]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/iommu/intel-iommu.c
iommu/vt-d: Don't queue_iova() if there is no flush queue
[linux.git] / drivers / iommu / intel-iommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2014 Intel Corporation.
4  *
5  * Authors: David Woodhouse <dwmw2@infradead.org>,
6  *          Ashok Raj <ashok.raj@intel.com>,
7  *          Shaohua Li <shaohua.li@intel.com>,
8  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
9  *          Fenghua Yu <fenghua.yu@intel.com>
10  *          Joerg Roedel <jroedel@suse.de>
11  */
12
13 #define pr_fmt(fmt)     "DMAR: " fmt
14 #define dev_fmt(fmt)    pr_fmt(fmt)
15
16 #include <linux/init.h>
17 #include <linux/bitmap.h>
18 #include <linux/debugfs.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/irq.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock.h>
24 #include <linux/pci.h>
25 #include <linux/dmar.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/mempool.h>
28 #include <linux/memory.h>
29 #include <linux/cpu.h>
30 #include <linux/timer.h>
31 #include <linux/io.h>
32 #include <linux/iova.h>
33 #include <linux/iommu.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38 #include <linux/pci-ats.h>
39 #include <linux/memblock.h>
40 #include <linux/dma-contiguous.h>
41 #include <linux/dma-direct.h>
42 #include <linux/crash_dump.h>
43 #include <linux/numa.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/cacheflush.h>
46 #include <asm/iommu.h>
47
48 #include "irq_remapping.h"
49 #include "intel-pasid.h"
50
51 #define ROOT_SIZE               VTD_PAGE_SIZE
52 #define CONTEXT_SIZE            VTD_PAGE_SIZE
53
54 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
55 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
56 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
57 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
58
59 #define IOAPIC_RANGE_START      (0xfee00000)
60 #define IOAPIC_RANGE_END        (0xfeefffff)
61 #define IOVA_START_ADDR         (0x1000)
62
63 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
64
65 #define MAX_AGAW_WIDTH 64
66 #define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
67
68 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
69 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
70
71 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
72    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
73 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
74                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
75 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
76
77 /* IO virtual address start page frame number */
78 #define IOVA_START_PFN          (1)
79
80 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
81
82 /* page table handling */
83 #define LEVEL_STRIDE            (9)
84 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
85
86 /*
87  * This bitmap is used to advertise the page sizes our hardware support
88  * to the IOMMU core, which will then use this information to split
89  * physically contiguous memory regions it is mapping into page sizes
90  * that we support.
91  *
92  * Traditionally the IOMMU core just handed us the mappings directly,
93  * after making sure the size is an order of a 4KiB page and that the
94  * mapping has natural alignment.
95  *
96  * To retain this behavior, we currently advertise that we support
97  * all page sizes that are an order of 4KiB.
98  *
99  * If at some point we'd like to utilize the IOMMU core's new behavior,
100  * we could change this to advertise the real page sizes we support.
101  */
102 #define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
103
104 static inline int agaw_to_level(int agaw)
105 {
106         return agaw + 2;
107 }
108
109 static inline int agaw_to_width(int agaw)
110 {
111         return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
112 }
113
114 static inline int width_to_agaw(int width)
115 {
116         return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
117 }
118
119 static inline unsigned int level_to_offset_bits(int level)
120 {
121         return (level - 1) * LEVEL_STRIDE;
122 }
123
124 static inline int pfn_level_offset(unsigned long pfn, int level)
125 {
126         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
127 }
128
129 static inline unsigned long level_mask(int level)
130 {
131         return -1UL << level_to_offset_bits(level);
132 }
133
134 static inline unsigned long level_size(int level)
135 {
136         return 1UL << level_to_offset_bits(level);
137 }
138
139 static inline unsigned long align_to_level(unsigned long pfn, int level)
140 {
141         return (pfn + level_size(level) - 1) & level_mask(level);
142 }
143
144 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
145 {
146         return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
147 }
148
149 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
150    are never going to work. */
151 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
152 {
153         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
154 }
155
156 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
157 {
158         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
159 }
160 static inline unsigned long page_to_dma_pfn(struct page *pg)
161 {
162         return mm_to_dma_pfn(page_to_pfn(pg));
163 }
164 static inline unsigned long virt_to_dma_pfn(void *p)
165 {
166         return page_to_dma_pfn(virt_to_page(p));
167 }
168
169 /* global iommu list, set NULL for ignored DMAR units */
170 static struct intel_iommu **g_iommus;
171
172 static void __init check_tylersburg_isoch(void);
173 static int rwbf_quirk;
174
175 /*
176  * set to 1 to panic kernel if can't successfully enable VT-d
177  * (used when kernel is launched w/ TXT)
178  */
179 static int force_on = 0;
180 int intel_iommu_tboot_noforce;
181 static int no_platform_optin;
182
183 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
184
185 /*
186  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
187  * if marked present.
188  */
189 static phys_addr_t root_entry_lctp(struct root_entry *re)
190 {
191         if (!(re->lo & 1))
192                 return 0;
193
194         return re->lo & VTD_PAGE_MASK;
195 }
196
197 /*
198  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
199  * if marked present.
200  */
201 static phys_addr_t root_entry_uctp(struct root_entry *re)
202 {
203         if (!(re->hi & 1))
204                 return 0;
205
206         return re->hi & VTD_PAGE_MASK;
207 }
208
209 static inline void context_clear_pasid_enable(struct context_entry *context)
210 {
211         context->lo &= ~(1ULL << 11);
212 }
213
214 static inline bool context_pasid_enabled(struct context_entry *context)
215 {
216         return !!(context->lo & (1ULL << 11));
217 }
218
219 static inline void context_set_copied(struct context_entry *context)
220 {
221         context->hi |= (1ull << 3);
222 }
223
224 static inline bool context_copied(struct context_entry *context)
225 {
226         return !!(context->hi & (1ULL << 3));
227 }
228
229 static inline bool __context_present(struct context_entry *context)
230 {
231         return (context->lo & 1);
232 }
233
234 bool context_present(struct context_entry *context)
235 {
236         return context_pasid_enabled(context) ?
237              __context_present(context) :
238              __context_present(context) && !context_copied(context);
239 }
240
241 static inline void context_set_present(struct context_entry *context)
242 {
243         context->lo |= 1;
244 }
245
246 static inline void context_set_fault_enable(struct context_entry *context)
247 {
248         context->lo &= (((u64)-1) << 2) | 1;
249 }
250
251 static inline void context_set_translation_type(struct context_entry *context,
252                                                 unsigned long value)
253 {
254         context->lo &= (((u64)-1) << 4) | 3;
255         context->lo |= (value & 3) << 2;
256 }
257
258 static inline void context_set_address_root(struct context_entry *context,
259                                             unsigned long value)
260 {
261         context->lo &= ~VTD_PAGE_MASK;
262         context->lo |= value & VTD_PAGE_MASK;
263 }
264
265 static inline void context_set_address_width(struct context_entry *context,
266                                              unsigned long value)
267 {
268         context->hi |= value & 7;
269 }
270
271 static inline void context_set_domain_id(struct context_entry *context,
272                                          unsigned long value)
273 {
274         context->hi |= (value & ((1 << 16) - 1)) << 8;
275 }
276
277 static inline int context_domain_id(struct context_entry *c)
278 {
279         return((c->hi >> 8) & 0xffff);
280 }
281
282 static inline void context_clear_entry(struct context_entry *context)
283 {
284         context->lo = 0;
285         context->hi = 0;
286 }
287
288 /*
289  * This domain is a statically identity mapping domain.
290  *      1. This domain creats a static 1:1 mapping to all usable memory.
291  *      2. It maps to each iommu if successful.
292  *      3. Each iommu mapps to this domain if successful.
293  */
294 static struct dmar_domain *si_domain;
295 static int hw_pass_through = 1;
296
297 /* si_domain contains mulitple devices */
298 #define DOMAIN_FLAG_STATIC_IDENTITY             BIT(0)
299
300 /*
301  * This is a DMA domain allocated through the iommu domain allocation
302  * interface. But one or more devices belonging to this domain have
303  * been chosen to use a private domain. We should avoid to use the
304  * map/unmap/iova_to_phys APIs on it.
305  */
306 #define DOMAIN_FLAG_LOSE_CHILDREN               BIT(1)
307
308 #define for_each_domain_iommu(idx, domain)                      \
309         for (idx = 0; idx < g_num_of_iommus; idx++)             \
310                 if (domain->iommu_refcnt[idx])
311
312 struct dmar_rmrr_unit {
313         struct list_head list;          /* list of rmrr units   */
314         struct acpi_dmar_header *hdr;   /* ACPI header          */
315         u64     base_address;           /* reserved base address*/
316         u64     end_address;            /* reserved end address */
317         struct dmar_dev_scope *devices; /* target devices */
318         int     devices_cnt;            /* target device count */
319 };
320
321 struct dmar_atsr_unit {
322         struct list_head list;          /* list of ATSR units */
323         struct acpi_dmar_header *hdr;   /* ACPI header */
324         struct dmar_dev_scope *devices; /* target devices */
325         int devices_cnt;                /* target device count */
326         u8 include_all:1;               /* include all ports */
327 };
328
329 static LIST_HEAD(dmar_atsr_units);
330 static LIST_HEAD(dmar_rmrr_units);
331
332 #define for_each_rmrr_units(rmrr) \
333         list_for_each_entry(rmrr, &dmar_rmrr_units, list)
334
335 /* bitmap for indexing intel_iommus */
336 static int g_num_of_iommus;
337
338 static void domain_exit(struct dmar_domain *domain);
339 static void domain_remove_dev_info(struct dmar_domain *domain);
340 static void dmar_remove_one_dev_info(struct device *dev);
341 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
342 static int domain_detach_iommu(struct dmar_domain *domain,
343                                struct intel_iommu *iommu);
344 static bool device_is_rmrr_locked(struct device *dev);
345 static int intel_iommu_attach_device(struct iommu_domain *domain,
346                                      struct device *dev);
347
348 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
349 int dmar_disabled = 0;
350 #else
351 int dmar_disabled = 1;
352 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
353
354 int intel_iommu_sm;
355 int intel_iommu_enabled = 0;
356 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
357
358 static int dmar_map_gfx = 1;
359 static int dmar_forcedac;
360 static int intel_iommu_strict;
361 static int intel_iommu_superpage = 1;
362 static int iommu_identity_mapping;
363
364 #define IDENTMAP_ALL            1
365 #define IDENTMAP_GFX            2
366 #define IDENTMAP_AZALIA         4
367
368 int intel_iommu_gfx_mapped;
369 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
370
371 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
372 #define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
373 static DEFINE_SPINLOCK(device_domain_lock);
374 static LIST_HEAD(device_domain_list);
375
376 /*
377  * Iterate over elements in device_domain_list and call the specified
378  * callback @fn against each element.
