc *l1_desc;
1577                 int idx;
1578
1579                 /* Two-level walk */
1580                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1581                 l1_desc = &cfg->l1_desc[idx];
1582                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1583                 step = &l1_desc->l2ptr[idx];
1584         } else {
1585                 /* Simple linear lookup */
1586                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1587         }
1588
1589         return step;
1590 }
1591
1592 static int arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1593 {
1594         int i;
1595         struct arm_smmu_master_data *master = fwspec->iommu_priv;
1596         struct arm_smmu_device *smmu = master->smmu;
1597
1598         for (i = 0; i < fwspec->num_ids; ++i) {
1599                 u32 sid = fwspec->ids[i];
1600                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1601
1602                 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1603         }
1604
1605         return 0;
1606 }
1607
1608 static void arm_smmu_detach_dev(struct device *dev)
1609 {
1610         struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1611
1612         master->ste.bypass = true;
1613         if (arm_smmu_install_ste_for_dev(dev->iommu_fwspec) < 0)
1614                 dev_warn(dev, "failed to install bypass STE\n");
1615 }
1616
1617 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1618 {
1619         int ret = 0;
1620         struct arm_smmu_device *smmu;
1621         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1622         struct arm_smmu_master_data *master;
1623         struct arm_smmu_strtab_ent *ste;
1624
1625         if (!dev->iommu_fwspec)
1626                 return -ENOENT;
1627
1628         master = dev->iommu_fwspec->iommu_priv;
1629         smmu = master->smmu;
1630         ste = &master->ste;
1631
1632         /* Already attached to a different domain? */
1633         if (!ste->bypass)
1634                 arm_smmu_detach_dev(dev);
1635
1636         mutex_lock(&smmu_domain->init_mutex);
1637
1638         if (!smmu_domain->smmu) {
1639                 smmu_domain->smmu = smmu;
1640                 ret = arm_smmu_domain_finalise(domain);
1641                 if (ret) {
1642                         smmu_domain->smmu = NULL;
1643                         goto out_unlock;
1644                 }
1645         } else if (smmu_domain->smmu != smmu) {
1646                 dev_err(dev,
1647                         "cannot attach to SMMU %s (upstream of %s)\n",
1648                         dev_name(smmu_domain->smmu->dev),
1649                         dev_name(smmu->dev));
1650                 ret = -ENXIO;
1651                 goto out_unlock;
1652         }
1653
1654         ste->bypass = false;
1655         ste->valid = true;
1656
1657         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1658                 ste->s1_cfg = &smmu_domain->s1_cfg;
1659                 ste->s2_cfg = NULL;
1660                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1661         } else {
1662                 ste->s1_cfg = NULL;
1663                 ste->s2_cfg = &smmu_domain->s2_cfg;
1664         }
1665
1666         ret = arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1667         if (ret < 0)
1668                 ste->valid = false;
1669
1670 out_unlock:
1671         mutex_unlock(&smmu_domain->init_mutex);
1672         return ret;
1673 }
1674
1675 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1676                         phys_addr_t paddr, size_t size, int prot)
1677 {
1678         int ret;
1679         unsigned long flags;
1680         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1681         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1682
1683         if (!ops)
1684                 return -ENODEV;
1685
1686         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1687         ret = ops->map(ops, iova, paddr, size, prot);
1688         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1689         return ret;
1690 }
1691
1692 static size_t
1693 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1694 {
1695         size_t ret;
1696         unsigned long flags;
1697         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1698         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1699
1700         if (!ops)
1701                 return 0;
1702
1703         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1704         ret = ops->unmap(ops, iova, size);
1705         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1706         return ret;
1707 }
1708
1709 static phys_addr_t
1710 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1711 {
1712         phys_addr_t ret;
1713         unsigned long flags;
1714         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1715         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1716
1717         if (!ops)
1718                 return 0;
1719
1720         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1721         ret = ops->iova_to_phys(ops, iova);
1722         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1723
1724         return ret;
1725 }
1726
1727 static struct platform_driver arm_smmu_driver;
1728
1729 static int arm_smmu_match_node(struct device *dev, void *data)
1730 {
1731         return dev->fwnode == data;
1732 }
1733
1734 static
1735 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1736 {
1737         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1738                                                 fwnode, arm_smmu_match_node);
1739         put_device(dev);
1740         return dev ? dev_get_drvdata(dev) : NULL;
1741 }
1742
1743 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1744 {
1745         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1746
1747         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1748                 limit *= 1UL << STRTAB_SPLIT;
1749
1750         return sid < limit;
1751 }
1752
1753 static struct iommu_ops arm_smmu_ops;
1754
1755 static int arm_smmu_add_device(struct device *dev)
1756 {
1757         int i, ret;
1758         struct arm_smmu_device *smmu;
1759         struct arm_smmu_master_data *master;
1760         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1761         struct iommu_group *group;
1762
1763         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1764                 return -ENODEV;
1765         /*
1766          * We _can_ actually withstand dodgy bus code re-calling add_device()
1767          * without an intervening remove_device()/of_xlate() sequence, but
1768          * we're not going to do so quietly...
