]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/iommu/arm-smmu-v3.c
Merge branch 'iommu/iommu-priv' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0                   0x0
46 #define IDR0_ST_LVL_SHIFT               27
47 #define IDR0_ST_LVL_MASK                0x3
48 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT          24
50 #define IDR0_STALL_MODEL_MASK           0x3
51 #define IDR0_STALL_MODEL_STALL          (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE          (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT             21
54 #define IDR0_TTENDIAN_MASK              0x3
55 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L                       (1 << 19)
59 #define IDR0_VMID16                     (1 << 18)
60 #define IDR0_PRI                        (1 << 16)
61 #define IDR0_SEV                        (1 << 14)
62 #define IDR0_MSI                        (1 << 13)
63 #define IDR0_ASID16                     (1 << 12)
64 #define IDR0_ATS                        (1 << 10)
65 #define IDR0_HYP                        (1 << 9)
66 #define IDR0_COHACC                     (1 << 4)
67 #define IDR0_TTF_SHIFT                  2
68 #define IDR0_TTF_MASK                   0x3
69 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P                        (1 << 1)
72 #define IDR0_S2P                        (1 << 0)
73
74 #define ARM_SMMU_IDR1                   0x4
75 #define IDR1_TABLES_PRESET              (1 << 30)
76 #define IDR1_QUEUES_PRESET              (1 << 29)
77 #define IDR1_REL                        (1 << 28)
78 #define IDR1_CMDQ_SHIFT                 21
79 #define IDR1_CMDQ_MASK                  0x1f
80 #define IDR1_EVTQ_SHIFT                 16
81 #define IDR1_EVTQ_MASK                  0x1f
82 #define IDR1_PRIQ_SHIFT                 11
83 #define IDR1_PRIQ_MASK                  0x1f
84 #define IDR1_SSID_SHIFT                 6
85 #define IDR1_SSID_MASK                  0x1f
86 #define IDR1_SID_SHIFT                  0
87 #define IDR1_SID_MASK                   0x3f
88
89 #define ARM_SMMU_IDR5                   0x14
90 #define IDR5_STALL_MAX_SHIFT            16
91 #define IDR5_STALL_MAX_MASK             0xffff
92 #define IDR5_GRAN64K                    (1 << 6)
93 #define IDR5_GRAN16K                    (1 << 5)
94 #define IDR5_GRAN4K                     (1 << 4)
95 #define IDR5_OAS_SHIFT                  0
96 #define IDR5_OAS_MASK                   0x7
97 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0                    0x20
105 #define CR0_CMDQEN                      (1 << 3)
106 #define CR0_EVTQEN                      (1 << 2)
107 #define CR0_PRIQEN                      (1 << 1)
108 #define CR0_SMMUEN                      (1 << 0)
109
110 #define ARM_SMMU_CR0ACK                 0x24
111
112 #define ARM_SMMU_CR1                    0x28
113 #define CR1_SH_NSH                      0
114 #define CR1_SH_OSH                      2
115 #define CR1_SH_ISH                      3
116 #define CR1_CACHE_NC                    0
117 #define CR1_CACHE_WB                    1
118 #define CR1_CACHE_WT                    2
119 #define CR1_TABLE_SH_SHIFT              10
120 #define CR1_TABLE_OC_SHIFT              8
121 #define CR1_TABLE_IC_SHIFT              6
122 #define CR1_QUEUE_SH_SHIFT              4
123 #define CR1_QUEUE_OC_SHIFT              2
124 #define CR1_QUEUE_IC_SHIFT              0
125
126 #define ARM_SMMU_CR2                    0x2c
127 #define CR2_PTM                         (1 << 2)
128 #define CR2_RECINVSID                   (1 << 1)
129 #define CR2_E2H                         (1 << 0)
130
131 #define ARM_SMMU_GBPA                   0x44
132 #define GBPA_ABORT                      (1 << 20)
133 #define GBPA_UPDATE                     (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL               0x50
136 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK            0x54
141
142 #define ARM_SMMU_GERROR                 0x60
143 #define GERROR_SFM_ERR                  (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
150 #define GERROR_CMDQ_ERR                 (1 << 0)
151 #define GERROR_ERR_MASK                 0xfd
152
153 #define ARM_SMMU_GERRORN                0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
158
159 #define ARM_SMMU_STRTAB_BASE            0x80
160 #define STRTAB_BASE_RA                  (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT          6
162 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
168 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT       16
170 #define STRTAB_BASE_CFG_FMT_MASK        0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE              0x90
175 #define ARM_SMMU_CMDQ_PROD              0x98
176 #define ARM_SMMU_CMDQ_CONS              0x9c
177
178 #define ARM_SMMU_EVTQ_BASE              0xa0
179 #define ARM_SMMU_EVTQ_PROD              0x100a8
180 #define ARM_SMMU_EVTQ_CONS              0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
184
185 #define ARM_SMMU_PRIQ_BASE              0xc0
186 #define ARM_SMMU_PRIQ_PROD              0x100c8
187 #define ARM_SMMU_PRIQ_CONS              0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT             2
194 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT               4
196 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT          0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG                 (1 << 31)
205 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p)                     ((q)->base +                    \
207                                          Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA                      (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT               5
211 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT           0
213 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
214
215 /*
216  * Stream table.
217  *
218  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219  * 2lvl: 128k L1 entries,
220  *       256 lazy entries per table (each table covers a PCI bus)
221  */
222 #define STRTAB_L1_SZ_SHIFT              20
223 #define STRTAB_SPLIT                    8
224
225 #define STRTAB_L1_DESC_DWORDS           1
226 #define STRTAB_L1_DESC_SPAN_SHIFT       0
227 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
229 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS               8
232 #define STRTAB_STE_0_V                  (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT          1
234 #define STRTAB_STE_0_CFG_MASK           0x7UL
235 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT        4
241 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
243 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
245 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
251 #define STRTAB_STE_1_S1C_SH_NSH         0UL
252 #define STRTAB_STE_1_S1C_SH_OSH         2UL
253 #define STRTAB_STE_1_S1C_SH_ISH         3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT        2
255 #define STRTAB_STE_1_S1COR_SHIFT        4
256 #define STRTAB_STE_1_S1CSH_SHIFT        6
257
258 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT           0UL
261 #define STRTAB_STE_1_EATS_TRANS         1UL
262 #define STRTAB_STE_1_EATS_S1CHK         2UL
263 #define STRTAB_STE_1_EATS_SHIFT         28
264
265 #define STRTAB_STE_1_STRW_NSEL1         0UL
266 #define STRTAB_STE_1_STRW_EL2           2UL
267 #define STRTAB_STE_1_STRW_SHIFT         30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT        44
271
272 #define STRTAB_STE_2_S2VMID_SHIFT       0
273 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
274 #define STRTAB_STE_2_VTCR_SHIFT         32
275 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
276 #define STRTAB_STE_2_S2AA64             (1UL << 51)
277 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
278 #define STRTAB_STE_2_S2PTW              (1UL << 54)
279 #define STRTAB_STE_2_S2R                (1UL << 58)
280
281 #define STRTAB_STE_3_S2TTB_SHIFT        4
282 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
283
284 /* Context descriptor (stage-1 only) */
285 #define CTXDESC_CD_DWORDS               8
286 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
287 #define ARM64_TCR_T0SZ_SHIFT            0
288 #define ARM64_TCR_T0SZ_MASK             0x1fUL
289 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
290 #define ARM64_TCR_TG0_SHIFT             14
291 #define ARM64_TCR_TG0_MASK              0x3UL
292 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
293 #define ARM64_TCR_IRGN0_SHIFT           8
294 #define ARM64_TCR_IRGN0_MASK            0x3UL
295 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
296 #define ARM64_TCR_ORGN0_SHIFT           10
297 #define ARM64_TCR_ORGN0_MASK            0x3UL
298 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
299 #define ARM64_TCR_SH0_SHIFT             12
300 #define ARM64_TCR_SH0_MASK              0x3UL
301 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
302 #define ARM64_TCR_EPD0_SHIFT            7
303 #define ARM64_TCR_EPD0_MASK             0x1UL
304 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
305 #define ARM64_TCR_EPD1_SHIFT            23
306 #define ARM64_TCR_EPD1_MASK             0x1UL
307
308 #define CTXDESC_CD_0_ENDI               (1UL << 15)
309 #define CTXDESC_CD_0_V                  (1UL << 31)
310
311 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
312 #define ARM64_TCR_IPS_SHIFT             32
313 #define ARM64_TCR_IPS_MASK              0x7UL
314 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
315 #define ARM64_TCR_TBI0_SHIFT            37
316 #define ARM64_TCR_TBI0_MASK             0x1UL
317
318 #define CTXDESC_CD_0_AA64               (1UL << 41)
319 #define CTXDESC_CD_0_R                  (1UL << 45)
320 #define CTXDESC_CD_0_A                  (1UL << 46)
321 #define CTXDESC_CD_0_ASET_SHIFT         47
322 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
323 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
324 #define CTXDESC_CD_0_ASID_SHIFT         48
325 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
326
327 #define CTXDESC_CD_1_TTB0_SHIFT         4
328 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
329
330 #define CTXDESC_CD_3_MAIR_SHIFT         0
331
332 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
333 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
334         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
335          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
336
337 /* Command queue */
338 #define CMDQ_ENT_DWORDS                 2
339 #define CMDQ_MAX_SZ_SHIFT               8
340
341 #define CMDQ_ERR_SHIFT                  24
342 #define CMDQ_ERR_MASK                   0x7f
343 #define CMDQ_ERR_CERROR_NONE_IDX        0
344 #define CMDQ_ERR_CERROR_ILL_IDX         1
345 #define CMDQ_ERR_CERROR_ABT_IDX         2
346
347 #define CMDQ_0_OP_SHIFT                 0
348 #define CMDQ_0_OP_MASK                  0xffUL
349 #define CMDQ_0_SSV                      (1UL << 11)
350
351 #define CMDQ_PREFETCH_0_SID_SHIFT       32
352 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
353 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
354
355 #define CMDQ_CFGI_0_SID_SHIFT           32
356 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
357 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
358 #define CMDQ_CFGI_1_RANGE_SHIFT         0
359 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
360
361 #define CMDQ_TLBI_0_VMID_SHIFT          32
362 #define CMDQ_TLBI_0_ASID_SHIFT          48
363 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
364 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
365 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
366
367 #define CMDQ_PRI_0_SSID_SHIFT           12
368 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
369 #define CMDQ_PRI_0_SID_SHIFT            32
370 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
371 #define CMDQ_PRI_1_GRPID_SHIFT          0
372 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
373 #define CMDQ_PRI_1_RESP_SHIFT           12
374 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
375 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
376 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
377
378 #define CMDQ_SYNC_0_CS_SHIFT            12
379 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
