]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/iommu/intel-iommu.c
ASoC: fsl_ssi: Fix build error
[linux.git] / drivers / iommu / intel-iommu.c
1 /*
2  * Copyright © 2006-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * Authors: David Woodhouse <dwmw2@infradead.org>,
14  *          Ashok Raj <ashok.raj@intel.com>,
15  *          Shaohua Li <shaohua.li@intel.com>,
16  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17  *          Fenghua Yu <fenghua.yu@intel.com>
18  *          Joerg Roedel <jroedel@suse.de>
19  */
20
21 #define pr_fmt(fmt)     "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/cpu.h>
37 #include <linux/timer.h>
38 #include <linux/io.h>
39 #include <linux/iova.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/tboot.h>
44 #include <linux/dmi.h>
45 #include <linux/pci-ats.h>
46 #include <linux/memblock.h>
47 #include <linux/dma-contiguous.h>
48 #include <linux/crash_dump.h>
49 #include <asm/irq_remapping.h>
50 #include <asm/cacheflush.h>
51 #include <asm/iommu.h>
52
53 #include "irq_remapping.h"
54
55 #define ROOT_SIZE               VTD_PAGE_SIZE
56 #define CONTEXT_SIZE            VTD_PAGE_SIZE
57
58 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
59 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
60 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
61 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
62
63 #define IOAPIC_RANGE_START      (0xfee00000)
64 #define IOAPIC_RANGE_END        (0xfeefffff)
65 #define IOVA_START_ADDR         (0x1000)
66
67 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
68
69 #define MAX_AGAW_WIDTH 64
70 #define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
71
72 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
73 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
74
75 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
76    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
77 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
78                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
79 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
80
81 /* IO virtual address start page frame number */
82 #define IOVA_START_PFN          (1)
83
84 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
85
86 /* page table handling */
87 #define LEVEL_STRIDE            (9)
88 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
89
90 /*
91  * This bitmap is used to advertise the page sizes our hardware support
92  * to the IOMMU core, which will then use this information to split
93  * physically contiguous memory regions it is mapping into page sizes
94  * that we support.
95  *
96  * Traditionally the IOMMU core just handed us the mappings directly,
97  * after making sure the size is an order of a 4KiB page and that the
98  * mapping has natural alignment.
99  *
100  * To retain this behavior, we currently advertise that we support
101  * all page sizes that are an order of 4KiB.
102  *
103  * If at some point we'd like to utilize the IOMMU core's new behavior,
104  * we could change this to advertise the real page sizes we support.
105  */
106 #define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
107
108 static inline int agaw_to_level(int agaw)
109 {
110         return agaw + 2;
111 }
112
113 static inline int agaw_to_width(int agaw)
114 {
115         return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
116 }
117
118 static inline int width_to_agaw(int width)
119 {
120         return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
121 }
122
123 static inline unsigned int level_to_offset_bits(int level)
124 {
125         return (level - 1) * LEVEL_STRIDE;
126 }
127
128 static inline int pfn_level_offset(unsigned long pfn, int level)
129 {
130         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
131 }
132
133 static inline unsigned long level_mask(int level)
134 {
135         return -1UL << level_to_offset_bits(level);
136 }
137
138 static inline unsigned long level_size(int level)
139 {
140         return 1UL << level_to_offset_bits(level);
141 }
142
143 static inline unsigned long align_to_level(unsigned long pfn, int level)
144 {
145         return (pfn + level_size(level) - 1) & level_mask(level);
146 }
147
148 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
149 {
150         return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
151 }
152
153 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
154    are never going to work. */
155 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
156 {
157         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 }
159
160 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
161 {
162         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
163 }
164 static inline unsigned long page_to_dma_pfn(struct page *pg)
165 {
166         return mm_to_dma_pfn(page_to_pfn(pg));
167 }
168 static inline unsigned long virt_to_dma_pfn(void *p)
169 {
170         return page_to_dma_pfn(virt_to_page(p));
171 }
172
173 /* global iommu list, set NULL for ignored DMAR units */
174 static struct intel_iommu **g_iommus;
175
176 static void __init check_tylersburg_isoch(void);
177 static int rwbf_quirk;
178
179 /*
180  * set to 1 to panic kernel if can't successfully enable VT-d
181  * (used when kernel is launched w/ TXT)
182  */
183 static int force_on = 0;
184 int intel_iommu_tboot_noforce;
185
186 /*
187  * 0: Present
188  * 1-11: Reserved
189  * 12-63: Context Ptr (12 - (haw-1))
190  * 64-127: Reserved
191  */
192 struct root_entry {
193         u64     lo;
194         u64     hi;
195 };
196 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
197
198 /*
199  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
200  * if marked present.
201  */
202 static phys_addr_t root_entry_lctp(struct root_entry *re)
203 {
204         if (!(re->lo & 1))
205                 return 0;
206
207         return re->lo & VTD_PAGE_MASK;
208 }
209
210 /*
211  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
212  * if marked present.
213  */
214 static phys_addr_t root_entry_uctp(struct root_entry *re)
215 {
216         if (!(re->hi & 1))
217                 return 0;
218
219         return re->hi & VTD_PAGE_MASK;
220 }
221 /*
222  * low 64 bits:
223  * 0: present
224  * 1: fault processing disable
225  * 2-3: translation type
226  * 12-63: address space root
227  * high 64 bits:
228  * 0-2: address width
229  * 3-6: aval
230  * 8-23: domain id
231  */
232 struct context_entry {
233         u64 lo;
234         u64 hi;
235 };
236
237 static inline void context_clear_pasid_enable(struct context_entry *context)
238 {
239         context->lo &= ~(1ULL << 11);
240 }
241
242 static inline bool context_pasid_enabled(struct context_entry *context)
243 {
244         return !!(context->lo & (1ULL << 11));
245 }
246
247 static inline void context_set_copied(struct context_entry *context)
248 {
249         context->hi |= (1ull << 3);
250 }
251
252 static inline bool context_copied(struct context_entry *context)
253 {
254         return !!(context->hi & (1ULL << 3));
255 }
256
257 static inline bool __context_present(struct context_entry *context)
258 {
259         return (context->lo & 1);
260 }
261
262 static inline bool context_present(struct context_entry *context)
263 {
264         return context_pasid_enabled(context) ?
265              __context_present(context) :
266              __context_present(context) && !context_copied(context);
267 }
268
269 static inline void context_set_present(struct context_entry *context)
270 {
271         context->lo |= 1;
272 }
273
274 static inline void context_set_fault_enable(struct context_entry *context)
275 {
276         context->lo &= (((u64)-1) << 2) | 1;
277 }
278
279 static inline void context_set_translation_type(struct context_entry *context,
280                                                 unsigned long value)
281 {
282         context->lo &= (((u64)-1) << 4) | 3;
283         context->lo |= (value & 3) << 2;
284 }
285
286 static inline void context_set_address_root(struct context_entry *context,
287                                             unsigned long value)
288 {
289         context->lo &= ~VTD_PAGE_MASK;
290         context->lo |= value & VTD_PAGE_MASK;
291 }
292
293 static inline void context_set_address_width(struct context_entry *context,
294                                              unsigned long value)
295 {
296         context->hi |= value & 7;
297 }
298
299 static inline void context_set_domain_id(struct context_entry *context,
300                                          unsigned long value)
301 {
302         context->hi |= (value & ((1 << 16) - 1)) << 8;
303 }
304
305 static inline int context_domain_id(struct context_entry *c)
306 {
307         return((c->hi >> 8) & 0xffff);
308 }
309
310 static inline void context_clear_entry(struct context_entry *context)
311 {
312         context->lo = 0;
313         context->hi = 0;
314 }
315
316 /*
317  * 0: readable
318  * 1: writable
319  * 2-6: reserved
320  * 7: super page
321  * 8-10: available
322  * 11: snoop behavior
323  * 12-63: Host physcial address
324  */
325 struct dma_pte {
326         u64 val;
327 };
328
329 static inline void dma_clear_pte(struct dma_pte *pte)
330 {
331         pte->val = 0;
332 }
333
334 static inline u64 dma_pte_addr(struct dma_pte *pte)
335 {
336 #ifdef CONFIG_64BIT
337         return pte->val & VTD_PAGE_MASK;
338 #else
339         /* Must have a full atomic 64-bit read */
340         return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
341 #endif
342 }
343
344 static inline bool dma_pte_present(struct dma_pte *pte)
345 {
346         return (pte->val & 3) != 0;
347 }
348
349 static inline bool dma_pte_superpage(struct dma_pte *pte)
350 {
351         return (pte->val & DMA_PTE_LARGE_PAGE);
352 }
353
354 static inline int first_pte_in_page(struct dma_pte *pte)
355 {
356         return !((unsigned long)pte & ~VTD_PAGE_MASK);
357 }
358
359 /*
360  * This domain is a statically identity mapping domain.
361  *      1. This domain creats a static 1:1 mapping to all usable memory.
362  *      2. It maps to each iommu if successful.
363  *      3. Each iommu mapps to this domain if successful.
364  */
365 static struct dmar_domain *si_domain;
366 static int hw_pass_through = 1;
367
368 /*
369  * Domain represents a virtual machine, more than one devices
370  * across iommus may be owned in one domain, e.g. kvm guest.
371  */
372 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 0)
373
374 /* si_domain contains mulitple devices */
375 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 1)
376
377 #define for_each_domain_iommu(idx, domain)                      \
378         for (idx = 0; idx < g_num_of_iommus; idx++)             \
379                 if (domain->iommu_refcnt[idx])
380
381 struct dmar_domain {
382         int     nid;                    /* node id */
383
384         unsigned        iommu_refcnt[DMAR_UNITS_SUPPORTED];
385                                         /* Refcount of devices per iommu */
386
387
388         u16             iommu_did[DMAR_UNITS_SUPPORTED];
389                                         /* Domain ids per IOMMU. Use u16 since
390                                          * domain ids are 16 bit wide according
391                                          * to VT-d spec, section 9.3 */
392
393         bool has_iotlb_device;
394         struct list_head devices;       /* all devices' list */
395         struct iova_domain iovad;       /* iova's that belong to this domain */
396
397         struct dma_pte  *pgd;           /* virtual address */
398         int             gaw;            /* max guest address width */
399
400         /* adjusted guest address width, 0 is level 2 30-bit */
401         int             agaw;
402
403         int             flags;          /* flags to find out type of domain */
404
405         int             iommu_coherency;/* indicate coherency of iommu access */
406         int             iommu_snooping; /* indicate snooping control feature*/
407         int             iommu_count;    /* reference count of iommu */
408         int             iommu_superpage;/* Level of superpages supported:
409                                            0 == 4KiB (no superpages), 1 == 2MiB,
410                                            2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
411         u64             max_addr;       /* maximum mapped address */
412
413         struct iommu_domain domain;     /* generic domain data structure for
414                                            iommu core */
415 };
416
417 /* PCI domain-device relationship */
418 struct device_domain_info {
419         struct list_head link;  /* link to domain siblings */
420         struct list_head global; /* link to global list */
421         u8 bus;                 /* PCI bus number */
422         u8 devfn;               /* PCI devfn number */
423         u8 pasid_supported:3;
424         u8 pasid_enabled:1;
425         u8 pri_supported:1;
426         u8 pri_enabled:1;
427         u8 ats_supported:1;
428         u8 ats_enabled:1;
429         u8 ats_qdep;
430         struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
431         struct intel_iommu *iommu; /* IOMMU used by this device */
432         struct dmar_domain *domain; /* pointer to domain */
433 };
434
435 struct dmar_rmrr_unit {
436         struct list_head list;          /* list of rmrr units   */
437         struct acpi_dmar_header *hdr;   /* ACPI header          */
438         u64     base_address;           /* reserved base address*/
439         u64     end_address;            /* reserved end address */
440         struct dmar_dev_scope *devices; /* target devices */
441         int     devices_cnt;            /* target device count */
442         struct iommu_resv_region *resv; /* reserved region handle */
443 };
444
445 struct dmar_atsr_unit {
446         struct list_head list;          /* list of ATSR units */
447         struct acpi_dmar_header *hdr;   /* ACPI header */
448         struct dmar_dev_scope *devices; /* target devices */
449         int devices_cnt;                /* target device count */
450         u8 include_all:1;               /* include all ports */
451 };
452
453 static LIST_HEAD(dmar_atsr_units);
454 static LIST_HEAD(dmar_rmrr_units);
455
456 #define for_each_rmrr_units(rmrr) \
457         list_for_each_entry(rmrr, &dmar_rmrr_units, list)
458
459 /* bitmap for indexing intel_iommus */
460 static int g_num_of_iommus;
461
462 static void domain_exit(struct dmar_domain *domain);
463 static void domain_remove_dev_info(struct dmar_domain *domain);
464 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
465                                      struct device *dev);
466 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
467 static void domain_context_clear(struct intel_iommu *iommu,
468                                  struct device *dev);
469 static int domain_detach_iommu(struct dmar_domain *domain,
470                                struct intel_iommu *iommu);
471
472 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
473 int dmar_disabled = 0;
474 #else
475 int dmar_disabled = 1;
476 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
477
478 int intel_iommu_enabled = 0;
479 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
480
481 static int dmar_map_gfx = 1;
482 static int dmar_forcedac;
483 static int intel_iommu_strict;
484 static int intel_iommu_superpage = 1;
485 static int intel_iommu_ecs = 1;
486 static int intel_iommu_pasid28;
487 static int iommu_identity_mapping;
488
489 #define IDENTMAP_ALL            1
490 #define IDENTMAP_GFX            2
491 #define IDENTMAP_AZALIA         4
492
493 /* Broadwell and Skylake have broken ECS support — normal so-called "second
494  * level" translation of DMA requests-without-PASID doesn't actually happen
495  * unless you also set the NESTE bit in an extended context-entry. Which of
496  * course means that SVM doesn't work because it's trying to do nested
497  * translation of the physical addresses it finds in the process page tables,
498  * through the IOVA->phys mapping found in the "second level" page tables.
499  *
500  * The VT-d specification was retroactively changed to change the definition
501  * of the capability bits and pretend that Broadwell/Skylake never happened...
502  * but unfortunately the wrong bit was changed. It's ECS which is broken, but
503  * for some reason it was the PASID capability bit which was redefined (from
504  * bit 28 on BDW/SKL to bit 40 in future).
505  *
506  * So our test for ECS needs to eschew those implementations which set the old
507  * PASID capabiity bit 28, since those are the ones on which ECS is broken.
508  * Unless we are working around the 'pasid28' limitations, that is, by putting
509  * the device into passthrough mode for normal DMA and thus masking the bug.
510  */
511 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
512                             (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
513 /* PASID support is thus enabled if ECS is enabled and *either* of the old
514  * or new capability bits are set. */
515 #define pasid_enabled(iommu) (ecs_enabled(iommu) &&                     \
516                               (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
517
518 int intel_iommu_gfx_mapped;
519 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
520
521 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
522 static DEFINE_SPINLOCK(device_domain_lock);
523 static LIST_HEAD(device_domain_list);
524
525 const struct iommu_ops intel_iommu_ops;
526
527 static bool translation_pre_enabled(struct intel_iommu *iommu)
528 {
529         return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
530 }
531
532 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
533 {
534         iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
535 }
536
537 static void init_translation_status(struct intel_iommu *iommu)
538 {
539         u32 gsts;
540
541         gsts = readl(iommu->reg + DMAR_GSTS_REG);
542         if (gsts & DMA_GSTS_TES)
543                 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
544 }
545
546 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
547 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
548 {
549         return container_of(dom, struct dmar_domain, domain);
550 }
551
552 static int __init intel_iommu_setup(char *str)
553 {
554         if (!str)
555                 return -EINVAL;
556         while (*str) {
557                 if (!strncmp(str, "on", 2)) {
558                         dmar_disabled = 0;
559                         pr_info("IOMMU enabled\n");
560                 } else if (!strncmp(str, "off", 3)) {
561                         dmar_disabled = 1;
562                         pr_info("IOMMU disabled\n");
563                 } else if (!strncmp(str, "igfx_off", 8)) {
564                         dmar_map_gfx = 0;
565                         pr_info("Disable GFX device mapping\n");
566                 } else if (!strncmp(str, "forcedac", 8)) {
567                         pr_info("Forcing DAC for PCI devices\n");
568                         dmar_forcedac = 1;
569                 } else if (!strncmp(str, "strict", 6)) {
570                         pr_info("Disable batched IOTLB flush\n");
571                         intel_iommu_strict = 1;
572                 } else if (!strncmp(str, "sp_off", 6)) {
573                         pr_info("Disable supported super page\n");
574                         intel_iommu_superpage = 0;
575                 } else if (!strncmp(str, "ecs_off", 7)) {
576                         printk(KERN_INFO
577                                 "Intel-IOMMU: disable extended context table support\n");
578                         intel_iommu_ecs = 0;
579                 } else if (!strncmp(str, "pasid28", 7)) {
580                         printk(KERN_INFO
581                                 "Intel-IOMMU: enable pre-production PASID support\n");
582                         intel_iommu_pasid28 = 1;
583                         iommu_identity_mapping |= IDENTMAP_GFX;
584                 } else if (!strncmp(str, "tboot_noforce", 13)) {
585                         printk(KERN_INFO
586                                 "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
587                         intel_iommu_tboot_noforce = 1;
588                 }
589
590                 str += strcspn(str, ",");
591                 while (*str == ',')
592                         str++;
593         }
594         return 0;
595 }
596 __setup("intel_iommu=", intel_iommu_setup);
597
598 static struct kmem_cache *iommu_domain_cache;
599 static struct kmem_cache *iommu_devinfo_cache;
600
601 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
602 {
603         struct dmar_domain **domains;
604         int idx = did >> 8;
605
606         domains = iommu->domains[idx];
607         if (!domains)
608                 return NULL;
609
610         return domains[did & 0xff];
611 }
612
613 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
614                              struct dmar_domain *domain)
615 {
616         struct dmar_domain **domains;
617         int idx = did >> 8;
618
619         if (!iommu->domains[idx]) {
620                 size_t size = 256 * sizeof(struct dmar_domain *);
621                 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
622         }
623
624         domains = iommu->domains[idx];
625         if (WARN_ON(!domains))
626                 return;
627         else
628                 domains[did & 0xff] = domain;
629 }
630
631 static inline void *alloc_pgtable_page(int node)
632 {
633         struct page *page;
634         void *vaddr = NULL;
635
636         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
637         if (page)
638                 vaddr = page_address(page);
639         return vaddr;
640 }
641
642 static inline void free_pgtable_page(void *vaddr)
643 {
644         free_page((unsigned long)vaddr);
645 }
646
647 static inline void *alloc_domain_mem(void)
648 {
649         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
650 }
651
652 static void free_domain_mem(void *vaddr)
653 {
654         kmem_cache_free(iommu_domain_cache, vaddr);
655 }
656
657 static inline void * alloc_devinfo_mem(void)
658 {
659         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
660 }
661
662 static inline void free_devinfo_mem(void *vaddr)
663 {
664         kmem_cache_free(iommu_devinfo_cache, vaddr);
665 }
666
667 static inline int domain_type_is_vm(struct dmar_domain *domain)
668 {
669         return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
670 }
671
672 static inline int domain_type_is_si(struct dmar_domain *domain)
673 {
674         return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
675 }
676
677 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
678 {
679         return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
680                                 DOMAIN_FLAG_STATIC_IDENTITY);
681 }
682
683 static inline int domain_pfn_supported(struct dmar_domain *domain,
684                                        unsigned long pfn)
685 {
686         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
687
688         return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
689 }
690
691 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
692 {
693         unsigned long sagaw;
694         int agaw = -1;
695
696         sagaw = cap_sagaw(iommu->cap);
697         for (agaw = width_to_agaw(max_gaw);
698              agaw >= 0; agaw--) {
699                 if (test_bit(agaw, &sagaw))
700                         break;
701         }
702
703         return agaw;
704 }
705
706 /*
707  * Calculate max SAGAW for each iommu.
708  */
709 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
710 {
711         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
712 }
713
714 /*
715  * calculate agaw for each iommu.
716  * "SAGAW" may be different across iommus, use a default agaw, and
717  * get a supported less agaw for iommus that don't support the default agaw.
