]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/iommu/dmar.c
pinctrl: baytrail: Allocate IRQ chip dynamic
[linux.git] / drivers / iommu / dmar.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <ashok.raj@intel.com>
7  * Author: Shaohua Li <shaohua.li@intel.com>
8  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16
17 #define pr_fmt(fmt)     "DMAR: " fmt
18
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/intel-iommu.h>
23 #include <linux/timer.h>
24 #include <linux/irq.h>
25 #include <linux/interrupt.h>
26 #include <linux/tboot.h>
27 #include <linux/dmi.h>
28 #include <linux/slab.h>
29 #include <linux/iommu.h>
30 #include <linux/numa.h>
31 #include <asm/irq_remapping.h>
32 #include <asm/iommu_table.h>
33
34 #include "irq_remapping.h"
35
36 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
37 struct dmar_res_callback {
38         dmar_res_handler_t      cb[ACPI_DMAR_TYPE_RESERVED];
39         void                    *arg[ACPI_DMAR_TYPE_RESERVED];
40         bool                    ignore_unhandled;
41         bool                    print_entry;
42 };
43
44 /*
45  * Assumptions:
46  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
47  *    before IO devices managed by that unit.
48  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
49  *    after IO devices managed by that unit.
50  * 3) Hotplug events are rare.
51  *
52  * Locking rules for DMA and interrupt remapping related global data structures:
53  * 1) Use dmar_global_lock in process context
54  * 2) Use RCU in interrupt context
55  */
56 DECLARE_RWSEM(dmar_global_lock);
57 LIST_HEAD(dmar_drhd_units);
58
59 struct acpi_table_header * __initdata dmar_tbl;
60 static int dmar_dev_scope_status = 1;
61 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
62
63 static int alloc_iommu(struct dmar_drhd_unit *drhd);
64 static void free_iommu(struct intel_iommu *iommu);
65
66 extern const struct iommu_ops intel_iommu_ops;
67
68 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
69 {
70         /*
71          * add INCLUDE_ALL at the tail, so scan the list will find it at
72          * the very end.
73          */
74         if (drhd->include_all)
75                 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
76         else
77                 list_add_rcu(&drhd->list, &dmar_drhd_units);
78 }
79
80 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
81 {
82         struct acpi_dmar_device_scope *scope;
83
84         *cnt = 0;
85         while (start < end) {
86                 scope = start;
87                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
88                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
89                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
90                         (*cnt)++;
91                 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
92                         scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
93                         pr_warn("Unsupported device scope\n");
94                 }
95                 start += scope->length;
96         }
97         if (*cnt == 0)
98                 return NULL;
99
100         return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
101 }
102
103 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
104 {
105         int i;
106         struct device *tmp_dev;
107
108         if (*devices && *cnt) {
109                 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
110                         put_device(tmp_dev);
111                 kfree(*devices);
112         }
113
114         *devices = NULL;
115         *cnt = 0;
116 }
117
118 /* Optimize out kzalloc()/kfree() for normal cases */
119 static char dmar_pci_notify_info_buf[64];
120
121 static struct dmar_pci_notify_info *
122 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
123 {
124         int level = 0;
125         size_t size;
126         struct pci_dev *tmp;
127         struct dmar_pci_notify_info *info;
128
129         BUG_ON(dev->is_virtfn);
130
131         /* Only generate path[] for device addition event */
132         if (event == BUS_NOTIFY_ADD_DEVICE)
133                 for (tmp = dev; tmp; tmp = tmp->bus->self)
134                         level++;
135
136         size = struct_size(info, path, level);
137         if (size <= sizeof(dmar_pci_notify_info_buf)) {
138                 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
139         } else {
140                 info = kzalloc(size, GFP_KERNEL);
141                 if (!info) {
142                         pr_warn("Out of memory when allocating notify_info "
143                                 "for %s.\n", pci_name(dev));
144                         if (dmar_dev_scope_status == 0)
145                                 dmar_dev_scope_status = -ENOMEM;
146                         return NULL;
147                 }
148         }
149
150         info->event = event;
151         info->dev = dev;
152         info->seg = pci_domain_nr(dev->bus);
153         info->level = level;
154         if (event == BUS_NOTIFY_ADD_DEVICE) {
155                 for (tmp = dev; tmp; tmp = tmp->bus->self) {
156                         level--;
157                         info->path[level].bus = tmp->bus->number;
158                         info->path[level].device = PCI_SLOT(tmp->devfn);
159                         info->path[level].function = PCI_FUNC(tmp->devfn);
160                         if (pci_is_root_bus(tmp->bus))
161                                 info->bus = tmp->bus->number;
162                 }
163         }
164
165         return info;
166 }
167
168 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
169 {
170         if ((void *)info != dmar_pci_notify_info_buf)
171                 kfree(info);
172 }
173
174 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
175                                 struct acpi_dmar_pci_path *path, int count)
176 {
177         int i;
178
179         if (info->bus != bus)
180                 goto fallback;
181         if (info->level != count)
182                 goto fallback;
183
184         for (i = 0; i < count; i++) {
185                 if (path[i].device != info->path[i].device ||
186                     path[i].function != info->path[i].function)
187                         goto fallback;
188         }
189
190         return true;
191
192 fallback:
193
194         if (count != 1)
195                 return false;
196
197         i = info->level - 1;
198         if (bus              == info->path[i].bus &&
199             path[0].device   == info->path[i].device &&
200             path[0].function == info->path[i].function) {
201                 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
202                         bus, path[0].device, path[0].function);
203                 return true;
204         }
205
206         return false;
207 }
208
209 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
210 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
211                           void *start, void*end, u16 segment,
212                           struct dmar_dev_scope *devices,
213                           int devices_cnt)
214 {
215         int i, level;
216         struct device *tmp, *dev = &info->dev->dev;
217         struct acpi_dmar_device_scope *scope;
218         struct acpi_dmar_pci_path *path;
219
220         if (segment != info->seg)
221                 return 0;
222
223         for (; start < end; start += scope->length) {
224                 scope = start;
225                 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
226                     scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
227                         continue;
228
229                 path = (struct acpi_dmar_pci_path *)(scope + 1);
230                 level = (scope->length - sizeof(*scope)) / sizeof(*path);
231                 if (!dmar_match_pci_path(info, scope->bus, path, level))
232                         continue;
233
234                 /*
235                  * We expect devices with endpoint scope to have normal PCI
236                  * headers, and devices with bridge scope to have bridge PCI
237                  * headers.  However PCI NTB devices may be listed in the
238                  * DMAR table with bridge scope, even though they have a
239                  * normal PCI header.  NTB devices are identified by class
240                  * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
241                  * for this special case.
242                  */
243                 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
244                      info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
245                     (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
246                      (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
247                       info->dev->class >> 8 != PCI_CLASS_BRIDGE_OTHER))) {
248                         pr_warn("Device scope type does not match for %s\n",
249                                 pci_name(info->dev));
250                         return -EINVAL;
251                 }
252
253                 for_each_dev_scope(devices, devices_cnt, i, tmp)
254                         if (tmp == NULL) {
255                                 devices[i].bus = info->dev->bus->number;
256                                 devices[i].devfn = info->dev->devfn;
257                                 rcu_assign_pointer(devices[i].dev,
258                                                    get_device(dev));
259                                 return 1;
260                         }
261                 BUG_ON(i >= devices_cnt);
262         }
263
264         return 0;
265 }
266
267 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
268                           struct dmar_dev_scope *devices, int count)
269 {
270         int index;
271         struct device *tmp;
272
273         if (info->seg != segment)
274                 return 0;
275
276         for_each_active_dev_scope(devices, count, index, tmp)
277                 if (tmp == &info->dev->dev) {
278                         RCU_INIT_POINTER(devices[index].dev, NULL);
279                         synchronize_rcu();
280                         put_device(tmp);
281                         return 1;
282                 }
283
284         return 0;
285 }
286
287 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
288 {
289         int ret = 0;
290         struct dmar_drhd_unit *dmaru;
291         struct acpi_dmar_hardware_unit *drhd;
292
293         for_each_drhd_unit(dmaru) {
294                 if (dmaru->include_all)
295                         continue;
296
297                 drhd = container_of(dmaru->hdr,
298                                     struct acpi_dmar_hardware_unit, header);
299                 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
300                                 ((void *)drhd) + drhd->header.length,
301                                 dmaru->segment,
302                                 dmaru->devices, dmaru->devices_cnt);
303                 if (ret)
304                         break;
305         }
306         if (ret >= 0)
307                 ret = dmar_iommu_notify_scope_dev(info);
308         if (ret < 0 && dmar_dev_scope_status == 0)
309                 dmar_dev_scope_status = ret;
310
311         return ret;
312 }
313
314 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
315 {
316         struct dmar_drhd_unit *dmaru;
317
318         for_each_drhd_unit(dmaru)
319                 if (dmar_remove_dev_scope(info, dmaru->segment,
320                         dmaru->devices, dmaru->devices_cnt))
321                         break;
322         dmar_iommu_notify_scope_dev(info);
323 }
324
325 static int dmar_pci_bus_notifier(struct notifier_block *nb,
326                                  unsigned long action, void *data)
327 {
328         struct pci_dev *pdev = to_pci_dev(data);
329         struct dmar_pci_notify_info *info;
330
331         /* Only care about add/remove events for physical functions.
