]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/iommu/dmar.c
iommu/vt-d: Don't reject Host Bridge due to scope mismatch
[linux.git] / drivers / iommu / dmar.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <ashok.raj@intel.com>
7  * Author: Shaohua Li <shaohua.li@intel.com>
8  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16
17 #define pr_fmt(fmt)     "DMAR: " fmt
18
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/intel-iommu.h>
23 #include <linux/timer.h>
24 #include <linux/irq.h>
25 #include <linux/interrupt.h>
26 #include <linux/tboot.h>
27 #include <linux/dmi.h>
28 #include <linux/slab.h>
29 #include <linux/iommu.h>
30 #include <linux/numa.h>
31 #include <asm/irq_remapping.h>
32 #include <asm/iommu_table.h>
33
34 #include "irq_remapping.h"
35
36 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
37 struct dmar_res_callback {
38         dmar_res_handler_t      cb[ACPI_DMAR_TYPE_RESERVED];
39         void                    *arg[ACPI_DMAR_TYPE_RESERVED];
40         bool                    ignore_unhandled;
41         bool                    print_entry;
42 };
43
44 /*
45  * Assumptions:
46  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
47  *    before IO devices managed by that unit.
48  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
49  *    after IO devices managed by that unit.
50  * 3) Hotplug events are rare.
51  *
52  * Locking rules for DMA and interrupt remapping related global data structures:
53  * 1) Use dmar_global_lock in process context
54  * 2) Use RCU in interrupt context
55  */
56 DECLARE_RWSEM(dmar_global_lock);
57 LIST_HEAD(dmar_drhd_units);
58
59 struct acpi_table_header * __initdata dmar_tbl;
60 static int dmar_dev_scope_status = 1;
61 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
62
63 static int alloc_iommu(struct dmar_drhd_unit *drhd);
64 static void free_iommu(struct intel_iommu *iommu);
65
66 extern const struct iommu_ops intel_iommu_ops;
67
68 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
69 {
70         /*
71          * add INCLUDE_ALL at the tail, so scan the list will find it at
72          * the very end.
73          */
74         if (drhd->include_all)
75                 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
76         else
77                 list_add_rcu(&drhd->list, &dmar_drhd_units);
78 }
79
80 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
81 {
82         struct acpi_dmar_device_scope *scope;
83
84         *cnt = 0;
85         while (start < end) {
86                 scope = start;
87                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
88                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
89                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
90                         (*cnt)++;
91                 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
92                         scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
93                         pr_warn("Unsupported device scope\n");
94                 }
95                 start += scope->length;
96         }
97         if (*cnt == 0)
98                 return NULL;
99
100         return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
101 }
102
103 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
104 {
105         int i;
106         struct device *tmp_dev;
107
108         if (*devices && *cnt) {
109                 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
110                         put_device(tmp_dev);
111                 kfree(*devices);
112         }
113
114         *devices = NULL;
115         *cnt = 0;
116 }
117
118 /* Optimize out kzalloc()/kfree() for normal cases */
119 static char dmar_pci_notify_info_buf[64];
120
121 static struct dmar_pci_notify_info *
122 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
123 {
124         int level = 0;
125         size_t size;
126         struct pci_dev *tmp;
127         struct dmar_pci_notify_info *info;
128
129         BUG_ON(dev->is_virtfn);
130
131         /* Only generate path[] for device addition event */
132         if (event == BUS_NOTIFY_ADD_DEVICE)
133                 for (tmp = dev; tmp; tmp = tmp->bus->self)
134                         level++;
135
136         size = struct_size(info, path, level);
137         if (size <= sizeof(dmar_pci_notify_info_buf)) {
138                 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
139         } else {
140                 info = kzalloc(size, GFP_KERNEL);
141                 if (!info) {
142                         pr_warn("Out of memory when allocating notify_info "
143                                 "for %s.\n", pci_name(dev));
144                         if (dmar_dev_scope_status == 0)
145                                 dmar_dev_scope_status = -ENOMEM;
146                         return NULL;
147                 }
148         }
149
150         info->event = event;
151         info->dev = dev;
152         info->seg = pci_domain_nr(dev->bus);
153         info->level = level;
154         if (event == BUS_NOTIFY_ADD_DEVICE) {
155                 for (tmp = dev; tmp; tmp = tmp->bus->self) {
156                         level--;
157                         info->path[level].bus = tmp->bus->number;
158                         info->path[level].device = PCI_SLOT(tmp->devfn);
159                         info->path[level].function = PCI_FUNC(tmp->devfn);
160                         if (pci_is_root_bus(tmp->bus))
161                                 info->bus = tmp->bus->number;
162                 }
163         }
164
165         return info;
166 }
167
168 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
169 {
170         if ((void *)info != dmar_pci_notify_info_buf)
171                 kfree(info);
172 }
173
174 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
175                                 struct acpi_dmar_pci_path *path, int count)
176 {
177         int i;
178
179         if (info->bus != bus)
180                 goto fallback;
181         if (info->level != count)
182                 goto fallback;
183
184         for (i = 0; i < count; i++) {
185                 if (path[i].device != info->path[i].device ||
186                     path[i].function != info->path[i].function)
187                         goto fallback;
188         }
189
190         return true;
191
192 fallback:
193
194         if (count != 1)
195                 return false;
196
197         i = info->level - 1;
198         if (bus              == info->path[i].bus &&
199             path[0].device   == info->path[i].device &&
200             path[0].function == info->path[i].function) {
201                 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
202                         bus, path[0].device, path[0].function);
203                 return true;
204         }
205
206         return false;
207 }
208
209 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
210 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
211                           void *start, void*end, u16 segment,
212                           struct dmar_dev_scope *devices,
213                           int devices_cnt)
214 {
215         int i, level;
216         struct device *tmp, *dev = &info->dev->dev;
217         struct acpi_dmar_device_scope *scope;
218         struct acpi_dmar_pci_path *path;
219
220         if (segment != info->seg)
221                 return 0;
222
223         for (; start < end; start += scope->length) {
224                 scope = start;
225                 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
226                     scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
227                         continue;
228
229                 path = (struct acpi_dmar_pci_path *)(scope + 1);
230                 level = (scope->length - sizeof(*scope)) / sizeof(*path);
231                 if (!dmar_match_pci_path(info, scope->bus, path, level))
232                         continue;
233
234                 /*
235                  * We expect devices with endpoint scope to have normal PCI
236                  * headers, and devices with bridge scope to have bridge PCI
237                  * headers.  However PCI NTB devices may be listed in the
238                  * DMAR table with bridge scope, even though they have a
239                  * normal PCI header.  NTB devices are identified by class
240                  * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
241                  * for this special case.
242                  */
243                 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
244                      info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
245                     (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
246                      (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
247                       info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
248                         pr_warn("Device scope type does not match for %s\n",
249                                 pci_name(info->dev));
250                         return -EINVAL;
251                 }
252
253                 for_each_dev_scope(devices, devices_cnt, i, tmp)
254                         if (tmp == NULL) {
255                                 devices[i].bus = info->dev->bus->number;
256                                 devices[i].devfn = info->dev->devfn;
257                                 rcu_assign_pointer(devices[i].dev,
258                                                    get_device(dev));
259                                 return 1;
260                         }
261                 BUG_ON(i >= devices_cnt);
262         }
263
264         return 0;
265 }
266
267 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
268                           struct dmar_dev_scope *devices, int count)
269 {
270         int index;
271         struct device *tmp;
272
273         if (info->seg != segment)
274                 return 0;
275
276         for_each_active_dev_scope(devices, count, index, tmp)
277                 if (tmp == &info->dev->dev) {
278                         RCU_INIT_POINTER(devices[index].dev, NULL);
279                         synchronize_rcu();
280                         put_device(tmp);
281                         return 1;
282                 }
283
284         return 0;
285 }
286
287 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
288 {
289         int ret = 0;
290         struct dmar_drhd_unit *dmaru;
291         struct acpi_dmar_hardware_unit *drhd;
292
293         for_each_drhd_unit(dmaru) {
294                 if (dmaru->include_all)
295                         continue;
296
297                 drhd = container_of(dmaru->hdr,
298                                     struct acpi_dmar_hardware_unit, header);
299                 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
300                                 ((void *)drhd) + drhd->header.length,
301                                 dmaru->segment,
302                                 dmaru->devices, dmaru->devices_cnt);
303                 if (ret)
304                         break;
305         }
306         if (ret >= 0)
307                 ret = dmar_iommu_notify_scope_dev(info);
308         if (ret < 0 && dmar_dev_scope_status == 0)
309                 dmar_dev_scope_status = ret;
310
311         return ret;
312 }
313
314 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
315 {
316         struct dmar_drhd_unit *dmaru;
317
318         for_each_drhd_unit(dmaru)
319                 if (dmar_remove_dev_scope(info, dmaru->segment,
320                         dmaru->devices, dmaru->devices_cnt))
321                         break;
322         dmar_iommu_notify_scope_dev(info);
323 }
324
325 static int dmar_pci_bus_notifier(struct notifier_block *nb,
326                                  unsigned long action, void *data)
327 {
328         struct pci_dev *pdev = to_pci_dev(data);
329         struct dmar_pci_notify_info *info;
330
331         /* Only care about add/remove events for physical functions.
