]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/iommu/intel-iommu.c
Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / drivers / iommu / intel-iommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2014 Intel Corporation.
4  *
5  * Authors: David Woodhouse <dwmw2@infradead.org>,
6  *          Ashok Raj <ashok.raj@intel.com>,
7  *          Shaohua Li <shaohua.li@intel.com>,
8  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
9  *          Fenghua Yu <fenghua.yu@intel.com>
10  *          Joerg Roedel <jroedel@suse.de>
11  */
12
13 #define pr_fmt(fmt)     "DMAR: " fmt
14 #define dev_fmt(fmt)    pr_fmt(fmt)
15
16 #include <linux/init.h>
17 #include <linux/bitmap.h>
18 #include <linux/debugfs.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/irq.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock.h>
24 #include <linux/pci.h>
25 #include <linux/dmar.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/mempool.h>
28 #include <linux/memory.h>
29 #include <linux/cpu.h>
30 #include <linux/timer.h>
31 #include <linux/io.h>
32 #include <linux/iova.h>
33 #include <linux/iommu.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38 #include <linux/pci-ats.h>
39 #include <linux/memblock.h>
40 #include <linux/dma-contiguous.h>
41 #include <linux/dma-direct.h>
42 #include <linux/crash_dump.h>
43 #include <linux/numa.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/cacheflush.h>
46 #include <asm/iommu.h>
47
48 #include "irq_remapping.h"
49 #include "intel-pasid.h"
50
51 #define ROOT_SIZE               VTD_PAGE_SIZE
52 #define CONTEXT_SIZE            VTD_PAGE_SIZE
53
54 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
55 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
56 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
57 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
58
59 #define IOAPIC_RANGE_START      (0xfee00000)
60 #define IOAPIC_RANGE_END        (0xfeefffff)
61 #define IOVA_START_ADDR         (0x1000)
62
63 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
64
65 #define MAX_AGAW_WIDTH 64
66 #define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
67
68 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
69 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
70
71 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
72    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
73 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
74                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
75 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
76
77 /* IO virtual address start page frame number */
78 #define IOVA_START_PFN          (1)
79
80 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
81
82 /* page table handling */
83 #define LEVEL_STRIDE            (9)
84 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
85
86 /*
87  * This bitmap is used to advertise the page sizes our hardware support
88  * to the IOMMU core, which will then use this information to split
89  * physically contiguous memory regions it is mapping into page sizes
90  * that we support.
91  *
92  * Traditionally the IOMMU core just handed us the mappings directly,
93  * after making sure the size is an order of a 4KiB page and that the
94  * mapping has natural alignment.
95  *
96  * To retain this behavior, we currently advertise that we support
97  * all page sizes that are an order of 4KiB.
98  *
99  * If at some point we'd like to utilize the IOMMU core's new behavior,
100  * we could change this to advertise the real page sizes we support.
101  */
102 #define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
103
104 static inline int agaw_to_level(int agaw)
105 {
106         return agaw + 2;
107 }
108
109 static inline int agaw_to_width(int agaw)
110 {
111         return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
112 }
113
114 static inline int width_to_agaw(int width)
115 {
116         return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
117 }
118
119 static inline unsigned int level_to_offset_bits(int level)
120 {
121         return (level - 1) * LEVEL_STRIDE;
122 }
123
124 static inline int pfn_level_offset(unsigned long pfn, int level)
125 {
126         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
127 }
128
129 static inline unsigned long level_mask(int level)
130 {
131         return -1UL << level_to_offset_bits(level);
132 }
133
134 static inline unsigned long level_size(int level)
135 {
136         return 1UL << level_to_offset_bits(level);
137 }
138
139 static inline unsigned long align_to_level(unsigned long pfn, int level)
140 {
141         return (pfn + level_size(level) - 1) & level_mask(level);
142 }
143
144 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
145 {
146         return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
147 }
148
149 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
150    are never going to work. */
151 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
152 {
153         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
154 }
155
156 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
157 {
158         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
159 }
160 static inline unsigned long page_to_dma_pfn(struct page *pg)
161 {
162         return mm_to_dma_pfn(page_to_pfn(pg));
163 }
164 static inline unsigned long virt_to_dma_pfn(void *p)
165 {
166         return page_to_dma_pfn(virt_to_page(p));
167 }
168
169 /* global iommu list, set NULL for ignored DMAR units */
170 static struct intel_iommu **g_iommus;
171
172 static void __init check_tylersburg_isoch(void);
173 static int rwbf_quirk;
174
175 /*
176  * set to 1 to panic kernel if can't successfully enable VT-d
177  * (used when kernel is launched w/ TXT)
178  */
179 static int force_on = 0;
180 int intel_iommu_tboot_noforce;
181 static int no_platform_optin;
182
183 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
184
185 /*
186  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
187  * if marked present.
188  */
189 static phys_addr_t root_entry_lctp(struct root_entry *re)
190 {
191         if (!(re->lo & 1))
192                 return 0;
193
194         return re->lo & VTD_PAGE_MASK;
195 }
196
197 /*
198  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
199  * if marked present.
200  */
201 static phys_addr_t root_entry_uctp(struct root_entry *re)
202 {
203         if (!(re->hi & 1))
204                 return 0;
205
206         return re->hi & VTD_PAGE_MASK;
207 }
208
209 static inline void context_clear_pasid_enable(struct context_entry *context)
210 {
211         context->lo &= ~(1ULL << 11);
212 }
213
214 static inline bool context_pasid_enabled(struct context_entry *context)
215 {
216         return !!(context->lo & (1ULL << 11));
217 }
218
219 static inline void context_set_copied(struct context_entry *context)
220 {
221         context->hi |= (1ull << 3);
222 }
223
224 static inline bool context_copied(struct context_entry *context)
225 {
226         return !!(context->hi & (1ULL << 3));
227 }
228
229 static inline bool __context_present(struct context_entry *context)
230 {
231         return (context->lo & 1);
232 }
233
234 bool context_present(struct context_entry *context)
235 {
236         return context_pasid_enabled(context) ?
237              __context_present(context) :
238              __context_present(context) && !context_copied(context);
239 }
240
241 static inline void context_set_present(struct context_entry *context)
242 {
243         context->lo |= 1;
244 }
245
246 static inline void context_set_fault_enable(struct context_entry *context)
247 {
248         context->lo &= (((u64)-1) << 2) | 1;
249 }
250
251 static inline void context_set_translation_type(struct context_entry *context,
252                                                 unsigned long value)
253 {
254         context->lo &= (((u64)-1) << 4) | 3;
255         context->lo |= (value & 3) << 2;
256 }
257
258 static inline void context_set_address_root(struct context_entry *context,
259                                             unsigned long value)
260 {
261         context->lo &= ~VTD_PAGE_MASK;
262         context->lo |= value & VTD_PAGE_MASK;
263 }
264
265 static inline void context_set_address_width(struct context_entry *context,
266                                              unsigned long value)
267 {
268         context->hi |= value & 7;
269 }
270
271 static inline void context_set_domain_id(struct context_entry *context,
272                                          unsigned long value)
273 {
274         context->hi |= (value & ((1 << 16) - 1)) << 8;
275 }
276
277 static inline int context_domain_id(struct context_entry *c)
278 {
279         return((c->hi >> 8) & 0xffff);
280 }
281
282 static inline void context_clear_entry(struct context_entry *context)
283 {
284         context->lo = 0;
285         context->hi = 0;
286 }
287
288 /*
289  * This domain is a statically identity mapping domain.
290  *      1. This domain creats a static 1:1 mapping to all usable memory.
291  *      2. It maps to each iommu if successful.
292  *      3. Each iommu mapps to this domain if successful.
293  */
294 static struct dmar_domain *si_domain;
295 static int hw_pass_through = 1;
296
297 /* si_domain contains mulitple devices */
298 #define DOMAIN_FLAG_STATIC_IDENTITY             BIT(0)
299
300 /*
301  * This is a DMA domain allocated through the iommu domain allocation
302  * interface. But one or more devices belonging to this domain have
303  * been chosen to use a private domain. We should avoid to use the
304  * map/unmap/iova_to_phys APIs on it.
305  */
306 #define DOMAIN_FLAG_LOSE_CHILDREN               BIT(1)
307
308 #define for_each_domain_iommu(idx, domain)                      \
309         for (idx = 0; idx < g_num_of_iommus; idx++)             \
310                 if (domain->iommu_refcnt[idx])
311
312 struct dmar_rmrr_unit {
313         struct list_head list;          /* list of rmrr units   */
314         struct acpi_dmar_header *hdr;   /* ACPI header          */
315         u64     base_address;           /* reserved base address*/
316         u64     end_address;            /* reserved end address */
317         struct dmar_dev_scope *devices; /* target devices */
318         int     devices_cnt;            /* target device count */
319 };
320
321 struct dmar_atsr_unit {
322         struct list_head list;          /* list of ATSR units */
323         struct acpi_dmar_header *hdr;   /* ACPI header */
324         struct dmar_dev_scope *devices; /* target devices */
325         int devices_cnt;                /* target device count */
326         u8 include_all:1;               /* include all ports */
327 };
328
329 static LIST_HEAD(dmar_atsr_units);
330 static LIST_HEAD(dmar_rmrr_units);
331
332 #define for_each_rmrr_units(rmrr) \
333         list_for_each_entry(rmrr, &dmar_rmrr_units, list)
334
335 /* bitmap for indexing intel_iommus */
336 static int g_num_of_iommus;
337
338 static void domain_exit(struct dmar_domain *domain);
339 static void domain_remove_dev_info(struct dmar_domain *domain);
340 static void dmar_remove_one_dev_info(struct device *dev);
341 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
342 static int domain_detach_iommu(struct dmar_domain *domain,
343                                struct intel_iommu *iommu);
344 static bool device_is_rmrr_locked(struct device *dev);
345 static int intel_iommu_attach_device(struct iommu_domain *domain,
346                                      struct device *dev);
347
348 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
349 int dmar_disabled = 0;
350 #else
351 int dmar_disabled = 1;
352 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
353
354 int intel_iommu_sm;
355 int intel_iommu_enabled = 0;
356 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
357
358 static int dmar_map_gfx = 1;
359 static int dmar_forcedac;
360 static int intel_iommu_strict;
361 static int intel_iommu_superpage = 1;
362 static int iommu_identity_mapping;
363
364 #define IDENTMAP_ALL            1
365 #define IDENTMAP_GFX            2
366 #define IDENTMAP_AZALIA         4
367
368 int intel_iommu_gfx_mapped;
369 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
370
371 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
372 #define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
373 static DEFINE_SPINLOCK(device_domain_lock);
374 static LIST_HEAD(device_domain_list);
375
376 /*
377  * Iterate over elements in device_domain_list and call the specified
378  * callback @fn against each element.
379  */
380 int for_each_device_domain(int (*fn)(struct device_domain_info *info,
381                                      void *data), void *data)
382 {
383         int ret = 0;
384         unsigned long flags;
385         struct device_domain_info *info;
386
387         spin_lock_irqsave(&device_domain_lock, flags);
388         list_for_each_entry(info, &device_domain_list, global) {
389                 ret = fn(info, data);
390                 if (ret) {
391                         spin_unlock_irqrestore(&device_domain_lock, flags);
392                         return ret;
393                 }
394         }
395         spin_unlock_irqrestore(&device_domain_lock, flags);
396
397         return 0;
398 }
399
400 const struct iommu_ops intel_iommu_ops;
401
402 static bool translation_pre_enabled(struct intel_iommu *iommu)
403 {
404         return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
405 }
406
407 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
408 {
409         iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
410 }
411
412 static void init_translation_status(struct intel_iommu *iommu)
413 {
414         u32 gsts;
415
416         gsts = readl(iommu->reg + DMAR_GSTS_REG);
417         if (gsts & DMA_GSTS_TES)
418                 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
419 }
420
421 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
422 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
423 {
424         return container_of(dom, struct dmar_domain, domain);
425 }
426
427 static int __init intel_iommu_setup(char *str)
428 {
429         if (!str)
430                 return -EINVAL;
431         while (*str) {
432                 if (!strncmp(str, "on", 2)) {
433                         dmar_disabled = 0;
434                         pr_info("IOMMU enabled\n");
435                 } else if (!strncmp(str, "off", 3)) {
436                         dmar_disabled = 1;
437                         no_platform_optin = 1;
438                         pr_info("IOMMU disabled\n");
439                 } else if (!strncmp(str, "igfx_off", 8)) {
440                         dmar_map_gfx = 0;
441                         pr_info("Disable GFX device mapping\n");
442                 } else if (!strncmp(str, "forcedac", 8)) {
443                         pr_info("Forcing DAC for PCI devices\n");
444                         dmar_forcedac = 1;
445                 } else if (!strncmp(str, "strict", 6)) {
446                         pr_info("Disable batched IOTLB flush\n");
447                         intel_iommu_strict = 1;
448                 } else if (!strncmp(str, "sp_off", 6)) {
449                         pr_info("Disable supported super page\n");
450                         intel_iommu_superpage = 0;
451                 } else if (!strncmp(str, "sm_on", 5)) {
452                         pr_info("Intel-IOMMU: scalable mode supported\n");
453                         intel_iommu_sm = 1;
454                 } else if (!strncmp(str, "tboot_noforce", 13)) {
455                         printk(KERN_INFO
456                                 "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
457                         intel_iommu_tboot_noforce = 1;
458                 }
459
460                 str += strcspn(str, ",");
461                 while (*str == ',')
462                         str++;
463         }
464         return 0;
465 }
466 __setup("intel_iommu=", intel_iommu_setup);
467
468 static struct kmem_cache *iommu_domain_cache;
469 static struct kmem_cache *iommu_devinfo_cache;
470
471 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
472 {
473         struct dmar_domain **domains;
474         int idx = did >> 8;
475
476         domains = iommu->domains[idx];
477         if (!domains)
478                 return NULL;
479
480         return domains[did & 0xff];
481 }
482
483 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
484                              struct dmar_domain *domain)
485 {
486         struct dmar_domain **domains;
487         int idx = did >> 8;
488
489         if (!iommu->domains[idx]) {
490                 size_t size = 256 * sizeof(struct dmar_domain *);
491                 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
492         }
493
494         domains = iommu->domains[idx];
495         if (WARN_ON(!domains))
496                 return;
497         else
498                 domains[did & 0xff] = domain;
499 }
500
501 void *alloc_pgtable_page(int node)
502 {
503         struct page *page;
504         void *vaddr = NULL;
505
506         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
507         if (page)
508                 vaddr = page_address(page);
509         return vaddr;
510 }
511
512 void free_pgtable_page(void *vaddr)
513 {
514         free_page((unsigned long)vaddr);
515 }
516
517 static inline void *alloc_domain_mem(void)
518 {
519         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
520 }
521
522 static void free_domain_mem(void *vaddr)
523 {
524         kmem_cache_free(iommu_domain_cache, vaddr);
525 }
526
527 static inline void * alloc_devinfo_mem(void)
528 {
529         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
530 }
531
532 static inline void free_devinfo_mem(void *vaddr)
533 {
534         kmem_cache_free(iommu_devinfo_cache, vaddr);
535 }
536
537 static inline int domain_type_is_si(struct dmar_domain *domain)
538 {
539         return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
540 }
541
542 static inline int domain_pfn_supported(struct dmar_domain *domain,
543                                        unsigned long pfn)
544 {
545         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
546
547         return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
548 }
549
550 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
551 {
552         unsigned long sagaw;
553         int agaw = -1;
554
555         sagaw = cap_sagaw(iommu->cap);
556         for (agaw = width_to_agaw(max_gaw);
557              agaw >= 0; agaw--) {
558                 if (test_bit(agaw, &sagaw))
559                         break;
560         }
561
562         return agaw;
563 }
564
565 /*
566  * Calculate max SAGAW for each iommu.
567  */
568 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
569 {
570         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
571 }
572
573 /*
574  * calculate agaw for each iommu.
575  * "SAGAW" may be different across iommus, use a default agaw, and
576  * get a supported less agaw for iommus that don't support the default agaw.