380 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
381
382 /* Event queue */
383 #define EVTQ_ENT_DWORDS                 4
384 #define EVTQ_MAX_SZ_SHIFT               7
385
386 #define EVTQ_0_ID_SHIFT                 0
387 #define EVTQ_0_ID_MASK                  0xffUL
388
389 /* PRI queue */
390 #define PRIQ_ENT_DWORDS                 2
391 #define PRIQ_MAX_SZ_SHIFT               8
392
393 #define PRIQ_0_SID_SHIFT                0
394 #define PRIQ_0_SID_MASK                 0xffffffffUL
395 #define PRIQ_0_SSID_SHIFT               32
396 #define PRIQ_0_SSID_MASK                0xfffffUL
397 #define PRIQ_0_PERM_PRIV                (1UL << 58)
398 #define PRIQ_0_PERM_EXEC                (1UL << 59)
399 #define PRIQ_0_PERM_READ                (1UL << 60)
400 #define PRIQ_0_PERM_WRITE               (1UL << 61)
401 #define PRIQ_0_PRG_LAST                 (1UL << 62)
402 #define PRIQ_0_SSID_V                   (1UL << 63)
403
404 #define PRIQ_1_PRG_IDX_SHIFT            0
405 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
406 #define PRIQ_1_ADDR_SHIFT               12
407 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
408
409 /* High-level queue structures */
410 #define ARM_SMMU_POLL_TIMEOUT_US        100
411
412 #define MSI_IOVA_BASE                   0x8000000
413 #define MSI_IOVA_LENGTH                 0x100000
414
415 static bool disable_bypass;
416 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
417 MODULE_PARM_DESC(disable_bypass,
418         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
419
420 enum pri_resp {
421         PRI_RESP_DENY,
422         PRI_RESP_FAIL,
423         PRI_RESP_SUCC,
424 };
425
426 enum arm_smmu_msi_index {
427         EVTQ_MSI_INDEX,
428         GERROR_MSI_INDEX,
429         PRIQ_MSI_INDEX,
430         ARM_SMMU_MAX_MSIS,
431 };
432
433 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
434         [EVTQ_MSI_INDEX] = {
435                 ARM_SMMU_EVTQ_IRQ_CFG0,
436                 ARM_SMMU_EVTQ_IRQ_CFG1,
437                 ARM_SMMU_EVTQ_IRQ_CFG2,
438         },
439         [GERROR_MSI_INDEX] = {
440                 ARM_SMMU_GERROR_IRQ_CFG0,
441                 ARM_SMMU_GERROR_IRQ_CFG1,
442                 ARM_SMMU_GERROR_IRQ_CFG2,
443         },
444         [PRIQ_MSI_INDEX] = {
445                 ARM_SMMU_PRIQ_IRQ_CFG0,
446                 ARM_SMMU_PRIQ_IRQ_CFG1,
447                 ARM_SMMU_PRIQ_IRQ_CFG2,
448         },
449 };
450
451 struct arm_smmu_cmdq_ent {
452         /* Common fields */
453         u8                              opcode;
454         bool                            substream_valid;
455
456         /* Command-specific fields */
457         union {
458                 #define CMDQ_OP_PREFETCH_CFG    0x1
459                 struct {
460                         u32                     sid;
461                         u8                      size;
462                         u64                     addr;
463                 } prefetch;
464
465                 #define CMDQ_OP_CFGI_STE        0x3
466                 #define CMDQ_OP_CFGI_ALL        0x4
467                 struct {
468                         u32                     sid;
469                         union {
470                                 bool            leaf;
471                                 u8              span;
472                         };
473                 } cfgi;
474
475                 #define CMDQ_OP_TLBI_NH_ASID    0x11
476                 #define CMDQ_OP_TLBI_NH_VA      0x12
477                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
478                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
479                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
480                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
481                 struct {
482                         u16                     asid;
483                         u16                     vmid;
484                         bool                    leaf;
485                         u64                     addr;
486                 } tlbi;
487
488                 #define CMDQ_OP_PRI_RESP        0x41
489                 struct {
490                         u32                     sid;
491                         u32                     ssid;
492                         u16                     grpid;
493                         enum pri_resp           resp;
494                 } pri;
495
496                 #define CMDQ_OP_CMD_SYNC        0x46
497         };
498 };
499
500 struct arm_smmu_queue {
501         int                             irq; /* Wired interrupt */
502
503         __le64                          *base;
504         dma_addr_t                      base_dma;
505         u64                             q_base;
506
507         size_t                          ent_dwords;
508         u32                             max_n_shift;
509         u32                             prod;
510         u32                             cons;
511
512         u32 __iomem                     *prod_reg;
513         u32 __iomem                     *cons_reg;
514 };
515
516 struct arm_smmu_cmdq {
517         struct arm_smmu_queue           q;
518         spinlock_t                      lock;
519 };
520
521 struct arm_smmu_evtq {
522         struct arm_smmu_queue           q;
523         u32                             max_stalls;
524 };
525
526 struct arm_smmu_priq {
527         struct arm_smmu_queue           q;
528 };
529
530 /* High-level stream table and context descriptor structures */
531 struct arm_smmu_strtab_l1_desc {
532         u8                              span;
533
534         __le64                          *l2ptr;
535         dma_addr_t                      l2ptr_dma;
536 };
537
538 struct arm_smmu_s1_cfg {
539         __le64                          *cdptr;
540         dma_addr_t                      cdptr_dma;
541
542         struct arm_smmu_ctx_desc {
543                 u16     asid;
544                 u64     ttbr;
545                 u64     tcr;
546                 u64     mair;
547         }                               cd;
548 };
549
550 struct arm_smmu_s2_cfg {
551         u16                             vmid;
552         u64                             vttbr;
553         u64                             vtcr;
554 };
555
556 struct arm_smmu_strtab_ent {
557         bool                            valid;
558
559         bool                            bypass; /* Overrides s1/s2 config */
560         struct arm_smmu_s1_cfg          *s1_cfg;
561         struct arm_smmu_s2_cfg          *s2_cfg;
562 };
563
564 struct arm_smmu_strtab_cfg {
565         __le64                          *strtab;
566         dma_addr_t                      strtab_dma;
567         struct arm_smmu_strtab_l1_desc  *l1_desc;
568         unsigned int                    num_l1_ents;
569
570         u64                             strtab_base;
571         u32                             strtab_base_cfg;
572 };
573
574 /* An SMMUv3 instance */
575 struct arm_smmu_device {
576         struct device                   *dev;
577         void __iomem                    *base;
578
579 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
580 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
581 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
582 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
583 #define ARM_SMMU_FEAT_PRI               (1 << 4)
584 #define ARM_SMMU_FEAT_ATS               (1 << 5)
585 #define ARM_SMMU_FEAT_SEV               (1 << 6)
586 #define ARM_SMMU_FEAT_MSI               (1 << 7)
587 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
588 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
589 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
590 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
591 #define ARM_SMMU_FEAT_HYP               (1 << 12)
592         u32                             features;
593
594 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
595         u32                             options;
596
597         struct arm_smmu_cmdq            cmdq;
598         struct arm_smmu_evtq            evtq;
599         struct arm_smmu_priq            priq;
600
601         int                             gerr_irq;
602
603         unsigned long                   ias; /* IPA */
604         unsigned long                   oas; /* PA */
605         unsigned long                   pgsize_bitmap;
606
607 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
608         unsigned int                    asid_bits;
609         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
610
611 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
612         unsigned int                    vmid_bits;
613         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
614
615         unsigned int                    ssid_bits;
616         unsigned int                    sid_bits;
617
618         struct arm_smmu_strtab_cfg      strtab_cfg;
619 };
620
621 /* SMMU private data for each master */
622 struct arm_smmu_master_data {
623         struct arm_smmu_device          *smmu;
624         struct arm_smmu_strtab_ent      ste;
625 };
626
627 /* SMMU private data for an IOMMU domain */
628 enum arm_smmu_domain_stage {
629         ARM_SMMU_DOMAIN_S1 = 0,
630         ARM_SMMU_DOMAIN_S2,
631         ARM_SMMU_DOMAIN_NESTED,
632 };
633
634 struct arm_smmu_domain {
635         struct arm_smmu_device          *smmu;
636         struct mutex                    init_mutex; /* Protects smmu pointer */
637
638         struct io_pgtable_ops           *pgtbl_ops;
639         spinlock_t                      pgtbl_lock;
640
641         enum arm_smmu_domain_stage      stage;
642         union {
643                 struct arm_smmu_s1_cfg  s1_cfg;
644                 struct arm_smmu_s2_cfg  s2_cfg;
645         };
646
647         struct iommu_domain             domain;
648 };
649
650 struct arm_smmu_option_prop {
651         u32 opt;
652         const char *prop;
653 };
654
655 static struct arm_smmu_option_prop arm_smmu_options[] = {
656         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
657         { 0, NULL},
658 };
659
660 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
661 {
662         return container_of(dom, struct arm_smmu_domain, domain);
663 }
664
665 static void parse_driver_options(struct arm_smmu_device *smmu)
666 {
667         int i = 0;
668
669         do {
670                 if (of_property_read_bool(smmu->dev->of_node,
671                                                 arm_smmu_options[i].prop)) {
672                         smmu->options |= arm_smmu_options[i].opt;
673                         dev_notice(smmu->dev, "option %s\n",
674                                 arm_smmu_options[i].prop);
675                 }
676         } while (arm_smmu_options[++i].opt);
677 }
678
679 /* Low-level queue manipulation functions */
680 static bool queue_full(struct arm_smmu_queue *q)
681 {
682         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
683                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
684 }
685
686 static bool queue_empty(struct arm_smmu_queue *q)
687 {
688         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
689                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
690 }
691
692 static void queue_sync_cons(struct arm_smmu_queue *q)
693 {
694         q->cons = readl_relaxed(q->cons_reg);
695 }
696
697 static void queue_inc_cons(struct arm_smmu_queue *q)
698 {
699         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
700
701         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
702         writel(q->cons, q->cons_reg);
703 }
704
705 static int queue_sync_prod(struct arm_smmu_queue *q)
706 {
707         int ret = 0;
708         u32 prod = readl_relaxed(q->prod_reg);
709
710         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
711                 ret = -EOVERFLOW;
712
713         q->prod = prod;
714         return ret;
715 }
716
717 static void queue_inc_prod(struct arm_smmu_queue *q)
718 {
719         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
720
721         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
722         writel(q->prod, q->prod_reg);
723 }
724
725 /*
726  * Wait for the SMMU to consume items. If drain is true, wait until the queue
727  * is empty. Otherwise, wait until there is at least one free slot.