718  */
719 int iommu_calculate_agaw(struct intel_iommu *iommu)
720 {
721         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
722 }
723
724 /* This functionin only returns single iommu in a domain */
725 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
726 {
727         int iommu_id;
728
729         /* si_domain and vm domain should not get here. */
730         BUG_ON(domain_type_is_vm_or_si(domain));
731         for_each_domain_iommu(iommu_id, domain)
732                 break;
733
734         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
735                 return NULL;
736
737         return g_iommus[iommu_id];
738 }
739
740 static void domain_update_iommu_coherency(struct dmar_domain *domain)
741 {
742         struct dmar_drhd_unit *drhd;
743         struct intel_iommu *iommu;
744         bool found = false;
745         int i;
746
747         domain->iommu_coherency = 1;
748
749         for_each_domain_iommu(i, domain) {
750                 found = true;
751                 if (!ecap_coherent(g_iommus[i]->ecap)) {
752                         domain->iommu_coherency = 0;
753                         break;
754                 }
755         }
756         if (found)
757                 return;
758
759         /* No hardware attached; use lowest common denominator */
760         rcu_read_lock();
761         for_each_active_iommu(iommu, drhd) {
762                 if (!ecap_coherent(iommu->ecap)) {
763                         domain->iommu_coherency = 0;
764                         break;
765                 }
766         }
767         rcu_read_unlock();
768 }
769
770 static int domain_update_iommu_snooping(struct intel_iommu *skip)
771 {
772         struct dmar_drhd_unit *drhd;
773         struct intel_iommu *iommu;
774         int ret = 1;
775
776         rcu_read_lock();
777         for_each_active_iommu(iommu, drhd) {
778                 if (iommu != skip) {
779                         if (!ecap_sc_support(iommu->ecap)) {
780                                 ret = 0;
781                                 break;
782                         }
783                 }
784         }
785         rcu_read_unlock();
786
787         return ret;
788 }
789
790 static int domain_update_iommu_superpage(struct intel_iommu *skip)
791 {
792         struct dmar_drhd_unit *drhd;
793         struct intel_iommu *iommu;
794         int mask = 0xf;
795
796         if (!intel_iommu_superpage) {
797                 return 0;
798         }
799
800         /* set iommu_superpage to the smallest common denominator */
801         rcu_read_lock();
802         for_each_active_iommu(iommu, drhd) {
803                 if (iommu != skip) {
804                         mask &= cap_super_page_val(iommu->cap);
805                         if (!mask)
806                                 break;
807                 }
808         }
809         rcu_read_unlock();
810
811         return fls(mask);
812 }
813
814 /* Some capabilities may be different across iommus */
815 static void domain_update_iommu_cap(struct dmar_domain *domain)
816 {
817         domain_update_iommu_coherency(domain);
818         domain->iommu_snooping = domain_update_iommu_snooping(NULL);
819         domain->iommu_superpage = domain_update_iommu_superpage(NULL);
820 }
821
822 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
823                                                        u8 bus, u8 devfn, int alloc)
824 {
825         struct root_entry *root = &iommu->root_entry[bus];
826         struct context_entry *context;
827         u64 *entry;
828
829         entry = &root->lo;
830         if (ecs_enabled(iommu)) {
831                 if (devfn >= 0x80) {
832                         devfn -= 0x80;
833                         entry = &root->hi;
834                 }
835                 devfn *= 2;
836         }
837         if (*entry & 1)
838                 context = phys_to_virt(*entry & VTD_PAGE_MASK);
839         else {
840                 unsigned long phy_addr;
841                 if (!alloc)
842                         return NULL;
843
844                 context = alloc_pgtable_page(iommu->node);
845                 if (!context)
846                         return NULL;
847
848                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
849                 phy_addr = virt_to_phys((void *)context);
850                 *entry = phy_addr | 1;
851                 __iommu_flush_cache(iommu, entry, sizeof(*entry));
852         }
853         return &context[devfn];
854 }
855
856 static int iommu_dummy(struct device *dev)
857 {
858         return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
859 }
860
861 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
862 {
863         struct dmar_drhd_unit *drhd = NULL;
864         struct intel_iommu *iommu;
865         struct device *tmp;
866         struct pci_dev *ptmp, *pdev = NULL;
867         u16 segment = 0;
868         int i;
869
870         if (iommu_dummy(dev))
871                 return NULL;
872
873         if (dev_is_pci(dev)) {
874                 struct pci_dev *pf_pdev;
875
876                 pdev = to_pci_dev(dev);
877
878 #ifdef CONFIG_X86
879                 /* VMD child devices currently cannot be handled individually */
880                 if (is_vmd(pdev->bus))
881                         return NULL;
882 #endif
883
884                 /* VFs aren't listed in scope tables; we need to look up
885                  * the PF instead to find the IOMMU. */
886                 pf_pdev = pci_physfn(pdev);
887                 dev = &pf_pdev->dev;
888                 segment = pci_domain_nr(pdev->bus);
889         } else if (has_acpi_companion(dev))
890                 dev = &ACPI_COMPANION(dev)->dev;
891
892         rcu_read_lock();
893         for_each_active_iommu(iommu, drhd) {
894                 if (pdev && segment != drhd->segment)
895                         continue;
896
897                 for_each_active_dev_scope(drhd->devices,
898                                           drhd->devices_cnt, i, tmp) {
899                         if (tmp == dev) {
900                                 /* For a VF use its original BDF# not that of the PF
901                                  * which we used for the IOMMU lookup. Strictly speaking
902                                  * we could do this for all PCI devices; we only need to
903                                  * get the BDF# from the scope table for ACPI matches. */
904                                 if (pdev && pdev->is_virtfn)
905                                         goto got_pdev;
906
907                                 *bus = drhd->devices[i].bus;
908                                 *devfn = drhd->devices[i].devfn;
909                                 goto out;
910                         }
911
912                         if (!pdev || !dev_is_pci(tmp))
913                                 continue;
914
915                         ptmp = to_pci_dev(tmp);
916                         if (ptmp->subordinate &&
917                             ptmp->subordinate->number <= pdev->bus->number &&
918                             ptmp->subordinate->busn_res.end >= pdev->bus->number)
919                                 goto got_pdev;
920                 }
921
922                 if (pdev && drhd->include_all) {
923                 got_pdev:
924                         *bus = pdev->bus->number;
925                         *devfn = pdev->devfn;
926                         goto out;
927                 }
928         }
929         iommu = NULL;
930  out:
931         rcu_read_unlock();
932
933         return iommu;
934 }
935
936 static void domain_flush_cache(struct dmar_domain *domain,
937                                void *addr, int size)
938 {
939         if (!domain->iommu_coherency)
940                 clflush_cache_range(addr, size);
941 }
942
943 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
944 {
945         struct context_entry *context;
946         int ret = 0;
947         unsigned long flags;
948
949         spin_lock_irqsave(&iommu->lock, flags);
950         context = iommu_context_addr(iommu, bus, devfn, 0);
951         if (context)
952                 ret = context_present(context);
953         spin_unlock_irqrestore(&iommu->lock, flags);
954         return ret;
955 }
956
957 static void free_context_table(struct intel_iommu *iommu)
958 {
959         int i;
960         unsigned long flags;
961         struct context_entry *context;
962
963         spin_lock_irqsave(&iommu->lock, flags);
964         if (!iommu->root_entry) {
965                 goto out;
966         }
967         for (i = 0; i < ROOT_ENTRY_NR; i++) {
968                 context = iommu_context_addr(iommu, i, 0, 0);
969                 if (context)
970                         free_pgtable_page(context);
971
972                 if (!ecs_enabled(iommu))
973                         continue;
974
975                 context = iommu_context_addr(iommu, i, 0x80, 0);
976                 if (context)
977                         free_pgtable_page(context);
978
979         }
980         free_pgtable_page(iommu->root_entry);
981         iommu->root_entry = NULL;
982 out:
983         spin_unlock_irqrestore(&iommu->lock, flags);
984 }
985
986 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
987                                       unsigned long pfn, int *target_level)
988 {
989         struct dma_pte *parent, *pte = NULL;
990         int level = agaw_to_level(domain->agaw);
991         int offset;
992
993         BUG_ON(!domain->pgd);
994
995         if (!domain_pfn_supported(domain, pfn))
996                 /* Address beyond IOMMU's addressing capabilities. */
997                 return NULL;
998
999         parent = domain->pgd;
1000
1001         while (1) {
1002                 void *tmp_page;
1003
1004                 offset = pfn_level_offset(pfn, level);
1005                 pte = &parent[offset];
1006                 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
1007                         break;
1008                 if (level == *target_level)
1009                         break;
1010
1011                 if (!dma_pte_present(pte)) {
1012                         uint64_t pteval;
1013
1014                         tmp_page = alloc_pgtable_page(domain->nid);
1015
1016                         if (!tmp_page)
1017                                 return NULL;
1018
1019                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1020                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1021                         if (cmpxchg64(&pte->val, 0ULL, pteval))
1022                                 /* Someone else set it while we were thinking; use theirs. */
1023                                 free_pgtable_page(tmp_page);
1024                         else
1025                                 domain_flush_cache(domain, pte, sizeof(*pte));
1026                 }
1027                 if (level == 1)
1028                         break;
1029
1030                 parent = phys_to_virt(dma_pte_addr(pte));
1031                 level--;
1032         }
1033
1034         if (!*target_level)
1035                 *target_level = level;
1036
1037         return pte;
1038 }
1039
1040
1041 /* return address's pte at specific level */
1042 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1043                                          unsigned long pfn,
1044                                          int level, int *large_page)
1045 {
1046         struct dma_pte *parent, *pte = NULL;
1047         int total = agaw_to_level(domain->agaw);
1048         int offset;
1049
1050         parent = domain->pgd;
1051         while (level <= total) {
1052                 offset = pfn_level_offset(pfn, total);
1053                 pte = &parent[offset];
1054                 if (level == total)
1055                         return pte;
1056
1057                 if (!dma_pte_present(pte)) {
1058                         *large_page = total;
1059                         break;
1060                 }
1061
1062                 if (dma_pte_superpage(pte)) {
1063                         *large_page = total;
1064                         return pte;
1065                 }
1066
1067                 parent = phys_to_virt(dma_pte_addr(pte));
1068                 total--;
1069         }
1070         return NULL;
1071 }
1072
1073 /* clear last level pte, a tlb flush should be followed */
1074 static void dma_pte_clear_range(struct dmar_domain *domain,
1075                                 unsigned long start_pfn,
1076                                 unsigned long last_pfn)
1077 {
1078         unsigned int large_page = 1;
1079         struct dma_pte *first_pte, *pte;
1080
1081         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1082         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1083         BUG_ON(start_pfn > last_pfn);
1084
1085         /* we don't need lock here; nobody else touches the iova range */
1086         do {
1087                 large_page = 1;
1088                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1089                 if (!pte) {
1090                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1091                         continue;
1092                 }
1093                 do {
1094                         dma_clear_pte(pte);
1095                         start_pfn += lvl_to_nr_pages(large_page);
1096                         pte++;
1097                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1098
1099                 domain_flush_cache(domain, first_pte,
1100                                    (void *)pte - (void *)first_pte);
1101
1102         } while (start_pfn && start_pfn <= last_pfn);
1103 }
1104
1105 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1106                                int retain_level, struct dma_pte *pte,
1107                                unsigned long pfn, unsigned long start_pfn,
1108                                unsigned long last_pfn)
1109 {
1110         pfn = max(start_pfn, pfn);
1111         pte = &pte[pfn_level_offset(pfn, level)];
1112
1113         do {
1114                 unsigned long level_pfn;
1115                 struct dma_pte *level_pte;
1116
1117                 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1118                         goto next;
1119
1120                 level_pfn = pfn & level_mask(level);
1121                 level_pte = phys_to_virt(dma_pte_addr(pte));
1122
1123                 if (level > 2) {
1124                         dma_pte_free_level(domain, level - 1, retain_level,
1125                                            level_pte, level_pfn, start_pfn,
1126                                            last_pfn);
1127                 }
1128
1129                 /*
1130                  * Free the page table if we're below the level we want to
1131                  * retain and the range covers the entire table.
1132                  */
1133                 if (level < retain_level && !(start_pfn > level_pfn ||
1134                       last_pfn < level_pfn + level_size(level) - 1)) {
1135                         dma_clear_pte(pte);
1136                         domain_flush_cache(domain, pte, sizeof(*pte));
1137                         free_pgtable_page(level_pte);
1138                 }
1139 next:
1140                 pfn += level_size(level);
1141         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1142 }
1143
1144 /*
1145  * clear last level (leaf) ptes and free page table pages below the
1146  * level we wish to keep intact.
1147  */
1148 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1149                                    unsigned long start_pfn,
1150                                    unsigned long last_pfn,
1151                                    int retain_level)
1152 {
1153         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1154         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1155         BUG_ON(start_pfn > last_pfn);
1156
1157         dma_pte_clear_range(domain, start_pfn, last_pfn);
1158
1159         /* We don't need lock here; nobody else touches the iova range */
1160         dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1161                            domain->pgd, 0, start_pfn, last_pfn);
1162
1163         /* free pgd */
1164         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1165                 free_pgtable_page(domain->pgd);
1166                 domain->pgd = NULL;
1167         }
1168 }
1169
1170 /* When a page at a given level is being unlinked from its parent, we don't
1171    need to *modify* it at all. All we need to do is make a list of all the
1172    pages which can be freed just as soon as we've flushed the IOTLB and we
1173    know the hardware page-walk will no longer touch them.
1174    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1175    be freed. */
1176 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1177                                             int level, struct dma_pte *pte,
1178                                             struct page *freelist)
1179 {
1180         struct page *pg;
1181
1182         pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1183         pg->freelist = freelist;
1184         freelist = pg;
1185
1186         if (level == 1)
1187                 return freelist;
1188
1189         pte = page_address(pg);
1190         do {
1191                 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1192                         freelist = dma_pte_list_pagetables(domain, level - 1,
1193                                                            pte, freelist);
1194                 pte++;
1195         } while (!first_pte_in_page(pte));
1196
1197         return freelist;
1198 }
1199
1200 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1201                                         struct dma_pte *pte, unsigned long pfn,
1202                                         unsigned long start_pfn,
1203                                         unsigned long last_pfn,
1204                                         struct page *freelist)
1205 {
1206         struct dma_pte *first_pte = NULL, *last_pte = NULL;
1207
1208         pfn = max(start_pfn, pfn);
1209         pte = &pte[pfn_level_offset(pfn, level)];
1210
1211         do {
1212                 unsigned long level_pfn;
1213
1214                 if (!dma_pte_present(pte))
1215                         goto next;
1216
1217                 level_pfn = pfn & level_mask(level);
1218
1219                 /* If range covers entire pagetable, free it */
1220                 if (start_pfn <= level_pfn &&
1221                     last_pfn >= level_pfn + level_size(level) - 1) {
1222                         /* These suborbinate page tables are going away entirely. Don't
1223                            bother to clear them; we're just going to *free* them. */
1224                         if (level > 1 && !dma_pte_superpage(pte))
1225                                 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1226
1227                         dma_clear_pte(pte);
1228                         if (!first_pte)
1229                                 first_pte = pte;
1230                         last_pte = pte;
1231                 } else if (level > 1) {
1232                         /* Recurse down into a level that isn't *entirely* obsolete */
1233                         freelist = dma_pte_clear_level(domain, level - 1,
1234                                                        phys_to_virt(dma_pte_addr(pte)),
1235                                                        level_pfn, start_pfn, last_pfn,
1236                                                        freelist);
1237                 }
1238 next:
1239                 pfn += level_size(level);
1240         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1241
1242         if (first_pte)
1243                 domain_flush_cache(domain, first_pte,
1244                                    (void *)++last_pte - (void *)first_pte);
1245
1246         return freelist;
1247 }
1248
1249 /* We can't just free the pages because the IOMMU may still be walking
1250    the page tables, and may have cached the intermediate levels. The
1251    pages can only be freed after the IOTLB flush has been done. */
1252 static struct page *domain_unmap(struct dmar_domain *domain,
1253                                  unsigned long start_pfn,
1254                                  unsigned long last_pfn)
1255 {
1256         struct page *freelist = NULL;
1257
1258         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1259         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1260         BUG_ON(start_pfn > last_pfn);
1261
1262         /* we don't need lock here; nobody else touches the iova range */
1263         freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1264                                        domain->pgd, 0, start_pfn, last_pfn, NULL);
1265
1266         /* free pgd */
1267         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1268                 struct page *pgd_page = virt_to_page(domain->pgd);
1269                 pgd_page->freelist = freelist;
1270                 freelist = pgd_page;
1271
1272                 domain->pgd = NULL;
1273         }
1274
1275         return freelist;
1276 }
1277
1278 static void dma_free_pagelist(struct page *freelist)
1279 {
1280         struct page *pg;
1281
1282         while ((pg = freelist)) {
1283                 freelist = pg->freelist;
1284                 free_pgtable_page(page_address(pg));
1285         }
1286 }
1287
1288 static void iova_entry_free(unsigned long data)
1289 {
1290         struct page *freelist = (struct page *)data;
1291
1292         dma_free_pagelist(freelist);
1293 }
1294
1295 /* iommu handling */
1296 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1297 {
1298         struct root_entry *root;
1299         unsigned long flags;
1300
1301         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1302         if (!root) {
1303                 pr_err("Allocating root entry for %s failed\n",
1304                         iommu->name);
1305                 return -ENOMEM;
1306         }
1307
1308         __iommu_flush_cache(iommu, root, ROOT_SIZE);
1309
1310         spin_lock_irqsave(&iommu->lock, flags);
1311         iommu->root_entry = root;
1312         spin_unlock_irqrestore(&iommu->lock, flags);
1313
1314         return 0;
1315 }
1316
1317 static void iommu_set_root_entry(struct intel_iommu *iommu)
1318 {
1319         u64 addr;
1320         u32 sts;
1321         unsigned long flag;
1322
1323         addr = virt_to_phys(iommu->root_entry);
1324         if (ecs_enabled(iommu))
1325                 addr |= DMA_RTADDR_RTT;
1326
1327         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1328         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1329
1330         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1331
1332         /* Make sure hardware complete it */
1333         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1334                       readl, (sts & DMA_GSTS_RTPS), sts);
1335
1336         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1337 }
1338
1339 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1340 {
1341         u32 val;
1342         unsigned long flag;
1343
1344         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1345                 return;
1346
1347         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1348         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1349
1350         /* Make sure hardware complete it */
1351         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1352                       readl, (!(val & DMA_GSTS_WBFS)), val);
1353
1354         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1355 }
1356
1357 /* return value determine if we need a write buffer flush */
1358 static void __iommu_flush_context(struct intel_iommu *iommu,
1359                                   u16 did, u16 source_id, u8 function_mask,
1360                                   u64 type)
1361 {
1362         u64 val = 0;
1363         unsigned long flag;
1364
1365         switch (type) {
1366         case DMA_CCMD_GLOBAL_INVL:
1367                 val = DMA_CCMD_GLOBAL_INVL;
1368                 break;
1369         case DMA_CCMD_DOMAIN_INVL:
1370                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1371                 break;
1372         case DMA_CCMD_DEVICE_INVL:
1373                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1374                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1375                 break;
1376         default:
1377                 BUG();
1378         }
1379         val |= DMA_CCMD_ICC;
1380
1381         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1382         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1383
1384         /* Make sure hardware complete it */
1385         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1386                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1387
1388         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1389 }
1390
1391 /* return value determine if we need a write buffer flush */
1392 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1393                                 u64 addr, unsigned int size_order, u64 type)
1394 {
1395         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1396         u64 val = 0, val_iva = 0;
1397         unsigned long flag;
1398
1399         switch (type) {
1400         case DMA_TLB_GLOBAL_FLUSH:
1401                 /* global flush doesn't need set IVA_REG */
1402                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1403                 break;
1404         case DMA_TLB_DSI_FLUSH:
1405                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1406                 break;
1407         case DMA_TLB_PSI_FLUSH:
1408                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1409                 /* IH bit is passed in as part of address */
1410                 val_iva = size_order | addr;
1411                 break;
1412         default:
1413                 BUG();
1414         }
1415         /* Note: set drain read/write */
1416 #if 0
1417         /*
1418          * This is probably to be super secure.. Looks like we can
1419          * ignore it without any impact.