332          * For VFs we actually do the lookup based on the corresponding
333          * PF in device_to_iommu() anyway. */
334         if (pdev->is_virtfn)
335                 return NOTIFY_DONE;
336         if (action != BUS_NOTIFY_ADD_DEVICE &&
337             action != BUS_NOTIFY_REMOVED_DEVICE)
338                 return NOTIFY_DONE;
339
340         info = dmar_alloc_pci_notify_info(pdev, action);
341         if (!info)
342                 return NOTIFY_DONE;
343
344         down_write(&dmar_global_lock);
345         if (action == BUS_NOTIFY_ADD_DEVICE)
346                 dmar_pci_bus_add_dev(info);
347         else if (action == BUS_NOTIFY_REMOVED_DEVICE)
348                 dmar_pci_bus_del_dev(info);
349         up_write(&dmar_global_lock);
350
351         dmar_free_pci_notify_info(info);
352
353         return NOTIFY_OK;
354 }
355
356 static struct notifier_block dmar_pci_bus_nb = {
357         .notifier_call = dmar_pci_bus_notifier,
358         .priority = INT_MIN,
359 };
360
361 static struct dmar_drhd_unit *
362 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
363 {
364         struct dmar_drhd_unit *dmaru;
365
366         list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list)
367                 if (dmaru->segment == drhd->segment &&
368                     dmaru->reg_base_addr == drhd->address)
369                         return dmaru;
370
371         return NULL;
372 }
373
374 /**
375  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
376  * structure which uniquely represent one DMA remapping hardware unit
377  * present in the platform
378  */
379 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
380 {
381         struct acpi_dmar_hardware_unit *drhd;
382         struct dmar_drhd_unit *dmaru;
383         int ret;
384
385         drhd = (struct acpi_dmar_hardware_unit *)header;
386         dmaru = dmar_find_dmaru(drhd);
387         if (dmaru)
388                 goto out;
389
390         dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
391         if (!dmaru)
392                 return -ENOMEM;
393
394         /*
395          * If header is allocated from slab by ACPI _DSM method, we need to
396          * copy the content because the memory buffer will be freed on return.
397          */
398         dmaru->hdr = (void *)(dmaru + 1);
399         memcpy(dmaru->hdr, header, header->length);
400         dmaru->reg_base_addr = drhd->address;
401         dmaru->segment = drhd->segment;
402         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
403         dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
404                                               ((void *)drhd) + drhd->header.length,
405                                               &dmaru->devices_cnt);
406         if (dmaru->devices_cnt && dmaru->devices == NULL) {
407                 kfree(dmaru);
408                 return -ENOMEM;
409         }
410
411         ret = alloc_iommu(dmaru);
412         if (ret) {
413                 dmar_free_dev_scope(&dmaru->devices,
414                                     &dmaru->devices_cnt);
415                 kfree(dmaru);
416                 return ret;
417         }
418         dmar_register_drhd_unit(dmaru);
419
420 out:
421         if (arg)
422                 (*(int *)arg)++;
423
424         return 0;
425 }
426
427 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
428 {
429         if (dmaru->devices && dmaru->devices_cnt)
430                 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
431         if (dmaru->iommu)
432                 free_iommu(dmaru->iommu);
433         kfree(dmaru);
434 }
435
436 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
437                                       void *arg)
438 {
439         struct acpi_dmar_andd *andd = (void *)header;
440
441         /* Check for NUL termination within the designated length */
442         if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
443                 WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
444                            "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
445                            "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
446                            dmi_get_system_info(DMI_BIOS_VENDOR),
447                            dmi_get_system_info(DMI_BIOS_VERSION),
448                            dmi_get_system_info(DMI_PRODUCT_VERSION));
449                 return -EINVAL;
450         }
451         pr_info("ANDD device: %x name: %s\n", andd->device_number,
452                 andd->device_name);
453
454         return 0;
455 }
456
457 #ifdef CONFIG_ACPI_NUMA
458 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
459 {
460         struct acpi_dmar_rhsa *rhsa;
461         struct dmar_drhd_unit *drhd;
462
463         rhsa = (struct acpi_dmar_rhsa *)header;
464         for_each_drhd_unit(drhd) {
465                 if (drhd->reg_base_addr == rhsa->base_address) {
466                         int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
467
468                         if (!node_online(node))
469                                 node = NUMA_NO_NODE;
470                         drhd->iommu->node = node;
471                         return 0;
472                 }
473         }
474         WARN_TAINT(
475                 1, TAINT_FIRMWARE_WORKAROUND,
476                 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
477                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
478                 drhd->reg_base_addr,
479                 dmi_get_system_info(DMI_BIOS_VENDOR),
480                 dmi_get_system_info(DMI_BIOS_VERSION),
481                 dmi_get_system_info(DMI_PRODUCT_VERSION));
482
483         return 0;
484 }
485 #else
486 #define dmar_parse_one_rhsa             dmar_res_noop
487 #endif
488
489 static void
490 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
491 {
492         struct acpi_dmar_hardware_unit *drhd;
493         struct acpi_dmar_reserved_memory *rmrr;
494         struct acpi_dmar_atsr *atsr;
495         struct acpi_dmar_rhsa *rhsa;
496
497         switch (header->type) {
498         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
499                 drhd = container_of(header, struct acpi_dmar_hardware_unit,
500                                     header);
501                 pr_info("DRHD base: %#016Lx flags: %#x\n",
502                         (unsigned long long)drhd->address, drhd->flags);
503                 break;
504         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
505                 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
506                                     header);
507                 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
508                         (unsigned long long)rmrr->base_address,
509                         (unsigned long long)rmrr->end_address);
510                 break;
511         case ACPI_DMAR_TYPE_ROOT_ATS:
512                 atsr = container_of(header, struct acpi_dmar_atsr, header);
513                 pr_info("ATSR flags: %#x\n", atsr->flags);
514                 break;
515         case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
516                 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
517                 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
518                        (unsigned long long)rhsa->base_address,
519                        rhsa->proximity_domain);
520                 break;
521         case ACPI_DMAR_TYPE_NAMESPACE:
522                 /* We don't print this here because we need to sanity-check
523                    it first. So print it in dmar_parse_one_andd() instead. */
524                 break;
525         }
526 }
527
528 /**
529  * dmar_table_detect - checks to see if the platform supports DMAR devices
530  */
531 static int __init dmar_table_detect(void)
532 {
533         acpi_status status = AE_OK;
534
535         /* if we could find DMAR table, then there are DMAR devices */
536         status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
537
538         if (ACPI_SUCCESS(status) && !dmar_tbl) {
539                 pr_warn("Unable to map DMAR\n");
540                 status = AE_NOT_FOUND;
541         }
542
543         return ACPI_SUCCESS(status) ? 0 : -ENOENT;
544 }
545
546 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
547                                        size_t len, struct dmar_res_callback *cb)
548 {
549         struct acpi_dmar_header *iter, *next;
550         struct acpi_dmar_header *end = ((void *)start) + len;
551
552         for (iter = start; iter < end; iter = next) {
553                 next = (void *)iter + iter->length;
554                 if (iter->length == 0) {
555                         /* Avoid looping forever on bad ACPI tables */
556                         pr_debug(FW_BUG "Invalid 0-length structure\n");
557                         break;
558                 } else if (next > end) {
559                         /* Avoid passing table end */
560                         pr_warn(FW_BUG "Record passes table end\n");
561                         return -EINVAL;
562                 }
563
564                 if (cb->print_entry)
565                         dmar_table_print_dmar_entry(iter);
566
567                 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
568                         /* continue for forward compatibility */
569                         pr_debug("Unknown DMAR structure type %d\n",
570                                  iter->type);
571                 } else if (cb->cb[iter->type]) {
572                         int ret;
573
574                         ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
575                         if (ret)
576                                 return ret;
577                 } else if (!cb->ignore_unhandled) {
578                         pr_warn("No handler for DMAR structure type %d\n",
579                                 iter->type);
580                         return -EINVAL;
581                 }
582         }
583
584         return 0;
585 }
586
587 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
588                                        struct dmar_res_callback *cb)
589 {
590         return dmar_walk_remapping_entries((void *)(dmar + 1),
591                         dmar->header.length - sizeof(*dmar), cb);
592 }
593
594 /**
595  * parse_dmar_table - parses the DMA reporting table
596  */
597 static int __init
598 parse_dmar_table(void)
599 {
600         struct acpi_table_dmar *dmar;
601         int drhd_count = 0;
602         int ret;
603         struct dmar_res_callback cb = {
604                 .print_entry = true,
605                 .ignore_unhandled = true,
606                 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
607                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
608                 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
609                 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
610                 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
611                 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
612         };
613
614         /*
615          * Do it again, earlier dmar_tbl mapping could be mapped with
616          * fixed map.
