]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/iommu/arm-smmu.c
iommu/arm-smmu: Implement reserved region get/put callbacks
[linux.git] / drivers / iommu / arm-smmu.c
1 /*
2  * IOMMU API for ARM architected SMMU implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16  *
17  * Copyright (C) 2013 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  *
21  * This driver currently supports:
22  *      - SMMUv1 and v2 implementations
23  *      - Stream-matching and stream-indexing
24  *      - v7/v8 long-descriptor format
25  *      - Non-secure access to the SMMU
26  *      - Context fault reporting
27  */
28
29 #define pr_fmt(fmt) "arm-smmu: " fmt
30
31 #include <linux/acpi.h>
32 #include <linux/acpi_iort.h>
33 #include <linux/atomic.h>
34 #include <linux/delay.h>
35 #include <linux/dma-iommu.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/err.h>
38 #include <linux/interrupt.h>
39 #include <linux/io.h>
40 #include <linux/io-64-nonatomic-hi-lo.h>
41 #include <linux/iommu.h>
42 #include <linux/iopoll.h>
43 #include <linux/module.h>
44 #include <linux/of.h>
45 #include <linux/of_address.h>
46 #include <linux/of_device.h>
47 #include <linux/of_iommu.h>
48 #include <linux/pci.h>
49 #include <linux/platform_device.h>
50 #include <linux/slab.h>
51 #include <linux/spinlock.h>
52
53 #include <linux/amba/bus.h>
54
55 #include "io-pgtable.h"
56
57 /* Maximum number of context banks per SMMU */
58 #define ARM_SMMU_MAX_CBS                128
59
60 /* SMMU global address space */
61 #define ARM_SMMU_GR0(smmu)              ((smmu)->base)
62 #define ARM_SMMU_GR1(smmu)              ((smmu)->base + (1 << (smmu)->pgshift))
63
64 /*
65  * SMMU global address space with conditional offset to access secure
66  * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
67  * nsGFSYNR0: 0x450)
68  */
69 #define ARM_SMMU_GR0_NS(smmu)                                           \
70         ((smmu)->base +                                                 \
71                 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)       \
72                         ? 0x400 : 0))
73
74 /*
75  * Some 64-bit registers only make sense to write atomically, but in such
76  * cases all the data relevant to AArch32 formats lies within the lower word,
77  * therefore this actually makes more sense than it might first appear.
78  */
79 #ifdef CONFIG_64BIT
80 #define smmu_write_atomic_lq            writeq_relaxed
81 #else
82 #define smmu_write_atomic_lq            writel_relaxed
83 #endif
84
85 /* Configuration registers */
86 #define ARM_SMMU_GR0_sCR0               0x0
87 #define sCR0_CLIENTPD                   (1 << 0)
88 #define sCR0_GFRE                       (1 << 1)
89 #define sCR0_GFIE                       (1 << 2)
90 #define sCR0_GCFGFRE                    (1 << 4)
91 #define sCR0_GCFGFIE                    (1 << 5)
92 #define sCR0_USFCFG                     (1 << 10)
93 #define sCR0_VMIDPNE                    (1 << 11)
94 #define sCR0_PTM                        (1 << 12)
95 #define sCR0_FB                         (1 << 13)
96 #define sCR0_VMID16EN                   (1 << 31)
97 #define sCR0_BSU_SHIFT                  14
98 #define sCR0_BSU_MASK                   0x3
99
100 /* Auxiliary Configuration register */
101 #define ARM_SMMU_GR0_sACR               0x10
102
103 /* Identification registers */
104 #define ARM_SMMU_GR0_ID0                0x20
105 #define ARM_SMMU_GR0_ID1                0x24
106 #define ARM_SMMU_GR0_ID2                0x28
107 #define ARM_SMMU_GR0_ID3                0x2c
108 #define ARM_SMMU_GR0_ID4                0x30
109 #define ARM_SMMU_GR0_ID5                0x34
110 #define ARM_SMMU_GR0_ID6                0x38
111 #define ARM_SMMU_GR0_ID7                0x3c
112 #define ARM_SMMU_GR0_sGFSR              0x48
113 #define ARM_SMMU_GR0_sGFSYNR0           0x50
114 #define ARM_SMMU_GR0_sGFSYNR1           0x54
115 #define ARM_SMMU_GR0_sGFSYNR2           0x58
116
117 #define ID0_S1TS                        (1 << 30)
118 #define ID0_S2TS                        (1 << 29)
119 #define ID0_NTS                         (1 << 28)
120 #define ID0_SMS                         (1 << 27)
121 #define ID0_ATOSNS                      (1 << 26)
122 #define ID0_PTFS_NO_AARCH32             (1 << 25)
123 #define ID0_PTFS_NO_AARCH32S            (1 << 24)
124 #define ID0_CTTW                        (1 << 14)
125 #define ID0_NUMIRPT_SHIFT               16
126 #define ID0_NUMIRPT_MASK                0xff
127 #define ID0_NUMSIDB_SHIFT               9
128 #define ID0_NUMSIDB_MASK                0xf
129 #define ID0_NUMSMRG_SHIFT               0
130 #define ID0_NUMSMRG_MASK                0xff
131
132 #define ID1_PAGESIZE                    (1 << 31)
133 #define ID1_NUMPAGENDXB_SHIFT           28
134 #define ID1_NUMPAGENDXB_MASK            7
135 #define ID1_NUMS2CB_SHIFT               16
136 #define ID1_NUMS2CB_MASK                0xff
137 #define ID1_NUMCB_SHIFT                 0
138 #define ID1_NUMCB_MASK                  0xff
139
140 #define ID2_OAS_SHIFT                   4
141 #define ID2_OAS_MASK                    0xf
142 #define ID2_IAS_SHIFT                   0
143 #define ID2_IAS_MASK                    0xf
144 #define ID2_UBS_SHIFT                   8
145 #define ID2_UBS_MASK                    0xf
146 #define ID2_PTFS_4K                     (1 << 12)
147 #define ID2_PTFS_16K                    (1 << 13)
148 #define ID2_PTFS_64K                    (1 << 14)
149 #define ID2_VMID16                      (1 << 15)
150
151 #define ID7_MAJOR_SHIFT                 4
152 #define ID7_MAJOR_MASK                  0xf
153
154 /* Global TLB invalidation */
155 #define ARM_SMMU_GR0_TLBIVMID           0x64
156 #define ARM_SMMU_GR0_TLBIALLNSNH        0x68
157 #define ARM_SMMU_GR0_TLBIALLH           0x6c
158 #define ARM_SMMU_GR0_sTLBGSYNC          0x70
159 #define ARM_SMMU_GR0_sTLBGSTATUS        0x74
160 #define sTLBGSTATUS_GSACTIVE            (1 << 0)
161 #define TLB_LOOP_TIMEOUT                1000000 /* 1s! */
162
163 /* Stream mapping registers */
164 #define ARM_SMMU_GR0_SMR(n)             (0x800 + ((n) << 2))
165 #define SMR_VALID                       (1 << 31)
166 #define SMR_MASK_SHIFT                  16
167 #define SMR_ID_SHIFT                    0
168
169 #define ARM_SMMU_GR0_S2CR(n)            (0xc00 + ((n) << 2))
170 #define S2CR_CBNDX_SHIFT                0
171 #define S2CR_CBNDX_MASK                 0xff
172 #define S2CR_TYPE_SHIFT                 16
173 #define S2CR_TYPE_MASK                  0x3
174 enum arm_smmu_s2cr_type {
175         S2CR_TYPE_TRANS,
176         S2CR_TYPE_BYPASS,
177         S2CR_TYPE_FAULT,
178 };
179
180 #define S2CR_PRIVCFG_SHIFT              24
181 #define S2CR_PRIVCFG_MASK               0x3
182 enum arm_smmu_s2cr_privcfg {
183         S2CR_PRIVCFG_DEFAULT,
184         S2CR_PRIVCFG_DIPAN,
185         S2CR_PRIVCFG_UNPRIV,
186         S2CR_PRIVCFG_PRIV,
187 };
188
189 /* Context bank attribute registers */
190 #define ARM_SMMU_GR1_CBAR(n)            (0x0 + ((n) << 2))
191 #define CBAR_VMID_SHIFT                 0
192 #define CBAR_VMID_MASK                  0xff
193 #define CBAR_S1_BPSHCFG_SHIFT           8
194 #define CBAR_S1_BPSHCFG_MASK            3
195 #define CBAR_S1_BPSHCFG_NSH             3
196 #define CBAR_S1_MEMATTR_SHIFT           12
197 #define CBAR_S1_MEMATTR_MASK            0xf
198 #define CBAR_S1_MEMATTR_WB              0xf
199 #define CBAR_TYPE_SHIFT                 16
200 #define CBAR_TYPE_MASK                  0x3
201 #define CBAR_TYPE_S2_TRANS              (0 << CBAR_TYPE_SHIFT)
202 #define CBAR_TYPE_S1_TRANS_S2_BYPASS    (1 << CBAR_TYPE_SHIFT)
203 #define CBAR_TYPE_S1_TRANS_S2_FAULT     (2 << CBAR_TYPE_SHIFT)
204 #define CBAR_TYPE_S1_TRANS_S2_TRANS     (3 << CBAR_TYPE_SHIFT)
205 #define CBAR_IRPTNDX_SHIFT              24
206 #define CBAR_IRPTNDX_MASK               0xff
207
208 #define ARM_SMMU_GR1_CBA2R(n)           (0x800 + ((n) << 2))
209 #define CBA2R_RW64_32BIT                (0 << 0)
210 #define CBA2R_RW64_64BIT                (1 << 0)
211 #define CBA2R_VMID_SHIFT                16
212 #define CBA2R_VMID_MASK                 0xffff
213
214 /* Translation context bank */
215 #define ARM_SMMU_CB_BASE(smmu)          ((smmu)->base + ((smmu)->size >> 1))
216 #define ARM_SMMU_CB(smmu, n)            ((n) * (1 << (smmu)->pgshift))
217
218 #define ARM_SMMU_CB_SCTLR               0x0
219 #define ARM_SMMU_CB_ACTLR               0x4
220 #define ARM_SMMU_CB_RESUME              0x8
221 #define ARM_SMMU_CB_TTBCR2              0x10
222 #define ARM_SMMU_CB_TTBR0               0x20
223 #define ARM_SMMU_CB_TTBR1               0x28
224 #define ARM_SMMU_CB_TTBCR               0x30
225 #define ARM_SMMU_CB_CONTEXTIDR          0x34
226 #define ARM_SMMU_CB_S1_MAIR0            0x38
227 #define ARM_SMMU_CB_S1_MAIR1            0x3c
228 #define ARM_SMMU_CB_PAR                 0x50
229 #define ARM_SMMU_CB_FSR                 0x58
230 #define ARM_SMMU_CB_FAR                 0x60
231 #define ARM_SMMU_CB_FSYNR0              0x68
232 #define ARM_SMMU_CB_S1_TLBIVA           0x600
233 #define ARM_SMMU_CB_S1_TLBIASID         0x610
234 #define ARM_SMMU_CB_S1_TLBIVAL          0x620
235 #define ARM_SMMU_CB_S2_TLBIIPAS2        0x630
236 #define ARM_SMMU_CB_S2_TLBIIPAS2L       0x638
237 #define ARM_SMMU_CB_ATS1PR              0x800
238 #define ARM_SMMU_CB_ATSR                0x8f0
239
240 #define SCTLR_S1_ASIDPNE                (1 << 12)
241 #define SCTLR_CFCFG                     (1 << 7)
242 #define SCTLR_CFIE                      (1 << 6)
243 #define SCTLR_CFRE                      (1 << 5)
244 #define SCTLR_E                         (1 << 4)
