]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/iommu/dmar.c
zram: fix race between backing_dev_show and backing_dev_store
[linux.git] / drivers / iommu / dmar.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <ashok.raj@intel.com>
7  * Author: Shaohua Li <shaohua.li@intel.com>
8  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16
17 #define pr_fmt(fmt)     "DMAR: " fmt
18
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/intel-iommu.h>
23 #include <linux/timer.h>
24 #include <linux/irq.h>
25 #include <linux/interrupt.h>
26 #include <linux/tboot.h>
27 #include <linux/dmi.h>
28 #include <linux/slab.h>
29 #include <linux/iommu.h>
30 #include <linux/numa.h>
31 #include <asm/irq_remapping.h>
32 #include <asm/iommu_table.h>
33
34 #include "irq_remapping.h"
35
36 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
37 struct dmar_res_callback {
38         dmar_res_handler_t      cb[ACPI_DMAR_TYPE_RESERVED];
39         void                    *arg[ACPI_DMAR_TYPE_RESERVED];
40         bool                    ignore_unhandled;
41         bool                    print_entry;
42 };
43
44 /*
45  * Assumptions:
46  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
47  *    before IO devices managed by that unit.
48  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
49  *    after IO devices managed by that unit.
50  * 3) Hotplug events are rare.
51  *
52  * Locking rules for DMA and interrupt remapping related global data structures:
53  * 1) Use dmar_global_lock in process context
54  * 2) Use RCU in interrupt context
55  */
56 DECLARE_RWSEM(dmar_global_lock);
57 LIST_HEAD(dmar_drhd_units);
58
59 struct acpi_table_header * __initdata dmar_tbl;
60 static int dmar_dev_scope_status = 1;
61 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
62
63 static int alloc_iommu(struct dmar_drhd_unit *drhd);
64 static void free_iommu(struct intel_iommu *iommu);
65
66 extern const struct iommu_ops intel_iommu_ops;
67
68 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
69 {
70         /*
71          * add INCLUDE_ALL at the tail, so scan the list will find it at
72          * the very end.
73          */
74         if (drhd->include_all)
75                 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
76         else
77                 list_add_rcu(&drhd->list, &dmar_drhd_units);
78 }
79
80 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
81 {
82         struct acpi_dmar_device_scope *scope;
83
84         *cnt = 0;
85         while (start < end) {
86                 scope = start;
87                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
88                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
89                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
90                         (*cnt)++;
91                 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
92                         scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
93                         pr_warn("Unsupported device scope\n");
94                 }
95                 start += scope->length;
96         }
97         if (*cnt == 0)
98                 return NULL;
99
100         return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
101 }
102
103 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
104 {
105         int i;
106         struct device *tmp_dev;
107
108         if (*devices && *cnt) {
109                 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
110                         put_device(tmp_dev);
111                 kfree(*devices);
112         }
113
114         *devices = NULL;
115         *cnt = 0;
116 }
117
118 /* Optimize out kzalloc()/kfree() for normal cases */
119 static char dmar_pci_notify_info_buf[64];
120
121 static struct dmar_pci_notify_info *
122 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
123 {
124         int level = 0;
125         size_t size;
126         struct pci_dev *tmp;
127         struct dmar_pci_notify_info *info;
128
129         BUG_ON(dev->is_virtfn);
130
131         /* Only generate path[] for device addition event */
132         if (event == BUS_NOTIFY_ADD_DEVICE)
133                 for (tmp = dev; tmp; tmp = tmp->bus->self)
134                         level++;
135
136         size = struct_size(info, path, level);
137         if (size <= sizeof(dmar_pci_notify_info_buf)) {
138                 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
139         } else {
140                 info = kzalloc(size, GFP_KERNEL);
141                 if (!info) {
142                         pr_warn("Out of memory when allocating notify_info "
143                                 "for %s.\n", pci_name(dev));
144                         if (dmar_dev_scope_status == 0)
145                                 dmar_dev_scope_status = -ENOMEM;
146                         return NULL;
147                 }
148         }
149
150         info->event = event;
151         info->dev = dev;
152         info->seg = pci_domain_nr(dev->bus);
153         info->level = level;
154         if (event == BUS_NOTIFY_ADD_DEVICE) {
155                 for (tmp = dev; tmp; tmp = tmp->bus->self) {
156                         level--;
157                         info->path[level].bus = tmp->bus->number;
158                         info->path[level].device = PCI_SLOT(tmp->devfn);
159                         info->path[level].function = PCI_FUNC(tmp->devfn);
160                         if (pci_is_root_bus(tmp->bus))
161                                 info->bus = tmp->bus->number;
162                 }
163         }
164
165         return info;
166 }
167
168 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
169 {
170         if ((void *)info != dmar_pci_notify_info_buf)
171                 kfree(info);
172 }
173
174 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
175                                 struct acpi_dmar_pci_path *path, int count)
176 {
177         int i;
178
179         if (info->bus != bus)
180                 goto fallback;
181         if (info->level != count)
182                 goto fallback;
183
184         for (i = 0; i < count; i++) {
185                 if (path[i].device != info->path[i].device ||
186                     path[i].function != info->path[i].function)
187                         goto fallback;
188         }
189
190         return true;
191
192 fallback:
193
194         if (count != 1)
195                 return false;
196
197         i = info->level - 1;
198         if (bus              == info->path[i].bus &&
199             path[0].device   == info->path[i].device &&
200             path[0].function == info->path[i].function) {
201                 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
202                         bus, path[0].device, path[0].function);
203                 return true;
204         }
205
206         return false;
207 }
208
209 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
210 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
211                           void *start, void*end, u16 segment,
212                           struct dmar_dev_scope *devices,
213                           int devices_cnt)
214 {
215         int i, level;
216         struct device *tmp, *dev = &info->dev->dev;
217         struct acpi_dmar_device_scope *scope;
218         struct acpi_dmar_pci_path *path;
219
220         if (segment != info->seg)
221                 return 0;
222
223         for (; start < end; start += scope->length) {
224                 scope = start;
225                 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
226                     scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
227                         continue;
228
229                 path = (struct acpi_dmar_pci_path *)(scope + 1);
230                 level = (scope->length - sizeof(*scope)) / sizeof(*path);
231                 if (!dmar_match_pci_path(info, scope->bus, path, level))
232                         continue;
233
234                 /*
235                  * We expect devices with endpoint scope to have normal PCI
236                  * headers, and devices with bridge scope to have bridge PCI
237                  * headers.  However PCI NTB devices may be listed in the
238                  * DMAR table with bridge scope, even though they have a
239                  * normal PCI header.  NTB devices are identified by class
240                  * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
241                  * for this special case.
242                  */
243                 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
244                      info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
245                     (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
246                      (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
247                       info->dev->class >> 8 != PCI_CLASS_BRIDGE_OTHER))) {
248                         pr_warn("Device scope type does not match for %s\n",
249                                 pci_name(info->dev));
250                         return -EINVAL;
251                 }
252
253                 for_each_dev_scope(devices, devices_cnt, i, tmp)
254                         if (tmp == NULL) {
255                                 devices[i].bus = info->dev->bus->number;
256                                 devices[i].devfn = info->dev->devfn;
257                                 rcu_assign_pointer(devices[i].dev,
258                                                    get_device(dev));
259                                 return 1;
260                         }
261                 BUG_ON(i >= devices_cnt);
262         }
263
264         return 0;
265 }
266
267 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
268                           struct dmar_dev_scope *devices, int count)
269 {
270         int index;
271         struct device *tmp;
272
273         if (info->seg != segment)
274                 return 0;
275
276         for_each_active_dev_scope(devices, count, index, tmp)
277                 if (tmp == &info->dev->dev) {
278                         RCU_INIT_POINTER(devices[index].dev, NULL);
279                         synchronize_rcu();
280                         put_device(tmp);
281                         return 1;
282                 }
283
284         return 0;
285 }
286
287 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
288 {
289         int ret = 0;
290         struct dmar_drhd_unit *dmaru;
291         struct acpi_dmar_hardware_unit *drhd;
292
293         for_each_drhd_unit(dmaru) {
294                 if (dmaru->include_all)
295                         continue;
296
297                 drhd = container_of(dmaru->hdr,
298                                     struct acpi_dmar_hardware_unit, header);
299                 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
300                                 ((void *)drhd) + drhd->header.length,
301                                 dmaru->segment,
302                                 dmaru->devices, dmaru->devices_cnt);
303                 if (ret)
304                         break;
305         }
306         if (ret >= 0)
307                 ret = dmar_iommu_notify_scope_dev(info);
308         if (ret < 0 && dmar_dev_scope_status == 0)
309                 dmar_dev_scope_status = ret;
310
311         return ret;
312 }
313
314 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
315 {
316         struct dmar_drhd_unit *dmaru;
317
318         for_each_drhd_unit(dmaru)
319                 if (dmar_remove_dev_scope(info, dmaru->segment,
320                         dmaru->devices, dmaru->devices_cnt))
321                         break;
322         dmar_iommu_notify_scope_dev(info);
323 }
324
325 static int dmar_pci_bus_notifier(struct notifier_block *nb,
326                                  unsigned long action, void *data)
327 {
328         struct pci_dev *pdev = to_pci_dev(data);
329         struct dmar_pci_notify_info *info;
330
331         /* Only care about add/remove events for physical functions.