728  */
729 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
730 {
731         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
732
733         while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
734                 if (ktime_compare(ktime_get(), timeout) > 0)
735                         return -ETIMEDOUT;
736
737                 if (wfe) {
738                         wfe();
739                 } else {
740                         cpu_relax();
741                         udelay(1);
742                 }
743         }
744
745         return 0;
746 }
747
748 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
749 {
750         int i;
751
752         for (i = 0; i < n_dwords; ++i)
753                 *dst++ = cpu_to_le64(*src++);
754 }
755
756 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
757 {
758         if (queue_full(q))
759                 return -ENOSPC;
760
761         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
762         queue_inc_prod(q);
763         return 0;
764 }
765
766 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
767 {
768         int i;
769
770         for (i = 0; i < n_dwords; ++i)
771                 *dst++ = le64_to_cpu(*src++);
772 }
773
774 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
775 {
776         if (queue_empty(q))
777                 return -EAGAIN;
778
779         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
780         queue_inc_cons(q);
781         return 0;
782 }
783
784 /* High-level queue accessors */
785 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
786 {
787         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
788         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
789
790         switch (ent->opcode) {
791         case CMDQ_OP_TLBI_EL2_ALL:
792         case CMDQ_OP_TLBI_NSNH_ALL:
793                 break;
794         case CMDQ_OP_PREFETCH_CFG:
795                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
796                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
797                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
798                 break;
799         case CMDQ_OP_CFGI_STE:
800                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
801                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
802                 break;
803         case CMDQ_OP_CFGI_ALL:
804                 /* Cover the entire SID range */
805                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
806                 break;
807         case CMDQ_OP_TLBI_NH_VA:
808                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
809                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
810                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
811                 break;
812         case CMDQ_OP_TLBI_S2_IPA:
813                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
814                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
815                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
816                 break;
817         case CMDQ_OP_TLBI_NH_ASID:
818                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
819                 /* Fallthrough */
820         case CMDQ_OP_TLBI_S12_VMALL:
821                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
822                 break;
823         case CMDQ_OP_PRI_RESP:
824                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
825                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
826                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
827                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
828                 switch (ent->pri.resp) {
829                 case PRI_RESP_DENY:
830                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
831                         break;
832                 case PRI_RESP_FAIL:
833                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
834                         break;
835                 case PRI_RESP_SUCC:
836                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
837                         break;
838                 default:
839                         return -EINVAL;
840                 }
841                 break;
842         case CMDQ_OP_CMD_SYNC:
843                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
844                 break;
845         default:
846                 return -ENOENT;
847         }
848
849         return 0;
850 }
851
852 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
853 {
854         static const char *cerror_str[] = {
855                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
856                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
857                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
858         };
859
860         int i;
861         u64 cmd[CMDQ_ENT_DWORDS];
862         struct arm_smmu_queue *q = &smmu->cmdq.q;
863         u32 cons = readl_relaxed(q->cons_reg);
864         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
865         struct arm_smmu_cmdq_ent cmd_sync = {
866                 .opcode = CMDQ_OP_CMD_SYNC,
867         };
868
869         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
870                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
871
872         switch (idx) {
873         case CMDQ_ERR_CERROR_ABT_IDX:
874                 dev_err(smmu->dev, "retrying command fetch\n");
875         case CMDQ_ERR_CERROR_NONE_IDX:
876                 return;
877         case CMDQ_ERR_CERROR_ILL_IDX:
878                 /* Fallthrough */
879         default:
880                 break;
881         }
882
883         /*
884          * We may have concurrent producers, so we need to be careful
885          * not to touch any of the shadow cmdq state.
886          */
887         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
888         dev_err(smmu->dev, "skipping command in error state:\n");
889         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
890                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
891
892         /* Convert the erroneous command into a CMD_SYNC */
893         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
894                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
895                 return;
896         }
897
898         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
899 }
900
901 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
902                                     struct arm_smmu_cmdq_ent *ent)
903 {
904         u64 cmd[CMDQ_ENT_DWORDS];
905         unsigned long flags;
906         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
907         struct arm_smmu_queue *q = &smmu->cmdq.q;
908
909         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
910                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
911                          ent->opcode);
912                 return;
913         }
914
915         spin_lock_irqsave(&smmu->cmdq.lock, flags);
916         while (queue_insert_raw(q, cmd) == -ENOSPC) {
917                 if (queue_poll_cons(q, false, wfe))
918                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
919         }
920
921         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
922                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
923         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
924 }
925
926 /* Context descriptor manipulation functions */
927 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
928 {
929         u64 val = 0;
930
931         /* Repack the TCR. Just care about TTBR0 for now */
932         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
933         val |= ARM_SMMU_TCR2CD(tcr, TG0);
934         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
935         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
936         val |= ARM_SMMU_TCR2CD(tcr, SH0);
937         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
938         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
939         val |= ARM_SMMU_TCR2CD(tcr, IPS);
940         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
941
942         return val;
943 }
944
945 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
946                                     struct arm_smmu_s1_cfg *cfg)
947 {
948         u64 val;
949
950         /*
951          * We don't need to issue any invalidation here, as we'll invalidate
952          * the STE when installing the new entry anyway.