577  */
578 int iommu_calculate_agaw(struct intel_iommu *iommu)
579 {
580         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
581 }
582
583 /* This functionin only returns single iommu in a domain */
584 struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
585 {
586         int iommu_id;
587
588         /* si_domain and vm domain should not get here. */
589         if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
590                 return NULL;
591
592         for_each_domain_iommu(iommu_id, domain)
593                 break;
594
595         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
596                 return NULL;
597
598         return g_iommus[iommu_id];
599 }
600
601 static void domain_update_iommu_coherency(struct dmar_domain *domain)
602 {
603         struct dmar_drhd_unit *drhd;
604         struct intel_iommu *iommu;
605         bool found = false;
606         int i;
607
608         domain->iommu_coherency = 1;
609
610         for_each_domain_iommu(i, domain) {
611                 found = true;
612                 if (!ecap_coherent(g_iommus[i]->ecap)) {
613                         domain->iommu_coherency = 0;
614                         break;
615                 }
616         }
617         if (found)
618                 return;
619
620         /* No hardware attached; use lowest common denominator */
621         rcu_read_lock();
622         for_each_active_iommu(iommu, drhd) {
623                 if (!ecap_coherent(iommu->ecap)) {
624                         domain->iommu_coherency = 0;
625                         break;
626                 }
627         }
628         rcu_read_unlock();
629 }
630
631 static int domain_update_iommu_snooping(struct intel_iommu *skip)
632 {
633         struct dmar_drhd_unit *drhd;
634         struct intel_iommu *iommu;
635         int ret = 1;
636
637         rcu_read_lock();
638         for_each_active_iommu(iommu, drhd) {
639                 if (iommu != skip) {
640                         if (!ecap_sc_support(iommu->ecap)) {
641                                 ret = 0;
642                                 break;
643                         }
644                 }
645         }
646         rcu_read_unlock();
647
648         return ret;
649 }
650
651 static int domain_update_iommu_superpage(struct intel_iommu *skip)
652 {
653         struct dmar_drhd_unit *drhd;
654         struct intel_iommu *iommu;
655         int mask = 0xf;
656
657         if (!intel_iommu_superpage) {
658                 return 0;
659         }
660
661         /* set iommu_superpage to the smallest common denominator */
662         rcu_read_lock();
663         for_each_active_iommu(iommu, drhd) {
664                 if (iommu != skip) {
665                         mask &= cap_super_page_val(iommu->cap);
666                         if (!mask)
667                                 break;
668                 }
669         }
670         rcu_read_unlock();
671
672         return fls(mask);
673 }
674
675 /* Some capabilities may be different across iommus */
676 static void domain_update_iommu_cap(struct dmar_domain *domain)
677 {
678         domain_update_iommu_coherency(domain);
679         domain->iommu_snooping = domain_update_iommu_snooping(NULL);
680         domain->iommu_superpage = domain_update_iommu_superpage(NULL);
681 }
682
683 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
684                                          u8 devfn, int alloc)
685 {
686         struct root_entry *root = &iommu->root_entry[bus];
687         struct context_entry *context;
688         u64 *entry;
689
690         entry = &root->lo;
691         if (sm_supported(iommu)) {
692                 if (devfn >= 0x80) {
693                         devfn -= 0x80;
694                         entry = &root->hi;
695                 }
696                 devfn *= 2;
697         }
698         if (*entry & 1)
699                 context = phys_to_virt(*entry & VTD_PAGE_MASK);
700         else {
701                 unsigned long phy_addr;
702                 if (!alloc)
703                         return NULL;
704
705                 context = alloc_pgtable_page(iommu->node);
706                 if (!context)
707                         return NULL;
708
709                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
710                 phy_addr = virt_to_phys((void *)context);
711                 *entry = phy_addr | 1;
712                 __iommu_flush_cache(iommu, entry, sizeof(*entry));
713         }
714         return &context[devfn];
715 }
716
717 static int iommu_dummy(struct device *dev)
718 {
719         return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
720 }
721
722 /**
723  * is_downstream_to_pci_bridge - test if a device belongs to the PCI
724  *                               sub-hierarchy of a candidate PCI-PCI bridge
725  * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
726  * @bridge: the candidate PCI-PCI bridge
727  *
728  * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
729  */
730 static bool
731 is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
732 {
733         struct pci_dev *pdev, *pbridge;
734
735         if (!dev_is_pci(dev) || !dev_is_pci(bridge))
736                 return false;
737
738         pdev = to_pci_dev(dev);
739         pbridge = to_pci_dev(bridge);
740
741         if (pbridge->subordinate &&
742             pbridge->subordinate->number <= pdev->bus->number &&
743             pbridge->subordinate->busn_res.end >= pdev->bus->number)
744                 return true;
745
746         return false;
747 }
748
749 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
750 {
751         struct dmar_drhd_unit *drhd = NULL;
752         struct intel_iommu *iommu;
753         struct device *tmp;
754         struct pci_dev *pdev = NULL;
755         u16 segment = 0;
756         int i;
757
758         if (iommu_dummy(dev))
759                 return NULL;
760
761         if (dev_is_pci(dev)) {
762                 struct pci_dev *pf_pdev;
763
764                 pdev = to_pci_dev(dev);
765
766 #ifdef CONFIG_X86
767                 /* VMD child devices currently cannot be handled individually */
768                 if (is_vmd(pdev->bus))
769                         return NULL;
770 #endif
771
772                 /* VFs aren't listed in scope tables; we need to look up
773                  * the PF instead to find the IOMMU. */
774                 pf_pdev = pci_physfn(pdev);
775                 dev = &pf_pdev->dev;
776                 segment = pci_domain_nr(pdev->bus);
777         } else if (has_acpi_companion(dev))
778                 dev = &ACPI_COMPANION(dev)->dev;
779
780         rcu_read_lock();
781         for_each_active_iommu(iommu, drhd) {
782                 if (pdev && segment != drhd->segment)
783                         continue;
784
785                 for_each_active_dev_scope(drhd->devices,
786                                           drhd->devices_cnt, i, tmp) {
787                         if (tmp == dev) {
788                                 /* For a VF use its original BDF# not that of the PF
789                                  * which we used for the IOMMU lookup. Strictly speaking
790                                  * we could do this for all PCI devices; we only need to
791                                  * get the BDF# from the scope table for ACPI matches. */
792                                 if (pdev && pdev->is_virtfn)
793                                         goto got_pdev;
794
795                                 *bus = drhd->devices[i].bus;
796                                 *devfn = drhd->devices[i].devfn;
797                                 goto out;
798                         }
799
800                         if (is_downstream_to_pci_bridge(dev, tmp))
801                                 goto got_pdev;
802                 }
803
804                 if (pdev && drhd->include_all) {
805                 got_pdev:
806                         *bus = pdev->bus->number;
807                         *devfn = pdev->devfn;
808                         goto out;
809                 }
810         }
811         iommu = NULL;
812  out:
813         rcu_read_unlock();
814
815         return iommu;
816 }
817
818 static void domain_flush_cache(struct dmar_domain *domain,
819                                void *addr, int size)
820 {
821         if (!domain->iommu_coherency)
822                 clflush_cache_range(addr, size);
823 }
824
825 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
826 {
827         struct context_entry *context;
828         int ret = 0;
829         unsigned long flags;
830
831         spin_lock_irqsave(&iommu->lock, flags);
832         context = iommu_context_addr(iommu, bus, devfn, 0);
833         if (context)
834                 ret = context_present(context);
835         spin_unlock_irqrestore(&iommu->lock, flags);
836         return ret;
837 }
838
839 static void free_context_table(struct intel_iommu *iommu)
840 {
841         int i;
842         unsigned long flags;
843         struct context_entry *context;
844
845         spin_lock_irqsave(&iommu->lock, flags);
846         if (!iommu->root_entry) {
847                 goto out;
848         }
849         for (i = 0; i < ROOT_ENTRY_NR; i++) {
850                 context = iommu_context_addr(iommu, i, 0, 0);
851                 if (context)
852                         free_pgtable_page(context);
853
854                 if (!sm_supported(iommu))
855                         continue;
856
857                 context = iommu_context_addr(iommu, i, 0x80, 0);
858                 if (context)
859                         free_pgtable_page(context);
860
861         }
862         free_pgtable_page(iommu->root_entry);
863         iommu->root_entry = NULL;
864 out:
865         spin_unlock_irqrestore(&iommu->lock, flags);
866 }
867
868 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
869                                       unsigned long pfn, int *target_level)
870 {
871         struct dma_pte *parent, *pte;
872         int level = agaw_to_level(domain->agaw);
873         int offset;
874
875         BUG_ON(!domain->pgd);
876
877         if (!domain_pfn_supported(domain, pfn))
878                 /* Address beyond IOMMU's addressing capabilities. */
879                 return NULL;
880
881         parent = domain->pgd;
882
883         while (1) {
884                 void *tmp_page;
885
886                 offset = pfn_level_offset(pfn, level);
887                 pte = &parent[offset];
888                 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
889                         break;
890                 if (level == *target_level)
891                         break;
892
893                 if (!dma_pte_present(pte)) {
894                         uint64_t pteval;
895
896                         tmp_page = alloc_pgtable_page(domain->nid);
897
898                         if (!tmp_page)
899                                 return NULL;
900
901                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
902                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
903                         if (cmpxchg64(&pte->val, 0ULL, pteval))
904                                 /* Someone else set it while we were thinking; use theirs. */
905                                 free_pgtable_page(tmp_page);
906                         else
907                                 domain_flush_cache(domain, pte, sizeof(*pte));
908                 }
909                 if (level == 1)
910                         break;
911
912                 parent = phys_to_virt(dma_pte_addr(pte));
913                 level--;
914         }
915
916         if (!*target_level)
917                 *target_level = level;
918
919         return pte;
920 }
921
922 /* return address's pte at specific level */
923 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
924                                          unsigned long pfn,
925                                          int level, int *large_page)
926 {
927         struct dma_pte *parent, *pte;
928         int total = agaw_to_level(domain->agaw);
929         int offset;
930
931         parent = domain->pgd;
932         while (level <= total) {
933                 offset = pfn_level_offset(pfn, total);
934                 pte = &parent[offset];
935                 if (level == total)
936                         return pte;
937
938                 if (!dma_pte_present(pte)) {
939                         *large_page = total;
940                         break;
941                 }
942
943                 if (dma_pte_superpage(pte)) {
944                         *large_page = total;
945                         return pte;
946                 }
947
948                 parent = phys_to_virt(dma_pte_addr(pte));
949                 total--;
950         }
951         return NULL;
952 }
953
954 /* clear last level pte, a tlb flush should be followed */
955 static void dma_pte_clear_range(struct dmar_domain *domain,
956                                 unsigned long start_pfn,
957                                 unsigned long last_pfn)
958 {
959         unsigned int large_page;
960         struct dma_pte *first_pte, *pte;
961
962         BUG_ON(!domain_pfn_supported(domain, start_pfn));
963         BUG_ON(!domain_pfn_supported(domain, last_pfn));
964         BUG_ON(start_pfn > last_pfn);
965
966         /* we don't need lock here; nobody else touches the iova range */
967         do {
968                 large_page = 1;
969                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
970                 if (!pte) {
971                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
972                         continue;
973                 }
974                 do {
975                         dma_clear_pte(pte);
976                         start_pfn += lvl_to_nr_pages(large_page);
977                         pte++;
978                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
979
980                 domain_flush_cache(domain, first_pte,
981                                    (void *)pte - (void *)first_pte);
982
983         } while (start_pfn && start_pfn <= last_pfn);
984 }
985
986 static void dma_pte_free_level(struct dmar_domain *domain, int level,
987                                int retain_level, struct dma_pte *pte,
988                                unsigned long pfn, unsigned long start_pfn,
989                                unsigned long last_pfn)
990 {
991         pfn = max(start_pfn, pfn);
992         pte = &pte[pfn_level_offset(pfn, level)];
993
994         do {
995                 unsigned long level_pfn;
996                 struct dma_pte *level_pte;
997
998                 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
999                         goto next;
1000
1001                 level_pfn = pfn & level_mask(level);
1002                 level_pte = phys_to_virt(dma_pte_addr(pte));
1003
1004                 if (level > 2) {
1005                         dma_pte_free_level(domain, level - 1, retain_level,
1006                                            level_pte, level_pfn, start_pfn,
1007                                            last_pfn);
1008                 }
1009
1010                 /*
1011                  * Free the page table if we're below the level we want to
1012                  * retain and the range covers the entire table.
1013                  */
1014                 if (level < retain_level && !(start_pfn > level_pfn ||
1015                       last_pfn < level_pfn + level_size(level) - 1)) {
1016                         dma_clear_pte(pte);
1017                         domain_flush_cache(domain, pte, sizeof(*pte));
1018                         free_pgtable_page(level_pte);
1019                 }
1020 next:
1021                 pfn += level_size(level);
1022         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1023 }
1024
1025 /*
1026  * clear last level (leaf) ptes and free page table pages below the
1027  * level we wish to keep intact.
1028  */
1029 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1030                                    unsigned long start_pfn,
1031                                    unsigned long last_pfn,
1032                                    int retain_level)
1033 {
1034         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1035         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1036         BUG_ON(start_pfn > last_pfn);
1037
1038         dma_pte_clear_range(domain, start_pfn, last_pfn);
1039
1040         /* We don't need lock here; nobody else touches the iova range */
1041         dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1042                            domain->pgd, 0, start_pfn, last_pfn);
1043
1044         /* free pgd */
1045         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1046                 free_pgtable_page(domain->pgd);
1047                 domain->pgd = NULL;
1048         }
1049 }
1050
1051 /* When a page at a given level is being unlinked from its parent, we don't
1052    need to *modify* it at all. All we need to do is make a list of all the
1053    pages which can be freed just as soon as we've flushed the IOTLB and we
1054    know the hardware page-walk will no longer touch them.
1055    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1056    be freed. */
1057 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1058                                             int level, struct dma_pte *pte,
1059                                             struct page *freelist)
1060 {
1061         struct page *pg;
1062
1063         pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1064         pg->freelist = freelist;
1065         freelist = pg;
1066
1067         if (level == 1)
1068                 return freelist;
1069
1070         pte = page_address(pg);
1071         do {
1072                 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1073                         freelist = dma_pte_list_pagetables(domain, level - 1,
1074                                                            pte, freelist);
1075                 pte++;
1076         } while (!first_pte_in_page(pte));
1077
1078         return freelist;
1079 }
1080
1081 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1082                                         struct dma_pte *pte, unsigned long pfn,
1083                                         unsigned long start_pfn,
1084                                         unsigned long last_pfn,
1085                                         struct page *freelist)
1086 {
1087         struct dma_pte *first_pte = NULL, *last_pte = NULL;
1088
1089         pfn = max(start_pfn, pfn);
1090         pte = &pte[pfn_level_offset(pfn, level)];
1091
1092         do {
1093                 unsigned long level_pfn;
1094
1095                 if (!dma_pte_present(pte))
1096                         goto next;
1097
1098                 level_pfn = pfn & level_mask(level);
1099
1100                 /* If range covers entire pagetable, free it */
1101                 if (start_pfn <= level_pfn &&
1102                     last_pfn >= level_pfn + level_size(level) - 1) {
1103                         /* These suborbinate page tables are going away entirely. Don't
1104                            bother to clear them; we're just going to *free* them. */
1105                         if (level > 1 && !dma_pte_superpage(pte))
1106                                 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1107
1108                         dma_clear_pte(pte);
1109                         if (!first_pte)
1110                                 first_pte = pte;
1111                         last_pte = pte;
1112                 } else if (level > 1) {
1113                         /* Recurse down into a level that isn't *entirely* obsolete */
1114                         freelist = dma_pte_clear_level(domain, level - 1,
1115                                                        phys_to_virt(dma_pte_addr(pte)),
1116                                                        level_pfn, start_pfn, last_pfn,
1117                                                        freelist);
1118                 }
1119 next:
1120                 pfn += level_size(level);
1121         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1122
1123         if (first_pte)
1124                 domain_flush_cache(domain, first_pte,
1125                                    (void *)++last_pte - (void *)first_pte);
1126
1127         return freelist;
1128 }
1129
1130 /* We can't just free the pages because the IOMMU may still be walking
1131    the page tables, and may have cached the intermediate levels. The
1132    pages can only be freed after the IOTLB flush has been done. */
1133 static struct page *domain_unmap(struct dmar_domain *domain,
1134                                  unsigned long start_pfn,
1135                                  unsigned long last_pfn)
1136 {
1137         struct page *freelist;
1138
1139         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1140         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1141         BUG_ON(start_pfn > last_pfn);
1142
1143         /* we don't need lock here; nobody else touches the iova range */
1144         freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1145                                        domain->pgd, 0, start_pfn, last_pfn, NULL);
1146
1147         /* free pgd */
1148         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1149                 struct page *pgd_page = virt_to_page(domain->pgd);
1150                 pgd_page->freelist = freelist;
1151                 freelist = pgd_page;
1152
1153                 domain->pgd = NULL;
1154         }
1155
1156         return freelist;
1157 }
1158
1159 static void dma_free_pagelist(struct page *freelist)
1160 {
1161         struct page *pg;
1162
1163         while ((pg = freelist)) {
1164                 freelist = pg->freelist;
1165                 free_pgtable_page(page_address(pg));
1166         }
1167 }
1168
1169 static void iova_entry_free(unsigned long data)
1170 {
1171         struct page *freelist = (struct page *)data;
1172
1173         dma_free_pagelist(freelist);
1174 }
1175
1176 /* iommu handling */
1177 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1178 {
1179         struct root_entry *root;
1180         unsigned long flags;
1181
1182         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1183         if (!root) {
1184                 pr_err("Allocating root entry for %s failed\n",
1185                         iommu->name);
1186                 return -ENOMEM;
1187         }
1188
1189         __iommu_flush_cache(iommu, root, ROOT_SIZE);
1190
1191         spin_lock_irqsave(&iommu->lock, flags);
1192         iommu->root_entry = root;
1193         spin_unlock_irqrestore(&iommu->lock, flags);
1194
1195         return 0;
1196 }
1197
1198 static void iommu_set_root_entry(struct intel_iommu *iommu)
1199 {
1200         u64 addr;
1201         u32 sts;
1202         unsigned long flag;
1203
1204         addr = virt_to_phys(iommu->root_entry);
1205         if (sm_supported(iommu))
1206                 addr |= DMA_RTADDR_SMT;
1207
1208         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1209         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1210
1211         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1212
1213         /* Make sure hardware complete it */
1214         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1215                       readl, (sts & DMA_GSTS_RTPS), sts);
1216
1217         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1218 }
1219
1220 void iommu_flush_write_buffer(struct intel_iommu *iommu)
1221 {
1222         u32 val;
1223         unsigned long flag;
1224
1225         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1226                 return;
1227
1228         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1229         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1230
1231         /* Make sure hardware complete it */
1232         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1233                       readl, (!(val & DMA_GSTS_WBFS)), val);
1234
1235         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1236 }
1237
1238 /* return value determine if we need a write buffer flush */
1239 static void __iommu_flush_context(struct intel_iommu *iommu,
1240                                   u16 did, u16 source_id, u8 function_mask,
1241                                   u64 type)
1242 {
1243         u64 val = 0;
1244         unsigned long flag;
1245
1246         switch (type) {
1247         case DMA_CCMD_GLOBAL_INVL:
1248                 val = DMA_CCMD_GLOBAL_INVL;
1249                 break;
1250         case DMA_CCMD_DOMAIN_INVL:
1251                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1252                 break;
1253         case DMA_CCMD_DEVICE_INVL:
1254                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1255                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1256                 break;
1257         default:
1258                 BUG();
1259         }
1260         val |= DMA_CCMD_ICC;
1261
1262         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1263         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1264
1265         /* Make sure hardware complete it */
1266         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1267                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1268
1269         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1270 }
1271
1272 /* return value determine if we need a write buffer flush */
1273 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1274                                 u64 addr, unsigned int size_order, u64 type)
1275 {
1276         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1277         u64 val = 0, val_iva = 0;
1278         unsigned long flag;
1279
1280         switch (type) {
1281         case DMA_TLB_GLOBAL_FLUSH:
1282                 /* global flush doesn't need set IVA_REG */
1283                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1284                 break;
1285         case DMA_TLB_DSI_FLUSH:
1286                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1287                 break;
1288         case DMA_TLB_PSI_FLUSH:
1289                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1290                 /* IH bit is passed in as part of address */
1291                 val_iva = size_order | addr;
1292                 break;
1293         default:
1294                 BUG();
1295         }
1296         /* Note: set drain read/write */
1297 #if 0
1298         /*
1299          * This is probably to be super secure.. Looks like we can
1300          * ignore it without any impact.
1301          */
1302         if (cap_read_drain(iommu->cap))
1303                 val |= DMA_TLB_READ_DRAIN;
1304 #endif
1305         if (cap_write_drain(iommu->cap))
1306                 val |= DMA_TLB_WRITE_DRAIN;
1307
1308         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1309         /* Note: Only uses first TLB reg currently */
1310         if (val_iva)
1311                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1312         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1313
1314         /* Make sure hardware complete it */
1315         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1316                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1317
1318         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1319
1320         /* check IOTLB invalidation granularity */
1321         if (DMA_TLB_IAIG(val) == 0)
1322                 pr_err("Flush IOTLB failed\n");
1323         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1324                 pr_debug("TLB flush request %Lx, actual %Lx\n",
1325                         (unsigned long long)DMA_TLB_IIRG(type),
1326                         (unsigned long long)DMA_TLB_IAIG(val));
1327 }
1328
1329 static struct device_domain_info *
1330 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1331                          u8 bus, u8 devfn)
1332 {
1333         struct device_domain_info *info;
1334
1335         assert_spin_locked(&device_domain_lock);
1336
1337         if (!iommu->qi)
1338                 return NULL;
1339
1340         list_for_each_entry(info, &domain->devices, link)
1341                 if (info->iommu == iommu && info->bus == bus &&
1342                     info->devfn == devfn) {
1343                         if (info->ats_supported && info->dev)
1344                                 return info;
1345                         break;
1346                 }
1347
1348         return NULL;
1349 }
1350
1351 static void domain_update_iotlb(struct dmar_domain *domain)
1352 {
1353         struct device_domain_info *info;
1354         bool has_iotlb_device = false;
1355
1356         assert_spin_locked(&device_domain_lock);
1357
1358         list_for_each_entry(info, &domain->devices, link) {
1359                 struct pci_dev *pdev;
1360
1361                 if (!info->dev || !dev_is_pci(info->dev))
1362                         continue;
1363
1364                 pdev = to_pci_dev(info->dev);
1365                 if (pdev->ats_enabled) {
1366                         has_iotlb_device = true;
1367                         break;
1368                 }
1369         }
1370
1371         domain->has_iotlb_device = has_iotlb_device;
1372 }
1373
1374 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1375 {
1376         struct pci_dev *pdev;
1377
1378         assert_spin_locked(&device_domain_lock);
1379
1380         if (!info || !dev_is_pci(info->dev))
1381                 return;
1382
1383         pdev = to_pci_dev(info->dev);
1384         /* For IOMMU that supports device IOTLB throttling (DIT), we assign
1385          * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
1386          * queue depth at PF level. If DIT is not set, PFSID will be treated as
1387          * reserved, which should be set to 0.
1388          */
1389         if (!ecap_dit(info->iommu->ecap))
1390                 info->pfsid = 0;
1391         else {
1392                 struct pci_dev *pf_pdev;
1393
1394                 /* pdev will be returned if device is not a vf */
1395                 pf_pdev = pci_physfn(pdev);
1396                 info->pfsid = pci_dev_id(pf_pdev);
1397         }
1398
1399 #ifdef CONFIG_INTEL_IOMMU_SVM
1400         /* The PCIe spec, in its wisdom, declares that the behaviour of
1401            the device if you enable PASID support after ATS support is
1402            undefined. So always enable PASID support on devices which
1403            have it, even if we can't yet know if we're ever going to
1404            use it. */
1405         if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1406                 info->pasid_enabled = 1;
1407
1408         if (info->pri_supported &&
1409             (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
1410             !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1411                 info->pri_enabled = 1;
1412 #endif
1413         if (!pdev->untrusted && info->ats_supported &&
1414             pci_ats_page_aligned(pdev) &&
1415             !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1416                 info->ats_enabled = 1;
1417                 domain_update_iotlb(info->domain);
1418                 info->ats_qdep = pci_ats_queue_depth(pdev);
1419         }
1420 }
1421
1422 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1423 {
1424         struct pci_dev *pdev;
1425
1426         assert_spin_locked(&device_domain_lock);
1427
1428         if (!dev_is_pci(info->dev))
1429                 return;
1430
1431         pdev = to_pci_dev(info->dev);
1432
1433         if (info->ats_enabled) {
1434                 pci_disable_ats(pdev);
1435                 info->ats_enabled = 0;
1436                 domain_update_iotlb(info->domain);
1437         }
1438 #ifdef CONFIG_INTEL_IOMMU_SVM
1439         if (info->pri_enabled) {
1440                 pci_disable_pri(pdev);
1441                 info->pri_enabled = 0;
1442         }
1443         if (info->pasid_enabled) {
1444                 pci_disable_pasid(pdev);
1445                 info->pasid_enabled = 0;
1446         }
1447 #endif
1448 }
1449
1450 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1451                                   u64 addr, unsigned mask)
1452 {
1453         u16 sid, qdep;
1454         unsigned long flags;
1455         struct device_domain_info *info;
1456
1457         if (!domain->has_iotlb_device)
1458                 return;
1459
1460         spin_lock_irqsave(&device_domain_lock, flags);
1461         list_for_each_entry(info, &domain->devices, link) {
1462                 if (!info->ats_enabled)
1463                         continue;
1464
1465                 sid = info->bus << 8 | info->devfn;
1466                 qdep = info->ats_qdep;
1467                 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1468                                 qdep, addr, mask);
1469         }
1470         spin_unlock_irqrestore(&device_domain_lock, flags);
1471 }
1472
1473 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1474                                   struct dmar_domain *domain,
1475                                   unsigned long pfn, unsigned int pages,
1476                                   int ih, int map)
1477 {
1478         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1479         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1480         u16 did = domain->iommu_did[iommu->seq_id];
1481
1482         BUG_ON(pages == 0);
1483
1484         if (ih)
1485                 ih = 1 << 6;
1486         /*
1487          * Fallback to domain selective flush if no PSI support or the size is
1488          * too big.
1489          * PSI requires page size to be 2 ^ x, and the base address is naturally
1490          * aligned to the size
1491          */
1492         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1493                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1494                                                 DMA_TLB_DSI_FLUSH);
1495         else
1496                 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1497                                                 DMA_TLB_PSI_FLUSH);
1498
1499         /*
1500          * In caching mode, changes of pages from non-present to present require
1501          * flush. However, device IOTLB doesn't need to be flushed in this case.