332          * For VFs we actually do the lookup based on the corresponding
333          * PF in device_to_iommu() anyway. */
334         if (pdev->is_virtfn)
335                 return NOTIFY_DONE;
336         if (action != BUS_NOTIFY_ADD_DEVICE &&
337             action != BUS_NOTIFY_REMOVED_DEVICE)
338                 return NOTIFY_DONE;
339
340         info = dmar_alloc_pci_notify_info(pdev, action);
341         if (!info)
342                 return NOTIFY_DONE;
343
344         down_write(&dmar_global_lock);
345         if (action == BUS_NOTIFY_ADD_DEVICE)
346                 dmar_pci_bus_add_dev(info);
347         else if (action == BUS_NOTIFY_REMOVED_DEVICE)
348                 dmar_pci_bus_del_dev(info);
349         up_write(&dmar_global_lock);
350
351         dmar_free_pci_notify_info(info);
352
353         return NOTIFY_OK;
354 }
355
356 static struct notifier_block dmar_pci_bus_nb = {
357         .notifier_call = dmar_pci_bus_notifier,
358         .priority = INT_MIN,
359 };
360
361 static struct dmar_drhd_unit *
362 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
363 {
364         struct dmar_drhd_unit *dmaru;
365
366         list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list)
367                 if (dmaru->segment == drhd->segment &&
368                     dmaru->reg_base_addr == drhd->address)
369                         return dmaru;
370
371         return NULL;
372 }
373
374 /**
375  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
376  * structure which uniquely represent one DMA remapping hardware unit
377  * present in the platform
378  */
379 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
380 {
381         struct acpi_dmar_hardware_unit *drhd;
382         struct dmar_drhd_unit *dmaru;
383         int ret;
384
385         drhd = (struct acpi_dmar_hardware_unit *)header;
386         dmaru = dmar_find_dmaru(drhd);
387         if (dmaru)
388                 goto out;
389
390         dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
391         if (!dmaru)
392                 return -ENOMEM;
393
394         /*
395          * If header is allocated from slab by ACPI _DSM method, we need to
396          * copy the content because the memory buffer will be freed on return.
397          */
398         dmaru->hdr = (void *)(dmaru + 1);
399         memcpy(dmaru->hdr, header, header->length);
400         dmaru->reg_base_addr = drhd->address;
401         dmaru->segment = drhd->segment;
402         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
403         dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
404                                               ((void *)drhd) + drhd->header.length,
405                                               &dmaru->devices_cnt);
406         if (dmaru->devices_cnt && dmaru->devices == NULL) {
407                 kfree(dmaru);
408                 return -ENOMEM;
409         }
410
411         ret = alloc_iommu(dmaru);
412         if (ret) {
413                 dmar_free_dev_scope(&dmaru->devices,
414                                     &dmaru->devices_cnt);
415                 kfree(dmaru);
416                 return ret;
417         }
418         dmar_register_drhd_unit(dmaru);
419
420 out:
421         if (arg)
422                 (*(int *)arg)++;
423
424         return 0;
425 }
426
427 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
428 {
429         if (dmaru->devices && dmaru->devices_cnt)
430                 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
431         if (dmaru->iommu)
432                 free_iommu(dmaru->iommu);
433         kfree(dmaru);
434 }
435
436 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
437                                       void *arg)
438 {
439         struct acpi_dmar_andd *andd = (void *)header;
440
441         /* Check for NUL termination within the designated length */
442         if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
443                 WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
444                            "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
445                            "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
446                            dmi_get_system_info(DMI_BIOS_VENDOR),
447                            dmi_get_system_info(DMI_BIOS_VERSION),
448                            dmi_get_system_info(DMI_PRODUCT_VERSION));
449                 return -EINVAL;
450         }
451         pr_info("ANDD device: %x name: %s\n", andd->device_number,
452                 andd->device_name);
453
454         return 0;
455 }
456
457 #ifdef CONFIG_ACPI_NUMA
458 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
459 {
460         struct acpi_dmar_rhsa *rhsa;
461         struct dmar_drhd_unit *drhd;
462
463         rhsa = (struct acpi_dmar_rhsa *)header;
464         for_each_drhd_unit(drhd) {
465                 if (drhd->reg_base_addr == rhsa->base_address) {
466                         int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
467
468                         if (!node_online(node))
469                                 node = NUMA_NO_NODE;
470                         drhd->iommu->node = node;
471                         return 0;
472                 }
473         }
474         WARN_TAINT(
475                 1, TAINT_FIRMWARE_WORKAROUND,
476                 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
477                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
478                 drhd->reg_base_addr,
479                 dmi_get_system_info(DMI_BIOS_VENDOR),
480                 dmi_get_system_info(DMI_BIOS_VERSION),
481                 dmi_get_system_info(DMI_PRODUCT_VERSION));
482
483         return 0;
484 }
485 #else
486 #define dmar_parse_one_rhsa             dmar_res_noop
487 #endif
488
489 static void
490 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
491 {
492         struct acpi_dmar_hardware_unit *drhd;
493         struct acpi_dmar_reserved_memory *rmrr;
494         struct acpi_dmar_atsr *atsr;
495         struct acpi_dmar_rhsa *rhsa;
496
497         switch (header->type) {
498         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
499                 drhd = container_of(header, struct acpi_dmar_hardware_unit,
500                                     header);
501                 pr_info("DRHD base: %#016Lx flags: %#x\n",
502                         (unsigned long long)drhd->address, drhd->flags);
503                 break;
504         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
505                 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
506                                     header);
507                 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
508                         (unsigned long long)rmrr->base_address,
509                         (unsigned long long)rmrr->end_address);
510                 break;
511         case ACPI_DMAR_TYPE_ROOT_ATS:
512                 atsr = container_of(header, struct acpi_dmar_atsr, header);
513                 pr_info("ATSR flags: %#x\n", atsr->flags);
514                 break;
515         case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
516                 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
517                 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
518                        (unsigned long long)rhsa->base_address,
519                        rhsa->proximity_domain);
520                 break;
521         case ACPI_DMAR_TYPE_NAMESPACE:
522                 /* We don't print this here because we need to sanity-check
523                    it first. So print it in dmar_parse_one_andd() instead. */
524                 break;
525         }
526 }
527
528 /**
529  * dmar_table_detect - checks to see if the platform supports DMAR devices
530  */
531 static int __init dmar_table_detect(void)
532 {
533         acpi_status status = AE_OK;
534
535         /* if we could find DMAR table, then there are DMAR devices */
536         status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
537
538         if (ACPI_SUCCESS(status) && !dmar_tbl) {
539                 pr_warn("Unable to map DMAR\n");
540                 status = AE_NOT_FOUND;
541         }
542
543         return ACPI_SUCCESS(status) ? 0 : -ENOENT;
544 }
545
546 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
547                                        size_t len, struct dmar_res_callback *cb)
548 {
549         struct acpi_dmar_header *iter, *next;
550         struct acpi_dmar_header *end = ((void *)start) + len;
551
552         for (iter = start; iter < end; iter = next) {
553                 next = (void *)iter + iter->length;
554                 if (iter->length == 0) {
555                         /* Avoid looping forever on bad ACPI tables */
556                         pr_debug(FW_BUG "Invalid 0-length structure\n");
557                         break;
558                 } else if (next > end) {
559                         /* Avoid passing table end */
560                         pr_warn(FW_BUG "Record passes table end\n");
561                         return -EINVAL;
562                 }
563
564                 if (cb->print_entry)
565                         dmar_table_print_dmar_entry(iter);
566
567                 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
568                         /* continue for forward compatibility */
569                         pr_debug("Unknown DMAR structure type %d\n",
570                                  iter->type);
571                 } else if (cb->cb[iter->type]) {
572                         int ret;
573
574                         ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
575                         if (ret)
576                                 return ret;
577                 } else if (!cb->ignore_unhandled) {
578                         pr_warn("No handler for DMAR structure type %d\n",
579                                 iter->type);
580                         return -EINVAL;
581                 }
582         }
583
584         return 0;
585 }
586
587 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
588                                        struct dmar_res_callback *cb)
589 {
590         return dmar_walk_remapping_entries((void *)(dmar + 1),
591                         dmar->header.length - sizeof(*dmar), cb);
592 }
593
594 /**
595  * parse_dmar_table - parses the DMA reporting table
596  */
597 static int __init
598 parse_dmar_table(void)
599 {
600         struct acpi_table_dmar *dmar;
601         int drhd_count = 0;
602         int ret;
603         struct dmar_res_callback cb = {
604                 .print_entry = true,
605                 .ignore_unhandled = true,
606                 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
607                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
608                 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
609                 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
610                 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
611                 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
612         };
613
614         /*
615          * Do it again, earlier dmar_tbl mapping could be mapped with
616          * fixed map.