953          */
954         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
955 #ifdef __BIG_ENDIAN
956               CTXDESC_CD_0_ENDI |
957 #endif
958               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
959               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
960               CTXDESC_CD_0_V;
961         cfg->cdptr[0] = cpu_to_le64(val);
962
963         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
964         cfg->cdptr[1] = cpu_to_le64(val);
965
966         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
967 }
968
969 /* Stream table manipulation functions */
970 static void
971 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
972 {
973         u64 val = 0;
974
975         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
976                 << STRTAB_L1_DESC_SPAN_SHIFT;
977         val |= desc->l2ptr_dma &
978                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
979
980         *dst = cpu_to_le64(val);
981 }
982
983 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
984 {
985         struct arm_smmu_cmdq_ent cmd = {
986                 .opcode = CMDQ_OP_CFGI_STE,
987                 .cfgi   = {
988                         .sid    = sid,
989                         .leaf   = true,
990                 },
991         };
992
993         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
994         cmd.opcode = CMDQ_OP_CMD_SYNC;
995         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
996 }
997
998 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
999                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
1000 {
1001         /*
1002          * This is hideously complicated, but we only really care about
1003          * three cases at the moment:
1004          *
1005          * 1. Invalid (all zero) -> bypass  (init)
1006          * 2. Bypass -> translation (attach)
1007          * 3. Translation -> bypass (detach)
1008          *
1009          * Given that we can't update the STE atomically and the SMMU
1010          * doesn't read the thing in a defined order, that leaves us
1011          * with the following maintenance requirements:
1012          *
1013          * 1. Update Config, return (init time STEs aren't live)
1014          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1015          * 3. Update Config, sync
1016          */
1017         u64 val = le64_to_cpu(dst[0]);
1018         bool ste_live = false;
1019         struct arm_smmu_cmdq_ent prefetch_cmd = {
1020                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1021                 .prefetch       = {
1022                         .sid    = sid,
1023                 },
1024         };
1025
1026         if (val & STRTAB_STE_0_V) {
1027                 u64 cfg;
1028
1029                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1030                 switch (cfg) {
1031                 case STRTAB_STE_0_CFG_BYPASS:
1032                         break;
1033                 case STRTAB_STE_0_CFG_S1_TRANS:
1034                 case STRTAB_STE_0_CFG_S2_TRANS:
1035                         ste_live = true;
1036                         break;
1037                 case STRTAB_STE_0_CFG_ABORT:
1038                         if (disable_bypass)
1039                                 break;
1040                 default:
1041                         BUG(); /* STE corruption */
1042                 }
1043         }
1044
1045         /* Nuke the existing Config, as we're going to rewrite it */
1046         val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1047
1048         if (ste->valid)
1049                 val |= STRTAB_STE_0_V;
1050         else
1051                 val &= ~STRTAB_STE_0_V;
1052
1053         if (ste->bypass) {
1054                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1055                                       : STRTAB_STE_0_CFG_BYPASS;
1056                 dst[0] = cpu_to_le64(val);
1057                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1058                          << STRTAB_STE_1_SHCFG_SHIFT);
1059                 dst[2] = 0; /* Nuke the VMID */
1060                 if (ste_live)
1061                         arm_smmu_sync_ste_for_sid(smmu, sid);
1062                 return;
1063         }
1064
1065         if (ste->s1_cfg) {
1066                 BUG_ON(ste_live);
1067                 dst[1] = cpu_to_le64(
1068                          STRTAB_STE_1_S1C_CACHE_WBRA
1069                          << STRTAB_STE_1_S1CIR_SHIFT |
1070                          STRTAB_STE_1_S1C_CACHE_WBRA
1071                          << STRTAB_STE_1_S1COR_SHIFT |
1072                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1073 #ifdef CONFIG_PCI_ATS
1074                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1075 #endif
1076                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1077
1078                 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1079                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1080
1081                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1082                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1083                         STRTAB_STE_0_CFG_S1_TRANS;
1084
1085         }
1086
1087         if (ste->s2_cfg) {
1088                 BUG_ON(ste_live);
1089                 dst[2] = cpu_to_le64(
1090                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1091                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1092                           << STRTAB_STE_2_VTCR_SHIFT |
1093 #ifdef __BIG_ENDIAN
1094                          STRTAB_STE_2_S2ENDI |
1095 #endif
1096                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1097                          STRTAB_STE_2_S2R);
1098
1099                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1100                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1101
1102                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1103         }
1104
1105         arm_smmu_sync_ste_for_sid(smmu, sid);
1106         dst[0] = cpu_to_le64(val);
1107         arm_smmu_sync_ste_for_sid(smmu, sid);
1108
1109         /* It's likely that we'll want to use the new STE soon */
1110         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1111                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1112 }
1113
1114 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1115 {
1116         unsigned int i;
1117         struct arm_smmu_strtab_ent ste = {
1118                 .valid  = true,
1119                 .bypass = true,
1120         };
1121
1122         for (i = 0; i < nent; ++i) {
1123                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1124                 strtab += STRTAB_STE_DWORDS;
1125         }
1126 }
1127
1128 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1129 {
1130         size_t size;
1131         void *strtab;
1132         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1133         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1134
1135         if (desc->l2ptr)
1136                 return 0;
1137
1138         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1139         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1140
1141         desc->span = STRTAB_SPLIT + 1;
1142         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1143                                           GFP_KERNEL | __GFP_ZERO);
1144         if (!desc->l2ptr) {
1145                 dev_err(smmu->dev,
1146                         "failed to allocate l2 stream table for SID %u\n",
1147                         sid);
1148                 return -ENOMEM;
1149         }
1150
1151         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1152         arm_smmu_write_strtab_l1_desc(strtab, desc);
1153         return 0;
1154 }
1155
1156 /* IRQ and event handlers */
1157 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1158 {
1159         int i;
1160         struct arm_smmu_device *smmu = dev;
1161         struct arm_smmu_queue *q = &smmu->evtq.q;
1162         u64 evt[EVTQ_ENT_DWORDS];
1163
1164         do {
1165                 while (!queue_remove_raw(q, evt)) {
1166                         u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1167
1168                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1169                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1170                                 dev_info(smmu->dev, "\t0x%016llx\n",
1171                                          (unsigned long long)evt[i]);
1172
1173                 }
1174
1175                 /*
1176                  * Not much we can do on overflow, so scream and pretend we're
1177                  * trying harder.
1178                  */
1179                 if (queue_sync_prod(q) == -EOVERFLOW)
1180                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1181         } while (!queue_empty(q));
1182
1183         /* Sync our overflow flag, as we believe we're up to speed */
1184         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1185         return IRQ_HANDLED;
1186 }
1187
1188 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1189 {
1190         u32 sid, ssid;
1191         u16 grpid;
1192         bool ssv, last;
1193
1194         sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1195         ssv = evt[0] & PRIQ_0_SSID_V;
1196         ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1197         last = evt[0] & PRIQ_0_PRG_LAST;
1198         grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1199
1200         dev_info(smmu->dev, "unexpected PRI request received:\n");
1201         dev_info(smmu->dev,
1202                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1203                  sid, ssid, grpid, last ? "L" : "",
1204                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1205                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1206                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1207                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1208                  evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1209
1210         if (last) {
1211                 struct arm_smmu_cmdq_ent cmd = {
1212                         .opcode                 = CMDQ_OP_PRI_RESP,
1213                         .substream_valid        = ssv,
1214                         .pri                    = {
1215                                 .sid    = sid,
1216                                 .ssid   = ssid,
1217                                 .grpid  = grpid,
1218                                 .resp   = PRI_RESP_DENY,
1219                         },
1220                 };
1221
1222                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1223         }
1224 }
1225
1226 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1227 {
1228         struct arm_smmu_device *smmu = dev;
1229         struct arm_smmu_queue *q = &smmu->priq.q;
1230         u64 evt[PRIQ_ENT_DWORDS];
1231
1232         do {
1233                 while (!queue_remove_raw(q, evt))
1234                         arm_smmu_handle_ppr(smmu, evt);
1235
1236                 if (queue_sync_prod(q) == -EOVERFLOW)
1237                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1238         } while (!queue_empty(q));
1239
1240         /* Sync our overflow flag, as we believe we're up to speed */
1241         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1242         return IRQ_HANDLED;
1243 }
1244
1245 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1246 {
1247         /* We don't actually use CMD_SYNC interrupts for anything */
1248         return IRQ_HANDLED;
1249 }
1250
1251 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1252
1253 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1254 {
1255         u32 gerror, gerrorn, active;
1256         struct arm_smmu_device *smmu = dev;
1257
1258         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1259         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1260
1261         active = gerror ^ gerrorn;
1262         if (!(active & GERROR_ERR_MASK))
1263                 return IRQ_NONE; /* No errors pending */
1264
1265         dev_warn(smmu->dev,
1266                  "unexpected global error reported (0x%08x), this could be serious\n",
1267                  active);
1268
1269         if (active & GERROR_SFM_ERR) {
1270                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1271                 arm_smmu_device_disable(smmu);
1272         }
1273
1274         if (active & GERROR_MSI_GERROR_ABT_ERR)
1275                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1276
1277         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1278                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1279
1280         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1281                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1282
1283         if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1284                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1285                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1286         }
1287
1288         if (active & GERROR_PRIQ_ABT_ERR)
1289                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1290
1291         if (active & GERROR_EVTQ_ABT_ERR)
1292                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1293
1294         if (active & GERROR_CMDQ_ERR)
1295                 arm_smmu_cmdq_skip_err(smmu);
1296
1297         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1298         return IRQ_HANDLED;
1299 }
1300
1301 /* IO_PGTABLE API */
1302 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1303 {
1304         struct arm_smmu_cmdq_ent cmd;
1305
1306         cmd.opcode = CMDQ_OP_CMD_SYNC;
1307         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1308 }
1309
1310 static void arm_smmu_tlb_sync(void *cookie)
1311 {
1312         struct arm_smmu_domain *smmu_domain = cookie;
1313         __arm_smmu_tlb_sync(smmu_domain->smmu);
1314 }
1315
1316 static void arm_smmu_tlb_inv_context(void *cookie)
1317 {
1318         struct arm_smmu_domain *smmu_domain = cookie;
1319         struct arm_smmu_device *smmu = smmu_domain->smmu;
1320         struct arm_smmu_cmdq_ent cmd;
1321
1322         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1323                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1324                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1325                 cmd.tlbi.vmid   = 0;
1326         } else {
1327                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1328                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1329         }
1330
1331         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1332         __arm_smmu_tlb_sync(smmu);
1333 }
1334
1335 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1336                                           size_t granule, bool leaf, void *cookie)
1337 {
1338         struct arm_smmu_domain *smmu_domain = cookie;
1339         struct arm_smmu_device *smmu = smmu_domain->smmu;
1340         struct arm_smmu_cmdq_ent cmd = {
1341                 .tlbi = {
1342                         .leaf   = leaf,
1343                         .addr   = iova,
1344                 },
1345         };
1346
1347         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1348                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1349                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1350         } else {
1351                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1352                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1353         }
1354
1355         do {
1356                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1357                 cmd.tlbi.addr += granule;
1358         } while (size -= granule);
1359 }
1360
1361 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1362         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1363         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1364         .tlb_sync       = arm_smmu_tlb_sync,
1365 };
1366
1367 /* IOMMU API */
1368 static bool arm_smmu_capable(enum iommu_cap cap)
1369 {
1370         switch (cap) {
1371         case IOMMU_CAP_CACHE_COHERENCY:
1372                 return true;
1373         case IOMMU_CAP_NOEXEC:
1374                 return true;
1375         default:
1376                 return false;
1377         }
1378 }
1379
1380 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1381 {
1382         struct arm_smmu_domain *smmu_domain;
1383
1384         if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1385                 return NULL;
1386
1387         /*
1388          * Allocate the domain and initialise some of its data structures.