1420          */
1421         if (cap_read_drain(iommu->cap))
1422                 val |= DMA_TLB_READ_DRAIN;
1423 #endif
1424         if (cap_write_drain(iommu->cap))
1425                 val |= DMA_TLB_WRITE_DRAIN;
1426
1427         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1428         /* Note: Only uses first TLB reg currently */
1429         if (val_iva)
1430                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1431         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1432
1433         /* Make sure hardware complete it */
1434         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1435                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1436
1437         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1438
1439         /* check IOTLB invalidation granularity */
1440         if (DMA_TLB_IAIG(val) == 0)
1441                 pr_err("Flush IOTLB failed\n");
1442         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1443                 pr_debug("TLB flush request %Lx, actual %Lx\n",
1444                         (unsigned long long)DMA_TLB_IIRG(type),
1445                         (unsigned long long)DMA_TLB_IAIG(val));
1446 }
1447
1448 static struct device_domain_info *
1449 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1450                          u8 bus, u8 devfn)
1451 {
1452         struct device_domain_info *info;
1453
1454         assert_spin_locked(&device_domain_lock);
1455
1456         if (!iommu->qi)
1457                 return NULL;
1458
1459         list_for_each_entry(info, &domain->devices, link)
1460                 if (info->iommu == iommu && info->bus == bus &&
1461                     info->devfn == devfn) {
1462                         if (info->ats_supported && info->dev)
1463                                 return info;
1464                         break;
1465                 }
1466
1467         return NULL;
1468 }
1469
1470 static void domain_update_iotlb(struct dmar_domain *domain)
1471 {
1472         struct device_domain_info *info;
1473         bool has_iotlb_device = false;
1474
1475         assert_spin_locked(&device_domain_lock);
1476
1477         list_for_each_entry(info, &domain->devices, link) {
1478                 struct pci_dev *pdev;
1479
1480                 if (!info->dev || !dev_is_pci(info->dev))
1481                         continue;
1482
1483                 pdev = to_pci_dev(info->dev);
1484                 if (pdev->ats_enabled) {
1485                         has_iotlb_device = true;
1486                         break;
1487                 }
1488         }
1489
1490         domain->has_iotlb_device = has_iotlb_device;
1491 }
1492
1493 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1494 {
1495         struct pci_dev *pdev;
1496
1497         assert_spin_locked(&device_domain_lock);
1498
1499         if (!info || !dev_is_pci(info->dev))
1500                 return;
1501
1502         pdev = to_pci_dev(info->dev);
1503
1504 #ifdef CONFIG_INTEL_IOMMU_SVM
1505         /* The PCIe spec, in its wisdom, declares that the behaviour of
1506            the device if you enable PASID support after ATS support is
1507            undefined. So always enable PASID support on devices which
1508            have it, even if we can't yet know if we're ever going to
1509            use it. */
1510         if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1511                 info->pasid_enabled = 1;
1512
1513         if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1514                 info->pri_enabled = 1;
1515 #endif
1516         if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1517                 info->ats_enabled = 1;
1518                 domain_update_iotlb(info->domain);
1519                 info->ats_qdep = pci_ats_queue_depth(pdev);
1520         }
1521 }
1522
1523 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1524 {
1525         struct pci_dev *pdev;
1526
1527         assert_spin_locked(&device_domain_lock);
1528
1529         if (!dev_is_pci(info->dev))
1530                 return;
1531
1532         pdev = to_pci_dev(info->dev);
1533
1534         if (info->ats_enabled) {
1535                 pci_disable_ats(pdev);
1536                 info->ats_enabled = 0;
1537                 domain_update_iotlb(info->domain);
1538         }
1539 #ifdef CONFIG_INTEL_IOMMU_SVM
1540         if (info->pri_enabled) {
1541                 pci_disable_pri(pdev);
1542                 info->pri_enabled = 0;
1543         }
1544         if (info->pasid_enabled) {
1545                 pci_disable_pasid(pdev);
1546                 info->pasid_enabled = 0;
1547         }
1548 #endif
1549 }
1550
1551 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1552                                   u64 addr, unsigned mask)
1553 {
1554         u16 sid, qdep;
1555         unsigned long flags;
1556         struct device_domain_info *info;
1557
1558         if (!domain->has_iotlb_device)
1559                 return;
1560
1561         spin_lock_irqsave(&device_domain_lock, flags);
1562         list_for_each_entry(info, &domain->devices, link) {
1563                 if (!info->ats_enabled)
1564                         continue;
1565
1566                 sid = info->bus << 8 | info->devfn;
1567                 qdep = info->ats_qdep;
1568                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1569         }
1570         spin_unlock_irqrestore(&device_domain_lock, flags);
1571 }
1572
1573 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1574                                   struct dmar_domain *domain,
1575                                   unsigned long pfn, unsigned int pages,
1576                                   int ih, int map)
1577 {
1578         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1579         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1580         u16 did = domain->iommu_did[iommu->seq_id];
1581
1582         BUG_ON(pages == 0);
1583
1584         if (ih)
1585                 ih = 1 << 6;
1586         /*
1587          * Fallback to domain selective flush if no PSI support or the size is
1588          * too big.
1589          * PSI requires page size to be 2 ^ x, and the base address is naturally
1590          * aligned to the size
1591          */
1592         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1593                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1594                                                 DMA_TLB_DSI_FLUSH);
1595         else
1596                 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1597                                                 DMA_TLB_PSI_FLUSH);
1598
1599         /*
1600          * In caching mode, changes of pages from non-present to present require
1601          * flush. However, device IOTLB doesn't need to be flushed in this case.
1602          */
1603         if (!cap_caching_mode(iommu->cap) || !map)
1604                 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1605                                       addr, mask);
1606 }
1607
1608 static void iommu_flush_iova(struct iova_domain *iovad)
1609 {
1610         struct dmar_domain *domain;
1611         int idx;
1612
1613         domain = container_of(iovad, struct dmar_domain, iovad);
1614
1615         for_each_domain_iommu(idx, domain) {
1616                 struct intel_iommu *iommu = g_iommus[idx];
1617                 u16 did = domain->iommu_did[iommu->seq_id];
1618
1619                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1620
1621                 if (!cap_caching_mode(iommu->cap))
1622                         iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1623                                               0, MAX_AGAW_PFN_WIDTH);
1624         }
1625 }
1626
1627 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1628 {
1629         u32 pmen;
1630         unsigned long flags;
1631
1632         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1633         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1634         pmen &= ~DMA_PMEN_EPM;
1635         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1636
1637         /* wait for the protected region status bit to clear */
1638         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1639                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1640
1641         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1642 }
1643
1644 static void iommu_enable_translation(struct intel_iommu *iommu)
1645 {
1646         u32 sts;
1647         unsigned long flags;
1648
1649         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1650         iommu->gcmd |= DMA_GCMD_TE;
1651         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1652
1653         /* Make sure hardware complete it */
1654         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1655                       readl, (sts & DMA_GSTS_TES), sts);
1656
1657         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1658 }
1659
1660 static void iommu_disable_translation(struct intel_iommu *iommu)
1661 {
1662         u32 sts;
1663         unsigned long flag;
1664
1665         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1666         iommu->gcmd &= ~DMA_GCMD_TE;
1667         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1668
1669         /* Make sure hardware complete it */
1670         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1671                       readl, (!(sts & DMA_GSTS_TES)), sts);
1672
1673         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1674 }
1675
1676
1677 static int iommu_init_domains(struct intel_iommu *iommu)
1678 {
1679         u32 ndomains, nlongs;
1680         size_t size;
1681
1682         ndomains = cap_ndoms(iommu->cap);
1683         pr_debug("%s: Number of Domains supported <%d>\n",
1684                  iommu->name, ndomains);
1685         nlongs = BITS_TO_LONGS(ndomains);
1686
1687         spin_lock_init(&iommu->lock);
1688
1689         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1690         if (!iommu->domain_ids) {
1691                 pr_err("%s: Allocating domain id array failed\n",
1692                        iommu->name);
1693                 return -ENOMEM;
1694         }
1695
1696         size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1697         iommu->domains = kzalloc(size, GFP_KERNEL);
1698
1699         if (iommu->domains) {
1700                 size = 256 * sizeof(struct dmar_domain *);
1701                 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1702         }
1703
1704         if (!iommu->domains || !iommu->domains[0]) {
1705                 pr_err("%s: Allocating domain array failed\n",
1706                        iommu->name);
1707                 kfree(iommu->domain_ids);
1708                 kfree(iommu->domains);
1709                 iommu->domain_ids = NULL;
1710                 iommu->domains    = NULL;
1711                 return -ENOMEM;
1712         }
1713
1714
1715
1716         /*
1717          * If Caching mode is set, then invalid translations are tagged
1718          * with domain-id 0, hence we need to pre-allocate it. We also
1719          * use domain-id 0 as a marker for non-allocated domain-id, so
1720          * make sure it is not used for a real domain.
1721          */
1722         set_bit(0, iommu->domain_ids);
1723
1724         return 0;
1725 }
1726
1727 static void disable_dmar_iommu(struct intel_iommu *iommu)
1728 {
1729         struct device_domain_info *info, *tmp;
1730         unsigned long flags;
1731
1732         if (!iommu->domains || !iommu->domain_ids)
1733                 return;
1734
1735 again:
1736         spin_lock_irqsave(&device_domain_lock, flags);
1737         list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1738                 struct dmar_domain *domain;
1739
1740                 if (info->iommu != iommu)
1741                         continue;
1742
1743                 if (!info->dev || !info->domain)
1744                         continue;
1745
1746                 domain = info->domain;
1747
1748                 __dmar_remove_one_dev_info(info);
1749
1750                 if (!domain_type_is_vm_or_si(domain)) {
1751                         /*
1752                          * The domain_exit() function  can't be called under
1753                          * device_domain_lock, as it takes this lock itself.
1754                          * So release the lock here and re-run the loop
1755                          * afterwards.
1756                          */
1757                         spin_unlock_irqrestore(&device_domain_lock, flags);
1758                         domain_exit(domain);
1759                         goto again;
1760                 }
1761         }
1762         spin_unlock_irqrestore(&device_domain_lock, flags);
1763
1764         if (iommu->gcmd & DMA_GCMD_TE)
1765                 iommu_disable_translation(iommu);
1766 }
1767
1768 static void free_dmar_iommu(struct intel_iommu *iommu)
1769 {
1770         if ((iommu->domains) && (iommu->domain_ids)) {
1771                 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1772                 int i;
1773
1774                 for (i = 0; i < elems; i++)
1775                         kfree(iommu->domains[i]);
1776                 kfree(iommu->domains);
1777                 kfree(iommu->domain_ids);
1778                 iommu->domains = NULL;
1779                 iommu->domain_ids = NULL;
1780         }
1781
1782         g_iommus[iommu->seq_id] = NULL;
1783
1784         /* free context mapping */
1785         free_context_table(iommu);
1786
1787 #ifdef CONFIG_INTEL_IOMMU_SVM
1788         if (pasid_enabled(iommu)) {
1789                 if (ecap_prs(iommu->ecap))
1790                         intel_svm_finish_prq(iommu);
1791                 intel_svm_free_pasid_tables(iommu);
1792         }
1793 #endif
1794 }
1795
1796 static struct dmar_domain *alloc_domain(int flags)
1797 {
1798         struct dmar_domain *domain;
1799
1800         domain = alloc_domain_mem();
1801         if (!domain)
1802                 return NULL;
1803
1804         memset(domain, 0, sizeof(*domain));
1805         domain->nid = -1;
1806         domain->flags = flags;
1807         domain->has_iotlb_device = false;
1808         INIT_LIST_HEAD(&domain->devices);
1809
1810         return domain;
1811 }
1812
1813 /* Must be called with iommu->lock */
1814 static int domain_attach_iommu(struct dmar_domain *domain,
1815                                struct intel_iommu *iommu)
1816 {
1817         unsigned long ndomains;
1818         int num;
1819
1820         assert_spin_locked(&device_domain_lock);
1821         assert_spin_locked(&iommu->lock);
1822
1823         domain->iommu_refcnt[iommu->seq_id] += 1;
1824         domain->iommu_count += 1;
1825         if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1826                 ndomains = cap_ndoms(iommu->cap);
1827                 num      = find_first_zero_bit(iommu->domain_ids, ndomains);
1828
1829                 if (num >= ndomains) {
1830                         pr_err("%s: No free domain ids\n", iommu->name);
1831                         domain->iommu_refcnt[iommu->seq_id] -= 1;
1832                         domain->iommu_count -= 1;
1833                         return -ENOSPC;
1834                 }
1835
1836                 set_bit(num, iommu->domain_ids);
1837                 set_iommu_domain(iommu, num, domain);
1838
1839                 domain->iommu_did[iommu->seq_id] = num;
1840                 domain->nid                      = iommu->node;
1841
1842                 domain_update_iommu_cap(domain);
1843         }
1844
1845         return 0;
1846 }
1847
1848 static int domain_detach_iommu(struct dmar_domain *domain,
1849                                struct intel_iommu *iommu)
1850 {
1851         int num, count = INT_MAX;
1852
1853         assert_spin_locked(&device_domain_lock);
1854         assert_spin_locked(&iommu->lock);
1855
1856         domain->iommu_refcnt[iommu->seq_id] -= 1;
1857         count = --domain->iommu_count;
1858         if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1859                 num = domain->iommu_did[iommu->seq_id];
1860                 clear_bit(num, iommu->domain_ids);
1861                 set_iommu_domain(iommu, num, NULL);
1862
1863                 domain_update_iommu_cap(domain);
1864                 domain->iommu_did[iommu->seq_id] = 0;
1865         }
1866
1867         return count;
1868 }
1869
1870 static struct iova_domain reserved_iova_list;
1871 static struct lock_class_key reserved_rbtree_key;
1872
1873 static int dmar_init_reserved_ranges(void)
1874 {
1875         struct pci_dev *pdev = NULL;
1876         struct iova *iova;
1877         int i;
1878
1879         init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1880
1881         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1882                 &reserved_rbtree_key);
1883
1884         /* IOAPIC ranges shouldn't be accessed by DMA */
1885         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1886                 IOVA_PFN(IOAPIC_RANGE_END));
1887         if (!iova) {
1888                 pr_err("Reserve IOAPIC range failed\n");
1889                 return -ENODEV;
1890         }
1891
1892         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1893         for_each_pci_dev(pdev) {
1894                 struct resource *r;
1895
1896                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1897                         r = &pdev->resource[i];
1898                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1899                                 continue;
1900                         iova = reserve_iova(&reserved_iova_list,
1901                                             IOVA_PFN(r->start),
1902                                             IOVA_PFN(r->end));
1903                         if (!iova) {
1904                                 pr_err("Reserve iova failed\n");
1905                                 return -ENODEV;
1906                         }
1907                 }
1908         }
1909         return 0;
1910 }
1911
1912 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1913 {
1914         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1915 }
1916
1917 static inline int guestwidth_to_adjustwidth(int gaw)
1918 {
1919         int agaw;
1920         int r = (gaw - 12) % 9;
1921
1922         if (r == 0)
1923                 agaw = gaw;
1924         else
1925                 agaw = gaw + 9 - r;
1926         if (agaw > 64)
1927                 agaw = 64;
1928         return agaw;
1929 }
1930
1931 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1932                        int guest_width)
1933 {
1934         int adjust_width, agaw;
1935         unsigned long sagaw;
1936         int err;
1937
1938         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
1939
1940         err = init_iova_flush_queue(&domain->iovad,
1941                                     iommu_flush_iova, iova_entry_free);
1942         if (err)
1943                 return err;
1944
1945         domain_reserve_special_ranges(domain);
1946
1947         /* calculate AGAW */
1948         if (guest_width > cap_mgaw(iommu->cap))
1949                 guest_width = cap_mgaw(iommu->cap);
1950         domain->gaw = guest_width;
1951         adjust_width = guestwidth_to_adjustwidth(guest_width);
1952         agaw = width_to_agaw(adjust_width);
1953         sagaw = cap_sagaw(iommu->cap);
1954         if (!test_bit(agaw, &sagaw)) {
1955                 /* hardware doesn't support it, choose a bigger one */
1956                 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1957                 agaw = find_next_bit(&sagaw, 5, agaw);
1958                 if (agaw >= 5)
1959                         return -ENODEV;
1960         }
1961         domain->agaw = agaw;
1962
1963         if (ecap_coherent(iommu->ecap))
1964                 domain->iommu_coherency = 1;
1965         else
1966                 domain->iommu_coherency = 0;
1967
1968         if (ecap_sc_support(iommu->ecap))
1969                 domain->iommu_snooping = 1;
1970         else
1971                 domain->iommu_snooping = 0;
1972
1973         if (intel_iommu_superpage)
1974                 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1975         else
1976                 domain->iommu_superpage = 0;
1977
1978         domain->nid = iommu->node;
1979
1980         /* always allocate the top pgd */
1981         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1982         if (!domain->pgd)
1983                 return -ENOMEM;
1984         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1985         return 0;
1986 }
1987
1988 static void domain_exit(struct dmar_domain *domain)
1989 {
1990         struct page *freelist = NULL;
1991
1992         /* Domain 0 is reserved, so dont process it */
1993         if (!domain)
1994                 return;
1995
1996         /* Remove associated devices and clear attached or cached domains */
1997         rcu_read_lock();
1998         domain_remove_dev_info(domain);
1999         rcu_read_unlock();
2000
2001         /* destroy iovas */
2002         put_iova_domain(&domain->iovad);
2003
2004         freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
2005
2006         dma_free_pagelist(freelist);
2007
2008         free_domain_mem(domain);
2009 }
2010
2011 static int domain_context_mapping_one(struct dmar_domain *domain,
2012                                       struct intel_iommu *iommu,
2013                                       u8 bus, u8 devfn)
2014 {
2015         u16 did = domain->iommu_did[iommu->seq_id];
2016         int translation = CONTEXT_TT_MULTI_LEVEL;
2017         struct device_domain_info *info = NULL;
2018         struct context_entry *context;
2019         unsigned long flags;
2020         struct dma_pte *pgd;
2021         int ret, agaw;
2022
2023         WARN_ON(did == 0);
2024
2025         if (hw_pass_through && domain_type_is_si(domain))
2026                 translation = CONTEXT_TT_PASS_THROUGH;
2027
2028         pr_debug("Set context mapping for %02x:%02x.%d\n",
2029                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2030
2031         BUG_ON(!domain->pgd);
2032
2033         spin_lock_irqsave(&device_domain_lock, flags);
2034         spin_lock(&iommu->lock);
2035
2036         ret = -ENOMEM;
2037         context = iommu_context_addr(iommu, bus, devfn, 1);
2038         if (!context)
2039                 goto out_unlock;
2040
2041         ret = 0;
2042         if (context_present(context))
2043                 goto out_unlock;
2044
2045         /*
2046          * For kdump cases, old valid entries may be cached due to the
2047          * in-flight DMA and copied pgtable, but there is no unmapping
2048          * behaviour for them, thus we need an explicit cache flush for
2049          * the newly-mapped device. For kdump, at this point, the device
2050          * is supposed to finish reset at its driver probe stage, so no
2051          * in-flight DMA will exist, and we don't need to worry anymore
2052          * hereafter.
2053          */
2054         if (context_copied(context)) {
2055                 u16 did_old = context_domain_id(context);
2056
2057                 if (did_old < cap_ndoms(iommu->cap)) {
2058                         iommu->flush.flush_context(iommu, did_old,
2059                                                    (((u16)bus) << 8) | devfn,
2060                                                    DMA_CCMD_MASK_NOBIT,
2061                                                    DMA_CCMD_DEVICE_INVL);
2062                         iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2063                                                  DMA_TLB_DSI_FLUSH);
2064                 }
2065         }
2066
2067         pgd = domain->pgd;
2068
2069         context_clear_entry(context);
2070         context_set_domain_id(context, did);
2071
2072         /*
2073          * Skip top levels of page tables for iommu which has less agaw
2074          * than default.  Unnecessary for PT mode.
2075          */
2076         if (translation != CONTEXT_TT_PASS_THROUGH) {
2077                 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
2078                         ret = -ENOMEM;
2079                         pgd = phys_to_virt(dma_pte_addr(pgd));
2080                         if (!dma_pte_present(pgd))
2081                                 goto out_unlock;
2082                 }
2083
2084                 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2085                 if (info && info->ats_supported)
2086                         translation = CONTEXT_TT_DEV_IOTLB;
2087                 else
2088                         translation = CONTEXT_TT_MULTI_LEVEL;
2089
2090                 context_set_address_root(context, virt_to_phys(pgd));
2091                 context_set_address_width(context, iommu->agaw);
2092         } else {
2093                 /*
2094                  * In pass through mode, AW must be programmed to
2095                  * indicate the largest AGAW value supported by
2096                  * hardware. And ASR is ignored by hardware.