617          */
618         dmar_table_detect();
619
620         /*
621          * ACPI tables may not be DMA protected by tboot, so use DMAR copy
622          * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
623          */
624         dmar_tbl = tboot_get_dmar_table(dmar_tbl);
625
626         dmar = (struct acpi_table_dmar *)dmar_tbl;
627         if (!dmar)
628                 return -ENODEV;
629
630         if (dmar->width < PAGE_SHIFT - 1) {
631                 pr_warn("Invalid DMAR haw\n");
632                 return -EINVAL;
633         }
634
635         pr_info("Host address width %d\n", dmar->width + 1);
636         ret = dmar_walk_dmar_table(dmar, &cb);
637         if (ret == 0 && drhd_count == 0)
638                 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
639
640         return ret;
641 }
642
643 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
644                                  int cnt, struct pci_dev *dev)
645 {
646         int index;
647         struct device *tmp;
648
649         while (dev) {
650                 for_each_active_dev_scope(devices, cnt, index, tmp)
651                         if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
652                                 return 1;
653
654                 /* Check our parent */
655                 dev = dev->bus->self;
656         }
657
658         return 0;
659 }
660
661 struct dmar_drhd_unit *
662 dmar_find_matched_drhd_unit(struct pci_dev *dev)
663 {
664         struct dmar_drhd_unit *dmaru;
665         struct acpi_dmar_hardware_unit *drhd;
666
667         dev = pci_physfn(dev);
668
669         rcu_read_lock();
670         for_each_drhd_unit(dmaru) {
671                 drhd = container_of(dmaru->hdr,
672                                     struct acpi_dmar_hardware_unit,
673                                     header);
674
675                 if (dmaru->include_all &&
676                     drhd->segment == pci_domain_nr(dev->bus))
677                         goto out;
678
679                 if (dmar_pci_device_match(dmaru->devices,
680                                           dmaru->devices_cnt, dev))
681                         goto out;
682         }
683         dmaru = NULL;
684 out:
685         rcu_read_unlock();
686
687         return dmaru;
688 }
689
690 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
691                                               struct acpi_device *adev)
692 {
693         struct dmar_drhd_unit *dmaru;
694         struct acpi_dmar_hardware_unit *drhd;
695         struct acpi_dmar_device_scope *scope;
696         struct device *tmp;
697         int i;
698         struct acpi_dmar_pci_path *path;
699
700         for_each_drhd_unit(dmaru) {
701                 drhd = container_of(dmaru->hdr,
702                                     struct acpi_dmar_hardware_unit,
703                                     header);
704
705                 for (scope = (void *)(drhd + 1);
706                      (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
707                      scope = ((void *)scope) + scope->length) {
708                         if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
709                                 continue;
710                         if (scope->enumeration_id != device_number)
711                                 continue;
712
713                         path = (void *)(scope + 1);
714                         pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
715                                 dev_name(&adev->dev), dmaru->reg_base_addr,
716                                 scope->bus, path->device, path->function);
717                         for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
718                                 if (tmp == NULL) {
719                                         dmaru->devices[i].bus = scope->bus;
720                                         dmaru->devices[i].devfn = PCI_DEVFN(path->device,
721                                                                             path->function);
722                                         rcu_assign_pointer(dmaru->devices[i].dev,
723                                                            get_device(&adev->dev));
724                                         return;
725                                 }
726                         BUG_ON(i >= dmaru->devices_cnt);
727                 }
728         }
729         pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
730                 device_number, dev_name(&adev->dev));
731 }
732
733 static int __init dmar_acpi_dev_scope_init(void)
734 {
735         struct acpi_dmar_andd *andd;
736
737         if (dmar_tbl == NULL)
738                 return -ENODEV;
739
740         for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
741              ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
742              andd = ((void *)andd) + andd->header.length) {
743                 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
744                         acpi_handle h;
745                         struct acpi_device *adev;
746
747                         if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
748                                                           andd->device_name,
749                                                           &h))) {
750                                 pr_err("Failed to find handle for ACPI object %s\n",
751                                        andd->device_name);
752                                 continue;
753                         }
754                         if (acpi_bus_get_device(h, &adev)) {
755                                 pr_err("Failed to get device for ACPI object %s\n",
756                                        andd->device_name);
757                                 continue;
758                         }
759                         dmar_acpi_insert_dev_scope(andd->device_number, adev);
760                 }
761         }
762         return 0;
763 }
764
765 int __init dmar_dev_scope_init(void)
766 {
767         struct pci_dev *dev = NULL;
768         struct dmar_pci_notify_info *info;
769
770         if (dmar_dev_scope_status != 1)
771                 return dmar_dev_scope_status;
772
773         if (list_empty(&dmar_drhd_units)) {
774                 dmar_dev_scope_status = -ENODEV;
775         } else {
776                 dmar_dev_scope_status = 0;
777
778                 dmar_acpi_dev_scope_init();
779
780                 for_each_pci_dev(dev) {
781                         if (dev->is_virtfn)
782                                 continue;
783
784                         info = dmar_alloc_pci_notify_info(dev,
785                                         BUS_NOTIFY_ADD_DEVICE);
786                         if (!info) {
787                                 return dmar_dev_scope_status;
788                         } else {
789                                 dmar_pci_bus_add_dev(info);
790                                 dmar_free_pci_notify_info(info);
791                         }
792                 }
793         }
794
795         return dmar_dev_scope_status;
796 }
797
798 void __init dmar_register_bus_notifier(void)
799 {
800         bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
801 }
802
803
804 int __init dmar_table_init(void)
805 {
806         static int dmar_table_initialized;
807         int ret;
808
809         if (dmar_table_initialized == 0) {
810                 ret = parse_dmar_table();
811                 if (ret < 0) {
812                         if (ret != -ENODEV)
813                                 pr_info("Parse DMAR table failure.\n");
814                 } else  if (list_empty(&dmar_drhd_units)) {
815                         pr_info("No DMAR devices found\n");
816                         ret = -ENODEV;
817                 }
818
819                 if (ret < 0)
820                         dmar_table_initialized = ret;
821                 else
822                         dmar_table_initialized = 1;
823         }
824
825         return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
826 }
827
828 static void warn_invalid_dmar(u64 addr, const char *message)
829 {
830         WARN_TAINT_ONCE(
831                 1, TAINT_FIRMWARE_WORKAROUND,
832                 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
833                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
834                 addr, message,
835                 dmi_get_system_info(DMI_BIOS_VENDOR),
836                 dmi_get_system_info(DMI_BIOS_VERSION),
837                 dmi_get_system_info(DMI_PRODUCT_VERSION));
838 }
839
840 static int __ref
841 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
842 {
843         struct acpi_dmar_hardware_unit *drhd;
844         void __iomem *addr;
845         u64 cap, ecap;
846
847         drhd = (void *)entry;
848         if (!drhd->address) {
849                 warn_invalid_dmar(0, "");
850                 return -EINVAL;
851         }
852
853         if (arg)
854                 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
855         else
856                 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
857         if (!addr) {
858                 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
859                 return -EINVAL;
860         }
861
862         cap = dmar_readq(addr + DMAR_CAP_REG);
863         ecap = dmar_readq(addr + DMAR_ECAP_REG);
864
865         if (arg)
866                 iounmap(addr);
867         else
868                 early_iounmap(addr, VTD_PAGE_SIZE);
869
870         if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
871                 warn_invalid_dmar(drhd->address, " returns all ones");
872                 return -EINVAL;
873         }
874
875         return 0;
876 }
877
878 int __init detect_intel_iommu(void)
879 {
880         int ret;
881         struct dmar_res_callback validate_drhd_cb = {
882                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
883                 .ignore_unhandled = true,
884         };
885
886         down_write(&dmar_global_lock);
887         ret = dmar_table_detect();
888         if (!ret)
889                 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
890                                            &validate_drhd_cb);
891         if (!ret && !no_iommu && !iommu_detected && !dmar_disabled) {
892                 iommu_detected = 1;
893                 /* Make sure ACS will be enabled */
894                 pci_request_acs();
895         }
896
897 #ifdef CONFIG_X86
898         if (!ret) {
899                 x86_init.iommu.iommu_init = intel_iommu_init;
900                 x86_platform.iommu_shutdown = intel_iommu_shutdown;
901         }
902
903 #endif
904
905         if (dmar_tbl) {
906                 acpi_put_table(dmar_tbl);
907                 dmar_tbl = NULL;
908         }
909         up_write(&dmar_global_lock);
910
911         return ret ? ret : 1;
912 }
913
914 static void unmap_iommu(struct intel_iommu *iommu)
915 {
916         iounmap(iommu->reg);
917         release_mem_region(iommu->reg_phys, iommu->reg_size);
918 }
919
920 /**
921  * map_iommu: map the iommu's registers
922  * @iommu: the iommu to map
923  * @phys_addr: the physical address of the base resgister
924  *
925  * Memory map the iommu's registers.  Start w/ a single page, and
926  * possibly expand if that turns out to be insufficent.