1389          * We can't really do anything meaningful until we've added a
1390          * master.
1391          */
1392         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1393         if (!smmu_domain)
1394                 return NULL;
1395
1396         if (type == IOMMU_DOMAIN_DMA &&
1397             iommu_get_dma_cookie(&smmu_domain->domain)) {
1398                 kfree(smmu_domain);
1399                 return NULL;
1400         }
1401
1402         mutex_init(&smmu_domain->init_mutex);
1403         spin_lock_init(&smmu_domain->pgtbl_lock);
1404         return &smmu_domain->domain;
1405 }
1406
1407 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1408 {
1409         int idx, size = 1 << span;
1410
1411         do {
1412                 idx = find_first_zero_bit(map, size);
1413                 if (idx == size)
1414                         return -ENOSPC;
1415         } while (test_and_set_bit(idx, map));
1416
1417         return idx;
1418 }
1419
1420 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1421 {
1422         clear_bit(idx, map);
1423 }
1424
1425 static void arm_smmu_domain_free(struct iommu_domain *domain)
1426 {
1427         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1428         struct arm_smmu_device *smmu = smmu_domain->smmu;
1429
1430         iommu_put_dma_cookie(domain);
1431         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1432
1433         /* Free the CD and ASID, if we allocated them */
1434         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1435                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1436
1437                 if (cfg->cdptr) {
1438                         dmam_free_coherent(smmu_domain->smmu->dev,
1439                                            CTXDESC_CD_DWORDS << 3,
1440                                            cfg->cdptr,
1441                                            cfg->cdptr_dma);
1442
1443                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1444                 }
1445         } else {
1446                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1447                 if (cfg->vmid)
1448                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1449         }
1450
1451         kfree(smmu_domain);
1452 }
1453
1454 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1455                                        struct io_pgtable_cfg *pgtbl_cfg)
1456 {
1457         int ret;
1458         int asid;
1459         struct arm_smmu_device *smmu = smmu_domain->smmu;
1460         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1461
1462         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1463         if (asid < 0)
1464                 return asid;
1465
1466         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1467                                          &cfg->cdptr_dma,
1468                                          GFP_KERNEL | __GFP_ZERO);
1469         if (!cfg->cdptr) {
1470                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1471                 ret = -ENOMEM;
1472                 goto out_free_asid;
1473         }
1474
1475         cfg->cd.asid    = (u16)asid;
1476         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1477         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1478         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1479         return 0;
1480
1481 out_free_asid:
1482         arm_smmu_bitmap_free(smmu->asid_map, asid);
1483         return ret;
1484 }
1485
1486 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1487                                        struct io_pgtable_cfg *pgtbl_cfg)
1488 {
1489         int vmid;
1490         struct arm_smmu_device *smmu = smmu_domain->smmu;
1491         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1492
1493         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1494         if (vmid < 0)
1495                 return vmid;
1496
1497         cfg->vmid       = (u16)vmid;
1498         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1499         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1500         return 0;
1501 }
1502
1503 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1504 {
1505         int ret;
1506         unsigned long ias, oas;
1507         enum io_pgtable_fmt fmt;
1508         struct io_pgtable_cfg pgtbl_cfg;
1509         struct io_pgtable_ops *pgtbl_ops;
1510         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1511                                  struct io_pgtable_cfg *);
1512         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1513         struct arm_smmu_device *smmu = smmu_domain->smmu;
1514
1515         /* Restrict the stage to what we can actually support */
1516         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1517                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1518         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1519                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1520
1521         switch (smmu_domain->stage) {
1522         case ARM_SMMU_DOMAIN_S1:
1523                 ias = VA_BITS;
1524                 oas = smmu->ias;
1525                 fmt = ARM_64_LPAE_S1;
1526                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1527                 break;
1528         case ARM_SMMU_DOMAIN_NESTED:
1529         case ARM_SMMU_DOMAIN_S2:
1530                 ias = smmu->ias;
1531                 oas = smmu->oas;
1532                 fmt = ARM_64_LPAE_S2;
1533                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1534                 break;
1535         default:
1536                 return -EINVAL;
1537         }
1538
1539         pgtbl_cfg = (struct io_pgtable_cfg) {
1540                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1541                 .ias            = ias,
1542                 .oas            = oas,
1543                 .tlb            = &arm_smmu_gather_ops,
1544                 .iommu_dev      = smmu->dev,
1545         };
1546
1547         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1548         if (!pgtbl_ops)
1549                 return -ENOMEM;
1550
1551         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1552         domain->geometry.aperture_end = (1UL << ias) - 1;
1553         domain->geometry.force_aperture = true;
1554         smmu_domain->pgtbl_ops = pgtbl_ops;
1555
1556         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1557         if (ret < 0)
1558                 free_io_pgtable_ops(pgtbl_ops);
1559
1560         return ret;
1561 }
1562
1563 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1564 {
1565         __le64 *step;
1566         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1567
1568         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1569                 struct arm_smmu_strtab_l1_desc *l1_desc;
1570                 int idx;
1571
1572                 /* Two-level walk */
1573                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1574                 l1_desc = &cfg->l1_desc[idx];
1575                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1576                 step = &l1_desc->l2ptr[idx];
1577         } else {
1578                 /* Simple linear lookup */
1579                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1580         }
1581
1582         return step;
1583 }
1584
1585 static int arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1586 {
1587         int i;
1588         struct arm_smmu_master_data *master = fwspec->iommu_priv;
1589         struct arm_smmu_device *smmu = master->smmu;
1590
1591         for (i = 0; i < fwspec->num_ids; ++i) {
1592                 u32 sid = fwspec->ids[i];
1593                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1594
1595                 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1596         }
1597
1598         return 0;
1599 }
1600
1601 static void arm_smmu_detach_dev(struct device *dev)
1602 {
1603         struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1604
1605         master->ste.bypass = true;
1606         if (arm_smmu_install_ste_for_dev(dev->iommu_fwspec) < 0)
1607                 dev_warn(dev, "failed to install bypass STE\n");
1608 }
1609
1610 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1611 {
1612         int ret = 0;
1613         struct arm_smmu_device *smmu;
1614         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1615         struct arm_smmu_master_data *master;
1616         struct arm_smmu_strtab_ent *ste;
1617
1618         if (!dev->iommu_fwspec)
1619                 return -ENOENT;
1620
1621         master = dev->iommu_fwspec->iommu_priv;
1622         smmu = master->smmu;
1623         ste = &master->ste;
1624
1625         /* Already attached to a different domain? */
1626         if (!ste->bypass)
1627                 arm_smmu_detach_dev(dev);
1628
1629         mutex_lock(&smmu_domain->init_mutex);
1630
1631         if (!smmu_domain->smmu) {
1632                 smmu_domain->smmu = smmu;
1633                 ret = arm_smmu_domain_finalise(domain);
1634                 if (ret) {
1635                         smmu_domain->smmu = NULL;
1636                         goto out_unlock;
1637                 }
1638         } else if (smmu_domain->smmu != smmu) {
1639                 dev_err(dev,
1640                         "cannot attach to SMMU %s (upstream of %s)\n",
1641                         dev_name(smmu_domain->smmu->dev),
1642                         dev_name(smmu->dev));
1643                 ret = -ENXIO;
1644                 goto out_unlock;
1645         }
1646
1647         ste->bypass = false;
1648         ste->valid = true;
1649
1650         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1651                 ste->s1_cfg = &smmu_domain->s1_cfg;
1652                 ste->s2_cfg = NULL;
1653                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1654         } else {
1655                 ste->s1_cfg = NULL;
1656                 ste->s2_cfg = &smmu_domain->s2_cfg;
1657         }
1658
1659         ret = arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1660         if (ret < 0)
1661                 ste->valid = false;
1662
1663 out_unlock:
1664         mutex_unlock(&smmu_domain->init_mutex);
1665         return ret;
1666 }
1667
1668 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1669                         phys_addr_t paddr, size_t size, int prot)
1670 {
1671         int ret;
1672         unsigned long flags;
1673         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1674         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1675
1676         if (!ops)
1677                 return -ENODEV;
1678
1679         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1680         ret = ops->map(ops, iova, paddr, size, prot);
1681         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1682         return ret;
1683 }
1684
1685 static size_t
1686 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1687 {
1688         size_t ret;
1689         unsigned long flags;
1690         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1691         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1692
1693         if (!ops)
1694                 return 0;
1695
1696         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1697         ret = ops->unmap(ops, iova, size);
1698         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1699         return ret;
1700 }
1701
1702 static phys_addr_t
1703 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1704 {
1705         phys_addr_t ret;
1706         unsigned long flags;
1707         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1708         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1709
1710         if (!ops)
1711                 return 0;
1712
1713         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1714         ret = ops->iova_to_phys(ops, iova);
1715         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1716
1717         return ret;
1718 }
1719
1720 static struct platform_driver arm_smmu_driver;
1721
1722 static int arm_smmu_match_node(struct device *dev, void *data)
1723 {
1724         return dev->fwnode == data;
1725 }
1726
1727 static
1728 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1729 {
1730         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1731                                                 fwnode, arm_smmu_match_node);
1732         put_device(dev);
1733         return dev ? dev_get_drvdata(dev) : NULL;
1734 }
1735
1736 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1737 {
1738         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1739
1740         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1741                 limit *= 1UL << STRTAB_SPLIT;
1742
1743         return sid < limit;
1744 }
1745
1746 static struct iommu_ops arm_smmu_ops;
1747
1748 static int arm_smmu_add_device(struct device *dev)
1749 {
1750         int i, ret;
1751         struct arm_smmu_device *smmu;
1752         struct arm_smmu_master_data *master;
1753         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1754         struct iommu_group *group;
1755
1756         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1757                 return -ENODEV;
1758         /*
1759          * We _can_ actually withstand dodgy bus code re-calling add_device()
1760          * without an intervening remove_device()/of_xlate() sequence, but
1761          * we're not going to do so quietly...