1769          */
1770         if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1771                 master = fwspec->iommu_priv;
1772                 smmu = master->smmu;
1773         } else {
1774                 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1775                 if (!smmu)
1776                         return -ENODEV;
1777                 master = kzalloc(sizeof(*master), GFP_KERNEL);
1778                 if (!master)
1779                         return -ENOMEM;
1780
1781                 master->smmu = smmu;
1782                 fwspec->iommu_priv = master;
1783         }
1784
1785         /* Check the SIDs are in range of the SMMU and our stream table */
1786         for (i = 0; i < fwspec->num_ids; i++) {
1787                 u32 sid = fwspec->ids[i];
1788
1789                 if (!arm_smmu_sid_in_range(smmu, sid))
1790                         return -ERANGE;
1791
1792                 /* Ensure l2 strtab is initialised */
1793                 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1794                         ret = arm_smmu_init_l2_strtab(smmu, sid);
1795                         if (ret)
1796                                 return ret;
1797                 }
1798         }
1799
1800         group = iommu_group_get_for_dev(dev);
1801         if (!IS_ERR(group)) {
1802                 iommu_group_put(group);
1803                 iommu_device_link(&smmu->iommu, dev);
1804         }
1805
1806         return PTR_ERR_OR_ZERO(group);
1807 }
1808
1809 static void arm_smmu_remove_device(struct device *dev)
1810 {
1811         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1812         struct arm_smmu_master_data *master;
1813         struct arm_smmu_device *smmu;
1814
1815         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1816                 return;
1817
1818         master = fwspec->iommu_priv;
1819         smmu = master->smmu;
1820         if (master && master->ste.valid)
1821                 arm_smmu_detach_dev(dev);
1822         iommu_group_remove_device(dev);
1823         iommu_device_unlink(&smmu->iommu, dev);
1824         kfree(master);
1825         iommu_fwspec_free(dev);
1826 }
1827
1828 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1829 {
1830         struct iommu_group *group;
1831
1832         /*
1833          * We don't support devices sharing stream IDs other than PCI RID
1834          * aliases, since the necessary ID-to-device lookup becomes rather
1835          * impractical given a potential sparse 32-bit stream ID space.