1502          */
1503         if (!cap_caching_mode(iommu->cap) || !map)
1504                 iommu_flush_dev_iotlb(domain, addr, mask);
1505 }
1506
1507 /* Notification for newly created mappings */
1508 static inline void __mapping_notify_one(struct intel_iommu *iommu,
1509                                         struct dmar_domain *domain,
1510                                         unsigned long pfn, unsigned int pages)
1511 {
1512         /* It's a non-present to present mapping. Only flush if caching mode */
1513         if (cap_caching_mode(iommu->cap))
1514                 iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
1515         else
1516                 iommu_flush_write_buffer(iommu);
1517 }
1518
1519 static void iommu_flush_iova(struct iova_domain *iovad)
1520 {
1521         struct dmar_domain *domain;
1522         int idx;
1523
1524         domain = container_of(iovad, struct dmar_domain, iovad);
1525
1526         for_each_domain_iommu(idx, domain) {
1527                 struct intel_iommu *iommu = g_iommus[idx];
1528                 u16 did = domain->iommu_did[iommu->seq_id];
1529
1530                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1531
1532                 if (!cap_caching_mode(iommu->cap))
1533                         iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1534                                               0, MAX_AGAW_PFN_WIDTH);
1535         }
1536 }
1537
1538 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1539 {
1540         u32 pmen;
1541         unsigned long flags;
1542
1543         if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
1544                 return;
1545
1546         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1547         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1548         pmen &= ~DMA_PMEN_EPM;
1549         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1550
1551         /* wait for the protected region status bit to clear */
1552         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1553                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1554
1555         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1556 }
1557
1558 static void iommu_enable_translation(struct intel_iommu *iommu)
1559 {
1560         u32 sts;
1561         unsigned long flags;
1562
1563         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1564         iommu->gcmd |= DMA_GCMD_TE;
1565         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1566
1567         /* Make sure hardware complete it */
1568         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1569                       readl, (sts & DMA_GSTS_TES), sts);
1570
1571         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1572 }
1573
1574 static void iommu_disable_translation(struct intel_iommu *iommu)
1575 {
1576         u32 sts;
1577         unsigned long flag;
1578
1579         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1580         iommu->gcmd &= ~DMA_GCMD_TE;
1581         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1582
1583         /* Make sure hardware complete it */
1584         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1585                       readl, (!(sts & DMA_GSTS_TES)), sts);
1586
1587         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1588 }
1589
1590 static int iommu_init_domains(struct intel_iommu *iommu)
1591 {
1592         u32 ndomains, nlongs;
1593         size_t size;
1594
1595         ndomains = cap_ndoms(iommu->cap);
1596         pr_debug("%s: Number of Domains supported <%d>\n",
1597                  iommu->name, ndomains);
1598         nlongs = BITS_TO_LONGS(ndomains);
1599
1600         spin_lock_init(&iommu->lock);
1601
1602         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1603         if (!iommu->domain_ids) {
1604                 pr_err("%s: Allocating domain id array failed\n",
1605                        iommu->name);
1606                 return -ENOMEM;
1607         }
1608
1609         size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1610         iommu->domains = kzalloc(size, GFP_KERNEL);
1611
1612         if (iommu->domains) {
1613                 size = 256 * sizeof(struct dmar_domain *);
1614                 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1615         }
1616
1617         if (!iommu->domains || !iommu->domains[0]) {
1618                 pr_err("%s: Allocating domain array failed\n",
1619                        iommu->name);
1620                 kfree(iommu->domain_ids);
1621                 kfree(iommu->domains);
1622                 iommu->domain_ids = NULL;
1623                 iommu->domains    = NULL;
1624                 return -ENOMEM;
1625         }
1626
1627         /*
1628          * If Caching mode is set, then invalid translations are tagged
1629          * with domain-id 0, hence we need to pre-allocate it. We also
1630          * use domain-id 0 as a marker for non-allocated domain-id, so
1631          * make sure it is not used for a real domain.
1632          */
1633         set_bit(0, iommu->domain_ids);
1634
1635         /*
1636          * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
1637          * entry for first-level or pass-through translation modes should
1638          * be programmed with a domain id different from those used for
1639          * second-level or nested translation. We reserve a domain id for
1640          * this purpose.
1641          */
1642         if (sm_supported(iommu))
1643                 set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);
1644
1645         return 0;
1646 }
1647
1648 static void disable_dmar_iommu(struct intel_iommu *iommu)
1649 {
1650         struct device_domain_info *info, *tmp;
1651         unsigned long flags;
1652
1653         if (!iommu->domains || !iommu->domain_ids)
1654                 return;
1655
1656         spin_lock_irqsave(&device_domain_lock, flags);
1657         list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1658                 if (info->iommu != iommu)
1659                         continue;
1660
1661                 if (!info->dev || !info->domain)
1662                         continue;
1663
1664                 __dmar_remove_one_dev_info(info);
1665         }
1666         spin_unlock_irqrestore(&device_domain_lock, flags);
1667
1668         if (iommu->gcmd & DMA_GCMD_TE)
1669                 iommu_disable_translation(iommu);
1670 }
1671
1672 static void free_dmar_iommu(struct intel_iommu *iommu)
1673 {
1674         if ((iommu->domains) && (iommu->domain_ids)) {
1675                 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1676                 int i;
1677
1678                 for (i = 0; i < elems; i++)
1679                         kfree(iommu->domains[i]);
1680                 kfree(iommu->domains);
1681                 kfree(iommu->domain_ids);
1682                 iommu->domains = NULL;
1683                 iommu->domain_ids = NULL;
1684         }
1685
1686         g_iommus[iommu->seq_id] = NULL;
1687
1688         /* free context mapping */
1689         free_context_table(iommu);
1690
1691 #ifdef CONFIG_INTEL_IOMMU_SVM
1692         if (pasid_supported(iommu)) {
1693                 if (ecap_prs(iommu->ecap))
1694                         intel_svm_finish_prq(iommu);
1695         }
1696 #endif
1697 }
1698
1699 static struct dmar_domain *alloc_domain(int flags)
1700 {
1701         struct dmar_domain *domain;
1702
1703         domain = alloc_domain_mem();
1704         if (!domain)
1705                 return NULL;
1706
1707         memset(domain, 0, sizeof(*domain));
1708         domain->nid = NUMA_NO_NODE;
1709         domain->flags = flags;
1710         domain->has_iotlb_device = false;
1711         INIT_LIST_HEAD(&domain->devices);
1712
1713         return domain;
1714 }
1715
1716 /* Must be called with iommu->lock */
1717 static int domain_attach_iommu(struct dmar_domain *domain,
1718                                struct intel_iommu *iommu)
1719 {
1720         unsigned long ndomains;
1721         int num;
1722
1723         assert_spin_locked(&device_domain_lock);
1724         assert_spin_locked(&iommu->lock);
1725
1726         domain->iommu_refcnt[iommu->seq_id] += 1;
1727         domain->iommu_count += 1;
1728         if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1729                 ndomains = cap_ndoms(iommu->cap);
1730                 num      = find_first_zero_bit(iommu->domain_ids, ndomains);
1731
1732                 if (num >= ndomains) {
1733                         pr_err("%s: No free domain ids\n", iommu->name);
1734                         domain->iommu_refcnt[iommu->seq_id] -= 1;
1735                         domain->iommu_count -= 1;
1736                         return -ENOSPC;
1737                 }
1738
1739                 set_bit(num, iommu->domain_ids);
1740                 set_iommu_domain(iommu, num, domain);
1741
1742                 domain->iommu_did[iommu->seq_id] = num;
1743                 domain->nid                      = iommu->node;
1744
1745                 domain_update_iommu_cap(domain);
1746         }
1747
1748         return 0;
1749 }
1750
1751 static int domain_detach_iommu(struct dmar_domain *domain,
1752                                struct intel_iommu *iommu)
1753 {
1754         int num, count;
1755
1756         assert_spin_locked(&device_domain_lock);
1757         assert_spin_locked(&iommu->lock);
1758
1759         domain->iommu_refcnt[iommu->seq_id] -= 1;
1760         count = --domain->iommu_count;
1761         if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1762                 num = domain->iommu_did[iommu->seq_id];
1763                 clear_bit(num, iommu->domain_ids);
1764                 set_iommu_domain(iommu, num, NULL);
1765
1766                 domain_update_iommu_cap(domain);
1767                 domain->iommu_did[iommu->seq_id] = 0;
1768         }
1769
1770         return count;
1771 }
1772
1773 static struct iova_domain reserved_iova_list;
1774 static struct lock_class_key reserved_rbtree_key;
1775
1776 static int dmar_init_reserved_ranges(void)
1777 {
1778         struct pci_dev *pdev = NULL;
1779         struct iova *iova;
1780         int i;
1781
1782         init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1783
1784         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1785                 &reserved_rbtree_key);
1786
1787         /* IOAPIC ranges shouldn't be accessed by DMA */
1788         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1789                 IOVA_PFN(IOAPIC_RANGE_END));
1790         if (!iova) {
1791                 pr_err("Reserve IOAPIC range failed\n");
1792                 return -ENODEV;
1793         }
1794
1795         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1796         for_each_pci_dev(pdev) {
1797                 struct resource *r;
1798
1799                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1800                         r = &pdev->resource[i];
1801                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1802                                 continue;
1803                         iova = reserve_iova(&reserved_iova_list,
1804                                             IOVA_PFN(r->start),
1805                                             IOVA_PFN(r->end));
1806                         if (!iova) {
1807                                 pci_err(pdev, "Reserve iova for %pR failed\n", r);
1808                                 return -ENODEV;
1809                         }
1810                 }
1811         }
1812         return 0;
1813 }
1814
1815 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1816 {
1817         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1818 }
1819
1820 static inline int guestwidth_to_adjustwidth(int gaw)
1821 {
1822         int agaw;
1823         int r = (gaw - 12) % 9;
1824
1825         if (r == 0)
1826                 agaw = gaw;
1827         else
1828                 agaw = gaw + 9 - r;
1829         if (agaw > 64)
1830                 agaw = 64;
1831         return agaw;
1832 }
1833
1834 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1835                        int guest_width)
1836 {
1837         int adjust_width, agaw;
1838         unsigned long sagaw;
1839         int err;
1840
1841         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
1842
1843         err = init_iova_flush_queue(&domain->iovad,
1844                                     iommu_flush_iova, iova_entry_free);
1845         if (err)
1846                 return err;
1847
1848         domain_reserve_special_ranges(domain);
1849
1850         /* calculate AGAW */
1851         if (guest_width > cap_mgaw(iommu->cap))
1852                 guest_width = cap_mgaw(iommu->cap);
1853         domain->gaw = guest_width;
1854         adjust_width = guestwidth_to_adjustwidth(guest_width);
1855         agaw = width_to_agaw(adjust_width);
1856         sagaw = cap_sagaw(iommu->cap);
1857         if (!test_bit(agaw, &sagaw)) {
1858                 /* hardware doesn't support it, choose a bigger one */
1859                 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1860                 agaw = find_next_bit(&sagaw, 5, agaw);
1861                 if (agaw >= 5)
1862                         return -ENODEV;
1863         }
1864         domain->agaw = agaw;
1865
1866         if (ecap_coherent(iommu->ecap))
1867                 domain->iommu_coherency = 1;
1868         else
1869                 domain->iommu_coherency = 0;
1870
1871         if (ecap_sc_support(iommu->ecap))
1872                 domain->iommu_snooping = 1;
1873         else
1874                 domain->iommu_snooping = 0;
1875
1876         if (intel_iommu_superpage)
1877                 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1878         else
1879                 domain->iommu_superpage = 0;
1880
1881         domain->nid = iommu->node;
1882
1883         /* always allocate the top pgd */
1884         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1885         if (!domain->pgd)
1886                 return -ENOMEM;
1887         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1888         return 0;
1889 }
1890
1891 static void domain_exit(struct dmar_domain *domain)
1892 {
1893
1894         /* Remove associated devices and clear attached or cached domains */
1895         domain_remove_dev_info(domain);
1896
1897         /* destroy iovas */
1898         put_iova_domain(&domain->iovad);
1899
1900         if (domain->pgd) {
1901                 struct page *freelist;
1902
1903                 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1904                 dma_free_pagelist(freelist);
1905         }
1906
1907         free_domain_mem(domain);
1908 }
1909
1910 /*
1911  * Get the PASID directory size for scalable mode context entry.
1912  * Value of X in the PDTS field of a scalable mode context entry
1913  * indicates PASID directory with 2^(X + 7) entries.
1914  */
1915 static inline unsigned long context_get_sm_pds(struct pasid_table *table)
1916 {
1917         int pds, max_pde;
1918
1919         max_pde = table->max_pasid >> PASID_PDE_SHIFT;
1920         pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
1921         if (pds < 7)
1922                 return 0;
1923
1924         return pds - 7;
1925 }
1926
1927 /*
1928  * Set the RID_PASID field of a scalable mode context entry. The
1929  * IOMMU hardware will use the PASID value set in this field for
1930  * DMA translations of DMA requests without PASID.
1931  */
1932 static inline void
1933 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
1934 {
1935         context->hi |= pasid & ((1 << 20) - 1);
1936         context->hi |= (1 << 20);
1937 }
1938
1939 /*
1940  * Set the DTE(Device-TLB Enable) field of a scalable mode context
1941  * entry.
1942  */
1943 static inline void context_set_sm_dte(struct context_entry *context)
1944 {
1945         context->lo |= (1 << 2);
1946 }
1947
1948 /*
1949  * Set the PRE(Page Request Enable) field of a scalable mode context
1950  * entry.
1951  */
1952 static inline void context_set_sm_pre(struct context_entry *context)
1953 {
1954         context->lo |= (1 << 4);
1955 }
1956
1957 /* Convert value to context PASID directory size field coding. */
1958 #define context_pdts(pds)       (((pds) & 0x7) << 9)
1959
1960 static int domain_context_mapping_one(struct dmar_domain *domain,
1961                                       struct intel_iommu *iommu,
1962                                       struct pasid_table *table,
1963                                       u8 bus, u8 devfn)
1964 {
1965         u16 did = domain->iommu_did[iommu->seq_id];
1966         int translation = CONTEXT_TT_MULTI_LEVEL;
1967         struct device_domain_info *info = NULL;
1968         struct context_entry *context;
1969         unsigned long flags;
1970         int ret;
1971
1972         WARN_ON(did == 0);
1973
1974         if (hw_pass_through && domain_type_is_si(domain))
1975                 translation = CONTEXT_TT_PASS_THROUGH;
1976
1977         pr_debug("Set context mapping for %02x:%02x.%d\n",
1978                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1979
1980         BUG_ON(!domain->pgd);
1981
1982         spin_lock_irqsave(&device_domain_lock, flags);
1983         spin_lock(&iommu->lock);
1984
1985         ret = -ENOMEM;
1986         context = iommu_context_addr(iommu, bus, devfn, 1);
1987         if (!context)
1988                 goto out_unlock;
1989
1990         ret = 0;
1991         if (context_present(context))
1992                 goto out_unlock;
1993
1994         /*
1995          * For kdump cases, old valid entries may be cached due to the
1996          * in-flight DMA and copied pgtable, but there is no unmapping
1997          * behaviour for them, thus we need an explicit cache flush for
1998          * the newly-mapped device. For kdump, at this point, the device
1999          * is supposed to finish reset at its driver probe stage, so no
2000          * in-flight DMA will exist, and we don't need to worry anymore
2001          * hereafter.
2002          */
2003         if (context_copied(context)) {
2004                 u16 did_old = context_domain_id(context);
2005
2006                 if (did_old < cap_ndoms(iommu->cap)) {
2007                         iommu->flush.flush_context(iommu, did_old,
2008                                                    (((u16)bus) << 8) | devfn,
2009                                                    DMA_CCMD_MASK_NOBIT,
2010                                                    DMA_CCMD_DEVICE_INVL);
2011                         iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2012                                                  DMA_TLB_DSI_FLUSH);
2013                 }
2014         }
2015
2016         context_clear_entry(context);
2017
2018         if (sm_supported(iommu)) {
2019                 unsigned long pds;
2020
2021                 WARN_ON(!table);
2022
2023                 /* Setup the PASID DIR pointer: */
2024                 pds = context_get_sm_pds(table);
2025                 context->lo = (u64)virt_to_phys(table->table) |
2026                                 context_pdts(pds);
2027
2028                 /* Setup the RID_PASID field: */
2029                 context_set_sm_rid2pasid(context, PASID_RID2PASID);
2030
2031                 /*
2032                  * Setup the Device-TLB enable bit and Page request
2033                  * Enable bit:
2034                  */
2035                 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2036                 if (info && info->ats_supported)
2037                         context_set_sm_dte(context);
2038                 if (info && info->pri_supported)
2039                         context_set_sm_pre(context);
2040         } else {
2041                 struct dma_pte *pgd = domain->pgd;
2042                 int agaw;
2043
2044                 context_set_domain_id(context, did);
2045
2046                 if (translation != CONTEXT_TT_PASS_THROUGH) {
2047                         /*
2048                          * Skip top levels of page tables for iommu which has
2049                          * less agaw than default. Unnecessary for PT mode.
2050                          */
2051                         for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2052                                 ret = -ENOMEM;
2053                                 pgd = phys_to_virt(dma_pte_addr(pgd));
2054                                 if (!dma_pte_present(pgd))
2055                                         goto out_unlock;
2056                         }
2057
2058                         info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2059                         if (info && info->ats_supported)
2060                                 translation = CONTEXT_TT_DEV_IOTLB;
2061                         else
2062                                 translation = CONTEXT_TT_MULTI_LEVEL;
2063
2064                         context_set_address_root(context, virt_to_phys(pgd));
2065                         context_set_address_width(context, agaw);
2066                 } else {
2067                         /*
2068                          * In pass through mode, AW must be programmed to
2069                          * indicate the largest AGAW value supported by
2070                          * hardware. And ASR is ignored by hardware.
2071                          */
2072                         context_set_address_width(context, iommu->msagaw);
2073                 }
2074
2075                 context_set_translation_type(context, translation);
2076         }
2077
2078         context_set_fault_enable(context);
2079         context_set_present(context);
2080         domain_flush_cache(domain, context, sizeof(*context));
2081
2082         /*
2083          * It's a non-present to present mapping. If hardware doesn't cache
2084          * non-present entry we only need to flush the write-buffer. If the
2085          * _does_ cache non-present entries, then it does so in the special
2086          * domain #0, which we have to flush:
2087          */
2088         if (cap_caching_mode(iommu->cap)) {
2089                 iommu->flush.flush_context(iommu, 0,
2090                                            (((u16)bus) << 8) | devfn,
2091                                            DMA_CCMD_MASK_NOBIT,
2092                                            DMA_CCMD_DEVICE_INVL);
2093                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2094         } else {
2095                 iommu_flush_write_buffer(iommu);
2096         }
2097         iommu_enable_dev_iotlb(info);
2098
2099         ret = 0;
2100
2101 out_unlock:
2102         spin_unlock(&iommu->lock);
2103         spin_unlock_irqrestore(&device_domain_lock, flags);
2104
2105         return ret;
2106 }
2107
2108 static int
2109 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2110 {
2111         struct pasid_table *table;
2112         struct intel_iommu *iommu;
2113         u8 bus, devfn;
2114
2115         iommu = device_to_iommu(dev, &bus, &devfn);
2116         if (!iommu)
2117                 return -ENODEV;
2118
2119         table = intel_pasid_get_table(dev);
2120         return domain_context_mapping_one(domain, iommu, table, bus, devfn);
2121 }
2122
2123 static int domain_context_mapped_cb(struct pci_dev *pdev,
2124                                     u16 alias, void *opaque)
2125 {
2126         struct intel_iommu *iommu = opaque;
2127
2128         return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2129 }
2130
2131 static int domain_context_mapped(struct device *dev)
2132 {
2133         struct intel_iommu *iommu;
2134         u8 bus, devfn;
2135
2136         iommu = device_to_iommu(dev, &bus, &devfn);
2137         if (!iommu)
2138                 return -ENODEV;
2139
2140         if (!dev_is_pci(dev))
2141                 return device_context_mapped(iommu, bus, devfn);
2142
2143         return !pci_for_each_dma_alias(to_pci_dev(dev),
2144                                        domain_context_mapped_cb, iommu);
2145 }
2146
2147 /* Returns a number of VTD pages, but aligned to MM page size */
2148 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2149                                             size_t size)
2150 {
2151         host_addr &= ~PAGE_MASK;
2152         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2153 }
2154
2155 /* Return largest possible superpage level for a given mapping */
2156 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2157                                           unsigned long iov_pfn,
2158                                           unsigned long phy_pfn,
2159                                           unsigned long pages)
2160 {
2161         int support, level = 1;
2162         unsigned long pfnmerge;
2163
2164         support = domain->iommu_superpage;
2165
2166         /* To use a large page, the virtual *and* physical addresses
2167            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2168            of them will mean we have to use smaller pages. So just
2169            merge them and check both at once. */
2170         pfnmerge = iov_pfn | phy_pfn;
2171
2172         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2173                 pages >>= VTD_STRIDE_SHIFT;
2174                 if (!pages)
2175                         break;
2176                 pfnmerge >>= VTD_STRIDE_SHIFT;
2177                 level++;
2178                 support--;
2179         }
2180         return level;
2181 }
2182
2183 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2184                             struct scatterlist *sg, unsigned long phys_pfn,
2185                             unsigned long nr_pages, int prot)
2186 {
2187         struct dma_pte *first_pte = NULL, *pte = NULL;
2188         phys_addr_t uninitialized_var(pteval);
2189         unsigned long sg_res = 0;
2190         unsigned int largepage_lvl = 0;
2191         unsigned long lvl_pages = 0;
2192
2193         BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2194
2195         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2196                 return -EINVAL;
2197
2198         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2199
2200         if (!sg) {
2201                 sg_res = nr_pages;
2202                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2203         }
2204
2205         while (nr_pages > 0) {
2206                 uint64_t tmp;
2207
2208                 if (!sg_res) {
2209                         unsigned int pgoff = sg->offset & ~PAGE_MASK;
2210
2211                         sg_res = aligned_nrpages(sg->offset, sg->length);
2212                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2213                         sg->dma_length = sg->length;
2214                         pteval = (sg_phys(sg) - pgoff) | prot;
2215                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
2216                 }
2217
2218                 if (!pte) {
2219                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2220
2221                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2222                         if (!pte)
2223                                 return -ENOMEM;
2224                         /* It is large page*/
2225                         if (largepage_lvl > 1) {
2226                                 unsigned long nr_superpages, end_pfn;
2227
2228                                 pteval |= DMA_PTE_LARGE_PAGE;
2229                                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2230
2231                                 nr_superpages = sg_res / lvl_pages;
2232                                 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2233
2234                                 /*
2235                                  * Ensure that old small page tables are
2236                                  * removed to make room for superpage(s).