2097                  */
2098                 context_set_address_width(context, iommu->msagaw);
2099         }
2100
2101         context_set_translation_type(context, translation);
2102         context_set_fault_enable(context);
2103         context_set_present(context);
2104         domain_flush_cache(domain, context, sizeof(*context));
2105
2106         /*
2107          * It's a non-present to present mapping. If hardware doesn't cache
2108          * non-present entry we only need to flush the write-buffer. If the
2109          * _does_ cache non-present entries, then it does so in the special
2110          * domain #0, which we have to flush:
2111          */
2112         if (cap_caching_mode(iommu->cap)) {
2113                 iommu->flush.flush_context(iommu, 0,
2114                                            (((u16)bus) << 8) | devfn,
2115                                            DMA_CCMD_MASK_NOBIT,
2116                                            DMA_CCMD_DEVICE_INVL);
2117                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2118         } else {
2119                 iommu_flush_write_buffer(iommu);
2120         }
2121         iommu_enable_dev_iotlb(info);
2122
2123         ret = 0;
2124
2125 out_unlock:
2126         spin_unlock(&iommu->lock);
2127         spin_unlock_irqrestore(&device_domain_lock, flags);
2128
2129         return ret;
2130 }
2131
2132 struct domain_context_mapping_data {
2133         struct dmar_domain *domain;
2134         struct intel_iommu *iommu;
2135 };
2136
2137 static int domain_context_mapping_cb(struct pci_dev *pdev,
2138                                      u16 alias, void *opaque)
2139 {
2140         struct domain_context_mapping_data *data = opaque;
2141
2142         return domain_context_mapping_one(data->domain, data->iommu,
2143                                           PCI_BUS_NUM(alias), alias & 0xff);
2144 }
2145
2146 static int
2147 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2148 {
2149         struct intel_iommu *iommu;
2150         u8 bus, devfn;
2151         struct domain_context_mapping_data data;
2152
2153         iommu = device_to_iommu(dev, &bus, &devfn);
2154         if (!iommu)
2155                 return -ENODEV;
2156
2157         if (!dev_is_pci(dev))
2158                 return domain_context_mapping_one(domain, iommu, bus, devfn);
2159
2160         data.domain = domain;
2161         data.iommu = iommu;
2162
2163         return pci_for_each_dma_alias(to_pci_dev(dev),
2164                                       &domain_context_mapping_cb, &data);
2165 }
2166
2167 static int domain_context_mapped_cb(struct pci_dev *pdev,
2168                                     u16 alias, void *opaque)
2169 {
2170         struct intel_iommu *iommu = opaque;
2171
2172         return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2173 }
2174
2175 static int domain_context_mapped(struct device *dev)
2176 {
2177         struct intel_iommu *iommu;
2178         u8 bus, devfn;
2179
2180         iommu = device_to_iommu(dev, &bus, &devfn);
2181         if (!iommu)
2182                 return -ENODEV;
2183
2184         if (!dev_is_pci(dev))
2185                 return device_context_mapped(iommu, bus, devfn);
2186
2187         return !pci_for_each_dma_alias(to_pci_dev(dev),
2188                                        domain_context_mapped_cb, iommu);
2189 }
2190
2191 /* Returns a number of VTD pages, but aligned to MM page size */
2192 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2193                                             size_t size)
2194 {
2195         host_addr &= ~PAGE_MASK;
2196         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2197 }
2198
2199 /* Return largest possible superpage level for a given mapping */
2200 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2201                                           unsigned long iov_pfn,
2202                                           unsigned long phy_pfn,
2203                                           unsigned long pages)
2204 {
2205         int support, level = 1;
2206         unsigned long pfnmerge;
2207
2208         support = domain->iommu_superpage;
2209
2210         /* To use a large page, the virtual *and* physical addresses
2211            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2212            of them will mean we have to use smaller pages. So just
2213            merge them and check both at once. */
2214         pfnmerge = iov_pfn | phy_pfn;
2215
2216         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2217                 pages >>= VTD_STRIDE_SHIFT;
2218                 if (!pages)
2219                         break;
2220                 pfnmerge >>= VTD_STRIDE_SHIFT;
2221                 level++;
2222                 support--;
2223         }
2224         return level;
2225 }
2226
2227 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2228                             struct scatterlist *sg, unsigned long phys_pfn,
2229                             unsigned long nr_pages, int prot)
2230 {
2231         struct dma_pte *first_pte = NULL, *pte = NULL;
2232         phys_addr_t uninitialized_var(pteval);
2233         unsigned long sg_res = 0;
2234         unsigned int largepage_lvl = 0;
2235         unsigned long lvl_pages = 0;
2236
2237         BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2238
2239         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2240                 return -EINVAL;
2241
2242         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2243
2244         if (!sg) {
2245                 sg_res = nr_pages;
2246                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2247         }
2248
2249         while (nr_pages > 0) {
2250                 uint64_t tmp;
2251
2252                 if (!sg_res) {
2253                         sg_res = aligned_nrpages(sg->offset, sg->length);
2254                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2255                         sg->dma_length = sg->length;
2256                         pteval = page_to_phys(sg_page(sg)) | prot;
2257                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
2258                 }
2259
2260                 if (!pte) {
2261                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2262
2263                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2264                         if (!pte)
2265                                 return -ENOMEM;
2266                         /* It is large page*/
2267                         if (largepage_lvl > 1) {
2268                                 unsigned long nr_superpages, end_pfn;
2269
2270                                 pteval |= DMA_PTE_LARGE_PAGE;
2271                                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2272
2273                                 nr_superpages = sg_res / lvl_pages;
2274                                 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2275
2276                                 /*
2277                                  * Ensure that old small page tables are
2278                                  * removed to make room for superpage(s).
2279                                  * We're adding new large pages, so make sure
2280                                  * we don't remove their parent tables.
2281                                  */
2282                                 dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2283                                                        largepage_lvl + 1);
2284                         } else {
2285                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2286                         }
2287
2288                 }
2289                 /* We don't need lock here, nobody else
2290                  * touches the iova range
2291                  */
2292                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2293                 if (tmp) {
2294                         static int dumps = 5;
2295                         pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2296                                 iov_pfn, tmp, (unsigned long long)pteval);
2297                         if (dumps) {
2298                                 dumps--;
2299                                 debug_dma_dump_mappings(NULL);
2300                         }
2301                         WARN_ON(1);
2302                 }
2303
2304                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2305
2306                 BUG_ON(nr_pages < lvl_pages);
2307                 BUG_ON(sg_res < lvl_pages);
2308
2309                 nr_pages -= lvl_pages;
2310                 iov_pfn += lvl_pages;
2311                 phys_pfn += lvl_pages;
2312                 pteval += lvl_pages * VTD_PAGE_SIZE;
2313                 sg_res -= lvl_pages;
2314
2315                 /* If the next PTE would be the first in a new page, then we
2316                    need to flush the cache on the entries we've just written.
2317                    And then we'll need to recalculate 'pte', so clear it and
2318                    let it get set again in the if (!pte) block above.
2319
2320                    If we're done (!nr_pages) we need to flush the cache too.
2321
2322                    Also if we've been setting superpages, we may need to
2323                    recalculate 'pte' and switch back to smaller pages for the
2324                    end of the mapping, if the trailing size is not enough to
2325                    use another superpage (i.e. sg_res < lvl_pages). */
2326                 pte++;
2327                 if (!nr_pages || first_pte_in_page(pte) ||
2328                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
2329                         domain_flush_cache(domain, first_pte,
2330                                            (void *)pte - (void *)first_pte);
2331                         pte = NULL;
2332                 }
2333
2334                 if (!sg_res && nr_pages)
2335                         sg = sg_next(sg);
2336         }
2337         return 0;
2338 }
2339
2340 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2341                                     struct scatterlist *sg, unsigned long nr_pages,
2342                                     int prot)
2343 {
2344         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2345 }
2346
2347 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2348                                      unsigned long phys_pfn, unsigned long nr_pages,
2349                                      int prot)
2350 {
2351         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2352 }
2353
2354 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2355 {
2356         unsigned long flags;
2357         struct context_entry *context;
2358         u16 did_old;
2359
2360         if (!iommu)
2361                 return;
2362
2363         spin_lock_irqsave(&iommu->lock, flags);
2364         context = iommu_context_addr(iommu, bus, devfn, 0);
2365         if (!context) {
2366                 spin_unlock_irqrestore(&iommu->lock, flags);
2367                 return;
2368         }
2369         did_old = context_domain_id(context);
2370         context_clear_entry(context);
2371         __iommu_flush_cache(iommu, context, sizeof(*context));
2372         spin_unlock_irqrestore(&iommu->lock, flags);
2373         iommu->flush.flush_context(iommu,
2374                                    did_old,
2375                                    (((u16)bus) << 8) | devfn,
2376                                    DMA_CCMD_MASK_NOBIT,
2377                                    DMA_CCMD_DEVICE_INVL);
2378         iommu->flush.flush_iotlb(iommu,
2379                                  did_old,
2380                                  0,
2381                                  0,
2382                                  DMA_TLB_DSI_FLUSH);
2383 }
2384
2385 static inline void unlink_domain_info(struct device_domain_info *info)
2386 {
2387         assert_spin_locked(&device_domain_lock);
2388         list_del(&info->link);
2389         list_del(&info->global);
2390         if (info->dev)
2391                 info->dev->archdata.iommu = NULL;
2392 }
2393
2394 static void domain_remove_dev_info(struct dmar_domain *domain)
2395 {
2396         struct device_domain_info *info, *tmp;
2397         unsigned long flags;
2398
2399         spin_lock_irqsave(&device_domain_lock, flags);
2400         list_for_each_entry_safe(info, tmp, &domain->devices, link)
2401                 __dmar_remove_one_dev_info(info);
2402         spin_unlock_irqrestore(&device_domain_lock, flags);
2403 }
2404
2405 /*
2406  * find_domain
2407  * Note: we use struct device->archdata.iommu stores the info
2408  */
2409 static struct dmar_domain *find_domain(struct device *dev)
2410 {
2411         struct device_domain_info *info;
2412
2413         /* No lock here, assumes no domain exit in normal case */
2414         info = dev->archdata.iommu;
2415         if (likely(info))
2416                 return info->domain;
2417         return NULL;
2418 }
2419
2420 static inline struct device_domain_info *
2421 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2422 {
2423         struct device_domain_info *info;
2424
2425         list_for_each_entry(info, &device_domain_list, global)
2426                 if (info->iommu->segment == segment && info->bus == bus &&
2427                     info->devfn == devfn)
2428                         return info;
2429
2430         return NULL;
2431 }
2432
2433 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2434                                                     int bus, int devfn,
2435                                                     struct device *dev,
2436                                                     struct dmar_domain *domain)
2437 {
2438         struct dmar_domain *found = NULL;
2439         struct device_domain_info *info;
2440         unsigned long flags;
2441         int ret;
2442
2443         info = alloc_devinfo_mem();
2444         if (!info)
2445                 return NULL;
2446
2447         info->bus = bus;
2448         info->devfn = devfn;
2449         info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2450         info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2451         info->ats_qdep = 0;
2452         info->dev = dev;
2453         info->domain = domain;
2454         info->iommu = iommu;
2455
2456         if (dev && dev_is_pci(dev)) {
2457                 struct pci_dev *pdev = to_pci_dev(info->dev);
2458
2459                 if (ecap_dev_iotlb_support(iommu->ecap) &&
2460                     pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2461                     dmar_find_matched_atsr_unit(pdev))
2462                         info->ats_supported = 1;
2463
2464                 if (ecs_enabled(iommu)) {
2465                         if (pasid_enabled(iommu)) {
2466                                 int features = pci_pasid_features(pdev);
2467                                 if (features >= 0)
2468                                         info->pasid_supported = features | 1;
2469                         }
2470
2471                         if (info->ats_supported && ecap_prs(iommu->ecap) &&
2472                             pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2473                                 info->pri_supported = 1;
2474                 }
2475         }
2476
2477         spin_lock_irqsave(&device_domain_lock, flags);
2478         if (dev)
2479                 found = find_domain(dev);
2480
2481         if (!found) {
2482                 struct device_domain_info *info2;
2483                 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2484                 if (info2) {
2485                         found      = info2->domain;
2486                         info2->dev = dev;
2487                 }
2488         }
2489
2490         if (found) {
2491                 spin_unlock_irqrestore(&device_domain_lock, flags);
2492                 free_devinfo_mem(info);
2493                 /* Caller must free the original domain */
2494                 return found;
2495         }
2496
2497         spin_lock(&iommu->lock);
2498         ret = domain_attach_iommu(domain, iommu);
2499         spin_unlock(&iommu->lock);
2500
2501         if (ret) {
2502                 spin_unlock_irqrestore(&device_domain_lock, flags);
2503                 free_devinfo_mem(info);
2504                 return NULL;
2505         }
2506
2507         list_add(&info->link, &domain->devices);
2508         list_add(&info->global, &device_domain_list);
2509         if (dev)
2510                 dev->archdata.iommu = info;
2511         spin_unlock_irqrestore(&device_domain_lock, flags);
2512
2513         if (dev && domain_context_mapping(domain, dev)) {
2514                 pr_err("Domain context map for %s failed\n", dev_name(dev));
2515                 dmar_remove_one_dev_info(domain, dev);
2516                 return NULL;
2517         }
2518
2519         return domain;
2520 }
2521
2522 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2523 {
2524         *(u16 *)opaque = alias;
2525         return 0;
2526 }
2527
2528 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2529 {
2530         struct device_domain_info *info = NULL;
2531         struct dmar_domain *domain = NULL;
2532         struct intel_iommu *iommu;
2533         u16 req_id, dma_alias;
2534         unsigned long flags;
2535         u8 bus, devfn;
2536
2537         iommu = device_to_iommu(dev, &bus, &devfn);
2538         if (!iommu)
2539                 return NULL;
2540
2541         req_id = ((u16)bus << 8) | devfn;
2542
2543         if (dev_is_pci(dev)) {
2544                 struct pci_dev *pdev = to_pci_dev(dev);
2545
2546                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2547
2548                 spin_lock_irqsave(&device_domain_lock, flags);
2549                 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2550                                                       PCI_BUS_NUM(dma_alias),
2551                                                       dma_alias & 0xff);
2552                 if (info) {
2553                         iommu = info->iommu;
2554                         domain = info->domain;
2555                 }
2556                 spin_unlock_irqrestore(&device_domain_lock, flags);
2557
2558                 /* DMA alias already has a domain, use it */
2559                 if (info)
2560                         goto out;
2561         }
2562
2563         /* Allocate and initialize new domain for the device */
2564         domain = alloc_domain(0);
2565         if (!domain)
2566                 return NULL;
2567         if (domain_init(domain, iommu, gaw)) {
2568                 domain_exit(domain);
2569                 return NULL;
2570         }
2571
2572 out:
2573
2574         return domain;
2575 }
2576
2577 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2578                                               struct dmar_domain *domain)
2579 {
2580         struct intel_iommu *iommu;
2581         struct dmar_domain *tmp;
2582         u16 req_id, dma_alias;
2583         u8 bus, devfn;
2584
2585         iommu = device_to_iommu(dev, &bus, &devfn);
2586         if (!iommu)
2587                 return NULL;
2588
2589         req_id = ((u16)bus << 8) | devfn;
2590
2591         if (dev_is_pci(dev)) {
2592                 struct pci_dev *pdev = to_pci_dev(dev);
2593
2594                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2595
2596                 /* register PCI DMA alias device */
2597                 if (req_id != dma_alias) {
2598                         tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2599                                         dma_alias & 0xff, NULL, domain);
2600
2601                         if (!tmp || tmp != domain)
2602                                 return tmp;
2603                 }
2604         }
2605
2606         tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2607         if (!tmp || tmp != domain)
2608                 return tmp;
2609
2610         return domain;
2611 }
2612
2613 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2614 {
2615         struct dmar_domain *domain, *tmp;
2616
2617         domain = find_domain(dev);
2618         if (domain)
2619                 goto out;
2620
2621         domain = find_or_alloc_domain(dev, gaw);
2622         if (!domain)
2623                 goto out;
2624
2625         tmp = set_domain_for_dev(dev, domain);
2626         if (!tmp || domain != tmp) {
2627                 domain_exit(domain);
2628                 domain = tmp;
2629         }
2630
2631 out:
2632
2633         return domain;
2634 }
2635
2636 static int iommu_domain_identity_map(struct dmar_domain *domain,
2637                                      unsigned long long start,
2638                                      unsigned long long end)
2639 {
2640         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2641         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2642
2643         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2644                           dma_to_mm_pfn(last_vpfn))) {
2645                 pr_err("Reserving iova failed\n");
2646                 return -ENOMEM;
2647         }
2648
2649         pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2650         /*
2651          * RMRR range might have overlap with physical memory range,
2652          * clear it first
2653          */
2654         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2655
2656         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2657                                   last_vpfn - first_vpfn + 1,
2658                                   DMA_PTE_READ|DMA_PTE_WRITE);
2659 }
2660
2661 static int domain_prepare_identity_map(struct device *dev,
2662                                        struct dmar_domain *domain,
2663                                        unsigned long long start,
2664                                        unsigned long long end)
2665 {
2666         /* For _hardware_ passthrough, don't bother. But for software
2667            passthrough, we do it anyway -- it may indicate a memory
2668            range which is reserved in E820, so which didn't get set
2669            up to start with in si_domain */
2670         if (domain == si_domain && hw_pass_through) {
2671                 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2672                         dev_name(dev), start, end);
2673                 return 0;
2674         }
2675
2676         pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2677                 dev_name(dev), start, end);
2678
2679         if (end < start) {
2680                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2681                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2682                         dmi_get_system_info(DMI_BIOS_VENDOR),
2683                         dmi_get_system_info(DMI_BIOS_VERSION),
2684                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2685                 return -EIO;
2686         }
2687
2688         if (end >> agaw_to_width(domain->agaw)) {
2689                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2690                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2691                      agaw_to_width(domain->agaw),
2692                      dmi_get_system_info(DMI_BIOS_VENDOR),
2693                      dmi_get_system_info(DMI_BIOS_VERSION),
2694                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2695                 return -EIO;
2696         }
2697
2698         return iommu_domain_identity_map(domain, start, end);
2699 }
2700
2701 static int iommu_prepare_identity_map(struct device *dev,
2702                                       unsigned long long start,
2703                                       unsigned long long end)
2704 {
2705         struct dmar_domain *domain;
2706         int ret;
2707
2708         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2709         if (!domain)
2710                 return -ENOMEM;
2711
2712         ret = domain_prepare_identity_map(dev, domain, start, end);
2713         if (ret)
2714                 domain_exit(domain);
2715
2716         return ret;
2717 }
2718
2719 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2720                                          struct device *dev)
2721 {
2722         if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2723                 return 0;
2724         return iommu_prepare_identity_map(dev, rmrr->base_address,
2725                                           rmrr->end_address);
2726 }
2727
2728 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2729 static inline void iommu_prepare_isa(void)
2730 {
2731         struct pci_dev *pdev;
2732         int ret;
2733
2734         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2735         if (!pdev)
2736                 return;
2737
2738         pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2739         ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2740
2741         if (ret)
2742                 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2743
2744         pci_dev_put(pdev);
2745 }
2746 #else
2747 static inline void iommu_prepare_isa(void)
2748 {
2749         return;
2750 }
2751 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2752
2753 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2754
2755 static int __init si_domain_init(int hw)
2756 {
2757         int nid, ret = 0;
2758
2759         si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2760         if (!si_domain)
2761                 return -EFAULT;
2762
2763         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2764                 domain_exit(si_domain);
2765                 return -EFAULT;
2766         }
2767
2768         pr_debug("Identity mapping domain allocated\n");
2769
2770         if (hw)
2771                 return 0;
2772
2773         for_each_online_node(nid) {
2774                 unsigned long start_pfn, end_pfn;
2775                 int i;
2776
2777                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2778                         ret = iommu_domain_identity_map(si_domain,
2779                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2780                         if (ret)
2781                                 return ret;
2782                 }
2783         }
2784
2785         return 0;
2786 }
2787
2788 static int identity_mapping(struct device *dev)
2789 {
2790         struct device_domain_info *info;
2791
2792         if (likely(!iommu_identity_mapping))
2793                 return 0;
2794
2795         info = dev->archdata.iommu;
2796         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2797                 return (info->domain == si_domain);
2798
2799         return 0;
2800 }
2801
2802 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2803 {
2804         struct dmar_domain *ndomain;
2805         struct intel_iommu *iommu;
2806         u8 bus, devfn;
2807
2808         iommu = device_to_iommu(dev, &bus, &devfn);
2809         if (!iommu)
2810                 return -ENODEV;
2811
2812         ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2813         if (ndomain != domain)
2814                 return -EBUSY;
2815
2816         return 0;
2817 }
2818
2819 static bool device_has_rmrr(struct device *dev)
2820 {
2821         struct dmar_rmrr_unit *rmrr;
2822         struct device *tmp;
2823         int i;
2824
2825         rcu_read_lock();
2826         for_each_rmrr_units(rmrr) {
2827                 /*
2828                  * Return TRUE if this RMRR contains the device that
2829                  * is passed in.