1762          */
1763         if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1764                 master = fwspec->iommu_priv;
1765                 smmu = master->smmu;
1766         } else {
1767                 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1768                 if (!smmu)
1769                         return -ENODEV;
1770                 master = kzalloc(sizeof(*master), GFP_KERNEL);
1771                 if (!master)
1772                         return -ENOMEM;
1773
1774                 master->smmu = smmu;
1775                 fwspec->iommu_priv = master;
1776         }
1777
1778         /* Check the SIDs are in range of the SMMU and our stream table */
1779         for (i = 0; i < fwspec->num_ids; i++) {
1780                 u32 sid = fwspec->ids[i];
1781
1782                 if (!arm_smmu_sid_in_range(smmu, sid))
1783                         return -ERANGE;
1784
1785                 /* Ensure l2 strtab is initialised */
1786                 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1787                         ret = arm_smmu_init_l2_strtab(smmu, sid);
1788                         if (ret)
1789                                 return ret;
1790                 }
1791         }
1792
1793         group = iommu_group_get_for_dev(dev);
1794         if (!IS_ERR(group))
1795                 iommu_group_put(group);
1796
1797         return PTR_ERR_OR_ZERO(group);
1798 }
1799
1800 static void arm_smmu_remove_device(struct device *dev)
1801 {
1802         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1803         struct arm_smmu_master_data *master;
1804
1805         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1806                 return;
1807
1808         master = fwspec->iommu_priv;
1809         if (master && master->ste.valid)
1810                 arm_smmu_detach_dev(dev);
1811         iommu_group_remove_device(dev);
1812         kfree(master);
1813         iommu_fwspec_free(dev);
1814 }
1815
1816 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1817 {
1818         struct iommu_group *group;
1819
1820         /*
1821          * We don't support devices sharing stream IDs other than PCI RID
1822          * aliases, since the necessary ID-to-device lookup becomes rather
1823          * impractical given a potential sparse 32-bit stream ID space.
1824          */
1825         if (dev_is_pci(dev))
1826                 group = pci_device_group(dev);
1827         else
1828                 group = generic_device_group(dev);
1829
1830         return group;
1831 }
1832
1833 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1834                                     enum iommu_attr attr, void *data)
1835 {
1836         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1837
1838         switch (attr) {
1839         case DOMAIN_ATTR_NESTING:
1840                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1841                 return 0;
1842         default:
1843                 return -ENODEV;
1844         }
1845 }
1846
1847 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1848                                     enum iommu_attr attr, void *data)
1849 {
1850         int ret = 0;
1851         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1852
1853         mutex_lock(&smmu_domain->init_mutex);
1854
1855         switch (attr) {
1856         case DOMAIN_ATTR_NESTING:
1857                 if (smmu_domain->smmu) {
1858                         ret = -EPERM;
1859                         goto out_unlock;
1860                 }
1861
1862                 if (*(int *)data)
1863                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1864                 else
1865                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1866
1867                 break;
1868         default:
1869                 ret = -ENODEV;
1870         }
1871
1872 out_unlock:
1873         mutex_unlock(&smmu_domain->init_mutex);
1874         return ret;
1875 }
1876
1877 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1878 {
1879         return iommu_fwspec_add_ids(dev, args->args, 1);
1880 }
1881
1882 static void arm_smmu_get_resv_regions(struct device *dev,
1883                                       struct list_head *head)
1884 {
1885         struct iommu_resv_region *region;
1886         int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1887
1888         region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1889                                          prot, IOMMU_RESV_MSI);
1890         if (!region)
1891                 return;
1892
1893         list_add_tail(&region->list, head);
1894 }
1895
1896 static void arm_smmu_put_resv_regions(struct device *dev,
1897                                       struct list_head *head)
1898 {
1899         struct iommu_resv_region *entry, *next;
1900
1901         list_for_each_entry_safe(entry, next, head, list)
1902                 kfree(entry);
1903 }
1904
1905 static struct iommu_ops arm_smmu_ops = {
1906         .capable                = arm_smmu_capable,
1907         .domain_alloc           = arm_smmu_domain_alloc,
1908         .domain_free            = arm_smmu_domain_free,
1909         .attach_dev             = arm_smmu_attach_dev,
1910         .map                    = arm_smmu_map,
1911         .unmap                  = arm_smmu_unmap,
1912         .map_sg                 = default_iommu_map_sg,
1913         .iova_to_phys           = arm_smmu_iova_to_phys,
1914         .add_device             = arm_smmu_add_device,
1915         .remove_device          = arm_smmu_remove_device,
1916         .device_group           = arm_smmu_device_group,
1917         .domain_get_attr        = arm_smmu_domain_get_attr,
1918         .domain_set_attr        = arm_smmu_domain_set_attr,
1919         .of_xlate               = arm_smmu_of_xlate,
1920         .get_resv_regions       = arm_smmu_get_resv_regions,
1921         .put_resv_regions       = arm_smmu_put_resv_regions,
1922         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1923 };
1924
1925 /* Probing and initialisation functions */
1926 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1927                                    struct arm_smmu_queue *q,
1928                                    unsigned long prod_off,
1929                                    unsigned long cons_off,
1930                                    size_t dwords)
1931 {
1932         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1933
1934         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1935         if (!q->base) {
1936                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1937                         qsz);
1938                 return -ENOMEM;
1939         }
1940
1941         q->prod_reg     = smmu->base + prod_off;
1942         q->cons_reg     = smmu->base + cons_off;
1943         q->ent_dwords   = dwords;
1944
1945         q->q_base  = Q_BASE_RWA;
1946         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1947         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1948                      << Q_BASE_LOG2SIZE_SHIFT;
1949
1950         q->prod = q->cons = 0;
1951         return 0;
1952 }
1953
1954 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1955 {
1956         int ret;
1957
1958         /* cmdq */
1959         spin_lock_init(&smmu->cmdq.lock);
1960         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1961                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1962         if (ret)
1963                 return ret;
1964
1965         /* evtq */
1966         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1967                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1968         if (ret)
1969                 return ret;
1970
1971         /* priq */
1972         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1973                 return 0;
1974
1975         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1976                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1977 }
1978
1979 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1980 {
1981         unsigned int i;
1982         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1983         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1984         void *strtab = smmu->strtab_cfg.strtab;
1985
1986         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1987         if (!cfg->l1_desc) {
1988                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1989                 return -ENOMEM;
1990         }
1991
1992         for (i = 0; i < cfg->num_l1_ents; ++i) {
1993                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
1994                 strtab += STRTAB_L1_DESC_DWORDS << 3;
1995         }
1996
1997         return 0;
1998 }
1999
2000 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2001 {
2002         void *strtab;
2003         u64 reg;
2004         u32 size, l1size;
2005         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2006
2007         /*
2008          * If we can resolve everything with a single L2 table, then we
2009          * just need a single L1 descriptor. Otherwise, calculate the L1
2010          * size, capped to the SIDSIZE.