927  */
928 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
929 {
930         int map_size, err=0;
931
932         iommu->reg_phys = phys_addr;
933         iommu->reg_size = VTD_PAGE_SIZE;
934
935         if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
936                 pr_err("Can't reserve memory\n");
937                 err = -EBUSY;
938                 goto out;
939         }
940
941         iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
942         if (!iommu->reg) {
943                 pr_err("Can't map the region\n");
944                 err = -ENOMEM;
945                 goto release;
946         }
947
948         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
949         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
950
951         if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
952                 err = -EINVAL;
953                 warn_invalid_dmar(phys_addr, " returns all ones");
954                 goto unmap;
955         }
956
957         /* the registers might be more than one page */
958         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
959                          cap_max_fault_reg_offset(iommu->cap));
960         map_size = VTD_PAGE_ALIGN(map_size);
961         if (map_size > iommu->reg_size) {
962                 iounmap(iommu->reg);
963                 release_mem_region(iommu->reg_phys, iommu->reg_size);
964                 iommu->reg_size = map_size;
965                 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
966                                         iommu->name)) {
967                         pr_err("Can't reserve memory\n");
968                         err = -EBUSY;
969                         goto out;
970                 }
971                 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
972                 if (!iommu->reg) {
973                         pr_err("Can't map the region\n");
974                         err = -ENOMEM;
975                         goto release;
976                 }
977         }
978         err = 0;
979         goto out;
980
981 unmap:
982         iounmap(iommu->reg);
983 release:
984         release_mem_region(iommu->reg_phys, iommu->reg_size);
985 out:
986         return err;
987 }
988
989 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
990 {
991         iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
992                                             DMAR_UNITS_SUPPORTED);
993         if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
994                 iommu->seq_id = -1;
995         } else {
996                 set_bit(iommu->seq_id, dmar_seq_ids);
997                 sprintf(iommu->name, "dmar%d", iommu->seq_id);
998         }
999
1000         return iommu->seq_id;
1001 }
1002
1003 static void dmar_free_seq_id(struct intel_iommu *iommu)
1004 {
1005         if (iommu->seq_id >= 0) {
1006                 clear_bit(iommu->seq_id, dmar_seq_ids);
1007                 iommu->seq_id = -1;
1008         }
1009 }
1010
1011 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1012 {
1013         struct intel_iommu *iommu;
1014         u32 ver, sts;
1015         int agaw = 0;
1016         int msagaw = 0;
1017         int err;
1018
1019         if (!drhd->reg_base_addr) {
1020                 warn_invalid_dmar(0, "");
1021                 return -EINVAL;
1022         }
1023
1024         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1025         if (!iommu)
1026                 return -ENOMEM;
1027
1028         if (dmar_alloc_seq_id(iommu) < 0) {
1029                 pr_err("Failed to allocate seq_id\n");
1030                 err = -ENOSPC;
1031                 goto error;
1032         }
1033
1034         err = map_iommu(iommu, drhd->reg_base_addr);
1035         if (err) {
1036                 pr_err("Failed to map %s\n", iommu->name);
1037                 goto error_free_seq_id;
1038         }
1039
1040         err = -EINVAL;
1041         agaw = iommu_calculate_agaw(iommu);
1042         if (agaw < 0) {
1043                 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1044                         iommu->seq_id);
1045                 goto err_unmap;
1046         }
1047         msagaw = iommu_calculate_max_sagaw(iommu);
1048         if (msagaw < 0) {
1049                 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1050                         iommu->seq_id);
1051                 goto err_unmap;
1052         }
1053         iommu->agaw = agaw;
1054         iommu->msagaw = msagaw;
1055         iommu->segment = drhd->segment;
1056
1057         iommu->node = NUMA_NO_NODE;
1058
1059         ver = readl(iommu->reg + DMAR_VER_REG);
1060         pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1061                 iommu->name,
1062                 (unsigned long long)drhd->reg_base_addr,
1063                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1064                 (unsigned long long)iommu->cap,
1065                 (unsigned long long)iommu->ecap);
1066
1067         /* Reflect status in gcmd */
1068         sts = readl(iommu->reg + DMAR_GSTS_REG);
1069         if (sts & DMA_GSTS_IRES)
1070                 iommu->gcmd |= DMA_GCMD_IRE;
1071         if (sts & DMA_GSTS_TES)
1072                 iommu->gcmd |= DMA_GCMD_TE;
1073         if (sts & DMA_GSTS_QIES)
1074                 iommu->gcmd |= DMA_GCMD_QIE;
1075
1076         raw_spin_lock_init(&iommu->register_lock);
1077
1078         if (intel_iommu_enabled) {
1079                 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1080                                              intel_iommu_groups,
1081                                              "%s", iommu->name);
1082                 if (err)
1083                         goto err_unmap;
1084
1085                 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1086
1087                 err = iommu_device_register(&iommu->iommu);
1088                 if (err)
1089                         goto err_unmap;
1090         }
1091
1092         drhd->iommu = iommu;
1093
1094         return 0;
1095
1096 err_unmap:
1097         unmap_iommu(iommu);
1098 error_free_seq_id:
1099         dmar_free_seq_id(iommu);
1100 error:
1101         kfree(iommu);
1102         return err;
1103 }
1104
1105 static void free_iommu(struct intel_iommu *iommu)
1106 {
1107         if (intel_iommu_enabled) {
1108                 iommu_device_unregister(&iommu->iommu);
1109                 iommu_device_sysfs_remove(&iommu->iommu);
1110         }
1111
1112         if (iommu->irq) {
1113                 if (iommu->pr_irq) {
1114                         free_irq(iommu->pr_irq, iommu);
1115                         dmar_free_hwirq(iommu->pr_irq);
1116                         iommu->pr_irq = 0;
1117                 }
1118                 free_irq(iommu->irq, iommu);
1119                 dmar_free_hwirq(iommu->irq);
1120                 iommu->irq = 0;
1121         }
1122
1123         if (iommu->qi) {
1124                 free_page((unsigned long)iommu->qi->desc);
1125                 kfree(iommu->qi->desc_status);
1126                 kfree(iommu->qi);
1127         }
1128
1129         if (iommu->reg)
1130                 unmap_iommu(iommu);
1131
1132         dmar_free_seq_id(iommu);
1133         kfree(iommu);
1134 }
1135
1136 /*
1137  * Reclaim all the submitted descriptors which have completed its work.