379  */
380 int for_each_device_domain(int (*fn)(struct device_domain_info *info,
381                                      void *data), void *data)
382 {
383         int ret = 0;
384         unsigned long flags;
385         struct device_domain_info *info;
386
387         spin_lock_irqsave(&device_domain_lock, flags);
388         list_for_each_entry(info, &device_domain_list, global) {
389                 ret = fn(info, data);
390                 if (ret) {
391                         spin_unlock_irqrestore(&device_domain_lock, flags);
392                         return ret;
393                 }
394         }
395         spin_unlock_irqrestore(&device_domain_lock, flags);
396
397         return 0;
398 }
399
400 const struct iommu_ops intel_iommu_ops;
401
402 static bool translation_pre_enabled(struct intel_iommu *iommu)
403 {
404         return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
405 }
406
407 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
408 {
409         iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
410 }
411
412 static void init_translation_status(struct intel_iommu *iommu)
413 {
414         u32 gsts;
415
416         gsts = readl(iommu->reg + DMAR_GSTS_REG);
417         if (gsts & DMA_GSTS_TES)
418                 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
419 }
420
421 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
422 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
423 {
424         return container_of(dom, struct dmar_domain, domain);
425 }
426
427 static int __init intel_iommu_setup(char *str)
428 {
429         if (!str)
430                 return -EINVAL;
431         while (*str) {
432                 if (!strncmp(str, "on", 2)) {
433                         dmar_disabled = 0;
434                         pr_info("IOMMU enabled\n");
435                 } else if (!strncmp(str, "off", 3)) {
436                         dmar_disabled = 1;
437                         no_platform_optin = 1;
438                         pr_info("IOMMU disabled\n");
439                 } else if (!strncmp(str, "igfx_off", 8)) {
440                         dmar_map_gfx = 0;
441                         pr_info("Disable GFX device mapping\n");
442                 } else if (!strncmp(str, "forcedac", 8)) {
443                         pr_info("Forcing DAC for PCI devices\n");
444                         dmar_forcedac = 1;
445                 } else if (!strncmp(str, "strict", 6)) {
446                         pr_info("Disable batched IOTLB flush\n");
447                         intel_iommu_strict = 1;
448                 } else if (!strncmp(str, "sp_off", 6)) {
449                         pr_info("Disable supported super page\n");
450                         intel_iommu_superpage = 0;
451                 } else if (!strncmp(str, "sm_on", 5)) {
452                         pr_info("Intel-IOMMU: scalable mode supported\n");
453                         intel_iommu_sm = 1;
454                 } else if (!strncmp(str, "tboot_noforce", 13)) {
455                         printk(KERN_INFO
456                                 "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
457                         intel_iommu_tboot_noforce = 1;
458                 }
459
460                 str += strcspn(str, ",");
461                 while (*str == ',')
462                         str++;
463         }
464         return 0;
465 }
466 __setup("intel_iommu=", intel_iommu_setup);
467
468 static struct kmem_cache *iommu_domain_cache;
469 static struct kmem_cache *iommu_devinfo_cache;
470
471 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
472 {
473         struct dmar_domain **domains;
474         int idx = did >> 8;
475
476         domains = iommu->domains[idx];
477         if (!domains)
478                 return NULL;
479
480         return domains[did & 0xff];
481 }
482
483 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
484                              struct dmar_domain *domain)
485 {
486         struct dmar_domain **domains;
487         int idx = did >> 8;
488
489         if (!iommu->domains[idx]) {
490                 size_t size = 256 * sizeof(struct dmar_domain *);
491                 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
492         }
493
494         domains = iommu->domains[idx];
495         if (WARN_ON(!domains))
496                 return;
497         else
498                 domains[did & 0xff] = domain;
499 }
500
501 void *alloc_pgtable_page(int node)
502 {
503         struct page *page;
504         void *vaddr = NULL;
505
506         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
507         if (page)
508                 vaddr = page_address(page);
509         return vaddr;
510 }
511
512 void free_pgtable_page(void *vaddr)
513 {
514         free_page((unsigned long)vaddr);
515 }
516
517 static inline void *alloc_domain_mem(void)
518 {
519         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
520 }
521
522 static void free_domain_mem(void *vaddr)
523 {
524         kmem_cache_free(iommu_domain_cache, vaddr);
525 }
526
527 static inline void * alloc_devinfo_mem(void)
528 {
529         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
530 }
531
532 static inline void free_devinfo_mem(void *vaddr)
533 {
534         kmem_cache_free(iommu_devinfo_cache, vaddr);
535 }
536
537 static inline int domain_type_is_si(struct dmar_domain *domain)
538 {
539         return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
540 }
541
542 static inline int domain_pfn_supported(struct dmar_domain *domain,
543                                        unsigned long pfn)
544 {
545         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
546
547         return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
548 }
549
550 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
551 {
552         unsigned long sagaw;
553         int agaw = -1;
554
555         sagaw = cap_sagaw(iommu->cap);
556         for (agaw = width_to_agaw(max_gaw);
557              agaw >= 0; agaw--) {
558                 if (test_bit(agaw, &sagaw))
559                         break;
560         }
561
562         return agaw;
563 }
564
565 /*
566  * Calculate max SAGAW for each iommu.
567  */
568 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
569 {
570         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
571 }
572
573 /*
574  * calculate agaw for each iommu.
575  * "SAGAW" may be different across iommus, use a default agaw, and
576  * get a supported less agaw for iommus that don't support the default agaw.
577  */
578 int iommu_calculate_agaw(struct intel_iommu *iommu)
579 {
580         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
581 }
582
583 /* This functionin only returns single iommu in a domain */
584 struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
585 {
586         int iommu_id;
587
588         /* si_domain and vm domain should not get here. */
589         if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
590                 return NULL;
591
592         for_each_domain_iommu(iommu_id, domain)
593                 break;
594
595         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
596                 return NULL;
597
598         return g_iommus[iommu_id];
599 }
600
601 static void domain_update_iommu_coherency(struct dmar_domain *domain)
602 {
603         struct dmar_drhd_unit *drhd;
604         struct intel_iommu *iommu;
605         bool found = false;
606         int i;
607
608         domain->iommu_coherency = 1;
609
610         for_each_domain_iommu(i, domain) {
611                 found = true;
612                 if (!ecap_coherent(g_iommus[i]->ecap)) {
613                         domain->iommu_coherency = 0;
614                         break;
615                 }
616         }
617         if (found)
618                 return;
619
620         /* No hardware attached; use lowest common denominator */
621         rcu_read_lock();
622         for_each_active_iommu(iommu, drhd) {
623                 if (!ecap_coherent(iommu->ecap)) {
624                         domain->iommu_coherency = 0;
625                         break;
626                 }
627         }
628         rcu_read_unlock();
629 }
630
631 static int domain_update_iommu_snooping(struct intel_iommu *skip)
632 {
633         struct dmar_drhd_unit *drhd;
634         struct intel_iommu *iommu;
635         int ret = 1;
636
637         rcu_read_lock();
638         for_each_active_iommu(iommu, drhd) {
639                 if (iommu != skip) {
640                         if (!ecap_sc_support(iommu->ecap)) {
641                                 ret = 0;
642                                 break;
643                         }
644                 }
645         }
646         rcu_read_unlock();
647
648         return ret;
649 }
650
651 static int domain_update_iommu_superpage(struct intel_iommu *skip)
652 {
653         struct dmar_drhd_unit *drhd;
654         struct intel_iommu *iommu;
655         int mask = 0xf;
656
657         if (!intel_iommu_superpage) {
658                 return 0;
659         }
660
661         /* set iommu_superpage to the smallest common denominator */
662         rcu_read_lock();
663         for_each_active_iommu(iommu, drhd) {
664                 if (iommu != skip) {
665                         mask &= cap_super_page_val(iommu->cap);
666                         if (!mask)
667                                 break;
668                 }
669         }
670         rcu_read_unlock();
671
672         return fls(mask);
673 }
674
675 /* Some capabilities may be different across iommus */
676 static void domain_update_iommu_cap(struct dmar_domain *domain)
677 {
678         domain_update_iommu_coherency(domain);
679         domain->iommu_snooping = domain_update_iommu_snooping(NULL);
680         domain->iommu_superpage = domain_update_iommu_superpage(NULL);
681 }
682
683 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
684                                          u8 devfn, int alloc)
685 {
686         struct root_entry *root = &iommu->root_entry[bus];
687         struct context_entry *context;
688         u64 *entry;
689
690         entry = &root->lo;
691         if (sm_supported(iommu)) {
692                 if (devfn >= 0x80) {
693                         devfn -= 0x80;
694                         entry = &root->hi;
695                 }
696                 devfn *= 2;
697         }
698         if (*entry & 1)
699                 context = phys_to_virt(*entry & VTD_PAGE_MASK);
700         else {
701                 unsigned long phy_addr;
702                 if (!alloc)
703                         return NULL;
704
705                 context = alloc_pgtable_page(iommu->node);
706                 if (!context)
707                         return NULL;
708
709                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
710                 phy_addr = virt_to_phys((void *)context);
711                 *entry = phy_addr | 1;
712                 __iommu_flush_cache(iommu, entry, sizeof(*entry));
713         }
714         return &context[devfn];
715 }
716
717 static int iommu_dummy(struct device *dev)
718 {
719         return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
720 }
721
722 /**
723  * is_downstream_to_pci_bridge - test if a device belongs to the PCI
724  *                               sub-hierarchy of a candidate PCI-PCI bridge
725  * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
726  * @bridge: the candidate PCI-PCI bridge
727  *
728  * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
729  */
730 static bool
731 is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
732 {
733         struct pci_dev *pdev, *pbridge;
734
735         if (!dev_is_pci(dev) || !dev_is_pci(bridge))
736                 return false;
737
738         pdev = to_pci_dev(dev);
739         pbridge = to_pci_dev(bridge);
740
741         if (pbridge->subordinate &&
742             pbridge->subordinate->number <= pdev->bus->number &&
743             pbridge->subordinate->busn_res.end >= pdev->bus->number)
744                 return true;
745
746         return false;
747 }
748
749 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
750 {
751         struct dmar_drhd_unit *drhd = NULL;
752         struct intel_iommu *iommu;
753         struct device *tmp;
754         struct pci_dev *pdev = NULL;
755         u16 segment = 0;
756         int i;
757
758         if (iommu_dummy(dev))
759                 return NULL;
760
761         if (dev_is_pci(dev)) {
762                 struct pci_dev *pf_pdev;
763
764                 pdev = to_pci_dev(dev);
765
766 #ifdef CONFIG_X86
767                 /* VMD child devices currently cannot be handled individually */
768                 if (is_vmd(pdev->bus))
769                         return NULL;
770 #endif
771
772                 /* VFs aren't listed in scope tables; we need to look up
773                  * the PF instead to find the IOMMU. */
774                 pf_pdev = pci_physfn(pdev);
775                 dev = &pf_pdev->dev;
776                 segment = pci_domain_nr(pdev->bus);
777         } else if (has_acpi_companion(dev))
778                 dev = &ACPI_COMPANION(dev)->dev;
779
780         rcu_read_lock();
781         for_each_active_iommu(iommu, drhd) {
782                 if (pdev && segment != drhd->segment)
783                         continue;
784
785                 for_each_active_dev_scope(drhd->devices,
786                                           drhd->devices_cnt, i, tmp) {
787                         if (tmp == dev) {
788                                 /* For a VF use its original BDF# not that of the PF
789                                  * which we used for the IOMMU lookup. Strictly speaking
790                                  * we could do this for all PCI devices; we only need to
791                                  * get the BDF# from the scope table for ACPI matches. */
792                                 if (pdev && pdev->is_virtfn)
793                                         goto got_pdev;
794
795                                 *bus = drhd->devices[i].bus;
796                                 *devfn = drhd->devices[i].devfn;
797                                 goto out;
798                         }
799
800                         if (is_downstream_to_pci_bridge(dev, tmp))
801                                 goto got_pdev;
802                 }
803
804                 if (pdev && drhd->include_all) {
805                 got_pdev:
806                         *bus = pdev->bus->number;
807                         *devfn = pdev->devfn;
808                         goto out;
809                 }
810         }
811         iommu = NULL;
812  out:
813         rcu_read_unlock();
814
815         return iommu;
816 }
817
818 static void domain_flush_cache(struct dmar_domain *domain,
819                                void *addr, int size)
820 {
821         if (!domain->iommu_coherency)
822                 clflush_cache_range(addr, size);
823 }
824
825 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
826 {
827         struct context_entry *context;
828         int ret = 0;
829         unsigned long flags;
830
831         spin_lock_irqsave(&iommu->lock, flags);
832         context = iommu_context_addr(iommu, bus, devfn, 0);
833         if (context)
834                 ret = context_present(context);
835         spin_unlock_irqrestore(&iommu->lock, flags);
836         return ret;
837 }
838
839 static void free_context_table(struct intel_iommu *iommu)
840 {
841         int i;
842         unsigned long flags;
843         struct context_entry *context;
844
845         spin_lock_irqsave(&iommu->lock, flags);
846         if (!iommu->root_entry) {
847                 goto out;
848         }
849         for (i = 0; i < ROOT_ENTRY_NR; i++) {
850                 context = iommu_context_addr(iommu, i, 0, 0);
851                 if (context)
852                         free_pgtable_page(context);
853
854                 if (!sm_supported(iommu))
855                         continue;
856
857                 context = iommu_context_addr(iommu, i, 0x80, 0);
858                 if (context)
859                         free_pgtable_page(context);
860
861         }
862         free_pgtable_page(iommu->root_entry);
863         iommu->root_entry = NULL;
864 out:
865         spin_unlock_irqrestore(&iommu->lock, flags);
866 }
867
868 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
869                                       unsigned long pfn, int *target_level)
870 {
871         struct dma_pte *parent, *pte;
872         int level = agaw_to_level(domain->agaw);
873         int offset;
874
875         BUG_ON(!domain->pgd);
876
877         if (!domain_pfn_supported(domain, pfn))