332          * For VFs we actually do the lookup based on the corresponding
333          * PF in device_to_iommu() anyway. */
334         if (pdev->is_virtfn)
335                 return NOTIFY_DONE;
336         if (action != BUS_NOTIFY_ADD_DEVICE &&
337             action != BUS_NOTIFY_REMOVED_DEVICE)
338                 return NOTIFY_DONE;
339
340         info = dmar_alloc_pci_notify_info(pdev, action);
341         if (!info)
342                 return NOTIFY_DONE;
343
344         down_write(&dmar_global_lock);
345         if (action == BUS_NOTIFY_ADD_DEVICE)
346                 dmar_pci_bus_add_dev(info);
347         else if (action == BUS_NOTIFY_REMOVED_DEVICE)
348                 dmar_pci_bus_del_dev(info);
349         up_write(&dmar_global_lock);
350
351         dmar_free_pci_notify_info(info);
352
353         return NOTIFY_OK;
354 }
355
356 static struct notifier_block dmar_pci_bus_nb = {
357         .notifier_call = dmar_pci_bus_notifier,
358         .priority = INT_MIN,
359 };
360
361 static struct dmar_drhd_unit *
362 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
363 {
364         struct dmar_drhd_unit *dmaru;
365
366         list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list)
367                 if (dmaru->segment == drhd->segment &&
368                     dmaru->reg_base_addr == drhd->address)
369                         return dmaru;
370
371         return NULL;
372 }
373
374 /**
375  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
376  * structure which uniquely represent one DMA remapping hardware unit
377  * present in the platform
378  */
379 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
380 {
381         struct acpi_dmar_hardware_unit *drhd;
382         struct dmar_drhd_unit *dmaru;
383         int ret;
384
385         drhd = (struct acpi_dmar_hardware_unit *)header;
386         dmaru = dmar_find_dmaru(drhd);
387         if (dmaru)
388                 goto out;
389
390         dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
391         if (!dmaru)
392                 return -ENOMEM;
393
394         /*
395          * If header is allocated from slab by ACPI _DSM method, we need to
396          * copy the content because the memory buffer will be freed on return.
397          */
398         dmaru->hdr = (void *)(dmaru + 1);
399         memcpy(dmaru->hdr, header, header->length);
400         dmaru->reg_base_addr = drhd->address;
401         dmaru->segment = drhd->segment;
402         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
403         dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
404                                               ((void *)drhd) + drhd->header.length,
405                                               &dmaru->devices_cnt);
406         if (dmaru->devices_cnt && dmaru->devices == NULL) {
407                 kfree(dmaru);
408                 return -ENOMEM;
409         }
410
411         ret = alloc_iommu(dmaru);
412         if (ret) {
413                 dmar_free_dev_scope(&dmaru->devices,
414                                     &dmaru->devices_cnt);
415                 kfree(dmaru);
416                 return ret;
417         }
418         dmar_register_drhd_unit(dmaru);
419
420 out:
421         if (arg)
422                 (*(int *)arg)++;
423
424         return 0;
425 }
426
427 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
428 {
429         if (dmaru->devices && dmaru->devices_cnt)
430                 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
431         if (dmaru->iommu)
432                 free_iommu(dmaru->iommu);
433         kfree(dmaru);
434 }
435
436 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
437                                       void *arg)
438 {
439         struct acpi_dmar_andd *andd = (void *)header;
440
441         /* Check for NUL termination within the designated length */
442         if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
443                 WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
444                            "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
445                            "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
446                            dmi_get_system_info(DMI_BIOS_VENDOR),
447                            dmi_get_system_info(DMI_BIOS_VERSION),
448                            dmi_get_system_info(DMI_PRODUCT_VERSION));
449                 return -EINVAL;
450         }
451         pr_info("ANDD device: %x name: %s\n", andd->device_number,
452                 andd->device_name);
453
454         return 0;
455 }
456
457 #ifdef CONFIG_ACPI_NUMA
458 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
459 {
460         struct acpi_dmar_rhsa *rhsa;
461         struct dmar_drhd_unit *drhd;
462
463         rhsa = (struct acpi_dmar_rhsa *)header;
464         for_each_drhd_unit(drhd) {
465                 if (drhd->reg_base_addr == rhsa->base_address) {
466                         int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
467
468                         if (!node_online(node))
469                                 node = NUMA_NO_NODE;
470                         drhd->iommu->node = node;
471                         return 0;
472                 }
473         }
474         WARN_TAINT(
475                 1, TAINT_FIRMWARE_WORKAROUND,
476                 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
477                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
478                 drhd->reg_base_addr,
479                 dmi_get_system_info(DMI_BIOS_VENDOR),
480                 dmi_get_system_info(DMI_BIOS_VERSION),
481                 dmi_get_system_info(DMI_PRODUCT_VERSION));
482
483         return 0;
484 }
485 #else
486 #define dmar_parse_one_rhsa             dmar_res_noop
487 #endif
488
489 static void
490 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
491 {
492         struct acpi_dmar_hardware_unit *drhd;
493         struct acpi_dmar_reserved_memory *rmrr;
494         struct acpi_dmar_atsr *atsr;
495         struct acpi_dmar_rhsa *rhsa;
496
497         switch (header->type) {
498         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
499                 drhd = container_of(header, struct acpi_dmar_hardware_unit,
500                                     header);
501                 pr_info("DRHD base: %#016Lx flags: %#x\n",
502                         (unsigned long long)drhd->address, drhd->flags);
503                 break;
504         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
505                 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
506                                     header);
507                 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
508                         (unsigned long long)rmrr->base_address,
509                         (unsigned long long)rmrr->end_address);
510                 break;
511         case ACPI_DMAR_TYPE_ROOT_ATS:
512                 atsr = container_of(header, struct acpi_dmar_atsr, header);
513                 pr_info("ATSR flags: %#x\n", atsr->flags);
514                 break;
515         case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
516                 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
517                 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
518                        (unsigned long long)rhsa->base_address,
519                        rhsa->proximity_domain);
520                 break;
521         case ACPI_DMAR_TYPE_NAMESPACE:
522                 /* We don't print this here because we need to sanity-check
523                    it first. So print it in dmar_parse_one_andd() instead. */
524                 break;
525         }
526 }
527
528 /**
529  * dmar_table_detect - checks to see if the platform supports DMAR devices
530  */
531 static int __init dmar_table_detect(void)
532 {
533         acpi_status status = AE_OK;
534
535         /* if we could find DMAR table, then there are DMAR devices */
536         status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
537
538         if (ACPI_SUCCESS(status) && !dmar_tbl) {
539                 pr_warn("Unable to map DMAR\n");
540                 status = AE_NOT_FOUND;
541         }
542
543         return ACPI_SUCCESS(status) ? 0 : -ENOENT;
544 }
545
546 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
547                                        size_t len, struct dmar_res_callback *cb)
548 {
549         struct acpi_dmar_header *iter, *next;
550         struct acpi_dmar_header *end = ((void *)start) + len;
551
552         for (iter = start; iter < end; iter = next) {
553                 next = (void *)iter + iter->length;
554                 if (iter->length == 0) {
555                         /* Avoid looping forever on bad ACPI tables */
556                         pr_debug(FW_BUG "Invalid 0-length structure\n");
557                         break;
558                 } else if (next > end) {
559                         /* Avoid passing table end */
560                         pr_warn(FW_BUG "Record passes table end\n");
561                         return -EINVAL;
562                 }
563
564                 if (cb->print_entry)
565                         dmar_table_print_dmar_entry(iter);
566
567                 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
568                         /* continue for forward compatibility */
569                         pr_debug("Unknown DMAR structure type %d\n",
570                                  iter->type);
571                 } else if (cb->cb[iter->type]) {
572                         int ret;
573
574                         ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
575                         if (ret)
576                                 return ret;
577                 } else if (!cb->ignore_unhandled) {
578                         pr_warn("No handler for DMAR structure type %d\n",
579                                 iter->type);
580                         return -EINVAL;
581                 }
582         }
583
584         return 0;
585 }
586
587 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
588                                        struct dmar_res_callback *cb)
589 {
590         return dmar_walk_remapping_entries((void *)(dmar + 1),
591                         dmar->header.length - sizeof(*dmar), cb);
592 }
593
594 /**
595  * parse_dmar_table - parses the DMA reporting table
596  */
597 static int __init
598 parse_dmar_table(void)
599 {
600         struct acpi_table_dmar *dmar;
601         int drhd_count = 0;
602         int ret;
603         struct dmar_res_callback cb = {
604                 .print_entry = true,
605                 .ignore_unhandled = true,
606                 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
607                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
608                 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
609                 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
610                 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
611                 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
612         };
613
614         /*
615          * Do it again, earlier dmar_tbl mapping could be mapped with
616          * fixed map.