1836          */
1837         if (dev_is_pci(dev))
1838                 group = pci_device_group(dev);
1839         else
1840                 group = generic_device_group(dev);
1841
1842         return group;
1843 }
1844
1845 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1846                                     enum iommu_attr attr, void *data)
1847 {
1848         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1849
1850         switch (attr) {
1851         case DOMAIN_ATTR_NESTING:
1852                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1853                 return 0;
1854         default:
1855                 return -ENODEV;
1856         }
1857 }
1858
1859 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1860                                     enum iommu_attr attr, void *data)
1861 {
1862         int ret = 0;
1863         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1864
1865         mutex_lock(&smmu_domain->init_mutex);
1866
1867         switch (attr) {
1868         case DOMAIN_ATTR_NESTING:
1869                 if (smmu_domain->smmu) {
1870                         ret = -EPERM;
1871                         goto out_unlock;
1872                 }
1873
1874                 if (*(int *)data)
1875                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1876                 else
1877                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1878
1879                 break;
1880         default:
1881                 ret = -ENODEV;
1882         }
1883
1884 out_unlock:
1885         mutex_unlock(&smmu_domain->init_mutex);
1886         return ret;
1887 }
1888
1889 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1890 {
1891         return iommu_fwspec_add_ids(dev, args->args, 1);
1892 }
1893
1894 static struct iommu_ops arm_smmu_ops = {
1895         .capable                = arm_smmu_capable,
1896         .domain_alloc           = arm_smmu_domain_alloc,
1897         .domain_free            = arm_smmu_domain_free,
1898         .attach_dev             = arm_smmu_attach_dev,
1899         .map                    = arm_smmu_map,
1900         .unmap                  = arm_smmu_unmap,
1901         .map_sg                 = default_iommu_map_sg,
1902         .iova_to_phys           = arm_smmu_iova_to_phys,
1903         .add_device             = arm_smmu_add_device,
1904         .remove_device          = arm_smmu_remove_device,
1905         .device_group           = arm_smmu_device_group,
1906         .domain_get_attr        = arm_smmu_domain_get_attr,
1907         .domain_set_attr        = arm_smmu_domain_set_attr,
1908         .of_xlate               = arm_smmu_of_xlate,
1909         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1910 };
1911
1912 /* Probing and initialisation functions */
1913 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1914                                    struct arm_smmu_queue *q,
1915                                    unsigned long prod_off,
1916                                    unsigned long cons_off,
1917                                    size_t dwords)
1918 {
1919         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1920
1921         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1922         if (!q->base) {
1923                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1924                         qsz);
1925                 return -ENOMEM;
1926         }
1927
1928         q->prod_reg     = smmu->base + prod_off;
1929         q->cons_reg     = smmu->base + cons_off;
1930         q->ent_dwords   = dwords;
1931
1932         q->q_base  = Q_BASE_RWA;
1933         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1934         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1935                      << Q_BASE_LOG2SIZE_SHIFT;
1936
1937         q->prod = q->cons = 0;
1938         return 0;
1939 }
1940
1941 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1942 {
1943         int ret;
1944
1945         /* cmdq */
1946         spin_lock_init(&smmu->cmdq.lock);
1947         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1948                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1949         if (ret)
1950                 return ret;
1951
1952         /* evtq */
1953         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1954                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1955         if (ret)
1956                 return ret;
1957
1958         /* priq */
1959         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1960                 return 0;
1961
1962         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1963                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1964 }
1965
1966 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1967 {
1968         unsigned int i;
1969         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1970         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1971         void *strtab = smmu->strtab_cfg.strtab;
1972
1973         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1974         if (!cfg->l1_desc) {
1975                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1976                 return -ENOMEM;
1977         }
1978
1979         for (i = 0; i < cfg->num_l1_ents; ++i) {
1980                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
1981                 strtab += STRTAB_L1_DESC_DWORDS << 3;
1982         }
1983
1984         return 0;
1985 }
1986
1987 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
1988 {
1989         void *strtab;
1990         u64 reg;
1991         u32 size, l1size;
1992         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1993
1994         /*
1995          * If we can resolve everything with a single L2 table, then we
1996          * just need a single L1 descriptor. Otherwise, calculate the L1
1997          * size, capped to the SIDSIZE.