878                 /* Address beyond IOMMU's addressing capabilities. */
879                 return NULL;
880
881         parent = domain->pgd;
882
883         while (1) {
884                 void *tmp_page;
885
886                 offset = pfn_level_offset(pfn, level);
887                 pte = &parent[offset];
888                 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
889                         break;
890                 if (level == *target_level)
891                         break;
892
893                 if (!dma_pte_present(pte)) {
894                         uint64_t pteval;
895
896                         tmp_page = alloc_pgtable_page(domain->nid);
897
898                         if (!tmp_page)
899                                 return NULL;
900
901                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
902                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
903                         if (cmpxchg64(&pte->val, 0ULL, pteval))
904                                 /* Someone else set it while we were thinking; use theirs. */
905                                 free_pgtable_page(tmp_page);
906                         else
907                                 domain_flush_cache(domain, pte, sizeof(*pte));
908                 }
909                 if (level == 1)
910                         break;
911
912                 parent = phys_to_virt(dma_pte_addr(pte));
913                 level--;
914         }
915
916         if (!*target_level)
917                 *target_level = level;
918
919         return pte;
920 }
921
922 /* return address's pte at specific level */
923 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
924                                          unsigned long pfn,
925                                          int level, int *large_page)
926 {
927         struct dma_pte *parent, *pte;
928         int total = agaw_to_level(domain->agaw);
929         int offset;
930
931         parent = domain->pgd;
932         while (level <= total) {
933                 offset = pfn_level_offset(pfn, total);
934                 pte = &parent[offset];
935                 if (level == total)
936                         return pte;
937
938                 if (!dma_pte_present(pte)) {
939                         *large_page = total;
940                         break;
941                 }
942
943                 if (dma_pte_superpage(pte)) {
944                         *large_page = total;
945                         return pte;
946                 }
947
948                 parent = phys_to_virt(dma_pte_addr(pte));
949                 total--;
950         }
951         return NULL;
952 }
953
954 /* clear last level pte, a tlb flush should be followed */
955 static void dma_pte_clear_range(struct dmar_domain *domain,
956                                 unsigned long start_pfn,
957                                 unsigned long last_pfn)
958 {
959         unsigned int large_page;
960         struct dma_pte *first_pte, *pte;
961
962         BUG_ON(!domain_pfn_supported(domain, start_pfn));
963         BUG_ON(!domain_pfn_supported(domain, last_pfn));
964         BUG_ON(start_pfn > last_pfn);
965
966         /* we don't need lock here; nobody else touches the iova range */
967         do {
968                 large_page = 1;
969                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
970                 if (!pte) {
971                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
972                         continue;
973                 }
974                 do {
975                         dma_clear_pte(pte);
976                         start_pfn += lvl_to_nr_pages(large_page);
977                         pte++;
978                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
979
980                 domain_flush_cache(domain, first_pte,
981                                    (void *)pte - (void *)first_pte);
982
983         } while (start_pfn && start_pfn <= last_pfn);
984 }
985
986 static void dma_pte_free_level(struct dmar_domain *domain, int level,
987                                int retain_level, struct dma_pte *pte,
988                                unsigned long pfn, unsigned long start_pfn,
989                                unsigned long last_pfn)
990 {
991         pfn = max(start_pfn, pfn);
992         pte = &pte[pfn_level_offset(pfn, level)];
993
994         do {
995                 unsigned long level_pfn;
996                 struct dma_pte *level_pte;
997
998                 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
999                         goto next;
1000
1001                 level_pfn = pfn & level_mask(level);
1002                 level_pte = phys_to_virt(dma_pte_addr(pte));
1003
1004                 if (level > 2) {
1005                         dma_pte_free_level(domain, level - 1, retain_level,
1006                                            level_pte, level_pfn, start_pfn,
1007                                            last_pfn);
1008                 }
1009
1010                 /*
1011                  * Free the page table if we're below the level we want to
1012                  * retain and the range covers the entire table.
1013                  */
1014                 if (level < retain_level && !(start_pfn > level_pfn ||
1015                       last_pfn < level_pfn + level_size(level) - 1)) {
1016                         dma_clear_pte(pte);
1017                         domain_flush_cache(domain, pte, sizeof(*pte));
1018                         free_pgtable_page(level_pte);
1019                 }
1020 next:
1021                 pfn += level_size(level);
1022         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1023 }
1024
1025 /*
1026  * clear last level (leaf) ptes and free page table pages below the
1027  * level we wish to keep intact.
1028  */
1029 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1030                                    unsigned long start_pfn,
1031                                    unsigned long last_pfn,
1032                                    int retain_level)
1033 {
1034         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1035         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1036         BUG_ON(start_pfn > last_pfn);
1037
1038         dma_pte_clear_range(domain, start_pfn, last_pfn);
1039
1040         /* We don't need lock here; nobody else touches the iova range */
1041         dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1042                            domain->pgd, 0, start_pfn, last_pfn);
1043
1044         /* free pgd */
1045         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1046                 free_pgtable_page(domain->pgd);
1047                 domain->pgd = NULL;
1048         }
1049 }
1050
1051 /* When a page at a given level is being unlinked from its parent, we don't
1052    need to *modify* it at all. All we need to do is make a list of all the
1053    pages which can be freed just as soon as we've flushed the IOTLB and we
1054    know the hardware page-walk will no longer touch them.
1055    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1056    be freed. */
1057 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1058                                             int level, struct dma_pte *pte,
1059                                             struct page *freelist)
1060 {
1061         struct page *pg;
1062
1063         pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1064         pg->freelist = freelist;
1065         freelist = pg;
1066
1067         if (level == 1)
1068                 return freelist;
1069
1070         pte = page_address(pg);
1071         do {
1072                 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1073                         freelist = dma_pte_list_pagetables(domain, level - 1,
1074                                                            pte, freelist);
1075                 pte++;
1076         } while (!first_pte_in_page(pte));
1077
1078         return freelist;
1079 }
1080
1081 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1082                                         struct dma_pte *pte, unsigned long pfn,
1083                                         unsigned long start_pfn,
1084                                         unsigned long last_pfn,
1085                                         struct page *freelist)
1086 {
1087         struct dma_pte *first_pte = NULL, *last_pte = NULL;
1088
1089         pfn = max(start_pfn, pfn);
1090         pte = &pte[pfn_level_offset(pfn, level)];
1091
1092         do {
1093                 unsigned long level_pfn;
1094
1095                 if (!dma_pte_present(pte))
1096                         goto next;
1097
1098                 level_pfn = pfn & level_mask(level);
1099
1100                 /* If range covers entire pagetable, free it */
1101                 if (start_pfn <= level_pfn &&
1102                     last_pfn >= level_pfn + level_size(level) - 1) {
1103                         /* These suborbinate page tables are going away entirely. Don't
1104                            bother to clear them; we're just going to *free* them. */
1105                         if (level > 1 && !dma_pte_superpage(pte))
1106                                 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1107
1108                         dma_clear_pte(pte);
1109                         if (!first_pte)
1110                                 first_pte = pte;
1111                         last_pte = pte;
1112                 } else if (level > 1) {
1113                         /* Recurse down into a level that isn't *entirely* obsolete */
1114                         freelist = dma_pte_clear_level(domain, level - 1,
1115                                                        phys_to_virt(dma_pte_addr(pte)),
1116                                                        level_pfn, start_pfn, last_pfn,
1117                                                        freelist);
1118                 }
1119 next:
1120                 pfn += level_size(level);
1121         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1122
1123         if (first_pte)
1124                 domain_flush_cache(domain, first_pte,
1125                                    (void *)++last_pte - (void *)first_pte);
1126
1127         return freelist;
1128 }
1129
1130 /* We can't just free the pages because the IOMMU may still be walking
1131    the page tables, and may have cached the intermediate levels. The
1132    pages can only be freed after the IOTLB flush has been done. */
1133 static struct page *domain_unmap(struct dmar_domain *domain,
1134                                  unsigned long start_pfn,
1135                                  unsigned long last_pfn)
1136 {
1137         struct page *freelist;
1138
1139         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1140         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1141         BUG_ON(start_pfn > last_pfn);
1142
1143         /* we don't need lock here; nobody else touches the iova range */
1144         freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1145                                        domain->pgd, 0, start_pfn, last_pfn, NULL);
1146
1147         /* free pgd */
1148         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1149                 struct page *pgd_page = virt_to_page(domain->pgd);
1150                 pgd_page->freelist = freelist;
1151                 freelist = pgd_page;
1152
1153                 domain->pgd = NULL;
1154         }
1155
1156         return freelist;
1157 }
1158
1159 static void dma_free_pagelist(struct page *freelist)
1160 {
1161         struct page *pg;
1162
1163         while ((pg = freelist)) {
1164                 freelist = pg->freelist;
1165                 free_pgtable_page(page_address(pg));
1166         }
1167 }
1168
1169 static void iova_entry_free(unsigned long data)
1170 {
1171         struct page *freelist = (struct page *)data;
1172
1173         dma_free_pagelist(freelist);
1174 }
1175
1176 /* iommu handling */
1177 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1178 {
1179         struct root_entry *root;
1180         unsigned long flags;
1181
1182         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1183         if (!root) {
1184                 pr_err("Allocating root entry for %s failed\n",
1185                         iommu->name);
1186                 return -ENOMEM;
1187         }
1188
1189         __iommu_flush_cache(iommu, root, ROOT_SIZE);
1190
1191         spin_lock_irqsave(&iommu->lock, flags);
1192         iommu->root_entry = root;
1193         spin_unlock_irqrestore(&iommu->lock, flags);
1194
1195         return 0;
1196 }
1197
1198 static void iommu_set_root_entry(struct intel_iommu *iommu)
1199 {
1200         u64 addr;
1201         u32 sts;
1202         unsigned long flag;
1203
1204         addr = virt_to_phys(iommu->root_entry);
1205         if (sm_supported(iommu))
1206                 addr |= DMA_RTADDR_SMT;
1207
1208         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1209         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1210
1211         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1212
1213         /* Make sure hardware complete it */
1214         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1215                       readl, (sts & DMA_GSTS_RTPS), sts);
1216
1217         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1218 }
1219
1220 void iommu_flush_write_buffer(struct intel_iommu *iommu)
1221 {
1222         u32 val;
1223         unsigned long flag;
1224
1225         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1226                 return;
1227
1228         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1229         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1230
1231         /* Make sure hardware complete it */
1232         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1233                       readl, (!(val & DMA_GSTS_WBFS)), val);
1234
1235         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1236 }
1237
1238 /* return value determine if we need a write buffer flush */
1239 static void __iommu_flush_context(struct intel_iommu *iommu,
1240                                   u16 did, u16 source_id, u8 function_mask,
1241                                   u64 type)
1242 {
1243         u64 val = 0;
1244         unsigned long flag;
1245
1246         switch (type) {
1247         case DMA_CCMD_GLOBAL_INVL:
1248                 val = DMA_CCMD_GLOBAL_INVL;
1249                 break;
1250         case DMA_CCMD_DOMAIN_INVL:
1251                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1252                 break;
1253         case DMA_CCMD_DEVICE_INVL:
1254                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1255                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1256                 break;
1257         default:
1258                 BUG();
1259         }
1260         val |= DMA_CCMD_ICC;
1261
1262         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1263         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1264
1265         /* Make sure hardware complete it */
1266         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1267                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1268
1269         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1270 }
1271
1272 /* return value determine if we need a write buffer flush */
1273 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1274                                 u64 addr, unsigned int size_order, u64 type)
1275 {
1276         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1277         u64 val = 0, val_iva = 0;
1278         unsigned long flag;
1279
1280         switch (type) {
1281         case DMA_TLB_GLOBAL_FLUSH:
1282                 /* global flush doesn't need set IVA_REG */
1283                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1284                 break;
1285         case DMA_TLB_DSI_FLUSH:
1286                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1287                 break;
1288         case DMA_TLB_PSI_FLUSH:
1289                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1290                 /* IH bit is passed in as part of address */
1291                 val_iva = size_order | addr;
1292                 break;
1293         default:
1294                 BUG();
1295         }
1296         /* Note: set drain read/write */
1297 #if 0
1298         /*
1299          * This is probably to be super secure.. Looks like we can
1300          * ignore it without any impact.