617          */
618         dmar_table_detect();
619
620         /*
621          * ACPI tables may not be DMA protected by tboot, so use DMAR copy
622          * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
623          */
624         dmar_tbl = tboot_get_dmar_table(dmar_tbl);
625
626         dmar = (struct acpi_table_dmar *)dmar_tbl;
627         if (!dmar)
628                 return -ENODEV;
629
630         if (dmar->width < PAGE_SHIFT - 1) {
631                 pr_warn("Invalid DMAR haw\n");
632                 return -EINVAL;
633         }
634
635         pr_info("Host address width %d\n", dmar->width + 1);
636         ret = dmar_walk_dmar_table(dmar, &cb);
637         if (ret == 0 && drhd_count == 0)
638                 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
639
640         return ret;
641 }
642
643 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
644                                  int cnt, struct pci_dev *dev)
645 {
646         int index;
647         struct device *tmp;
648
649         while (dev) {
650                 for_each_active_dev_scope(devices, cnt, index, tmp)
651                         if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
652                                 return 1;
653
654                 /* Check our parent */
655                 dev = dev->bus->self;
656         }
657
658         return 0;
659 }
660
661 struct dmar_drhd_unit *
662 dmar_find_matched_drhd_unit(struct pci_dev *dev)
663 {
664         struct dmar_drhd_unit *dmaru;
665         struct acpi_dmar_hardware_unit *drhd;
666
667         dev = pci_physfn(dev);
668
669         rcu_read_lock();
670         for_each_drhd_unit(dmaru) {
671                 drhd = container_of(dmaru->hdr,
672                                     struct acpi_dmar_hardware_unit,
673                                     header);
674
675                 if (dmaru->include_all &&
676                     drhd->segment == pci_domain_nr(dev->bus))
677                         goto out;
678
679                 if (dmar_pci_device_match(dmaru->devices,
680                                           dmaru->devices_cnt, dev))
681                         goto out;
682         }
683         dmaru = NULL;
684 out:
685         rcu_read_unlock();
686
687         return dmaru;
688 }
689
690 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
691                                               struct acpi_device *adev)
692 {
693         struct dmar_drhd_unit *dmaru;
694         struct acpi_dmar_hardware_unit *drhd;
695         struct acpi_dmar_device_scope *scope;
696         struct device *tmp;
697         int i;
698         struct acpi_dmar_pci_path *path;
699
700         for_each_drhd_unit(dmaru) {
701                 drhd = container_of(dmaru->hdr,
702                                     struct acpi_dmar_hardware_unit,
703                                     header);
704
705                 for (scope = (void *)(drhd + 1);
706                      (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
707                      scope = ((void *)scope) + scope->length) {
708                         if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
709                                 continue;
710                         if (scope->enumeration_id != device_number)
711                                 continue;
712
713                         path = (void *)(scope + 1);
714                         pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
715                                 dev_name(&adev->dev), dmaru->reg_base_addr,
716                                 scope->bus, path->device, path->function);
717                         for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
718                                 if (tmp == NULL) {
719                                         dmaru->devices[i].bus = scope->bus;
720                                         dmaru->devices[i].devfn = PCI_DEVFN(path->device,
721                                                                             path->function);
722                                         rcu_assign_pointer(dmaru->devices[i].dev,
723                                                            get_device(&adev->dev));
724                                         return;
725                                 }
726                         BUG_ON(i >= dmaru->devices_cnt);
727                 }
728         }
729         pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
730                 device_number, dev_name(&adev->dev));
731 }
732
733 static int __init dmar_acpi_dev_scope_init(void)
734 {
735         struct acpi_dmar_andd *andd;
736
737         if (dmar_tbl == NULL)
738                 return -ENODEV;
739
740         for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
741              ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
742              andd = ((void *)andd) + andd->header.length) {
743                 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
744                         acpi_handle h;
745                         struct acpi_device *adev;
746
747                         if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
748                                                           andd->device_name,
749                                                           &h))) {
750                                 pr_err("Failed to find handle for ACPI object %s\n",
751                                        andd->device_name);
752                                 continue;
753                         }
754                         if (acpi_bus_get_device(h, &adev)) {
755                                 pr_err("Failed to get device for ACPI object %s\n",
756                                        andd->device_name);
757                                 continue;
758                         }
759                         dmar_acpi_insert_dev_scope(andd->device_number, adev);
760                 }
761         }
762         return 0;
763 }
764
765 int __init dmar_dev_scope_init(void)
766 {
767         struct pci_dev *dev = NULL;
768         struct dmar_pci_notify_info *info;
769
770         if (dmar_dev_scope_status != 1)
771                 return dmar_dev_scope_status;
772
773         if (list_empty(&dmar_drhd_units)) {
774                 dmar_dev_scope_status = -ENODEV;
775         } else {
776                 dmar_dev_scope_status = 0;
777
778                 dmar_acpi_dev_scope_init();
779
780                 for_each_pci_dev(dev) {
781                         if (dev->is_virtfn)
782                                 continue;
783
784                         info = dmar_alloc_pci_notify_info(dev,
785                                         BUS_NOTIFY_ADD_DEVICE);
786                         if (!info) {
787                                 return dmar_dev_scope_status;
788                         } else {
789                                 dmar_pci_bus_add_dev(info);
790                                 dmar_free_pci_notify_info(info);
791                         }
792                 }
793         }
794
795         return dmar_dev_scope_status;
796 }
797
798 void __init dmar_register_bus_notifier(void)
799 {
800         bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
801 }
802
803
804 int __init dmar_table_init(void)
805 {
806         static int dmar_table_initialized;
807         int ret;
808
809         if (dmar_table_initialized == 0) {
810                 ret = parse_dmar_table();
811                 if (ret < 0) {
812                         if (ret != -ENODEV)
813                                 pr_info("Parse DMAR table failure.\n");
814                 } else  if (list_empty(&dmar_drhd_units)) {
815                         pr_info("No DMAR devices found\n");
816                         ret = -ENODEV;
817                 }
818
819                 if (ret < 0)
820                         dmar_table_initialized = ret;
821                 else
822                         dmar_table_initialized = 1;
823         }
824
825         return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
826 }
827
828 static void warn_invalid_dmar(u64 addr, const char *message)
829 {
830         WARN_TAINT_ONCE(
831                 1, TAINT_FIRMWARE_WORKAROUND,
832                 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
833                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
834                 addr, message,
835                 dmi_get_system_info(DMI_BIOS_VENDOR),
836                 dmi_get_system_info(DMI_BIOS_VERSION),
837                 dmi_get_system_info(DMI_PRODUCT_VERSION));
838 }
839
840 static int __ref
841 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
842 {
843         struct acpi_dmar_hardware_unit *drhd;
844         void __iomem *addr;
845         u64 cap, ecap;
846
847         drhd = (void *)entry;
848         if (!drhd->address) {
849                 warn_invalid_dmar(0, "");
850                 return -EINVAL;
851         }
852
853         if (arg)
854                 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
855         else
856                 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
857         if (!addr) {
858                 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
859                 return -EINVAL;
860         }
861