1998          */
1999         if (smmu->sid_bits < STRTAB_SPLIT) {
2000                 size = 0;
2001         } else {
2002                 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2003                 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2004         }
2005         cfg->num_l1_ents = 1 << size;
2006
2007         size += STRTAB_SPLIT;
2008         if (size < smmu->sid_bits)
2009                 dev_warn(smmu->dev,
2010                          "2-level strtab only covers %u/%u bits of SID\n",
2011                          size, smmu->sid_bits);
2012
2013         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2014         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2015                                      GFP_KERNEL | __GFP_ZERO);
2016         if (!strtab) {
2017                 dev_err(smmu->dev,
2018                         "failed to allocate l1 stream table (%u bytes)\n",
2019                         size);
2020                 return -ENOMEM;
2021         }
2022         cfg->strtab = strtab;
2023
2024         /* Configure strtab_base_cfg for 2 levels */
2025         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2026         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2027                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2028         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2029                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2030         cfg->strtab_base_cfg = reg;
2031
2032         return arm_smmu_init_l1_strtab(smmu);
2033 }
2034
2035 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2036 {
2037         void *strtab;
2038         u64 reg;
2039         u32 size;
2040         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2041
2042         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2043         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2044                                      GFP_KERNEL | __GFP_ZERO);
2045         if (!strtab) {
2046                 dev_err(smmu->dev,
2047                         "failed to allocate linear stream table (%u bytes)\n",
2048                         size);
2049                 return -ENOMEM;
2050         }
2051         cfg->strtab = strtab;
2052         cfg->num_l1_ents = 1 << smmu->sid_bits;
2053
2054         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2055         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2056         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2057                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2058         cfg->strtab_base_cfg = reg;
2059
2060         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2061         return 0;
2062 }
2063
2064 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2065 {
2066         u64 reg;
2067         int ret;
2068
2069         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2070                 ret = arm_smmu_init_strtab_2lvl(smmu);
2071         else
2072                 ret = arm_smmu_init_strtab_linear(smmu);
2073
2074         if (ret)
2075                 return ret;
2076
2077         /* Set the strtab base address */
2078         reg  = smmu->strtab_cfg.strtab_dma &
2079                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2080         reg |= STRTAB_BASE_RA;
2081         smmu->strtab_cfg.strtab_base = reg;
2082
2083         /* Allocate the first VMID for stage-2 bypass STEs */
2084         set_bit(0, smmu->vmid_map);
2085         return 0;
2086 }
2087
2088 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2089 {
2090         int ret;
2091
2092         ret = arm_smmu_init_queues(smmu);
2093         if (ret)
2094                 return ret;
2095
2096         return arm_smmu_init_strtab(smmu);
2097 }
2098
2099 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2100                                    unsigned int reg_off, unsigned int ack_off)
2101 {
2102         u32 reg;
2103
2104         writel_relaxed(val, smmu->base + reg_off);
2105         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2106                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2107 }
2108
2109 /* GBPA is "special" */
2110 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2111 {
2112         int ret;
2113         u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2114
2115         ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2116                                          1, ARM_SMMU_POLL_TIMEOUT_US);
2117         if (ret)
2118                 return ret;
2119
2120         reg &= ~clr;
2121         reg |= set;
2122         writel_relaxed(reg | GBPA_UPDATE, gbpa);
2123         return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2124                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2125 }
2126
2127 static void arm_smmu_free_msis(void *data)
2128 {
2129         struct device *dev = data;
2130         platform_msi_domain_free_irqs(dev);
2131 }
2132
2133 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2134 {
2135         phys_addr_t doorbell;
2136         struct device *dev = msi_desc_to_dev(desc);
2137         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2138         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2139
2140         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2141         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2142
2143         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2144         writel_relaxed(msg->data, smmu->base + cfg[1]);
2145         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2146 }
2147
2148 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2149 {
2150         struct msi_desc *desc;
2151         int ret, nvec = ARM_SMMU_MAX_MSIS;
2152         struct device *dev = smmu->dev;
2153
2154         /* Clear the MSI address regs */
2155         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2156         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2157