1301          */
1302         if (cap_read_drain(iommu->cap))
1303                 val |= DMA_TLB_READ_DRAIN;
1304 #endif
1305         if (cap_write_drain(iommu->cap))
1306                 val |= DMA_TLB_WRITE_DRAIN;
1307
1308         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1309         /* Note: Only uses first TLB reg currently */
1310         if (val_iva)
1311                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1312         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1313
1314         /* Make sure hardware complete it */
1315         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1316                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1317
1318         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1319
1320         /* check IOTLB invalidation granularity */
1321         if (DMA_TLB_IAIG(val) == 0)
1322                 pr_err("Flush IOTLB failed\n");
1323         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1324                 pr_debug("TLB flush request %Lx, actual %Lx\n",
1325                         (unsigned long long)DMA_TLB_IIRG(type),
1326                         (unsigned long long)DMA_TLB_IAIG(val));
1327 }
1328
1329 static struct device_domain_info *
1330 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1331                          u8 bus, u8 devfn)
1332 {
1333         struct device_domain_info *info;
1334
1335         assert_spin_locked(&device_domain_lock);
1336
1337         if (!iommu->qi)
1338                 return NULL;
1339
1340         list_for_each_entry(info, &domain->devices, link)
1341                 if (info->iommu == iommu && info->bus == bus &&
1342                     info->devfn == devfn) {
1343                         if (info->ats_supported && info->dev)
1344                                 return info;
1345                         break;
1346                 }
1347
1348         return NULL;
1349 }
1350
1351 static void domain_update_iotlb(struct dmar_domain *domain)
1352 {
1353         struct device_domain_info *info;
1354         bool has_iotlb_device = false;
1355
1356         assert_spin_locked(&device_domain_lock);
1357
1358         list_for_each_entry(info, &domain->devices, link) {
1359                 struct pci_dev *pdev;
1360
1361                 if (!info->dev || !dev_is_pci(info->dev))
1362                         continue;
1363
1364                 pdev = to_pci_dev(info->dev);
1365                 if (pdev->ats_enabled) {
1366                         has_iotlb_device = true;
1367                         break;
1368                 }
1369         }
1370
1371         domain->has_iotlb_device = has_iotlb_device;
1372 }
1373
1374 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1375 {
1376         struct pci_dev *pdev;
1377
1378         assert_spin_locked(&device_domain_lock);
1379
1380         if (!info || !dev_is_pci(info->dev))
1381                 return;
1382
1383         pdev = to_pci_dev(info->dev);
1384         /* For IOMMU that supports device IOTLB throttling (DIT), we assign
1385          * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
1386          * queue depth at PF level. If DIT is not set, PFSID will be treated as
1387          * reserved, which should be set to 0.
1388          */
1389         if (!ecap_dit(info->iommu->ecap))
1390                 info->pfsid = 0;
1391         else {
1392                 struct pci_dev *pf_pdev;
1393
1394                 /* pdev will be returned if device is not a vf */
1395                 pf_pdev = pci_physfn(pdev);
1396                 info->pfsid = pci_dev_id(pf_pdev);
1397         }
1398
1399 #ifdef CONFIG_INTEL_IOMMU_SVM
1400         /* The PCIe spec, in its wisdom, declares that the behaviour of
1401            the device if you enable PASID support after ATS support is
1402            undefined. So always enable PASID support on devices which
1403            have it, even if we can't yet know if we're ever going to
1404            use it. */
1405         if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1406                 info->pasid_enabled = 1;
1407
1408         if (info->pri_supported &&
1409             (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
1410             !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1411                 info->pri_enabled = 1;
1412 #endif
1413         if (!pdev->untrusted && info->ats_supported &&
1414             pci_ats_page_aligned(pdev) &&
1415             !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1416                 info->ats_enabled = 1;
1417                 domain_update_iotlb(info->domain);
1418                 info->ats_qdep = pci_ats_queue_depth(pdev);
1419         }
1420 }
1421
1422 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1423 {
1424         struct pci_dev *pdev;
1425
1426         assert_spin_locked(&device_domain_lock);
1427
1428         if (!dev_is_pci(info->dev))
1429                 return;
1430
1431         pdev = to_pci_dev(info->dev);
1432
1433         if (info->ats_enabled) {
1434                 pci_disable_ats(pdev);
1435                 info->ats_enabled = 0;
1436                 domain_update_iotlb(info->domain);
1437         }
1438 #ifdef CONFIG_INTEL_IOMMU_SVM
1439         if (info->pri_enabled) {
1440                 pci_disable_pri(pdev);
1441                 info->pri_enabled = 0;
1442         }
1443         if (info->pasid_enabled) {
1444                 pci_disable_pasid(pdev);
1445                 info->pasid_enabled = 0;
1446         }
1447 #endif
1448 }
1449
1450 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1451                                   u64 addr, unsigned mask)
1452 {
1453         u16 sid, qdep;
1454         unsigned long flags;
1455         struct device_domain_info *info;
1456
1457         if (!domain->has_iotlb_device)
1458                 return;
1459
1460         spin_lock_irqsave(&device_domain_lock, flags);
1461         list_for_each_entry(info, &domain->devices, link) {
1462                 if (!info->ats_enabled)
1463                         continue;
1464
1465                 sid = info->bus << 8 | info->devfn;
1466                 qdep = info->ats_qdep;
1467                 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1468                                 qdep, addr, mask);
1469         }
1470         spin_unlock_irqrestore(&device_domain_lock, flags);
1471 }
1472
1473 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1474                                   struct dmar_domain *domain,
1475                                   unsigned long pfn, unsigned int pages,
1476                                   int ih, int map)
1477 {
1478         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1479         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1480         u16 did = domain->iommu_did[iommu->seq_id];
1481
1482         BUG_ON(pages == 0);
1483
1484         if (ih)
1485                 ih = 1 << 6;
1486         /*
1487          * Fallback to domain selective flush if no PSI support or the size is
1488          * too big.
1489          * PSI requires page size to be 2 ^ x, and the base address is naturally
1490          * aligned to the size
1491          */
1492         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1493                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1494                                                 DMA_TLB_DSI_FLUSH);
1495         else
1496                 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1497                                                 DMA_TLB_PSI_FLUSH);
1498
1499         /*
1500          * In caching mode, changes of pages from non-present to present require
1501          * flush. However, device IOTLB doesn't need to be flushed in this case.
1502          */
1503         if (!cap_caching_mode(iommu->cap) || !map)
1504                 iommu_flush_dev_iotlb(domain, addr, mask);
1505 }
1506
1507 /* Notification for newly created mappings */
1508 static inline void __mapping_notify_one(struct intel_iommu *iommu,
1509                                         struct dmar_domain *domain,
1510                                         unsigned long pfn, unsigned int pages)
1511 {
1512         /* It's a non-present to present mapping. Only flush if caching mode */
1513         if (cap_caching_mode(iommu->cap))
1514                 iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
1515         else
1516                 iommu_flush_write_buffer(iommu);
1517 }
1518
1519 static void iommu_flush_iova(struct iova_domain *iovad)
1520 {
1521         struct dmar_domain *domain;
1522         int idx;
1523
1524         domain = container_of(iovad, struct dmar_domain, iovad);
1525
1526         for_each_domain_iommu(idx, domain) {
1527                 struct intel_iommu *iommu = g_iommus[idx];
1528                 u16 did = domain->iommu_did[iommu->seq_id];
1529
1530                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1531
1532                 if (!cap_caching_mode(iommu->cap))
1533                         iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1534                                               0, MAX_AGAW_PFN_WIDTH);
1535         }
1536 }
1537
1538 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1539 {
1540         u32 pmen;
1541         unsigned long flags;
1542
1543         if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
1544                 return;
1545
1546         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1547         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1548         pmen &= ~DMA_PMEN_EPM;
1549         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1550
1551         /* wait for the protected region status bit to clear */
1552         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1553                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1554
1555         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1556 }
1557
1558 static void iommu_enable_translation(struct intel_iommu *iommu)
1559 {
1560         u32 sts;
1561         unsigned long flags;
1562
1563         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1564         iommu->gcmd |= DMA_GCMD_TE;
1565         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1566
1567         /* Make sure hardware complete it */
1568         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1569                       readl, (sts & DMA_GSTS_TES), sts);
1570
1571         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1572 }
1573
1574 static void iommu_disable_translation(struct intel_iommu *iommu)
1575 {
1576         u32 sts;
1577         unsigned long flag;
1578
1579         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1580         iommu->gcmd &= ~DMA_GCMD_TE;
1581         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1582
1583         /* Make sure hardware complete it */
1584         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1585                       readl, (!(sts & DMA_GSTS_TES)), sts);
1586
1587         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1588 }
1589
1590 static int iommu_init_domains(struct intel_iommu *iommu)
1591 {
1592         u32 ndomains, nlongs;
1593         size_t size;
1594
1595         ndomains = cap_ndoms(iommu->cap);
1596         pr_debug("%s: Number of Domains supported <%d>\n",
1597                  iommu->name, ndomains);
1598         nlongs = BITS_TO_LONGS(ndomains);
1599
1600         spin_lock_init(&iommu->lock);
1601
1602         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1603         if (!iommu->domain_ids) {
1604                 pr_err("%s: Allocating domain id array failed\n",
1605                        iommu->name);
1606                 return -ENOMEM;
1607         }
1608
1609         size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1610         iommu->domains = kzalloc(size, GFP_KERNEL);
1611
1612         if (iommu->domains) {
1613                 size = 256 * sizeof(struct dmar_domain *);
1614                 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1615         }
1616
1617         if (!iommu->domains || !iommu->domains[0]) {
1618                 pr_err("%s: Allocating domain array failed\n",
1619                        iommu->name);
1620                 kfree(iommu->domain_ids);
1621                 kfree(iommu->domains);
1622                 iommu->domain_ids = NULL;
1623                 iommu->domains    = NULL;
1624                 return -ENOMEM;
1625         }
1626
1627         /*
1628          * If Caching mode is set, then invalid translations are tagged
1629          * with domain-id 0, hence we need to pre-allocate it. We also
1630          * use domain-id 0 as a marker for non-allocated domain-id, so
1631          * make sure it is not used for a real domain.