245 #define SCTLR_AFE                       (1 << 2)
246 #define SCTLR_TRE                       (1 << 1)
247 #define SCTLR_M                         (1 << 0)
248
249 #define ARM_MMU500_ACTLR_CPRE           (1 << 1)
250
251 #define ARM_MMU500_ACR_CACHE_LOCK       (1 << 26)
252 #define ARM_MMU500_ACR_SMTNMB_TLBEN     (1 << 8)
253
254 #define CB_PAR_F                        (1 << 0)
255
256 #define ATSR_ACTIVE                     (1 << 0)
257
258 #define RESUME_RETRY                    (0 << 0)
259 #define RESUME_TERMINATE                (1 << 0)
260
261 #define TTBCR2_SEP_SHIFT                15
262 #define TTBCR2_SEP_UPSTREAM             (0x7 << TTBCR2_SEP_SHIFT)
263
264 #define TTBRn_ASID_SHIFT                48
265
266 #define FSR_MULTI                       (1 << 31)
267 #define FSR_SS                          (1 << 30)
268 #define FSR_UUT                         (1 << 8)
269 #define FSR_ASF                         (1 << 7)
270 #define FSR_TLBLKF                      (1 << 6)
271 #define FSR_TLBMCF                      (1 << 5)
272 #define FSR_EF                          (1 << 4)
273 #define FSR_PF                          (1 << 3)
274 #define FSR_AFF                         (1 << 2)
275 #define FSR_TF                          (1 << 1)
276
277 #define FSR_IGN                         (FSR_AFF | FSR_ASF | \
278                                          FSR_TLBMCF | FSR_TLBLKF)
279 #define FSR_FAULT                       (FSR_MULTI | FSR_SS | FSR_UUT | \
280                                          FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
281
282 #define FSYNR0_WNR                      (1 << 4)
283
284 #define MSI_IOVA_BASE                   0x8000000
285 #define MSI_IOVA_LENGTH                 0x100000
286
287 static int force_stage;
288 module_param(force_stage, int, S_IRUGO);
289 MODULE_PARM_DESC(force_stage,
290         "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
291 static bool disable_bypass;
292 module_param(disable_bypass, bool, S_IRUGO);
293 MODULE_PARM_DESC(disable_bypass,
294         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
295
296 enum arm_smmu_arch_version {
297         ARM_SMMU_V1,
298         ARM_SMMU_V1_64K,
299         ARM_SMMU_V2,
300 };
301
302 enum arm_smmu_implementation {
303         GENERIC_SMMU,
304         ARM_MMU500,
305         CAVIUM_SMMUV2,
306 };
307
308 struct arm_smmu_s2cr {
309         struct iommu_group              *group;
310         int                             count;
311         enum arm_smmu_s2cr_type         type;
312         enum arm_smmu_s2cr_privcfg      privcfg;
313         u8                              cbndx;
314 };
315
316 #define s2cr_init_val (struct arm_smmu_s2cr){                           \
317         .type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS,    \
318 }
319
320 struct arm_smmu_smr {
321         u16                             mask;
322         u16                             id;
323         bool                            valid;
324 };
325
326 struct arm_smmu_master_cfg {
327         struct arm_smmu_device          *smmu;
328         s16                             smendx[];
329 };
330 #define INVALID_SMENDX                  -1
331 #define __fwspec_cfg(fw) ((struct arm_smmu_master_cfg *)fw->iommu_priv)
332 #define fwspec_smmu(fw)  (__fwspec_cfg(fw)->smmu)
333 #define fwspec_smendx(fw, i) \
334         (i >= fw->num_ids ? INVALID_SMENDX : __fwspec_cfg(fw)->smendx[i])
335 #define for_each_cfg_sme(fw, i, idx) \
336         for (i = 0; idx = fwspec_smendx(fw, i), i < fw->num_ids; ++i)
337
338 struct arm_smmu_device {
339         struct device                   *dev;
340
341         void __iomem                    *base;
342         unsigned long                   size;
343         unsigned long                   pgshift;
344
345 #define ARM_SMMU_FEAT_COHERENT_WALK     (1 << 0)
346 #define ARM_SMMU_FEAT_STREAM_MATCH      (1 << 1)
347 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 2)
348 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 3)
349 #define ARM_SMMU_FEAT_TRANS_NESTED      (1 << 4)
350 #define ARM_SMMU_FEAT_TRANS_OPS         (1 << 5)
351 #define ARM_SMMU_FEAT_VMID16            (1 << 6)
352 #define ARM_SMMU_FEAT_FMT_AARCH64_4K    (1 << 7)
353 #define ARM_SMMU_FEAT_FMT_AARCH64_16K   (1 << 8)
354 #define ARM_SMMU_FEAT_FMT_AARCH64_64K   (1 << 9)
355 #define ARM_SMMU_FEAT_FMT_AARCH32_L     (1 << 10)
356 #define ARM_SMMU_FEAT_FMT_AARCH32_S     (1 << 11)
357         u32                             features;
358
359 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
360         u32                             options;
361         enum arm_smmu_arch_version      version;
362         enum arm_smmu_implementation    model;
363
364         u32                             num_context_banks;
365         u32                             num_s2_context_banks;
366         DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
367         atomic_t                        irptndx;
368
369         u32                             num_mapping_groups;
370         u16                             streamid_mask;
371         u16                             smr_mask_mask;
372         struct arm_smmu_smr             *smrs;
373         struct arm_smmu_s2cr            *s2crs;
374         struct mutex                    stream_map_mutex;
375
376         unsigned long                   va_size;
377         unsigned long                   ipa_size;
378         unsigned long                   pa_size;
379         unsigned long                   pgsize_bitmap;
380
381         u32                             num_global_irqs;
382         u32                             num_context_irqs;
383         unsigned int                    *irqs;
384
385         u32                             cavium_id_base; /* Specific to Cavium */
386 };
387
388 enum arm_smmu_context_fmt {
389         ARM_SMMU_CTX_FMT_NONE,
390         ARM_SMMU_CTX_FMT_AARCH64,
391         ARM_SMMU_CTX_FMT_AARCH32_L,
392         ARM_SMMU_CTX_FMT_AARCH32_S,
393 };
394
395 struct arm_smmu_cfg {
396         u8                              cbndx;
397         u8                              irptndx;
398         u32                             cbar;
399         enum arm_smmu_context_fmt       fmt;
400 };
401 #define INVALID_IRPTNDX                 0xff
402
403 #define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
404 #define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
405
406 enum arm_smmu_domain_stage {
407         ARM_SMMU_DOMAIN_S1 = 0,
408         ARM_SMMU_DOMAIN_S2,
409         ARM_SMMU_DOMAIN_NESTED,
410 };
411
412 struct arm_smmu_domain {
413         struct arm_smmu_device          *smmu;
414         struct io_pgtable_ops           *pgtbl_ops;
415         spinlock_t                      pgtbl_lock;
416         struct arm_smmu_cfg             cfg;
417         enum arm_smmu_domain_stage      stage;
418         struct mutex                    init_mutex; /* Protects smmu pointer */
419         struct iommu_domain             domain;
420 };
421
422 struct arm_smmu_option_prop {
423         u32 opt;
424         const char *prop;
425 };
426
427 static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);
428
429 static bool using_legacy_binding, using_generic_binding;
430
431 static struct arm_smmu_option_prop arm_smmu_options[] = {
432         { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
433         { 0, NULL},
434 };
435
436 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
437 {
438         return container_of(dom, struct arm_smmu_domain, domain);
439 }
440
441 static void parse_driver_options(struct arm_smmu_device *smmu)
442 {
443         int i = 0;
444
445         do {
446                 if (of_property_read_bool(smmu->dev->of_node,
447                                                 arm_smmu_options[i].prop)) {
448                         smmu->options |= arm_smmu_options[i].opt;
449                         dev_notice(smmu->dev, "option %s\n",
450                                 arm_smmu_options[i].prop);
451                 }
452         } while (arm_smmu_options[++i].opt);
453 }
454
455 static struct device_node *dev_get_dev_node(struct device *dev)
456 {
457         if (dev_is_pci(dev)) {
458                 struct pci_bus *bus = to_pci_dev(dev)->bus;
459
460                 while (!pci_is_root_bus(bus))
461                         bus = bus->parent;
462                 return of_node_get(bus->bridge->parent->of_node);
463         }
464
465         return of_node_get(dev->of_node);
466 }
467
468 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
469 {
470         *((__be32 *)data) = cpu_to_be32(alias);
471         return 0; /* Continue walking */
472 }
473
474 static int __find_legacy_master_phandle(struct device *dev, void *data)
475 {
476         struct of_phandle_iterator *it = *(void **)data;
477         struct device_node *np = it->node;
478         int err;
479
480         of_for_each_phandle(it, err, dev->of_node, "mmu-masters",
481                             "#stream-id-cells", 0)
482                 if (it->node == np) {
483                         *(void **)data = dev;
484                         return 1;
485                 }
486         it->node = np;
487         return err == -ENOENT ? 0 : err;
488 }
489
490 static struct platform_driver arm_smmu_driver;
491 static struct iommu_ops arm_smmu_ops;
492
493 static int arm_smmu_register_legacy_master(struct device *dev,
494                                            struct arm_smmu_device **smmu)
495 {
496         struct device *smmu_dev;
497         struct device_node *np;