1138  */
1139 static inline void reclaim_free_desc(struct q_inval *qi)
1140 {
1141         while (qi->desc_status[qi->free_tail] == QI_DONE ||
1142                qi->desc_status[qi->free_tail] == QI_ABORT) {
1143                 qi->desc_status[qi->free_tail] = QI_FREE;
1144                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1145                 qi->free_cnt++;
1146         }
1147 }
1148
1149 static int qi_check_fault(struct intel_iommu *iommu, int index)
1150 {
1151         u32 fault;
1152         int head, tail;
1153         struct q_inval *qi = iommu->qi;
1154         int wait_index = (index + 1) % QI_LENGTH;
1155         int shift = qi_shift(iommu);
1156
1157         if (qi->desc_status[wait_index] == QI_ABORT)
1158                 return -EAGAIN;
1159
1160         fault = readl(iommu->reg + DMAR_FSTS_REG);
1161
1162         /*
1163          * If IQE happens, the head points to the descriptor associated
1164          * with the error. No new descriptors are fetched until the IQE
1165          * is cleared.
1166          */
1167         if (fault & DMA_FSTS_IQE) {
1168                 head = readl(iommu->reg + DMAR_IQH_REG);
1169                 if ((head >> shift) == index) {
1170                         struct qi_desc *desc = qi->desc + head;
1171
1172                         /*
1173                          * desc->qw2 and desc->qw3 are either reserved or
1174                          * used by software as private data. We won't print
1175                          * out these two qw's for security consideration.
1176                          */
1177                         pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
1178                                (unsigned long long)desc->qw0,
1179                                (unsigned long long)desc->qw1);
1180                         memcpy(desc, qi->desc + (wait_index << shift),
1181                                1 << shift);
1182                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1183                         return -EINVAL;
1184                 }
1185         }
1186
1187         /*
1188          * If ITE happens, all pending wait_desc commands are aborted.
1189          * No new descriptors are fetched until the ITE is cleared.
1190          */
1191         if (fault & DMA_FSTS_ITE) {
1192                 head = readl(iommu->reg + DMAR_IQH_REG);
1193                 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1194                 head |= 1;
1195                 tail = readl(iommu->reg + DMAR_IQT_REG);
1196                 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1197
1198                 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1199
1200                 do {
1201                         if (qi->desc_status[head] == QI_IN_USE)
1202                                 qi->desc_status[head] = QI_ABORT;
1203                         head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1204                 } while (head != tail);
1205
1206                 if (qi->desc_status[wait_index] == QI_ABORT)
1207                         return -EAGAIN;
1208         }
1209
1210         if (fault & DMA_FSTS_ICE)
1211                 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1212
1213         return 0;
1214 }
1215
1216 /*
1217  * Submit the queued invalidation descriptor to the remapping
1218  * hardware unit and wait for its completion.
1219  */
1220 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1221 {
1222         int rc;
1223         struct q_inval *qi = iommu->qi;
1224         int offset, shift, length;
1225         struct qi_desc wait_desc;
1226         int wait_index, index;
1227         unsigned long flags;
1228
1229         if (!qi)
1230                 return 0;
1231
1232 restart:
1233         rc = 0;
1234
1235         raw_spin_lock_irqsave(&qi->q_lock, flags);
1236         while (qi->free_cnt < 3) {
1237                 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1238                 cpu_relax();
1239                 raw_spin_lock_irqsave(&qi->q_lock, flags);
1240         }
1241
1242         index = qi->free_head;
1243         wait_index = (index + 1) % QI_LENGTH;
1244         shift = qi_shift(iommu);
1245         length = 1 << shift;
1246
1247         qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1248
1249         offset = index << shift;
1250         memcpy(qi->desc + offset, desc, length);
1251         wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1252                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1253         wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1254         wait_desc.qw2 = 0;
1255         wait_desc.qw3 = 0;
1256
1257         offset = wait_index << shift;
1258         memcpy(qi->desc + offset, &wait_desc, length);
1259
1260         qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1261         qi->free_cnt -= 2;
1262
1263         /*
1264          * update the HW tail register indicating the presence of
1265          * new descriptors.
1266          */
1267         writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1268
1269         while (qi->desc_status[wait_index] != QI_DONE) {
1270                 /*
1271                  * We will leave the interrupts disabled, to prevent interrupt
1272                  * context to queue another cmd while a cmd is already submitted
1273                  * and waiting for completion on this cpu. This is to avoid
1274                  * a deadlock where the interrupt context can wait indefinitely
1275                  * for free slots in the queue.
1276                  */
1277                 rc = qi_check_fault(iommu, index);
1278                 if (rc)
1279                         break;
1280
1281                 raw_spin_unlock(&qi->q_lock);
1282                 cpu_relax();
1283                 raw_spin_lock(&qi->q_lock);
1284         }
1285
1286         qi->desc_status[index] = QI_DONE;
1287
1288         reclaim_free_desc(qi);
1289         raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1290
1291         if (rc == -EAGAIN)
1292                 goto restart;
1293
1294         return rc;
1295 }
1296
1297 /*
1298  * Flush the global interrupt entry cache.
1299  */
1300 void qi_global_iec(struct intel_iommu *iommu)
1301 {
1302         struct qi_desc desc;
1303
1304         desc.qw0 = QI_IEC_TYPE;
1305         desc.qw1 = 0;
1306         desc.qw2 = 0;
1307         desc.qw3 = 0;
1308
1309         /* should never fail */
1310         qi_submit_sync(&desc, iommu);
1311 }
1312
1313 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1314                       u64 type)
1315 {
1316         struct qi_desc desc;
1317
1318         desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1319                         | QI_CC_GRAN(type) | QI_CC_TYPE;
1320         desc.qw1 = 0;
1321         desc.qw2 = 0;
1322         desc.qw3 = 0;
1323
1324         qi_submit_sync(&desc, iommu);
1325 }
1326
1327 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1328                     unsigned int size_order, u64 type)
1329 {
1330         u8 dw = 0, dr = 0;
1331
1332         struct qi_desc desc;
1333         int ih = 0;
1334
1335         if (cap_write_drain(iommu->cap))
1336                 dw = 1;
1337
1338         if (cap_read_drain(iommu->cap))
1339                 dr = 1;
1340
1341         desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1342                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1343         desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1344                 | QI_IOTLB_AM(size_order);
1345         desc.qw2 = 0;
1346         desc.qw3 = 0;
1347
1348         qi_submit_sync(&desc, iommu);
1349 }
1350
1351 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1352                         u16 qdep, u64 addr, unsigned mask)
1353 {
1354         struct qi_desc desc;
1355
1356         if (mask) {
1357                 WARN_ON_ONCE(addr & ((1ULL << (VTD_PAGE_SHIFT + mask)) - 1));
1358                 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1359                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1360         } else
1361                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1362
1363         if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1364                 qdep = 0;
1365
1366         desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1367                    QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1368         desc.qw2 = 0;
1369         desc.qw3 = 0;
1370
1371         qi_submit_sync(&desc, iommu);
1372 }
1373
1374 /* PASID-based IOTLB invalidation */
1375 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1376                      unsigned long npages, bool ih)
1377 {
1378         struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1379
1380         /*
1381          * npages == -1 means a PASID-selective invalidation, otherwise,
1382          * a positive value for Page-selective-within-PASID invalidation.
1383          * 0 is not a valid input.
1384          */
1385         if (WARN_ON(!npages)) {
1386                 pr_err("Invalid input npages = %ld\n", npages);
1387                 return;
1388         }
1389
1390         if (npages == -1) {
1391                 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1392                                 QI_EIOTLB_DID(did) |
1393                                 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1394                                 QI_EIOTLB_TYPE;
1395                 desc.qw1 = 0;
1396         } else {
1397                 int mask = ilog2(__roundup_pow_of_two(npages));
1398                 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1399
1400                 if (WARN_ON_ONCE(!ALIGN(addr, align)))
1401                         addr &= ~(align - 1);
1402
1403                 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1404                                 QI_EIOTLB_DID(did) |
1405                                 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1406                                 QI_EIOTLB_TYPE;
1407                 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1408                                 QI_EIOTLB_IH(ih) |
1409                                 QI_EIOTLB_AM(mask);
1410         }
1411
1412         qi_submit_sync(&desc, iommu);
1413 }
1414
1415 /*
1416  * Disable Queued Invalidation interface.