2237                                  * We're adding new large pages, so make sure
2238                                  * we don't remove their parent tables.
2239                                  */
2240                                 dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2241                                                        largepage_lvl + 1);
2242                         } else {
2243                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2244                         }
2245
2246                 }
2247                 /* We don't need lock here, nobody else
2248                  * touches the iova range
2249                  */
2250                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2251                 if (tmp) {
2252                         static int dumps = 5;
2253                         pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2254                                 iov_pfn, tmp, (unsigned long long)pteval);
2255                         if (dumps) {
2256                                 dumps--;
2257                                 debug_dma_dump_mappings(NULL);
2258                         }
2259                         WARN_ON(1);
2260                 }
2261
2262                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2263
2264                 BUG_ON(nr_pages < lvl_pages);
2265                 BUG_ON(sg_res < lvl_pages);
2266
2267                 nr_pages -= lvl_pages;
2268                 iov_pfn += lvl_pages;
2269                 phys_pfn += lvl_pages;
2270                 pteval += lvl_pages * VTD_PAGE_SIZE;
2271                 sg_res -= lvl_pages;
2272
2273                 /* If the next PTE would be the first in a new page, then we
2274                    need to flush the cache on the entries we've just written.
2275                    And then we'll need to recalculate 'pte', so clear it and
2276                    let it get set again in the if (!pte) block above.
2277
2278                    If we're done (!nr_pages) we need to flush the cache too.
2279
2280                    Also if we've been setting superpages, we may need to
2281                    recalculate 'pte' and switch back to smaller pages for the
2282                    end of the mapping, if the trailing size is not enough to
2283                    use another superpage (i.e. sg_res < lvl_pages). */
2284                 pte++;
2285                 if (!nr_pages || first_pte_in_page(pte) ||
2286                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
2287                         domain_flush_cache(domain, first_pte,
2288                                            (void *)pte - (void *)first_pte);
2289                         pte = NULL;
2290                 }
2291
2292                 if (!sg_res && nr_pages)
2293                         sg = sg_next(sg);
2294         }
2295         return 0;
2296 }
2297
2298 static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2299                           struct scatterlist *sg, unsigned long phys_pfn,
2300                           unsigned long nr_pages, int prot)
2301 {
2302         int iommu_id, ret;
2303         struct intel_iommu *iommu;
2304
2305         /* Do the real mapping first */
2306         ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
2307         if (ret)
2308                 return ret;
2309
2310         for_each_domain_iommu(iommu_id, domain) {
2311                 iommu = g_iommus[iommu_id];
2312                 __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
2313         }
2314
2315         return 0;
2316 }
2317
2318 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2319                                     struct scatterlist *sg, unsigned long nr_pages,
2320                                     int prot)
2321 {
2322         return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2323 }
2324
2325 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2326                                      unsigned long phys_pfn, unsigned long nr_pages,
2327                                      int prot)
2328 {
2329         return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2330 }
2331
2332 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2333 {
2334         unsigned long flags;
2335         struct context_entry *context;
2336         u16 did_old;
2337
2338         if (!iommu)
2339                 return;
2340
2341         spin_lock_irqsave(&iommu->lock, flags);
2342         context = iommu_context_addr(iommu, bus, devfn, 0);
2343         if (!context) {
2344                 spin_unlock_irqrestore(&iommu->lock, flags);
2345                 return;
2346         }
2347         did_old = context_domain_id(context);
2348         context_clear_entry(context);
2349         __iommu_flush_cache(iommu, context, sizeof(*context));
2350         spin_unlock_irqrestore(&iommu->lock, flags);
2351         iommu->flush.flush_context(iommu,
2352                                    did_old,
2353                                    (((u16)bus) << 8) | devfn,
2354                                    DMA_CCMD_MASK_NOBIT,
2355                                    DMA_CCMD_DEVICE_INVL);
2356         iommu->flush.flush_iotlb(iommu,
2357                                  did_old,
2358                                  0,
2359                                  0,
2360                                  DMA_TLB_DSI_FLUSH);
2361 }
2362
2363 static inline void unlink_domain_info(struct device_domain_info *info)
2364 {
2365         assert_spin_locked(&device_domain_lock);
2366         list_del(&info->link);
2367         list_del(&info->global);
2368         if (info->dev)
2369                 info->dev->archdata.iommu = NULL;
2370 }
2371
2372 static void domain_remove_dev_info(struct dmar_domain *domain)
2373 {
2374         struct device_domain_info *info, *tmp;
2375         unsigned long flags;
2376
2377         spin_lock_irqsave(&device_domain_lock, flags);
2378         list_for_each_entry_safe(info, tmp, &domain->devices, link)
2379                 __dmar_remove_one_dev_info(info);
2380         spin_unlock_irqrestore(&device_domain_lock, flags);
2381 }
2382
2383 /*
2384  * find_domain
2385  * Note: we use struct device->archdata.iommu stores the info
2386  */
2387 static struct dmar_domain *find_domain(struct device *dev)
2388 {
2389         struct device_domain_info *info;
2390
2391         if (unlikely(dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO)) {
2392                 struct iommu_domain *domain;
2393
2394                 dev->archdata.iommu = NULL;
2395                 domain = iommu_get_domain_for_dev(dev);
2396                 if (domain)
2397                         intel_iommu_attach_device(domain, dev);
2398         }
2399
2400         /* No lock here, assumes no domain exit in normal case */
2401         info = dev->archdata.iommu;
2402
2403         if (likely(info))
2404                 return info->domain;
2405         return NULL;
2406 }
2407
2408 static inline struct device_domain_info *
2409 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2410 {
2411         struct device_domain_info *info;
2412
2413         list_for_each_entry(info, &device_domain_list, global)
2414                 if (info->iommu->segment == segment && info->bus == bus &&
2415                     info->devfn == devfn)
2416                         return info;
2417
2418         return NULL;
2419 }
2420
2421 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2422                                                     int bus, int devfn,
2423                                                     struct device *dev,
2424                                                     struct dmar_domain *domain)
2425 {
2426         struct dmar_domain *found = NULL;
2427         struct device_domain_info *info;
2428         unsigned long flags;
2429         int ret;
2430
2431         info = alloc_devinfo_mem();
2432         if (!info)
2433                 return NULL;
2434
2435         info->bus = bus;
2436         info->devfn = devfn;
2437         info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2438         info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2439         info->ats_qdep = 0;
2440         info->dev = dev;
2441         info->domain = domain;
2442         info->iommu = iommu;
2443         info->pasid_table = NULL;
2444         info->auxd_enabled = 0;
2445         INIT_LIST_HEAD(&info->auxiliary_domains);
2446
2447         if (dev && dev_is_pci(dev)) {
2448                 struct pci_dev *pdev = to_pci_dev(info->dev);
2449
2450                 if (!pdev->untrusted &&
2451                     !pci_ats_disabled() &&
2452                     ecap_dev_iotlb_support(iommu->ecap) &&
2453                     pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2454                     dmar_find_matched_atsr_unit(pdev))
2455                         info->ats_supported = 1;
2456
2457                 if (sm_supported(iommu)) {
2458                         if (pasid_supported(iommu)) {
2459                                 int features = pci_pasid_features(pdev);
2460                                 if (features >= 0)
2461                                         info->pasid_supported = features | 1;
2462                         }
2463
2464                         if (info->ats_supported && ecap_prs(iommu->ecap) &&
2465                             pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2466                                 info->pri_supported = 1;
2467                 }
2468         }
2469
2470         spin_lock_irqsave(&device_domain_lock, flags);
2471         if (dev)
2472                 found = find_domain(dev);
2473
2474         if (!found) {
2475                 struct device_domain_info *info2;
2476                 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2477                 if (info2) {
2478                         found      = info2->domain;
2479                         info2->dev = dev;
2480                 }
2481         }
2482
2483         if (found) {
2484                 spin_unlock_irqrestore(&device_domain_lock, flags);
2485                 free_devinfo_mem(info);
2486                 /* Caller must free the original domain */
2487                 return found;
2488         }
2489
2490         spin_lock(&iommu->lock);
2491         ret = domain_attach_iommu(domain, iommu);
2492         spin_unlock(&iommu->lock);
2493
2494         if (ret) {
2495                 spin_unlock_irqrestore(&device_domain_lock, flags);
2496                 free_devinfo_mem(info);
2497                 return NULL;
2498         }
2499
2500         list_add(&info->link, &domain->devices);
2501         list_add(&info->global, &device_domain_list);
2502         if (dev)
2503                 dev->archdata.iommu = info;
2504         spin_unlock_irqrestore(&device_domain_lock, flags);
2505
2506         /* PASID table is mandatory for a PCI device in scalable mode. */
2507         if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2508                 ret = intel_pasid_alloc_table(dev);
2509                 if (ret) {
2510                         dev_err(dev, "PASID table allocation failed\n");
2511                         dmar_remove_one_dev_info(dev);
2512                         return NULL;
2513                 }
2514
2515                 /* Setup the PASID entry for requests without PASID: */
2516                 spin_lock(&iommu->lock);
2517                 if (hw_pass_through && domain_type_is_si(domain))
2518                         ret = intel_pasid_setup_pass_through(iommu, domain,
2519                                         dev, PASID_RID2PASID);
2520                 else
2521                         ret = intel_pasid_setup_second_level(iommu, domain,
2522                                         dev, PASID_RID2PASID);
2523                 spin_unlock(&iommu->lock);
2524                 if (ret) {
2525                         dev_err(dev, "Setup RID2PASID failed\n");
2526                         dmar_remove_one_dev_info(dev);
2527                         return NULL;
2528                 }
2529         }
2530
2531         if (dev && domain_context_mapping(domain, dev)) {
2532                 dev_err(dev, "Domain context map failed\n");
2533                 dmar_remove_one_dev_info(dev);
2534                 return NULL;
2535         }
2536
2537         return domain;
2538 }
2539
2540 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2541 {
2542         *(u16 *)opaque = alias;
2543         return 0;
2544 }
2545
2546 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2547 {
2548         struct device_domain_info *info;
2549         struct dmar_domain *domain = NULL;
2550         struct intel_iommu *iommu;
2551         u16 dma_alias;
2552         unsigned long flags;
2553         u8 bus, devfn;
2554
2555         iommu = device_to_iommu(dev, &bus, &devfn);
2556         if (!iommu)
2557                 return NULL;
2558
2559         if (dev_is_pci(dev)) {
2560                 struct pci_dev *pdev = to_pci_dev(dev);
2561
2562                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2563
2564                 spin_lock_irqsave(&device_domain_lock, flags);
2565                 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2566                                                       PCI_BUS_NUM(dma_alias),
2567                                                       dma_alias & 0xff);
2568                 if (info) {
2569                         iommu = info->iommu;
2570                         domain = info->domain;
2571                 }
2572                 spin_unlock_irqrestore(&device_domain_lock, flags);
2573
2574                 /* DMA alias already has a domain, use it */
2575                 if (info)
2576                         goto out;
2577         }
2578
2579         /* Allocate and initialize new domain for the device */
2580         domain = alloc_domain(0);
2581         if (!domain)
2582                 return NULL;
2583         if (domain_init(domain, iommu, gaw)) {
2584                 domain_exit(domain);
2585                 return NULL;
2586         }
2587
2588 out:
2589         return domain;
2590 }
2591
2592 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2593                                               struct dmar_domain *domain)
2594 {
2595         struct intel_iommu *iommu;
2596         struct dmar_domain *tmp;
2597         u16 req_id, dma_alias;
2598         u8 bus, devfn;
2599
2600         iommu = device_to_iommu(dev, &bus, &devfn);
2601         if (!iommu)
2602                 return NULL;
2603
2604         req_id = ((u16)bus << 8) | devfn;
2605
2606         if (dev_is_pci(dev)) {
2607                 struct pci_dev *pdev = to_pci_dev(dev);
2608
2609                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2610
2611                 /* register PCI DMA alias device */
2612                 if (req_id != dma_alias) {
2613                         tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2614                                         dma_alias & 0xff, NULL, domain);
2615
2616                         if (!tmp || tmp != domain)
2617                                 return tmp;
2618                 }
2619         }
2620
2621         tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2622         if (!tmp || tmp != domain)
2623                 return tmp;
2624
2625         return domain;
2626 }
2627
2628 static int iommu_domain_identity_map(struct dmar_domain *domain,
2629                                      unsigned long long start,
2630                                      unsigned long long end)
2631 {
2632         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2633         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2634
2635         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2636                           dma_to_mm_pfn(last_vpfn))) {
2637                 pr_err("Reserving iova failed\n");
2638                 return -ENOMEM;
2639         }
2640
2641         pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2642         /*
2643          * RMRR range might have overlap with physical memory range,
2644          * clear it first
2645          */
2646         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2647
2648         return __domain_mapping(domain, first_vpfn, NULL,
2649                                 first_vpfn, last_vpfn - first_vpfn + 1,
2650                                 DMA_PTE_READ|DMA_PTE_WRITE);
2651 }
2652
2653 static int domain_prepare_identity_map(struct device *dev,
2654                                        struct dmar_domain *domain,
2655                                        unsigned long long start,
2656                                        unsigned long long end)
2657 {
2658         /* For _hardware_ passthrough, don't bother. But for software
2659            passthrough, we do it anyway -- it may indicate a memory
2660            range which is reserved in E820, so which didn't get set
2661            up to start with in si_domain */
2662         if (domain == si_domain && hw_pass_through) {
2663                 dev_warn(dev, "Ignoring identity map for HW passthrough [0x%Lx - 0x%Lx]\n",
2664                          start, end);
2665                 return 0;
2666         }
2667
2668         dev_info(dev, "Setting identity map [0x%Lx - 0x%Lx]\n", start, end);
2669
2670         if (end < start) {
2671                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2672                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2673                         dmi_get_system_info(DMI_BIOS_VENDOR),
2674                         dmi_get_system_info(DMI_BIOS_VERSION),
2675                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2676                 return -EIO;
2677         }
2678
2679         if (end >> agaw_to_width(domain->agaw)) {
2680                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2681                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2682                      agaw_to_width(domain->agaw),
2683                      dmi_get_system_info(DMI_BIOS_VENDOR),
2684                      dmi_get_system_info(DMI_BIOS_VERSION),
2685                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2686                 return -EIO;
2687         }
2688
2689         return iommu_domain_identity_map(domain, start, end);
2690 }
2691
2692 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2693
2694 static int __init si_domain_init(int hw)
2695 {
2696         struct dmar_rmrr_unit *rmrr;
2697         struct device *dev;
2698         int i, nid, ret;
2699
2700         si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2701         if (!si_domain)
2702                 return -EFAULT;
2703
2704         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2705                 domain_exit(si_domain);
2706                 return -EFAULT;
2707         }
2708
2709         if (hw)
2710                 return 0;
2711
2712         for_each_online_node(nid) {
2713                 unsigned long start_pfn, end_pfn;
2714                 int i;
2715
2716                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2717                         ret = iommu_domain_identity_map(si_domain,
2718                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2719                         if (ret)
2720                                 return ret;
2721                 }
2722         }
2723
2724         /*
2725          * Normally we use DMA domains for devices which have RMRRs. But we
2726          * loose this requirement for graphic and usb devices. Identity map
2727          * the RMRRs for graphic and USB devices so that they could use the
2728          * si_domain.
2729          */
2730         for_each_rmrr_units(rmrr) {
2731                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2732                                           i, dev) {
2733                         unsigned long long start = rmrr->base_address;
2734                         unsigned long long end = rmrr->end_address;
2735
2736                         if (device_is_rmrr_locked(dev))
2737                                 continue;
2738
2739                         if (WARN_ON(end < start ||
2740                                     end >> agaw_to_width(si_domain->agaw)))
2741                                 continue;
2742
2743                         ret = iommu_domain_identity_map(si_domain, start, end);
2744                         if (ret)
2745                                 return ret;
2746                 }
2747         }
2748
2749         return 0;
2750 }
2751
2752 static int identity_mapping(struct device *dev)
2753 {
2754         struct device_domain_info *info;
2755
2756         info = dev->archdata.iommu;
2757         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2758                 return (info->domain == si_domain);
2759
2760         return 0;
2761 }
2762
2763 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2764 {
2765         struct dmar_domain *ndomain;
2766         struct intel_iommu *iommu;
2767         u8 bus, devfn;
2768
2769         iommu = device_to_iommu(dev, &bus, &devfn);
2770         if (!iommu)
2771                 return -ENODEV;
2772
2773         ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2774         if (ndomain != domain)
2775                 return -EBUSY;
2776
2777         return 0;
2778 }
2779
2780 static bool device_has_rmrr(struct device *dev)
2781 {
2782         struct dmar_rmrr_unit *rmrr;
2783         struct device *tmp;
2784         int i;
2785
2786         rcu_read_lock();
2787         for_each_rmrr_units(rmrr) {
2788                 /*
2789                  * Return TRUE if this RMRR contains the device that
2790                  * is passed in.
2791                  */
2792                 for_each_active_dev_scope(rmrr->devices,
2793                                           rmrr->devices_cnt, i, tmp)
2794                         if (tmp == dev ||
2795                             is_downstream_to_pci_bridge(dev, tmp)) {
2796                                 rcu_read_unlock();
2797                                 return true;
2798                         }
2799         }
2800         rcu_read_unlock();
2801         return false;
2802 }
2803
2804 /**
2805  * device_rmrr_is_relaxable - Test whether the RMRR of this device
2806  * is relaxable (ie. is allowed to be not enforced under some conditions)
2807  * @dev: device handle
2808  *
2809  * We assume that PCI USB devices with RMRRs have them largely
2810  * for historical reasons and that the RMRR space is not actively used post
2811  * boot.  This exclusion may change if vendors begin to abuse it.
2812  *
2813  * The same exception is made for graphics devices, with the requirement that
2814  * any use of the RMRR regions will be torn down before assigning the device
2815  * to a guest.
2816  *
2817  * Return: true if the RMRR is relaxable, false otherwise
2818  */
2819 static bool device_rmrr_is_relaxable(struct device *dev)
2820 {
2821         struct pci_dev *pdev;
2822
2823         if (!dev_is_pci(dev))
2824                 return false;
2825
2826         pdev = to_pci_dev(dev);
2827         if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2828                 return true;
2829         else
2830                 return false;
2831 }
2832
2833 /*
2834  * There are a couple cases where we need to restrict the functionality of
2835  * devices associated with RMRRs.  The first is when evaluating a device for
2836  * identity mapping because problems exist when devices are moved in and out
2837  * of domains and their respective RMRR information is lost.  This means that
2838  * a device with associated RMRRs will never be in a "passthrough" domain.
2839  * The second is use of the device through the IOMMU API.  This interface
2840  * expects to have full control of the IOVA space for the device.  We cannot
2841  * satisfy both the requirement that RMRR access is maintained and have an
2842  * unencumbered IOVA space.  We also have no ability to quiesce the device's
2843  * use of the RMRR space or even inform the IOMMU API user of the restriction.
2844  * We therefore prevent devices associated with an RMRR from participating in
2845  * the IOMMU API, which eliminates them from device assignment.
2846  *
2847  * In both cases, devices which have relaxable RMRRs are not concerned by this
2848  * restriction. See device_rmrr_is_relaxable comment.
2849  */
2850 static bool device_is_rmrr_locked(struct device *dev)
2851 {
2852         if (!device_has_rmrr(dev))
2853                 return false;
2854
2855         if (device_rmrr_is_relaxable(dev))
2856                 return false;
2857
2858         return true;
2859 }
2860
2861 /*
2862  * Return the required default domain type for a specific device.
2863  *
2864  * @dev: the device in query
2865  * @startup: true if this is during early boot
2866  *
2867  * Returns:
2868  *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
2869  *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
2870  *  - 0: both identity and dynamic domains work for this device
2871  */
2872 static int device_def_domain_type(struct device *dev)
2873 {
2874         if (dev_is_pci(dev)) {
2875                 struct pci_dev *pdev = to_pci_dev(dev);
2876
2877                 if (device_is_rmrr_locked(dev))
2878                         return IOMMU_DOMAIN_DMA;
2879
2880                 /*
2881                  * Prevent any device marked as untrusted from getting
2882                  * placed into the statically identity mapping domain.
2883                  */
2884                 if (pdev->untrusted)
2885                         return IOMMU_DOMAIN_DMA;
2886
2887                 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2888                         return IOMMU_DOMAIN_IDENTITY;
2889
2890                 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2891                         return IOMMU_DOMAIN_IDENTITY;
2892
2893                 /*
2894                  * We want to start off with all devices in the 1:1 domain, and
2895                  * take them out later if we find they can't access all of memory.
2896                  *
2897                  * However, we can't do this for PCI devices behind bridges,
2898                  * because all PCI devices behind the same bridge will end up
2899                  * with the same source-id on their transactions.
2900                  *
2901                  * Practically speaking, we can't change things around for these
2902                  * devices at run-time, because we can't be sure there'll be no
2903                  * DMA transactions in flight for any of their siblings.
2904                  *
2905                  * So PCI devices (unless they're on the root bus) as well as
2906                  * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2907                  * the 1:1 domain, just in _case_ one of their siblings turns out
2908                  * not to be able to map all of memory.
2909                  */
2910                 if (!pci_is_pcie(pdev)) {
2911                         if (!pci_is_root_bus(pdev->bus))
2912                                 return IOMMU_DOMAIN_DMA;
2913                         if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2914                                 return IOMMU_DOMAIN_DMA;
2915                 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2916                         return IOMMU_DOMAIN_DMA;
2917         } else {
2918                 if (device_has_rmrr(dev))
2919                         return IOMMU_DOMAIN_DMA;
2920         }
2921
2922         return (iommu_identity_mapping & IDENTMAP_ALL) ?