862         cap = dmar_readq(addr + DMAR_CAP_REG);
863         ecap = dmar_readq(addr + DMAR_ECAP_REG);
864
865         if (arg)
866                 iounmap(addr);
867         else
868                 early_iounmap(addr, VTD_PAGE_SIZE);
869
870         if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
871                 warn_invalid_dmar(drhd->address, " returns all ones");
872                 return -EINVAL;
873         }
874
875         return 0;
876 }
877
878 int __init detect_intel_iommu(void)
879 {
880         int ret;
881         struct dmar_res_callback validate_drhd_cb = {
882                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
883                 .ignore_unhandled = true,
884         };
885
886         down_write(&dmar_global_lock);
887         ret = dmar_table_detect();
888         if (!ret)
889                 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
890                                            &validate_drhd_cb);
891         if (!ret && !no_iommu && !iommu_detected && !dmar_disabled) {
892                 iommu_detected = 1;
893                 /* Make sure ACS will be enabled */
894                 pci_request_acs();
895         }
896
897 #ifdef CONFIG_X86
898         if (!ret)
899                 x86_init.iommu.iommu_init = intel_iommu_init;
900 #endif
901
902         if (dmar_tbl) {
903                 acpi_put_table(dmar_tbl);
904                 dmar_tbl = NULL;
905         }
906         up_write(&dmar_global_lock);
907
908         return ret ? ret : 1;
909 }
910
911 static void unmap_iommu(struct intel_iommu *iommu)
912 {
913         iounmap(iommu->reg);
914         release_mem_region(iommu->reg_phys, iommu->reg_size);
915 }
916
917 /**
918  * map_iommu: map the iommu's registers
919  * @iommu: the iommu to map
920  * @phys_addr: the physical address of the base resgister
921  *
922  * Memory map the iommu's registers.  Start w/ a single page, and
923  * possibly expand if that turns out to be insufficent.
924  */
925 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
926 {
927         int map_size, err=0;
928
929         iommu->reg_phys = phys_addr;
930         iommu->reg_size = VTD_PAGE_SIZE;
931
932         if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
933                 pr_err("Can't reserve memory\n");
934                 err = -EBUSY;
935                 goto out;
936         }
937
938         iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
939         if (!iommu->reg) {
940                 pr_err("Can't map the region\n");
941                 err = -ENOMEM;
942                 goto release;
943         }
944
945         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
946         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
947
948         if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
949                 err = -EINVAL;
950                 warn_invalid_dmar(phys_addr, " returns all ones");
951                 goto unmap;
952         }
953
954         /* the registers might be more than one page */
955         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
956                          cap_max_fault_reg_offset(iommu->cap));
957         map_size = VTD_PAGE_ALIGN(map_size);
958         if (map_size > iommu->reg_size) {
959                 iounmap(iommu->reg);
960                 release_mem_region(iommu->reg_phys, iommu->reg_size);
961                 iommu->reg_size = map_size;
962                 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
963                                         iommu->name)) {
964                         pr_err("Can't reserve memory\n");
965                         err = -EBUSY;
966                         goto out;
967                 }
968                 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
969                 if (!iommu->reg) {
970                         pr_err("Can't map the region\n");
971                         err = -ENOMEM;
972                         goto release;
973                 }
974         }
975         err = 0;
976         goto out;
977
978 unmap:
979         iounmap(iommu->reg);
980 release:
981         release_mem_region(iommu->reg_phys, iommu->reg_size);
982 out:
983         return err;
984 }
985
986 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
987 {
988         iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
989                                             DMAR_UNITS_SUPPORTED);
990         if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
991                 iommu->seq_id = -1;
992         } else {
993                 set_bit(iommu->seq_id, dmar_seq_ids);
994                 sprintf(iommu->name, "dmar%d", iommu->seq_id);
995         }
996
997         return iommu->seq_id;
998 }
999
1000 static void dmar_free_seq_id(struct intel_iommu *iommu)
1001 {
1002         if (iommu->seq_id >= 0) {
1003                 clear_bit(iommu->seq_id, dmar_seq_ids);
1004                 iommu->seq_id = -1;
1005         }
1006 }
1007
1008 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1009 {
1010         struct intel_iommu *iommu;
1011         u32 ver, sts;
1012         int agaw = 0;
1013         int msagaw = 0;
1014         int err;
1015
1016         if (!drhd->reg_base_addr) {
1017                 warn_invalid_dmar(0, "");
1018                 return -EINVAL;
1019         }
1020
1021         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1022         if (!iommu)
1023                 return -ENOMEM;
1024
1025         if (dmar_alloc_seq_id(iommu) < 0) {
1026                 pr_err("Failed to allocate seq_id\n");
1027                 err = -ENOSPC;
1028                 goto error;
1029         }
1030
1031         err = map_iommu(iommu, drhd->reg_base_addr);
1032         if (err) {
1033                 pr_err("Failed to map %s\n", iommu->name);
1034                 goto error_free_seq_id;
1035         }
1036
1037         err = -EINVAL;
1038         agaw = iommu_calculate_agaw(iommu);
1039         if (agaw < 0) {
1040                 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1041                         iommu->seq_id);
1042                 goto err_unmap;
1043         }
1044         msagaw = iommu_calculate_max_sagaw(iommu);
1045         if (msagaw < 0) {
1046                 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1047                         iommu->seq_id);
1048                 goto err_unmap;
1049         }
1050         iommu->agaw = agaw;
1051         iommu->msagaw = msagaw;
1052         iommu->segment = drhd->segment;
1053
1054         iommu->node = NUMA_NO_NODE;
1055
1056         ver = readl(iommu->reg + DMAR_VER_REG);
1057         pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1058                 iommu->name,
1059                 (unsigned long long)drhd->reg_base_addr,
1060                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1061                 (unsigned long long)iommu->cap,
1062                 (unsigned long long)iommu->ecap);
1063
1064         /* Reflect status in gcmd */
1065         sts = readl(iommu->reg + DMAR_GSTS_REG);
1066         if (sts & DMA_GSTS_IRES)
1067                 iommu->gcmd |= DMA_GCMD_IRE;
1068         if (sts & DMA_GSTS_TES)
1069                 iommu->gcmd |= DMA_GCMD_TE;
1070         if (sts & DMA_GSTS_QIES)
1071                 iommu->gcmd |= DMA_GCMD_QIE;
1072
1073         raw_spin_lock_init(&iommu->register_lock);
1074
1075         if (intel_iommu_enabled) {
1076                 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1077                                              intel_iommu_groups,
1078                                              "%s", iommu->name);
1079                 if (err)
1080                         goto err_unmap;
1081
1082                 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1083
1084                 err = iommu_device_register(&iommu->iommu);
1085                 if (err)
1086                         goto err_unmap;
1087         }
1088
1089         drhd->iommu = iommu;
1090
1091         return 0;
1092
1093 err_unmap:
1094         unmap_iommu(iommu);
1095 error_free_seq_id:
1096         dmar_free_seq_id(iommu);
1097 error:
1098         kfree(iommu);
1099         return err;
1100 }
1101
1102 static void free_iommu(struct intel_iommu *iommu)
1103 {
1104         if (intel_iommu_enabled) {
1105                 iommu_device_unregister(&iommu->iommu);
1106                 iommu_device_sysfs_remove(&iommu->iommu);
1107         }
1108
1109         if (iommu->irq) {
1110                 if (iommu->pr_irq) {
1111                         free_irq(iommu->pr_irq, iommu);
1112                         dmar_free_hwirq(iommu->pr_irq);
1113                         iommu->pr_irq = 0;
1114                 }
1115                 free_irq(iommu->irq, iommu);
1116                 dmar_free_hwirq(iommu->irq);
1117                 iommu->irq = 0;
1118         }
1119
1120         if (iommu->qi) {
1121                 free_page((unsigned long)iommu->qi->desc);
1122                 kfree(iommu->qi->desc_status);
1123                 kfree(iommu->qi);
1124         }
1125
1126         if (iommu->reg)
1127                 unmap_iommu(iommu);
1128
1129         dmar_free_seq_id(iommu);
1130         kfree(iommu);
1131 }
1132
1133 /*
1134  * Reclaim all the submitted descriptors which have completed its work.