1417  */
1418 void dmar_disable_qi(struct intel_iommu *iommu)
1419 {
1420         unsigned long flags;
1421         u32 sts;
1422         cycles_t start_time = get_cycles();
1423
1424         if (!ecap_qis(iommu->ecap))
1425                 return;
1426
1427         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1428
1429         sts =  readl(iommu->reg + DMAR_GSTS_REG);
1430         if (!(sts & DMA_GSTS_QIES))
1431                 goto end;
1432
1433         /*
1434          * Give a chance to HW to complete the pending invalidation requests.
1435          */
1436         while ((readl(iommu->reg + DMAR_IQT_REG) !=
1437                 readl(iommu->reg + DMAR_IQH_REG)) &&
1438                 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1439                 cpu_relax();
1440
1441         iommu->gcmd &= ~DMA_GCMD_QIE;
1442         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1443
1444         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1445                       !(sts & DMA_GSTS_QIES), sts);
1446 end:
1447         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1448 }
1449
1450 /*
1451  * Enable queued invalidation.
1452  */
1453 static void __dmar_enable_qi(struct intel_iommu *iommu)
1454 {
1455         u32 sts;
1456         unsigned long flags;
1457         struct q_inval *qi = iommu->qi;
1458         u64 val = virt_to_phys(qi->desc);
1459
1460         qi->free_head = qi->free_tail = 0;
1461         qi->free_cnt = QI_LENGTH;
1462
1463         /*
1464          * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1465          * is present.
1466          */
1467         if (ecap_smts(iommu->ecap))
1468                 val |= (1 << 11) | 1;
1469
1470         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1471
1472         /* write zero to the tail reg */
1473         writel(0, iommu->reg + DMAR_IQT_REG);
1474
1475         dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1476
1477         iommu->gcmd |= DMA_GCMD_QIE;
1478         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1479
1480         /* Make sure hardware complete it */
1481         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1482
1483         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1484 }
1485
1486 /*
1487  * Enable Queued Invalidation interface. This is a must to support
1488  * interrupt-remapping. Also used by DMA-remapping, which replaces
1489  * register based IOTLB invalidation.
1490  */
1491 int dmar_enable_qi(struct intel_iommu *iommu)
1492 {
1493         struct q_inval *qi;
1494         struct page *desc_page;
1495
1496         if (!ecap_qis(iommu->ecap))
1497                 return -ENOENT;
1498
1499         /*
1500          * queued invalidation is already setup and enabled.
1501          */
1502         if (iommu->qi)
1503                 return 0;
1504
1505         iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1506         if (!iommu->qi)
1507                 return -ENOMEM;
1508
1509         qi = iommu->qi;
1510
1511         /*
1512          * Need two pages to accommodate 256 descriptors of 256 bits each
1513          * if the remapping hardware supports scalable mode translation.
1514          */
1515         desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1516                                      !!ecap_smts(iommu->ecap));
1517         if (!desc_page) {
1518                 kfree(qi);
1519                 iommu->qi = NULL;
1520                 return -ENOMEM;
1521         }
1522
1523         qi->desc = page_address(desc_page);
1524
1525         qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1526         if (!qi->desc_status) {
1527                 free_page((unsigned long) qi->desc);
1528                 kfree(qi);
1529                 iommu->qi = NULL;
1530                 return -ENOMEM;
1531         }
1532
1533         raw_spin_lock_init(&qi->q_lock);
1534
1535         __dmar_enable_qi(iommu);
1536
1537         return 0;
1538 }
1539
1540 /* iommu interrupt handling. Most stuff are MSI-like. */
1541
1542 enum faulttype {
1543         DMA_REMAP,
1544         INTR_REMAP,
1545         UNKNOWN,
1546 };
1547
1548 static const char *dma_remap_fault_reasons[] =
1549 {
1550         "Software",
1551         "Present bit in root entry is clear",
1552         "Present bit in context entry is clear",
1553         "Invalid context entry",
1554         "Access beyond MGAW",
1555         "PTE Write access is not set",
1556         "PTE Read access is not set",
1557         "Next page table ptr is invalid",
1558         "Root table address invalid",
1559         "Context table ptr is invalid",
1560         "non-zero reserved fields in RTP",
1561         "non-zero reserved fields in CTP",
1562         "non-zero reserved fields in PTE",
1563         "PCE for translation request specifies blocking",
1564 };
1565
1566 static const char * const dma_remap_sm_fault_reasons[] = {
1567         "SM: Invalid Root Table Address",
1568         "SM: TTM 0 for request with PASID",
1569         "SM: TTM 0 for page group request",
1570         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1571         "SM: Error attempting to access Root Entry",
1572         "SM: Present bit in Root Entry is clear",
1573         "SM: Non-zero reserved field set in Root Entry",
1574         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1575         "SM: Error attempting to access Context Entry",
1576         "SM: Present bit in Context Entry is clear",
1577         "SM: Non-zero reserved field set in the Context Entry",
1578         "SM: Invalid Context Entry",
1579         "SM: DTE field in Context Entry is clear",
1580         "SM: PASID Enable field in Context Entry is clear",
1581         "SM: PASID is larger than the max in Context Entry",
1582         "SM: PRE field in Context-Entry is clear",
1583         "SM: RID_PASID field error in Context-Entry",
1584         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1585         "SM: Error attempting to access the PASID Directory Entry",
1586         "SM: Present bit in Directory Entry is clear",
1587         "SM: Non-zero reserved field set in PASID Directory Entry",
1588         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1589         "SM: Error attempting to access PASID Table Entry",
1590         "SM: Present bit in PASID Table Entry is clear",
1591         "SM: Non-zero reserved field set in PASID Table Entry",
1592         "SM: Invalid Scalable-Mode PASID Table Entry",
1593         "SM: ERE field is clear in PASID Table Entry",
1594         "SM: SRE field is clear in PASID Table Entry",
1595         "Unknown", "Unknown",/* 0x5E-0x5F */
1596         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1597         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1598         "SM: Error attempting to access first-level paging entry",
1599         "SM: Present bit in first-level paging entry is clear",
1600         "SM: Non-zero reserved field set in first-level paging entry",
1601         "SM: Error attempting to access FL-PML4 entry",
1602         "SM: First-level entry address beyond MGAW in Nested translation",
1603         "SM: Read permission error in FL-PML4 entry in Nested translation",
1604         "SM: Read permission error in first-level paging entry in Nested translation",
1605         "SM: Write permission error in first-level paging entry in Nested translation",
1606         "SM: Error attempting to access second-level paging entry",
1607         "SM: Read/Write permission error in second-level paging entry",
1608         "SM: Non-zero reserved field set in second-level paging entry",
1609         "SM: Invalid second-level page table pointer",
1610         "SM: A/D bit update needed in second-level entry when set up in no snoop",
1611         "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1612         "SM: Address in first-level translation is not canonical",
1613         "SM: U/S set 0 for first-level translation with user privilege",
1614         "SM: No execute permission for request with PASID and ER=1",
1615         "SM: Address beyond the DMA hardware max",
1616         "SM: Second-level entry address beyond the max",
1617         "SM: No write permission for Write/AtomicOp request",
1618         "SM: No read permission for Read/AtomicOp request",
1619         "SM: Invalid address-interrupt address",
1620         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1621         "SM: A/D bit update needed in first-level entry when set up in no snoop",
1622 };
1623
1624 static const char *irq_remap_fault_reasons[] =
1625 {
1626         "Detected reserved fields in the decoded interrupt-remapped request",
1627         "Interrupt index exceeded the interrupt-remapping table size",
1628         "Present field in the IRTE entry is clear",
1629         "Error accessing interrupt-remapping table pointed by IRTA_REG",
1630         "Detected reserved fields in the IRTE entry",
1631         "Blocked a compatibility format interrupt request",
1632         "Blocked an interrupt request due to source-id verification failure",
1633 };
1634
1635 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1636 {
1637         if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1638                                         ARRAY_SIZE(irq_remap_fault_reasons))) {
1639                 *fault_type = INTR_REMAP;
1640                 return irq_remap_fault_reasons[fault_reason - 0x20];
1641         } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1642                         ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1643                 *fault_type = DMA_REMAP;