2830                  */
2831                 for_each_active_dev_scope(rmrr->devices,
2832                                           rmrr->devices_cnt, i, tmp)
2833                         if (tmp == dev) {
2834                                 rcu_read_unlock();
2835                                 return true;
2836                         }
2837         }
2838         rcu_read_unlock();
2839         return false;
2840 }
2841
2842 /*
2843  * There are a couple cases where we need to restrict the functionality of
2844  * devices associated with RMRRs.  The first is when evaluating a device for
2845  * identity mapping because problems exist when devices are moved in and out
2846  * of domains and their respective RMRR information is lost.  This means that
2847  * a device with associated RMRRs will never be in a "passthrough" domain.
2848  * The second is use of the device through the IOMMU API.  This interface
2849  * expects to have full control of the IOVA space for the device.  We cannot
2850  * satisfy both the requirement that RMRR access is maintained and have an
2851  * unencumbered IOVA space.  We also have no ability to quiesce the device's
2852  * use of the RMRR space or even inform the IOMMU API user of the restriction.
2853  * We therefore prevent devices associated with an RMRR from participating in
2854  * the IOMMU API, which eliminates them from device assignment.
2855  *
2856  * In both cases we assume that PCI USB devices with RMRRs have them largely
2857  * for historical reasons and that the RMRR space is not actively used post
2858  * boot.  This exclusion may change if vendors begin to abuse it.
2859  *
2860  * The same exception is made for graphics devices, with the requirement that
2861  * any use of the RMRR regions will be torn down before assigning the device
2862  * to a guest.
2863  */
2864 static bool device_is_rmrr_locked(struct device *dev)
2865 {
2866         if (!device_has_rmrr(dev))
2867                 return false;
2868
2869         if (dev_is_pci(dev)) {
2870                 struct pci_dev *pdev = to_pci_dev(dev);
2871
2872                 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2873                         return false;
2874         }
2875
2876         return true;
2877 }
2878
2879 static int iommu_should_identity_map(struct device *dev, int startup)
2880 {
2881
2882         if (dev_is_pci(dev)) {
2883                 struct pci_dev *pdev = to_pci_dev(dev);
2884
2885                 if (device_is_rmrr_locked(dev))
2886                         return 0;
2887
2888                 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2889                         return 1;
2890
2891                 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2892                         return 1;
2893
2894                 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2895                         return 0;
2896
2897                 /*
2898                  * We want to start off with all devices in the 1:1 domain, and
2899                  * take them out later if we find they can't access all of memory.
2900                  *
2901                  * However, we can't do this for PCI devices behind bridges,
2902                  * because all PCI devices behind the same bridge will end up
2903                  * with the same source-id on their transactions.
2904                  *
2905                  * Practically speaking, we can't change things around for these
2906                  * devices at run-time, because we can't be sure there'll be no
2907                  * DMA transactions in flight for any of their siblings.
2908                  *
2909                  * So PCI devices (unless they're on the root bus) as well as
2910                  * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2911                  * the 1:1 domain, just in _case_ one of their siblings turns out
2912                  * not to be able to map all of memory.
2913                  */
2914                 if (!pci_is_pcie(pdev)) {
2915                         if (!pci_is_root_bus(pdev->bus))
2916                                 return 0;
2917                         if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2918                                 return 0;
2919                 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2920                         return 0;
2921         } else {
2922                 if (device_has_rmrr(dev))
2923                         return 0;
2924         }
2925
2926         /*
2927          * At boot time, we don't yet know if devices will be 64-bit capable.
2928          * Assume that they will — if they turn out not to be, then we can
2929          * take them out of the 1:1 domain later.
2930          */
2931         if (!startup) {
2932                 /*
2933                  * If the device's dma_mask is less than the system's memory
2934                  * size then this is not a candidate for identity mapping.
2935                  */
2936                 u64 dma_mask = *dev->dma_mask;
2937
2938                 if (dev->coherent_dma_mask &&
2939                     dev->coherent_dma_mask < dma_mask)
2940                         dma_mask = dev->coherent_dma_mask;
2941
2942                 return dma_mask >= dma_get_required_mask(dev);
2943         }
2944
2945         return 1;
2946 }
2947
2948 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2949 {
2950         int ret;
2951
2952         if (!iommu_should_identity_map(dev, 1))
2953                 return 0;
2954
2955         ret = domain_add_dev_info(si_domain, dev);
2956         if (!ret)
2957                 pr_info("%s identity mapping for device %s\n",
2958                         hw ? "Hardware" : "Software", dev_name(dev));
2959         else if (ret == -ENODEV)
2960                 /* device not associated with an iommu */
2961                 ret = 0;
2962
2963         return ret;
2964 }
2965
2966
2967 static int __init iommu_prepare_static_identity_mapping(int hw)
2968 {
2969         struct pci_dev *pdev = NULL;
2970         struct dmar_drhd_unit *drhd;
2971         struct intel_iommu *iommu;
2972         struct device *dev;
2973         int i;
2974         int ret = 0;
2975
2976         for_each_pci_dev(pdev) {
2977                 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2978                 if (ret)
2979                         return ret;
2980         }
2981
2982         for_each_active_iommu(iommu, drhd)
2983                 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2984                         struct acpi_device_physical_node *pn;
2985                         struct acpi_device *adev;
2986
2987                         if (dev->bus != &acpi_bus_type)
2988                                 continue;
2989
2990                         adev= to_acpi_device(dev);
2991                         mutex_lock(&adev->physical_node_lock);
2992                         list_for_each_entry(pn, &adev->physical_node_list, node) {
2993                                 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2994                                 if (ret)
2995                                         break;
2996                         }
2997                         mutex_unlock(&adev->physical_node_lock);
2998                         if (ret)
2999                                 return ret;
3000                 }
3001
3002         return 0;
3003 }
3004
3005 static void intel_iommu_init_qi(struct intel_iommu *iommu)
3006 {
3007         /*
3008          * Start from the sane iommu hardware state.
3009          * If the queued invalidation is already initialized by us
3010          * (for example, while enabling interrupt-remapping) then
3011          * we got the things already rolling from a sane state.
3012          */
3013         if (!iommu->qi) {
3014                 /*
3015                  * Clear any previous faults.
3016                  */
3017                 dmar_fault(-1, iommu);
3018                 /*
3019                  * Disable queued invalidation if supported and already enabled
3020                  * before OS handover.
3021                  */
3022                 dmar_disable_qi(iommu);
3023         }
3024
3025         if (dmar_enable_qi(iommu)) {
3026                 /*
3027                  * Queued Invalidate not enabled, use Register Based Invalidate
3028                  */
3029                 iommu->flush.flush_context = __iommu_flush_context;
3030                 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
3031                 pr_info("%s: Using Register based invalidation\n",
3032                         iommu->name);
3033         } else {
3034                 iommu->flush.flush_context = qi_flush_context;
3035                 iommu->flush.flush_iotlb = qi_flush_iotlb;
3036                 pr_info("%s: Using Queued invalidation\n", iommu->name);
3037         }
3038 }
3039
3040 static int copy_context_table(struct intel_iommu *iommu,
3041                               struct root_entry *old_re,
3042                               struct context_entry **tbl,
3043                               int bus, bool ext)
3044 {
3045         int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3046         struct context_entry *new_ce = NULL, ce;
3047         struct context_entry *old_ce = NULL;
3048         struct root_entry re;
3049         phys_addr_t old_ce_phys;
3050
3051         tbl_idx = ext ? bus * 2 : bus;
3052         memcpy(&re, old_re, sizeof(re));
3053
3054         for (devfn = 0; devfn < 256; devfn++) {
3055                 /* First calculate the correct index */
3056                 idx = (ext ? devfn * 2 : devfn) % 256;
3057
3058                 if (idx == 0) {
3059                         /* First save what we may have and clean up */
3060                         if (new_ce) {
3061                                 tbl[tbl_idx] = new_ce;
3062                                 __iommu_flush_cache(iommu, new_ce,
3063                                                     VTD_PAGE_SIZE);
3064                                 pos = 1;
3065                         }
3066
3067                         if (old_ce)
3068                                 iounmap(old_ce);
3069
3070                         ret = 0;
3071                         if (devfn < 0x80)
3072                                 old_ce_phys = root_entry_lctp(&re);
3073                         else
3074                                 old_ce_phys = root_entry_uctp(&re);
3075
3076                         if (!old_ce_phys) {
3077                                 if (ext && devfn == 0) {
3078                                         /* No LCTP, try UCTP */
3079                                         devfn = 0x7f;
3080                                         continue;
3081                                 } else {
3082                                         goto out;
3083                                 }
3084                         }
3085
3086                         ret = -ENOMEM;
3087                         old_ce = memremap(old_ce_phys, PAGE_SIZE,
3088                                         MEMREMAP_WB);
3089                         if (!old_ce)
3090                                 goto out;
3091
3092                         new_ce = alloc_pgtable_page(iommu->node);
3093                         if (!new_ce)
3094                                 goto out_unmap;
3095
3096                         ret = 0;
3097                 }
3098
3099                 /* Now copy the context entry */
3100                 memcpy(&ce, old_ce + idx, sizeof(ce));
3101
3102                 if (!__context_present(&ce))
3103                         continue;
3104
3105                 did = context_domain_id(&ce);
3106                 if (did >= 0 && did < cap_ndoms(iommu->cap))
3107                         set_bit(did, iommu->domain_ids);
3108
3109                 /*
3110                  * We need a marker for copied context entries. This
3111                  * marker needs to work for the old format as well as
3112                  * for extended context entries.
3113                  *
3114                  * Bit 67 of the context entry is used. In the old
3115                  * format this bit is available to software, in the
3116                  * extended format it is the PGE bit, but PGE is ignored
3117                  * by HW if PASIDs are disabled (and thus still
3118                  * available).
3119                  *
3120                  * So disable PASIDs first and then mark the entry
3121                  * copied. This means that we don't copy PASID
3122                  * translations from the old kernel, but this is fine as
3123                  * faults there are not fatal.
3124                  */
3125                 context_clear_pasid_enable(&ce);
3126                 context_set_copied(&ce);
3127
3128                 new_ce[idx] = ce;
3129         }
3130
3131         tbl[tbl_idx + pos] = new_ce;
3132
3133         __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3134
3135 out_unmap:
3136         memunmap(old_ce);
3137
3138 out:
3139         return ret;
3140 }
3141
3142 static int copy_translation_tables(struct intel_iommu *iommu)
3143 {
3144         struct context_entry **ctxt_tbls;
3145         struct root_entry *old_rt;
3146         phys_addr_t old_rt_phys;
3147         int ctxt_table_entries;
3148         unsigned long flags;
3149         u64 rtaddr_reg;
3150         int bus, ret;
3151         bool new_ext, ext;
3152
3153         rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3154         ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3155         new_ext    = !!ecap_ecs(iommu->ecap);
3156
3157         /*
3158          * The RTT bit can only be changed when translation is disabled,
3159          * but disabling translation means to open a window for data
3160          * corruption. So bail out and don't copy anything if we would
3161          * have to change the bit.
3162          */
3163         if (new_ext != ext)
3164                 return -EINVAL;
3165
3166         old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3167         if (!old_rt_phys)
3168                 return -EINVAL;
3169
3170         old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3171         if (!old_rt)
3172                 return -ENOMEM;
3173
3174         /* This is too big for the stack - allocate it from slab */
3175         ctxt_table_entries = ext ? 512 : 256;
3176         ret = -ENOMEM;
3177         ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
3178         if (!ctxt_tbls)
3179                 goto out_unmap;
3180
3181         for (bus = 0; bus < 256; bus++) {
3182                 ret = copy_context_table(iommu, &old_rt[bus],
3183                                          ctxt_tbls, bus, ext);
3184                 if (ret) {
3185                         pr_err("%s: Failed to copy context table for bus %d\n",
3186                                 iommu->name, bus);
3187                         continue;
3188                 }
3189         }
3190
3191         spin_lock_irqsave(&iommu->lock, flags);
3192
3193         /* Context tables are copied, now write them to the root_entry table */
3194         for (bus = 0; bus < 256; bus++) {
3195                 int idx = ext ? bus * 2 : bus;
3196                 u64 val;
3197
3198                 if (ctxt_tbls[idx]) {
3199                         val = virt_to_phys(ctxt_tbls[idx]) | 1;
3200                         iommu->root_entry[bus].lo = val;
3201                 }
3202
3203                 if (!ext || !ctxt_tbls[idx + 1])
3204                         continue;
3205
3206                 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3207                 iommu->root_entry[bus].hi = val;
3208         }
3209
3210         spin_unlock_irqrestore(&iommu->lock, flags);
3211
3212         kfree(ctxt_tbls);
3213
3214         __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3215
3216         ret = 0;
3217
3218 out_unmap:
3219         memunmap(old_rt);
3220
3221         return ret;
3222 }
3223
3224 static int __init init_dmars(void)
3225 {
3226         struct dmar_drhd_unit *drhd;
3227         struct dmar_rmrr_unit *rmrr;
3228         bool copied_tables = false;
3229         struct device *dev;
3230         struct intel_iommu *iommu;
3231         int i, ret;
3232
3233         /*
3234          * for each drhd
3235          *    allocate root
3236          *    initialize and program root entry to not present
3237          * endfor
3238          */
3239         for_each_drhd_unit(drhd) {
3240                 /*
3241                  * lock not needed as this is only incremented in the single
3242                  * threaded kernel __init code path all other access are read
3243                  * only
3244                  */
3245                 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3246                         g_num_of_iommus++;
3247                         continue;
3248                 }
3249                 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3250         }
3251
3252         /* Preallocate enough resources for IOMMU hot-addition */
3253         if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3254                 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3255
3256         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3257                         GFP_KERNEL);
3258         if (!g_iommus) {
3259                 pr_err("Allocating global iommu array failed\n");
3260                 ret = -ENOMEM;
3261                 goto error;
3262         }
3263
3264         for_each_active_iommu(iommu, drhd) {
3265                 g_iommus[iommu->seq_id] = iommu;
3266
3267                 intel_iommu_init_qi(iommu);
3268
3269                 ret = iommu_init_domains(iommu);
3270                 if (ret)
3271                         goto free_iommu;
3272
3273                 init_translation_status(iommu);
3274
3275                 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3276                         iommu_disable_translation(iommu);
3277                         clear_translation_pre_enabled(iommu);
3278                         pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3279                                 iommu->name);
3280                 }
3281
3282                 /*
3283                  * TBD:
3284                  * we could share the same root & context tables
3285                  * among all IOMMU's. Need to Split it later.
3286                  */
3287                 ret = iommu_alloc_root_entry(iommu);
3288                 if (ret)
3289                         goto free_iommu;
3290
3291                 if (translation_pre_enabled(iommu)) {
3292                         pr_info("Translation already enabled - trying to copy translation structures\n");
3293
3294                         ret = copy_translation_tables(iommu);
3295                         if (ret) {
3296                                 /*
3297                                  * We found the IOMMU with translation
3298                                  * enabled - but failed to copy over the
3299                                  * old root-entry table. Try to proceed
3300                                  * by disabling translation now and
3301                                  * allocating a clean root-entry table.
3302                                  * This might cause DMAR faults, but
3303                                  * probably the dump will still succeed.
3304                                  */
3305                                 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3306                                        iommu->name);
3307                                 iommu_disable_translation(iommu);
3308                                 clear_translation_pre_enabled(iommu);
3309                         } else {
3310                                 pr_info("Copied translation tables from previous kernel for %s\n",
3311                                         iommu->name);
3312                                 copied_tables = true;
3313                         }
3314                 }
3315
3316                 if (!ecap_pass_through(iommu->ecap))
3317                         hw_pass_through = 0;
3318 #ifdef CONFIG_INTEL_IOMMU_SVM
3319                 if (pasid_enabled(iommu))
3320                         intel_svm_alloc_pasid_tables(iommu);
3321 #endif
3322         }
3323
3324         /*
3325          * Now that qi is enabled on all iommus, set the root entry and flush
3326          * caches. This is required on some Intel X58 chipsets, otherwise the
3327          * flush_context function will loop forever and the boot hangs.
3328          */
3329         for_each_active_iommu(iommu, drhd) {
3330                 iommu_flush_write_buffer(iommu);
3331                 iommu_set_root_entry(iommu);
3332                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3333                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3334         }
3335
3336         if (iommu_pass_through)
3337                 iommu_identity_mapping |= IDENTMAP_ALL;
3338
3339 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3340         iommu_identity_mapping |= IDENTMAP_GFX;
3341 #endif
3342
3343         check_tylersburg_isoch();
3344
3345         if (iommu_identity_mapping) {
3346                 ret = si_domain_init(hw_pass_through);
3347                 if (ret)
3348                         goto free_iommu;
3349         }
3350
3351
3352         /*
3353          * If we copied translations from a previous kernel in the kdump
3354          * case, we can not assign the devices to domains now, as that
3355          * would eliminate the old mappings. So skip this part and defer
3356          * the assignment to device driver initialization time.
3357          */
3358         if (copied_tables)
3359                 goto domains_done;
3360
3361         /*
3362          * If pass through is not set or not enabled, setup context entries for
3363          * identity mappings for rmrr, gfx, and isa and may fall back to static
3364          * identity mapping if iommu_identity_mapping is set.