2011          */
2012         if (smmu->sid_bits < STRTAB_SPLIT) {
2013                 size = 0;
2014         } else {
2015                 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2016                 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2017         }
2018         cfg->num_l1_ents = 1 << size;
2019
2020         size += STRTAB_SPLIT;
2021         if (size < smmu->sid_bits)
2022                 dev_warn(smmu->dev,
2023                          "2-level strtab only covers %u/%u bits of SID\n",
2024                          size, smmu->sid_bits);
2025
2026         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2027         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2028                                      GFP_KERNEL | __GFP_ZERO);
2029         if (!strtab) {
2030                 dev_err(smmu->dev,
2031                         "failed to allocate l1 stream table (%u bytes)\n",
2032                         size);
2033                 return -ENOMEM;
2034         }
2035         cfg->strtab = strtab;
2036
2037         /* Configure strtab_base_cfg for 2 levels */
2038         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2039         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2040                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2041         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2042                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2043         cfg->strtab_base_cfg = reg;
2044
2045         return arm_smmu_init_l1_strtab(smmu);
2046 }
2047
2048 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2049 {
2050         void *strtab;
2051         u64 reg;
2052         u32 size;
2053         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2054
2055         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2056         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2057                                      GFP_KERNEL | __GFP_ZERO);
2058         if (!strtab) {
2059                 dev_err(smmu->dev,
2060                         "failed to allocate linear stream table (%u bytes)\n",
2061                         size);
2062                 return -ENOMEM;
2063         }
2064         cfg->strtab = strtab;
2065         cfg->num_l1_ents = 1 << smmu->sid_bits;
2066
2067         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2068         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2069         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2070                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2071         cfg->strtab_base_cfg = reg;
2072
2073         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2074         return 0;
2075 }
2076
2077 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2078 {
2079         u64 reg;
2080         int ret;
2081
2082         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2083                 ret = arm_smmu_init_strtab_2lvl(smmu);
2084         else
2085                 ret = arm_smmu_init_strtab_linear(smmu);
2086
2087         if (ret)
2088                 return ret;
2089
2090         /* Set the strtab base address */
2091         reg  = smmu->strtab_cfg.strtab_dma &
2092                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2093         reg |= STRTAB_BASE_RA;
2094         smmu->strtab_cfg.strtab_base = reg;
2095
2096         /* Allocate the first VMID for stage-2 bypass STEs */
2097         set_bit(0, smmu->vmid_map);
2098         return 0;
2099 }
2100
2101 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2102 {
2103         int ret;
2104
2105         ret = arm_smmu_init_queues(smmu);
2106         if (ret)
2107                 return ret;
2108
2109         return arm_smmu_init_strtab(smmu);
2110 }
2111
2112 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2113                                    unsigned int reg_off, unsigned int ack_off)
2114 {
2115         u32 reg;
2116
2117         writel_relaxed(val, smmu->base + reg_off);
2118         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2119                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2120 }
2121
2122 /* GBPA is "special" */
2123 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2124 {
2125         int ret;
2126         u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2127
2128         ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2129                                          1, ARM_SMMU_POLL_TIMEOUT_US);
2130         if (ret)
2131                 return ret;
2132
2133         reg &= ~clr;
2134         reg |= set;
2135         writel_relaxed(reg | GBPA_UPDATE, gbpa);
2136         return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2137                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2138 }
2139
2140 static void arm_smmu_free_msis(void *data)
2141 {
2142         struct device *dev = data;
2143         platform_msi_domain_free_irqs(dev);
2144 }
2145
2146 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2147 {
2148         phys_addr_t doorbell;
2149         struct device *dev = msi_desc_to_dev(desc);
2150         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2151         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2152
2153         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2154         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2155
2156         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2157         writel_relaxed(msg->data, smmu->base + cfg[1]);
2158         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2159 }
2160
2161 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2162 {
2163         struct msi_desc *desc;
2164         int ret, nvec = ARM_SMMU_MAX_MSIS;
2165         struct device *dev = smmu->dev;
2166
2167         /* Clear the MSI address regs */
2168         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2169         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2170
2171         if (smmu->features & ARM_SMMU_FEAT_PRI)
2172                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2173         else
2174                 nvec--;
2175
2176         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2177                 return;
2178
2179         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2180         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2181         if (ret) {
2182                 dev_warn(dev, "failed to allocate MSIs\n");
2183                 return;
2184         }
2185
2186         for_each_msi_entry(desc, dev) {
2187                 switch (desc->platform.msi_index) {
2188                 case EVTQ_MSI_INDEX:
2189                         smmu->evtq.q.irq = desc->irq;
2190                         break;
2191                 case GERROR_MSI_INDEX:
2192                         smmu->gerr_irq = desc->irq;
2193                         break;
2194                 case PRIQ_MSI_INDEX:
2195                         smmu->priq.q.irq = desc->irq;
2196                         break;
2197                 default:        /* Unknown */
2198                         continue;
2199                 }
2200         }
2201
2202         /* Add callback to free MSIs on teardown */
2203         devm_add_action(dev, arm_smmu_free_msis, dev);
2204 }
2205
2206 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2207 {
2208         int ret, irq;
2209         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2210
2211         /* Disable IRQs first */
2212         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2213                                       ARM_SMMU_IRQ_CTRLACK);
2214         if (ret) {
2215                 dev_err(smmu->dev, "failed to disable irqs\n");
2216                 return ret;
2217         }
2218
2219         arm_smmu_setup_msis(smmu);
2220
2221         /* Request interrupt lines */
2222         irq = smmu->evtq.q.irq;
2223         if (irq) {
2224                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2225                                                 arm_smmu_evtq_thread,
2226                                                 IRQF_ONESHOT,
2227                                                 "arm-smmu-v3-evtq", smmu);
2228                 if (ret < 0)
2229                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2230         }
2231
2232         irq = smmu->cmdq.q.irq;
2233         if (irq) {
2234                 ret = devm_request_irq(smmu->dev, irq,
2235                                        arm_smmu_cmdq_sync_handler, 0,
2236                                        "arm-smmu-v3-cmdq-sync", smmu);
2237                 if (ret < 0)
2238                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2239         }
2240
2241         irq = smmu->gerr_irq;
2242         if (irq) {
2243                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2244                                        0, "arm-smmu-v3-gerror", smmu);
2245                 if (ret < 0)
2246                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2247         }
2248
2249         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2250                 irq = smmu->priq.q.irq;
2251                 if (irq) {
2252                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2253                                                         arm_smmu_priq_thread,
2254                                                         IRQF_ONESHOT,
2255                                                         "arm-smmu-v3-priq",
2256                                                         smmu);
2257                         if (ret < 0)
2258                                 dev_warn(smmu->dev,
2259                                          "failed to enable priq irq\n");
2260                         else
2261                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2262                 }
2263         }
2264
2265         /* Enable interrupt generation on the SMMU */
2266         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2267                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2268         if (ret)
2269                 dev_warn(smmu->dev, "failed to enable irqs\n");
2270
2271         return 0;
2272 }
2273
2274 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2275 {
2276         int ret;
2277
2278         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2279         if (ret)
2280                 dev_err(smmu->dev, "failed to clear cr0\n");
2281
2282         return ret;
2283 }
2284
2285 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2286 {
2287         int ret;
2288         u32 reg, enables;
2289         struct arm_smmu_cmdq_ent cmd;
2290
2291         /* Clear CR0 and sync (disables SMMU and queue processing) */
2292         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2293         if (reg & CR0_SMMUEN)
2294                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2295
2296         ret = arm_smmu_device_disable(smmu);
2297         if (ret)
2298                 return ret;
2299
2300         /* CR1 (table and queue memory attributes) */
2301         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2302               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2303               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2304               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2305               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2306               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2307         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2308
2309         /* CR2 (random crap) */
2310         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2311         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2312
2313         /* Stream table */
2314         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2315                        smmu->base + ARM_SMMU_STRTAB_BASE);
2316         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2317                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2318
2319         /* Command queue */
2320         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2321         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2322         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2323
2324         enables = CR0_CMDQEN;
2325         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2326                                       ARM_SMMU_CR0ACK);
2327         if (ret) {
2328                 dev_err(smmu->dev, "failed to enable command queue\n");
2329                 return ret;
2330         }
2331
2332         /* Invalidate any cached configuration */
2333         cmd.opcode = CMDQ_OP_CFGI_ALL;
2334         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2335         cmd.opcode = CMDQ_OP_CMD_SYNC;
2336         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2337
2338         /* Invalidate any stale TLB entries */
2339         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2340                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2341                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2342         }
2343
2344         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2345         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2346         cmd.opcode = CMDQ_OP_CMD_SYNC;
2347         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2348
2349         /* Event queue */
2350         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2351         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2352         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2353
2354         enables |= CR0_EVTQEN;
2355         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2356                                       ARM_SMMU_CR0ACK);
2357         if (ret) {
2358                 dev_err(smmu->dev, "failed to enable event queue\n");
2359                 return ret;
2360         }
2361
2362         /* PRI queue */
2363         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2364                 writeq_relaxed(smmu->priq.q.q_base,
2365                                smmu->base + ARM_SMMU_PRIQ_BASE);
2366                 writel_relaxed(smmu->priq.q.prod,
2367                                smmu->base + ARM_SMMU_PRIQ_PROD);
2368                 writel_relaxed(smmu->priq.q.cons,
2369                                smmu->base + ARM_SMMU_PRIQ_CONS);
2370
2371                 enables |= CR0_PRIQEN;
2372                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2373                                               ARM_SMMU_CR0ACK);
2374                 if (ret) {
2375                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2376                         return ret;
2377                 }
2378         }
2379
2380         ret = arm_smmu_setup_irqs(smmu);
2381         if (ret) {
2382                 dev_err(smmu->dev, "failed to setup irqs\n");
2383                 return ret;
2384         }
2385
2386
2387         /* Enable the SMMU interface, or ensure bypass */
2388         if (!bypass || disable_bypass) {
2389                 enables |= CR0_SMMUEN;
2390         } else {
2391                 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2392                 if (ret) {
2393                         dev_err(smmu->dev, "GBPA not responding to update\n");
2394                         return ret;
2395                 }
2396         }
2397         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2398                                       ARM_SMMU_CR0ACK);
2399         if (ret) {
2400                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2401                 return ret;
2402         }
2403
2404         return 0;
2405 }
2406
2407 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2408 {
2409         u32 reg;
2410         bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2411
2412         /* IDR0 */
2413         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2414
2415         /* 2-level structures */
2416         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2417                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2418
2419         if (reg & IDR0_CD2L)
2420                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2421
2422         /*
2423          * Translation table endianness.
2424          * We currently require the same endianness as the CPU, but this
2425          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2426          */
2427         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2428         case IDR0_TTENDIAN_MIXED:
2429                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2430                 break;
2431 #ifdef __BIG_ENDIAN
2432         case IDR0_TTENDIAN_BE:
2433                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2434                 break;
2435 #else
2436         case IDR0_TTENDIAN_LE:
2437                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2438                 break;
2439 #endif
2440         default:
2441                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2442                 return -ENXIO;
2443         }
2444
2445         /* Boolean feature flags */
2446         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2447                 smmu->features |= ARM_SMMU_FEAT_PRI;
2448
2449         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2450                 smmu->features |= ARM_SMMU_FEAT_ATS;
2451
2452         if (reg & IDR0_SEV)
2453                 smmu->features |= ARM_SMMU_FEAT_SEV;
2454
2455         if (reg & IDR0_MSI)
2456                 smmu->features |= ARM_SMMU_FEAT_MSI;
2457
2458         if (reg & IDR0_HYP)
2459                 smmu->features |= ARM_SMMU_FEAT_HYP;
2460
2461         /*
2462          * The coherency feature as set by FW is used in preference to the ID
2463          * register, but warn on mismatch.