1632          */
1633         set_bit(0, iommu->domain_ids);
1634
1635         /*
1636          * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
1637          * entry for first-level or pass-through translation modes should
1638          * be programmed with a domain id different from those used for
1639          * second-level or nested translation. We reserve a domain id for
1640          * this purpose.
1641          */
1642         if (sm_supported(iommu))
1643                 set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);
1644
1645         return 0;
1646 }
1647
1648 static void disable_dmar_iommu(struct intel_iommu *iommu)
1649 {
1650         struct device_domain_info *info, *tmp;
1651         unsigned long flags;
1652
1653         if (!iommu->domains || !iommu->domain_ids)
1654                 return;
1655
1656         spin_lock_irqsave(&device_domain_lock, flags);
1657         list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1658                 if (info->iommu != iommu)
1659                         continue;
1660
1661                 if (!info->dev || !info->domain)
1662                         continue;
1663
1664                 __dmar_remove_one_dev_info(info);
1665         }
1666         spin_unlock_irqrestore(&device_domain_lock, flags);
1667
1668         if (iommu->gcmd & DMA_GCMD_TE)
1669                 iommu_disable_translation(iommu);
1670 }
1671
1672 static void free_dmar_iommu(struct intel_iommu *iommu)
1673 {
1674         if ((iommu->domains) && (iommu->domain_ids)) {
1675                 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1676                 int i;
1677
1678                 for (i = 0; i < elems; i++)
1679                         kfree(iommu->domains[i]);
1680                 kfree(iommu->domains);
1681                 kfree(iommu->domain_ids);
1682                 iommu->domains = NULL;
1683                 iommu->domain_ids = NULL;
1684         }
1685
1686         g_iommus[iommu->seq_id] = NULL;
1687
1688         /* free context mapping */
1689         free_context_table(iommu);
1690
1691 #ifdef CONFIG_INTEL_IOMMU_SVM
1692         if (pasid_supported(iommu)) {
1693                 if (ecap_prs(iommu->ecap))
1694                         intel_svm_finish_prq(iommu);
1695         }
1696 #endif
1697 }
1698
1699 static struct dmar_domain *alloc_domain(int flags)
1700 {
1701         struct dmar_domain *domain;
1702
1703         domain = alloc_domain_mem();
1704         if (!domain)
1705                 return NULL;
1706
1707         memset(domain, 0, sizeof(*domain));
1708         domain->nid = NUMA_NO_NODE;
1709         domain->flags = flags;
1710         domain->has_iotlb_device = false;
1711         INIT_LIST_HEAD(&domain->devices);
1712
1713         return domain;
1714 }
1715
1716 /* Must be called with iommu->lock */
1717 static int domain_attach_iommu(struct dmar_domain *domain,
1718                                struct intel_iommu *iommu)
1719 {
1720         unsigned long ndomains;
1721         int num;
1722
1723         assert_spin_locked(&device_domain_lock);
1724         assert_spin_locked(&iommu->lock);
1725
1726         domain->iommu_refcnt[iommu->seq_id] += 1;
1727         domain->iommu_count += 1;
1728         if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1729                 ndomains = cap_ndoms(iommu->cap);
1730                 num      = find_first_zero_bit(iommu->domain_ids, ndomains);
1731
1732                 if (num >= ndomains) {
1733                         pr_err("%s: No free domain ids\n", iommu->name);
1734                         domain->iommu_refcnt[iommu->seq_id] -= 1;
1735                         domain->iommu_count -= 1;
1736                         return -ENOSPC;
1737                 }
1738
1739                 set_bit(num, iommu->domain_ids);
1740                 set_iommu_domain(iommu, num, domain);
1741
1742                 domain->iommu_did[iommu->seq_id] = num;
1743                 domain->nid                      = iommu->node;
1744
1745                 domain_update_iommu_cap(domain);
1746         }
1747
1748         return 0;
1749 }
1750
1751 static int domain_detach_iommu(struct dmar_domain *domain,
1752                                struct intel_iommu *iommu)
1753 {
1754         int num, count;
1755
1756         assert_spin_locked(&device_domain_lock);
1757         assert_spin_locked(&iommu->lock);
1758
1759         domain->iommu_refcnt[iommu->seq_id] -= 1;
1760         count = --domain->iommu_count;
1761         if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1762                 num = domain->iommu_did[iommu->seq_id];
1763                 clear_bit(num, iommu->domain_ids);
1764                 set_iommu_domain(iommu, num, NULL);
1765
1766                 domain_update_iommu_cap(domain);
1767                 domain->iommu_did[iommu->seq_id] = 0;
1768         }
1769
1770         return count;
1771 }
1772
1773 static struct iova_domain reserved_iova_list;
1774 static struct lock_class_key reserved_rbtree_key;
1775
1776 static int dmar_init_reserved_ranges(void)
1777 {
1778         struct pci_dev *pdev = NULL;
1779         struct iova *iova;
1780         int i;
1781
1782         init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1783
1784         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1785                 &reserved_rbtree_key);
1786
1787         /* IOAPIC ranges shouldn't be accessed by DMA */
1788         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1789                 IOVA_PFN(IOAPIC_RANGE_END));
1790         if (!iova) {
1791                 pr_err("Reserve IOAPIC range failed\n");
1792                 return -ENODEV;
1793         }
1794
1795         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1796         for_each_pci_dev(pdev) {
1797                 struct resource *r;
1798
1799                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1800                         r = &pdev->resource[i];
1801                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1802                                 continue;
1803                         iova = reserve_iova(&reserved_iova_list,
1804                                             IOVA_PFN(r->start),
1805                                             IOVA_PFN(r->end));
1806                         if (!iova) {
1807                                 pci_err(pdev, "Reserve iova for %pR failed\n", r);
1808                                 return -ENODEV;
1809                         }
1810                 }
1811         }
1812         return 0;
1813 }
1814
1815 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1816 {
1817         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1818 }
1819
1820 static inline int guestwidth_to_adjustwidth(int gaw)
1821 {
1822         int agaw;
1823         int r = (gaw - 12) % 9;
1824
1825         if (r == 0)
1826                 agaw = gaw;
1827         else
1828                 agaw = gaw + 9 - r;
1829         if (agaw > 64)
1830                 agaw = 64;
1831         return agaw;
1832 }
1833
1834 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1835                        int guest_width)
1836 {
1837         int adjust_width, agaw;
1838         unsigned long sagaw;
1839         int err;
1840
1841         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
1842
1843         err = init_iova_flush_queue(&domain->iovad,
1844                                     iommu_flush_iova, iova_entry_free);
1845         if (err)
1846                 return err;
1847
1848         domain_reserve_special_ranges(domain);
1849
1850         /* calculate AGAW */
1851         if (guest_width > cap_mgaw(iommu->cap))
1852                 guest_width = cap_mgaw(iommu->cap);
1853         domain->gaw = guest_width;
1854         adjust_width = guestwidth_to_adjustwidth(guest_width);
1855         agaw = width_to_agaw(adjust_width);
1856         sagaw = cap_sagaw(iommu->cap);
1857         if (!test_bit(agaw, &sagaw)) {
1858                 /* hardware doesn't support it, choose a bigger one */
1859                 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1860                 agaw = find_next_bit(&sagaw, 5, agaw);
1861                 if (agaw >= 5)
1862                         return -ENODEV;
1863         }
1864         domain->agaw = agaw;
1865
1866         if (ecap_coherent(iommu->ecap))
1867                 domain->iommu_coherency = 1;
1868         else
1869                 domain->iommu_coherency = 0;
1870
1871         if (ecap_sc_support(iommu->ecap))
1872                 domain->iommu_snooping = 1;
1873         else
1874                 domain->iommu_snooping = 0;
1875
1876         if (intel_iommu_superpage)
1877                 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1878         else
1879                 domain->iommu_superpage = 0;
1880
1881         domain->nid = iommu->node;
1882
1883         /* always allocate the top pgd */
1884         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1885         if (!domain->pgd)
1886                 return -ENOMEM;
1887         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1888         return 0;
1889 }
1890
1891 static void domain_exit(struct dmar_domain *domain)
1892 {
1893         struct page *freelist;
1894
1895         /* Remove associated devices and clear attached or cached domains */
1896         domain_remove_dev_info(domain);
1897
1898         /* destroy iovas */
1899         put_iova_domain(&domain->iovad);
1900
1901         freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1902
1903         dma_free_pagelist(freelist);
1904
1905         free_domain_mem(domain);
1906 }
1907
1908 /*
1909  * Get the PASID directory size for scalable mode context entry.
1910  * Value of X in the PDTS field of a scalable mode context entry
1911  * indicates PASID directory with 2^(X + 7) entries.
1912  */
1913 static inline unsigned long context_get_sm_pds(struct pasid_table *table)
1914 {
1915         int pds, max_pde;
1916
1917         max_pde = table->max_pasid >> PASID_PDE_SHIFT;
1918         pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
1919         if (pds < 7)
1920                 return 0;
1921
1922         return pds - 7;
1923 }
1924
1925 /*
1926  * Set the RID_PASID field of a scalable mode context entry. The
1927  * IOMMU hardware will use the PASID value set in this field for
1928  * DMA translations of DMA requests without PASID.
1929  */
1930 static inline void
1931 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
1932 {
1933         context->hi |= pasid & ((1 << 20) - 1);
1934         context->hi |= (1 << 20);
1935 }
1936
1937 /*
1938  * Set the DTE(Device-TLB Enable) field of a scalable mode context
1939  * entry.
1940  */
1941 static inline void context_set_sm_dte(struct context_entry *context)
1942 {
1943         context->lo |= (1 << 2);
1944 }
1945
1946 /*
1947  * Set the PRE(Page Request Enable) field of a scalable mode context
1948  * entry.
1949  */
1950 static inline void context_set_sm_pre(struct context_entry *context)
1951 {
1952         context->lo |= (1 << 4);
1953 }
1954
1955 /* Convert value to context PASID directory size field coding. */
1956 #define context_pdts(pds)       (((pds) & 0x7) << 9)
1957
1958 static int domain_context_mapping_one(struct dmar_domain *domain,
1959                                       struct intel_iommu *iommu,
1960                                       struct pasid_table *table,
1961                                       u8 bus, u8 devfn)
1962 {
1963         u16 did = domain->iommu_did[iommu->seq_id];
1964         int translation = CONTEXT_TT_MULTI_LEVEL;
1965         struct device_domain_info *info = NULL;
1966         struct context_entry *context;
1967         unsigned long flags;
1968         int ret;
1969
1970         WARN_ON(did == 0);
1971
1972         if (hw_pass_through && domain_type_is_si(domain))
1973                 translation = CONTEXT_TT_PASS_THROUGH;
1974
1975         pr_debug("Set context mapping for %02x:%02x.%d\n",
1976                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1977
1978         BUG_ON(!domain->pgd);
1979
1980         spin_lock_irqsave(&device_domain_lock, flags);
1981         spin_lock(&iommu->lock);
1982
1983         ret = -ENOMEM;
1984         context = iommu_context_addr(iommu, bus, devfn, 1);
1985         if (!context)
1986                 goto out_unlock;
1987
1988         ret = 0;
1989         if (context_present(context))
1990                 goto out_unlock;
1991
1992         /*
1993          * For kdump cases, old valid entries may be cached due to the
1994          * in-flight DMA and copied pgtable, but there is no unmapping
1995          * behaviour for them, thus we need an explicit cache flush for
1996          * the newly-mapped device. For kdump, at this point, the device
1997          * is supposed to finish reset at its driver probe stage, so no
1998          * in-flight DMA will exist, and we don't need to worry anymore
1999          * hereafter.