498         struct of_phandle_iterator it;
499         void *data = &it;
500         u32 *sids;
501         __be32 pci_sid;
502         int err;
503
504         np = dev_get_dev_node(dev);
505         if (!np || !of_find_property(np, "#stream-id-cells", NULL)) {
506                 of_node_put(np);
507                 return -ENODEV;
508         }
509
510         it.node = np;
511         err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data,
512                                      __find_legacy_master_phandle);
513         smmu_dev = data;
514         of_node_put(np);
515         if (err == 0)
516                 return -ENODEV;
517         if (err < 0)
518                 return err;
519
520         if (dev_is_pci(dev)) {
521                 /* "mmu-masters" assumes Stream ID == Requester ID */
522                 pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid,
523                                        &pci_sid);
524                 it.cur = &pci_sid;
525                 it.cur_count = 1;
526         }
527
528         err = iommu_fwspec_init(dev, &smmu_dev->of_node->fwnode,
529                                 &arm_smmu_ops);
530         if (err)
531                 return err;
532
533         sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL);
534         if (!sids)
535                 return -ENOMEM;
536
537         *smmu = dev_get_drvdata(smmu_dev);
538         of_phandle_iterator_args(&it, sids, it.cur_count);
539         err = iommu_fwspec_add_ids(dev, sids, it.cur_count);
540         kfree(sids);
541         return err;
542 }
543
544 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
545 {
546         int idx;
547
548         do {
549                 idx = find_next_zero_bit(map, end, start);
550                 if (idx == end)
551                         return -ENOSPC;
552         } while (test_and_set_bit(idx, map));
553
554         return idx;
555 }
556
557 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
558 {
559         clear_bit(idx, map);
560 }
561
562 /* Wait for any pending TLB invalidations to complete */
563 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
564 {
565         int count = 0;
566         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
567
568         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
569         while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
570                & sTLBGSTATUS_GSACTIVE) {
571                 cpu_relax();
572                 if (++count == TLB_LOOP_TIMEOUT) {
573                         dev_err_ratelimited(smmu->dev,
574                         "TLB sync timed out -- SMMU may be deadlocked\n");
575                         return;
576                 }
577                 udelay(1);
578         }
579 }
580
581 static void arm_smmu_tlb_sync(void *cookie)
582 {
583         struct arm_smmu_domain *smmu_domain = cookie;
584         __arm_smmu_tlb_sync(smmu_domain->smmu);
585 }
586
587 static void arm_smmu_tlb_inv_context(void *cookie)
588 {
589         struct arm_smmu_domain *smmu_domain = cookie;
590         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
591         struct arm_smmu_device *smmu = smmu_domain->smmu;
592         bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
593         void __iomem *base;
594
595         if (stage1) {
596                 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
597                 writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
598                                base + ARM_SMMU_CB_S1_TLBIASID);
599         } else {
600                 base = ARM_SMMU_GR0(smmu);
601                 writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
602                                base + ARM_SMMU_GR0_TLBIVMID);
603         }
604
605         __arm_smmu_tlb_sync(smmu);
606 }
607
608 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
609                                           size_t granule, bool leaf, void *cookie)
610 {
611         struct arm_smmu_domain *smmu_domain = cookie;
612         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
613         struct arm_smmu_device *smmu = smmu_domain->smmu;
614         bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
615         void __iomem *reg;
616
617         if (stage1) {
618                 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
619                 reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
620
621                 if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
622                         iova &= ~12UL;
623                         iova |= ARM_SMMU_CB_ASID(smmu, cfg);
624                         do {
625                                 writel_relaxed(iova, reg);
626                                 iova += granule;
627                         } while (size -= granule);
628                 } else {
629                         iova >>= 12;
630                         iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
631                         do {
632                                 writeq_relaxed(iova, reg);
633                                 iova += granule >> 12;
634                         } while (size -= granule);
635                 }
636         } else if (smmu->version == ARM_SMMU_V2) {
637                 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
638                 reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
639                               ARM_SMMU_CB_S2_TLBIIPAS2;
640                 iova >>= 12;
641                 do {
642                         smmu_write_atomic_lq(iova, reg);
643                         iova += granule >> 12;
644                 } while (size -= granule);
645         } else {
646                 reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
647                 writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
648         }
649 }
650
651 static const struct iommu_gather_ops arm_smmu_gather_ops = {
652         .tlb_flush_all  = arm_smmu_tlb_inv_context,
653         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
654         .tlb_sync       = arm_smmu_tlb_sync,
655 };
656
657 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
658 {
659         u32 fsr, fsynr;
660         unsigned long iova;
661         struct iommu_domain *domain = dev;
662         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
663         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
664         struct arm_smmu_device *smmu = smmu_domain->smmu;
665         void __iomem *cb_base;
666
667         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
668         fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
669
670         if (!(fsr & FSR_FAULT))
671                 return IRQ_NONE;
672
673         fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
674         iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
675
676         dev_err_ratelimited(smmu->dev,
677         "Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
678                             fsr, iova, fsynr, cfg->cbndx);
679
680         writel(fsr, cb_base + ARM_SMMU_CB_FSR);
681         return IRQ_HANDLED;
682 }
683
684 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
685 {
686         u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
687         struct arm_smmu_device *smmu = dev;
688         void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
689
690         gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
691         gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
692         gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
693         gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
694
695         if (!gfsr)
696                 return IRQ_NONE;
697
698         dev_err_ratelimited(smmu->dev,
699                 "Unexpected global fault, this could be serious\n");
700         dev_err_ratelimited(smmu->dev,
701                 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
702                 gfsr, gfsynr0, gfsynr1, gfsynr2);
703
704         writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
705         return IRQ_HANDLED;
706 }
707
708 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
709                                        struct io_pgtable_cfg *pgtbl_cfg)
710 {
711         u32 reg, reg2;
712         u64 reg64;
713         bool stage1;
714         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
715         struct arm_smmu_device *smmu = smmu_domain->smmu;
716         void __iomem *cb_base, *gr1_base;
717
718         gr1_base = ARM_SMMU_GR1(smmu);
719         stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
720         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
721
722         if (smmu->version > ARM_SMMU_V1) {
723                 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
724                         reg = CBA2R_RW64_64BIT;
725                 else
726                         reg = CBA2R_RW64_32BIT;
727                 /* 16-bit VMIDs live in CBA2R */
728                 if (smmu->features & ARM_SMMU_FEAT_VMID16)
729                         reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
730
731                 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
732         }
733
734         /* CBAR */
735         reg = cfg->cbar;
736         if (smmu->version < ARM_SMMU_V2)
737                 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
738
739         /*
740          * Use the weakest shareability/memory types, so they are
741          * overridden by the ttbcr/pte.