2923                         IOMMU_DOMAIN_IDENTITY : 0;
2924 }
2925
2926 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2927 {
2928         /*
2929          * Start from the sane iommu hardware state.
2930          * If the queued invalidation is already initialized by us
2931          * (for example, while enabling interrupt-remapping) then
2932          * we got the things already rolling from a sane state.
2933          */
2934         if (!iommu->qi) {
2935                 /*
2936                  * Clear any previous faults.
2937                  */
2938                 dmar_fault(-1, iommu);
2939                 /*
2940                  * Disable queued invalidation if supported and already enabled
2941                  * before OS handover.
2942                  */
2943                 dmar_disable_qi(iommu);
2944         }
2945
2946         if (dmar_enable_qi(iommu)) {
2947                 /*
2948                  * Queued Invalidate not enabled, use Register Based Invalidate
2949                  */
2950                 iommu->flush.flush_context = __iommu_flush_context;
2951                 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2952                 pr_info("%s: Using Register based invalidation\n",
2953                         iommu->name);
2954         } else {
2955                 iommu->flush.flush_context = qi_flush_context;
2956                 iommu->flush.flush_iotlb = qi_flush_iotlb;
2957                 pr_info("%s: Using Queued invalidation\n", iommu->name);
2958         }
2959 }
2960
2961 static int copy_context_table(struct intel_iommu *iommu,
2962                               struct root_entry *old_re,
2963                               struct context_entry **tbl,
2964                               int bus, bool ext)
2965 {
2966         int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2967         struct context_entry *new_ce = NULL, ce;
2968         struct context_entry *old_ce = NULL;
2969         struct root_entry re;
2970         phys_addr_t old_ce_phys;
2971
2972         tbl_idx = ext ? bus * 2 : bus;
2973         memcpy(&re, old_re, sizeof(re));
2974
2975         for (devfn = 0; devfn < 256; devfn++) {
2976                 /* First calculate the correct index */
2977                 idx = (ext ? devfn * 2 : devfn) % 256;
2978
2979                 if (idx == 0) {
2980                         /* First save what we may have and clean up */
2981                         if (new_ce) {
2982                                 tbl[tbl_idx] = new_ce;
2983                                 __iommu_flush_cache(iommu, new_ce,
2984                                                     VTD_PAGE_SIZE);
2985                                 pos = 1;
2986                         }
2987
2988                         if (old_ce)
2989                                 memunmap(old_ce);
2990
2991                         ret = 0;
2992                         if (devfn < 0x80)
2993                                 old_ce_phys = root_entry_lctp(&re);
2994                         else
2995                                 old_ce_phys = root_entry_uctp(&re);
2996
2997                         if (!old_ce_phys) {
2998                                 if (ext && devfn == 0) {
2999                                         /* No LCTP, try UCTP */
3000                                         devfn = 0x7f;
3001                                         continue;
3002                                 } else {
3003                                         goto out;
3004                                 }
3005                         }
3006
3007                         ret = -ENOMEM;
3008                         old_ce = memremap(old_ce_phys, PAGE_SIZE,
3009                                         MEMREMAP_WB);
3010                         if (!old_ce)
3011                                 goto out;
3012
3013                         new_ce = alloc_pgtable_page(iommu->node);
3014                         if (!new_ce)
3015                                 goto out_unmap;
3016
3017                         ret = 0;
3018                 }
3019
3020                 /* Now copy the context entry */
3021                 memcpy(&ce, old_ce + idx, sizeof(ce));
3022
3023                 if (!__context_present(&ce))
3024                         continue;
3025
3026                 did = context_domain_id(&ce);
3027                 if (did >= 0 && did < cap_ndoms(iommu->cap))
3028                         set_bit(did, iommu->domain_ids);
3029
3030                 /*
3031                  * We need a marker for copied context entries. This
3032                  * marker needs to work for the old format as well as
3033                  * for extended context entries.
3034                  *
3035                  * Bit 67 of the context entry is used. In the old
3036                  * format this bit is available to software, in the
3037                  * extended format it is the PGE bit, but PGE is ignored
3038                  * by HW if PASIDs are disabled (and thus still
3039                  * available).
3040                  *
3041                  * So disable PASIDs first and then mark the entry
3042                  * copied. This means that we don't copy PASID
3043                  * translations from the old kernel, but this is fine as
3044                  * faults there are not fatal.
3045                  */
3046                 context_clear_pasid_enable(&ce);
3047                 context_set_copied(&ce);
3048
3049                 new_ce[idx] = ce;
3050         }
3051
3052         tbl[tbl_idx + pos] = new_ce;
3053
3054         __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3055
3056 out_unmap:
3057         memunmap(old_ce);
3058
3059 out:
3060         return ret;
3061 }
3062
3063 static int copy_translation_tables(struct intel_iommu *iommu)
3064 {
3065         struct context_entry **ctxt_tbls;
3066         struct root_entry *old_rt;
3067         phys_addr_t old_rt_phys;
3068         int ctxt_table_entries;
3069         unsigned long flags;
3070         u64 rtaddr_reg;
3071         int bus, ret;
3072         bool new_ext, ext;
3073
3074         rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3075         ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3076         new_ext    = !!ecap_ecs(iommu->ecap);
3077
3078         /*
3079          * The RTT bit can only be changed when translation is disabled,
3080          * but disabling translation means to open a window for data
3081          * corruption. So bail out and don't copy anything if we would
3082          * have to change the bit.
3083          */
3084         if (new_ext != ext)
3085                 return -EINVAL;
3086
3087         old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3088         if (!old_rt_phys)
3089                 return -EINVAL;
3090
3091         old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3092         if (!old_rt)
3093                 return -ENOMEM;
3094
3095         /* This is too big for the stack - allocate it from slab */
3096         ctxt_table_entries = ext ? 512 : 256;
3097         ret = -ENOMEM;
3098         ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3099         if (!ctxt_tbls)
3100                 goto out_unmap;
3101
3102         for (bus = 0; bus < 256; bus++) {
3103                 ret = copy_context_table(iommu, &old_rt[bus],
3104                                          ctxt_tbls, bus, ext);
3105                 if (ret) {
3106                         pr_err("%s: Failed to copy context table for bus %d\n",
3107                                 iommu->name, bus);
3108                         continue;
3109                 }
3110         }
3111
3112         spin_lock_irqsave(&iommu->lock, flags);
3113
3114         /* Context tables are copied, now write them to the root_entry table */
3115         for (bus = 0; bus < 256; bus++) {
3116                 int idx = ext ? bus * 2 : bus;
3117                 u64 val;
3118
3119                 if (ctxt_tbls[idx]) {
3120                         val = virt_to_phys(ctxt_tbls[idx]) | 1;
3121                         iommu->root_entry[bus].lo = val;
3122                 }
3123
3124                 if (!ext || !ctxt_tbls[idx + 1])
3125                         continue;
3126
3127                 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3128                 iommu->root_entry[bus].hi = val;
3129         }
3130
3131         spin_unlock_irqrestore(&iommu->lock, flags);
3132
3133         kfree(ctxt_tbls);
3134
3135         __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3136
3137         ret = 0;
3138
3139 out_unmap:
3140         memunmap(old_rt);
3141
3142         return ret;
3143 }
3144
3145 static int __init init_dmars(void)
3146 {
3147         struct dmar_drhd_unit *drhd;
3148         struct intel_iommu *iommu;
3149         int ret;
3150
3151         /*
3152          * for each drhd
3153          *    allocate root
3154          *    initialize and program root entry to not present
3155          * endfor
3156          */
3157         for_each_drhd_unit(drhd) {
3158                 /*
3159                  * lock not needed as this is only incremented in the single
3160                  * threaded kernel __init code path all other access are read
3161                  * only
3162                  */
3163                 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3164                         g_num_of_iommus++;
3165                         continue;
3166                 }
3167                 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3168         }
3169
3170         /* Preallocate enough resources for IOMMU hot-addition */
3171         if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3172                 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3173
3174         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3175                         GFP_KERNEL);
3176         if (!g_iommus) {
3177                 pr_err("Allocating global iommu array failed\n");
3178                 ret = -ENOMEM;
3179                 goto error;
3180         }
3181
3182         for_each_iommu(iommu, drhd) {
3183                 if (drhd->ignored) {
3184                         iommu_disable_translation(iommu);
3185                         continue;
3186                 }
3187
3188                 /*
3189                  * Find the max pasid size of all IOMMU's in the system.
3190                  * We need to ensure the system pasid table is no bigger
3191                  * than the smallest supported.
3192                  */
3193                 if (pasid_supported(iommu)) {
3194                         u32 temp = 2 << ecap_pss(iommu->ecap);
3195
3196                         intel_pasid_max_id = min_t(u32, temp,
3197                                                    intel_pasid_max_id);
3198                 }
3199
3200                 g_iommus[iommu->seq_id] = iommu;
3201
3202                 intel_iommu_init_qi(iommu);
3203
3204                 ret = iommu_init_domains(iommu);
3205                 if (ret)
3206                         goto free_iommu;
3207
3208                 init_translation_status(iommu);
3209
3210                 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3211                         iommu_disable_translation(iommu);
3212                         clear_translation_pre_enabled(iommu);
3213                         pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3214                                 iommu->name);
3215                 }
3216
3217                 /*
3218                  * TBD:
3219                  * we could share the same root & context tables
3220                  * among all IOMMU's. Need to Split it later.
3221                  */
3222                 ret = iommu_alloc_root_entry(iommu);
3223                 if (ret)
3224                         goto free_iommu;
3225
3226                 if (translation_pre_enabled(iommu)) {
3227                         pr_info("Translation already enabled - trying to copy translation structures\n");
3228
3229                         ret = copy_translation_tables(iommu);
3230                         if (ret) {
3231                                 /*
3232                                  * We found the IOMMU with translation
3233                                  * enabled - but failed to copy over the
3234                                  * old root-entry table. Try to proceed
3235                                  * by disabling translation now and
3236                                  * allocating a clean root-entry table.
3237                                  * This might cause DMAR faults, but
3238                                  * probably the dump will still succeed.
3239                                  */
3240                                 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3241                                        iommu->name);
3242                                 iommu_disable_translation(iommu);
3243                                 clear_translation_pre_enabled(iommu);
3244                         } else {
3245                                 pr_info("Copied translation tables from previous kernel for %s\n",
3246                                         iommu->name);
3247                         }
3248                 }
3249
3250                 if (!ecap_pass_through(iommu->ecap))
3251                         hw_pass_through = 0;
3252 #ifdef CONFIG_INTEL_IOMMU_SVM
3253                 if (pasid_supported(iommu))
3254                         intel_svm_init(iommu);
3255 #endif
3256         }
3257
3258         /*
3259          * Now that qi is enabled on all iommus, set the root entry and flush
3260          * caches. This is required on some Intel X58 chipsets, otherwise the
3261          * flush_context function will loop forever and the boot hangs.
3262          */
3263         for_each_active_iommu(iommu, drhd) {
3264                 iommu_flush_write_buffer(iommu);
3265                 iommu_set_root_entry(iommu);
3266                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3267                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3268         }
3269
3270         if (iommu_pass_through)
3271                 iommu_identity_mapping |= IDENTMAP_ALL;
3272
3273 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3274         dmar_map_gfx = 0;
3275 #endif
3276
3277         if (!dmar_map_gfx)
3278                 iommu_identity_mapping |= IDENTMAP_GFX;
3279
3280         check_tylersburg_isoch();
3281
3282         ret = si_domain_init(hw_pass_through);
3283         if (ret)
3284                 goto free_iommu;
3285
3286         /*
3287          * for each drhd
3288          *   enable fault log
3289          *   global invalidate context cache
3290          *   global invalidate iotlb
3291          *   enable translation
3292          */
3293         for_each_iommu(iommu, drhd) {
3294                 if (drhd->ignored) {
3295                         /*
3296                          * we always have to disable PMRs or DMA may fail on
3297                          * this device
3298                          */
3299                         if (force_on)
3300                                 iommu_disable_protect_mem_regions(iommu);
3301                         continue;
3302                 }
3303
3304                 iommu_flush_write_buffer(iommu);
3305
3306 #ifdef CONFIG_INTEL_IOMMU_SVM
3307                 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3308                         /*
3309                          * Call dmar_alloc_hwirq() with dmar_global_lock held,
3310                          * could cause possible lock race condition.
3311                          */
3312                         up_write(&dmar_global_lock);
3313                         ret = intel_svm_enable_prq(iommu);
3314                         down_write(&dmar_global_lock);
3315                         if (ret)
3316                                 goto free_iommu;
3317                 }
3318 #endif
3319                 ret = dmar_set_interrupt(iommu);
3320                 if (ret)
3321                         goto free_iommu;
3322         }
3323
3324         return 0;
3325
3326 free_iommu:
3327         for_each_active_iommu(iommu, drhd) {
3328                 disable_dmar_iommu(iommu);
3329                 free_dmar_iommu(iommu);
3330         }
3331
3332         kfree(g_iommus);
3333
3334 error:
3335         return ret;
3336 }
3337
3338 /* This takes a number of _MM_ pages, not VTD pages */
3339 static unsigned long intel_alloc_iova(struct device *dev,
3340                                      struct dmar_domain *domain,
3341                                      unsigned long nrpages, uint64_t dma_mask)
3342 {
3343         unsigned long iova_pfn;
3344
3345         /* Restrict dma_mask to the width that the iommu can handle */
3346         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3347         /* Ensure we reserve the whole size-aligned region */
3348         nrpages = __roundup_pow_of_two(nrpages);
3349
3350         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3351                 /*
3352                  * First try to allocate an io virtual address in
3353                  * DMA_BIT_MASK(32) and if that fails then try allocating
3354                  * from higher range
3355                  */
3356                 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3357                                            IOVA_PFN(DMA_BIT_MASK(32)), false);
3358                 if (iova_pfn)
3359                         return iova_pfn;
3360         }
3361         iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3362                                    IOVA_PFN(dma_mask), true);
3363         if (unlikely(!iova_pfn)) {
3364                 dev_err(dev, "Allocating %ld-page iova failed", nrpages);
3365                 return 0;
3366         }
3367
3368         return iova_pfn;
3369 }
3370
3371 static struct dmar_domain *get_private_domain_for_dev(struct device *dev)
3372 {
3373         struct dmar_domain *domain, *tmp;
3374         struct dmar_rmrr_unit *rmrr;
3375         struct device *i_dev;
3376         int i, ret;
3377
3378         /* Device shouldn't be attached by any domains. */
3379         domain = find_domain(dev);
3380         if (domain)
3381                 return NULL;
3382
3383         domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3384         if (!domain)
3385                 goto out;
3386
3387         /* We have a new domain - setup possible RMRRs for the device */
3388         rcu_read_lock();
3389         for_each_rmrr_units(rmrr) {
3390                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3391                                           i, i_dev) {
3392                         if (i_dev != dev)
3393                                 continue;
3394
3395                         ret = domain_prepare_identity_map(dev, domain,
3396                                                           rmrr->base_address,
3397                                                           rmrr->end_address);
3398                         if (ret)
3399                                 dev_err(dev, "Mapping reserved region failed\n");
3400                 }
3401         }
3402         rcu_read_unlock();
3403
3404         tmp = set_domain_for_dev(dev, domain);
3405         if (!tmp || domain != tmp) {
3406                 domain_exit(domain);
3407                 domain = tmp;
3408         }
3409
3410 out:
3411         if (!domain)
3412                 dev_err(dev, "Allocating domain failed\n");
3413         else
3414                 domain->domain.type = IOMMU_DOMAIN_DMA;
3415
3416         return domain;
3417 }
3418
3419 /* Check if the dev needs to go through non-identity map and unmap process.*/
3420 static bool iommu_need_mapping(struct device *dev)
3421 {
3422         int ret;
3423
3424         if (iommu_dummy(dev))
3425                 return false;
3426
3427         ret = identity_mapping(dev);
3428         if (ret) {
3429                 u64 dma_mask = *dev->dma_mask;
3430
3431                 if (dev->coherent_dma_mask && dev->coherent_dma_mask < dma_mask)
3432                         dma_mask = dev->coherent_dma_mask;
3433
3434                 if (dma_mask >= dma_get_required_mask(dev))
3435                         return false;
3436
3437                 /*
3438                  * 32 bit DMA is removed from si_domain and fall back to
3439                  * non-identity mapping.
3440                  */
3441                 dmar_remove_one_dev_info(dev);
3442                 ret = iommu_request_dma_domain_for_dev(dev);
3443                 if (ret) {
3444                         struct iommu_domain *domain;
3445                         struct dmar_domain *dmar_domain;
3446
3447                         domain = iommu_get_domain_for_dev(dev);
3448                         if (domain) {
3449                                 dmar_domain = to_dmar_domain(domain);
3450                                 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
3451                         }
3452                         get_private_domain_for_dev(dev);
3453                 }
3454
3455                 dev_info(dev, "32bit DMA uses non-identity mapping\n");
3456         }
3457
3458         return true;
3459 }
3460
3461 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3462                                      size_t size, int dir, u64 dma_mask)
3463 {
3464         struct dmar_domain *domain;
3465         phys_addr_t start_paddr;
3466         unsigned long iova_pfn;
3467         int prot = 0;
3468         int ret;
3469         struct intel_iommu *iommu;
3470         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3471
3472         BUG_ON(dir == DMA_NONE);
3473
3474         domain = find_domain(dev);
3475         if (!domain)
3476                 return DMA_MAPPING_ERROR;
3477
3478         iommu = domain_get_iommu(domain);
3479         size = aligned_nrpages(paddr, size);
3480
3481         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3482         if (!iova_pfn)
3483                 goto error;
3484
3485         /*
3486          * Check if DMAR supports zero-length reads on write only
3487          * mappings..
3488          */
3489         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3490                         !cap_zlr(iommu->cap))
3491                 prot |= DMA_PTE_READ;
3492         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3493                 prot |= DMA_PTE_WRITE;
3494         /*
3495          * paddr - (paddr + size) might be partial page, we should map the whole
3496          * page.  Note: if two part of one page are separately mapped, we
3497          * might have two guest_addr mapping to the same host paddr, but this
3498          * is not a big problem
3499          */
3500         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3501                                  mm_to_dma_pfn(paddr_pfn), size, prot);
3502         if (ret)
3503                 goto error;
3504
3505         start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3506         start_paddr += paddr & ~PAGE_MASK;
3507         return start_paddr;
3508
3509 error:
3510         if (iova_pfn)
3511                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3512         dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
3513                 size, (unsigned long long)paddr, dir);
3514         return DMA_MAPPING_ERROR;
3515 }
3516
3517 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3518                                  unsigned long offset, size_t size,
3519                                  enum dma_data_direction dir,
3520                                  unsigned long attrs)
3521 {
3522         if (iommu_need_mapping(dev))
3523                 return __intel_map_single(dev, page_to_phys(page) + offset,
3524                                 size, dir, *dev->dma_mask);
3525         return dma_direct_map_page(dev, page, offset, size, dir, attrs);
3526 }
3527
3528 static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
3529                                      size_t size, enum dma_data_direction dir,
3530                                      unsigned long attrs)
3531 {
3532         if (iommu_need_mapping(dev))
3533                 return __intel_map_single(dev, phys_addr, size, dir,
3534                                 *dev->dma_mask);
3535         return dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
3536 }
3537
3538 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3539 {
3540         struct dmar_domain *domain;
3541         unsigned long start_pfn, last_pfn;
3542         unsigned long nrpages;
3543         unsigned long iova_pfn;
3544         struct intel_iommu *iommu;
3545         struct page *freelist;
3546         struct pci_dev *pdev = NULL;
3547
3548         domain = find_domain(dev);
3549         BUG_ON(!domain);
3550
3551         iommu = domain_get_iommu(domain);
3552
3553         iova_pfn = IOVA_PFN(dev_addr);
3554
3555         nrpages = aligned_nrpages(dev_addr, size);
3556         start_pfn = mm_to_dma_pfn(iova_pfn);
3557         last_pfn = start_pfn + nrpages - 1;
3558
3559         if (dev_is_pci(dev))
3560                 pdev = to_pci_dev(dev);
3561
3562         dev_dbg(dev, "Device unmapping: pfn %lx-%lx\n", start_pfn, last_pfn);
3563
3564         freelist = domain_unmap(domain, start_pfn, last_pfn);
3565
3566         if (intel_iommu_strict || (pdev && pdev->untrusted) ||
3567                         !has_iova_flush_queue(&domain->iovad)) {
3568                 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3569                                       nrpages, !freelist, 0);
3570                 /* free iova */
3571                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3572                 dma_free_pagelist(freelist);
3573         } else {
3574                 queue_iova(&domain->iovad, iova_pfn, nrpages,
3575                            (unsigned long)freelist);
3576                 /*
3577                  * queue up the release of the unmap to save the 1/6th of the
3578                  * cpu used up by the iotlb flush operation...