2000          */
2001         if (context_copied(context)) {
2002                 u16 did_old = context_domain_id(context);
2003
2004                 if (did_old < cap_ndoms(iommu->cap)) {
2005                         iommu->flush.flush_context(iommu, did_old,
2006                                                    (((u16)bus) << 8) | devfn,
2007                                                    DMA_CCMD_MASK_NOBIT,
2008                                                    DMA_CCMD_DEVICE_INVL);
2009                         iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2010                                                  DMA_TLB_DSI_FLUSH);
2011                 }
2012         }
2013
2014         context_clear_entry(context);
2015
2016         if (sm_supported(iommu)) {
2017                 unsigned long pds;
2018
2019                 WARN_ON(!table);
2020
2021                 /* Setup the PASID DIR pointer: */
2022                 pds = context_get_sm_pds(table);
2023                 context->lo = (u64)virt_to_phys(table->table) |
2024                                 context_pdts(pds);
2025
2026                 /* Setup the RID_PASID field: */
2027                 context_set_sm_rid2pasid(context, PASID_RID2PASID);
2028
2029                 /*
2030                  * Setup the Device-TLB enable bit and Page request
2031                  * Enable bit:
2032                  */
2033                 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2034                 if (info && info->ats_supported)
2035                         context_set_sm_dte(context);
2036                 if (info && info->pri_supported)
2037                         context_set_sm_pre(context);
2038         } else {
2039                 struct dma_pte *pgd = domain->pgd;
2040                 int agaw;
2041
2042                 context_set_domain_id(context, did);
2043
2044                 if (translation != CONTEXT_TT_PASS_THROUGH) {
2045                         /*
2046                          * Skip top levels of page tables for iommu which has
2047                          * less agaw than default. Unnecessary for PT mode.
2048                          */
2049                         for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2050                                 ret = -ENOMEM;
2051                                 pgd = phys_to_virt(dma_pte_addr(pgd));
2052                                 if (!dma_pte_present(pgd))
2053                                         goto out_unlock;
2054                         }
2055
2056                         info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2057                         if (info && info->ats_supported)
2058                                 translation = CONTEXT_TT_DEV_IOTLB;
2059                         else
2060                                 translation = CONTEXT_TT_MULTI_LEVEL;
2061
2062                         context_set_address_root(context, virt_to_phys(pgd));
2063                         context_set_address_width(context, agaw);
2064                 } else {
2065                         /*
2066                          * In pass through mode, AW must be programmed to
2067                          * indicate the largest AGAW value supported by
2068                          * hardware. And ASR is ignored by hardware.
2069                          */
2070                         context_set_address_width(context, iommu->msagaw);
2071                 }
2072
2073                 context_set_translation_type(context, translation);
2074         }
2075
2076         context_set_fault_enable(context);
2077         context_set_present(context);
2078         domain_flush_cache(domain, context, sizeof(*context));
2079
2080         /*
2081          * It's a non-present to present mapping. If hardware doesn't cache
2082          * non-present entry we only need to flush the write-buffer. If the
2083          * _does_ cache non-present entries, then it does so in the special
2084          * domain #0, which we have to flush:
2085          */
2086         if (cap_caching_mode(iommu->cap)) {
2087                 iommu->flush.flush_context(iommu, 0,
2088                                            (((u16)bus) << 8) | devfn,
2089                                            DMA_CCMD_MASK_NOBIT,
2090                                            DMA_CCMD_DEVICE_INVL);
2091                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2092         } else {
2093                 iommu_flush_write_buffer(iommu);
2094         }
2095         iommu_enable_dev_iotlb(info);
2096
2097         ret = 0;
2098
2099 out_unlock:
2100         spin_unlock(&iommu->lock);
2101         spin_unlock_irqrestore(&device_domain_lock, flags);
2102
2103         return ret;
2104 }
2105
2106 static int
2107 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2108 {
2109         struct pasid_table *table;
2110         struct intel_iommu *iommu;
2111         u8 bus, devfn;
2112
2113         iommu = device_to_iommu(dev, &bus, &devfn);
2114         if (!iommu)
2115                 return -ENODEV;
2116
2117         table = intel_pasid_get_table(dev);
2118         return domain_context_mapping_one(domain, iommu, table, bus, devfn);
2119 }
2120
2121 static int domain_context_mapped_cb(struct pci_dev *pdev,
2122                                     u16 alias, void *opaque)
2123 {
2124         struct intel_iommu *iommu = opaque;
2125
2126         return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2127 }
2128
2129 static int domain_context_mapped(struct device *dev)
2130 {
2131         struct intel_iommu *iommu;
2132         u8 bus, devfn;
2133
2134         iommu = device_to_iommu(dev, &bus, &devfn);
2135         if (!iommu)
2136                 return -ENODEV;
2137
2138         if (!dev_is_pci(dev))
2139                 return device_context_mapped(iommu, bus, devfn);
2140
2141         return !pci_for_each_dma_alias(to_pci_dev(dev),
2142                                        domain_context_mapped_cb, iommu);
2143 }
2144
2145 /* Returns a number of VTD pages, but aligned to MM page size */
2146 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2147                                             size_t size)
2148 {
2149         host_addr &= ~PAGE_MASK;
2150         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2151 }
2152
2153 /* Return largest possible superpage level for a given mapping */
2154 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2155                                           unsigned long iov_pfn,
2156                                           unsigned long phy_pfn,
2157                                           unsigned long pages)
2158 {
2159         int support, level = 1;
2160         unsigned long pfnmerge;
2161
2162         support = domain->iommu_superpage;
2163
2164         /* To use a large page, the virtual *and* physical addresses
2165            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2166            of them will mean we have to use smaller pages. So just
2167            merge them and check both at once. */
2168         pfnmerge = iov_pfn | phy_pfn;
2169
2170         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2171                 pages >>= VTD_STRIDE_SHIFT;
2172                 if (!pages)
2173                         break;
2174                 pfnmerge >>= VTD_STRIDE_SHIFT;
2175                 level++;
2176                 support--;
2177         }
2178         return level;
2179 }
2180
2181 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2182                             struct scatterlist *sg, unsigned long phys_pfn,
2183                             unsigned long nr_pages, int prot)
2184 {
2185         struct dma_pte *first_pte = NULL, *pte = NULL;
2186         phys_addr_t uninitialized_var(pteval);
2187         unsigned long sg_res = 0;
2188         unsigned int largepage_lvl = 0;
2189         unsigned long lvl_pages = 0;
2190
2191         BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2192
2193         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2194                 return -EINVAL;
2195
2196         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2197
2198         if (!sg) {
2199                 sg_res = nr_pages;
2200                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2201         }
2202
2203         while (nr_pages > 0) {
2204                 uint64_t tmp;
2205
2206                 if (!sg_res) {
2207                         unsigned int pgoff = sg->offset & ~PAGE_MASK;
2208
2209                         sg_res = aligned_nrpages(sg->offset, sg->length);
2210                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2211                         sg->dma_length = sg->length;
2212                         pteval = (sg_phys(sg) - pgoff) | prot;
2213                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
2214                 }
2215
2216                 if (!pte) {
2217                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2218
2219                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2220                         if (!pte)
2221                                 return -ENOMEM;
2222                         /* It is large page*/
2223                         if (largepage_lvl > 1) {
2224                                 unsigned long nr_superpages, end_pfn;
2225
2226                                 pteval |= DMA_PTE_LARGE_PAGE;
2227                                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2228
2229                                 nr_superpages = sg_res / lvl_pages;
2230                                 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2231
2232                                 /*
2233                                  * Ensure that old small page tables are
2234                                  * removed to make room for superpage(s).
2235                                  * We're adding new large pages, so make sure
2236                                  * we don't remove their parent tables.
2237                                  */
2238                                 dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2239                                                        largepage_lvl + 1);
2240                         } else {
2241                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2242                         }
2243
2244                 }
2245                 /* We don't need lock here, nobody else
2246                  * touches the iova range
2247                  */
2248                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2249                 if (tmp) {
2250                         static int dumps = 5;
2251                         pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2252                                 iov_pfn, tmp, (unsigned long long)pteval);
2253                         if (dumps) {
2254                                 dumps--;
2255                                 debug_dma_dump_mappings(NULL);
2256                         }
2257                         WARN_ON(1);
2258                 }
2259
2260                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2261
2262                 BUG_ON(nr_pages < lvl_pages);
2263                 BUG_ON(sg_res < lvl_pages);
2264
2265                 nr_pages -= lvl_pages;
2266                 iov_pfn += lvl_pages;
2267                 phys_pfn += lvl_pages;
2268                 pteval += lvl_pages * VTD_PAGE_SIZE;
2269                 sg_res -= lvl_pages;
2270
2271                 /* If the next PTE would be the first in a new page, then we
2272                    need to flush the cache on the entries we've just written.
2273                    And then we'll need to recalculate 'pte', so clear it and
2274                    let it get set again in the if (!pte) block above.