742          */
743         if (stage1) {
744                 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
745                         (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
746         } else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
747                 /* 8-bit VMIDs live in CBAR */
748                 reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
749         }
750         writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
751
752         /* TTBRs */
753         if (stage1) {
754                 u16 asid = ARM_SMMU_CB_ASID(smmu, cfg);
755
756                 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
757                         reg = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
758                         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0);
759                         reg = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
760                         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1);
761                         writel_relaxed(asid, cb_base + ARM_SMMU_CB_CONTEXTIDR);
762                 } else {
763                         reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
764                         reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
765                         writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
766                         reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
767                         reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
768                         writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
769                 }
770         } else {
771                 reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
772                 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
773         }
774
775         /* TTBCR */
776         if (stage1) {
777                 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
778                         reg = pgtbl_cfg->arm_v7s_cfg.tcr;
779                         reg2 = 0;
780                 } else {
781                         reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
782                         reg2 = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
783                         reg2 |= TTBCR2_SEP_UPSTREAM;
784                 }
785                 if (smmu->version > ARM_SMMU_V1)
786                         writel_relaxed(reg2, cb_base + ARM_SMMU_CB_TTBCR2);
787         } else {
788                 reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
789         }
790         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
791
792         /* MAIRs (stage-1 only) */
793         if (stage1) {
794                 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
795                         reg = pgtbl_cfg->arm_v7s_cfg.prrr;
796                         reg2 = pgtbl_cfg->arm_v7s_cfg.nmrr;
797                 } else {
798                         reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
799                         reg2 = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
800                 }
801                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
802                 writel_relaxed(reg2, cb_base + ARM_SMMU_CB_S1_MAIR1);
803         }
804
805         /* SCTLR */
806         reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
807         if (stage1)
808                 reg |= SCTLR_S1_ASIDPNE;
809 #ifdef __BIG_ENDIAN
810         reg |= SCTLR_E;
811 #endif
812         writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
813 }
814
815 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
816                                         struct arm_smmu_device *smmu)
817 {
818         int irq, start, ret = 0;
819         unsigned long ias, oas;
820         struct io_pgtable_ops *pgtbl_ops;
821         struct io_pgtable_cfg pgtbl_cfg;
822         enum io_pgtable_fmt fmt;
823         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
824         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
825
826         mutex_lock(&smmu_domain->init_mutex);
827         if (smmu_domain->smmu)
828                 goto out_unlock;
829
830         /*
831          * Mapping the requested stage onto what we support is surprisingly
832          * complicated, mainly because the spec allows S1+S2 SMMUs without
833          * support for nested translation. That means we end up with the
834          * following table:
835          *
836          * Requested        Supported        Actual
837          *     S1               N              S1
838          *     S1             S1+S2            S1
839          *     S1               S2             S2
840          *     S1               S1             S1
841          *     N                N              N
842          *     N              S1+S2            S2
843          *     N                S2             S2
844          *     N                S1             S1
845          *
846          * Note that you can't actually request stage-2 mappings.
847          */
848         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
849                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
850         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
851                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
852
853         /*
854          * Choosing a suitable context format is even more fiddly. Until we
855          * grow some way for the caller to express a preference, and/or move
856          * the decision into the io-pgtable code where it arguably belongs,
857          * just aim for the closest thing to the rest of the system, and hope
858          * that the hardware isn't esoteric enough that we can't assume AArch64
859          * support to be a superset of AArch32 support...
860          */
861         if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
862                 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
863         if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
864             !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
865             (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
866             (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
867                 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
868         if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
869             (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
870                                ARM_SMMU_FEAT_FMT_AARCH64_16K |
871                                ARM_SMMU_FEAT_FMT_AARCH64_4K)))
872                 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;
873
874         if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
875                 ret = -EINVAL;
876                 goto out_unlock;
877         }
878
879         switch (smmu_domain->stage) {
880         case ARM_SMMU_DOMAIN_S1:
881                 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
882                 start = smmu->num_s2_context_banks;
883                 ias = smmu->va_size;
884                 oas = smmu->ipa_size;
885                 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
886                         fmt = ARM_64_LPAE_S1;
887                 } else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
888                         fmt = ARM_32_LPAE_S1;
889                         ias = min(ias, 32UL);
890                         oas = min(oas, 40UL);
891                 } else {
892                         fmt = ARM_V7S;
893                         ias = min(ias, 32UL);
894                         oas = min(oas, 32UL);
895                 }
896                 break;
897         case ARM_SMMU_DOMAIN_NESTED:
898                 /*
899                  * We will likely want to change this if/when KVM gets
900                  * involved.
901                  */
902         case ARM_SMMU_DOMAIN_S2:
903                 cfg->cbar = CBAR_TYPE_S2_TRANS;
904                 start = 0;
905                 ias = smmu->ipa_size;
906                 oas = smmu->pa_size;
907                 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
908                         fmt = ARM_64_LPAE_S2;
909                 } else {
910                         fmt = ARM_32_LPAE_S2;
911                         ias = min(ias, 40UL);
912                         oas = min(oas, 40UL);
913                 }
914                 break;
915         default:
916                 ret = -EINVAL;
917                 goto out_unlock;
918         }
919
920         ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
921                                       smmu->num_context_banks);
922         if (ret < 0)
923                 goto out_unlock;
924
925         cfg->cbndx = ret;
926         if (smmu->version < ARM_SMMU_V2) {
927                 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
928                 cfg->irptndx %= smmu->num_context_irqs;
929         } else {
930                 cfg->irptndx = cfg->cbndx;
931         }
932
933         pgtbl_cfg = (struct io_pgtable_cfg) {
934                 .pgsize_bitmap  = smmu->pgsize_bitmap,
935                 .ias            = ias,
936                 .oas            = oas,
937                 .tlb            = &arm_smmu_gather_ops,
938                 .iommu_dev      = smmu->dev,
939         };
940
941         smmu_domain->smmu = smmu;
942         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
943         if (!pgtbl_ops) {
944                 ret = -ENOMEM;
945                 goto out_clear_smmu;
946         }
947
948         /* Update the domain's page sizes to reflect the page table format */
949         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
950         domain->geometry.aperture_end = (1UL << ias) - 1;
951         domain->geometry.force_aperture = true;
952
953         /* Initialise the context bank with our page table cfg */
954         arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
955
956         /*
957          * Request context fault interrupt. Do this last to avoid the
958          * handler seeing a half-initialised domain state.
959          */
960         irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
961         ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
962                                IRQF_SHARED, "arm-smmu-context-fault", domain);
963         if (ret < 0) {
964                 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
965                         cfg->irptndx, irq);
966                 cfg->irptndx = INVALID_IRPTNDX;
967         }
968
969         mutex_unlock(&smmu_domain->init_mutex);
970
971         /* Publish page table ops for map/unmap */
972         smmu_domain->pgtbl_ops = pgtbl_ops;
973         return 0;
974
975 out_clear_smmu:
976         smmu_domain->smmu = NULL;
977 out_unlock:
978         mutex_unlock(&smmu_domain->init_mutex);
979         return ret;
980 }
981
982 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
983 {
984         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
985         struct arm_smmu_device *smmu = smmu_domain->smmu;
986         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
987         void __iomem *cb_base;
988         int irq;
989
990         if (!smmu)
991                 return;
992
993         /*
994          * Disable the context bank and free the page tables before freeing
995          * it.
996          */
997         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
998         writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
999
1000         if (cfg->irptndx != INVALID_IRPTNDX) {
1001                 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1002                 devm_free_irq(smmu->dev, irq, domain);
1003         }
1004
1005         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1006         __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1007 }
1008
1009 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1010 {
1011         struct arm_smmu_domain *smmu_domain;
1012
1013         if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1014                 return NULL;
1015         /*
1016          * Allocate the domain and initialise some of its data structures.
1017          * We can't really do anything meaningful until we've added a
1018          * master.
1019          */
1020         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1021         if (!smmu_domain)
1022                 return NULL;
1023
1024         if (type == IOMMU_DOMAIN_DMA && (using_legacy_binding ||
1025             iommu_get_dma_cookie(&smmu_domain->domain))) {
1026                 kfree(smmu_domain);
1027                 return NULL;
1028         }
1029
1030         mutex_init(&smmu_domain->init_mutex);
1031         spin_lock_init(&smmu_domain->pgtbl_lock);
1032
1033         return &smmu_domain->domain;
1034 }
1035
1036 static void arm_smmu_domain_free(struct iommu_domain *domain)
1037 {
1038         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1039
1040         /*
1041          * Free the domain resources. We assume that all devices have
1042          * already been detached.