1644                 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1645         } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1646                 *fault_type = DMA_REMAP;
1647                 return dma_remap_fault_reasons[fault_reason];
1648         } else {
1649                 *fault_type = UNKNOWN;
1650                 return "Unknown";
1651         }
1652 }
1653
1654
1655 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1656 {
1657         if (iommu->irq == irq)
1658                 return DMAR_FECTL_REG;
1659         else if (iommu->pr_irq == irq)
1660                 return DMAR_PECTL_REG;
1661         else
1662                 BUG();
1663 }
1664
1665 void dmar_msi_unmask(struct irq_data *data)
1666 {
1667         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1668         int reg = dmar_msi_reg(iommu, data->irq);
1669         unsigned long flag;
1670
1671         /* unmask it */
1672         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1673         writel(0, iommu->reg + reg);
1674         /* Read a reg to force flush the post write */
1675         readl(iommu->reg + reg);
1676         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1677 }
1678
1679 void dmar_msi_mask(struct irq_data *data)
1680 {
1681         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1682         int reg = dmar_msi_reg(iommu, data->irq);
1683         unsigned long flag;
1684
1685         /* mask it */
1686         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1687         writel(DMA_FECTL_IM, iommu->reg + reg);
1688         /* Read a reg to force flush the post write */
1689         readl(iommu->reg + reg);
1690         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1691 }
1692
1693 void dmar_msi_write(int irq, struct msi_msg *msg)
1694 {
1695         struct intel_iommu *iommu = irq_get_handler_data(irq);
1696         int reg = dmar_msi_reg(iommu, irq);
1697         unsigned long flag;
1698
1699         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1700         writel(msg->data, iommu->reg + reg + 4);
1701         writel(msg->address_lo, iommu->reg + reg + 8);
1702         writel(msg->address_hi, iommu->reg + reg + 12);
1703         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1704 }
1705
1706 void dmar_msi_read(int irq, struct msi_msg *msg)
1707 {
1708         struct intel_iommu *iommu = irq_get_handler_data(irq);
1709         int reg = dmar_msi_reg(iommu, irq);
1710         unsigned long flag;
1711
1712         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1713         msg->data = readl(iommu->reg + reg + 4);
1714         msg->address_lo = readl(iommu->reg + reg + 8);
1715         msg->address_hi = readl(iommu->reg + reg + 12);
1716         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1717 }
1718
1719 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1720                 u8 fault_reason, int pasid, u16 source_id,
1721                 unsigned long long addr)
1722 {
1723         const char *reason;
1724         int fault_type;
1725
1726         reason = dmar_get_fault_reason(fault_reason, &fault_type);
1727
1728         if (fault_type == INTR_REMAP)
1729                 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1730                         source_id >> 8, PCI_SLOT(source_id & 0xFF),
1731                         PCI_FUNC(source_id & 0xFF), addr >> 48,
1732                         fault_reason, reason);
1733         else
1734                 pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1735                        type ? "DMA Read" : "DMA Write",
1736                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1737                        PCI_FUNC(source_id & 0xFF), pasid, addr,
1738                        fault_reason, reason);
1739         return 0;
1740 }
1741
1742 #define PRIMARY_FAULT_REG_LEN (16)
1743 irqreturn_t dmar_fault(int irq, void *dev_id)
1744 {
1745         struct intel_iommu *iommu = dev_id;
1746         int reg, fault_index;
1747         u32 fault_status;
1748         unsigned long flag;
1749         static DEFINE_RATELIMIT_STATE(rs,
1750                                       DEFAULT_RATELIMIT_INTERVAL,
1751                                       DEFAULT_RATELIMIT_BURST);
1752
1753         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1754         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1755         if (fault_status && __ratelimit(&rs))
1756                 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1757
1758         /* TBD: ignore advanced fault log currently */
1759         if (!(fault_status & DMA_FSTS_PPF))
1760                 goto unlock_exit;
1761
1762         fault_index = dma_fsts_fault_record_index(fault_status);
1763         reg = cap_fault_reg_offset(iommu->cap);
1764         while (1) {
1765                 /* Disable printing, simply clear the fault when ratelimited */
1766                 bool ratelimited = !__ratelimit(&rs);
1767                 u8 fault_reason;
1768                 u16 source_id;
1769                 u64 guest_addr;
1770                 int type, pasid;
1771                 u32 data;
1772                 bool pasid_present;
1773
1774                 /* highest 32 bits */
1775                 data = readl(iommu->reg + reg +
1776                                 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1777                 if (!(data & DMA_FRCD_F))
1778                         break;
1779
1780                 if (!ratelimited) {
1781                         fault_reason = dma_frcd_fault_reason(data);
1782                         type = dma_frcd_type(data);
1783
1784                         pasid = dma_frcd_pasid_value(data);
1785                         data = readl(iommu->reg + reg +
1786                                      fault_index * PRIMARY_FAULT_REG_LEN + 8);
1787                         source_id = dma_frcd_source_id(data);
1788
1789                         pasid_present = dma_frcd_pasid_present(data);
1790                         guest_addr = dmar_readq(iommu->reg + reg +
1791                                         fault_index * PRIMARY_FAULT_REG_LEN);
1792                         guest_addr = dma_frcd_page_addr(guest_addr);
1793                 }
1794
1795                 /* clear the fault */
1796                 writel(DMA_FRCD_F, iommu->reg + reg +
1797                         fault_index * PRIMARY_FAULT_REG_LEN + 12);
1798
1799                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1800
1801                 if (!ratelimited)
1802                         /* Using pasid -1 if pasid is not present */
1803                         dmar_fault_do_one(iommu, type, fault_reason,
1804                                           pasid_present ? pasid : -1,
1805                                           source_id, guest_addr);
1806
1807                 fault_index++;
1808                 if (fault_index >= cap_num_fault_regs(iommu->cap))
1809                         fault_index = 0;
1810                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1811         }
1812
1813         writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
1814                iommu->reg + DMAR_FSTS_REG);
1815
1816 unlock_exit:
1817         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1818         return IRQ_HANDLED;
1819 }
1820
1821 int dmar_set_interrupt(struct intel_iommu *iommu)
1822 {
1823         int irq, ret;
1824
1825         /*
1826          * Check if the fault interrupt is already initialized.
1827          */
1828         if (iommu->irq)
1829                 return 0;
1830
1831         irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1832         if (irq > 0) {
1833                 iommu->irq = irq;
1834         } else {
1835                 pr_err("No free IRQ vectors\n");
1836                 return -EINVAL;
1837         }
1838
1839         ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1840         if (ret)
1841                 pr_err("Can't request irq\n");
1842         return ret;
1843 }
1844
1845 int __init enable_drhd_fault_handling(void)
1846 {
1847         struct dmar_drhd_unit *drhd;
1848         struct intel_iommu *iommu;
1849
1850         /*
1851          * Enable fault control interrupt.
1852          */
1853         for_each_iommu(iommu, drhd) {
1854                 u32 fault_status;
1855                 int ret = dmar_set_interrupt(iommu);
1856
1857                 if (ret) {
1858                         pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1859                                (unsigned long long)drhd->reg_base_addr, ret);
1860                         return -1;
1861                 }
1862
1863                 /*
1864                  * Clear any previous faults.
1865                  */
1866                 dmar_fault(iommu->irq, iommu);
1867                 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1868                 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1869         }
1870
1871         return 0;
1872 }
1873
1874 /*
1875  * Re-enable Queued Invalidation interface.
1876  */
1877 int dmar_reenable_qi(struct intel_iommu *iommu)
1878 {
1879         if (!ecap_qis(iommu->ecap))
1880                 return -ENOENT;
1881
1882         if (!iommu->qi)
1883                 return -ENOENT;
1884
1885         /*
1886          * First disable queued invalidation.
1887          */
1888         dmar_disable_qi(iommu);
1889         /*
1890          * Then enable queued invalidation again. Since there is no pending
1891          * invalidation requests now, it's safe to re-enable queued
1892          * invalidation.
1893          */
1894         __dmar_enable_qi(iommu);
1895
1896         return 0;
1897 }
1898
1899 /*
1900  * Check interrupt remapping support in DMAR table description.