2275
2276                    If we're done (!nr_pages) we need to flush the cache too.
2277
2278                    Also if we've been setting superpages, we may need to
2279                    recalculate 'pte' and switch back to smaller pages for the
2280                    end of the mapping, if the trailing size is not enough to
2281                    use another superpage (i.e. sg_res < lvl_pages). */
2282                 pte++;
2283                 if (!nr_pages || first_pte_in_page(pte) ||
2284                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
2285                         domain_flush_cache(domain, first_pte,
2286                                            (void *)pte - (void *)first_pte);
2287                         pte = NULL;
2288                 }
2289
2290                 if (!sg_res && nr_pages)
2291                         sg = sg_next(sg);
2292         }
2293         return 0;
2294 }
2295
2296 static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2297                           struct scatterlist *sg, unsigned long phys_pfn,
2298                           unsigned long nr_pages, int prot)
2299 {
2300         int iommu_id, ret;
2301         struct intel_iommu *iommu;
2302
2303         /* Do the real mapping first */
2304         ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
2305         if (ret)
2306                 return ret;
2307
2308         for_each_domain_iommu(iommu_id, domain) {
2309                 iommu = g_iommus[iommu_id];
2310                 __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
2311         }
2312
2313         return 0;
2314 }
2315
2316 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2317                                     struct scatterlist *sg, unsigned long nr_pages,
2318                                     int prot)
2319 {
2320         return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2321 }
2322
2323 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2324                                      unsigned long phys_pfn, unsigned long nr_pages,
2325                                      int prot)
2326 {
2327         return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2328 }
2329
2330 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2331 {
2332         unsigned long flags;
2333         struct context_entry *context;
2334         u16 did_old;
2335
2336         if (!iommu)
2337                 return;
2338
2339         spin_lock_irqsave(&iommu->lock, flags);
2340         context = iommu_context_addr(iommu, bus, devfn, 0);
2341         if (!context) {
2342                 spin_unlock_irqrestore(&iommu->lock, flags);
2343                 return;
2344         }
2345         did_old = context_domain_id(context);
2346         context_clear_entry(context);
2347         __iommu_flush_cache(iommu, context, sizeof(*context));
2348         spin_unlock_irqrestore(&iommu->lock, flags);
2349         iommu->flush.flush_context(iommu,
2350                                    did_old,
2351                                    (((u16)bus) << 8) | devfn,
2352                                    DMA_CCMD_MASK_NOBIT,
2353                                    DMA_CCMD_DEVICE_INVL);
2354         iommu->flush.flush_iotlb(iommu,
2355                                  did_old,
2356                                  0,
2357                                  0,
2358                                  DMA_TLB_DSI_FLUSH);
2359 }
2360
2361 static inline void unlink_domain_info(struct device_domain_info *info)
2362 {
2363         assert_spin_locked(&device_domain_lock);
2364         list_del(&info->link);
2365         list_del(&info->global);
2366         if (info->dev)
2367                 info->dev->archdata.iommu = NULL;
2368 }
2369
2370 static void domain_remove_dev_info(struct dmar_domain *domain)
2371 {
2372         struct device_domain_info *info, *tmp;
2373         unsigned long flags;
2374
2375         spin_lock_irqsave(&device_domain_lock, flags);
2376         list_for_each_entry_safe(info, tmp, &domain->devices, link)
2377                 __dmar_remove_one_dev_info(info);
2378         spin_unlock_irqrestore(&device_domain_lock, flags);
2379 }
2380
2381 /*
2382  * find_domain
2383  * Note: we use struct device->archdata.iommu stores the info
2384  */
2385 static struct dmar_domain *find_domain(struct device *dev)
2386 {
2387         struct device_domain_info *info;
2388
2389         if (unlikely(dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO)) {
2390                 struct iommu_domain *domain;
2391
2392                 dev->archdata.iommu = NULL;
2393                 domain = iommu_get_domain_for_dev(dev);
2394                 if (domain)
2395                         intel_iommu_attach_device(domain, dev);
2396         }
2397
2398         /* No lock here, assumes no domain exit in normal case */
2399         info = dev->archdata.iommu;
2400
2401         if (likely(info))
2402                 return info->domain;
2403         return NULL;
2404 }
2405
2406 static inline struct device_domain_info *
2407 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2408 {
2409         struct device_domain_info *info;
2410
2411         list_for_each_entry(info, &device_domain_list, global)
2412                 if (info->iommu->segment == segment && info->bus == bus &&
2413                     info->devfn == devfn)
2414                         return info;
2415
2416         return NULL;
2417 }
2418
2419 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2420                                                     int bus, int devfn,
2421                                                     struct device *dev,
2422                                                     struct dmar_domain *domain)
2423 {
2424         struct dmar_domain *found = NULL;
2425         struct device_domain_info *info;
2426         unsigned long flags;
2427         int ret;
2428
2429         info = alloc_devinfo_mem();
2430         if (!info)
2431                 return NULL;
2432
2433         info->bus = bus;
2434         info->devfn = devfn;
2435         info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2436         info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2437         info->ats_qdep = 0;
2438         info->dev = dev;
2439         info->domain = domain;
2440         info->iommu = iommu;
2441         info->pasid_table = NULL;
2442         info->auxd_enabled = 0;
2443         INIT_LIST_HEAD(&info->auxiliary_domains);
2444
2445         if (dev && dev_is_pci(dev)) {
2446                 struct pci_dev *pdev = to_pci_dev(info->dev);
2447
2448                 if (!pdev->untrusted &&
2449                     !pci_ats_disabled() &&
2450                     ecap_dev_iotlb_support(iommu->ecap) &&
2451                     pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2452                     dmar_find_matched_atsr_unit(pdev))
2453                         info->ats_supported = 1;
2454
2455                 if (sm_supported(iommu)) {
2456                         if (pasid_supported(iommu)) {
2457                                 int features = pci_pasid_features(pdev);
2458                                 if (features >= 0)
2459                                         info->pasid_supported = features | 1;
2460                         }
2461
2462                         if (info->ats_supported && ecap_prs(iommu->ecap) &&
2463                             pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2464                                 info->pri_supported = 1;
2465                 }
2466         }
2467
2468         spin_lock_irqsave(&device_domain_lock, flags);
2469         if (dev)
2470                 found = find_domain(dev);
2471
2472         if (!found) {
2473                 struct device_domain_info *info2;
2474                 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2475                 if (info2) {
2476                         found      = info2->domain;
2477                         info2->dev = dev;
2478                 }
2479         }
2480
2481         if (found) {
2482                 spin_unlock_irqrestore(&device_domain_lock, flags);
2483                 free_devinfo_mem(info);
2484                 /* Caller must free the original domain */
2485                 return found;
2486         }
2487
2488         spin_lock(&iommu->lock);
2489         ret = domain_attach_iommu(domain, iommu);
2490         spin_unlock(&iommu->lock);
2491
2492         if (ret) {
2493                 spin_unlock_irqrestore(&device_domain_lock, flags);
2494                 free_devinfo_mem(info);
2495                 return NULL;
2496         }
2497
2498         list_add(&info->link, &domain->devices);
2499         list_add(&info->global, &device_domain_list);
2500         if (dev)
2501                 dev->archdata.iommu = info;
2502         spin_unlock_irqrestore(&device_domain_lock, flags);
2503
2504         /* PASID table is mandatory for a PCI device in scalable mode. */
2505         if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2506                 ret = intel_pasid_alloc_table(dev);
2507                 if (ret) {
2508                         dev_err(dev, "PASID table allocation failed\n");
2509                         dmar_remove_one_dev_info(dev);
2510                         return NULL;
2511                 }
2512
2513                 /* Setup the PASID entry for requests without PASID: */
2514                 spin_lock(&iommu->lock);
2515                 if (hw_pass_through && domain_type_is_si(domain))
2516                         ret = intel_pasid_setup_pass_through(iommu, domain,
2517                                         dev, PASID_RID2PASID);
2518                 else
2519                         ret = intel_pasid_setup_second_level(iommu, domain,
2520                                         dev, PASID_RID2PASID);
2521                 spin_unlock(&iommu->lock);
2522                 if (ret) {
2523                         dev_err(dev, "Setup RID2PASID failed\n");
2524                         dmar_remove_one_dev_info(dev);
2525                         return NULL;
2526                 }
2527         }
2528
2529         if (dev && domain_context_mapping(domain, dev)) {
2530                 dev_err(dev, "Domain context map failed\n");
2531                 dmar_remove_one_dev_info(dev);
2532                 return NULL;
2533         }
2534
2535         return domain;
2536 }
2537
2538 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2539 {
2540         *(u16 *)opaque = alias;
2541         return 0;
2542 }
2543
2544 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2545 {
2546         struct device_domain_info *info;
2547         struct dmar_domain *domain = NULL;
2548         struct intel_iommu *iommu;
2549         u16 dma_alias;
2550         unsigned long flags;
2551         u8 bus, devfn;
2552
2553         iommu = device_to_iommu(dev, &bus, &devfn);
2554         if (!iommu)
2555                 return NULL;
2556
2557         if (dev_is_pci(dev)) {
2558                 struct pci_dev *pdev = to_pci_dev(dev);
2559
2560                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2561
2562                 spin_lock_irqsave(&device_domain_lock, flags);
2563                 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2564                                                       PCI_BUS_NUM(dma_alias),
2565                                                       dma_alias & 0xff);
2566                 if (info) {
2567                         iommu = info->iommu;
2568                         domain = info->domain;
2569                 }
2570                 spin_unlock_irqrestore(&device_domain_lock, flags);
2571
2572                 /* DMA alias already has a domain, use it */
2573                 if (info)
2574                         goto out;
2575         }
2576
2577         /* Allocate and initialize new domain for the device */
2578         domain = alloc_domain(0);
2579         if (!domain)
2580                 return NULL;
2581         if (domain_init(domain, iommu, gaw)) {
2582                 domain_exit(domain);
2583                 return NULL;
2584         }
2585
2586 out:
2587         return domain;
2588 }
2589
2590 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2591                                               struct dmar_domain *domain)
2592 {
2593         struct intel_iommu *iommu;
2594         struct dmar_domain *tmp;
2595         u16 req_id, dma_alias;
2596         u8 bus, devfn;
2597
2598         iommu = device_to_iommu(dev, &bus, &devfn);
2599         if (!iommu)
2600                 return NULL;
2601
2602         req_id = ((u16)bus << 8) | devfn;
2603
2604         if (dev_is_pci(dev)) {
2605                 struct pci_dev *pdev = to_pci_dev(dev);
2606
2607                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2608
2609                 /* register PCI DMA alias device */
2610                 if (req_id != dma_alias) {
2611                         tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2612                                         dma_alias & 0xff, NULL, domain);
2613
2614                         if (!tmp || tmp != domain)
2615                                 return tmp;
2616                 }
2617         }
2618
2619         tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2620         if (!tmp || tmp != domain)
2621                 return tmp;
2622
2623         return domain;
2624 }
2625
2626 static int iommu_domain_identity_map(struct dmar_domain *domain,
2627                                      unsigned long long start,
2628                                      unsigned long long end)
2629 {
2630         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2631         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2632
2633         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2634                           dma_to_mm_pfn(last_vpfn))) {
2635                 pr_err("Reserving iova failed\n");
2636                 return -ENOMEM;
2637         }
2638
2639         pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2640         /*
2641          * RMRR range might have overlap with physical memory range,
2642          * clear it first
2643          */
2644         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2645
2646         return __domain_mapping(domain, first_vpfn, NULL,
2647                                 first_vpfn, last_vpfn - first_vpfn + 1,
2648                                 DMA_PTE_READ|DMA_PTE_WRITE);
2649 }
2650
2651 static int domain_prepare_identity_map(struct device *dev,
2652                                        struct dmar_domain *domain,
2653                                        unsigned long long start,
2654                                        unsigned long long end)
2655 {
2656         /* For _hardware_ passthrough, don't bother. But for software
2657            passthrough, we do it anyway -- it may indicate a memory
2658            range which is reserved in E820, so which didn't get set
2659            up to start with in si_domain */
2660         if (domain == si_domain && hw_pass_through) {
2661                 dev_warn(dev, "Ignoring identity map for HW passthrough [0x%Lx - 0x%Lx]\n",
2662                          start, end);
2663                 return 0;
2664         }
2665
2666         dev_info(dev, "Setting identity map [0x%Lx - 0x%Lx]\n", start, end);
2667
2668         if (end < start) {
2669                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2670                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2671                         dmi_get_system_info(DMI_BIOS_VENDOR),
2672                         dmi_get_system_info(DMI_BIOS_VERSION),
2673                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2674                 return -EIO;
2675         }
2676
2677         if (end >> agaw_to_width(domain->agaw)) {
2678                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2679                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2680                      agaw_to_width(domain->agaw),
2681                      dmi_get_system_info(DMI_BIOS_VENDOR),
2682                      dmi_get_system_info(DMI_BIOS_VERSION),
2683                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2684                 return -EIO;
2685         }
2686
2687         return iommu_domain_identity_map(domain, start, end);
2688 }
2689
2690 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2691
2692 static int __init si_domain_init(int hw)
2693 {
2694         struct dmar_rmrr_unit *rmrr;
2695         struct device *dev;
2696         int i, nid, ret;
2697
2698         si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2699         if (!si_domain)
2700                 return -EFAULT;
2701
2702         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2703                 domain_exit(si_domain);
2704                 return -EFAULT;
2705         }
2706
2707         if (hw)
2708                 return 0;
2709
2710         for_each_online_node(nid) {
2711                 unsigned long start_pfn, end_pfn;
2712                 int i;
2713
2714                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2715                         ret = iommu_domain_identity_map(si_domain,
2716                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2717                         if (ret)
2718                                 return ret;
2719                 }
2720         }
2721
2722         /*
2723          * Normally we use DMA domains for devices which have RMRRs. But we
2724          * loose this requirement for graphic and usb devices. Identity map
2725          * the RMRRs for graphic and USB devices so that they could use the
2726          * si_domain.