3579                  */
3580         }
3581 }
3582
3583 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3584                              size_t size, enum dma_data_direction dir,
3585                              unsigned long attrs)
3586 {
3587         if (iommu_need_mapping(dev))
3588                 intel_unmap(dev, dev_addr, size);
3589         else
3590                 dma_direct_unmap_page(dev, dev_addr, size, dir, attrs);
3591 }
3592
3593 static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
3594                 size_t size, enum dma_data_direction dir, unsigned long attrs)
3595 {
3596         if (iommu_need_mapping(dev))
3597                 intel_unmap(dev, dev_addr, size);
3598 }
3599
3600 static void *intel_alloc_coherent(struct device *dev, size_t size,
3601                                   dma_addr_t *dma_handle, gfp_t flags,
3602                                   unsigned long attrs)
3603 {
3604         struct page *page = NULL;
3605         int order;
3606
3607         if (!iommu_need_mapping(dev))
3608                 return dma_direct_alloc(dev, size, dma_handle, flags, attrs);
3609
3610         size = PAGE_ALIGN(size);
3611         order = get_order(size);
3612
3613         if (gfpflags_allow_blocking(flags)) {
3614                 unsigned int count = size >> PAGE_SHIFT;
3615
3616                 page = dma_alloc_from_contiguous(dev, count, order,
3617                                                  flags & __GFP_NOWARN);
3618         }
3619
3620         if (!page)
3621                 page = alloc_pages(flags, order);
3622         if (!page)
3623                 return NULL;
3624         memset(page_address(page), 0, size);
3625
3626         *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3627                                          DMA_BIDIRECTIONAL,
3628                                          dev->coherent_dma_mask);
3629         if (*dma_handle != DMA_MAPPING_ERROR)
3630                 return page_address(page);
3631         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3632                 __free_pages(page, order);
3633
3634         return NULL;
3635 }
3636
3637 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3638                                 dma_addr_t dma_handle, unsigned long attrs)
3639 {
3640         int order;
3641         struct page *page = virt_to_page(vaddr);
3642
3643         if (!iommu_need_mapping(dev))
3644                 return dma_direct_free(dev, size, vaddr, dma_handle, attrs);
3645
3646         size = PAGE_ALIGN(size);
3647         order = get_order(size);
3648
3649         intel_unmap(dev, dma_handle, size);
3650         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3651                 __free_pages(page, order);
3652 }
3653
3654 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3655                            int nelems, enum dma_data_direction dir,
3656                            unsigned long attrs)
3657 {
3658         dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3659         unsigned long nrpages = 0;
3660         struct scatterlist *sg;
3661         int i;
3662
3663         if (!iommu_need_mapping(dev))
3664                 return dma_direct_unmap_sg(dev, sglist, nelems, dir, attrs);
3665
3666         for_each_sg(sglist, sg, nelems, i) {
3667                 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3668         }
3669
3670         intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3671 }
3672
3673 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3674                         enum dma_data_direction dir, unsigned long attrs)
3675 {
3676         int i;
3677         struct dmar_domain *domain;
3678         size_t size = 0;
3679         int prot = 0;
3680         unsigned long iova_pfn;
3681         int ret;
3682         struct scatterlist *sg;
3683         unsigned long start_vpfn;
3684         struct intel_iommu *iommu;
3685
3686         BUG_ON(dir == DMA_NONE);
3687         if (!iommu_need_mapping(dev))
3688                 return dma_direct_map_sg(dev, sglist, nelems, dir, attrs);
3689
3690         domain = find_domain(dev);
3691         if (!domain)
3692                 return 0;
3693
3694         iommu = domain_get_iommu(domain);
3695
3696         for_each_sg(sglist, sg, nelems, i)
3697                 size += aligned_nrpages(sg->offset, sg->length);
3698
3699         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3700                                 *dev->dma_mask);
3701         if (!iova_pfn) {
3702                 sglist->dma_length = 0;
3703                 return 0;
3704         }
3705
3706         /*
3707          * Check if DMAR supports zero-length reads on write only
3708          * mappings..
3709          */
3710         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3711                         !cap_zlr(iommu->cap))
3712                 prot |= DMA_PTE_READ;
3713         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3714                 prot |= DMA_PTE_WRITE;
3715
3716         start_vpfn = mm_to_dma_pfn(iova_pfn);
3717
3718         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3719         if (unlikely(ret)) {
3720                 dma_pte_free_pagetable(domain, start_vpfn,
3721                                        start_vpfn + size - 1,
3722                                        agaw_to_level(domain->agaw) + 1);
3723                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3724                 return 0;
3725         }
3726
3727         return nelems;
3728 }
3729
3730 static const struct dma_map_ops intel_dma_ops = {
3731         .alloc = intel_alloc_coherent,
3732         .free = intel_free_coherent,
3733         .map_sg = intel_map_sg,
3734         .unmap_sg = intel_unmap_sg,
3735         .map_page = intel_map_page,
3736         .unmap_page = intel_unmap_page,
3737         .map_resource = intel_map_resource,
3738         .unmap_resource = intel_unmap_resource,
3739         .dma_supported = dma_direct_supported,
3740 };
3741
3742 static inline int iommu_domain_cache_init(void)
3743 {
3744         int ret = 0;
3745
3746         iommu_domain_cache = kmem_cache_create("iommu_domain",
3747                                          sizeof(struct dmar_domain),
3748                                          0,
3749                                          SLAB_HWCACHE_ALIGN,
3750
3751                                          NULL);
3752         if (!iommu_domain_cache) {
3753                 pr_err("Couldn't create iommu_domain cache\n");
3754                 ret = -ENOMEM;
3755         }
3756
3757         return ret;
3758 }
3759
3760 static inline int iommu_devinfo_cache_init(void)
3761 {
3762         int ret = 0;
3763
3764         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3765                                          sizeof(struct device_domain_info),
3766                                          0,
3767                                          SLAB_HWCACHE_ALIGN,
3768                                          NULL);
3769         if (!iommu_devinfo_cache) {
3770                 pr_err("Couldn't create devinfo cache\n");
3771                 ret = -ENOMEM;
3772         }
3773
3774         return ret;
3775 }
3776
3777 static int __init iommu_init_mempool(void)
3778 {
3779         int ret;
3780         ret = iova_cache_get();
3781         if (ret)
3782                 return ret;
3783
3784         ret = iommu_domain_cache_init();
3785         if (ret)
3786                 goto domain_error;
3787
3788         ret = iommu_devinfo_cache_init();
3789         if (!ret)
3790                 return ret;
3791
3792         kmem_cache_destroy(iommu_domain_cache);
3793 domain_error:
3794         iova_cache_put();
3795
3796         return -ENOMEM;
3797 }
3798
3799 static void __init iommu_exit_mempool(void)
3800 {
3801         kmem_cache_destroy(iommu_devinfo_cache);
3802         kmem_cache_destroy(iommu_domain_cache);
3803         iova_cache_put();
3804 }
3805
3806 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3807 {
3808         struct dmar_drhd_unit *drhd;
3809         u32 vtbar;
3810         int rc;
3811
3812         /* We know that this device on this chipset has its own IOMMU.
3813          * If we find it under a different IOMMU, then the BIOS is lying
3814          * to us. Hope that the IOMMU for this device is actually
3815          * disabled, and it needs no translation...
3816          */
3817         rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3818         if (rc) {
3819                 /* "can't" happen */
3820                 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3821                 return;
3822         }
3823         vtbar &= 0xffff0000;
3824
3825         /* we know that the this iommu should be at offset 0xa000 from vtbar */
3826         drhd = dmar_find_matched_drhd_unit(pdev);
3827         if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3828                             TAINT_FIRMWARE_WORKAROUND,
3829                             "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3830                 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3831 }
3832 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3833
3834 static void __init init_no_remapping_devices(void)
3835 {
3836         struct dmar_drhd_unit *drhd;
3837         struct device *dev;
3838         int i;
3839
3840         for_each_drhd_unit(drhd) {
3841                 if (!drhd->include_all) {
3842                         for_each_active_dev_scope(drhd->devices,
3843                                                   drhd->devices_cnt, i, dev)
3844                                 break;
3845                         /* ignore DMAR unit if no devices exist */
3846                         if (i == drhd->devices_cnt)
3847                                 drhd->ignored = 1;
3848                 }
3849         }
3850
3851         for_each_active_drhd_unit(drhd) {
3852                 if (drhd->include_all)
3853                         continue;
3854
3855                 for_each_active_dev_scope(drhd->devices,
3856                                           drhd->devices_cnt, i, dev)
3857                         if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3858                                 break;
3859                 if (i < drhd->devices_cnt)
3860                         continue;
3861
3862                 /* This IOMMU has *only* gfx devices. Either bypass it or
3863                    set the gfx_mapped flag, as appropriate */
3864                 if (!dmar_map_gfx) {
3865                         drhd->ignored = 1;
3866                         for_each_active_dev_scope(drhd->devices,
3867                                                   drhd->devices_cnt, i, dev)
3868                                 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3869                 }
3870         }
3871 }
3872
3873 #ifdef CONFIG_SUSPEND
3874 static int init_iommu_hw(void)
3875 {
3876         struct dmar_drhd_unit *drhd;
3877         struct intel_iommu *iommu = NULL;
3878
3879         for_each_active_iommu(iommu, drhd)
3880                 if (iommu->qi)
3881                         dmar_reenable_qi(iommu);
3882
3883         for_each_iommu(iommu, drhd) {
3884                 if (drhd->ignored) {
3885                         /*
3886                          * we always have to disable PMRs or DMA may fail on
3887                          * this device
3888                          */
3889                         if (force_on)
3890                                 iommu_disable_protect_mem_regions(iommu);
3891                         continue;
3892                 }
3893
3894                 iommu_flush_write_buffer(iommu);
3895
3896                 iommu_set_root_entry(iommu);
3897
3898                 iommu->flush.flush_context(iommu, 0, 0, 0,
3899                                            DMA_CCMD_GLOBAL_INVL);
3900                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3901                 iommu_enable_translation(iommu);
3902                 iommu_disable_protect_mem_regions(iommu);
3903         }
3904
3905         return 0;
3906 }
3907
3908 static void iommu_flush_all(void)
3909 {
3910         struct dmar_drhd_unit *drhd;
3911         struct intel_iommu *iommu;
3912
3913         for_each_active_iommu(iommu, drhd) {
3914                 iommu->flush.flush_context(iommu, 0, 0, 0,
3915                                            DMA_CCMD_GLOBAL_INVL);
3916                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3917                                          DMA_TLB_GLOBAL_FLUSH);
3918         }
3919 }
3920
3921 static int iommu_suspend(void)
3922 {
3923         struct dmar_drhd_unit *drhd;
3924         struct intel_iommu *iommu = NULL;
3925         unsigned long flag;
3926
3927         for_each_active_iommu(iommu, drhd) {
3928                 iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
3929                                                  GFP_ATOMIC);
3930                 if (!iommu->iommu_state)
3931                         goto nomem;
3932         }
3933
3934         iommu_flush_all();
3935
3936         for_each_active_iommu(iommu, drhd) {
3937                 iommu_disable_translation(iommu);
3938
3939                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3940
3941                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3942                         readl(iommu->reg + DMAR_FECTL_REG);
3943                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3944                         readl(iommu->reg + DMAR_FEDATA_REG);
3945                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3946                         readl(iommu->reg + DMAR_FEADDR_REG);
3947                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3948                         readl(iommu->reg + DMAR_FEUADDR_REG);
3949
3950                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3951         }
3952         return 0;
3953
3954 nomem:
3955         for_each_active_iommu(iommu, drhd)
3956                 kfree(iommu->iommu_state);
3957
3958         return -ENOMEM;
3959 }
3960
3961 static void iommu_resume(void)
3962 {
3963         struct dmar_drhd_unit *drhd;
3964         struct intel_iommu *iommu = NULL;
3965         unsigned long flag;
3966
3967         if (init_iommu_hw()) {
3968                 if (force_on)
3969                         panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3970                 else
3971                         WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3972                 return;
3973         }
3974
3975         for_each_active_iommu(iommu, drhd) {
3976
3977                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3978
3979                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3980                         iommu->reg + DMAR_FECTL_REG);
3981                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3982                         iommu->reg + DMAR_FEDATA_REG);
3983                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3984                         iommu->reg + DMAR_FEADDR_REG);
3985                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3986                         iommu->reg + DMAR_FEUADDR_REG);
3987
3988                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3989         }
3990
3991         for_each_active_iommu(iommu, drhd)
3992                 kfree(iommu->iommu_state);
3993 }
3994
3995 static struct syscore_ops iommu_syscore_ops = {
3996         .resume         = iommu_resume,
3997         .suspend        = iommu_suspend,
3998 };
3999
4000 static void __init init_iommu_pm_ops(void)
4001 {
4002         register_syscore_ops(&iommu_syscore_ops);
4003 }
4004
4005 #else
4006 static inline void init_iommu_pm_ops(void) {}
4007 #endif  /* CONFIG_PM */
4008
4009 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4010 {
4011         struct acpi_dmar_reserved_memory *rmrr;
4012         struct dmar_rmrr_unit *rmrru;
4013
4014         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4015         if (!rmrru)
4016                 goto out;
4017
4018         rmrru->hdr = header;
4019         rmrr = (struct acpi_dmar_reserved_memory *)header;
4020         rmrru->base_address = rmrr->base_address;
4021         rmrru->end_address = rmrr->end_address;
4022
4023         rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4024                                 ((void *)rmrr) + rmrr->header.length,
4025                                 &rmrru->devices_cnt);
4026         if (rmrru->devices_cnt && rmrru->devices == NULL)
4027                 goto free_rmrru;
4028
4029         list_add(&rmrru->list, &dmar_rmrr_units);
4030
4031         return 0;
4032 free_rmrru:
4033         kfree(rmrru);
4034 out:
4035         return -ENOMEM;
4036 }
4037
4038 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4039 {
4040         struct dmar_atsr_unit *atsru;
4041         struct acpi_dmar_atsr *tmp;
4042
4043         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4044                 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4045                 if (atsr->segment != tmp->segment)
4046                         continue;
4047                 if (atsr->header.length != tmp->header.length)
4048                         continue;
4049                 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4050                         return atsru;
4051         }
4052
4053         return NULL;
4054 }
4055
4056 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4057 {
4058         struct acpi_dmar_atsr *atsr;
4059         struct dmar_atsr_unit *atsru;
4060
4061         if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4062                 return 0;
4063
4064         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4065         atsru = dmar_find_atsr(atsr);
4066         if (atsru)
4067                 return 0;
4068
4069         atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4070         if (!atsru)
4071                 return -ENOMEM;
4072
4073         /*
4074          * If memory is allocated from slab by ACPI _DSM method, we need to
4075          * copy the memory content because the memory buffer will be freed
4076          * on return.
4077          */
4078         atsru->hdr = (void *)(atsru + 1);
4079         memcpy(atsru->hdr, hdr, hdr->length);
4080         atsru->include_all = atsr->flags & 0x1;
4081         if (!atsru->include_all) {
4082                 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4083                                 (void *)atsr + atsr->header.length,
4084                                 &atsru->devices_cnt);
4085                 if (atsru->devices_cnt && atsru->devices == NULL) {
4086                         kfree(atsru);
4087                         return -ENOMEM;
4088                 }
4089         }
4090
4091         list_add_rcu(&atsru->list, &dmar_atsr_units);
4092
4093         return 0;
4094 }
4095
4096 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4097 {
4098         dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4099         kfree(atsru);
4100 }
4101
4102 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4103 {
4104         struct acpi_dmar_atsr *atsr;
4105         struct dmar_atsr_unit *atsru;
4106
4107         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4108         atsru = dmar_find_atsr(atsr);
4109         if (atsru) {
4110                 list_del_rcu(&atsru->list);
4111                 synchronize_rcu();
4112                 intel_iommu_free_atsr(atsru);
4113         }
4114
4115         return 0;
4116 }
4117
4118 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4119 {
4120         int i;
4121         struct device *dev;
4122         struct acpi_dmar_atsr *atsr;
4123         struct dmar_atsr_unit *atsru;
4124
4125         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4126         atsru = dmar_find_atsr(atsr);
4127         if (!atsru)
4128                 return 0;
4129
4130         if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4131                 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4132                                           i, dev)
4133                         return -EBUSY;
4134         }
4135
4136         return 0;
4137 }
4138
4139 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4140 {
4141         int sp, ret;
4142         struct intel_iommu *iommu = dmaru->iommu;
4143
4144         if (g_iommus[iommu->seq_id])
4145                 return 0;
4146
4147         if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4148                 pr_warn("%s: Doesn't support hardware pass through.\n",
4149                         iommu->name);
4150                 return -ENXIO;
4151         }
4152         if (!ecap_sc_support(iommu->ecap) &&
4153             domain_update_iommu_snooping(iommu)) {
4154                 pr_warn("%s: Doesn't support snooping.\n",
4155                         iommu->name);
4156                 return -ENXIO;
4157         }
4158         sp = domain_update_iommu_superpage(iommu) - 1;
4159         if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4160                 pr_warn("%s: Doesn't support large page.\n",
4161                         iommu->name);
4162                 return -ENXIO;
4163         }
4164
4165         /*
4166          * Disable translation if already enabled prior to OS handover.