1043          */
1044         iommu_put_dma_cookie(domain);
1045         arm_smmu_destroy_domain_context(domain);
1046         kfree(smmu_domain);
1047 }
1048
1049 static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
1050 {
1051         struct arm_smmu_smr *smr = smmu->smrs + idx;
1052         u32 reg = smr->id << SMR_ID_SHIFT | smr->mask << SMR_MASK_SHIFT;
1053
1054         if (smr->valid)
1055                 reg |= SMR_VALID;
1056         writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
1057 }
1058
1059 static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
1060 {
1061         struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
1062         u32 reg = (s2cr->type & S2CR_TYPE_MASK) << S2CR_TYPE_SHIFT |
1063                   (s2cr->cbndx & S2CR_CBNDX_MASK) << S2CR_CBNDX_SHIFT |
1064                   (s2cr->privcfg & S2CR_PRIVCFG_MASK) << S2CR_PRIVCFG_SHIFT;
1065
1066         writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_S2CR(idx));
1067 }
1068
1069 static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
1070 {
1071         arm_smmu_write_s2cr(smmu, idx);
1072         if (smmu->smrs)
1073                 arm_smmu_write_smr(smmu, idx);
1074 }
1075
1076 static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask)
1077 {
1078         struct arm_smmu_smr *smrs = smmu->smrs;
1079         int i, free_idx = -ENOSPC;
1080
1081         /* Stream indexing is blissfully easy */
1082         if (!smrs)
1083                 return id;
1084
1085         /* Validating SMRs is... less so */
1086         for (i = 0; i < smmu->num_mapping_groups; ++i) {
1087                 if (!smrs[i].valid) {
1088                         /*
1089                          * Note the first free entry we come across, which
1090                          * we'll claim in the end if nothing else matches.
1091                          */
1092                         if (free_idx < 0)
1093                                 free_idx = i;
1094                         continue;
1095                 }
1096                 /*
1097                  * If the new entry is _entirely_ matched by an existing entry,
1098                  * then reuse that, with the guarantee that there also cannot
1099                  * be any subsequent conflicting entries. In normal use we'd
1100                  * expect simply identical entries for this case, but there's
1101                  * no harm in accommodating the generalisation.
1102                  */
1103                 if ((mask & smrs[i].mask) == mask &&
1104                     !((id ^ smrs[i].id) & ~smrs[i].mask))
1105                         return i;
1106                 /*
1107                  * If the new entry has any other overlap with an existing one,
1108                  * though, then there always exists at least one stream ID
1109                  * which would cause a conflict, and we can't allow that risk.
1110                  */
1111                 if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask)))
1112                         return -EINVAL;
1113         }
1114
1115         return free_idx;
1116 }
1117
1118 static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx)
1119 {
1120         if (--smmu->s2crs[idx].count)
1121                 return false;
1122
1123         smmu->s2crs[idx] = s2cr_init_val;
1124         if (smmu->smrs)
1125                 smmu->smrs[idx].valid = false;
1126
1127         return true;
1128 }
1129
1130 static int arm_smmu_master_alloc_smes(struct device *dev)
1131 {
1132         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1133         struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1134         struct arm_smmu_device *smmu = cfg->smmu;
1135         struct arm_smmu_smr *smrs = smmu->smrs;
1136         struct iommu_group *group;
1137         int i, idx, ret;
1138
1139         mutex_lock(&smmu->stream_map_mutex);
1140         /* Figure out a viable stream map entry allocation */
1141         for_each_cfg_sme(fwspec, i, idx) {
1142                 u16 sid = fwspec->ids[i];
1143                 u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1144
1145                 if (idx != INVALID_SMENDX) {
1146                         ret = -EEXIST;
1147                         goto out_err;
1148                 }
1149
1150                 ret = arm_smmu_find_sme(smmu, sid, mask);
1151                 if (ret < 0)
1152                         goto out_err;
1153
1154                 idx = ret;
1155                 if (smrs && smmu->s2crs[idx].count == 0) {
1156                         smrs[idx].id = sid;
1157                         smrs[idx].mask = mask;
1158                         smrs[idx].valid = true;
1159                 }
1160                 smmu->s2crs[idx].count++;
1161                 cfg->smendx[i] = (s16)idx;
1162         }
1163
1164         group = iommu_group_get_for_dev(dev);
1165         if (!group)
1166                 group = ERR_PTR(-ENOMEM);
1167         if (IS_ERR(group)) {
1168                 ret = PTR_ERR(group);
1169                 goto out_err;
1170         }
1171         iommu_group_put(group);
1172
1173         /* It worked! Now, poke the actual hardware */
1174         for_each_cfg_sme(fwspec, i, idx) {
1175                 arm_smmu_write_sme(smmu, idx);
1176                 smmu->s2crs[idx].group = group;
1177         }
1178
1179         mutex_unlock(&smmu->stream_map_mutex);
1180         return 0;
1181
1182 out_err:
1183         while (i--) {
1184                 arm_smmu_free_sme(smmu, cfg->smendx[i]);
1185                 cfg->smendx[i] = INVALID_SMENDX;
1186         }
1187         mutex_unlock(&smmu->stream_map_mutex);
1188         return ret;
1189 }
1190
1191 static void arm_smmu_master_free_smes(struct iommu_fwspec *fwspec)
1192 {
1193         struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1194         struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1195         int i, idx;
1196
1197         mutex_lock(&smmu->stream_map_mutex);
1198         for_each_cfg_sme(fwspec, i, idx) {
1199                 if (arm_smmu_free_sme(smmu, idx))
1200                         arm_smmu_write_sme(smmu, idx);
1201                 cfg->smendx[i] = INVALID_SMENDX;
1202         }
1203         mutex_unlock(&smmu->stream_map_mutex);
1204 }
1205
1206 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1207                                       struct iommu_fwspec *fwspec)
1208 {
1209         struct arm_smmu_device *smmu = smmu_domain->smmu;
1210         struct arm_smmu_s2cr *s2cr = smmu->s2crs;
1211         enum arm_smmu_s2cr_type type = S2CR_TYPE_TRANS;
1212         u8 cbndx = smmu_domain->cfg.cbndx;
1213         int i, idx;
1214
1215         for_each_cfg_sme(fwspec, i, idx) {
1216                 if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
1217                         continue;
1218
1219                 s2cr[idx].type = type;
1220                 s2cr[idx].privcfg = S2CR_PRIVCFG_UNPRIV;
1221                 s2cr[idx].cbndx = cbndx;
1222                 arm_smmu_write_s2cr(smmu, idx);
1223         }
1224         return 0;
1225 }
1226
1227 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1228 {
1229         int ret;
1230         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1231         struct arm_smmu_device *smmu;
1232         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1233
1234         if (!fwspec || fwspec->ops != &arm_smmu_ops) {
1235                 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1236                 return -ENXIO;
1237         }
1238
1239         /*
1240          * FIXME: The arch/arm DMA API code tries to attach devices to its own
1241          * domains between of_xlate() and add_device() - we have no way to cope
1242          * with that, so until ARM gets converted to rely on groups and default
1243          * domains, just say no (but more politely than by dereferencing NULL).
1244          * This should be at least a WARN_ON once that's sorted.
1245          */
1246         if (!fwspec->iommu_priv)
1247                 return -ENODEV;
1248
1249         smmu = fwspec_smmu(fwspec);
1250         /* Ensure that the domain is finalised */
1251         ret = arm_smmu_init_domain_context(domain, smmu);
1252         if (ret < 0)
1253                 return ret;
1254
1255         /*
1256          * Sanity check the domain. We don't support domains across
1257          * different SMMUs.
1258          */
1259         if (smmu_domain->smmu != smmu) {
1260                 dev_err(dev,
1261                         "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1262                         dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1263                 return -EINVAL;
1264         }
1265
1266         /* Looks ok, so add the device to the domain */
1267         return arm_smmu_domain_add_master(smmu_domain, fwspec);
1268 }
1269
1270 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1271                         phys_addr_t paddr, size_t size, int prot)
1272 {
1273         int ret;
1274         unsigned long flags;
1275         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1276         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1277
1278         if (!ops)
1279                 return -ENODEV;
1280
1281         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1282         ret = ops->map(ops, iova, paddr, size, prot);
1283         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1284         return ret;
1285 }
1286
1287 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1288                              size_t size)
1289 {
1290         size_t ret;
1291         unsigned long flags;
1292         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1293         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1294
1295         if (!ops)
1296                 return 0;
1297
1298         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1299         ret = ops->unmap(ops, iova, size);
1300         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1301         return ret;
1302 }
1303
1304 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1305                                               dma_addr_t iova)
1306 {
1307         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1308         struct arm_smmu_device *smmu = smmu_domain->smmu;
1309         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1310         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1311         struct device *dev = smmu->dev;
1312         void __iomem *cb_base;
1313         u32 tmp;
1314         u64 phys;
1315         unsigned long va;
1316
1317         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1318
1319         /* ATS1 registers can only be written atomically */
1320         va = iova & ~0xfffUL;
1321         if (smmu->version == ARM_SMMU_V2)
1322                 smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1323         else /* Register is only 32-bit in v1 */
1324                 writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1325
1326         if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1327                                       !(tmp & ATSR_ACTIVE), 5, 50)) {
1328                 dev_err(dev,
1329                         "iova to phys timed out on %pad. Falling back to software table walk.\n",
1330                         &iova);
1331                 return ops->iova_to_phys(ops, iova);
1332         }
1333
1334         phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1335         if (phys & CB_PAR_F) {
1336                 dev_err(dev, "translation fault!\n");
1337                 dev_err(dev, "PAR = 0x%llx\n", phys);
1338                 return 0;
1339         }
1340
1341         return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1342 }
1343
1344 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1345                                         dma_addr_t iova)
1346 {
1347         phys_addr_t ret;
1348         unsigned long flags;
1349         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1350         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1351
1352         if (!ops)
1353                 return 0;
1354
1355         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1356         if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1357                         smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1358                 ret = arm_smmu_iova_to_phys_hard(domain, iova);
1359         } else {
1360                 ret = ops->iova_to_phys(ops, iova);
1361         }
1362
1363         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1364
1365         return ret;
1366 }
1367
1368 static bool arm_smmu_capable(enum iommu_cap cap)
1369 {
1370         switch (cap) {
1371         case IOMMU_CAP_CACHE_COHERENCY:
1372                 /*
1373                  * Return true here as the SMMU can always send out coherent
1374                  * requests.