1135  */
1136 static inline void reclaim_free_desc(struct q_inval *qi)
1137 {
1138         while (qi->desc_status[qi->free_tail] == QI_DONE ||
1139                qi->desc_status[qi->free_tail] == QI_ABORT) {
1140                 qi->desc_status[qi->free_tail] = QI_FREE;
1141                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1142                 qi->free_cnt++;
1143         }
1144 }
1145
1146 static int qi_check_fault(struct intel_iommu *iommu, int index)
1147 {
1148         u32 fault;
1149         int head, tail;
1150         struct q_inval *qi = iommu->qi;
1151         int wait_index = (index + 1) % QI_LENGTH;
1152         int shift = qi_shift(iommu);
1153
1154         if (qi->desc_status[wait_index] == QI_ABORT)
1155                 return -EAGAIN;
1156
1157         fault = readl(iommu->reg + DMAR_FSTS_REG);
1158
1159         /*
1160          * If IQE happens, the head points to the descriptor associated
1161          * with the error. No new descriptors are fetched until the IQE
1162          * is cleared.
1163          */
1164         if (fault & DMA_FSTS_IQE) {
1165                 head = readl(iommu->reg + DMAR_IQH_REG);
1166                 if ((head >> shift) == index) {
1167                         struct qi_desc *desc = qi->desc + head;
1168
1169                         /*
1170                          * desc->qw2 and desc->qw3 are either reserved or
1171                          * used by software as private data. We won't print
1172                          * out these two qw's for security consideration.
1173                          */
1174                         pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
1175                                (unsigned long long)desc->qw0,
1176                                (unsigned long long)desc->qw1);
1177                         memcpy(desc, qi->desc + (wait_index << shift),
1178                                1 << shift);
1179                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1180                         return -EINVAL;
1181                 }
1182         }
1183
1184         /*
1185          * If ITE happens, all pending wait_desc commands are aborted.
1186          * No new descriptors are fetched until the ITE is cleared.
1187          */
1188         if (fault & DMA_FSTS_ITE) {
1189                 head = readl(iommu->reg + DMAR_IQH_REG);
1190                 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1191                 head |= 1;
1192                 tail = readl(iommu->reg + DMAR_IQT_REG);
1193                 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1194
1195                 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1196
1197                 do {
1198                         if (qi->desc_status[head] == QI_IN_USE)
1199                                 qi->desc_status[head] = QI_ABORT;
1200                         head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1201                 } while (head != tail);
1202
1203                 if (qi->desc_status[wait_index] == QI_ABORT)
1204                         return -EAGAIN;
1205         }
1206
1207         if (fault & DMA_FSTS_ICE)
1208                 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1209
1210         return 0;
1211 }
1212
1213 /*
1214  * Submit the queued invalidation descriptor to the remapping
1215  * hardware unit and wait for its completion.
1216  */
1217 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1218 {
1219         int rc;
1220         struct q_inval *qi = iommu->qi;
1221         int offset, shift, length;
1222         struct qi_desc wait_desc;
1223         int wait_index, index;
1224         unsigned long flags;
1225
1226         if (!qi)
1227                 return 0;
1228
1229 restart:
1230         rc = 0;
1231
1232         raw_spin_lock_irqsave(&qi->q_lock, flags);
1233         while (qi->free_cnt < 3) {
1234                 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1235                 cpu_relax();
1236                 raw_spin_lock_irqsave(&qi->q_lock, flags);
1237         }
1238
1239         index = qi->free_head;
1240         wait_index = (index + 1) % QI_LENGTH;
1241         shift = qi_shift(iommu);
1242         length = 1 << shift;
1243
1244         qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1245
1246         offset = index << shift;
1247         memcpy(qi->desc + offset, desc, length);
1248         wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1249                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1250         wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1251         wait_desc.qw2 = 0;
1252         wait_desc.qw3 = 0;
1253
1254         offset = wait_index << shift;
1255         memcpy(qi->desc + offset, &wait_desc, length);
1256
1257         qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1258         qi->free_cnt -= 2;
1259
1260         /*
1261          * update the HW tail register indicating the presence of
1262          * new descriptors.
1263          */
1264         writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1265
1266         while (qi->desc_status[wait_index] != QI_DONE) {
1267                 /*
1268                  * We will leave the interrupts disabled, to prevent interrupt
1269                  * context to queue another cmd while a cmd is already submitted
1270                  * and waiting for completion on this cpu. This is to avoid
1271                  * a deadlock where the interrupt context can wait indefinitely
1272                  * for free slots in the queue.
1273                  */
1274                 rc = qi_check_fault(iommu, index);
1275                 if (rc)
1276                         break;
1277
1278                 raw_spin_unlock(&qi->q_lock);
1279                 cpu_relax();
1280                 raw_spin_lock(&qi->q_lock);
1281         }
1282
1283         qi->desc_status[index] = QI_DONE;
1284
1285         reclaim_free_desc(qi);
1286         raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1287
1288         if (rc == -EAGAIN)
1289                 goto restart;
1290
1291         return rc;
1292 }
1293
1294 /*
1295  * Flush the global interrupt entry cache.
1296  */
1297 void qi_global_iec(struct intel_iommu *iommu)
1298 {
1299         struct qi_desc desc;
1300
1301         desc.qw0 = QI_IEC_TYPE;
1302         desc.qw1 = 0;
1303         desc.qw2 = 0;
1304         desc.qw3 = 0;
1305
1306         /* should never fail */
1307         qi_submit_sync(&desc, iommu);
1308 }
1309
1310 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1311                       u64 type)
1312 {
1313         struct qi_desc desc;
1314
1315         desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1316                         | QI_CC_GRAN(type) | QI_CC_TYPE;
1317         desc.qw1 = 0;
1318         desc.qw2 = 0;
1319         desc.qw3 = 0;
1320
1321         qi_submit_sync(&desc, iommu);
1322 }
1323
1324 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1325                     unsigned int size_order, u64 type)
1326 {
1327         u8 dw = 0, dr = 0;
1328
1329         struct qi_desc desc;
1330         int ih = 0;
1331
1332         if (cap_write_drain(iommu->cap))
1333                 dw = 1;
1334
1335         if (cap_read_drain(iommu->cap))
1336                 dr = 1;
1337
1338         desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1339                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1340         desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1341                 | QI_IOTLB_AM(size_order);
1342         desc.qw2 = 0;
1343         desc.qw3 = 0;
1344
1345         qi_submit_sync(&desc, iommu);
1346 }
1347
1348 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1349                         u16 qdep, u64 addr, unsigned mask)
1350 {
1351         struct qi_desc desc;
1352
1353         if (mask) {
1354                 WARN_ON_ONCE(addr & ((1ULL << (VTD_PAGE_SHIFT + mask)) - 1));
1355                 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1356                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1357         } else
1358                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1359
1360         if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1361                 qdep = 0;
1362
1363         desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1364                    QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1365         desc.qw2 = 0;
1366         desc.qw3 = 0;
1367
1368         qi_submit_sync(&desc, iommu);
1369 }
1370
1371 /*
1372  * Disable Queued Invalidation interface.