617          */
618         dmar_table_detect();
619
620         /*
621          * ACPI tables may not be DMA protected by tboot, so use DMAR copy
622          * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
623          */
624         dmar_tbl = tboot_get_dmar_table(dmar_tbl);
625
626         dmar = (struct acpi_table_dmar *)dmar_tbl;
627         if (!dmar)
628                 return -ENODEV;
629
630         if (dmar->width < PAGE_SHIFT - 1) {
631                 pr_warn("Invalid DMAR haw\n");
632                 return -EINVAL;
633         }
634
635         pr_info("Host address width %d\n", dmar->width + 1);
636         ret = dmar_walk_dmar_table(dmar, &cb);
637         if (ret == 0 && drhd_count == 0)
638                 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
639
640         return ret;
641 }
642
643 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
644                                  int cnt, struct pci_dev *dev)
645 {
646         int index;
647         struct device *tmp;
648
649         while (dev) {
650                 for_each_active_dev_scope(devices, cnt, index, tmp)
651                         if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
652                                 return 1;
653
654                 /* Check our parent */
655                 dev = dev->bus->self;
656         }
657
658         return 0;
659 }
660
661 struct dmar_drhd_unit *
662 dmar_find_matched_drhd_unit(struct pci_dev *dev)
663 {
664         struct dmar_drhd_unit *dmaru;
665         struct acpi_dmar_hardware_unit *drhd;
666
667         dev = pci_physfn(dev);
668
669         rcu_read_lock();
670         for_each_drhd_unit(dmaru) {
671                 drhd = container_of(dmaru->hdr,
672                                     struct acpi_dmar_hardware_unit,
673                                     header);
674
675                 if (dmaru->include_all &&
676                     drhd->segment == pci_domain_nr(dev->bus))
677                         goto out;
678
679                 if (dmar_pci_device_match(dmaru->devices,
680                                           dmaru->devices_cnt, dev))
681                         goto out;
682         }
683         dmaru = NULL;
684 out:
685         rcu_read_unlock();
686
687         return dmaru;
688 }
689
690 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
691                                               struct acpi_device *adev)
692 {
693         struct dmar_drhd_unit *dmaru;
694         struct acpi_dmar_hardware_unit *drhd;
695         struct acpi_dmar_device_scope *scope;
696         struct device *tmp;
697         int i;
698         struct acpi_dmar_pci_path *path;
699
700         for_each_drhd_unit(dmaru) {
701                 drhd = container_of(dmaru->hdr,
702                                     struct acpi_dmar_hardware_unit,
703                                     header);
704
705                 for (scope = (void *)(drhd + 1);
706                      (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
707                      scope = ((void *)scope) + scope->length) {
708                         if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
709                                 continue;
710                         if (scope->enumeration_id != device_number)
711                                 continue;
712
713                         path = (void *)(scope + 1);
714                         pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
715                                 dev_name(&adev->dev), dmaru->reg_base_addr,
716                                 scope->bus, path->device, path->function);
717                         for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
718                                 if (tmp == NULL) {
719                                         dmaru->devices[i].bus = scope->bus;
720                                         dmaru->devices[i].devfn = PCI_DEVFN(path->device,
721                                                                             path->function);
722                                         rcu_assign_pointer(dmaru->devices[i].dev,
723                                                            get_device(&adev->dev));
724                                         return;
725                                 }
726                         BUG_ON(i >= dmaru->devices_cnt);
727                 }
728         }
729         pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
730                 device_number, dev_name(&adev->dev));
731 }
732
733 static int __init dmar_acpi_dev_scope_init(void)
734 {
735         struct acpi_dmar_andd *andd;
736
737         if (dmar_tbl == NULL)
738                 return -ENODEV;
739
740         for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
741              ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
742              andd = ((void *)andd) + andd->header.length) {
743                 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
744                         acpi_handle h;
745                         struct acpi_device *adev;
746
747                         if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
748                                                           andd->device_name,
749                                                           &h))) {
750                                 pr_err("Failed to find handle for ACPI object %s\n",
751                                        andd->device_name);
752                                 continue;
753                         }
754                         if (acpi_bus_get_device(h, &adev)) {
755                                 pr_err("Failed to get device for ACPI object %s\n",
756                                        andd->device_name);
757                                 continue;
758                         }
759                         dmar_acpi_insert_dev_scope(andd->device_number, adev);
760                 }
761         }
762         return 0;
763 }
764
765 int __init dmar_dev_scope_init(void)
766 {
767         struct pci_dev *dev = NULL;
768         struct dmar_pci_notify_info *info;
769
770         if (dmar_dev_scope_status != 1)
771                 return dmar_dev_scope_status;
772
773         if (list_empty(&dmar_drhd_units)) {
774                 dmar_dev_scope_status = -ENODEV;
775         } else {
776                 dmar_dev_scope_status = 0;
777
778                 dmar_acpi_dev_scope_init();
779
780                 for_each_pci_dev(dev) {
781                         if (dev->is_virtfn)
782                                 continue;
783
784                         info = dmar_alloc_pci_notify_info(dev,
785                                         BUS_NOTIFY_ADD_DEVICE);
786                         if (!info) {
787                                 return dmar_dev_scope_status;
788                         } else {
789                                 dmar_pci_bus_add_dev(info);
790                                 dmar_free_pci_notify_info(info);
791                         }
792                 }
793         }
794
795         return dmar_dev_scope_status;
796 }
797
798 void __init dmar_register_bus_notifier(void)
799 {
800         bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
801 }
802
803
804 int __init dmar_table_init(void)
805 {
806         static int dmar_table_initialized;
807         int ret;
808
809         if (dmar_table_initialized == 0) {
810                 ret = parse_dmar_table();
811                 if (ret < 0) {
812                         if (ret != -ENODEV)
813                                 pr_info("Parse DMAR table failure.\n");
814                 } else  if (list_empty(&dmar_drhd_units)) {
815                         pr_info("No DMAR devices found\n");
816                         ret = -ENODEV;
817                 }
818
819                 if (ret < 0)
820                         dmar_table_initialized = ret;
821                 else
822                         dmar_table_initialized = 1;
823         }
824
825         return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
826 }
827
828 static void warn_invalid_dmar(u64 addr, const char *message)
829 {
830         WARN_TAINT_ONCE(
831                 1, TAINT_FIRMWARE_WORKAROUND,
832                 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
833                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
834                 addr, message,
835                 dmi_get_system_info(DMI_BIOS_VENDOR),
836                 dmi_get_system_info(DMI_BIOS_VERSION),
837                 dmi_get_system_info(DMI_PRODUCT_VERSION));
838 }
839
840 static int __ref
841 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
842 {
843         struct acpi_dmar_hardware_unit *drhd;
844         void __iomem *addr;
845         u64 cap, ecap;
846
847         drhd = (void *)entry;
848         if (!drhd->address) {
849                 warn_invalid_dmar(0, "");
850                 return -EINVAL;
851         }
852
853         if (arg)
854                 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
855         else
856                 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
857         if (!addr) {
858                 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
859                 return -EINVAL;
860         }
861
862         cap = dmar_readq(addr + DMAR_CAP_REG);