1375                  */
1376                 return true;
1377         case IOMMU_CAP_INTR_REMAP:
1378                 return true; /* MSIs are just memory writes */
1379         case IOMMU_CAP_NOEXEC:
1380                 return true;
1381         default:
1382                 return false;
1383         }
1384 }
1385
1386 static int arm_smmu_match_node(struct device *dev, void *data)
1387 {
1388         return dev->fwnode == data;
1389 }
1390
1391 static
1392 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1393 {
1394         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1395                                                 fwnode, arm_smmu_match_node);
1396         put_device(dev);
1397         return dev ? dev_get_drvdata(dev) : NULL;
1398 }
1399
1400 static int arm_smmu_add_device(struct device *dev)
1401 {
1402         struct arm_smmu_device *smmu;
1403         struct arm_smmu_master_cfg *cfg;
1404         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1405         int i, ret;
1406
1407         if (using_legacy_binding) {
1408                 ret = arm_smmu_register_legacy_master(dev, &smmu);
1409                 fwspec = dev->iommu_fwspec;
1410                 if (ret)
1411                         goto out_free;
1412         } else if (fwspec && fwspec->ops == &arm_smmu_ops) {
1413                 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1414         } else {
1415                 return -ENODEV;
1416         }
1417
1418         ret = -EINVAL;
1419         for (i = 0; i < fwspec->num_ids; i++) {
1420                 u16 sid = fwspec->ids[i];
1421                 u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1422
1423                 if (sid & ~smmu->streamid_mask) {
1424                         dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n",
1425                                 sid, smmu->streamid_mask);
1426                         goto out_free;
1427                 }
1428                 if (mask & ~smmu->smr_mask_mask) {
1429                         dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n",
1430                                 sid, smmu->smr_mask_mask);
1431                         goto out_free;
1432                 }
1433         }
1434
1435         ret = -ENOMEM;
1436         cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]),
1437                       GFP_KERNEL);
1438         if (!cfg)
1439                 goto out_free;
1440
1441         cfg->smmu = smmu;
1442         fwspec->iommu_priv = cfg;
1443         while (i--)
1444                 cfg->smendx[i] = INVALID_SMENDX;
1445
1446         ret = arm_smmu_master_alloc_smes(dev);
1447         if (ret)
1448                 goto out_free;
1449
1450         return 0;
1451
1452 out_free:
1453         if (fwspec)
1454                 kfree(fwspec->iommu_priv);
1455         iommu_fwspec_free(dev);
1456         return ret;
1457 }
1458
1459 static void arm_smmu_remove_device(struct device *dev)
1460 {
1461         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1462
1463         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1464                 return;
1465
1466         arm_smmu_master_free_smes(fwspec);
1467         iommu_group_remove_device(dev);
1468         kfree(fwspec->iommu_priv);
1469         iommu_fwspec_free(dev);
1470 }
1471
1472 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1473 {
1474         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1475         struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1476         struct iommu_group *group = NULL;
1477         int i, idx;
1478
1479         for_each_cfg_sme(fwspec, i, idx) {
1480                 if (group && smmu->s2crs[idx].group &&
1481                     group != smmu->s2crs[idx].group)
1482                         return ERR_PTR(-EINVAL);
1483
1484                 group = smmu->s2crs[idx].group;
1485         }
1486
1487         if (group)
1488                 return iommu_group_ref_get(group);
1489
1490         if (dev_is_pci(dev))
1491                 group = pci_device_group(dev);
1492         else
1493                 group = generic_device_group(dev);
1494
1495         return group;
1496 }
1497
1498 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1499                                     enum iommu_attr attr, void *data)
1500 {
1501         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1502
1503         switch (attr) {
1504         case DOMAIN_ATTR_NESTING:
1505                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1506                 return 0;
1507         default:
1508                 return -ENODEV;
1509         }
1510 }
1511
1512 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1513                                     enum iommu_attr attr, void *data)
1514 {
1515         int ret = 0;
1516         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1517
1518         mutex_lock(&smmu_domain->init_mutex);
1519
1520         switch (attr) {
1521         case DOMAIN_ATTR_NESTING:
1522                 if (smmu_domain->smmu) {
1523                         ret = -EPERM;
1524                         goto out_unlock;
1525                 }
1526
1527                 if (*(int *)data)
1528                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1529                 else
1530                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1531
1532                 break;
1533         default:
1534                 ret = -ENODEV;
1535         }
1536
1537 out_unlock:
1538         mutex_unlock(&smmu_domain->init_mutex);
1539         return ret;
1540 }
1541
1542 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1543 {
1544         u32 fwid = 0;
1545
1546         if (args->args_count > 0)
1547                 fwid |= (u16)args->args[0];
1548
1549         if (args->args_count > 1)
1550                 fwid |= (u16)args->args[1] << SMR_MASK_SHIFT;
1551
1552         return iommu_fwspec_add_ids(dev, &fwid, 1);
1553 }
1554
1555 static void arm_smmu_get_resv_regions(struct device *dev,
1556                                       struct list_head *head)
1557 {
1558         struct iommu_resv_region *region;
1559         int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1560
1561         region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1562                                          prot, IOMMU_RESV_MSI);
1563         if (!region)
1564                 return;
1565
1566         list_add_tail(&region->list, head);
1567 }
1568
1569 static void arm_smmu_put_resv_regions(struct device *dev,
1570                                       struct list_head *head)
1571 {
1572         struct iommu_resv_region *entry, *next;
1573
1574         list_for_each_entry_safe(entry, next, head, list)
1575                 kfree(entry);
1576 }
1577
1578 static struct iommu_ops arm_smmu_ops = {
1579         .capable                = arm_smmu_capable,
1580         .domain_alloc           = arm_smmu_domain_alloc,
1581         .domain_free            = arm_smmu_domain_free,
1582         .attach_dev             = arm_smmu_attach_dev,
1583         .map                    = arm_smmu_map,
1584         .unmap                  = arm_smmu_unmap,
1585         .map_sg                 = default_iommu_map_sg,
1586         .iova_to_phys           = arm_smmu_iova_to_phys,
1587         .add_device             = arm_smmu_add_device,
1588         .remove_device          = arm_smmu_remove_device,
1589         .device_group           = arm_smmu_device_group,
1590         .domain_get_attr        = arm_smmu_domain_get_attr,
1591         .domain_set_attr        = arm_smmu_domain_set_attr,
1592         .of_xlate               = arm_smmu_of_xlate,
1593         .get_resv_regions       = arm_smmu_get_resv_regions,
1594         .put_resv_regions       = arm_smmu_put_resv_regions,
1595         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1596 };
1597
1598 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1599 {
1600         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1601         void __iomem *cb_base;
1602         int i;
1603         u32 reg, major;
1604
1605         /* clear global FSR */
1606         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1607         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1608
1609         /*
1610          * Reset stream mapping groups: Initial values mark all SMRn as
1611          * invalid and all S2CRn as bypass unless overridden.
1612          */
1613         for (i = 0; i < smmu->num_mapping_groups; ++i)
1614                 arm_smmu_write_sme(smmu, i);
1615
1616         if (smmu->model == ARM_MMU500) {
1617                 /*
1618                  * Before clearing ARM_MMU500_ACTLR_CPRE, need to
1619                  * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
1620                  * bit is only present in MMU-500r2 onwards.
1621                  */
1622                 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
1623                 major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
1624                 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
1625                 if (major >= 2)
1626                         reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
1627                 /*
1628                  * Allow unmatched Stream IDs to allocate bypass
1629                  * TLB entries for reduced latency.
1630                  */
1631                 reg |= ARM_MMU500_ACR_SMTNMB_TLBEN;
1632                 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
1633         }
1634
1635         /* Make sure all context banks are disabled and clear CB_FSR  */
1636         for (i = 0; i < smmu->num_context_banks; ++i) {
1637                 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1638                 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1639                 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1640                 /*
1641                  * Disable MMU-500's not-particularly-beneficial next-page
1642                  * prefetcher for the sake of errata #841119 and #826419.