3365          */
3366         if (iommu_identity_mapping) {
3367                 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3368                 if (ret) {
3369                         pr_crit("Failed to setup IOMMU pass-through\n");
3370                         goto free_iommu;
3371                 }
3372         }
3373         /*
3374          * For each rmrr
3375          *   for each dev attached to rmrr
3376          *   do
3377          *     locate drhd for dev, alloc domain for dev
3378          *     allocate free domain
3379          *     allocate page table entries for rmrr
3380          *     if context not allocated for bus
3381          *           allocate and init context
3382          *           set present in root table for this bus
3383          *     init context with domain, translation etc
3384          *    endfor
3385          * endfor
3386          */
3387         pr_info("Setting RMRR:\n");
3388         for_each_rmrr_units(rmrr) {
3389                 /* some BIOS lists non-exist devices in DMAR table. */
3390                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3391                                           i, dev) {
3392                         ret = iommu_prepare_rmrr_dev(rmrr, dev);
3393                         if (ret)
3394                                 pr_err("Mapping reserved region failed\n");
3395                 }
3396         }
3397
3398         iommu_prepare_isa();
3399
3400 domains_done:
3401
3402         /*
3403          * for each drhd
3404          *   enable fault log
3405          *   global invalidate context cache
3406          *   global invalidate iotlb
3407          *   enable translation
3408          */
3409         for_each_iommu(iommu, drhd) {
3410                 if (drhd->ignored) {
3411                         /*
3412                          * we always have to disable PMRs or DMA may fail on
3413                          * this device
3414                          */
3415                         if (force_on)
3416                                 iommu_disable_protect_mem_regions(iommu);
3417                         continue;
3418                 }
3419
3420                 iommu_flush_write_buffer(iommu);
3421
3422 #ifdef CONFIG_INTEL_IOMMU_SVM
3423                 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3424                         ret = intel_svm_enable_prq(iommu);
3425                         if (ret)
3426                                 goto free_iommu;
3427                 }
3428 #endif
3429                 ret = dmar_set_interrupt(iommu);
3430                 if (ret)
3431                         goto free_iommu;
3432
3433                 if (!translation_pre_enabled(iommu))
3434                         iommu_enable_translation(iommu);
3435
3436                 iommu_disable_protect_mem_regions(iommu);
3437         }
3438
3439         return 0;
3440
3441 free_iommu:
3442         for_each_active_iommu(iommu, drhd) {
3443                 disable_dmar_iommu(iommu);
3444                 free_dmar_iommu(iommu);
3445         }
3446
3447         kfree(g_iommus);
3448
3449 error:
3450         return ret;
3451 }
3452
3453 /* This takes a number of _MM_ pages, not VTD pages */
3454 static unsigned long intel_alloc_iova(struct device *dev,
3455                                      struct dmar_domain *domain,
3456                                      unsigned long nrpages, uint64_t dma_mask)
3457 {
3458         unsigned long iova_pfn = 0;
3459
3460         /* Restrict dma_mask to the width that the iommu can handle */
3461         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3462         /* Ensure we reserve the whole size-aligned region */
3463         nrpages = __roundup_pow_of_two(nrpages);
3464
3465         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3466                 /*
3467                  * First try to allocate an io virtual address in
3468                  * DMA_BIT_MASK(32) and if that fails then try allocating
3469                  * from higher range
3470                  */
3471                 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3472                                            IOVA_PFN(DMA_BIT_MASK(32)), false);
3473                 if (iova_pfn)
3474                         return iova_pfn;
3475         }
3476         iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3477                                    IOVA_PFN(dma_mask), true);
3478         if (unlikely(!iova_pfn)) {
3479                 pr_err("Allocating %ld-page iova for %s failed",
3480                        nrpages, dev_name(dev));
3481                 return 0;
3482         }
3483
3484         return iova_pfn;
3485 }
3486
3487 static struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3488 {
3489         struct dmar_domain *domain, *tmp;
3490         struct dmar_rmrr_unit *rmrr;
3491         struct device *i_dev;
3492         int i, ret;
3493
3494         domain = find_domain(dev);
3495         if (domain)
3496                 goto out;
3497
3498         domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3499         if (!domain)
3500                 goto out;
3501
3502         /* We have a new domain - setup possible RMRRs for the device */
3503         rcu_read_lock();
3504         for_each_rmrr_units(rmrr) {
3505                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3506                                           i, i_dev) {
3507                         if (i_dev != dev)
3508                                 continue;
3509
3510                         ret = domain_prepare_identity_map(dev, domain,
3511                                                           rmrr->base_address,
3512                                                           rmrr->end_address);
3513                         if (ret)
3514                                 dev_err(dev, "Mapping reserved region failed\n");
3515                 }
3516         }
3517         rcu_read_unlock();
3518
3519         tmp = set_domain_for_dev(dev, domain);
3520         if (!tmp || domain != tmp) {
3521                 domain_exit(domain);
3522                 domain = tmp;
3523         }
3524
3525 out:
3526
3527         if (!domain)
3528                 pr_err("Allocating domain for %s failed\n", dev_name(dev));
3529
3530
3531         return domain;
3532 }
3533
3534 /* Check if the dev needs to go through non-identity map and unmap process.*/
3535 static int iommu_no_mapping(struct device *dev)
3536 {
3537         int found;
3538
3539         if (iommu_dummy(dev))
3540                 return 1;
3541
3542         if (!iommu_identity_mapping)
3543                 return 0;
3544
3545         found = identity_mapping(dev);
3546         if (found) {
3547                 if (iommu_should_identity_map(dev, 0))
3548                         return 1;
3549                 else {
3550                         /*
3551                          * 32 bit DMA is removed from si_domain and fall back
3552                          * to non-identity mapping.
3553                          */
3554                         dmar_remove_one_dev_info(si_domain, dev);
3555                         pr_info("32bit %s uses non-identity mapping\n",
3556                                 dev_name(dev));
3557                         return 0;
3558                 }
3559         } else {
3560                 /*
3561                  * In case of a detached 64 bit DMA device from vm, the device
3562                  * is put into si_domain for identity mapping.
3563                  */
3564                 if (iommu_should_identity_map(dev, 0)) {
3565                         int ret;
3566                         ret = domain_add_dev_info(si_domain, dev);
3567                         if (!ret) {
3568                                 pr_info("64bit %s uses identity mapping\n",
3569                                         dev_name(dev));
3570                                 return 1;
3571                         }
3572                 }
3573         }
3574
3575         return 0;
3576 }
3577
3578 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3579                                      size_t size, int dir, u64 dma_mask)
3580 {
3581         struct dmar_domain *domain;
3582         phys_addr_t start_paddr;
3583         unsigned long iova_pfn;
3584         int prot = 0;
3585         int ret;
3586         struct intel_iommu *iommu;
3587         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3588
3589         BUG_ON(dir == DMA_NONE);
3590
3591         if (iommu_no_mapping(dev))
3592                 return paddr;
3593
3594         domain = get_valid_domain_for_dev(dev);
3595         if (!domain)
3596                 return 0;
3597
3598         iommu = domain_get_iommu(domain);
3599         size = aligned_nrpages(paddr, size);
3600
3601         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3602         if (!iova_pfn)
3603                 goto error;
3604
3605         /*
3606          * Check if DMAR supports zero-length reads on write only
3607          * mappings..
3608          */
3609         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3610                         !cap_zlr(iommu->cap))
3611                 prot |= DMA_PTE_READ;
3612         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3613                 prot |= DMA_PTE_WRITE;
3614         /*
3615          * paddr - (paddr + size) might be partial page, we should map the whole
3616          * page.  Note: if two part of one page are separately mapped, we
3617          * might have two guest_addr mapping to the same host paddr, but this
3618          * is not a big problem
3619          */
3620         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3621                                  mm_to_dma_pfn(paddr_pfn), size, prot);
3622         if (ret)
3623                 goto error;
3624
3625         /* it's a non-present to present mapping. Only flush if caching mode */
3626         if (cap_caching_mode(iommu->cap))
3627                 iommu_flush_iotlb_psi(iommu, domain,
3628                                       mm_to_dma_pfn(iova_pfn),
3629                                       size, 0, 1);
3630         else
3631                 iommu_flush_write_buffer(iommu);
3632
3633         start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3634         start_paddr += paddr & ~PAGE_MASK;
3635         return start_paddr;
3636
3637 error:
3638         if (iova_pfn)
3639                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3640         pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3641                 dev_name(dev), size, (unsigned long long)paddr, dir);
3642         return 0;
3643 }
3644
3645 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3646                                  unsigned long offset, size_t size,
3647                                  enum dma_data_direction dir,
3648                                  unsigned long attrs)
3649 {
3650         return __intel_map_single(dev, page_to_phys(page) + offset, size,
3651                                   dir, *dev->dma_mask);
3652 }
3653
3654 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3655 {
3656         struct dmar_domain *domain;
3657         unsigned long start_pfn, last_pfn;
3658         unsigned long nrpages;
3659         unsigned long iova_pfn;
3660         struct intel_iommu *iommu;
3661         struct page *freelist;
3662
3663         if (iommu_no_mapping(dev))
3664                 return;
3665
3666         domain = find_domain(dev);
3667         BUG_ON(!domain);
3668
3669         iommu = domain_get_iommu(domain);
3670
3671         iova_pfn = IOVA_PFN(dev_addr);
3672
3673         nrpages = aligned_nrpages(dev_addr, size);
3674         start_pfn = mm_to_dma_pfn(iova_pfn);
3675         last_pfn = start_pfn + nrpages - 1;
3676
3677         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3678                  dev_name(dev), start_pfn, last_pfn);
3679
3680         freelist = domain_unmap(domain, start_pfn, last_pfn);
3681
3682         if (intel_iommu_strict) {
3683                 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3684                                       nrpages, !freelist, 0);
3685                 /* free iova */
3686                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3687                 dma_free_pagelist(freelist);
3688         } else {
3689                 queue_iova(&domain->iovad, iova_pfn, nrpages,
3690                            (unsigned long)freelist);
3691                 /*
3692                  * queue up the release of the unmap to save the 1/6th of the
3693                  * cpu used up by the iotlb flush operation...
3694                  */
3695         }
3696 }
3697
3698 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3699                              size_t size, enum dma_data_direction dir,
3700                              unsigned long attrs)
3701 {
3702         intel_unmap(dev, dev_addr, size);
3703 }
3704
3705 static void *intel_alloc_coherent(struct device *dev, size_t size,
3706                                   dma_addr_t *dma_handle, gfp_t flags,
3707                                   unsigned long attrs)
3708 {
3709         struct page *page = NULL;
3710         int order;
3711
3712         size = PAGE_ALIGN(size);
3713         order = get_order(size);
3714
3715         if (!iommu_no_mapping(dev))
3716                 flags &= ~(GFP_DMA | GFP_DMA32);
3717         else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3718                 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3719                         flags |= GFP_DMA;
3720                 else
3721                         flags |= GFP_DMA32;
3722         }
3723
3724         if (gfpflags_allow_blocking(flags)) {
3725                 unsigned int count = size >> PAGE_SHIFT;
3726
3727                 page = dma_alloc_from_contiguous(dev, count, order, flags);
3728                 if (page && iommu_no_mapping(dev) &&
3729                     page_to_phys(page) + size > dev->coherent_dma_mask) {
3730                         dma_release_from_contiguous(dev, page, count);
3731                         page = NULL;
3732                 }
3733         }
3734
3735         if (!page)
3736                 page = alloc_pages(flags, order);
3737         if (!page)
3738                 return NULL;
3739         memset(page_address(page), 0, size);
3740
3741         *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3742                                          DMA_BIDIRECTIONAL,
3743                                          dev->coherent_dma_mask);
3744         if (*dma_handle)
3745                 return page_address(page);
3746         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3747                 __free_pages(page, order);
3748
3749         return NULL;
3750 }
3751
3752 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3753                                 dma_addr_t dma_handle, unsigned long attrs)
3754 {
3755         int order;
3756         struct page *page = virt_to_page(vaddr);
3757
3758         size = PAGE_ALIGN(size);
3759         order = get_order(size);
3760
3761         intel_unmap(dev, dma_handle, size);
3762         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3763                 __free_pages(page, order);
3764 }
3765
3766 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3767                            int nelems, enum dma_data_direction dir,
3768                            unsigned long attrs)
3769 {
3770         dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3771         unsigned long nrpages = 0;
3772         struct scatterlist *sg;
3773         int i;
3774
3775         for_each_sg(sglist, sg, nelems, i) {
3776                 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3777         }
3778
3779         intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3780 }
3781
3782 static int intel_nontranslate_map_sg(struct device *hddev,
3783         struct scatterlist *sglist, int nelems, int dir)
3784 {
3785         int i;
3786         struct scatterlist *sg;
3787
3788         for_each_sg(sglist, sg, nelems, i) {
3789                 BUG_ON(!sg_page(sg));
3790                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3791                 sg->dma_length = sg->length;
3792         }
3793         return nelems;
3794 }
3795
3796 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3797                         enum dma_data_direction dir, unsigned long attrs)
3798 {
3799         int i;
3800         struct dmar_domain *domain;
3801         size_t size = 0;
3802         int prot = 0;
3803         unsigned long iova_pfn;
3804         int ret;
3805         struct scatterlist *sg;
3806         unsigned long start_vpfn;
3807         struct intel_iommu *iommu;
3808
3809         BUG_ON(dir == DMA_NONE);
3810         if (iommu_no_mapping(dev))
3811                 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3812
3813         domain = get_valid_domain_for_dev(dev);
3814         if (!domain)
3815                 return 0;
3816
3817         iommu = domain_get_iommu(domain);
3818
3819         for_each_sg(sglist, sg, nelems, i)
3820                 size += aligned_nrpages(sg->offset, sg->length);
3821
3822         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3823                                 *dev->dma_mask);
3824         if (!iova_pfn) {
3825                 sglist->dma_length = 0;
3826                 return 0;
3827         }
3828
3829         /*
3830          * Check if DMAR supports zero-length reads on write only
3831          * mappings..
3832          */
3833         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3834                         !cap_zlr(iommu->cap))
3835                 prot |= DMA_PTE_READ;
3836         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3837                 prot |= DMA_PTE_WRITE;
3838
3839         start_vpfn = mm_to_dma_pfn(iova_pfn);
3840
3841         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3842         if (unlikely(ret)) {
3843                 dma_pte_free_pagetable(domain, start_vpfn,
3844                                        start_vpfn + size - 1,
3845                                        agaw_to_level(domain->agaw) + 1);
3846                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3847                 return 0;
3848         }
3849
3850         /* it's a non-present to present mapping. Only flush if caching mode */
3851         if (cap_caching_mode(iommu->cap))
3852                 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3853         else
3854                 iommu_flush_write_buffer(iommu);
3855
3856         return nelems;
3857 }
3858
3859 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3860 {
3861         return !dma_addr;
3862 }
3863
3864 const struct dma_map_ops intel_dma_ops = {
3865         .alloc = intel_alloc_coherent,
3866         .free = intel_free_coherent,
3867         .map_sg = intel_map_sg,
3868         .unmap_sg = intel_unmap_sg,
3869         .map_page = intel_map_page,
3870         .unmap_page = intel_unmap_page,
3871         .mapping_error = intel_mapping_error,
3872 #ifdef CONFIG_X86
3873         .dma_supported = x86_dma_supported,
3874 #endif
3875 };
3876
3877 static inline int iommu_domain_cache_init(void)
3878 {
3879         int ret = 0;
3880
3881         iommu_domain_cache = kmem_cache_create("iommu_domain",
3882                                          sizeof(struct dmar_domain),
3883                                          0,
3884                                          SLAB_HWCACHE_ALIGN,
3885
3886                                          NULL);
3887         if (!iommu_domain_cache) {
3888                 pr_err("Couldn't create iommu_domain cache\n");
3889                 ret = -ENOMEM;
3890         }
3891
3892         return ret;
3893 }
3894
3895 static inline int iommu_devinfo_cache_init(void)
3896 {
3897         int ret = 0;
3898
3899         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3900                                          sizeof(struct device_domain_info),
3901                                          0,
3902                                          SLAB_HWCACHE_ALIGN,
3903                                          NULL);
3904         if (!iommu_devinfo_cache) {
3905                 pr_err("Couldn't create devinfo cache\n");
3906                 ret = -ENOMEM;
3907         }
3908
3909         return ret;
3910 }
3911
3912 static int __init iommu_init_mempool(void)
3913 {
3914         int ret;
3915         ret = iova_cache_get();
3916         if (ret)
3917                 return ret;
3918
3919         ret = iommu_domain_cache_init();
3920         if (ret)
3921                 goto domain_error;
3922
3923         ret = iommu_devinfo_cache_init();
3924         if (!ret)
3925                 return ret;
3926
3927         kmem_cache_destroy(iommu_domain_cache);
3928 domain_error:
3929         iova_cache_put();
3930
3931         return -ENOMEM;
3932 }
3933
3934 static void __init iommu_exit_mempool(void)
3935 {
3936         kmem_cache_destroy(iommu_devinfo_cache);
3937         kmem_cache_destroy(iommu_domain_cache);
3938         iova_cache_put();
3939 }
3940
3941 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3942 {
3943         struct dmar_drhd_unit *drhd;
3944         u32 vtbar;
3945         int rc;
3946
3947         /* We know that this device on this chipset has its own IOMMU.
3948          * If we find it under a different IOMMU, then the BIOS is lying
3949          * to us. Hope that the IOMMU for this device is actually
3950          * disabled, and it needs no translation...
3951          */
3952         rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3953         if (rc) {
3954                 /* "can't" happen */
3955                 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3956                 return;
3957         }
3958         vtbar &= 0xffff0000;
3959
3960         /* we know that the this iommu should be at offset 0xa000 from vtbar */
3961         drhd = dmar_find_matched_drhd_unit(pdev);
3962         if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3963                             TAINT_FIRMWARE_WORKAROUND,
3964                             "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3965                 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3966 }
3967 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3968
3969 static void __init init_no_remapping_devices(void)
3970 {
3971         struct dmar_drhd_unit *drhd;
3972         struct device *dev;
3973         int i;
3974
3975         for_each_drhd_unit(drhd) {
3976                 if (!drhd->include_all) {
3977                         for_each_active_dev_scope(drhd->devices,
3978                                                   drhd->devices_cnt, i, dev)
3979                                 break;
3980                         /* ignore DMAR unit if no devices exist */
3981                         if (i == drhd->devices_cnt)
3982                                 drhd->ignored = 1;
3983                 }
3984         }
3985
3986         for_each_active_drhd_unit(drhd) {
3987                 if (drhd->include_all)
3988                         continue;
3989
3990                 for_each_active_dev_scope(drhd->devices,
3991                                           drhd->devices_cnt, i, dev)
3992                         if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3993                                 break;
3994                 if (i < drhd->devices_cnt)
3995                         continue;
3996
3997                 /* This IOMMU has *only* gfx devices. Either bypass it or
3998                    set the gfx_mapped flag, as appropriate */
3999                 if (dmar_map_gfx) {
4000                         intel_iommu_gfx_mapped = 1;
4001                 } else {
4002                         drhd->ignored = 1;
4003                         for_each_active_dev_scope(drhd->devices,
4004                                                   drhd->devices_cnt, i, dev)
4005                                 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4006                 }
4007         }
4008 }
4009
4010 #ifdef CONFIG_SUSPEND
4011 static int init_iommu_hw(void)
4012 {
4013         struct dmar_drhd_unit *drhd;
4014         struct intel_iommu *iommu = NULL;
4015
4016         for_each_active_iommu(iommu, drhd)
4017                 if (iommu->qi)
4018                         dmar_reenable_qi(iommu);
4019
4020         for_each_iommu(iommu, drhd) {
4021                 if (drhd->ignored) {
4022                         /*
4023                          * we always have to disable PMRs or DMA may fail on
4024                          * this device
4025                          */
4026                         if (force_on)
4027                                 iommu_disable_protect_mem_regions(iommu);
4028                         continue;
4029                 }
4030         
4031                 iommu_flush_write_buffer(iommu);
4032
4033                 iommu_set_root_entry(iommu);
4034
4035                 iommu->flush.flush_context(iommu, 0, 0, 0,
4036                                            DMA_CCMD_GLOBAL_INVL);
4037                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4038                 iommu_enable_translation(iommu);
4039                 iommu_disable_protect_mem_regions(iommu);
4040         }
4041
4042         return 0;
4043 }
4044
4045 static void iommu_flush_all(void)
4046 {
4047         struct dmar_drhd_unit *drhd;
4048         struct intel_iommu *iommu;
4049
4050         for_each_active_iommu(iommu, drhd) {
4051                 iommu->flush.flush_context(iommu, 0, 0, 0,
4052                                            DMA_CCMD_GLOBAL_INVL);
4053                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4054                                          DMA_TLB_GLOBAL_FLUSH);
4055         }
4056 }
4057
4058 static int iommu_suspend(void)
4059 {
4060         struct dmar_drhd_unit *drhd;
4061         struct intel_iommu *iommu = NULL;
4062         unsigned long flag;
4063
4064         for_each_active_iommu(iommu, drhd) {
4065                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
4066                                                  GFP_ATOMIC);
4067                 if (!iommu->iommu_state)
4068                         goto nomem;
4069         }
4070
4071         iommu_flush_all();
4072
4073         for_each_active_iommu(iommu, drhd) {
4074                 iommu_disable_translation(iommu);
4075
4076                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4077
4078                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4079                         readl(iommu->reg + DMAR_FECTL_REG);
4080                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4081                         readl(iommu->reg + DMAR_FEDATA_REG);
4082                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4083                         readl(iommu->reg + DMAR_FEADDR_REG);
4084                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4085                         readl(iommu->reg + DMAR_FEUADDR_REG);
4086
4087                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4088         }
4089         return 0;
4090
4091 nomem:
4092         for_each_active_iommu(iommu, drhd)
4093                 kfree(iommu->iommu_state);
4094
4095         return -ENOMEM;
4096 }
4097
4098 static void iommu_resume(void)
4099 {
4100         struct dmar_drhd_unit *drhd;
4101         struct intel_iommu *iommu = NULL;
4102         unsigned long flag;
4103
4104         if (init_iommu_hw()) {
4105                 if (force_on)
4106                         panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4107                 else
4108                         WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4109                 return;
4110         }
4111
4112         for_each_active_iommu(iommu, drhd) {
4113
4114                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4115
4116                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4117                         iommu->reg + DMAR_FECTL_REG);
4118                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4119                         iommu->reg + DMAR_FEDATA_REG);
4120                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4121                         iommu->reg + DMAR_FEADDR_REG);
4122                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4123                         iommu->reg + DMAR_FEUADDR_REG);
4124
4125                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4126         }
4127
4128         for_each_active_iommu(iommu, drhd)
4129                 kfree(iommu->iommu_state);
4130 }
4131
4132 static struct syscore_ops iommu_syscore_ops = {
4133         .resume         = iommu_resume,
4134         .suspend        = iommu_suspend,
4135 };
4136
4137 static void __init init_iommu_pm_ops(void)
4138 {
4139         register_syscore_ops(&iommu_syscore_ops);
4140 }
4141
4142 #else
4143 static inline void init_iommu_pm_ops(void) {}
4144 #endif  /* CONFIG_PM */
4145
4146
4147 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4148 {
4149         struct acpi_dmar_reserved_memory *rmrr;
4150         int prot = DMA_PTE_READ|DMA_PTE_WRITE;
4151         struct dmar_rmrr_unit *rmrru;
4152         size_t length;
4153
4154         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4155         if (!rmrru)
4156                 goto out;
4157
4158         rmrru->hdr = header;
4159         rmrr = (struct acpi_dmar_reserved_memory *)header;
4160         rmrru->base_address = rmrr->base_address;
4161         rmrru->end_address = rmrr->end_address;
4162
4163         length = rmrr->end_address - rmrr->base_address + 1;
4164         rmrru->resv = iommu_alloc_resv_region(rmrr->base_address, length, prot,
4165                                               IOMMU_RESV_DIRECT);
4166         if (!rmrru->resv)
4167                 goto free_rmrru;
4168
4169         rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4170                                 ((void *)rmrr) + rmrr->header.length,
4171                                 &rmrru->devices_cnt);
4172         if (rmrru->devices_cnt && rmrru->devices == NULL)
4173                 goto free_all;
4174
4175         list_add(&rmrru->list, &dmar_rmrr_units);
4176
4177         return 0;
4178 free_all:
4179         kfree(rmrru->resv);
4180 free_rmrru:
4181         kfree(rmrru);
4182 out:
4183         return -ENOMEM;
4184 }
4185
4186 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4187 {
4188         struct dmar_atsr_unit *atsru;
4189         struct acpi_dmar_atsr *tmp;
4190
4191         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4192                 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4193                 if (atsr->segment != tmp->segment)
4194                         continue;
4195                 if (atsr->header.length != tmp->header.length)
4196                         continue;
4197                 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4198                         return atsru;
4199         }
4200
4201         return NULL;
4202 }
4203
4204 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4205 {
4206         struct acpi_dmar_atsr *atsr;
4207         struct dmar_atsr_unit *atsru;
4208
4209         if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4210                 return 0;
4211
4212         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4213         atsru = dmar_find_atsr(atsr);
4214         if (atsru)
4215                 return 0;
4216
4217         atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4218         if (!atsru)
4219                 return -ENOMEM;
4220
4221         /*
4222          * If memory is allocated from slab by ACPI _DSM method, we need to
4223          * copy the memory content because the memory buffer will be freed
4224          * on return.