2464          */
2465         if (!!(reg & IDR0_COHACC) != coherent)
2466                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2467                          coherent ? "true" : "false");
2468
2469         switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2470         case IDR0_STALL_MODEL_STALL:
2471                 /* Fallthrough */
2472         case IDR0_STALL_MODEL_FORCE:
2473                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2474         }
2475
2476         if (reg & IDR0_S1P)
2477                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2478
2479         if (reg & IDR0_S2P)
2480                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2481
2482         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2483                 dev_err(smmu->dev, "no translation support!\n");
2484                 return -ENXIO;
2485         }
2486
2487         /* We only support the AArch64 table format at present */
2488         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2489         case IDR0_TTF_AARCH32_64:
2490                 smmu->ias = 40;
2491                 /* Fallthrough */
2492         case IDR0_TTF_AARCH64:
2493                 break;
2494         default:
2495                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2496                 return -ENXIO;
2497         }
2498
2499         /* ASID/VMID sizes */
2500         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2501         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2502
2503         /* IDR1 */
2504         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2505         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2506                 dev_err(smmu->dev, "embedded implementation not supported\n");
2507                 return -ENXIO;
2508         }
2509
2510         /* Queue sizes, capped at 4k */
2511         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2512                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2513         if (!smmu->cmdq.q.max_n_shift) {
2514                 /* Odd alignment restrictions on the base, so ignore for now */
2515                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2516                 return -ENXIO;
2517         }
2518
2519         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2520                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2521         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2522                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2523
2524         /* SID/SSID sizes */
2525         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2526         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2527
2528         /* IDR5 */
2529         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2530
2531         /* Maximum number of outstanding stalls */
2532         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2533                                 & IDR5_STALL_MAX_MASK;
2534
2535         /* Page sizes */
2536         if (reg & IDR5_GRAN64K)
2537                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2538         if (reg & IDR5_GRAN16K)
2539                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2540         if (reg & IDR5_GRAN4K)
2541                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2542
2543         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2544                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2545         else
2546                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2547
2548         /* Output address size */
2549         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2550         case IDR5_OAS_32_BIT:
2551                 smmu->oas = 32;
2552                 break;
2553         case IDR5_OAS_36_BIT:
2554                 smmu->oas = 36;
2555                 break;
2556         case IDR5_OAS_40_BIT:
2557                 smmu->oas = 40;
2558                 break;
2559         case IDR5_OAS_42_BIT:
2560                 smmu->oas = 42;
2561                 break;
2562         case IDR5_OAS_44_BIT:
2563                 smmu->oas = 44;
2564                 break;
2565         default:
2566                 dev_info(smmu->dev,
2567                         "unknown output address size. Truncating to 48-bit\n");
2568                 /* Fallthrough */
2569         case IDR5_OAS_48_BIT:
2570                 smmu->oas = 48;
2571         }
2572
2573         /* Set the DMA mask for our table walker */
2574         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2575                 dev_warn(smmu->dev,
2576                          "failed to set DMA mask for table walker\n");
2577
2578         smmu->ias = max(smmu->ias, smmu->oas);
2579
2580         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2581                  smmu->ias, smmu->oas, smmu->features);
2582         return 0;
2583 }
2584
2585 #ifdef CONFIG_ACPI
2586 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2587                                       struct arm_smmu_device *smmu)
2588 {
2589         struct acpi_iort_smmu_v3 *iort_smmu;
2590         struct device *dev = smmu->dev;
2591         struct acpi_iort_node *node;
2592
2593         node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2594
2595         /* Retrieve SMMUv3 specific data */
2596         iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2597
2598         if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2599                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2600
2601         return 0;
2602 }
2603 #else
2604 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2605                                              struct arm_smmu_device *smmu)
2606 {
2607         return -ENODEV;
2608 }
2609 #endif
2610
2611 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2612                                     struct arm_smmu_device *smmu)
2613 {
2614         struct device *dev = &pdev->dev;
2615         u32 cells;
2616         int ret = -EINVAL;
2617
2618         if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2619                 dev_err(dev, "missing #iommu-cells property\n");
2620         else if (cells != 1)
2621                 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2622         else
2623                 ret = 0;
2624
2625         parse_driver_options(smmu);
2626
2627         if (of_dma_is_coherent(dev->of_node))
2628                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2629
2630         return ret;
2631 }
2632
2633 static int arm_smmu_device_probe(struct platform_device *pdev)
2634 {
2635         int irq, ret;
2636         struct resource *res;
2637         struct arm_smmu_device *smmu;
2638         struct device *dev = &pdev->dev;
2639         bool bypass;
2640
2641         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2642         if (!smmu) {
2643                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2644                 return -ENOMEM;
2645         }
2646         smmu->dev = dev;
2647
2648         /* Base address */
2649         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2650         if (resource_size(res) + 1 < SZ_128K) {
2651                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2652                 return -EINVAL;
2653         }
2654
2655         smmu->base = devm_ioremap_resource(dev, res);
2656         if (IS_ERR(smmu->base))
2657                 return PTR_ERR(smmu->base);
2658
2659         /* Interrupt lines */
2660         irq = platform_get_irq_byname(pdev, "eventq");
2661         if (irq > 0)
2662                 smmu->evtq.q.irq = irq;
2663
2664         irq = platform_get_irq_byname(pdev, "priq");
2665         if (irq > 0)
2666                 smmu->priq.q.irq = irq;
2667
2668         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2669         if (irq > 0)
2670                 smmu->cmdq.q.irq = irq;
2671
2672         irq = platform_get_irq_byname(pdev, "gerror");
2673         if (irq > 0)
2674                 smmu->gerr_irq = irq;
2675
2676         if (dev->of_node) {
2677                 ret = arm_smmu_device_dt_probe(pdev, smmu);
2678         } else {
2679                 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2680                 if (ret == -ENODEV)
2681                         return ret;
2682         }
2683
2684         /* Set bypass mode according to firmware probing result */
2685         bypass = !!ret;
2686
2687         /* Probe the h/w */
2688         ret = arm_smmu_device_hw_probe(smmu);
2689         if (ret)
2690                 return ret;
2691
2692         /* Initialise in-memory data structures */
2693         ret = arm_smmu_init_structures(smmu);
2694         if (ret)
2695                 return ret;
2696
2697         /* Record our private device structure */
2698         platform_set_drvdata(pdev, smmu);
2699
2700         /* Reset the device */
2701         ret = arm_smmu_device_reset(smmu, bypass);
2702         if (ret)
2703                 return ret;
2704
2705         /* And we're up. Go go go! */
2706         iommu_register_instance(dev->fwnode, &arm_smmu_ops);
2707
2708 #ifdef CONFIG_PCI
2709         if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2710                 pci_request_acs();
2711                 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2712                 if (ret)
2713                         return ret;
2714         }
2715 #endif
2716 #ifdef CONFIG_ARM_AMBA
2717         if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2718                 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2719                 if (ret)
2720                         return ret;
2721         }
2722 #endif
2723         if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2724                 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2725                 if (ret)
2726                         return ret;
2727         }
2728         return 0;
2729 }
2730
2731 static int arm_smmu_device_remove(struct platform_device *pdev)
2732 {
2733         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2734
2735         arm_smmu_device_disable(smmu);
2736         return 0;
2737 }
2738
2739 static struct of_device_id arm_smmu_of_match[] = {
2740         { .compatible = "arm,smmu-v3", },
2741         { },
2742 };
2743 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2744
2745 static struct platform_driver arm_smmu_driver = {
2746         .driver = {
2747                 .name           = "arm-smmu-v3",
2748                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2749         },
2750         .probe  = arm_smmu_device_probe,
2751         .remove = arm_smmu_device_remove,
2752 };
2753
2754 static int __init arm_smmu_init(void)
2755 {
2756         static bool registered;
2757         int ret = 0;
2758
2759         if (!registered) {
2760                 ret = platform_driver_register(&arm_smmu_driver);
2761                 registered = !ret;
2762         }
2763         return ret;
2764 }
2765
2766 static void __exit arm_smmu_exit(void)
2767 {
2768         return platform_driver_unregister(&arm_smmu_driver);
2769 }
2770
2771 subsys_initcall(arm_smmu_init);
2772 module_exit(arm_smmu_exit);
2773
2774 static int __init arm_smmu_of_init(struct device_node *np)
2775 {
2776         int ret = arm_smmu_init();
2777
2778         if (ret)
2779                 return ret;
2780
2781         if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2782                 return -ENODEV;
2783
2784         return 0;
2785 }
2786 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", arm_smmu_of_init);
2787
2788 #ifdef CONFIG_ACPI
2789 static int __init acpi_smmu_v3_init(struct acpi_table_header *table)
2790 {
2791         if (iort_node_match(ACPI_IORT_NODE_SMMU_V3))
2792                 return arm_smmu_init();
2793
2794         return 0;
2795 }
2796 IORT_ACPI_DECLARE(arm_smmu_v3, ACPI_SIG_IORT, acpi_smmu_v3_init);
2797 #endif
2798
2799 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2800 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2801 MODULE_LICENSE("GPL v2");