863         ecap = dmar_readq(addr + DMAR_ECAP_REG);
864
865         if (arg)
866                 iounmap(addr);
867         else
868                 early_iounmap(addr, VTD_PAGE_SIZE);
869
870         if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
871                 warn_invalid_dmar(drhd->address, " returns all ones");
872                 return -EINVAL;
873         }
874
875         return 0;
876 }
877
878 int __init detect_intel_iommu(void)
879 {
880         int ret;
881         struct dmar_res_callback validate_drhd_cb = {
882                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
883                 .ignore_unhandled = true,
884         };
885
886         down_write(&dmar_global_lock);
887         ret = dmar_table_detect();
888         if (!ret)
889                 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
890                                            &validate_drhd_cb);
891         if (!ret && !no_iommu && !iommu_detected && !dmar_disabled) {
892                 iommu_detected = 1;
893                 /* Make sure ACS will be enabled */
894                 pci_request_acs();
895         }
896
897 #ifdef CONFIG_X86
898         if (!ret) {
899                 x86_init.iommu.iommu_init = intel_iommu_init;
900                 x86_platform.iommu_shutdown = intel_iommu_shutdown;
901         }
902
903 #endif
904
905         if (dmar_tbl) {
906                 acpi_put_table(dmar_tbl);
907                 dmar_tbl = NULL;
908         }
909         up_write(&dmar_global_lock);
910
911         return ret ? ret : 1;
912 }
913
914 static void unmap_iommu(struct intel_iommu *iommu)
915 {
916         iounmap(iommu->reg);
917         release_mem_region(iommu->reg_phys, iommu->reg_size);
918 }
919
920 /**
921  * map_iommu: map the iommu's registers
922  * @iommu: the iommu to map
923  * @phys_addr: the physical address of the base resgister
924  *
925  * Memory map the iommu's registers.  Start w/ a single page, and
926  * possibly expand if that turns out to be insufficent.
927  */
928 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
929 {
930         int map_size, err=0;
931
932         iommu->reg_phys = phys_addr;
933         iommu->reg_size = VTD_PAGE_SIZE;
934
935         if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
936                 pr_err("Can't reserve memory\n");
937                 err = -EBUSY;
938                 goto out;
939         }
940
941         iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
942         if (!iommu->reg) {
943                 pr_err("Can't map the region\n");
944                 err = -ENOMEM;
945                 goto release;
946         }
947
948         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
949         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
950
951         if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
952                 err = -EINVAL;
953                 warn_invalid_dmar(phys_addr, " returns all ones");
954                 goto unmap;
955         }
956
957         /* the registers might be more than one page */
958         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
959                          cap_max_fault_reg_offset(iommu->cap));
960         map_size = VTD_PAGE_ALIGN(map_size);
961         if (map_size > iommu->reg_size) {
962                 iounmap(iommu->reg);
963                 release_mem_region(iommu->reg_phys, iommu->reg_size);
964                 iommu->reg_size = map_size;
965                 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
966                                         iommu->name)) {
967                         pr_err("Can't reserve memory\n");
968                         err = -EBUSY;
969                         goto out;
970                 }
971                 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
972                 if (!iommu->reg) {
973                         pr_err("Can't map the region\n");
974                         err = -ENOMEM;
975                         goto release;
976                 }
977         }
978         err = 0;
979         goto out;
980
981 unmap:
982         iounmap(iommu->reg);
983 release:
984         release_mem_region(iommu->reg_phys, iommu->reg_size);
985 out:
986         return err;
987 }
988
989 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
990 {
991         iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
992                                             DMAR_UNITS_SUPPORTED);
993         if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
994                 iommu->seq_id = -1;
995         } else {
996                 set_bit(iommu->seq_id, dmar_seq_ids);
997                 sprintf(iommu->name, "dmar%d", iommu->seq_id);
998         }
999
1000         return iommu->seq_id;
1001 }
1002
1003 static void dmar_free_seq_id(struct intel_iommu *iommu)
1004 {
1005         if (iommu->seq_id >= 0) {
1006                 clear_bit(iommu->seq_id, dmar_seq_ids);
1007                 iommu->seq_id = -1;
1008         }
1009 }
1010
1011 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1012 {
1013         struct intel_iommu *iommu;
1014         u32 ver, sts;
1015         int agaw = 0;
1016         int msagaw = 0;
1017         int err;
1018
1019         if (!drhd->reg_base_addr) {
1020                 warn_invalid_dmar(0, "");
1021                 return -EINVAL;
1022         }
1023
1024         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1025         if (!iommu)
1026                 return -ENOMEM;
1027
1028         if (dmar_alloc_seq_id(iommu) < 0) {
1029                 pr_err("Failed to allocate seq_id\n");
1030                 err = -ENOSPC;
1031                 goto error;
1032         }
1033
1034         err = map_iommu(iommu, drhd->reg_base_addr);
1035         if (err) {
1036                 pr_err("Failed to map %s\n", iommu->name);
1037                 goto error_free_seq_id;
1038         }
1039
1040         err = -EINVAL;
1041         agaw = iommu_calculate_agaw(iommu);
1042         if (agaw < 0) {
1043                 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1044                         iommu->seq_id);
1045                 goto err_unmap;
1046         }
1047         msagaw = iommu_calculate_max_sagaw(iommu);
1048         if (msagaw < 0) {
1049                 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1050                         iommu->seq_id);
1051                 goto err_unmap;
1052         }
1053         iommu->agaw = agaw;
1054         iommu->msagaw = msagaw;
1055         iommu->segment = drhd->segment;
1056
1057         iommu->node = NUMA_NO_NODE;
1058
1059         ver = readl(iommu->reg + DMAR_VER_REG);
1060         pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1061                 iommu->name,
1062                 (unsigned long long)drhd->reg_base_addr,
1063                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1064                 (unsigned long long)iommu->cap,
1065                 (unsigned long long)iommu->ecap);
1066
1067         /* Reflect status in gcmd */
1068         sts = readl(iommu->reg + DMAR_GSTS_REG);
1069         if (sts & DMA_GSTS_IRES)
1070                 iommu->gcmd |= DMA_GCMD_IRE;
1071         if (sts & DMA_GSTS_TES)
1072                 iommu->gcmd |= DMA_GCMD_TE;
1073         if (sts & DMA_GSTS_QIES)
1074                 iommu->gcmd |= DMA_GCMD_QIE;
1075
1076         raw_spin_lock_init(&iommu->register_lock);
1077
1078         if (intel_iommu_enabled) {
1079                 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1080                                              intel_iommu_groups,
1081                                              "%s", iommu->name);
1082                 if (err)
1083                         goto err_unmap;
1084
1085                 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1086
1087                 err = iommu_device_register(&iommu->iommu);
1088                 if (err)
1089                         goto err_unmap;
1090         }
1091
1092         drhd->iommu = iommu;
1093
1094         return 0;
1095
1096 err_unmap:
1097         unmap_iommu(iommu);
1098 error_free_seq_id:
1099         dmar_free_seq_id(iommu);
1100 error:
1101         kfree(iommu);
1102         return err;
1103 }
1104
1105 static void free_iommu(struct intel_iommu *iommu)
1106 {
1107         if (intel_iommu_enabled) {
1108                 iommu_device_unregister(&iommu->iommu);
1109                 iommu_device_sysfs_remove(&iommu->iommu);
1110         }
1111
1112         if (iommu->irq) {
1113                 if (iommu->pr_irq) {
1114                         free_irq(iommu->pr_irq, iommu);
1115                         dmar_free_hwirq(iommu->pr_irq);
1116                         iommu->pr_irq = 0;
1117                 }
1118                 free_irq(iommu->irq, iommu);
1119                 dmar_free_hwirq(iommu->irq);
1120                 iommu->irq = 0;
1121         }
1122
1123         if (iommu->qi) {
1124                 free_page((unsigned long)iommu->qi->desc);
1125                 kfree(iommu->qi->desc_status);
1126                 kfree(iommu->qi);
1127         }
1128
1129         if (iommu->reg)
1130                 unmap_iommu(iommu);
1131
1132         dmar_free_seq_id(iommu);
1133         kfree(iommu);
1134 }
1135
1136 /*
1137  * Reclaim all the submitted descriptors which have completed its work.