1373  */
1374 void dmar_disable_qi(struct intel_iommu *iommu)
1375 {
1376         unsigned long flags;
1377         u32 sts;
1378         cycles_t start_time = get_cycles();
1379
1380         if (!ecap_qis(iommu->ecap))
1381                 return;
1382
1383         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1384
1385         sts =  readl(iommu->reg + DMAR_GSTS_REG);
1386         if (!(sts & DMA_GSTS_QIES))
1387                 goto end;
1388
1389         /*
1390          * Give a chance to HW to complete the pending invalidation requests.
1391          */
1392         while ((readl(iommu->reg + DMAR_IQT_REG) !=
1393                 readl(iommu->reg + DMAR_IQH_REG)) &&
1394                 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1395                 cpu_relax();
1396
1397         iommu->gcmd &= ~DMA_GCMD_QIE;
1398         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1399
1400         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1401                       !(sts & DMA_GSTS_QIES), sts);
1402 end:
1403         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1404 }
1405
1406 /*
1407  * Enable queued invalidation.
1408  */
1409 static void __dmar_enable_qi(struct intel_iommu *iommu)
1410 {
1411         u32 sts;
1412         unsigned long flags;
1413         struct q_inval *qi = iommu->qi;
1414         u64 val = virt_to_phys(qi->desc);
1415
1416         qi->free_head = qi->free_tail = 0;
1417         qi->free_cnt = QI_LENGTH;
1418
1419         /*
1420          * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1421          * is present.
1422          */
1423         if (ecap_smts(iommu->ecap))
1424                 val |= (1 << 11) | 1;
1425
1426         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1427
1428         /* write zero to the tail reg */
1429         writel(0, iommu->reg + DMAR_IQT_REG);
1430
1431         dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1432
1433         iommu->gcmd |= DMA_GCMD_QIE;
1434         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1435
1436         /* Make sure hardware complete it */
1437         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1438
1439         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1440 }
1441
1442 /*
1443  * Enable Queued Invalidation interface. This is a must to support
1444  * interrupt-remapping. Also used by DMA-remapping, which replaces
1445  * register based IOTLB invalidation.
1446  */
1447 int dmar_enable_qi(struct intel_iommu *iommu)
1448 {
1449         struct q_inval *qi;
1450         struct page *desc_page;
1451
1452         if (!ecap_qis(iommu->ecap))
1453                 return -ENOENT;
1454
1455         /*
1456          * queued invalidation is already setup and enabled.
1457          */
1458         if (iommu->qi)
1459                 return 0;
1460
1461         iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1462         if (!iommu->qi)
1463                 return -ENOMEM;
1464
1465         qi = iommu->qi;
1466
1467         /*
1468          * Need two pages to accommodate 256 descriptors of 256 bits each
1469          * if the remapping hardware supports scalable mode translation.
1470          */
1471         desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1472                                      !!ecap_smts(iommu->ecap));
1473         if (!desc_page) {
1474                 kfree(qi);
1475                 iommu->qi = NULL;
1476                 return -ENOMEM;
1477         }
1478
1479         qi->desc = page_address(desc_page);
1480
1481         qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1482         if (!qi->desc_status) {
1483                 free_page((unsigned long) qi->desc);
1484                 kfree(qi);
1485                 iommu->qi = NULL;
1486                 return -ENOMEM;
1487         }
1488
1489         raw_spin_lock_init(&qi->q_lock);
1490
1491         __dmar_enable_qi(iommu);
1492
1493         return 0;
1494 }
1495
1496 /* iommu interrupt handling. Most stuff are MSI-like. */
1497
1498 enum faulttype {
1499         DMA_REMAP,
1500         INTR_REMAP,
1501         UNKNOWN,
1502 };
1503
1504 static const char *dma_remap_fault_reasons[] =
1505 {
1506         "Software",
1507         "Present bit in root entry is clear",
1508         "Present bit in context entry is clear",
1509         "Invalid context entry",
1510         "Access beyond MGAW",
1511         "PTE Write access is not set",
1512         "PTE Read access is not set",
1513         "Next page table ptr is invalid",
1514         "Root table address invalid",
1515         "Context table ptr is invalid",
1516         "non-zero reserved fields in RTP",
1517         "non-zero reserved fields in CTP",
1518         "non-zero reserved fields in PTE",
1519         "PCE for translation request specifies blocking",
1520 };
1521
1522 static const char * const dma_remap_sm_fault_reasons[] = {
1523         "SM: Invalid Root Table Address",
1524         "SM: TTM 0 for request with PASID",
1525         "SM: TTM 0 for page group request",
1526         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1527         "SM: Error attempting to access Root Entry",
1528         "SM: Present bit in Root Entry is clear",
1529         "SM: Non-zero reserved field set in Root Entry",
1530         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1531         "SM: Error attempting to access Context Entry",
1532         "SM: Present bit in Context Entry is clear",
1533         "SM: Non-zero reserved field set in the Context Entry",
1534         "SM: Invalid Context Entry",
1535         "SM: DTE field in Context Entry is clear",
1536         "SM: PASID Enable field in Context Entry is clear",
1537         "SM: PASID is larger than the max in Context Entry",
1538         "SM: PRE field in Context-Entry is clear",
1539         "SM: RID_PASID field error in Context-Entry",
1540         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1541         "SM: Error attempting to access the PASID Directory Entry",
1542         "SM: Present bit in Directory Entry is clear",
1543         "SM: Non-zero reserved field set in PASID Directory Entry",
1544         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1545         "SM: Error attempting to access PASID Table Entry",
1546         "SM: Present bit in PASID Table Entry is clear",
1547         "SM: Non-zero reserved field set in PASID Table Entry",
1548         "SM: Invalid Scalable-Mode PASID Table Entry",
1549         "SM: ERE field is clear in PASID Table Entry",
1550         "SM: SRE field is clear in PASID Table Entry",
1551         "Unknown", "Unknown",/* 0x5E-0x5F */
1552         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1553         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1554         "SM: Error attempting to access first-level paging entry",
1555         "SM: Present bit in first-level paging entry is clear",
1556         "SM: Non-zero reserved field set in first-level paging entry",
1557         "SM: Error attempting to access FL-PML4 entry",
1558         "SM: First-level entry address beyond MGAW in Nested translation",
1559         "SM: Read permission error in FL-PML4 entry in Nested translation",
1560         "SM: Read permission error in first-level paging entry in Nested translation",
1561         "SM: Write permission error in first-level paging entry in Nested translation",
1562         "SM: Error attempting to access second-level paging entry",
1563         "SM: Read/Write permission error in second-level paging entry",
1564         "SM: Non-zero reserved field set in second-level paging entry",
1565         "SM: Invalid second-level page table pointer",
1566         "SM: A/D bit update needed in second-level entry when set up in no snoop",
1567         "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1568         "SM: Address in first-level translation is not canonical",
1569         "SM: U/S set 0 for first-level translation with user privilege",
1570         "SM: No execute permission for request with PASID and ER=1",
1571         "SM: Address beyond the DMA hardware max",
1572         "SM: Second-level entry address beyond the max",
1573         "SM: No write permission for Write/AtomicOp request",
1574         "SM: No read permission for Read/AtomicOp request",
1575         "SM: Invalid address-interrupt address",
1576         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1577         "SM: A/D bit update needed in first-level entry when set up in no snoop",
1578 };
1579
1580 static const char *irq_remap_fault_reasons[] =
1581 {
1582         "Detected reserved fields in the decoded interrupt-remapped request",
1583         "Interrupt index exceeded the interrupt-remapping table size",
1584         "Present field in the IRTE entry is clear",
1585         "Error accessing interrupt-remapping table pointed by IRTA_REG",
1586         "Detected reserved fields in the IRTE entry",
1587         "Blocked a compatibility format interrupt request",
1588         "Blocked an interrupt request due to source-id verification failure",
1589 };
1590
1591 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1592 {
1593         if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1594                                         ARRAY_SIZE(irq_remap_fault_reasons))) {
1595                 *fault_type = INTR_REMAP;
1596                 return irq_remap_fault_reasons[fault_reason - 0x20];
1597         } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1598                         ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1599                 *fault_type = DMA_REMAP;