2158         if (smmu->features & ARM_SMMU_FEAT_PRI)
2159                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2160         else
2161                 nvec--;
2162
2163         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2164                 return;
2165
2166         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2167         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2168         if (ret) {
2169                 dev_warn(dev, "failed to allocate MSIs\n");
2170                 return;
2171         }
2172
2173         for_each_msi_entry(desc, dev) {
2174                 switch (desc->platform.msi_index) {
2175                 case EVTQ_MSI_INDEX:
2176                         smmu->evtq.q.irq = desc->irq;
2177                         break;
2178                 case GERROR_MSI_INDEX:
2179                         smmu->gerr_irq = desc->irq;
2180                         break;
2181                 case PRIQ_MSI_INDEX:
2182                         smmu->priq.q.irq = desc->irq;
2183                         break;
2184                 default:        /* Unknown */
2185                         continue;
2186                 }
2187         }
2188
2189         /* Add callback to free MSIs on teardown */
2190         devm_add_action(dev, arm_smmu_free_msis, dev);
2191 }
2192
2193 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2194 {
2195         int ret, irq;
2196         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2197
2198         /* Disable IRQs first */
2199         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2200                                       ARM_SMMU_IRQ_CTRLACK);
2201         if (ret) {
2202                 dev_err(smmu->dev, "failed to disable irqs\n");
2203                 return ret;
2204         }
2205
2206         arm_smmu_setup_msis(smmu);
2207
2208         /* Request interrupt lines */
2209         irq = smmu->evtq.q.irq;
2210         if (irq) {
2211                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2212                                                 arm_smmu_evtq_thread,
2213                                                 IRQF_ONESHOT,
2214                                                 "arm-smmu-v3-evtq", smmu);
2215                 if (ret < 0)
2216                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2217         }
2218
2219         irq = smmu->cmdq.q.irq;
2220         if (irq) {
2221                 ret = devm_request_irq(smmu->dev, irq,
2222                                        arm_smmu_cmdq_sync_handler, 0,
2223                                        "arm-smmu-v3-cmdq-sync", smmu);
2224                 if (ret < 0)
2225                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2226         }
2227
2228         irq = smmu->gerr_irq;
2229         if (irq) {
2230                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2231                                        0, "arm-smmu-v3-gerror", smmu);
2232                 if (ret < 0)
2233                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2234         }
2235
2236         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2237                 irq = smmu->priq.q.irq;
2238                 if (irq) {
2239                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2240                                                         arm_smmu_priq_thread,
2241                                                         IRQF_ONESHOT,
2242                                                         "arm-smmu-v3-priq",
2243                                                         smmu);
2244                         if (ret < 0)
2245                                 dev_warn(smmu->dev,
2246                                          "failed to enable priq irq\n");
2247                         else
2248                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2249                 }
2250         }
2251
2252         /* Enable interrupt generation on the SMMU */
2253         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2254                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2255         if (ret)
2256                 dev_warn(smmu->dev, "failed to enable irqs\n");
2257
2258         return 0;
2259 }
2260
2261 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2262 {
2263         int ret;
2264
2265         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2266         if (ret)
2267                 dev_err(smmu->dev, "failed to clear cr0\n");
2268
2269         return ret;
2270 }
2271
2272 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2273 {
2274         int ret;
2275         u32 reg, enables;
2276         struct arm_smmu_cmdq_ent cmd;
2277
2278         /* Clear CR0 and sync (disables SMMU and queue processing) */
2279         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2280         if (reg & CR0_SMMUEN)
2281                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2282
2283         ret = arm_smmu_device_disable(smmu);
2284         if (ret)
2285                 return ret;
2286
2287         /* CR1 (table and queue memory attributes) */
2288         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2289               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2290               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2291               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2292               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2293               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2294         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2295
2296         /* CR2 (random crap) */
2297         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2298         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2299
2300         /* Stream table */
2301         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2302                        smmu->base + ARM_SMMU_STRTAB_BASE);