1138  */
1139 static inline void reclaim_free_desc(struct q_inval *qi)
1140 {
1141         while (qi->desc_status[qi->free_tail] == QI_DONE ||
1142                qi->desc_status[qi->free_tail] == QI_ABORT) {
1143                 qi->desc_status[qi->free_tail] = QI_FREE;
1144                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1145                 qi->free_cnt++;
1146         }
1147 }
1148
1149 static int qi_check_fault(struct intel_iommu *iommu, int index)
1150 {
1151         u32 fault;
1152         int head, tail;
1153         struct q_inval *qi = iommu->qi;
1154         int wait_index = (index + 1) % QI_LENGTH;
1155         int shift = qi_shift(iommu);
1156
1157         if (qi->desc_status[wait_index] == QI_ABORT)
1158                 return -EAGAIN;
1159
1160         fault = readl(iommu->reg + DMAR_FSTS_REG);
1161
1162         /*
1163          * If IQE happens, the head points to the descriptor associated
1164          * with the error. No new descriptors are fetched until the IQE
1165          * is cleared.
1166          */
1167         if (fault & DMA_FSTS_IQE) {
1168                 head = readl(iommu->reg + DMAR_IQH_REG);
1169                 if ((head >> shift) == index) {
1170                         struct qi_desc *desc = qi->desc + head;
1171
1172                         /*
1173                          * desc->qw2 and desc->qw3 are either reserved or
1174                          * used by software as private data. We won't print
1175                          * out these two qw's for security consideration.
1176                          */
1177                         pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
1178                                (unsigned long long)desc->qw0,
1179                                (unsigned long long)desc->qw1);
1180                         memcpy(desc, qi->desc + (wait_index << shift),
1181                                1 << shift);
1182                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1183                         return -EINVAL;
1184                 }
1185         }
1186
1187         /*
1188          * If ITE happens, all pending wait_desc commands are aborted.
1189          * No new descriptors are fetched until the ITE is cleared.
1190          */
1191         if (fault & DMA_FSTS_ITE) {
1192                 head = readl(iommu->reg + DMAR_IQH_REG);
1193                 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1194                 head |= 1;
1195                 tail = readl(iommu->reg + DMAR_IQT_REG);
1196                 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1197
1198                 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1199
1200                 do {
1201                         if (qi->desc_status[head] == QI_IN_USE)
1202                                 qi->desc_status[head] = QI_ABORT;
1203                         head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1204                 } while (head != tail);
1205
1206                 if (qi->desc_status[wait_index] == QI_ABORT)
1207                         return -EAGAIN;
1208         }
1209
1210         if (fault & DMA_FSTS_ICE)
1211                 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1212
1213         return 0;
1214 }
1215
1216 /*
1217  * Submit the queued invalidation descriptor to the remapping
1218  * hardware unit and wait for its completion.
1219  */
1220 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1221 {
1222         int rc;
1223         struct q_inval *qi = iommu->qi;
1224         int offset, shift, length;
1225         struct qi_desc wait_desc;
1226         int wait_index, index;
1227         unsigned long flags;
1228
1229         if (!qi)
1230                 return 0;
1231
1232 restart:
1233         rc = 0;
1234
1235         raw_spin_lock_irqsave(&qi->q_lock, flags);
1236         while (qi->free_cnt < 3) {
1237                 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1238                 cpu_relax();
1239                 raw_spin_lock_irqsave(&qi->q_lock, flags);
1240         }
1241
1242         index = qi->free_head;
1243         wait_index = (index + 1) % QI_LENGTH;
1244         shift = qi_shift(iommu);
1245         length = 1 << shift;
1246
1247         qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1248
1249         offset = index << shift;
1250         memcpy(qi->desc + offset, desc, length);
1251         wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1252                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1253         wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1254         wait_desc.qw2 = 0;
1255         wait_desc.qw3 = 0;
1256
1257         offset = wait_index << shift;
1258         memcpy(qi->desc + offset, &wait_desc, length);
1259
1260         qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1261         qi->free_cnt -= 2;
1262
1263         /*
1264          * update the HW tail register indicating the presence of
1265          * new descriptors.
1266          */
1267         writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1268
1269         while (qi->desc_status[wait_index] != QI_DONE) {
1270                 /*
1271                  * We will leave the interrupts disabled, to prevent interrupt
1272                  * context to queue another cmd while a cmd is already submitted
1273                  * and waiting for completion on this cpu. This is to avoid
1274                  * a deadlock where the interrupt context can wait indefinitely
1275                  * for free slots in the queue.
1276                  */
1277                 rc = qi_check_fault(iommu, index);
1278                 if (rc)
1279                         break;
1280
1281                 raw_spin_unlock(&qi->q_lock);
1282                 cpu_relax();
1283                 raw_spin_lock(&qi->q_lock);
1284         }
1285
1286         qi->desc_status[index] = QI_DONE;
1287
1288         reclaim_free_desc(qi);
1289         raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1290
1291         if (rc == -EAGAIN)
1292                 goto restart;
1293
1294         return rc;
1295 }
1296
1297 /*
1298  * Flush the global interrupt entry cache.
1299  */
1300 void qi_global_iec(struct intel_iommu *iommu)
1301 {
1302         struct qi_desc desc;
1303
1304         desc.qw0 = QI_IEC_TYPE;
1305         desc.qw1 = 0;
1306         desc.qw2 = 0;
1307         desc.qw3 = 0;
1308
1309         /* should never fail */
1310         qi_submit_sync(&desc, iommu);
1311 }
1312
1313 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1314                       u64 type)
1315 {
1316         struct qi_desc desc;
1317
1318         desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1319                         | QI_CC_GRAN(type) | QI_CC_TYPE;
1320         desc.qw1 = 0;
1321         desc.qw2 = 0;
1322         desc.qw3 = 0;
1323
1324         qi_submit_sync(&desc, iommu);
1325 }
1326
1327 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1328                     unsigned int size_order, u64 type)
1329 {
1330         u8 dw = 0, dr = 0;
1331
1332         struct qi_desc desc;
1333         int ih = 0;
1334
1335         if (cap_write_drain(iommu->cap))
1336                 dw = 1;
1337
1338         if (cap_read_drain(iommu->cap))
1339                 dr = 1;
1340
1341         desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1342                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1343         desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1344                 | QI_IOTLB_AM(size_order);
1345         desc.qw2 = 0;
1346         desc.qw3 = 0;
1347
1348         qi_submit_sync(&desc, iommu);
1349 }
1350
1351 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1352                         u16 qdep, u64 addr, unsigned mask)
1353 {
1354         struct qi_desc desc;
1355
1356         if (mask) {
1357                 WARN_ON_ONCE(addr & ((1ULL << (VTD_PAGE_SHIFT + mask)) - 1));
1358                 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1359                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1360         } else
1361                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1362
1363         if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1364                 qdep = 0;
1365
1366         desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1367                    QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1368         desc.qw2 = 0;
1369         desc.qw3 = 0;
1370
1371         qi_submit_sync(&desc, iommu);
1372 }
1373
1374 /*
1375  * Disable Queued Invalidation interface.