1901  */
1902 int __init dmar_ir_support(void)
1903 {
1904         struct acpi_table_dmar *dmar;
1905         dmar = (struct acpi_table_dmar *)dmar_tbl;
1906         if (!dmar)
1907                 return 0;
1908         return dmar->flags & 0x1;
1909 }
1910
1911 /* Check whether DMAR units are in use */
1912 static inline bool dmar_in_use(void)
1913 {
1914         return irq_remapping_enabled || intel_iommu_enabled;
1915 }
1916
1917 static int __init dmar_free_unused_resources(void)
1918 {
1919         struct dmar_drhd_unit *dmaru, *dmaru_n;
1920
1921         if (dmar_in_use())
1922                 return 0;
1923
1924         if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1925                 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1926
1927         down_write(&dmar_global_lock);
1928         list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1929                 list_del(&dmaru->list);
1930                 dmar_free_drhd(dmaru);
1931         }
1932         up_write(&dmar_global_lock);
1933
1934         return 0;
1935 }
1936
1937 late_initcall(dmar_free_unused_resources);
1938 IOMMU_INIT_POST(detect_intel_iommu);
1939
1940 /*
1941  * DMAR Hotplug Support
1942  * For more details, please refer to Intel(R) Virtualization Technology
1943  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
1944  * "Remapping Hardware Unit Hot Plug".
1945  */
1946 static guid_t dmar_hp_guid =
1947         GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
1948                   0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
1949
1950 /*
1951  * Currently there's only one revision and BIOS will not check the revision id,
1952  * so use 0 for safety.
1953  */
1954 #define DMAR_DSM_REV_ID                 0
1955 #define DMAR_DSM_FUNC_DRHD              1
1956 #define DMAR_DSM_FUNC_ATSR              2
1957 #define DMAR_DSM_FUNC_RHSA              3
1958
1959 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
1960 {
1961         return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
1962 }
1963
1964 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
1965                                   dmar_res_handler_t handler, void *arg)
1966 {
1967         int ret = -ENODEV;
1968         union acpi_object *obj;
1969         struct acpi_dmar_header *start;
1970         struct dmar_res_callback callback;
1971         static int res_type[] = {
1972                 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
1973                 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
1974                 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
1975         };
1976
1977         if (!dmar_detect_dsm(handle, func))
1978                 return 0;
1979
1980         obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
1981                                       func, NULL, ACPI_TYPE_BUFFER);
1982         if (!obj)
1983                 return -ENODEV;
1984
1985         memset(&callback, 0, sizeof(callback));
1986         callback.cb[res_type[func]] = handler;
1987         callback.arg[res_type[func]] = arg;
1988         start = (struct acpi_dmar_header *)obj->buffer.pointer;
1989         ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
1990
1991         ACPI_FREE(obj);
1992
1993         return ret;
1994 }
1995
1996 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
1997 {
1998         int ret;
1999         struct dmar_drhd_unit *dmaru;
2000
2001         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2002         if (!dmaru)
2003                 return -ENODEV;
2004
2005         ret = dmar_ir_hotplug(dmaru, true);
2006         if (ret == 0)
2007                 ret = dmar_iommu_hotplug(dmaru, true);
2008
2009         return ret;
2010 }
2011
2012 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2013 {
2014         int i, ret;
2015         struct device *dev;
2016         struct dmar_drhd_unit *dmaru;
2017
2018         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2019         if (!dmaru)
2020                 return 0;
2021
2022         /*
2023          * All PCI devices managed by this unit should have been destroyed.
2024          */
2025         if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2026                 for_each_active_dev_scope(dmaru->devices,
2027                                           dmaru->devices_cnt, i, dev)
2028                         return -EBUSY;
2029         }
2030
2031         ret = dmar_ir_hotplug(dmaru, false);
2032         if (ret == 0)
2033                 ret = dmar_iommu_hotplug(dmaru, false);
2034
2035         return ret;
2036 }
2037
2038 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2039 {
2040         struct dmar_drhd_unit *dmaru;
2041
2042         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2043         if (dmaru) {
2044                 list_del_rcu(&dmaru->list);
2045                 synchronize_rcu();
2046                 dmar_free_drhd(dmaru);
2047         }
2048
2049         return 0;
2050 }
2051
2052 static int dmar_hotplug_insert(acpi_handle handle)
2053 {
2054         int ret;
2055         int drhd_count = 0;
2056
2057         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2058                                      &dmar_validate_one_drhd, (void *)1);
2059         if (ret)
2060                 goto out;
2061
2062         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2063                                      &dmar_parse_one_drhd, (void *)&drhd_count);
2064         if (ret == 0 && drhd_count == 0) {
2065                 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2066                 goto out;
2067         } else if (ret) {
2068                 goto release_drhd;
2069         }
2070
2071         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2072                                      &dmar_parse_one_rhsa, NULL);
2073         if (ret)
2074                 goto release_drhd;
2075
2076         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2077                                      &dmar_parse_one_atsr, NULL);
2078         if (ret)
2079                 goto release_atsr;
2080
2081         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2082                                      &dmar_hp_add_drhd, NULL);
2083         if (!ret)
2084                 return 0;
2085
2086         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2087                                &dmar_hp_remove_drhd, NULL);
2088 release_atsr:
2089         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2090                                &dmar_release_one_atsr, NULL);
2091 release_drhd:
2092         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2093                                &dmar_hp_release_drhd, NULL);
2094 out:
2095         return ret;
2096 }
2097
2098 static int dmar_hotplug_remove(acpi_handle handle)
2099 {
2100         int ret;
2101
2102         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2103                                      &dmar_check_one_atsr, NULL);
2104         if (ret)
2105                 return ret;
2106
2107         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2108                                      &dmar_hp_remove_drhd, NULL);
2109         if (ret == 0) {
2110                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2111                                                &dmar_release_one_atsr, NULL));
2112                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2113                                                &dmar_hp_release_drhd, NULL));
2114         } else {
2115                 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2116                                        &dmar_hp_add_drhd, NULL);
2117         }
2118
2119         return ret;
2120 }
2121
2122 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2123                                        void *context, void **retval)
2124 {
2125         acpi_handle *phdl = retval;
2126
2127         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2128                 *phdl = handle;
2129                 return AE_CTRL_TERMINATE;
2130         }
2131
2132         return AE_OK;
2133 }
2134
2135 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2136 {
2137         int ret;
2138         acpi_handle tmp = NULL;
2139         acpi_status status;
2140
2141         if (!dmar_in_use())
2142                 return 0;
2143
2144         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2145                 tmp = handle;
2146         } else {
2147                 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2148                                              ACPI_UINT32_MAX,
2149                                              dmar_get_dsm_handle,
2150                                              NULL, NULL, &tmp);
2151                 if (ACPI_FAILURE(status)) {
2152                         pr_warn("Failed to locate _DSM method.\n");
2153                         return -ENXIO;
2154                 }
2155         }
2156         if (tmp == NULL)
2157                 return 0;
2158
2159         down_write(&dmar_global_lock);
2160         if (insert)
2161                 ret = dmar_hotplug_insert(tmp);
2162         else
2163                 ret = dmar_hotplug_remove(tmp);
2164         up_write(&dmar_global_lock);
2165
2166         return ret;
2167 }
2168
2169 int dmar_device_add(acpi_handle handle)
2170 {
2171         return dmar_device_hotplug(handle, true);
2172 }
2173
2174 int dmar_device_remove(acpi_handle handle)
2175 {
2176         return dmar_device_hotplug(handle, false);
2177 }
2178
2179 /*
2180  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2181  *
2182  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2183  * the ACPI DMAR table. This means that the platform boot firmware has made
2184  * sure no device can issue DMA outside of RMRR regions.
2185  */
2186 bool dmar_platform_optin(void)
2187 {
2188         struct acpi_table_dmar *dmar;
2189         acpi_status status;
2190         bool ret;
2191
2192         status = acpi_get_table(ACPI_SIG_DMAR, 0,
2193                                 (struct acpi_table_header **)&dmar);
2194         if (ACPI_FAILURE(status))
2195                 return false;
2196
2197         ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2198         acpi_put_table((struct acpi_table_header *)dmar);
2199
2200         return ret;
2201 }
2202 EXPORT_SYMBOL_GPL(dmar_platform_optin);