1643                  */
1644                 if (smmu->model == ARM_MMU500) {
1645                         reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
1646                         reg &= ~ARM_MMU500_ACTLR_CPRE;
1647                         writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
1648                 }
1649         }
1650
1651         /* Invalidate the TLB, just in case */
1652         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1653         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1654
1655         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1656
1657         /* Enable fault reporting */
1658         reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1659
1660         /* Disable TLB broadcasting. */
1661         reg |= (sCR0_VMIDPNE | sCR0_PTM);
1662
1663         /* Enable client access, handling unmatched streams as appropriate */
1664         reg &= ~sCR0_CLIENTPD;
1665         if (disable_bypass)
1666                 reg |= sCR0_USFCFG;
1667         else
1668                 reg &= ~sCR0_USFCFG;
1669
1670         /* Disable forced broadcasting */
1671         reg &= ~sCR0_FB;
1672
1673         /* Don't upgrade barriers */
1674         reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1675
1676         if (smmu->features & ARM_SMMU_FEAT_VMID16)
1677                 reg |= sCR0_VMID16EN;
1678
1679         /* Push the button */
1680         __arm_smmu_tlb_sync(smmu);
1681         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1682 }
1683
1684 static int arm_smmu_id_size_to_bits(int size)
1685 {
1686         switch (size) {
1687         case 0:
1688                 return 32;
1689         case 1:
1690                 return 36;
1691         case 2:
1692                 return 40;
1693         case 3:
1694                 return 42;
1695         case 4:
1696                 return 44;
1697         case 5:
1698         default:
1699                 return 48;
1700         }
1701 }
1702
1703 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1704 {
1705         unsigned long size;
1706         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1707         u32 id;
1708         bool cttw_reg, cttw_fw = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK;
1709         int i;
1710
1711         dev_notice(smmu->dev, "probing hardware configuration...\n");
1712         dev_notice(smmu->dev, "SMMUv%d with:\n",
1713                         smmu->version == ARM_SMMU_V2 ? 2 : 1);
1714
1715         /* ID0 */
1716         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1717
1718         /* Restrict available stages based on module parameter */
1719         if (force_stage == 1)
1720                 id &= ~(ID0_S2TS | ID0_NTS);
1721         else if (force_stage == 2)
1722                 id &= ~(ID0_S1TS | ID0_NTS);
1723
1724         if (id & ID0_S1TS) {
1725                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1726                 dev_notice(smmu->dev, "\tstage 1 translation\n");
1727         }
1728
1729         if (id & ID0_S2TS) {
1730                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1731                 dev_notice(smmu->dev, "\tstage 2 translation\n");
1732         }
1733
1734         if (id & ID0_NTS) {
1735                 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1736                 dev_notice(smmu->dev, "\tnested translation\n");
1737         }
1738
1739         if (!(smmu->features &
1740                 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1741                 dev_err(smmu->dev, "\tno translation support!\n");
1742                 return -ENODEV;
1743         }
1744
1745         if ((id & ID0_S1TS) &&
1746                 ((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1747                 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1748                 dev_notice(smmu->dev, "\taddress translation ops\n");
1749         }
1750
1751         /*
1752          * In order for DMA API calls to work properly, we must defer to what
1753          * the FW says about coherency, regardless of what the hardware claims.
1754          * Fortunately, this also opens up a workaround for systems where the
1755          * ID register value has ended up configured incorrectly.
1756          */
1757         cttw_reg = !!(id & ID0_CTTW);
1758         if (cttw_fw || cttw_reg)
1759                 dev_notice(smmu->dev, "\t%scoherent table walk\n",
1760                            cttw_fw ? "" : "non-");
1761         if (cttw_fw != cttw_reg)
1762                 dev_notice(smmu->dev,
1763                            "\t(IDR0.CTTW overridden by FW configuration)\n");
1764
1765         /* Max. number of entries we have for stream matching/indexing */
1766         size = 1 << ((id >> ID0_NUMSIDB_SHIFT) & ID0_NUMSIDB_MASK);
1767         smmu->streamid_mask = size - 1;
1768         if (id & ID0_SMS) {
1769                 u32 smr;
1770
1771                 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1772                 size = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK;
1773                 if (size == 0) {
1774                         dev_err(smmu->dev,
1775                                 "stream-matching supported, but no SMRs present!\n");
1776                         return -ENODEV;
1777                 }
1778
1779                 /*
1780                  * SMR.ID bits may not be preserved if the corresponding MASK
1781                  * bits are set, so check each one separately. We can reject
1782                  * masters later if they try to claim IDs outside these masks.
1783                  */
1784                 smr = smmu->streamid_mask << SMR_ID_SHIFT;
1785                 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1786                 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1787                 smmu->streamid_mask = smr >> SMR_ID_SHIFT;
1788
1789                 smr = smmu->streamid_mask << SMR_MASK_SHIFT;
1790                 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1791                 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1792                 smmu->smr_mask_mask = smr >> SMR_MASK_SHIFT;
1793
1794                 /* Zero-initialised to mark as invalid */
1795                 smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
1796                                           GFP_KERNEL);
1797                 if (!smmu->smrs)
1798                         return -ENOMEM;
1799
1800                 dev_notice(smmu->dev,
1801                            "\tstream matching with %lu register groups, mask 0x%x",
1802                            size, smmu->smr_mask_mask);
1803         }
1804         /* s2cr->type == 0 means translation, so initialise explicitly */
1805         smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
1806                                          GFP_KERNEL);
1807         if (!smmu->s2crs)
1808                 return -ENOMEM;
1809         for (i = 0; i < size; i++)
1810                 smmu->s2crs[i] = s2cr_init_val;
1811
1812         smmu->num_mapping_groups = size;
1813         mutex_init(&smmu->stream_map_mutex);
1814
1815         if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
1816                 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
1817                 if (!(id & ID0_PTFS_NO_AARCH32S))
1818                         smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
1819         }
1820
1821         /* ID1 */
1822         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1823         smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1824
1825         /* Check for size mismatch of SMMU address space from mapped region */
1826         size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1827         size *= 2 << smmu->pgshift;
1828         if (smmu->size != size)
1829                 dev_warn(smmu->dev,
1830                         "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1831                         size, smmu->size);
1832
1833         smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1834         smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1835         if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1836                 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1837                 return -ENODEV;
1838         }
1839         dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1840                    smmu->num_context_banks, smmu->num_s2_context_banks);
1841         /*
1842          * Cavium CN88xx erratum #27704.
1843          * Ensure ASID and VMID allocation is unique across all SMMUs in
1844          * the system.
1845          */
1846         if (smmu->model == CAVIUM_SMMUV2) {
1847                 smmu->cavium_id_base =
1848                         atomic_add_return(smmu->num_context_banks,
1849                                           &cavium_smmu_context_count);
1850                 smmu->cavium_id_base -= smmu->num_context_banks;
1851         }
1852
1853         /* ID2 */
1854         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1855         size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1856         smmu->ipa_size = size;
1857
1858         /* The output mask is also applied for bypass */
1859         size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1860         smmu->pa_size = size;
1861
1862         if (id & ID2_VMID16)
1863                 smmu->features |= ARM_SMMU_FEAT_VMID16;
1864
1865         /*
1866          * What the page table walker can address actually depends on which
1867          * descriptor format is in use, but since a) we don't know that yet,
1868          * and b) it can vary per context bank, this will have to do...