1600                 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1601         } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1602                 *fault_type = DMA_REMAP;
1603                 return dma_remap_fault_reasons[fault_reason];
1604         } else {
1605                 *fault_type = UNKNOWN;
1606                 return "Unknown";
1607         }
1608 }
1609
1610
1611 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1612 {
1613         if (iommu->irq == irq)
1614                 return DMAR_FECTL_REG;
1615         else if (iommu->pr_irq == irq)
1616                 return DMAR_PECTL_REG;
1617         else
1618                 BUG();
1619 }
1620
1621 void dmar_msi_unmask(struct irq_data *data)
1622 {
1623         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1624         int reg = dmar_msi_reg(iommu, data->irq);
1625         unsigned long flag;
1626
1627         /* unmask it */
1628         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1629         writel(0, iommu->reg + reg);
1630         /* Read a reg to force flush the post write */
1631         readl(iommu->reg + reg);
1632         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1633 }
1634
1635 void dmar_msi_mask(struct irq_data *data)
1636 {
1637         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1638         int reg = dmar_msi_reg(iommu, data->irq);
1639         unsigned long flag;
1640
1641         /* mask it */
1642         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1643         writel(DMA_FECTL_IM, iommu->reg + reg);
1644         /* Read a reg to force flush the post write */
1645         readl(iommu->reg + reg);
1646         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1647 }
1648
1649 void dmar_msi_write(int irq, struct msi_msg *msg)
1650 {
1651         struct intel_iommu *iommu = irq_get_handler_data(irq);
1652         int reg = dmar_msi_reg(iommu, irq);
1653         unsigned long flag;
1654
1655         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1656         writel(msg->data, iommu->reg + reg + 4);
1657         writel(msg->address_lo, iommu->reg + reg + 8);
1658         writel(msg->address_hi, iommu->reg + reg + 12);
1659         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1660 }
1661
1662 void dmar_msi_read(int irq, struct msi_msg *msg)
1663 {
1664         struct intel_iommu *iommu = irq_get_handler_data(irq);
1665         int reg = dmar_msi_reg(iommu, irq);
1666         unsigned long flag;
1667
1668         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1669         msg->data = readl(iommu->reg + reg + 4);
1670         msg->address_lo = readl(iommu->reg + reg + 8);
1671         msg->address_hi = readl(iommu->reg + reg + 12);
1672         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1673 }
1674
1675 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1676                 u8 fault_reason, int pasid, u16 source_id,
1677                 unsigned long long addr)
1678 {
1679         const char *reason;
1680         int fault_type;
1681
1682         reason = dmar_get_fault_reason(fault_reason, &fault_type);
1683
1684         if (fault_type == INTR_REMAP)
1685                 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1686                         source_id >> 8, PCI_SLOT(source_id & 0xFF),
1687                         PCI_FUNC(source_id & 0xFF), addr >> 48,
1688                         fault_reason, reason);
1689         else
1690                 pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1691                        type ? "DMA Read" : "DMA Write",
1692                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1693                        PCI_FUNC(source_id & 0xFF), pasid, addr,
1694                        fault_reason, reason);
1695         return 0;
1696 }
1697
1698 #define PRIMARY_FAULT_REG_LEN (16)
1699 irqreturn_t dmar_fault(int irq, void *dev_id)
1700 {
1701         struct intel_iommu *iommu = dev_id;
1702         int reg, fault_index;
1703         u32 fault_status;
1704         unsigned long flag;
1705         static DEFINE_RATELIMIT_STATE(rs,
1706                                       DEFAULT_RATELIMIT_INTERVAL,
1707                                       DEFAULT_RATELIMIT_BURST);
1708
1709         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1710         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1711         if (fault_status && __ratelimit(&rs))
1712                 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1713
1714         /* TBD: ignore advanced fault log currently */
1715         if (!(fault_status & DMA_FSTS_PPF))
1716                 goto unlock_exit;
1717
1718         fault_index = dma_fsts_fault_record_index(fault_status);
1719         reg = cap_fault_reg_offset(iommu->cap);
1720         while (1) {
1721                 /* Disable printing, simply clear the fault when ratelimited */
1722                 bool ratelimited = !__ratelimit(&rs);
1723                 u8 fault_reason;
1724                 u16 source_id;
1725                 u64 guest_addr;
1726                 int type, pasid;
1727                 u32 data;
1728                 bool pasid_present;
1729
1730                 /* highest 32 bits */
1731                 data = readl(iommu->reg + reg +
1732                                 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1733                 if (!(data & DMA_FRCD_F))
1734                         break;
1735
1736                 if (!ratelimited) {
1737                         fault_reason = dma_frcd_fault_reason(data);
1738                         type = dma_frcd_type(data);
1739
1740                         pasid = dma_frcd_pasid_value(data);
1741                         data = readl(iommu->reg + reg +
1742                                      fault_index * PRIMARY_FAULT_REG_LEN + 8);
1743                         source_id = dma_frcd_source_id(data);
1744
1745                         pasid_present = dma_frcd_pasid_present(data);
1746                         guest_addr = dmar_readq(iommu->reg + reg +
1747                                         fault_index * PRIMARY_FAULT_REG_LEN);
1748                         guest_addr = dma_frcd_page_addr(guest_addr);
1749                 }
1750
1751                 /* clear the fault */
1752                 writel(DMA_FRCD_F, iommu->reg + reg +
1753                         fault_index * PRIMARY_FAULT_REG_LEN + 12);
1754
1755                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1756
1757                 if (!ratelimited)
1758                         /* Using pasid -1 if pasid is not present */
1759                         dmar_fault_do_one(iommu, type, fault_reason,
1760                                           pasid_present ? pasid : -1,
1761                                           source_id, guest_addr);
1762
1763                 fault_index++;
1764                 if (fault_index >= cap_num_fault_regs(iommu->cap))
1765                         fault_index = 0;
1766                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1767         }
1768
1769         writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
1770                iommu->reg + DMAR_FSTS_REG);
1771
1772 unlock_exit:
1773         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1774         return IRQ_HANDLED;
1775 }
1776
1777 int dmar_set_interrupt(struct intel_iommu *iommu)
1778 {
1779         int irq, ret;
1780
1781         /*
1782          * Check if the fault interrupt is already initialized.
1783          */
1784         if (iommu->irq)
1785                 return 0;
1786
1787         irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1788         if (irq > 0) {
1789                 iommu->irq = irq;
1790         } else {
1791                 pr_err("No free IRQ vectors\n");
1792                 return -EINVAL;
1793         }
1794
1795         ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1796         if (ret)
1797                 pr_err("Can't request irq\n");
1798         return ret;
1799 }
1800
1801 int __init enable_drhd_fault_handling(void)
1802 {
1803         struct dmar_drhd_unit *drhd;
1804         struct intel_iommu *iommu;
1805
1806         /*
1807          * Enable fault control interrupt.
1808          */
1809         for_each_iommu(iommu, drhd) {
1810                 u32 fault_status;
1811                 int ret = dmar_set_interrupt(iommu);
1812
1813                 if (ret) {
1814                         pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1815                                (unsigned long long)drhd->reg_base_addr, ret);
1816                         return -1;
1817                 }
1818
1819                 /*
1820                  * Clear any previous faults.
1821                  */
1822                 dmar_fault(iommu->irq, iommu);
1823                 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1824                 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1825         }
1826
1827         return 0;
1828 }
1829
1830 /*
1831  * Re-enable Queued Invalidation interface.
1832  */
1833 int dmar_reenable_qi(struct intel_iommu *iommu)
1834 {
1835         if (!ecap_qis(iommu->ecap))
1836                 return -ENOENT;
1837
1838         if (!iommu->qi)
1839                 return -ENOENT;
1840
1841         /*
1842          * First disable queued invalidation.
1843          */
1844         dmar_disable_qi(iommu);
1845         /*
1846          * Then enable queued invalidation again. Since there is no pending
1847          * invalidation requests now, it's safe to re-enable queued
1848          * invalidation.
1849          */
1850         __dmar_enable_qi(iommu);
1851
1852         return 0;
1853 }
1854
1855 /*
1856  * Check interrupt remapping support in DMAR table description.