1376  */
1377 void dmar_disable_qi(struct intel_iommu *iommu)
1378 {
1379         unsigned long flags;
1380         u32 sts;
1381         cycles_t start_time = get_cycles();
1382
1383         if (!ecap_qis(iommu->ecap))
1384                 return;
1385
1386         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1387
1388         sts =  readl(iommu->reg + DMAR_GSTS_REG);
1389         if (!(sts & DMA_GSTS_QIES))
1390                 goto end;
1391
1392         /*
1393          * Give a chance to HW to complete the pending invalidation requests.
1394          */
1395         while ((readl(iommu->reg + DMAR_IQT_REG) !=
1396                 readl(iommu->reg + DMAR_IQH_REG)) &&
1397                 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1398                 cpu_relax();
1399
1400         iommu->gcmd &= ~DMA_GCMD_QIE;
1401         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1402
1403         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1404                       !(sts & DMA_GSTS_QIES), sts);
1405 end:
1406         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1407 }
1408
1409 /*
1410  * Enable queued invalidation.
1411  */
1412 static void __dmar_enable_qi(struct intel_iommu *iommu)
1413 {
1414         u32 sts;
1415         unsigned long flags;
1416         struct q_inval *qi = iommu->qi;
1417         u64 val = virt_to_phys(qi->desc);
1418
1419         qi->free_head = qi->free_tail = 0;
1420         qi->free_cnt = QI_LENGTH;
1421
1422         /*
1423          * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1424          * is present.
1425          */
1426         if (ecap_smts(iommu->ecap))
1427                 val |= (1 << 11) | 1;
1428
1429         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1430
1431         /* write zero to the tail reg */
1432         writel(0, iommu->reg + DMAR_IQT_REG);
1433
1434         dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1435
1436         iommu->gcmd |= DMA_GCMD_QIE;
1437         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1438
1439         /* Make sure hardware complete it */
1440         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1441
1442         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1443 }
1444
1445 /*
1446  * Enable Queued Invalidation interface. This is a must to support
1447  * interrupt-remapping. Also used by DMA-remapping, which replaces
1448  * register based IOTLB invalidation.
1449  */
1450 int dmar_enable_qi(struct intel_iommu *iommu)
1451 {
1452         struct q_inval *qi;
1453         struct page *desc_page;
1454
1455         if (!ecap_qis(iommu->ecap))
1456                 return -ENOENT;
1457
1458         /*
1459          * queued invalidation is already setup and enabled.
1460          */
1461         if (iommu->qi)
1462                 return 0;
1463
1464         iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1465         if (!iommu->qi)
1466                 return -ENOMEM;
1467
1468         qi = iommu->qi;
1469
1470         /*
1471          * Need two pages to accommodate 256 descriptors of 256 bits each
1472          * if the remapping hardware supports scalable mode translation.
1473          */
1474         desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1475                                      !!ecap_smts(iommu->ecap));
1476         if (!desc_page) {
1477                 kfree(qi);
1478                 iommu->qi = NULL;
1479                 return -ENOMEM;
1480         }
1481
1482         qi->desc = page_address(desc_page);
1483
1484         qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1485         if (!qi->desc_status) {
1486                 free_page((unsigned long) qi->desc);
1487                 kfree(qi);
1488                 iommu->qi = NULL;
1489                 return -ENOMEM;
1490         }
1491
1492         raw_spin_lock_init(&qi->q_lock);
1493
1494         __dmar_enable_qi(iommu);
1495
1496         return 0;
1497 }
1498
1499 /* iommu interrupt handling. Most stuff are MSI-like. */
1500
1501 enum faulttype {
1502         DMA_REMAP,
1503         INTR_REMAP,
1504         UNKNOWN,
1505 };
1506
1507 static const char *dma_remap_fault_reasons[] =
1508 {
1509         "Software",
1510         "Present bit in root entry is clear",
1511         "Present bit in context entry is clear",
1512         "Invalid context entry",
1513         "Access beyond MGAW",
1514         "PTE Write access is not set",
1515         "PTE Read access is not set",
1516         "Next page table ptr is invalid",
1517         "Root table address invalid",
1518         "Context table ptr is invalid",
1519         "non-zero reserved fields in RTP",
1520         "non-zero reserved fields in CTP",
1521         "non-zero reserved fields in PTE",
1522         "PCE for translation request specifies blocking",
1523 };
1524
1525 static const char * const dma_remap_sm_fault_reasons[] = {
1526         "SM: Invalid Root Table Address",
1527         "SM: TTM 0 for request with PASID",
1528         "SM: TTM 0 for page group request",
1529         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1530         "SM: Error attempting to access Root Entry",
1531         "SM: Present bit in Root Entry is clear",
1532         "SM: Non-zero reserved field set in Root Entry",
1533         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1534         "SM: Error attempting to access Context Entry",
1535         "SM: Present bit in Context Entry is clear",
1536         "SM: Non-zero reserved field set in the Context Entry",
1537         "SM: Invalid Context Entry",
1538         "SM: DTE field in Context Entry is clear",
1539         "SM: PASID Enable field in Context Entry is clear",
1540         "SM: PASID is larger than the max in Context Entry",
1541         "SM: PRE field in Context-Entry is clear",
1542         "SM: RID_PASID field error in Context-Entry",
1543         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1544         "SM: Error attempting to access the PASID Directory Entry",
1545         "SM: Present bit in Directory Entry is clear",
1546         "SM: Non-zero reserved field set in PASID Directory Entry",
1547         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1548         "SM: Error attempting to access PASID Table Entry",
1549         "SM: Present bit in PASID Table Entry is clear",
1550         "SM: Non-zero reserved field set in PASID Table Entry",
1551         "SM: Invalid Scalable-Mode PASID Table Entry",
1552         "SM: ERE field is clear in PASID Table Entry",
1553         "SM: SRE field is clear in PASID Table Entry",
1554         "Unknown", "Unknown",/* 0x5E-0x5F */
1555         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1556         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1557         "SM: Error attempting to access first-level paging entry",
1558         "SM: Present bit in first-level paging entry is clear",
1559         "SM: Non-zero reserved field set in first-level paging entry",
1560         "SM: Error attempting to access FL-PML4 entry",
1561         "SM: First-level entry address beyond MGAW in Nested translation",
1562         "SM: Read permission error in FL-PML4 entry in Nested translation",
1563         "SM: Read permission error in first-level paging entry in Nested translation",
1564         "SM: Write permission error in first-level paging entry in Nested translation",
1565         "SM: Error attempting to access second-level paging entry",
1566         "SM: Read/Write permission error in second-level paging entry",
1567         "SM: Non-zero reserved field set in second-level paging entry",
1568         "SM: Invalid second-level page table pointer",
1569         "SM: A/D bit update needed in second-level entry when set up in no snoop",
1570         "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1571         "SM: Address in first-level translation is not canonical",
1572         "SM: U/S set 0 for first-level translation with user privilege",
1573         "SM: No execute permission for request with PASID and ER=1",
1574         "SM: Address beyond the DMA hardware max",
1575         "SM: Second-level entry address beyond the max",
1576         "SM: No write permission for Write/AtomicOp request",
1577         "SM: No read permission for Read/AtomicOp request",
1578         "SM: Invalid address-interrupt address",
1579         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1580         "SM: A/D bit update needed in first-level entry when set up in no snoop",
1581 };
1582
1583 static const char *irq_remap_fault_reasons[] =
1584 {
1585         "Detected reserved fields in the decoded interrupt-remapped request",
1586         "Interrupt index exceeded the interrupt-remapping table size",
1587         "Present field in the IRTE entry is clear",
1588         "Error accessing interrupt-remapping table pointed by IRTA_REG",
1589         "Detected reserved fields in the IRTE entry",
1590         "Blocked a compatibility format interrupt request",
1591         "Blocked an interrupt request due to source-id verification failure",
1592 };
1593
1594 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1595 {
1596         if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1597                                         ARRAY_SIZE(irq_remap_fault_reasons))) {
1598                 *fault_type = INTR_REMAP;
1599                 return irq_remap_fault_reasons[fault_reason - 0x20];
1600         } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1601                         ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1602                 *fault_type = DMA_REMAP;