2303         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2304                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2305
2306         /* Command queue */
2307         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2308         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2309         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2310
2311         enables = CR0_CMDQEN;
2312         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2313                                       ARM_SMMU_CR0ACK);
2314         if (ret) {
2315                 dev_err(smmu->dev, "failed to enable command queue\n");
2316                 return ret;
2317         }
2318
2319         /* Invalidate any cached configuration */
2320         cmd.opcode = CMDQ_OP_CFGI_ALL;
2321         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2322         cmd.opcode = CMDQ_OP_CMD_SYNC;
2323         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2324
2325         /* Invalidate any stale TLB entries */
2326         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2327                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2328                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2329         }
2330
2331         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2332         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2333         cmd.opcode = CMDQ_OP_CMD_SYNC;
2334         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2335
2336         /* Event queue */
2337         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2338         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2339         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2340
2341         enables |= CR0_EVTQEN;
2342         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2343                                       ARM_SMMU_CR0ACK);
2344         if (ret) {
2345                 dev_err(smmu->dev, "failed to enable event queue\n");
2346                 return ret;
2347         }
2348
2349         /* PRI queue */
2350         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2351                 writeq_relaxed(smmu->priq.q.q_base,
2352                                smmu->base + ARM_SMMU_PRIQ_BASE);
2353                 writel_relaxed(smmu->priq.q.prod,
2354                                smmu->base + ARM_SMMU_PRIQ_PROD);
2355                 writel_relaxed(smmu->priq.q.cons,
2356                                smmu->base + ARM_SMMU_PRIQ_CONS);
2357
2358                 enables |= CR0_PRIQEN;
2359                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2360                                               ARM_SMMU_CR0ACK);
2361                 if (ret) {
2362                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2363                         return ret;
2364                 }
2365         }
2366
2367         ret = arm_smmu_setup_irqs(smmu);
2368         if (ret) {
2369                 dev_err(smmu->dev, "failed to setup irqs\n");
2370                 return ret;
2371         }
2372
2373
2374         /* Enable the SMMU interface, or ensure bypass */
2375         if (!bypass || disable_bypass) {
2376                 enables |= CR0_SMMUEN;
2377         } else {
2378                 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2379                 if (ret) {
2380                         dev_err(smmu->dev, "GBPA not responding to update\n");
2381                         return ret;
2382                 }
2383         }
2384         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2385                                       ARM_SMMU_CR0ACK);
2386         if (ret) {
2387                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2388                 return ret;
2389         }
2390
2391         return 0;
2392 }
2393
2394 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2395 {
2396         u32 reg;
2397         bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2398
2399         /* IDR0 */
2400         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2401
2402         /* 2-level structures */
2403         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2404                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2405
2406         if (reg & IDR0_CD2L)
2407                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2408
2409         /*
2410          * Translation table endianness.
2411          * We currently require the same endianness as the CPU, but this
2412          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2413          */
2414         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2415         case IDR0_TTENDIAN_MIXED:
2416                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2417                 break;
2418 #ifdef __BIG_ENDIAN
2419         case IDR0_TTENDIAN_BE:
2420                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2421                 break;
2422 #else
2423         case IDR0_TTENDIAN_LE:
2424                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2425                 break;
2426 #endif
2427         default:
2428                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2429                 return -ENXIO;
2430         }
2431
2432         /* Boolean feature flags */
2433         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2434                 smmu->features |= ARM_SMMU_FEAT_PRI;
2435
2436         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2437                 smmu->features |= ARM_SMMU_FEAT_ATS;
2438
2439         if (reg & IDR0_SEV)
2440                 smmu->features |= ARM_SMMU_FEAT_SEV;
2441
2442         if (reg & IDR0_MSI)
2443                 smmu->features |= ARM_SMMU_FEAT_MSI;
2444
2445         if (reg & IDR0_HYP)
2446                 smmu->features |= ARM_SMMU_FEAT_HYP;
2447
2448         /*
2449          * The coherency feature as set by FW is used in preference to the ID
2450          * register, but warn on mismatch.