1857  */
1858 int __init dmar_ir_support(void)
1859 {
1860         struct acpi_table_dmar *dmar;
1861         dmar = (struct acpi_table_dmar *)dmar_tbl;
1862         if (!dmar)
1863                 return 0;
1864         return dmar->flags & 0x1;
1865 }
1866
1867 /* Check whether DMAR units are in use */
1868 static inline bool dmar_in_use(void)
1869 {
1870         return irq_remapping_enabled || intel_iommu_enabled;
1871 }
1872
1873 static int __init dmar_free_unused_resources(void)
1874 {
1875         struct dmar_drhd_unit *dmaru, *dmaru_n;
1876
1877         if (dmar_in_use())
1878                 return 0;
1879
1880         if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1881                 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1882
1883         down_write(&dmar_global_lock);
1884         list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1885                 list_del(&dmaru->list);
1886                 dmar_free_drhd(dmaru);
1887         }
1888         up_write(&dmar_global_lock);
1889
1890         return 0;
1891 }
1892
1893 late_initcall(dmar_free_unused_resources);
1894 IOMMU_INIT_POST(detect_intel_iommu);
1895
1896 /*
1897  * DMAR Hotplug Support
1898  * For more details, please refer to Intel(R) Virtualization Technology
1899  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
1900  * "Remapping Hardware Unit Hot Plug".
1901  */
1902 static guid_t dmar_hp_guid =
1903         GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
1904                   0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
1905
1906 /*
1907  * Currently there's only one revision and BIOS will not check the revision id,
1908  * so use 0 for safety.
1909  */
1910 #define DMAR_DSM_REV_ID                 0
1911 #define DMAR_DSM_FUNC_DRHD              1
1912 #define DMAR_DSM_FUNC_ATSR              2
1913 #define DMAR_DSM_FUNC_RHSA              3
1914
1915 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
1916 {
1917         return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
1918 }
1919
1920 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
1921                                   dmar_res_handler_t handler, void *arg)
1922 {
1923         int ret = -ENODEV;
1924         union acpi_object *obj;
1925         struct acpi_dmar_header *start;
1926         struct dmar_res_callback callback;
1927         static int res_type[] = {
1928                 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
1929                 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
1930                 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
1931         };
1932
1933         if (!dmar_detect_dsm(handle, func))
1934                 return 0;
1935
1936         obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
1937                                       func, NULL, ACPI_TYPE_BUFFER);
1938         if (!obj)
1939                 return -ENODEV;
1940
1941         memset(&callback, 0, sizeof(callback));
1942         callback.cb[res_type[func]] = handler;
1943         callback.arg[res_type[func]] = arg;
1944         start = (struct acpi_dmar_header *)obj->buffer.pointer;
1945         ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
1946
1947         ACPI_FREE(obj);
1948
1949         return ret;
1950 }
1951
1952 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
1953 {
1954         int ret;
1955         struct dmar_drhd_unit *dmaru;
1956
1957         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1958         if (!dmaru)
1959                 return -ENODEV;
1960
1961         ret = dmar_ir_hotplug(dmaru, true);
1962         if (ret == 0)
1963                 ret = dmar_iommu_hotplug(dmaru, true);
1964
1965         return ret;
1966 }
1967
1968 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
1969 {
1970         int i, ret;
1971         struct device *dev;
1972         struct dmar_drhd_unit *dmaru;
1973
1974         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1975         if (!dmaru)
1976                 return 0;
1977
1978         /*
1979          * All PCI devices managed by this unit should have been destroyed.
1980          */
1981         if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
1982                 for_each_active_dev_scope(dmaru->devices,
1983                                           dmaru->devices_cnt, i, dev)
1984                         return -EBUSY;
1985         }
1986
1987         ret = dmar_ir_hotplug(dmaru, false);
1988         if (ret == 0)
1989                 ret = dmar_iommu_hotplug(dmaru, false);
1990
1991         return ret;
1992 }
1993
1994 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
1995 {
1996         struct dmar_drhd_unit *dmaru;
1997
1998         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1999         if (dmaru) {
2000                 list_del_rcu(&dmaru->list);
2001                 synchronize_rcu();
2002                 dmar_free_drhd(dmaru);
2003         }
2004
2005         return 0;
2006 }
2007
2008 static int dmar_hotplug_insert(acpi_handle handle)
2009 {
2010         int ret;
2011         int drhd_count = 0;
2012
2013         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2014                                      &dmar_validate_one_drhd, (void *)1);
2015         if (ret)
2016                 goto out;
2017
2018         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2019                                      &dmar_parse_one_drhd, (void *)&drhd_count);
2020         if (ret == 0 && drhd_count == 0) {
2021                 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2022                 goto out;
2023         } else if (ret) {
2024                 goto release_drhd;
2025         }
2026
2027         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2028                                      &dmar_parse_one_rhsa, NULL);
2029         if (ret)
2030                 goto release_drhd;
2031
2032         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2033                                      &dmar_parse_one_atsr, NULL);
2034         if (ret)
2035                 goto release_atsr;
2036
2037         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2038                                      &dmar_hp_add_drhd, NULL);
2039         if (!ret)
2040                 return 0;
2041
2042         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2043                                &dmar_hp_remove_drhd, NULL);
2044 release_atsr:
2045         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2046                                &dmar_release_one_atsr, NULL);
2047 release_drhd:
2048         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2049                                &dmar_hp_release_drhd, NULL);
2050 out:
2051         return ret;
2052 }
2053
2054 static int dmar_hotplug_remove(acpi_handle handle)
2055 {
2056         int ret;
2057
2058         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2059                                      &dmar_check_one_atsr, NULL);
2060         if (ret)
2061                 return ret;
2062
2063         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2064                                      &dmar_hp_remove_drhd, NULL);
2065         if (ret == 0) {
2066                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2067                                                &dmar_release_one_atsr, NULL));
2068                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2069                                                &dmar_hp_release_drhd, NULL));
2070         } else {
2071                 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2072                                        &dmar_hp_add_drhd, NULL);
2073         }
2074
2075         return ret;
2076 }
2077
2078 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2079                                        void *context, void **retval)
2080 {
2081         acpi_handle *phdl = retval;
2082
2083         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2084                 *phdl = handle;
2085                 return AE_CTRL_TERMINATE;
2086         }
2087
2088         return AE_OK;
2089 }
2090
2091 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2092 {
2093         int ret;
2094         acpi_handle tmp = NULL;
2095         acpi_status status;
2096
2097         if (!dmar_in_use())
2098                 return 0;
2099
2100         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2101                 tmp = handle;
2102         } else {
2103                 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2104                                              ACPI_UINT32_MAX,
2105                                              dmar_get_dsm_handle,
2106                                              NULL, NULL, &tmp);
2107                 if (ACPI_FAILURE(status)) {
2108                         pr_warn("Failed to locate _DSM method.\n");
2109                         return -ENXIO;
2110                 }
2111         }
2112         if (tmp == NULL)
2113                 return 0;
2114
2115         down_write(&dmar_global_lock);
2116         if (insert)
2117                 ret = dmar_hotplug_insert(tmp);
2118         else
2119                 ret = dmar_hotplug_remove(tmp);
2120         up_write(&dmar_global_lock);
2121
2122         return ret;
2123 }
2124
2125 int dmar_device_add(acpi_handle handle)
2126 {
2127         return dmar_device_hotplug(handle, true);
2128 }
2129
2130 int dmar_device_remove(acpi_handle handle)
2131 {
2132         return dmar_device_hotplug(handle, false);
2133 }
2134
2135 /*
2136  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2137  *
2138  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2139  * the ACPI DMAR table. This means that the platform boot firmware has made
2140  * sure no device can issue DMA outside of RMRR regions.
2141  */
2142 bool dmar_platform_optin(void)
2143 {
2144         struct acpi_table_dmar *dmar;
2145         acpi_status status;
2146         bool ret;
2147
2148         status = acpi_get_table(ACPI_SIG_DMAR, 0,
2149                                 (struct acpi_table_header **)&dmar);
2150         if (ACPI_FAILURE(status))
2151                 return false;
2152
2153         ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2154         acpi_put_table((struct acpi_table_header *)dmar);
2155
2156         return ret;
2157 }
2158 EXPORT_SYMBOL_GPL(dmar_platform_optin);