1603                 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1604         } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1605                 *fault_type = DMA_REMAP;
1606                 return dma_remap_fault_reasons[fault_reason];
1607         } else {
1608                 *fault_type = UNKNOWN;
1609                 return "Unknown";
1610         }
1611 }
1612
1613
1614 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1615 {
1616         if (iommu->irq == irq)
1617                 return DMAR_FECTL_REG;
1618         else if (iommu->pr_irq == irq)
1619                 return DMAR_PECTL_REG;
1620         else
1621                 BUG();
1622 }
1623
1624 void dmar_msi_unmask(struct irq_data *data)
1625 {
1626         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1627         int reg = dmar_msi_reg(iommu, data->irq);
1628         unsigned long flag;
1629
1630         /* unmask it */
1631         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1632         writel(0, iommu->reg + reg);
1633         /* Read a reg to force flush the post write */
1634         readl(iommu->reg + reg);
1635         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1636 }
1637
1638 void dmar_msi_mask(struct irq_data *data)
1639 {
1640         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1641         int reg = dmar_msi_reg(iommu, data->irq);
1642         unsigned long flag;
1643
1644         /* mask it */
1645         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1646         writel(DMA_FECTL_IM, iommu->reg + reg);
1647         /* Read a reg to force flush the post write */
1648         readl(iommu->reg + reg);
1649         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1650 }
1651
1652 void dmar_msi_write(int irq, struct msi_msg *msg)
1653 {
1654         struct intel_iommu *iommu = irq_get_handler_data(irq);
1655         int reg = dmar_msi_reg(iommu, irq);
1656         unsigned long flag;
1657
1658         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1659         writel(msg->data, iommu->reg + reg + 4);
1660         writel(msg->address_lo, iommu->reg + reg + 8);
1661         writel(msg->address_hi, iommu->reg + reg + 12);
1662         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1663 }
1664
1665 void dmar_msi_read(int irq, struct msi_msg *msg)
1666 {
1667         struct intel_iommu *iommu = irq_get_handler_data(irq);
1668         int reg = dmar_msi_reg(iommu, irq);
1669         unsigned long flag;
1670
1671         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1672         msg->data = readl(iommu->reg + reg + 4);
1673         msg->address_lo = readl(iommu->reg + reg + 8);
1674         msg->address_hi = readl(iommu->reg + reg + 12);
1675         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1676 }
1677
1678 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1679                 u8 fault_reason, int pasid, u16 source_id,
1680                 unsigned long long addr)
1681 {
1682         const char *reason;
1683         int fault_type;
1684
1685         reason = dmar_get_fault_reason(fault_reason, &fault_type);
1686
1687         if (fault_type == INTR_REMAP)
1688                 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1689                         source_id >> 8, PCI_SLOT(source_id & 0xFF),
1690                         PCI_FUNC(source_id & 0xFF), addr >> 48,
1691                         fault_reason, reason);
1692         else
1693                 pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1694                        type ? "DMA Read" : "DMA Write",
1695                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1696                        PCI_FUNC(source_id & 0xFF), pasid, addr,
1697                        fault_reason, reason);
1698         return 0;
1699 }
1700
1701 #define PRIMARY_FAULT_REG_LEN (16)
1702 irqreturn_t dmar_fault(int irq, void *dev_id)
1703 {
1704         struct intel_iommu *iommu = dev_id;
1705         int reg, fault_index;
1706         u32 fault_status;
1707         unsigned long flag;
1708         static DEFINE_RATELIMIT_STATE(rs,
1709                                       DEFAULT_RATELIMIT_INTERVAL,
1710                                       DEFAULT_RATELIMIT_BURST);
1711
1712         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1713         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1714         if (fault_status && __ratelimit(&rs))
1715                 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1716
1717         /* TBD: ignore advanced fault log currently */
1718         if (!(fault_status & DMA_FSTS_PPF))
1719                 goto unlock_exit;
1720
1721         fault_index = dma_fsts_fault_record_index(fault_status);
1722         reg = cap_fault_reg_offset(iommu->cap);
1723         while (1) {
1724                 /* Disable printing, simply clear the fault when ratelimited */
1725                 bool ratelimited = !__ratelimit(&rs);
1726                 u8 fault_reason;
1727                 u16 source_id;
1728                 u64 guest_addr;
1729                 int type, pasid;
1730                 u32 data;
1731                 bool pasid_present;
1732
1733                 /* highest 32 bits */
1734                 data = readl(iommu->reg + reg +
1735                                 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1736                 if (!(data & DMA_FRCD_F))
1737                         break;
1738
1739                 if (!ratelimited) {
1740                         fault_reason = dma_frcd_fault_reason(data);
1741                         type = dma_frcd_type(data);
1742
1743                         pasid = dma_frcd_pasid_value(data);
1744                         data = readl(iommu->reg + reg +
1745                                      fault_index * PRIMARY_FAULT_REG_LEN + 8);
1746                         source_id = dma_frcd_source_id(data);
1747
1748                         pasid_present = dma_frcd_pasid_present(data);
1749                         guest_addr = dmar_readq(iommu->reg + reg +
1750                                         fault_index * PRIMARY_FAULT_REG_LEN);
1751                         guest_addr = dma_frcd_page_addr(guest_addr);
1752                 }
1753
1754                 /* clear the fault */
1755                 writel(DMA_FRCD_F, iommu->reg + reg +
1756                         fault_index * PRIMARY_FAULT_REG_LEN + 12);
1757
1758                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1759
1760                 if (!ratelimited)
1761                         /* Using pasid -1 if pasid is not present */
1762                         dmar_fault_do_one(iommu, type, fault_reason,
1763                                           pasid_present ? pasid : -1,
1764                                           source_id, guest_addr);
1765
1766                 fault_index++;
1767                 if (fault_index >= cap_num_fault_regs(iommu->cap))
1768                         fault_index = 0;
1769                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1770         }
1771
1772         writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
1773                iommu->reg + DMAR_FSTS_REG);
1774
1775 unlock_exit:
1776         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1777         return IRQ_HANDLED;
1778 }
1779
1780 int dmar_set_interrupt(struct intel_iommu *iommu)
1781 {
1782         int irq, ret;
1783
1784         /*
1785          * Check if the fault interrupt is already initialized.
1786          */
1787         if (iommu->irq)
1788                 return 0;
1789
1790         irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1791         if (irq > 0) {
1792                 iommu->irq = irq;
1793         } else {
1794                 pr_err("No free IRQ vectors\n");
1795                 return -EINVAL;
1796         }
1797
1798         ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1799         if (ret)
1800                 pr_err("Can't request irq\n");
1801         return ret;
1802 }
1803
1804 int __init enable_drhd_fault_handling(void)
1805 {
1806         struct dmar_drhd_unit *drhd;
1807         struct intel_iommu *iommu;
1808
1809         /*
1810          * Enable fault control interrupt.
1811          */
1812         for_each_iommu(iommu, drhd) {
1813                 u32 fault_status;
1814                 int ret = dmar_set_interrupt(iommu);
1815
1816                 if (ret) {
1817                         pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1818                                (unsigned long long)drhd->reg_base_addr, ret);
1819                         return -1;
1820                 }
1821
1822                 /*
1823                  * Clear any previous faults.
1824                  */
1825                 dmar_fault(iommu->irq, iommu);
1826                 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1827                 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1828         }
1829
1830         return 0;
1831 }
1832
1833 /*
1834  * Re-enable Queued Invalidation interface.
1835  */
1836 int dmar_reenable_qi(struct intel_iommu *iommu)
1837 {
1838         if (!ecap_qis(iommu->ecap))
1839                 return -ENOENT;
1840
1841         if (!iommu->qi)
1842                 return -ENOENT;
1843
1844         /*
1845          * First disable queued invalidation.
1846          */
1847         dmar_disable_qi(iommu);
1848         /*
1849          * Then enable queued invalidation again. Since there is no pending
1850          * invalidation requests now, it's safe to re-enable queued
1851          * invalidation.
1852          */
1853         __dmar_enable_qi(iommu);
1854
1855         return 0;
1856 }
1857
1858 /*
1859  * Check interrupt remapping support in DMAR table description.