2451          */
2452         if (!!(reg & IDR0_COHACC) != coherent)
2453                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2454                          coherent ? "true" : "false");
2455
2456         switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2457         case IDR0_STALL_MODEL_STALL:
2458                 /* Fallthrough */
2459         case IDR0_STALL_MODEL_FORCE:
2460                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2461         }
2462
2463         if (reg & IDR0_S1P)
2464                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2465
2466         if (reg & IDR0_S2P)
2467                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2468
2469         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2470                 dev_err(smmu->dev, "no translation support!\n");
2471                 return -ENXIO;
2472         }
2473
2474         /* We only support the AArch64 table format at present */
2475         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2476         case IDR0_TTF_AARCH32_64:
2477                 smmu->ias = 40;
2478                 /* Fallthrough */
2479         case IDR0_TTF_AARCH64:
2480                 break;
2481         default:
2482                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2483                 return -ENXIO;
2484         }
2485
2486         /* ASID/VMID sizes */
2487         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2488         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2489
2490         /* IDR1 */
2491         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2492         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2493                 dev_err(smmu->dev, "embedded implementation not supported\n");
2494                 return -ENXIO;
2495         }
2496
2497         /* Queue sizes, capped at 4k */
2498         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2499                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2500         if (!smmu->cmdq.q.max_n_shift) {
2501                 /* Odd alignment restrictions on the base, so ignore for now */
2502                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2503                 return -ENXIO;
2504         }
2505
2506         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2507                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2508         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2509                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2510
2511         /* SID/SSID sizes */
2512         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2513         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2514
2515         /* IDR5 */
2516         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2517
2518         /* Maximum number of outstanding stalls */
2519         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2520                                 & IDR5_STALL_MAX_MASK;
2521
2522         /* Page sizes */
2523         if (reg & IDR5_GRAN64K)
2524                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2525         if (reg & IDR5_GRAN16K)
2526                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2527         if (reg & IDR5_GRAN4K)
2528                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2529
2530         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2531                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2532         else
2533                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2534
2535         /* Output address size */
2536         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2537         case IDR5_OAS_32_BIT:
2538                 smmu->oas = 32;
2539                 break;
2540         case IDR5_OAS_36_BIT:
2541                 smmu->oas = 36;
2542                 break;
2543         case IDR5_OAS_40_BIT:
2544                 smmu->oas = 40;
2545                 break;
2546         case IDR5_OAS_42_BIT:
2547                 smmu->oas = 42;
2548                 break;
2549         case IDR5_OAS_44_BIT:
2550                 smmu->oas = 44;
2551                 break;
2552         default:
2553                 dev_info(smmu->dev,
2554                         "unknown output address size. Truncating to 48-bit\n");
2555                 /* Fallthrough */
2556         case IDR5_OAS_48_BIT:
2557                 smmu->oas = 48;
2558         }
2559
2560         /* Set the DMA mask for our table walker */
2561         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2562                 dev_warn(smmu->dev,
2563                          "failed to set DMA mask for table walker\n");
2564
2565         smmu->ias = max(smmu->ias, smmu->oas);
2566
2567         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2568                  smmu->ias, smmu->oas, smmu->features);
2569         return 0;
2570 }
2571
2572 #ifdef CONFIG_ACPI
2573 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2574                                       struct arm_smmu_device *smmu)
2575 {
2576         struct acpi_iort_smmu_v3 *iort_smmu;
2577         struct device *dev = smmu->dev;
2578         struct acpi_iort_node *node;
2579
2580         node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2581
2582         /* Retrieve SMMUv3 specific data */
2583         iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2584
2585         if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2586                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2587
2588         return 0;
2589 }
2590 #else
2591 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2592                                              struct arm_smmu_device *smmu)
2593 {
2594         return -ENODEV;
2595 }
2596 #endif
2597
2598 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2599                                     struct arm_smmu_device *smmu)
2600 {
2601         struct device *dev = &pdev->dev;
2602         u32 cells;
2603         int ret = -EINVAL;
2604
2605         if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2606                 dev_err(dev, "missing #iommu-cells property\n");
2607         else if (cells != 1)
2608                 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2609         else