4225          */
4226         atsru->hdr = (void *)(atsru + 1);
4227         memcpy(atsru->hdr, hdr, hdr->length);
4228         atsru->include_all = atsr->flags & 0x1;
4229         if (!atsru->include_all) {
4230                 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4231                                 (void *)atsr + atsr->header.length,
4232                                 &atsru->devices_cnt);
4233                 if (atsru->devices_cnt && atsru->devices == NULL) {
4234                         kfree(atsru);
4235                         return -ENOMEM;
4236                 }
4237         }
4238
4239         list_add_rcu(&atsru->list, &dmar_atsr_units);
4240
4241         return 0;
4242 }
4243
4244 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4245 {
4246         dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4247         kfree(atsru);
4248 }
4249
4250 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4251 {
4252         struct acpi_dmar_atsr *atsr;
4253         struct dmar_atsr_unit *atsru;
4254
4255         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4256         atsru = dmar_find_atsr(atsr);
4257         if (atsru) {
4258                 list_del_rcu(&atsru->list);
4259                 synchronize_rcu();
4260                 intel_iommu_free_atsr(atsru);
4261         }
4262
4263         return 0;
4264 }
4265
4266 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4267 {
4268         int i;
4269         struct device *dev;
4270         struct acpi_dmar_atsr *atsr;
4271         struct dmar_atsr_unit *atsru;
4272
4273         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4274         atsru = dmar_find_atsr(atsr);
4275         if (!atsru)
4276                 return 0;
4277
4278         if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4279                 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4280                                           i, dev)
4281                         return -EBUSY;
4282         }
4283
4284         return 0;
4285 }
4286
4287 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4288 {
4289         int sp, ret = 0;
4290         struct intel_iommu *iommu = dmaru->iommu;
4291
4292         if (g_iommus[iommu->seq_id])
4293                 return 0;
4294
4295         if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4296                 pr_warn("%s: Doesn't support hardware pass through.\n",
4297                         iommu->name);
4298                 return -ENXIO;
4299         }
4300         if (!ecap_sc_support(iommu->ecap) &&
4301             domain_update_iommu_snooping(iommu)) {
4302                 pr_warn("%s: Doesn't support snooping.\n",
4303                         iommu->name);
4304                 return -ENXIO;
4305         }
4306         sp = domain_update_iommu_superpage(iommu) - 1;
4307         if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4308                 pr_warn("%s: Doesn't support large page.\n",
4309                         iommu->name);
4310                 return -ENXIO;
4311         }
4312
4313         /*
4314          * Disable translation if already enabled prior to OS handover.
4315          */
4316         if (iommu->gcmd & DMA_GCMD_TE)
4317                 iommu_disable_translation(iommu);
4318
4319         g_iommus[iommu->seq_id] = iommu;
4320         ret = iommu_init_domains(iommu);
4321         if (ret == 0)
4322                 ret = iommu_alloc_root_entry(iommu);
4323         if (ret)
4324                 goto out;
4325
4326 #ifdef CONFIG_INTEL_IOMMU_SVM
4327         if (pasid_enabled(iommu))
4328                 intel_svm_alloc_pasid_tables(iommu);
4329 #endif
4330
4331         if (dmaru->ignored) {
4332                 /*
4333                  * we always have to disable PMRs or DMA may fail on this device
4334                  */
4335                 if (force_on)
4336                         iommu_disable_protect_mem_regions(iommu);
4337                 return 0;
4338         }
4339
4340         intel_iommu_init_qi(iommu);
4341         iommu_flush_write_buffer(iommu);
4342
4343 #ifdef CONFIG_INTEL_IOMMU_SVM
4344         if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4345                 ret = intel_svm_enable_prq(iommu);
4346                 if (ret)
4347                         goto disable_iommu;
4348         }
4349 #endif
4350         ret = dmar_set_interrupt(iommu);
4351         if (ret)
4352                 goto disable_iommu;
4353
4354         iommu_set_root_entry(iommu);
4355         iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4356         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4357         iommu_enable_translation(iommu);
4358
4359         iommu_disable_protect_mem_regions(iommu);
4360         return 0;
4361
4362 disable_iommu:
4363         disable_dmar_iommu(iommu);
4364 out:
4365         free_dmar_iommu(iommu);
4366         return ret;
4367 }
4368
4369 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4370 {
4371         int ret = 0;
4372         struct intel_iommu *iommu = dmaru->iommu;
4373
4374         if (!intel_iommu_enabled)
4375                 return 0;
4376         if (iommu == NULL)
4377                 return -EINVAL;
4378
4379         if (insert) {
4380                 ret = intel_iommu_add(dmaru);
4381         } else {
4382                 disable_dmar_iommu(iommu);
4383                 free_dmar_iommu(iommu);
4384         }
4385
4386         return ret;
4387 }
4388
4389 static void intel_iommu_free_dmars(void)
4390 {
4391         struct dmar_rmrr_unit *rmrru, *rmrr_n;
4392         struct dmar_atsr_unit *atsru, *atsr_n;
4393
4394         list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4395                 list_del(&rmrru->list);
4396                 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4397                 kfree(rmrru->resv);
4398                 kfree(rmrru);
4399         }
4400
4401         list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4402                 list_del(&atsru->list);
4403                 intel_iommu_free_atsr(atsru);
4404         }
4405 }
4406
4407 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4408 {
4409         int i, ret = 1;
4410         struct pci_bus *bus;
4411         struct pci_dev *bridge = NULL;
4412         struct device *tmp;
4413         struct acpi_dmar_atsr *atsr;
4414         struct dmar_atsr_unit *atsru;
4415
4416         dev = pci_physfn(dev);
4417         for (bus = dev->bus; bus; bus = bus->parent) {
4418                 bridge = bus->self;
4419                 /* If it's an integrated device, allow ATS */
4420                 if (!bridge)
4421                         return 1;
4422                 /* Connected via non-PCIe: no ATS */
4423                 if (!pci_is_pcie(bridge) ||
4424                     pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4425                         return 0;
4426                 /* If we found the root port, look it up in the ATSR */
4427                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4428                         break;
4429         }
4430
4431         rcu_read_lock();
4432         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4433                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4434                 if (atsr->segment != pci_domain_nr(dev->bus))
4435                         continue;
4436
4437                 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4438                         if (tmp == &bridge->dev)
4439                                 goto out;
4440
4441                 if (atsru->include_all)
4442                         goto out;
4443         }
4444         ret = 0;
4445 out:
4446         rcu_read_unlock();
4447
4448         return ret;
4449 }
4450
4451 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4452 {
4453         int ret = 0;
4454         struct dmar_rmrr_unit *rmrru;
4455         struct dmar_atsr_unit *atsru;
4456         struct acpi_dmar_atsr *atsr;
4457         struct acpi_dmar_reserved_memory *rmrr;
4458
4459         if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4460                 return 0;
4461
4462         list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4463                 rmrr = container_of(rmrru->hdr,
4464                                     struct acpi_dmar_reserved_memory, header);
4465                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4466                         ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4467                                 ((void *)rmrr) + rmrr->header.length,
4468                                 rmrr->segment, rmrru->devices,
4469                                 rmrru->devices_cnt);
4470                         if(ret < 0)
4471                                 return ret;
4472                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4473                         dmar_remove_dev_scope(info, rmrr->segment,
4474                                 rmrru->devices, rmrru->devices_cnt);
4475                 }
4476         }
4477
4478         list_for_each_entry(atsru, &dmar_atsr_units, list) {
4479                 if (atsru->include_all)
4480                         continue;
4481
4482                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4483                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4484                         ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4485                                         (void *)atsr + atsr->header.length,
4486                                         atsr->segment, atsru->devices,
4487                                         atsru->devices_cnt);
4488                         if (ret > 0)
4489                                 break;
4490                         else if(ret < 0)
4491                                 return ret;
4492                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4493                         if (dmar_remove_dev_scope(info, atsr->segment,
4494                                         atsru->devices, atsru->devices_cnt))
4495                                 break;
4496                 }
4497         }
4498
4499         return 0;
4500 }
4501
4502 /*
4503  * Here we only respond to action of unbound device from driver.
4504  *
4505  * Added device is not attached to its DMAR domain here yet. That will happen
4506  * when mapping the device to iova.
4507  */
4508 static int device_notifier(struct notifier_block *nb,
4509                                   unsigned long action, void *data)
4510 {
4511         struct device *dev = data;
4512         struct dmar_domain *domain;
4513
4514         if (iommu_dummy(dev))
4515                 return 0;
4516
4517         if (action != BUS_NOTIFY_REMOVED_DEVICE)
4518                 return 0;
4519
4520         domain = find_domain(dev);
4521         if (!domain)
4522                 return 0;
4523
4524         dmar_remove_one_dev_info(domain, dev);
4525         if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4526                 domain_exit(domain);
4527
4528         return 0;
4529 }
4530
4531 static struct notifier_block device_nb = {
4532         .notifier_call = device_notifier,
4533 };
4534
4535 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4536                                        unsigned long val, void *v)
4537 {
4538         struct memory_notify *mhp = v;
4539         unsigned long long start, end;
4540         unsigned long start_vpfn, last_vpfn;
4541
4542         switch (val) {
4543         case MEM_GOING_ONLINE:
4544                 start = mhp->start_pfn << PAGE_SHIFT;
4545                 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4546                 if (iommu_domain_identity_map(si_domain, start, end)) {
4547                         pr_warn("Failed to build identity map for [%llx-%llx]\n",
4548                                 start, end);
4549                         return NOTIFY_BAD;
4550                 }
4551                 break;
4552
4553         case MEM_OFFLINE:
4554         case MEM_CANCEL_ONLINE:
4555                 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4556                 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4557                 while (start_vpfn <= last_vpfn) {
4558                         struct iova *iova;
4559                         struct dmar_drhd_unit *drhd;
4560                         struct intel_iommu *iommu;
4561                         struct page *freelist;
4562
4563                         iova = find_iova(&si_domain->iovad, start_vpfn);
4564                         if (iova == NULL) {
4565                                 pr_debug("Failed get IOVA for PFN %lx\n",
4566                                          start_vpfn);
4567                                 break;
4568                         }
4569
4570                         iova = split_and_remove_iova(&si_domain->iovad, iova,
4571                                                      start_vpfn, last_vpfn);
4572                         if (iova == NULL) {
4573                                 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4574                                         start_vpfn, last_vpfn);
4575                                 return NOTIFY_BAD;
4576                         }
4577
4578                         freelist = domain_unmap(si_domain, iova->pfn_lo,
4579                                                iova->pfn_hi);
4580
4581                         rcu_read_lock();
4582                         for_each_active_iommu(iommu, drhd)
4583                                 iommu_flush_iotlb_psi(iommu, si_domain,
4584                                         iova->pfn_lo, iova_size(iova),
4585                                         !freelist, 0);
4586                         rcu_read_unlock();
4587                         dma_free_pagelist(freelist);
4588
4589                         start_vpfn = iova->pfn_hi + 1;
4590                         free_iova_mem(iova);
4591                 }
4592                 break;
4593         }
4594
4595         return NOTIFY_OK;
4596 }
4597
4598 static struct notifier_block intel_iommu_memory_nb = {
4599         .notifier_call = intel_iommu_memory_notifier,
4600         .priority = 0
4601 };
4602
4603 static void free_all_cpu_cached_iovas(unsigned int cpu)
4604 {
4605         int i;
4606
4607         for (i = 0; i < g_num_of_iommus; i++) {
4608                 struct intel_iommu *iommu = g_iommus[i];
4609                 struct dmar_domain *domain;
4610                 int did;
4611
4612                 if (!iommu)
4613                         continue;
4614
4615                 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4616                         domain = get_iommu_domain(iommu, (u16)did);
4617
4618                         if (!domain)
4619                                 continue;
4620                         free_cpu_cached_iovas(cpu, &domain->iovad);
4621                 }
4622         }
4623 }
4624
4625 static int intel_iommu_cpu_dead(unsigned int cpu)
4626 {
4627         free_all_cpu_cached_iovas(cpu);
4628         return 0;
4629 }
4630
4631 static void intel_disable_iommus(void)
4632 {
4633         struct intel_iommu *iommu = NULL;
4634         struct dmar_drhd_unit *drhd;
4635
4636         for_each_iommu(iommu, drhd)
4637                 iommu_disable_translation(iommu);
4638 }
4639
4640 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4641 {
4642         struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
4643
4644         return container_of(iommu_dev, struct intel_iommu, iommu);
4645 }
4646
4647 static ssize_t intel_iommu_show_version(struct device *dev,
4648                                         struct device_attribute *attr,
4649                                         char *buf)
4650 {
4651         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4652         u32 ver = readl(iommu->reg + DMAR_VER_REG);
4653         return sprintf(buf, "%d:%d\n",
4654                        DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4655 }
4656 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4657
4658 static ssize_t intel_iommu_show_address(struct device *dev,
4659                                         struct device_attribute *attr,
4660                                         char *buf)
4661 {
4662         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4663         return sprintf(buf, "%llx\n", iommu->reg_phys);
4664 }
4665 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4666
4667 static ssize_t intel_iommu_show_cap(struct device *dev,
4668                                     struct device_attribute *attr,
4669                                     char *buf)
4670 {
4671         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4672         return sprintf(buf, "%llx\n", iommu->cap);
4673 }
4674 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4675
4676 static ssize_t intel_iommu_show_ecap(struct device *dev,
4677                                     struct device_attribute *attr,
4678                                     char *buf)
4679 {
4680         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4681         return sprintf(buf, "%llx\n", iommu->ecap);
4682 }
4683 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4684
4685 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4686                                       struct device_attribute *attr,
4687                                       char *buf)
4688 {
4689         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4690         return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4691 }
4692 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4693
4694 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4695                                            struct device_attribute *attr,
4696                                            char *buf)
4697 {
4698         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4699         return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4700                                                   cap_ndoms(iommu->cap)));
4701 }
4702 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4703
4704 static struct attribute *intel_iommu_attrs[] = {
4705         &dev_attr_version.attr,
4706         &dev_attr_address.attr,
4707         &dev_attr_cap.attr,
4708         &dev_attr_ecap.attr,
4709         &dev_attr_domains_supported.attr,
4710         &dev_attr_domains_used.attr,
4711         NULL,
4712 };
4713
4714 static struct attribute_group intel_iommu_group = {
4715         .name = "intel-iommu",
4716         .attrs = intel_iommu_attrs,
4717 };
4718
4719 const struct attribute_group *intel_iommu_groups[] = {
4720         &intel_iommu_group,
4721         NULL,
4722 };
4723
4724 int __init intel_iommu_init(void)
4725 {
4726         int ret = -ENODEV;
4727         struct dmar_drhd_unit *drhd;
4728         struct intel_iommu *iommu;
4729
4730         /* VT-d is required for a TXT/tboot launch, so enforce that */
4731         force_on = tboot_force_iommu();
4732
4733         if (iommu_init_mempool()) {
4734                 if (force_on)
4735                         panic("tboot: Failed to initialize iommu memory\n");
4736                 return -ENOMEM;
4737         }
4738
4739         down_write(&dmar_global_lock);
4740         if (dmar_table_init()) {
4741                 if (force_on)
4742                         panic("tboot: Failed to initialize DMAR table\n");
4743                 goto out_free_dmar;
4744         }
4745
4746         if (dmar_dev_scope_init() < 0) {
4747                 if (force_on)
4748                         panic("tboot: Failed to initialize DMAR device scope\n");
4749                 goto out_free_dmar;
4750         }
4751
4752         up_write(&dmar_global_lock);
4753
4754         /*
4755          * The bus notifier takes the dmar_global_lock, so lockdep will
4756          * complain later when we register it under the lock.
4757          */
4758         dmar_register_bus_notifier();
4759
4760         down_write(&dmar_global_lock);
4761
4762         if (no_iommu || dmar_disabled) {
4763                 /*
4764                  * We exit the function here to ensure IOMMU's remapping and
4765                  * mempool aren't setup, which means that the IOMMU's PMRs
4766                  * won't be disabled via the call to init_dmars(). So disable
4767                  * it explicitly here. The PMRs were setup by tboot prior to
4768                  * calling SENTER, but the kernel is expected to reset/tear
4769                  * down the PMRs.
4770                  */
4771                 if (intel_iommu_tboot_noforce) {
4772                         for_each_iommu(iommu, drhd)
4773                                 iommu_disable_protect_mem_regions(iommu);
4774                 }
4775
4776                 /*
4777                  * Make sure the IOMMUs are switched off, even when we
4778                  * boot into a kexec kernel and the previous kernel left
4779                  * them enabled
4780                  */
4781                 intel_disable_iommus();
4782                 goto out_free_dmar;
4783         }
4784
4785         if (list_empty(&dmar_rmrr_units))
4786                 pr_info("No RMRR found\n");
4787
4788         if (list_empty(&dmar_atsr_units))
4789                 pr_info("No ATSR found\n");
4790
4791         if (dmar_init_reserved_ranges()) {
4792                 if (force_on)
4793                         panic("tboot: Failed to reserve iommu ranges\n");
4794                 goto out_free_reserved_range;
4795         }
4796
4797         init_no_remapping_devices();
4798
4799         ret = init_dmars();
4800         if (ret) {
4801                 if (force_on)
4802                         panic("tboot: Failed to initialize DMARs\n");
4803                 pr_err("Initialization failed\n");
4804                 goto out_free_reserved_range;
4805         }
4806         up_write(&dmar_global_lock);
4807         pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4808
4809 #ifdef CONFIG_SWIOTLB
4810         swiotlb = 0;
4811 #endif
4812         dma_ops = &intel_dma_ops;
4813
4814         init_iommu_pm_ops();
4815
4816         for_each_active_iommu(iommu, drhd) {
4817                 iommu_device_sysfs_add(&iommu->iommu, NULL,
4818                                        intel_iommu_groups,
4819                                        "%s", iommu->name);
4820                 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
4821                 iommu_device_register(&iommu->iommu);
4822         }
4823
4824         bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4825         bus_register_notifier(&pci_bus_type, &device_nb);
4826         if (si_domain && !hw_pass_through)
4827                 register_memory_notifier(&intel_iommu_memory_nb);
4828         cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4829                           intel_iommu_cpu_dead);
4830         intel_iommu_enabled = 1;
4831
4832         return 0;
4833
4834 out_free_reserved_range:
4835         put_iova_domain(&reserved_iova_list);
4836 out_free_dmar:
4837         intel_iommu_free_dmars();
4838         up_write(&dmar_global_lock);
4839         iommu_exit_mempool();
4840         return ret;
4841 }
4842
4843 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4844 {
4845         struct intel_iommu *iommu = opaque;
4846
4847         domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4848         return 0;
4849 }
4850
4851 /*
4852  * NB - intel-iommu lacks any sort of reference counting for the users of
4853  * dependent devices.  If multiple endpoints have intersecting dependent
4854  * devices, unbinding the driver from any one of them will possibly leave
4855  * the others unable to operate.