1860  */
1861 int __init dmar_ir_support(void)
1862 {
1863         struct acpi_table_dmar *dmar;
1864         dmar = (struct acpi_table_dmar *)dmar_tbl;
1865         if (!dmar)
1866                 return 0;
1867         return dmar->flags & 0x1;
1868 }
1869
1870 /* Check whether DMAR units are in use */
1871 static inline bool dmar_in_use(void)
1872 {
1873         return irq_remapping_enabled || intel_iommu_enabled;
1874 }
1875
1876 static int __init dmar_free_unused_resources(void)
1877 {
1878         struct dmar_drhd_unit *dmaru, *dmaru_n;
1879
1880         if (dmar_in_use())
1881                 return 0;
1882
1883         if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1884                 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1885
1886         down_write(&dmar_global_lock);
1887         list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1888                 list_del(&dmaru->list);
1889                 dmar_free_drhd(dmaru);
1890         }
1891         up_write(&dmar_global_lock);
1892
1893         return 0;
1894 }
1895
1896 late_initcall(dmar_free_unused_resources);
1897 IOMMU_INIT_POST(detect_intel_iommu);
1898
1899 /*
1900  * DMAR Hotplug Support
1901  * For more details, please refer to Intel(R) Virtualization Technology
1902  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
1903  * "Remapping Hardware Unit Hot Plug".
1904  */
1905 static guid_t dmar_hp_guid =
1906         GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
1907                   0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
1908
1909 /*
1910  * Currently there's only one revision and BIOS will not check the revision id,
1911  * so use 0 for safety.
1912  */
1913 #define DMAR_DSM_REV_ID                 0
1914 #define DMAR_DSM_FUNC_DRHD              1
1915 #define DMAR_DSM_FUNC_ATSR              2
1916 #define DMAR_DSM_FUNC_RHSA              3
1917
1918 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
1919 {
1920         return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
1921 }
1922
1923 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
1924                                   dmar_res_handler_t handler, void *arg)
1925 {
1926         int ret = -ENODEV;
1927         union acpi_object *obj;
1928         struct acpi_dmar_header *start;
1929         struct dmar_res_callback callback;
1930         static int res_type[] = {
1931                 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
1932                 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
1933                 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
1934         };
1935
1936         if (!dmar_detect_dsm(handle, func))
1937                 return 0;
1938
1939         obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
1940                                       func, NULL, ACPI_TYPE_BUFFER);
1941         if (!obj)
1942                 return -ENODEV;
1943
1944         memset(&callback, 0, sizeof(callback));
1945         callback.cb[res_type[func]] = handler;
1946         callback.arg[res_type[func]] = arg;
1947         start = (struct acpi_dmar_header *)obj->buffer.pointer;
1948         ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
1949
1950         ACPI_FREE(obj);
1951
1952         return ret;
1953 }
1954
1955 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
1956 {
1957         int ret;
1958         struct dmar_drhd_unit *dmaru;
1959
1960         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1961         if (!dmaru)
1962                 return -ENODEV;
1963
1964         ret = dmar_ir_hotplug(dmaru, true);
1965         if (ret == 0)
1966                 ret = dmar_iommu_hotplug(dmaru, true);
1967
1968         return ret;
1969 }
1970
1971 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
1972 {
1973         int i, ret;
1974         struct device *dev;
1975         struct dmar_drhd_unit *dmaru;
1976
1977         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1978         if (!dmaru)
1979                 return 0;
1980
1981         /*
1982          * All PCI devices managed by this unit should have been destroyed.
1983          */
1984         if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
1985                 for_each_active_dev_scope(dmaru->devices,
1986                                           dmaru->devices_cnt, i, dev)
1987                         return -EBUSY;
1988         }
1989
1990         ret = dmar_ir_hotplug(dmaru, false);
1991         if (ret == 0)
1992                 ret = dmar_iommu_hotplug(dmaru, false);
1993
1994         return ret;
1995 }
1996
1997 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
1998 {
1999         struct dmar_drhd_unit *dmaru;
2000
2001         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2002         if (dmaru) {
2003                 list_del_rcu(&dmaru->list);
2004                 synchronize_rcu();
2005                 dmar_free_drhd(dmaru);
2006         }
2007
2008         return 0;
2009 }
2010
2011 static int dmar_hotplug_insert(acpi_handle handle)
2012 {
2013         int ret;
2014         int drhd_count = 0;
2015
2016         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2017                                      &dmar_validate_one_drhd, (void *)1);
2018         if (ret)
2019                 goto out;
2020
2021         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2022                                      &dmar_parse_one_drhd, (void *)&drhd_count);
2023         if (ret == 0 && drhd_count == 0) {
2024                 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2025                 goto out;
2026         } else if (ret) {
2027                 goto release_drhd;
2028         }
2029
2030         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2031                                      &dmar_parse_one_rhsa, NULL);
2032         if (ret)
2033                 goto release_drhd;
2034
2035         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2036                                      &dmar_parse_one_atsr, NULL);
2037         if (ret)
2038                 goto release_atsr;
2039
2040         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2041                                      &dmar_hp_add_drhd, NULL);
2042         if (!ret)
2043                 return 0;
2044
2045         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2046                                &dmar_hp_remove_drhd, NULL);
2047 release_atsr:
2048         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2049                                &dmar_release_one_atsr, NULL);
2050 release_drhd:
2051         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2052                                &dmar_hp_release_drhd, NULL);
2053 out:
2054         return ret;
2055 }
2056
2057 static int dmar_hotplug_remove(acpi_handle handle)
2058 {
2059         int ret;
2060
2061         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2062                                      &dmar_check_one_atsr, NULL);
2063         if (ret)
2064                 return ret;
2065
2066         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2067                                      &dmar_hp_remove_drhd, NULL);
2068         if (ret == 0) {
2069                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2070                                                &dmar_release_one_atsr, NULL));
2071                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2072                                                &dmar_hp_release_drhd, NULL));
2073         } else {
2074                 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2075                                        &dmar_hp_add_drhd, NULL);
2076         }
2077
2078         return ret;
2079 }
2080
2081 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2082                                        void *context, void **retval)
2083 {
2084         acpi_handle *phdl = retval;
2085
2086         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2087                 *phdl = handle;
2088                 return AE_CTRL_TERMINATE;
2089         }
2090
2091         return AE_OK;
2092 }
2093
2094 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2095 {
2096         int ret;
2097         acpi_handle tmp = NULL;
2098         acpi_status status;
2099
2100         if (!dmar_in_use())
2101                 return 0;
2102
2103         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2104                 tmp = handle;
2105         } else {
2106                 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2107                                              ACPI_UINT32_MAX,
2108                                              dmar_get_dsm_handle,
2109                                              NULL, NULL, &tmp);
2110                 if (ACPI_FAILURE(status)) {
2111                         pr_warn("Failed to locate _DSM method.\n");
2112                         return -ENXIO;
2113                 }
2114         }
2115         if (tmp == NULL)
2116                 return 0;
2117
2118         down_write(&dmar_global_lock);
2119         if (insert)
2120                 ret = dmar_hotplug_insert(tmp);
2121         else
2122                 ret = dmar_hotplug_remove(tmp);
2123         up_write(&dmar_global_lock);
2124
2125         return ret;
2126 }
2127
2128 int dmar_device_add(acpi_handle handle)
2129 {
2130         return dmar_device_hotplug(handle, true);
2131 }
2132
2133 int dmar_device_remove(acpi_handle handle)
2134 {
2135         return dmar_device_hotplug(handle, false);
2136 }
2137
2138 /*
2139  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2140  *
2141  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2142  * the ACPI DMAR table. This means that the platform boot firmware has made
2143  * sure no device can issue DMA outside of RMRR regions.
2144  */
2145 bool dmar_platform_optin(void)
2146 {
2147         struct acpi_table_dmar *dmar;
2148         acpi_status status;
2149         bool ret;
2150
2151         status = acpi_get_table(ACPI_SIG_DMAR, 0,
2152                                 (struct acpi_table_header **)&dmar);
2153         if (ACPI_FAILURE(status))
2154                 return false;
2155
2156         ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2157         acpi_put_table((struct acpi_table_header *)dmar);
2158
2159         return ret;
2160 }
2161 EXPORT_SYMBOL_GPL(dmar_platform_optin);