1869          */
1870         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1871                 dev_warn(smmu->dev,
1872                          "failed to set DMA mask for table walker\n");
1873
1874         if (smmu->version < ARM_SMMU_V2) {
1875                 smmu->va_size = smmu->ipa_size;
1876                 if (smmu->version == ARM_SMMU_V1_64K)
1877                         smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1878         } else {
1879                 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1880                 smmu->va_size = arm_smmu_id_size_to_bits(size);
1881                 if (id & ID2_PTFS_4K)
1882                         smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1883                 if (id & ID2_PTFS_16K)
1884                         smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1885                 if (id & ID2_PTFS_64K)
1886                         smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1887         }
1888
1889         /* Now we've corralled the various formats, what'll it do? */
1890         if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
1891                 smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
1892         if (smmu->features &
1893             (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
1894                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
1895         if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
1896                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
1897         if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
1898                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
1899
1900         if (arm_smmu_ops.pgsize_bitmap == -1UL)
1901                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
1902         else
1903                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
1904         dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
1905                    smmu->pgsize_bitmap);
1906
1907
1908         if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1909                 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1910                            smmu->va_size, smmu->ipa_size);
1911
1912         if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1913                 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1914                            smmu->ipa_size, smmu->pa_size);
1915
1916         return 0;
1917 }
1918
1919 struct arm_smmu_match_data {
1920         enum arm_smmu_arch_version version;
1921         enum arm_smmu_implementation model;
1922 };
1923
1924 #define ARM_SMMU_MATCH_DATA(name, ver, imp)     \
1925 static struct arm_smmu_match_data name = { .version = ver, .model = imp }
1926
1927 ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
1928 ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1929 ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1930 ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1931 ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1932
1933 static const struct of_device_id arm_smmu_of_match[] = {
1934         { .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
1935         { .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
1936         { .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1937         { .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1938         { .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1939         { .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1940         { },
1941 };
1942 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1943
1944 #ifdef CONFIG_ACPI
1945 static int acpi_smmu_get_data(u32 model, struct arm_smmu_device *smmu)
1946 {
1947         int ret = 0;
1948
1949         switch (model) {
1950         case ACPI_IORT_SMMU_V1:
1951         case ACPI_IORT_SMMU_CORELINK_MMU400:
1952                 smmu->version = ARM_SMMU_V1;
1953                 smmu->model = GENERIC_SMMU;
1954                 break;
1955         case ACPI_IORT_SMMU_V2:
1956                 smmu->version = ARM_SMMU_V2;
1957                 smmu->model = GENERIC_SMMU;
1958                 break;
1959         case ACPI_IORT_SMMU_CORELINK_MMU500:
1960                 smmu->version = ARM_SMMU_V2;
1961                 smmu->model = ARM_MMU500;
1962                 break;
1963         default:
1964                 ret = -ENODEV;
1965         }
1966
1967         return ret;
1968 }
1969
1970 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
1971                                       struct arm_smmu_device *smmu)
1972 {
1973         struct device *dev = smmu->dev;
1974         struct acpi_iort_node *node =
1975                 *(struct acpi_iort_node **)dev_get_platdata(dev);
1976         struct acpi_iort_smmu *iort_smmu;
1977         int ret;
1978
1979         /* Retrieve SMMU1/2 specific data */
1980         iort_smmu = (struct acpi_iort_smmu *)node->node_data;
1981
1982         ret = acpi_smmu_get_data(iort_smmu->model, smmu);
1983         if (ret < 0)
1984                 return ret;
1985
1986         /* Ignore the configuration access interrupt */
1987         smmu->num_global_irqs = 1;
1988
1989         if (iort_smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK)
1990                 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1991
1992         return 0;
1993 }
1994 #else
1995 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
1996                                              struct arm_smmu_device *smmu)
1997 {
1998         return -ENODEV;
1999 }
2000 #endif
2001
2002 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2003                                     struct arm_smmu_device *smmu)
2004 {
2005         const struct arm_smmu_match_data *data;
2006         struct device *dev = &pdev->dev;
2007         bool legacy_binding;
2008
2009         if (of_property_read_u32(dev->of_node, "#global-interrupts",
2010                                  &smmu->num_global_irqs)) {
2011                 dev_err(dev, "missing #global-interrupts property\n");
2012                 return -ENODEV;
2013         }
2014
2015         data = of_device_get_match_data(dev);
2016         smmu->version = data->version;
2017         smmu->model = data->model;
2018
2019         parse_driver_options(smmu);
2020
2021         legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL);
2022         if (legacy_binding && !using_generic_binding) {
2023                 if (!using_legacy_binding)
2024                         pr_notice("deprecated \"mmu-masters\" DT property in use; DMA API support unavailable\n");
2025                 using_legacy_binding = true;
2026         } else if (!legacy_binding && !using_legacy_binding) {
2027                 using_generic_binding = true;
2028         } else {
2029                 dev_err(dev, "not probing due to mismatched DT properties\n");
2030                 return -ENODEV;
2031         }
2032
2033         if (of_dma_is_coherent(dev->of_node))
2034                 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
2035
2036         return 0;
2037 }
2038
2039 static int arm_smmu_device_probe(struct platform_device *pdev)
2040 {
2041         struct resource *res;
2042         struct arm_smmu_device *smmu;
2043         struct device *dev = &pdev->dev;
2044         int num_irqs, i, err;
2045
2046         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2047         if (!smmu) {
2048                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2049                 return -ENOMEM;
2050         }
2051         smmu->dev = dev;
2052
2053         if (dev->of_node)
2054                 err = arm_smmu_device_dt_probe(pdev, smmu);
2055         else
2056                 err = arm_smmu_device_acpi_probe(pdev, smmu);
2057
2058         if (err)
2059                 return err;
2060
2061         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2062         smmu->base = devm_ioremap_resource(dev, res);
2063         if (IS_ERR(smmu->base))
2064                 return PTR_ERR(smmu->base);
2065         smmu->size = resource_size(res);
2066
2067         num_irqs = 0;
2068         while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
2069                 num_irqs++;
2070                 if (num_irqs > smmu->num_global_irqs)
2071                         smmu->num_context_irqs++;
2072         }
2073
2074         if (!smmu->num_context_irqs) {
2075                 dev_err(dev, "found %d interrupts but expected at least %d\n",
2076                         num_irqs, smmu->num_global_irqs + 1);
2077                 return -ENODEV;
2078         }
2079
2080         smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
2081                                   GFP_KERNEL);
2082         if (!smmu->irqs) {
2083                 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
2084                 return -ENOMEM;
2085         }
2086
2087         for (i = 0; i < num_irqs; ++i) {
2088                 int irq = platform_get_irq(pdev, i);
2089
2090                 if (irq < 0) {
2091                         dev_err(dev, "failed to get irq index %d\n", i);
2092                         return -ENODEV;
2093                 }
2094                 smmu->irqs[i] = irq;
2095         }
2096
2097         err = arm_smmu_device_cfg_probe(smmu);
2098         if (err)
2099                 return err;
2100
2101         if (smmu->version == ARM_SMMU_V2 &&
2102             smmu->num_context_banks != smmu->num_context_irqs) {
2103                 dev_err(dev,
2104                         "found only %d context interrupt(s) but %d required\n",
2105                         smmu->num_context_irqs, smmu->num_context_banks);
2106                 return -ENODEV;
2107         }
2108
2109         for (i = 0; i < smmu->num_global_irqs; ++i) {
2110                 err = devm_request_irq(smmu->dev, smmu->irqs[i],
2111                                        arm_smmu_global_fault,
2112                                        IRQF_SHARED,
2113                                        "arm-smmu global fault",
2114                                        smmu);
2115                 if (err) {
2116                         dev_err(dev, "failed to request global IRQ %d (%u)\n",
2117                                 i, smmu->irqs[i]);
2118                         return err;
2119                 }
2120         }
2121
2122         iommu_register_instance(dev->fwnode, &arm_smmu_ops);
2123         platform_set_drvdata(pdev, smmu);
2124         arm_smmu_device_reset(smmu);
2125
2126         /* Oh, for a proper bus abstraction */
2127         if (!iommu_present(&platform_bus_type))
2128                 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2129 #ifdef CONFIG_ARM_AMBA
2130         if (!iommu_present(&amba_bustype))
2131                 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2132 #endif
2133 #ifdef CONFIG_PCI
2134         if (!iommu_present(&pci_bus_type)) {
2135                 pci_request_acs();
2136                 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2137         }
2138 #endif
2139         return 0;
2140 }
2141
2142 static int arm_smmu_device_remove(struct platform_device *pdev)
2143 {
2144         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2145
2146         if (!smmu)
2147                 return -ENODEV;
2148
2149         if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2150                 dev_err(&pdev->dev, "removing device with active domains!\n");
2151
2152         /* Turn the thing off */
2153         writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2154         return 0;
2155 }
2156
2157 static struct platform_driver arm_smmu_driver = {
2158         .driver = {
2159                 .name           = "arm-smmu",
2160                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2161         },
2162         .probe  = arm_smmu_device_probe,
2163         .remove = arm_smmu_device_remove,
2164 };
2165
2166 static int __init arm_smmu_init(void)
2167 {
2168         static bool registered;
2169         int ret = 0;
2170
2171         if (!registered) {
2172                 ret = platform_driver_register(&arm_smmu_driver);
2173                 registered = !ret;
2174         }
2175         return ret;
2176 }
2177
2178 static void __exit arm_smmu_exit(void)
2179 {
2180         return platform_driver_unregister(&arm_smmu_driver);
2181 }
2182
2183 subsys_initcall(arm_smmu_init);
2184 module_exit(arm_smmu_exit);
2185
2186 static int __init arm_smmu_of_init(struct device_node *np)
2187 {
2188         int ret = arm_smmu_init();
2189
2190         if (ret)
2191                 return ret;
2192
2193         if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2194                 return -ENODEV;
2195
2196         return 0;
2197 }
2198 IOMMU_OF_DECLARE(arm_smmuv1, "arm,smmu-v1", arm_smmu_of_init);
2199 IOMMU_OF_DECLARE(arm_smmuv2, "arm,smmu-v2", arm_smmu_of_init);
2200 IOMMU_OF_DECLARE(arm_mmu400, "arm,mmu-400", arm_smmu_of_init);
2201 IOMMU_OF_DECLARE(arm_mmu401, "arm,mmu-401", arm_smmu_of_init);
2202 IOMMU_OF_DECLARE(arm_mmu500, "arm,mmu-500", arm_smmu_of_init);
2203 IOMMU_OF_DECLARE(cavium_smmuv2, "cavium,smmu-v2", arm_smmu_of_init);
2204
2205 #ifdef CONFIG_ACPI
2206 static int __init arm_smmu_acpi_init(struct acpi_table_header *table)
2207 {
2208         if (iort_node_match(ACPI_IORT_NODE_SMMU))
2209                 return arm_smmu_init();
2210
2211         return 0;
2212 }
2213 IORT_ACPI_DECLARE(arm_smmu, ACPI_SIG_IORT, arm_smmu_acpi_init);
2214 #endif
2215
2216 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2217 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2218 MODULE_LICENSE("GPL v2");