4856  */
4857 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4858 {
4859         if (!iommu || !dev || !dev_is_pci(dev))
4860                 return;
4861
4862         pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4863 }
4864
4865 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4866 {
4867         struct intel_iommu *iommu;
4868         unsigned long flags;
4869
4870         assert_spin_locked(&device_domain_lock);
4871
4872         if (WARN_ON(!info))
4873                 return;
4874
4875         iommu = info->iommu;
4876
4877         if (info->dev) {
4878                 iommu_disable_dev_iotlb(info);
4879                 domain_context_clear(iommu, info->dev);
4880         }
4881
4882         unlink_domain_info(info);
4883
4884         spin_lock_irqsave(&iommu->lock, flags);
4885         domain_detach_iommu(info->domain, iommu);
4886         spin_unlock_irqrestore(&iommu->lock, flags);
4887
4888         free_devinfo_mem(info);
4889 }
4890
4891 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4892                                      struct device *dev)
4893 {
4894         struct device_domain_info *info;
4895         unsigned long flags;
4896
4897         spin_lock_irqsave(&device_domain_lock, flags);
4898         info = dev->archdata.iommu;
4899         __dmar_remove_one_dev_info(info);
4900         spin_unlock_irqrestore(&device_domain_lock, flags);
4901 }
4902
4903 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4904 {
4905         int adjust_width;
4906
4907         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
4908         domain_reserve_special_ranges(domain);
4909
4910         /* calculate AGAW */
4911         domain->gaw = guest_width;
4912         adjust_width = guestwidth_to_adjustwidth(guest_width);
4913         domain->agaw = width_to_agaw(adjust_width);
4914
4915         domain->iommu_coherency = 0;
4916         domain->iommu_snooping = 0;
4917         domain->iommu_superpage = 0;
4918         domain->max_addr = 0;
4919
4920         /* always allocate the top pgd */
4921         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4922         if (!domain->pgd)
4923                 return -ENOMEM;
4924         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4925         return 0;
4926 }
4927
4928 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4929 {
4930         struct dmar_domain *dmar_domain;
4931         struct iommu_domain *domain;
4932
4933         if (type != IOMMU_DOMAIN_UNMANAGED)
4934                 return NULL;
4935
4936         dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4937         if (!dmar_domain) {
4938                 pr_err("Can't allocate dmar_domain\n");
4939                 return NULL;
4940         }
4941         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4942                 pr_err("Domain initialization failed\n");
4943                 domain_exit(dmar_domain);
4944                 return NULL;
4945         }
4946         domain_update_iommu_cap(dmar_domain);
4947
4948         domain = &dmar_domain->domain;
4949         domain->geometry.aperture_start = 0;
4950         domain->geometry.aperture_end   = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4951         domain->geometry.force_aperture = true;
4952
4953         return domain;
4954 }
4955
4956 static void intel_iommu_domain_free(struct iommu_domain *domain)
4957 {
4958         domain_exit(to_dmar_domain(domain));
4959 }
4960
4961 static int intel_iommu_attach_device(struct iommu_domain *domain,
4962                                      struct device *dev)
4963 {
4964         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4965         struct intel_iommu *iommu;
4966         int addr_width;
4967         u8 bus, devfn;
4968
4969         if (device_is_rmrr_locked(dev)) {
4970                 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
4971                 return -EPERM;
4972         }
4973
4974         /* normally dev is not mapped */
4975         if (unlikely(domain_context_mapped(dev))) {
4976                 struct dmar_domain *old_domain;
4977
4978                 old_domain = find_domain(dev);
4979                 if (old_domain) {
4980                         rcu_read_lock();
4981                         dmar_remove_one_dev_info(old_domain, dev);
4982                         rcu_read_unlock();
4983
4984                         if (!domain_type_is_vm_or_si(old_domain) &&
4985                              list_empty(&old_domain->devices))
4986                                 domain_exit(old_domain);
4987                 }
4988         }
4989
4990         iommu = device_to_iommu(dev, &bus, &devfn);
4991         if (!iommu)
4992                 return -ENODEV;
4993
4994         /* check if this iommu agaw is sufficient for max mapped address */
4995         addr_width = agaw_to_width(iommu->agaw);
4996         if (addr_width > cap_mgaw(iommu->cap))
4997                 addr_width = cap_mgaw(iommu->cap);
4998
4999         if (dmar_domain->max_addr > (1LL << addr_width)) {
5000                 pr_err("%s: iommu width (%d) is not "
5001                        "sufficient for the mapped address (%llx)\n",
5002                        __func__, addr_width, dmar_domain->max_addr);
5003                 return -EFAULT;
5004         }
5005         dmar_domain->gaw = addr_width;
5006
5007         /*
5008          * Knock out extra levels of page tables if necessary
5009          */
5010         while (iommu->agaw < dmar_domain->agaw) {
5011                 struct dma_pte *pte;
5012
5013                 pte = dmar_domain->pgd;
5014                 if (dma_pte_present(pte)) {
5015                         dmar_domain->pgd = (struct dma_pte *)
5016                                 phys_to_virt(dma_pte_addr(pte));
5017                         free_pgtable_page(pte);
5018                 }
5019                 dmar_domain->agaw--;
5020         }
5021
5022         return domain_add_dev_info(dmar_domain, dev);
5023 }
5024
5025 static void intel_iommu_detach_device(struct iommu_domain *domain,
5026                                       struct device *dev)
5027 {
5028         dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
5029 }
5030
5031 static int intel_iommu_map(struct iommu_domain *domain,
5032                            unsigned long iova, phys_addr_t hpa,
5033                            size_t size, int iommu_prot)
5034 {
5035         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5036         u64 max_addr;
5037         int prot = 0;
5038         int ret;
5039
5040         if (iommu_prot & IOMMU_READ)
5041                 prot |= DMA_PTE_READ;
5042         if (iommu_prot & IOMMU_WRITE)
5043                 prot |= DMA_PTE_WRITE;
5044         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5045                 prot |= DMA_PTE_SNP;
5046
5047         max_addr = iova + size;
5048         if (dmar_domain->max_addr < max_addr) {
5049                 u64 end;
5050
5051                 /* check if minimum agaw is sufficient for mapped address */
5052                 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5053                 if (end < max_addr) {
5054                         pr_err("%s: iommu width (%d) is not "
5055                                "sufficient for the mapped address (%llx)\n",
5056                                __func__, dmar_domain->gaw, max_addr);
5057                         return -EFAULT;
5058                 }
5059                 dmar_domain->max_addr = max_addr;
5060         }
5061         /* Round up size to next multiple of PAGE_SIZE, if it and
5062            the low bits of hpa would take us onto the next page */
5063         size = aligned_nrpages(hpa, size);
5064         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5065                                  hpa >> VTD_PAGE_SHIFT, size, prot);
5066         return ret;
5067 }
5068
5069 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5070                                 unsigned long iova, size_t size)
5071 {
5072         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5073         struct page *freelist = NULL;
5074         struct intel_iommu *iommu;
5075         unsigned long start_pfn, last_pfn;
5076         unsigned int npages;
5077         int iommu_id, level = 0;
5078
5079         /* Cope with horrid API which requires us to unmap more than the
5080            size argument if it happens to be a large-page mapping. */
5081         BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5082
5083         if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5084                 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5085
5086         start_pfn = iova >> VTD_PAGE_SHIFT;
5087         last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5088
5089         freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5090
5091         npages = last_pfn - start_pfn + 1;
5092
5093         for_each_domain_iommu(iommu_id, dmar_domain) {
5094                 iommu = g_iommus[iommu_id];
5095
5096                 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5097                                       start_pfn, npages, !freelist, 0);
5098         }
5099
5100         dma_free_pagelist(freelist);
5101
5102         if (dmar_domain->max_addr == iova + size)
5103                 dmar_domain->max_addr = iova;
5104
5105         return size;
5106 }
5107
5108 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5109                                             dma_addr_t iova)
5110 {
5111         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5112         struct dma_pte *pte;
5113         int level = 0;
5114         u64 phys = 0;
5115
5116         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5117         if (pte)
5118                 phys = dma_pte_addr(pte);
5119
5120         return phys;
5121 }
5122
5123 static bool intel_iommu_capable(enum iommu_cap cap)
5124 {
5125         if (cap == IOMMU_CAP_CACHE_COHERENCY)
5126                 return domain_update_iommu_snooping(NULL) == 1;
5127         if (cap == IOMMU_CAP_INTR_REMAP)
5128                 return irq_remapping_enabled == 1;
5129
5130         return false;
5131 }
5132
5133 static int intel_iommu_add_device(struct device *dev)
5134 {
5135         struct intel_iommu *iommu;
5136         struct iommu_group *group;
5137         u8 bus, devfn;
5138
5139         iommu = device_to_iommu(dev, &bus, &devfn);
5140         if (!iommu)
5141                 return -ENODEV;
5142
5143         iommu_device_link(&iommu->iommu, dev);
5144
5145         group = iommu_group_get_for_dev(dev);
5146
5147         if (IS_ERR(group))
5148                 return PTR_ERR(group);
5149
5150         iommu_group_put(group);
5151         return 0;
5152 }
5153
5154 static void intel_iommu_remove_device(struct device *dev)
5155 {
5156         struct intel_iommu *iommu;
5157         u8 bus, devfn;
5158
5159         iommu = device_to_iommu(dev, &bus, &devfn);
5160         if (!iommu)
5161                 return;
5162
5163         iommu_group_remove_device(dev);
5164
5165         iommu_device_unlink(&iommu->iommu, dev);
5166 }
5167
5168 static void intel_iommu_get_resv_regions(struct device *device,
5169                                          struct list_head *head)
5170 {
5171         struct iommu_resv_region *reg;
5172         struct dmar_rmrr_unit *rmrr;
5173         struct device *i_dev;
5174         int i;
5175
5176         rcu_read_lock();
5177         for_each_rmrr_units(rmrr) {
5178                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5179                                           i, i_dev) {
5180                         if (i_dev != device)
5181                                 continue;
5182
5183                         list_add_tail(&rmrr->resv->list, head);
5184                 }
5185         }
5186         rcu_read_unlock();
5187
5188         reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5189                                       IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5190                                       0, IOMMU_RESV_MSI);
5191         if (!reg)
5192                 return;
5193         list_add_tail(&reg->list, head);
5194 }
5195
5196 static void intel_iommu_put_resv_regions(struct device *dev,
5197                                          struct list_head *head)
5198 {
5199         struct iommu_resv_region *entry, *next;
5200
5201         list_for_each_entry_safe(entry, next, head, list) {
5202                 if (entry->type == IOMMU_RESV_RESERVED)
5203                         kfree(entry);
5204         }
5205 }
5206
5207 #ifdef CONFIG_INTEL_IOMMU_SVM
5208 #define MAX_NR_PASID_BITS (20)
5209 static inline unsigned long intel_iommu_get_pts(struct intel_iommu *iommu)
5210 {
5211         /*
5212          * Convert ecap_pss to extend context entry pts encoding, also
5213          * respect the soft pasid_max value set by the iommu.
5214          * - number of PASID bits = ecap_pss + 1
5215          * - number of PASID table entries = 2^(pts + 5)
5216          * Therefore, pts = ecap_pss - 4
5217          * e.g. KBL ecap_pss = 0x13, PASID has 20 bits, pts = 15
5218          */
5219         if (ecap_pss(iommu->ecap) < 5)
5220                 return 0;
5221
5222         /* pasid_max is encoded as actual number of entries not the bits */
5223         return find_first_bit((unsigned long *)&iommu->pasid_max,
5224                         MAX_NR_PASID_BITS) - 5;
5225 }
5226
5227 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5228 {
5229         struct device_domain_info *info;
5230         struct context_entry *context;
5231         struct dmar_domain *domain;
5232         unsigned long flags;
5233         u64 ctx_lo;
5234         int ret;
5235
5236         domain = get_valid_domain_for_dev(sdev->dev);
5237         if (!domain)
5238                 return -EINVAL;
5239
5240         spin_lock_irqsave(&device_domain_lock, flags);
5241         spin_lock(&iommu->lock);
5242
5243         ret = -EINVAL;
5244         info = sdev->dev->archdata.iommu;
5245         if (!info || !info->pasid_supported)
5246                 goto out;
5247
5248         context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5249         if (WARN_ON(!context))
5250                 goto out;
5251
5252         ctx_lo = context[0].lo;
5253
5254         sdev->did = domain->iommu_did[iommu->seq_id];
5255         sdev->sid = PCI_DEVID(info->bus, info->devfn);
5256
5257         if (!(ctx_lo & CONTEXT_PASIDE)) {
5258                 if (iommu->pasid_state_table)
5259                         context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5260                 context[1].lo = (u64)virt_to_phys(iommu->pasid_table) |
5261                         intel_iommu_get_pts(iommu);
5262
5263                 wmb();
5264                 /* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5265                  * extended to permit requests-with-PASID if the PASIDE bit
5266                  * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5267                  * however, the PASIDE bit is ignored and requests-with-PASID
5268                  * are unconditionally blocked. Which makes less sense.
5269                  * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5270                  * "guest mode" translation types depending on whether ATS
5271                  * is available or not. Annoyingly, we can't use the new
5272                  * modes *unless* PASIDE is set. */
5273                 if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5274                         ctx_lo &= ~CONTEXT_TT_MASK;
5275                         if (info->ats_supported)
5276                                 ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5277                         else
5278                                 ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5279                 }
5280                 ctx_lo |= CONTEXT_PASIDE;
5281                 if (iommu->pasid_state_table)
5282                         ctx_lo |= CONTEXT_DINVE;
5283                 if (info->pri_supported)
5284                         ctx_lo |= CONTEXT_PRS;
5285                 context[0].lo = ctx_lo;
5286                 wmb();
5287                 iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5288                                            DMA_CCMD_MASK_NOBIT,
5289                                            DMA_CCMD_DEVICE_INVL);
5290         }
5291
5292         /* Enable PASID support in the device, if it wasn't already */
5293         if (!info->pasid_enabled)
5294                 iommu_enable_dev_iotlb(info);
5295
5296         if (info->ats_enabled) {
5297                 sdev->dev_iotlb = 1;
5298                 sdev->qdep = info->ats_qdep;
5299                 if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5300                         sdev->qdep = 0;
5301         }
5302         ret = 0;
5303
5304  out:
5305         spin_unlock(&iommu->lock);
5306         spin_unlock_irqrestore(&device_domain_lock, flags);
5307
5308         return ret;
5309 }
5310
5311 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5312 {
5313         struct intel_iommu *iommu;
5314         u8 bus, devfn;
5315
5316         if (iommu_dummy(dev)) {
5317                 dev_warn(dev,
5318                          "No IOMMU translation for device; cannot enable SVM\n");
5319                 return NULL;
5320         }
5321
5322         iommu = device_to_iommu(dev, &bus, &devfn);
5323         if ((!iommu)) {
5324                 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5325                 return NULL;
5326         }
5327
5328         if (!iommu->pasid_table) {
5329                 dev_err(dev, "PASID not enabled on IOMMU; cannot enable SVM\n");
5330                 return NULL;
5331         }
5332
5333         return iommu;
5334 }
5335 #endif /* CONFIG_INTEL_IOMMU_SVM */
5336
5337 const struct iommu_ops intel_iommu_ops = {
5338         .capable                = intel_iommu_capable,
5339         .domain_alloc           = intel_iommu_domain_alloc,
5340         .domain_free            = intel_iommu_domain_free,
5341         .attach_dev             = intel_iommu_attach_device,
5342         .detach_dev             = intel_iommu_detach_device,
5343         .map                    = intel_iommu_map,
5344         .unmap                  = intel_iommu_unmap,
5345         .map_sg                 = default_iommu_map_sg,
5346         .iova_to_phys           = intel_iommu_iova_to_phys,
5347         .add_device             = intel_iommu_add_device,
5348         .remove_device          = intel_iommu_remove_device,
5349         .get_resv_regions       = intel_iommu_get_resv_regions,
5350         .put_resv_regions       = intel_iommu_put_resv_regions,
5351         .device_group           = pci_device_group,
5352         .pgsize_bitmap          = INTEL_IOMMU_PGSIZES,
5353 };
5354
5355 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5356 {
5357         /* G4x/GM45 integrated gfx dmar support is totally busted. */
5358         pr_info("Disabling IOMMU for graphics on this chipset\n");
5359         dmar_map_gfx = 0;
5360 }
5361
5362 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5363 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5364 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5365 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5366 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5367 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5368 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5369
5370 static void quirk_iommu_rwbf(struct pci_dev *dev)
5371 {
5372         /*
5373          * Mobile 4 Series Chipset neglects to set RWBF capability,
5374          * but needs it. Same seems to hold for the desktop versions.
5375          */
5376         pr_info("Forcing write-buffer flush capability\n");
5377         rwbf_quirk = 1;
5378 }
5379
5380 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5381 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5382 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5383 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5384 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5385 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5386 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5387
5388 #define GGC 0x52
5389 #define GGC_MEMORY_SIZE_MASK    (0xf << 8)
5390 #define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
5391 #define GGC_MEMORY_SIZE_1M      (0x1 << 8)
5392 #define GGC_MEMORY_SIZE_2M      (0x3 << 8)
5393 #define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
5394 #define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
5395 #define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
5396 #define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
5397
5398 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5399 {
5400         unsigned short ggc;
5401
5402         if (pci_read_config_word(dev, GGC, &ggc))
5403                 return;
5404
5405         if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5406                 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5407                 dmar_map_gfx = 0;
5408         } else if (dmar_map_gfx) {
5409                 /* we have to ensure the gfx device is idle before we flush */
5410                 pr_info("Disabling batched IOTLB flush on Ironlake\n");
5411                 intel_iommu_strict = 1;
5412        }
5413 }
5414 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5415 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5416 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5417 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5418
5419 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5420    ISOCH DMAR unit for the Azalia sound device, but not give it any
5421    TLB entries, which causes it to deadlock. Check for that.  We do
5422    this in a function called from init_dmars(), instead of in a PCI
5423    quirk, because we don't want to print the obnoxious "BIOS broken"
5424    message if VT-d is actually disabled.
5425 */
5426 static void __init check_tylersburg_isoch(void)
5427 {
5428         struct pci_dev *pdev;
5429         uint32_t vtisochctrl;
5430
5431         /* If there's no Azalia in the system anyway, forget it. */
5432         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5433         if (!pdev)
5434                 return;
5435         pci_dev_put(pdev);
5436
5437         /* System Management Registers. Might be hidden, in which case
5438            we can't do the sanity check. But that's OK, because the
5439            known-broken BIOSes _don't_ actually hide it, so far. */
5440         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5441         if (!pdev)
5442                 return;
5443
5444         if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5445                 pci_dev_put(pdev);
5446                 return;
5447         }
5448
5449         pci_dev_put(pdev);
5450
5451         /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5452         if (vtisochctrl & 1)
5453                 return;
5454
5455         /* Drop all bits other than the number of TLB entries */
5456         vtisochctrl &= 0x1c;
5457
5458         /* If we have the recommended number of TLB entries (16), fine. */
5459         if (vtisochctrl == 0x10)
5460                 return;
5461
5462         /* Zero TLB entries? You get to ride the short bus to school. */
5463         if (!vtisochctrl) {
5464                 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5465                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5466                      dmi_get_system_info(DMI_BIOS_VENDOR),
5467                      dmi_get_system_info(DMI_BIOS_VERSION),
5468                      dmi_get_system_info(DMI_PRODUCT_VERSION));
5469                 iommu_identity_mapping |= IDENTMAP_AZALIA;
5470                 return;
5471         }
5472
5473         pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5474                vtisochctrl);
5475 }