2610                 ret = 0;
2611
2612         parse_driver_options(smmu);
2613
2614         if (of_dma_is_coherent(dev->of_node))
2615                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2616
2617         return ret;
2618 }
2619
2620 static int arm_smmu_device_probe(struct platform_device *pdev)
2621 {
2622         int irq, ret;
2623         struct resource *res;
2624         resource_size_t ioaddr;
2625         struct arm_smmu_device *smmu;
2626         struct device *dev = &pdev->dev;
2627         bool bypass;
2628
2629         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2630         if (!smmu) {
2631                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2632                 return -ENOMEM;
2633         }
2634         smmu->dev = dev;
2635
2636         /* Base address */
2637         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2638         if (resource_size(res) + 1 < SZ_128K) {
2639                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2640                 return -EINVAL;
2641         }
2642         ioaddr = res->start;
2643
2644         smmu->base = devm_ioremap_resource(dev, res);
2645         if (IS_ERR(smmu->base))
2646                 return PTR_ERR(smmu->base);
2647
2648         /* Interrupt lines */
2649         irq = platform_get_irq_byname(pdev, "eventq");
2650         if (irq > 0)
2651                 smmu->evtq.q.irq = irq;
2652
2653         irq = platform_get_irq_byname(pdev, "priq");
2654         if (irq > 0)
2655                 smmu->priq.q.irq = irq;
2656
2657         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2658         if (irq > 0)
2659                 smmu->cmdq.q.irq = irq;
2660
2661         irq = platform_get_irq_byname(pdev, "gerror");
2662         if (irq > 0)
2663                 smmu->gerr_irq = irq;
2664
2665         if (dev->of_node) {
2666                 ret = arm_smmu_device_dt_probe(pdev, smmu);
2667         } else {
2668                 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2669                 if (ret == -ENODEV)
2670                         return ret;
2671         }
2672
2673         /* Set bypass mode according to firmware probing result */
2674         bypass = !!ret;
2675
2676         /* Probe the h/w */
2677         ret = arm_smmu_device_hw_probe(smmu);
2678         if (ret)
2679                 return ret;
2680
2681         /* Initialise in-memory data structures */
2682         ret = arm_smmu_init_structures(smmu);
2683         if (ret)
2684                 return ret;
2685
2686         /* Record our private device structure */
2687         platform_set_drvdata(pdev, smmu);
2688
2689         /* Reset the device */
2690         ret = arm_smmu_device_reset(smmu, bypass);
2691         if (ret)
2692                 return ret;
2693
2694         /* And we're up. Go go go! */
2695         ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
2696                                      "smmu3.%pa", &ioaddr);
2697         if (ret)
2698                 return ret;
2699
2700         iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2701         iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2702
2703         ret = iommu_device_register(&smmu->iommu);
2704
2705         iommu_register_instance(dev->fwnode, &arm_smmu_ops);
2706
2707 #ifdef CONFIG_PCI
2708         if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2709                 pci_request_acs();
2710                 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2711                 if (ret)
2712                         return ret;
2713         }
2714 #endif
2715 #ifdef CONFIG_ARM_AMBA
2716         if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2717                 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2718                 if (ret)
2719                         return ret;
2720         }
2721 #endif
2722         if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2723                 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2724                 if (ret)
2725                         return ret;
2726         }
2727         return 0;
2728 }
2729
2730 static int arm_smmu_device_remove(struct platform_device *pdev)
2731 {
2732         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2733
2734         arm_smmu_device_disable(smmu);
2735         return 0;
2736 }
2737
2738 static struct of_device_id arm_smmu_of_match[] = {
2739         { .compatible = "arm,smmu-v3", },
2740         { },
2741 };
2742 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2743
2744 static struct platform_driver arm_smmu_driver = {
2745         .driver = {
2746                 .name           = "arm-smmu-v3",
2747                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2748         },
2749         .probe  = arm_smmu_device_probe,
2750         .remove = arm_smmu_device_remove,
2751 };
2752
2753 static int __init arm_smmu_init(void)
2754 {
2755         static bool registered;
2756         int ret = 0;
2757
2758         if (!registered) {
2759                 ret = platform_driver_register(&arm_smmu_driver);
2760                 registered = !ret;
2761         }
2762         return ret;
2763 }
2764
2765 static void __exit arm_smmu_exit(void)
2766 {
2767         return platform_driver_unregister(&arm_smmu_driver);
2768 }
2769
2770 subsys_initcall(arm_smmu_init);
2771 module_exit(arm_smmu_exit);
2772
2773 static int __init arm_smmu_of_init(struct device_node *np)
2774 {
2775         int ret = arm_smmu_init();
2776
2777         if (ret)
2778                 return ret;
2779
2780         if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2781                 return -ENODEV;
2782
2783         return 0;
2784 }
2785 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", arm_smmu_of_init);
2786
2787 #ifdef CONFIG_ACPI
2788 static int __init acpi_smmu_v3_init(struct acpi_table_header *table)
2789 {
2790         if (iort_node_match(ACPI_IORT_NODE_SMMU_V3))
2791                 return arm_smmu_init();
2792
2793         return 0;
2794 }
2795 IORT_ACPI_DECLARE(arm_smmu_v3, ACPI_SIG_IORT, acpi_smmu_v3_init);
2796 #endif
2797
2798 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2799 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2800 MODULE_LICENSE("GPL v2");