4167          */
4168         if (iommu->gcmd & DMA_GCMD_TE)
4169                 iommu_disable_translation(iommu);
4170
4171         g_iommus[iommu->seq_id] = iommu;
4172         ret = iommu_init_domains(iommu);
4173         if (ret == 0)
4174                 ret = iommu_alloc_root_entry(iommu);
4175         if (ret)
4176                 goto out;
4177
4178 #ifdef CONFIG_INTEL_IOMMU_SVM
4179         if (pasid_supported(iommu))
4180                 intel_svm_init(iommu);
4181 #endif
4182
4183         if (dmaru->ignored) {
4184                 /*
4185                  * we always have to disable PMRs or DMA may fail on this device
4186                  */
4187                 if (force_on)
4188                         iommu_disable_protect_mem_regions(iommu);
4189                 return 0;
4190         }
4191
4192         intel_iommu_init_qi(iommu);
4193         iommu_flush_write_buffer(iommu);
4194
4195 #ifdef CONFIG_INTEL_IOMMU_SVM
4196         if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4197                 ret = intel_svm_enable_prq(iommu);
4198                 if (ret)
4199                         goto disable_iommu;
4200         }
4201 #endif
4202         ret = dmar_set_interrupt(iommu);
4203         if (ret)
4204                 goto disable_iommu;
4205
4206         iommu_set_root_entry(iommu);
4207         iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4208         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4209         iommu_enable_translation(iommu);
4210
4211         iommu_disable_protect_mem_regions(iommu);
4212         return 0;
4213
4214 disable_iommu:
4215         disable_dmar_iommu(iommu);
4216 out:
4217         free_dmar_iommu(iommu);
4218         return ret;
4219 }
4220
4221 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4222 {
4223         int ret = 0;
4224         struct intel_iommu *iommu = dmaru->iommu;
4225
4226         if (!intel_iommu_enabled)
4227                 return 0;
4228         if (iommu == NULL)
4229                 return -EINVAL;
4230
4231         if (insert) {
4232                 ret = intel_iommu_add(dmaru);
4233         } else {
4234                 disable_dmar_iommu(iommu);
4235                 free_dmar_iommu(iommu);
4236         }
4237
4238         return ret;
4239 }
4240
4241 static void intel_iommu_free_dmars(void)
4242 {
4243         struct dmar_rmrr_unit *rmrru, *rmrr_n;
4244         struct dmar_atsr_unit *atsru, *atsr_n;
4245
4246         list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4247                 list_del(&rmrru->list);
4248                 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4249                 kfree(rmrru);
4250         }
4251
4252         list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4253                 list_del(&atsru->list);
4254                 intel_iommu_free_atsr(atsru);
4255         }
4256 }
4257
4258 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4259 {
4260         int i, ret = 1;
4261         struct pci_bus *bus;
4262         struct pci_dev *bridge = NULL;
4263         struct device *tmp;
4264         struct acpi_dmar_atsr *atsr;
4265         struct dmar_atsr_unit *atsru;
4266
4267         dev = pci_physfn(dev);
4268         for (bus = dev->bus; bus; bus = bus->parent) {
4269                 bridge = bus->self;
4270                 /* If it's an integrated device, allow ATS */
4271                 if (!bridge)
4272                         return 1;
4273                 /* Connected via non-PCIe: no ATS */
4274                 if (!pci_is_pcie(bridge) ||
4275                     pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4276                         return 0;
4277                 /* If we found the root port, look it up in the ATSR */
4278                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4279                         break;
4280         }
4281
4282         rcu_read_lock();
4283         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4284                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4285                 if (atsr->segment != pci_domain_nr(dev->bus))
4286                         continue;
4287
4288                 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4289                         if (tmp == &bridge->dev)
4290                                 goto out;
4291
4292                 if (atsru->include_all)
4293                         goto out;
4294         }
4295         ret = 0;
4296 out:
4297         rcu_read_unlock();
4298
4299         return ret;
4300 }
4301
4302 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4303 {
4304         int ret;
4305         struct dmar_rmrr_unit *rmrru;
4306         struct dmar_atsr_unit *atsru;
4307         struct acpi_dmar_atsr *atsr;
4308         struct acpi_dmar_reserved_memory *rmrr;
4309
4310         if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4311                 return 0;
4312
4313         list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4314                 rmrr = container_of(rmrru->hdr,
4315                                     struct acpi_dmar_reserved_memory, header);
4316                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4317                         ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4318                                 ((void *)rmrr) + rmrr->header.length,
4319                                 rmrr->segment, rmrru->devices,
4320                                 rmrru->devices_cnt);
4321                         if (ret < 0)
4322                                 return ret;
4323                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4324                         dmar_remove_dev_scope(info, rmrr->segment,
4325                                 rmrru->devices, rmrru->devices_cnt);
4326                 }
4327         }
4328
4329         list_for_each_entry(atsru, &dmar_atsr_units, list) {
4330                 if (atsru->include_all)
4331                         continue;
4332
4333                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4334                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4335                         ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4336                                         (void *)atsr + atsr->header.length,
4337                                         atsr->segment, atsru->devices,
4338                                         atsru->devices_cnt);
4339                         if (ret > 0)
4340                                 break;
4341                         else if (ret < 0)
4342                                 return ret;
4343                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4344                         if (dmar_remove_dev_scope(info, atsr->segment,
4345                                         atsru->devices, atsru->devices_cnt))
4346                                 break;
4347                 }
4348         }
4349
4350         return 0;
4351 }
4352
4353 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4354                                        unsigned long val, void *v)
4355 {
4356         struct memory_notify *mhp = v;
4357         unsigned long long start, end;
4358         unsigned long start_vpfn, last_vpfn;
4359
4360         switch (val) {
4361         case MEM_GOING_ONLINE:
4362                 start = mhp->start_pfn << PAGE_SHIFT;
4363                 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4364                 if (iommu_domain_identity_map(si_domain, start, end)) {
4365                         pr_warn("Failed to build identity map for [%llx-%llx]\n",
4366                                 start, end);
4367                         return NOTIFY_BAD;
4368                 }
4369                 break;
4370
4371         case MEM_OFFLINE:
4372         case MEM_CANCEL_ONLINE:
4373                 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4374                 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4375                 while (start_vpfn <= last_vpfn) {
4376                         struct iova *iova;
4377                         struct dmar_drhd_unit *drhd;
4378                         struct intel_iommu *iommu;
4379                         struct page *freelist;
4380
4381                         iova = find_iova(&si_domain->iovad, start_vpfn);
4382                         if (iova == NULL) {
4383                                 pr_debug("Failed get IOVA for PFN %lx\n",
4384                                          start_vpfn);
4385                                 break;
4386                         }
4387
4388                         iova = split_and_remove_iova(&si_domain->iovad, iova,
4389                                                      start_vpfn, last_vpfn);
4390                         if (iova == NULL) {
4391                                 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4392                                         start_vpfn, last_vpfn);
4393                                 return NOTIFY_BAD;
4394                         }
4395
4396                         freelist = domain_unmap(si_domain, iova->pfn_lo,
4397                                                iova->pfn_hi);
4398
4399                         rcu_read_lock();
4400                         for_each_active_iommu(iommu, drhd)
4401                                 iommu_flush_iotlb_psi(iommu, si_domain,
4402                                         iova->pfn_lo, iova_size(iova),
4403                                         !freelist, 0);
4404                         rcu_read_unlock();
4405                         dma_free_pagelist(freelist);
4406
4407                         start_vpfn = iova->pfn_hi + 1;
4408                         free_iova_mem(iova);
4409                 }
4410                 break;
4411         }
4412
4413         return NOTIFY_OK;
4414 }
4415
4416 static struct notifier_block intel_iommu_memory_nb = {
4417         .notifier_call = intel_iommu_memory_notifier,
4418         .priority = 0
4419 };
4420
4421 static void free_all_cpu_cached_iovas(unsigned int cpu)
4422 {
4423         int i;
4424
4425         for (i = 0; i < g_num_of_iommus; i++) {
4426                 struct intel_iommu *iommu = g_iommus[i];
4427                 struct dmar_domain *domain;
4428                 int did;
4429
4430                 if (!iommu)
4431                         continue;
4432
4433                 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4434                         domain = get_iommu_domain(iommu, (u16)did);
4435
4436                         if (!domain)
4437                                 continue;
4438                         free_cpu_cached_iovas(cpu, &domain->iovad);
4439                 }
4440         }
4441 }
4442
4443 static int intel_iommu_cpu_dead(unsigned int cpu)
4444 {
4445         free_all_cpu_cached_iovas(cpu);
4446         return 0;
4447 }
4448
4449 static void intel_disable_iommus(void)
4450 {
4451         struct intel_iommu *iommu = NULL;
4452         struct dmar_drhd_unit *drhd;
4453
4454         for_each_iommu(iommu, drhd)
4455                 iommu_disable_translation(iommu);
4456 }
4457
4458 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4459 {
4460         struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
4461
4462         return container_of(iommu_dev, struct intel_iommu, iommu);
4463 }
4464
4465 static ssize_t intel_iommu_show_version(struct device *dev,
4466                                         struct device_attribute *attr,
4467                                         char *buf)
4468 {
4469         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4470         u32 ver = readl(iommu->reg + DMAR_VER_REG);
4471         return sprintf(buf, "%d:%d\n",
4472                        DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4473 }
4474 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4475
4476 static ssize_t intel_iommu_show_address(struct device *dev,
4477                                         struct device_attribute *attr,
4478                                         char *buf)
4479 {
4480         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4481         return sprintf(buf, "%llx\n", iommu->reg_phys);
4482 }
4483 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4484
4485 static ssize_t intel_iommu_show_cap(struct device *dev,
4486                                     struct device_attribute *attr,
4487                                     char *buf)
4488 {
4489         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4490         return sprintf(buf, "%llx\n", iommu->cap);
4491 }
4492 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4493
4494 static ssize_t intel_iommu_show_ecap(struct device *dev,
4495                                     struct device_attribute *attr,
4496                                     char *buf)
4497 {
4498         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4499         return sprintf(buf, "%llx\n", iommu->ecap);
4500 }
4501 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4502
4503 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4504                                       struct device_attribute *attr,
4505                                       char *buf)
4506 {
4507         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4508         return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4509 }
4510 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4511
4512 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4513                                            struct device_attribute *attr,
4514                                            char *buf)
4515 {
4516         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4517         return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4518                                                   cap_ndoms(iommu->cap)));
4519 }
4520 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4521
4522 static struct attribute *intel_iommu_attrs[] = {
4523         &dev_attr_version.attr,
4524         &dev_attr_address.attr,
4525         &dev_attr_cap.attr,
4526         &dev_attr_ecap.attr,
4527         &dev_attr_domains_supported.attr,
4528         &dev_attr_domains_used.attr,
4529         NULL,
4530 };
4531
4532 static struct attribute_group intel_iommu_group = {
4533         .name = "intel-iommu",
4534         .attrs = intel_iommu_attrs,
4535 };
4536
4537 const struct attribute_group *intel_iommu_groups[] = {
4538         &intel_iommu_group,
4539         NULL,
4540 };
4541
4542 static int __init platform_optin_force_iommu(void)
4543 {
4544         struct pci_dev *pdev = NULL;
4545         bool has_untrusted_dev = false;
4546
4547         if (!dmar_platform_optin() || no_platform_optin)
4548                 return 0;
4549
4550         for_each_pci_dev(pdev) {
4551                 if (pdev->untrusted) {
4552                         has_untrusted_dev = true;
4553                         break;
4554                 }
4555         }
4556
4557         if (!has_untrusted_dev)
4558                 return 0;
4559
4560         if (no_iommu || dmar_disabled)
4561                 pr_info("Intel-IOMMU force enabled due to platform opt in\n");
4562
4563         /*
4564          * If Intel-IOMMU is disabled by default, we will apply identity
4565          * map for all devices except those marked as being untrusted.
4566          */
4567         if (dmar_disabled)
4568                 iommu_identity_mapping |= IDENTMAP_ALL;
4569
4570         dmar_disabled = 0;
4571 #if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4572         swiotlb = 0;
4573 #endif
4574         no_iommu = 0;
4575
4576         return 1;
4577 }
4578
4579 static int __init probe_acpi_namespace_devices(void)
4580 {
4581         struct dmar_drhd_unit *drhd;
4582         /* To avoid a -Wunused-but-set-variable warning. */
4583         struct intel_iommu *iommu __maybe_unused;
4584         struct device *dev;
4585         int i, ret = 0;
4586
4587         for_each_active_iommu(iommu, drhd) {
4588                 for_each_active_dev_scope(drhd->devices,
4589                                           drhd->devices_cnt, i, dev) {
4590                         struct acpi_device_physical_node *pn;
4591                         struct iommu_group *group;
4592                         struct acpi_device *adev;
4593
4594                         if (dev->bus != &acpi_bus_type)
4595                                 continue;
4596
4597                         adev = to_acpi_device(dev);
4598                         mutex_lock(&adev->physical_node_lock);
4599                         list_for_each_entry(pn,
4600                                             &adev->physical_node_list, node) {
4601                                 group = iommu_group_get(pn->dev);
4602                                 if (group) {
4603                                         iommu_group_put(group);
4604                                         continue;
4605                                 }
4606
4607                                 pn->dev->bus->iommu_ops = &intel_iommu_ops;
4608                                 ret = iommu_probe_device(pn->dev);
4609                                 if (ret)
4610                                         break;
4611                         }
4612                         mutex_unlock(&adev->physical_node_lock);
4613
4614                         if (ret)
4615                                 return ret;
4616                 }
4617         }
4618
4619         return 0;
4620 }
4621
4622 int __init intel_iommu_init(void)
4623 {
4624         int ret = -ENODEV;
4625         struct dmar_drhd_unit *drhd;
4626         struct intel_iommu *iommu;
4627
4628         /*
4629          * Intel IOMMU is required for a TXT/tboot launch or platform
4630          * opt in, so enforce that.
4631          */
4632         force_on = tboot_force_iommu() || platform_optin_force_iommu();
4633
4634         if (iommu_init_mempool()) {
4635                 if (force_on)
4636                         panic("tboot: Failed to initialize iommu memory\n");
4637                 return -ENOMEM;
4638         }
4639
4640         down_write(&dmar_global_lock);
4641         if (dmar_table_init()) {
4642                 if (force_on)
4643                         panic("tboot: Failed to initialize DMAR table\n");
4644                 goto out_free_dmar;
4645         }
4646
4647         if (dmar_dev_scope_init() < 0) {
4648                 if (force_on)
4649                         panic("tboot: Failed to initialize DMAR device scope\n");
4650                 goto out_free_dmar;
4651         }
4652
4653         up_write(&dmar_global_lock);
4654
4655         /*
4656          * The bus notifier takes the dmar_global_lock, so lockdep will
4657          * complain later when we register it under the lock.
4658          */
4659         dmar_register_bus_notifier();
4660
4661         down_write(&dmar_global_lock);
4662
4663         if (no_iommu || dmar_disabled) {
4664                 /*
4665                  * We exit the function here to ensure IOMMU's remapping and
4666                  * mempool aren't setup, which means that the IOMMU's PMRs
4667                  * won't be disabled via the call to init_dmars(). So disable
4668                  * it explicitly here. The PMRs were setup by tboot prior to
4669                  * calling SENTER, but the kernel is expected to reset/tear
4670                  * down the PMRs.
4671                  */
4672                 if (intel_iommu_tboot_noforce) {
4673                         for_each_iommu(iommu, drhd)
4674                                 iommu_disable_protect_mem_regions(iommu);
4675                 }
4676
4677                 /*
4678                  * Make sure the IOMMUs are switched off, even when we
4679                  * boot into a kexec kernel and the previous kernel left
4680                  * them enabled
4681                  */
4682                 intel_disable_iommus();
4683                 goto out_free_dmar;
4684         }
4685
4686         if (list_empty(&dmar_rmrr_units))
4687                 pr_info("No RMRR found\n");
4688
4689         if (list_empty(&dmar_atsr_units))
4690                 pr_info("No ATSR found\n");
4691
4692         if (dmar_init_reserved_ranges()) {
4693                 if (force_on)
4694                         panic("tboot: Failed to reserve iommu ranges\n");
4695                 goto out_free_reserved_range;
4696         }
4697
4698         if (dmar_map_gfx)
4699                 intel_iommu_gfx_mapped = 1;
4700
4701         init_no_remapping_devices();
4702
4703         ret = init_dmars();
4704         if (ret) {
4705                 if (force_on)
4706                         panic("tboot: Failed to initialize DMARs\n");
4707                 pr_err("Initialization failed\n");
4708                 goto out_free_reserved_range;
4709         }
4710         up_write(&dmar_global_lock);
4711
4712 #if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4713         swiotlb = 0;
4714 #endif
4715         dma_ops = &intel_dma_ops;
4716
4717         init_iommu_pm_ops();
4718
4719         for_each_active_iommu(iommu, drhd) {
4720                 iommu_device_sysfs_add(&iommu->iommu, NULL,
4721                                        intel_iommu_groups,
4722                                        "%s", iommu->name);
4723                 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
4724                 iommu_device_register(&iommu->iommu);
4725         }
4726
4727         bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4728         if (si_domain && !hw_pass_through)
4729                 register_memory_notifier(&intel_iommu_memory_nb);
4730         cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4731                           intel_iommu_cpu_dead);
4732
4733         down_read(&dmar_global_lock);
4734         if (probe_acpi_namespace_devices())
4735                 pr_warn("ACPI name space devices didn't probe correctly\n");
4736         up_read(&dmar_global_lock);
4737
4738         /* Finally, we enable the DMA remapping hardware. */
4739         for_each_iommu(iommu, drhd) {
4740                 if (!drhd->ignored && !translation_pre_enabled(iommu))
4741                         iommu_enable_translation(iommu);
4742
4743                 iommu_disable_protect_mem_regions(iommu);
4744         }
4745         pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4746
4747         intel_iommu_enabled = 1;
4748         intel_iommu_debugfs_init();
4749
4750         return 0;
4751
4752 out_free_reserved_range:
4753         put_iova_domain(&reserved_iova_list);
4754 out_free_dmar:
4755         intel_iommu_free_dmars();
4756         up_write(&dmar_global_lock);
4757         iommu_exit_mempool();
4758         return ret;
4759 }
4760
4761 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4762 {
4763         struct dmar_domain *domain;
4764         struct intel_iommu *iommu;
4765         unsigned long flags;
4766
4767         assert_spin_locked(&device_domain_lock);
4768
4769         if (WARN_ON(!info))
4770                 return;
4771
4772         iommu = info->iommu;
4773         domain = info->domain;
4774
4775         if (info->dev) {
4776                 if (dev_is_pci(info->dev) && sm_supported(iommu))
4777                         intel_pasid_tear_down_entry(iommu, info->dev,
4778                                         PASID_RID2PASID);
4779
4780                 iommu_disable_dev_iotlb(info);
4781                 domain_context_clear_one(iommu, info->bus, info->devfn);
4782                 intel_pasid_free_table(info->dev);
4783         }
4784
4785         unlink_domain_info(info);
4786
4787         spin_lock_irqsave(&iommu->lock, flags);
4788         domain_detach_iommu(domain, iommu);
4789         spin_unlock_irqrestore(&iommu->lock, flags);
4790
4791         /* free the private domain */
4792         if (domain->flags & DOMAIN_FLAG_LOSE_CHILDREN &&
4793             !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY))
4794                 domain_exit(info->domain);
4795
4796         free_devinfo_mem(info);
4797 }
4798
4799 static void dmar_remove_one_dev_info(struct device *dev)
4800 {
4801         struct device_domain_info *info;
4802         unsigned long flags;
4803
4804         spin_lock_irqsave(&device_domain_lock, flags);
4805         info = dev->archdata.iommu;
4806         __dmar_remove_one_dev_info(info);
4807         spin_unlock_irqrestore(&device_domain_lock, flags);
4808 }
4809
4810 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4811 {
4812         int adjust_width;
4813
4814         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
4815         domain_reserve_special_ranges(domain);
4816
4817         /* calculate AGAW */
4818         domain->gaw = guest_width;
4819         adjust_width = guestwidth_to_adjustwidth(guest_width);
4820         domain->agaw = width_to_agaw(adjust_width);
4821
4822         domain->iommu_coherency = 0;
4823         domain->iommu_snooping = 0;
4824         domain->iommu_superpage = 0;
4825         domain->max_addr = 0;
4826
4827         /* always allocate the top pgd */
4828         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4829         if (!domain->pgd)
4830                 return -ENOMEM;
4831         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4832         return 0;
4833 }
4834
4835 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4836 {
4837         struct dmar_domain *dmar_domain;
4838         struct iommu_domain *domain;
4839
4840         switch (type) {
4841         case IOMMU_DOMAIN_DMA:
4842         /* fallthrough */
4843         case IOMMU_DOMAIN_UNMANAGED:
4844                 dmar_domain = alloc_domain(0);
4845                 if (!dmar_domain) {
4846                         pr_err("Can't allocate dmar_domain\n");
4847                         return NULL;
4848                 }
4849                 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4850                         pr_err("Domain initialization failed\n");
4851                         domain_exit(dmar_domain);
4852                         return NULL;
4853                 }
4854
4855                 if (type == IOMMU_DOMAIN_DMA &&
4856                     init_iova_flush_queue(&dmar_domain->iovad,
4857                                           iommu_flush_iova, iova_entry_free)) {
4858                         pr_warn("iova flush queue initialization failed\n");
4859                         intel_iommu_strict = 1;
4860                 }
4861
4862                 domain_update_iommu_cap(dmar_domain);
4863
4864                 domain = &dmar_domain->domain;
4865                 domain->geometry.aperture_start = 0;
4866                 domain->geometry.aperture_end   =
4867                                 __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4868                 domain->geometry.force_aperture = true;
4869
4870                 return domain;
4871         case IOMMU_DOMAIN_IDENTITY:
4872                 return &si_domain->domain;
4873         default:
4874                 return NULL;
4875         }
4876
4877         return NULL;
4878 }
4879
4880 static void intel_iommu_domain_free(struct iommu_domain *domain)
4881 {
4882         if (domain != &si_domain->domain)
4883                 domain_exit(to_dmar_domain(domain));
4884 }
4885
4886 /*
4887  * Check whether a @domain could be attached to the @dev through the
4888  * aux-domain attach/detach APIs.
4889  */
4890 static inline bool
4891 is_aux_domain(struct device *dev, struct iommu_domain *domain)
4892 {
4893         struct device_domain_info *info = dev->archdata.iommu;
4894
4895         return info && info->auxd_enabled &&
4896                         domain->type == IOMMU_DOMAIN_UNMANAGED;
4897 }
4898
4899 static void auxiliary_link_device(struct dmar_domain *domain,
4900                                   struct device *dev)
4901 {
4902         struct device_domain_info *info = dev->archdata.iommu;
4903
4904         assert_spin_locked(&device_domain_lock);
4905         if (WARN_ON(!info))
4906                 return;
4907
4908         domain->auxd_refcnt++;
4909         list_add(&domain->auxd, &info->auxiliary_domains);
4910 }
4911
4912 static void auxiliary_unlink_device(struct dmar_domain *domain,
4913                                     struct device *dev)
4914 {
4915         struct device_domain_info *info = dev->archdata.iommu;
4916
4917         assert_spin_locked(&device_domain_lock);
4918         if (WARN_ON(!info))
4919                 return;
4920
4921         list_del(&domain->auxd);
4922         domain->auxd_refcnt--;
4923
4924         if (!domain->auxd_refcnt && domain->default_pasid > 0)
4925                 intel_pasid_free_id(domain->default_pasid);
4926 }
4927
4928 static int aux_domain_add_dev(struct dmar_domain *domain,
4929                               struct device *dev)
4930 {
4931         int ret;
4932         u8 bus, devfn;
4933         unsigned long flags;
4934         struct intel_iommu *iommu;
4935
4936         iommu = device_to_iommu(dev, &bus, &devfn);
4937         if (!iommu)
4938                 return -ENODEV;
4939
4940         if (domain->default_pasid <= 0) {
4941                 int pasid;
4942
4943                 pasid = intel_pasid_alloc_id(domain, PASID_MIN,
4944                                              pci_max_pasids(to_pci_dev(dev)),
4945                                              GFP_KERNEL);
4946                 if (pasid <= 0) {
4947                         pr_err("Can't allocate default pasid\n");
4948                         return -ENODEV;
4949                 }
4950                 domain->default_pasid = pasid;
4951         }
4952
4953         spin_lock_irqsave(&device_domain_lock, flags);
4954         /*
4955          * iommu->lock must be held to attach domain to iommu and setup the
4956          * pasid entry for second level translation.
4957          */
4958         spin_lock(&iommu->lock);
4959         ret = domain_attach_iommu(domain, iommu);
4960         if (ret)
4961                 goto attach_failed;
4962
4963         /* Setup the PASID entry for mediated devices: */
4964         ret = intel_pasid_setup_second_level(iommu, domain, dev,
4965                                              domain->default_pasid);
4966         if (ret)
4967                 goto table_failed;
4968         spin_unlock(&iommu->lock);
4969
4970         auxiliary_link_device(domain, dev);
4971
4972         spin_unlock_irqrestore(&device_domain_lock, flags);
4973
4974         return 0;
4975
4976 table_failed:
4977         domain_detach_iommu(domain, iommu);
4978 attach_failed:
4979         spin_unlock(&iommu->lock);
4980         spin_unlock_irqrestore(&device_domain_lock, flags);
4981         if (!domain->auxd_refcnt && domain->default_pasid > 0)
4982                 intel_pasid_free_id(domain->default_pasid);
4983
4984         return ret;
4985 }
4986
4987 static void aux_domain_remove_dev(struct dmar_domain *domain,
4988                                   struct device *dev)
4989 {
4990         struct device_domain_info *info;
4991         struct intel_iommu *iommu;
4992         unsigned long flags;
4993
4994         if (!is_aux_domain(dev, &domain->domain))
4995                 return;
4996
4997         spin_lock_irqsave(&device_domain_lock, flags);
4998         info = dev->archdata.iommu;
4999         iommu = info->iommu;
5000
5001         auxiliary_unlink_device(domain, dev);
5002
5003         spin_lock(&iommu->lock);
5004         intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid);
5005         domain_detach_iommu(domain, iommu);
5006         spin_unlock(&iommu->lock);
5007
5008         spin_unlock_irqrestore(&device_domain_lock, flags);
5009 }
5010
5011 static int prepare_domain_attach_device(struct iommu_domain *domain,
5012                                         struct device *dev)
5013 {
5014         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5015         struct intel_iommu *iommu;
5016         int addr_width;
5017         u8 bus, devfn;
5018
5019         iommu = device_to_iommu(dev, &bus, &devfn);
5020         if (!iommu)
5021                 return -ENODEV;
5022
5023         /* check if this iommu agaw is sufficient for max mapped address */
5024         addr_width = agaw_to_width(iommu->agaw);
5025         if (addr_width > cap_mgaw(iommu->cap))
5026                 addr_width = cap_mgaw(iommu->cap);
5027
5028         if (dmar_domain->max_addr > (1LL << addr_width)) {
5029                 dev_err(dev, "%s: iommu width (%d) is not "
5030                         "sufficient for the mapped address (%llx)\n",
5031                         __func__, addr_width, dmar_domain->max_addr);
5032                 return -EFAULT;
5033         }
5034         dmar_domain->gaw = addr_width;
5035
5036         /*
5037          * Knock out extra levels of page tables if necessary
5038          */
5039         while (iommu->agaw < dmar_domain->agaw) {
5040                 struct dma_pte *pte;
5041
5042                 pte = dmar_domain->pgd;
5043                 if (dma_pte_present(pte)) {
5044                         dmar_domain->pgd = (struct dma_pte *)
5045                                 phys_to_virt(dma_pte_addr(pte));
5046                         free_pgtable_page(pte);
5047                 }
5048                 dmar_domain->agaw--;
5049         }
5050
5051         return 0;
5052 }
5053
5054 static int intel_iommu_attach_device(struct iommu_domain *domain,
5055                                      struct device *dev)
5056 {
5057         int ret;
5058
5059         if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
5060             device_is_rmrr_locked(dev)) {
5061                 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
5062                 return -EPERM;
5063         }
5064
5065         if (is_aux_domain(dev, domain))
5066                 return -EPERM;
5067
5068         /* normally dev is not mapped */
5069         if (unlikely(domain_context_mapped(dev))) {
5070                 struct dmar_domain *old_domain;
5071
5072                 old_domain = find_domain(dev);
5073                 if (old_domain)
5074                         dmar_remove_one_dev_info(dev);
5075         }
5076
5077         ret = prepare_domain_attach_device(domain, dev);
5078         if (ret)
5079                 return ret;
5080
5081         return domain_add_dev_info(to_dmar_domain(domain), dev);
5082 }
5083
5084 static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
5085                                          struct device *dev)
5086 {
5087         int ret;
5088
5089         if (!is_aux_domain(dev, domain))
5090                 return -EPERM;
5091
5092         ret = prepare_domain_attach_device(domain, dev);
5093         if (ret)
5094                 return ret;
5095
5096         return aux_domain_add_dev(to_dmar_domain(domain), dev);
5097 }
5098
5099 static void intel_iommu_detach_device(struct iommu_domain *domain,
5100                                       struct device *dev)
5101 {
5102         dmar_remove_one_dev_info(dev);
5103 }
5104
5105 static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
5106                                           struct device *dev)
5107 {
5108         aux_domain_remove_dev(to_dmar_domain(domain), dev);
5109 }
5110
5111 static int intel_iommu_map(struct iommu_domain *domain,
5112                            unsigned long iova, phys_addr_t hpa,
5113                            size_t size, int iommu_prot)
5114 {
5115         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5116         u64 max_addr;
5117         int prot = 0;
5118         int ret;
5119
5120         if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5121                 return -EINVAL;
5122
5123         if (iommu_prot & IOMMU_READ)
5124                 prot |= DMA_PTE_READ;
5125         if (iommu_prot & IOMMU_WRITE)
5126                 prot |= DMA_PTE_WRITE;
5127         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5128                 prot |= DMA_PTE_SNP;
5129
5130         max_addr = iova + size;
5131         if (dmar_domain->max_addr < max_addr) {
5132                 u64 end;
5133
5134                 /* check if minimum agaw is sufficient for mapped address */
5135                 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5136                 if (end < max_addr) {
5137                         pr_err("%s: iommu width (%d) is not "
5138                                "sufficient for the mapped address (%llx)\n",
5139                                __func__, dmar_domain->gaw, max_addr);
5140                         return -EFAULT;
5141                 }
5142                 dmar_domain->max_addr = max_addr;
5143         }
5144         /* Round up size to next multiple of PAGE_SIZE, if it and
5145            the low bits of hpa would take us onto the next page */
5146         size = aligned_nrpages(hpa, size);
5147         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5148                                  hpa >> VTD_PAGE_SHIFT, size, prot);
5149         return ret;
5150 }
5151
5152 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5153                                 unsigned long iova, size_t size)
5154 {
5155         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5156         struct page *freelist = NULL;
5157         unsigned long start_pfn, last_pfn;
5158         unsigned int npages;
5159         int iommu_id, level = 0;
5160
5161         /* Cope with horrid API which requires us to unmap more than the
5162            size argument if it happens to be a large-page mapping. */
5163         BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5164         if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5165                 return 0;
5166
5167         if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5168                 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5169
5170         start_pfn = iova >> VTD_PAGE_SHIFT;
5171         last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5172
5173         freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5174
5175         npages = last_pfn - start_pfn + 1;
5176
5177         for_each_domain_iommu(iommu_id, dmar_domain)
5178                 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5179                                       start_pfn, npages, !freelist, 0);
5180
5181         dma_free_pagelist(freelist);
5182
5183         if (dmar_domain->max_addr == iova + size)
5184                 dmar_domain->max_addr = iova;
5185
5186         return size;
5187 }
5188
5189 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5190                                             dma_addr_t iova)
5191 {
5192         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5193         struct dma_pte *pte;
5194         int level = 0;
5195         u64 phys = 0;
5196
5197         if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5198                 return 0;
5199
5200         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5201         if (pte)
5202                 phys = dma_pte_addr(pte);
5203
5204         return phys;
5205 }
5206
5207 static inline bool scalable_mode_support(void)
5208 {
5209         struct dmar_drhd_unit *drhd;
5210         struct intel_iommu *iommu;
5211         bool ret = true;
5212
5213         rcu_read_lock();
5214         for_each_active_iommu(iommu, drhd) {
5215                 if (!sm_supported(iommu)) {
5216                         ret = false;
5217                         break;
5218                 }
5219         }
5220         rcu_read_unlock();
5221
5222         return ret;
5223 }
5224
5225 static inline bool iommu_pasid_support(void)
5226 {
5227         struct dmar_drhd_unit *drhd;
5228         struct intel_iommu *iommu;
5229         bool ret = true;
5230
5231         rcu_read_lock();
5232         for_each_active_iommu(iommu, drhd) {
5233                 if (!pasid_supported(iommu)) {
5234                         ret = false;
5235                         break;
5236                 }
5237         }
5238         rcu_read_unlock();
5239
5240         return ret;
5241 }
5242
5243 static bool intel_iommu_capable(enum iommu_cap cap)
5244 {
5245         if (cap == IOMMU_CAP_CACHE_COHERENCY)
5246                 return domain_update_iommu_snooping(NULL) == 1;
5247         if (cap == IOMMU_CAP_INTR_REMAP)
5248                 return irq_remapping_enabled == 1;
5249
5250         return false;
5251 }
5252
5253 static int intel_iommu_add_device(struct device *dev)
5254 {
5255         struct dmar_domain *dmar_domain;
5256         struct iommu_domain *domain;
5257         struct intel_iommu *iommu;
5258         struct iommu_group *group;
5259         u8 bus, devfn;
5260         int ret;
5261
5262         iommu = device_to_iommu(dev, &bus, &devfn);
5263         if (!iommu)
5264                 return -ENODEV;
5265
5266         iommu_device_link(&iommu->iommu, dev);
5267
5268         if (translation_pre_enabled(iommu))
5269                 dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;
5270
5271         group = iommu_group_get_for_dev(dev);
5272
5273         if (IS_ERR(group))
5274                 return PTR_ERR(group);
5275
5276         iommu_group_put(group);
5277
5278         domain = iommu_get_domain_for_dev(dev);
5279         dmar_domain = to_dmar_domain(domain);
5280         if (domain->type == IOMMU_DOMAIN_DMA) {
5281                 if (device_def_domain_type(dev) == IOMMU_DOMAIN_IDENTITY) {
5282                         ret = iommu_request_dm_for_dev(dev);
5283                         if (ret) {
5284                                 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5285                                 domain_add_dev_info(si_domain, dev);
5286                                 dev_info(dev,
5287                                          "Device uses a private identity domain.\n");
5288                         }
5289                 }
5290         } else {
5291                 if (device_def_domain_type(dev) == IOMMU_DOMAIN_DMA) {
5292                         ret = iommu_request_dma_domain_for_dev(dev);
5293                         if (ret) {
5294                                 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5295                                 if (!get_private_domain_for_dev(dev)) {
5296                                         dev_warn(dev,
5297                                                  "Failed to get a private domain.\n");
5298                                         return -ENOMEM;
5299                                 }
5300
5301                                 dev_info(dev,
5302                                          "Device uses a private dma domain.\n");
5303                         }
5304                 }
5305         }
5306
5307         return 0;
5308 }
5309
5310 static void intel_iommu_remove_device(struct device *dev)
5311 {
5312         struct intel_iommu *iommu;
5313         u8 bus, devfn;
5314
5315         iommu = device_to_iommu(dev, &bus, &devfn);
5316         if (!iommu)
5317                 return;
5318
5319         iommu_group_remove_device(dev);
5320
5321         iommu_device_unlink(&iommu->iommu, dev);
5322 }
5323
5324 static void intel_iommu_get_resv_regions(struct device *device,
5325                                          struct list_head *head)
5326 {
5327         int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5328         struct iommu_resv_region *reg;
5329         struct dmar_rmrr_unit *rmrr;
5330         struct device *i_dev;
5331         int i;
5332
5333         down_read(&dmar_global_lock);
5334         for_each_rmrr_units(rmrr) {
5335                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5336                                           i, i_dev) {
5337                         struct iommu_resv_region *resv;
5338                         enum iommu_resv_type type;
5339                         size_t length;
5340
5341                         if (i_dev != device &&
5342                             !is_downstream_to_pci_bridge(device, i_dev))
5343                                 continue;
5344
5345                         length = rmrr->end_address - rmrr->base_address + 1;
5346
5347                         type = device_rmrr_is_relaxable(device) ?
5348                                 IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;
5349
5350                         resv = iommu_alloc_resv_region(rmrr->base_address,
5351                                                        length, prot, type);
5352                         if (!resv)
5353                                 break;
5354
5355                         list_add_tail(&resv->list, head);
5356                 }
5357         }
5358         up_read(&dmar_global_lock);
5359
5360 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
5361         if (dev_is_pci(device)) {
5362                 struct pci_dev *pdev = to_pci_dev(device);
5363
5364                 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5365                         reg = iommu_alloc_resv_region(0, 1UL << 24, 0,
5366                                                       IOMMU_RESV_DIRECT);
5367                         if (reg)
5368                                 list_add_tail(&reg->list, head);
5369                 }
5370         }
5371 #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */
5372
5373         reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5374                                       IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5375                                       0, IOMMU_RESV_MSI);
5376         if (!reg)
5377                 return;
5378         list_add_tail(&reg->list, head);
5379 }
5380
5381 static void intel_iommu_put_resv_regions(struct device *dev,
5382                                          struct list_head *head)
5383 {
5384         struct iommu_resv_region *entry, *next;
5385
5386         list_for_each_entry_safe(entry, next, head, list)
5387                 kfree(entry);
5388 }
5389
5390 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5391 {
5392         struct device_domain_info *info;
5393         struct context_entry *context;
5394         struct dmar_domain *domain;
5395         unsigned long flags;
5396         u64 ctx_lo;
5397         int ret;
5398
5399         domain = find_domain(dev);
5400         if (!domain)
5401                 return -EINVAL;
5402
5403         spin_lock_irqsave(&device_domain_lock, flags);
5404         spin_lock(&iommu->lock);
5405
5406         ret = -EINVAL;
5407         info = dev->archdata.iommu;
5408         if (!info || !info->pasid_supported)
5409                 goto out;
5410
5411         context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5412         if (WARN_ON(!context))
5413                 goto out;
5414
5415         ctx_lo = context[0].lo;
5416
5417         if (!(ctx_lo & CONTEXT_PASIDE)) {
5418                 ctx_lo |= CONTEXT_PASIDE;
5419                 context[0].lo = ctx_lo;
5420                 wmb();
5421                 iommu->flush.flush_context(iommu,
5422                                            domain->iommu_did[iommu->seq_id],
5423                                            PCI_DEVID(info->bus, info->devfn),
5424                                            DMA_CCMD_MASK_NOBIT,
5425                                            DMA_CCMD_DEVICE_INVL);
5426         }
5427
5428         /* Enable PASID support in the device, if it wasn't already */
5429         if (!info->pasid_enabled)
5430                 iommu_enable_dev_iotlb(info);
5431
5432         ret = 0;
5433
5434  out:
5435         spin_unlock(&iommu->lock);
5436         spin_unlock_irqrestore(&device_domain_lock, flags);
5437
5438         return ret;
5439 }
5440
5441 static void intel_iommu_apply_resv_region(struct device *dev,
5442                                           struct iommu_domain *domain,
5443                                           struct iommu_resv_region *region)
5444 {
5445         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5446         unsigned long start, end;
5447
5448         start = IOVA_PFN(region->start);
5449         end   = IOVA_PFN(region->start + region->length - 1);
5450
5451         WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
5452 }
5453
5454 #ifdef CONFIG_INTEL_IOMMU_SVM
5455 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5456 {
5457         struct intel_iommu *iommu;
5458         u8 bus, devfn;
5459
5460         if (iommu_dummy(dev)) {
5461                 dev_warn(dev,
5462                          "No IOMMU translation for device; cannot enable SVM\n");
5463                 return NULL;
5464         }
5465
5466         iommu = device_to_iommu(dev, &bus, &devfn);
5467         if ((!iommu)) {
5468                 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5469                 return NULL;
5470         }
5471
5472         return iommu;
5473 }
5474 #endif /* CONFIG_INTEL_IOMMU_SVM */
5475
5476 static int intel_iommu_enable_auxd(struct device *dev)
5477 {
5478         struct device_domain_info *info;
5479         struct intel_iommu *iommu;
5480         unsigned long flags;
5481         u8 bus, devfn;
5482         int ret;
5483
5484         iommu = device_to_iommu(dev, &bus, &devfn);
5485         if (!iommu || dmar_disabled)
5486                 return -EINVAL;
5487
5488         if (!sm_supported(iommu) || !pasid_supported(iommu))
5489                 return -EINVAL;
5490
5491         ret = intel_iommu_enable_pasid(iommu, dev);
5492         if (ret)
5493                 return -ENODEV;
5494
5495         spin_lock_irqsave(&device_domain_lock, flags);
5496         info = dev->archdata.iommu;
5497         info->auxd_enabled = 1;
5498         spin_unlock_irqrestore(&device_domain_lock, flags);
5499
5500         return 0;
5501 }
5502
5503 static int intel_iommu_disable_auxd(struct device *dev)
5504 {
5505         struct device_domain_info *info;
5506         unsigned long flags;
5507
5508         spin_lock_irqsave(&device_domain_lock, flags);
5509         info = dev->archdata.iommu;
5510         if (!WARN_ON(!info))
5511                 info->auxd_enabled = 0;
5512         spin_unlock_irqrestore(&device_domain_lock, flags);
5513
5514         return 0;
5515 }
5516
5517 /*
5518  * A PCI express designated vendor specific extended capability is defined
5519  * in the section 3.7 of Intel scalable I/O virtualization technical spec
5520  * for system software and tools to detect endpoint devices supporting the
5521  * Intel scalable IO virtualization without host driver dependency.
5522  *
5523  * Returns the address of the matching extended capability structure within
5524  * the device's PCI configuration space or 0 if the device does not support
5525  * it.
5526  */
5527 static int siov_find_pci_dvsec(struct pci_dev *pdev)
5528 {
5529         int pos;
5530         u16 vendor, id;
5531
5532         pos = pci_find_next_ext_capability(pdev, 0, 0x23);
5533         while (pos) {
5534                 pci_read_config_word(pdev, pos + 4, &vendor);
5535                 pci_read_config_word(pdev, pos + 8, &id);
5536                 if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
5537                         return pos;
5538
5539                 pos = pci_find_next_ext_capability(pdev, pos, 0x23);
5540         }
5541
5542         return 0;
5543 }
5544
5545 static bool
5546 intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
5547 {
5548         if (feat == IOMMU_DEV_FEAT_AUX) {
5549                 int ret;
5550
5551                 if (!dev_is_pci(dev) || dmar_disabled ||
5552                     !scalable_mode_support() || !iommu_pasid_support())
5553                         return false;
5554
5555                 ret = pci_pasid_features(to_pci_dev(dev));
5556                 if (ret < 0)
5557                         return false;
5558
5559                 return !!siov_find_pci_dvsec(to_pci_dev(dev));
5560         }
5561
5562         return false;
5563 }
5564
5565 static int
5566 intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
5567 {
5568         if (feat == IOMMU_DEV_FEAT_AUX)
5569                 return intel_iommu_enable_auxd(dev);
5570
5571         return -ENODEV;
5572 }
5573
5574 static int
5575 intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
5576 {
5577         if (feat == IOMMU_DEV_FEAT_AUX)
5578                 return intel_iommu_disable_auxd(dev);
5579
5580         return -ENODEV;
5581 }
5582
5583 static bool
5584 intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
5585 {
5586         struct device_domain_info *info = dev->archdata.iommu;
5587
5588         if (feat == IOMMU_DEV_FEAT_AUX)
5589                 return scalable_mode_support() && info && info->auxd_enabled;
5590
5591         return false;
5592 }
5593
5594 static int
5595 intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
5596 {
5597         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5598
5599         return dmar_domain->default_pasid > 0 ?
5600                         dmar_domain->default_pasid : -EINVAL;
5601 }
5602
5603 static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
5604                                            struct device *dev)
5605 {
5606         return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
5607 }
5608
5609 const struct iommu_ops intel_iommu_ops = {
5610         .capable                = intel_iommu_capable,
5611         .domain_alloc           = intel_iommu_domain_alloc,
5612         .domain_free            = intel_iommu_domain_free,
5613         .attach_dev             = intel_iommu_attach_device,
5614         .detach_dev             = intel_iommu_detach_device,
5615         .aux_attach_dev         = intel_iommu_aux_attach_device,
5616         .aux_detach_dev         = intel_iommu_aux_detach_device,
5617         .aux_get_pasid          = intel_iommu_aux_get_pasid,
5618         .map                    = intel_iommu_map,
5619         .unmap                  = intel_iommu_unmap,
5620         .iova_to_phys           = intel_iommu_iova_to_phys,
5621         .add_device             = intel_iommu_add_device,
5622         .remove_device          = intel_iommu_remove_device,
5623         .get_resv_regions       = intel_iommu_get_resv_regions,
5624         .put_resv_regions       = intel_iommu_put_resv_regions,
5625         .apply_resv_region      = intel_iommu_apply_resv_region,
5626         .device_group           = pci_device_group,
5627         .dev_has_feat           = intel_iommu_dev_has_feat,
5628         .dev_feat_enabled       = intel_iommu_dev_feat_enabled,
5629         .dev_enable_feat        = intel_iommu_dev_enable_feat,
5630         .dev_disable_feat       = intel_iommu_dev_disable_feat,
5631         .is_attach_deferred     = intel_iommu_is_attach_deferred,
5632         .pgsize_bitmap          = INTEL_IOMMU_PGSIZES,
5633 };
5634
5635 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5636 {
5637         /* G4x/GM45 integrated gfx dmar support is totally busted. */
5638         pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
5639         dmar_map_gfx = 0;
5640 }
5641
5642 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5643 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5644 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5645 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5646 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5647 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5648 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5649
5650 static void quirk_iommu_rwbf(struct pci_dev *dev)
5651 {
5652         /*
5653          * Mobile 4 Series Chipset neglects to set RWBF capability,
5654          * but needs it. Same seems to hold for the desktop versions.
5655          */
5656         pci_info(dev, "Forcing write-buffer flush capability\n");
5657         rwbf_quirk = 1;
5658 }
5659
5660 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5661 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5662 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5663 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5664 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5665 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5666 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5667
5668 #define GGC 0x52
5669 #define GGC_MEMORY_SIZE_MASK    (0xf << 8)
5670 #define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
5671 #define GGC_MEMORY_SIZE_1M      (0x1 << 8)
5672 #define GGC_MEMORY_SIZE_2M      (0x3 << 8)
5673 #define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
5674 #define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
5675 #define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
5676 #define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
5677
5678 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5679 {
5680         unsigned short ggc;
5681
5682         if (pci_read_config_word(dev, GGC, &ggc))
5683                 return;
5684
5685         if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5686                 pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5687                 dmar_map_gfx = 0;
5688         } else if (dmar_map_gfx) {
5689                 /* we have to ensure the gfx device is idle before we flush */
5690                 pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
5691                 intel_iommu_strict = 1;
5692        }
5693 }
5694 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5695 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5696 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5697 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5698
5699 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5700    ISOCH DMAR unit for the Azalia sound device, but not give it any
5701    TLB entries, which causes it to deadlock. Check for that.  We do
5702    this in a function called from init_dmars(), instead of in a PCI
5703    quirk, because we don't want to print the obnoxious "BIOS broken"
5704    message if VT-d is actually disabled.
5705 */
5706 static void __init check_tylersburg_isoch(void)
5707 {
5708         struct pci_dev *pdev;
5709         uint32_t vtisochctrl;
5710
5711         /* If there's no Azalia in the system anyway, forget it. */
5712         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5713         if (!pdev)
5714                 return;
5715         pci_dev_put(pdev);
5716
5717         /* System Management Registers. Might be hidden, in which case
5718            we can't do the sanity check. But that's OK, because the
5719            known-broken BIOSes _don't_ actually hide it, so far. */
5720         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5721         if (!pdev)
5722                 return;
5723
5724         if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5725                 pci_dev_put(pdev);
5726                 return;
5727         }
5728
5729         pci_dev_put(pdev);
5730
5731         /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5732         if (vtisochctrl & 1)
5733                 return;
5734
5735         /* Drop all bits other than the number of TLB entries */
5736         vtisochctrl &= 0x1c;
5737
5738         /* If we have the recommended number of TLB entries (16), fine. */
5739         if (vtisochctrl == 0x10)
5740                 return;
5741
5742         /* Zero TLB entries? You get to ride the short bus to school. */
5743         if (!vtisochctrl) {
5744                 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5745                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5746                      dmi_get_system_info(DMI_BIOS_VENDOR),
5747                      dmi_get_system_info(DMI_BIOS_VERSION),
5748                      dmi_get_system_info(DMI_PRODUCT_VERSION));
5749                 iommu_identity_mapping |= IDENTMAP_AZALIA;
5750                 return;
5751         }
5752
5753         pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5754                vtisochctrl);
5755 }