2727          */
2728         for_each_rmrr_units(rmrr) {
2729                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2730                                           i, dev) {
2731                         unsigned long long start = rmrr->base_address;
2732                         unsigned long long end = rmrr->end_address;
2733
2734                         if (device_is_rmrr_locked(dev))
2735                                 continue;
2736
2737                         if (WARN_ON(end < start ||
2738                                     end >> agaw_to_width(si_domain->agaw)))
2739                                 continue;
2740
2741                         ret = iommu_domain_identity_map(si_domain, start, end);
2742                         if (ret)
2743                                 return ret;
2744                 }
2745         }
2746
2747         return 0;
2748 }
2749
2750 static int identity_mapping(struct device *dev)
2751 {
2752         struct device_domain_info *info;
2753
2754         info = dev->archdata.iommu;
2755         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2756                 return (info->domain == si_domain);
2757
2758         return 0;
2759 }
2760
2761 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2762 {
2763         struct dmar_domain *ndomain;
2764         struct intel_iommu *iommu;
2765         u8 bus, devfn;
2766
2767         iommu = device_to_iommu(dev, &bus, &devfn);
2768         if (!iommu)
2769                 return -ENODEV;
2770
2771         ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2772         if (ndomain != domain)
2773                 return -EBUSY;
2774
2775         return 0;
2776 }
2777
2778 static bool device_has_rmrr(struct device *dev)
2779 {
2780         struct dmar_rmrr_unit *rmrr;
2781         struct device *tmp;
2782         int i;
2783
2784         rcu_read_lock();
2785         for_each_rmrr_units(rmrr) {
2786                 /*
2787                  * Return TRUE if this RMRR contains the device that
2788                  * is passed in.
2789                  */
2790                 for_each_active_dev_scope(rmrr->devices,
2791                                           rmrr->devices_cnt, i, tmp)
2792                         if (tmp == dev ||
2793                             is_downstream_to_pci_bridge(dev, tmp)) {
2794                                 rcu_read_unlock();
2795                                 return true;
2796                         }
2797         }
2798         rcu_read_unlock();
2799         return false;
2800 }
2801
2802 /**
2803  * device_rmrr_is_relaxable - Test whether the RMRR of this device
2804  * is relaxable (ie. is allowed to be not enforced under some conditions)
2805  * @dev: device handle
2806  *
2807  * We assume that PCI USB devices with RMRRs have them largely
2808  * for historical reasons and that the RMRR space is not actively used post
2809  * boot.  This exclusion may change if vendors begin to abuse it.
2810  *
2811  * The same exception is made for graphics devices, with the requirement that
2812  * any use of the RMRR regions will be torn down before assigning the device
2813  * to a guest.
2814  *
2815  * Return: true if the RMRR is relaxable, false otherwise
2816  */
2817 static bool device_rmrr_is_relaxable(struct device *dev)
2818 {
2819         struct pci_dev *pdev;
2820
2821         if (!dev_is_pci(dev))
2822                 return false;
2823
2824         pdev = to_pci_dev(dev);
2825         if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2826                 return true;
2827         else
2828                 return false;
2829 }
2830
2831 /*
2832  * There are a couple cases where we need to restrict the functionality of
2833  * devices associated with RMRRs.  The first is when evaluating a device for
2834  * identity mapping because problems exist when devices are moved in and out
2835  * of domains and their respective RMRR information is lost.  This means that
2836  * a device with associated RMRRs will never be in a "passthrough" domain.
2837  * The second is use of the device through the IOMMU API.  This interface
2838  * expects to have full control of the IOVA space for the device.  We cannot
2839  * satisfy both the requirement that RMRR access is maintained and have an
2840  * unencumbered IOVA space.  We also have no ability to quiesce the device's
2841  * use of the RMRR space or even inform the IOMMU API user of the restriction.
2842  * We therefore prevent devices associated with an RMRR from participating in
2843  * the IOMMU API, which eliminates them from device assignment.
2844  *
2845  * In both cases, devices which have relaxable RMRRs are not concerned by this
2846  * restriction. See device_rmrr_is_relaxable comment.
2847  */
2848 static bool device_is_rmrr_locked(struct device *dev)
2849 {
2850         if (!device_has_rmrr(dev))
2851                 return false;
2852
2853         if (device_rmrr_is_relaxable(dev))
2854                 return false;
2855
2856         return true;
2857 }
2858
2859 /*
2860  * Return the required default domain type for a specific device.
2861  *
2862  * @dev: the device in query
2863  * @startup: true if this is during early boot
2864  *
2865  * Returns:
2866  *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
2867  *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
2868  *  - 0: both identity and dynamic domains work for this device
2869  */
2870 static int device_def_domain_type(struct device *dev)
2871 {
2872         if (dev_is_pci(dev)) {
2873                 struct pci_dev *pdev = to_pci_dev(dev);
2874
2875                 if (device_is_rmrr_locked(dev))
2876                         return IOMMU_DOMAIN_DMA;
2877
2878                 /*
2879                  * Prevent any device marked as untrusted from getting
2880                  * placed into the statically identity mapping domain.
2881                  */
2882                 if (pdev->untrusted)
2883                         return IOMMU_DOMAIN_DMA;
2884
2885                 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2886                         return IOMMU_DOMAIN_IDENTITY;
2887
2888                 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2889                         return IOMMU_DOMAIN_IDENTITY;
2890
2891                 /*
2892                  * We want to start off with all devices in the 1:1 domain, and
2893                  * take them out later if we find they can't access all of memory.
2894                  *
2895                  * However, we can't do this for PCI devices behind bridges,
2896                  * because all PCI devices behind the same bridge will end up
2897                  * with the same source-id on their transactions.
2898                  *
2899                  * Practically speaking, we can't change things around for these
2900                  * devices at run-time, because we can't be sure there'll be no
2901                  * DMA transactions in flight for any of their siblings.
2902                  *
2903                  * So PCI devices (unless they're on the root bus) as well as
2904                  * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2905                  * the 1:1 domain, just in _case_ one of their siblings turns out
2906                  * not to be able to map all of memory.
2907                  */
2908                 if (!pci_is_pcie(pdev)) {
2909                         if (!pci_is_root_bus(pdev->bus))
2910                                 return IOMMU_DOMAIN_DMA;
2911                         if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2912                                 return IOMMU_DOMAIN_DMA;
2913                 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2914                         return IOMMU_DOMAIN_DMA;
2915         } else {
2916                 if (device_has_rmrr(dev))
2917                         return IOMMU_DOMAIN_DMA;
2918         }
2919
2920         return (iommu_identity_mapping & IDENTMAP_ALL) ?
2921                         IOMMU_DOMAIN_IDENTITY : 0;
2922 }
2923
2924 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2925 {
2926         /*
2927          * Start from the sane iommu hardware state.
2928          * If the queued invalidation is already initialized by us
2929          * (for example, while enabling interrupt-remapping) then
2930          * we got the things already rolling from a sane state.
2931          */
2932         if (!iommu->qi) {
2933                 /*
2934                  * Clear any previous faults.
2935                  */
2936                 dmar_fault(-1, iommu);
2937                 /*
2938                  * Disable queued invalidation if supported and already enabled
2939                  * before OS handover.
2940                  */
2941                 dmar_disable_qi(iommu);
2942         }
2943
2944         if (dmar_enable_qi(iommu)) {
2945                 /*
2946                  * Queued Invalidate not enabled, use Register Based Invalidate
2947                  */
2948                 iommu->flush.flush_context = __iommu_flush_context;
2949                 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2950                 pr_info("%s: Using Register based invalidation\n",
2951                         iommu->name);
2952         } else {
2953                 iommu->flush.flush_context = qi_flush_context;
2954                 iommu->flush.flush_iotlb = qi_flush_iotlb;
2955                 pr_info("%s: Using Queued invalidation\n", iommu->name);
2956         }
2957 }
2958
2959 static int copy_context_table(struct intel_iommu *iommu,
2960                               struct root_entry *old_re,
2961                               struct context_entry **tbl,
2962                               int bus, bool ext)
2963 {
2964         int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2965         struct context_entry *new_ce = NULL, ce;
2966         struct context_entry *old_ce = NULL;
2967         struct root_entry re;
2968         phys_addr_t old_ce_phys;
2969
2970         tbl_idx = ext ? bus * 2 : bus;
2971         memcpy(&re, old_re, sizeof(re));
2972
2973         for (devfn = 0; devfn < 256; devfn++) {
2974                 /* First calculate the correct index */
2975                 idx = (ext ? devfn * 2 : devfn) % 256;
2976
2977                 if (idx == 0) {
2978                         /* First save what we may have and clean up */
2979                         if (new_ce) {
2980                                 tbl[tbl_idx] = new_ce;
2981                                 __iommu_flush_cache(iommu, new_ce,
2982                                                     VTD_PAGE_SIZE);
2983                                 pos = 1;
2984                         }
2985
2986                         if (old_ce)
2987                                 memunmap(old_ce);
2988
2989                         ret = 0;
2990                         if (devfn < 0x80)
2991                                 old_ce_phys = root_entry_lctp(&re);
2992                         else
2993                                 old_ce_phys = root_entry_uctp(&re);
2994
2995                         if (!old_ce_phys) {
2996                                 if (ext && devfn == 0) {
2997                                         /* No LCTP, try UCTP */
2998                                         devfn = 0x7f;
2999                                         continue;
3000                                 } else {
3001                                         goto out;
3002                                 }
3003                         }
3004
3005                         ret = -ENOMEM;
3006                         old_ce = memremap(old_ce_phys, PAGE_SIZE,
3007                                         MEMREMAP_WB);
3008                         if (!old_ce)
3009                                 goto out;
3010
3011                         new_ce = alloc_pgtable_page(iommu->node);
3012                         if (!new_ce)
3013                                 goto out_unmap;
3014
3015                         ret = 0;
3016                 }
3017
3018                 /* Now copy the context entry */
3019                 memcpy(&ce, old_ce + idx, sizeof(ce));
3020
3021                 if (!__context_present(&ce))
3022                         continue;
3023
3024                 did = context_domain_id(&ce);
3025                 if (did >= 0 && did < cap_ndoms(iommu->cap))
3026                         set_bit(did, iommu->domain_ids);
3027
3028                 /*
3029                  * We need a marker for copied context entries. This
3030                  * marker needs to work for the old format as well as
3031                  * for extended context entries.
3032                  *
3033                  * Bit 67 of the context entry is used. In the old
3034                  * format this bit is available to software, in the
3035                  * extended format it is the PGE bit, but PGE is ignored
3036                  * by HW if PASIDs are disabled (and thus still
3037                  * available).
3038                  *
3039                  * So disable PASIDs first and then mark the entry
3040                  * copied. This means that we don't copy PASID
3041                  * translations from the old kernel, but this is fine as
3042                  * faults there are not fatal.
3043                  */
3044                 context_clear_pasid_enable(&ce);
3045                 context_set_copied(&ce);
3046
3047                 new_ce[idx] = ce;
3048         }
3049
3050         tbl[tbl_idx + pos] = new_ce;
3051
3052         __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3053
3054 out_unmap:
3055         memunmap(old_ce);
3056
3057 out:
3058         return ret;
3059 }
3060
3061 static int copy_translation_tables(struct intel_iommu *iommu)
3062 {
3063         struct context_entry **ctxt_tbls;
3064         struct root_entry *old_rt;
3065         phys_addr_t old_rt_phys;
3066         int ctxt_table_entries;
3067         unsigned long flags;
3068         u64 rtaddr_reg;
3069         int bus, ret;
3070         bool new_ext, ext;
3071
3072         rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3073         ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3074         new_ext    = !!ecap_ecs(iommu->ecap);
3075
3076         /*
3077          * The RTT bit can only be changed when translation is disabled,
3078          * but disabling translation means to open a window for data
3079          * corruption. So bail out and don't copy anything if we would
3080          * have to change the bit.
3081          */
3082         if (new_ext != ext)
3083                 return -EINVAL;
3084
3085         old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3086         if (!old_rt_phys)
3087                 return -EINVAL;
3088
3089         old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3090         if (!old_rt)
3091                 return -ENOMEM;
3092
3093         /* This is too big for the stack - allocate it from slab */
3094         ctxt_table_entries = ext ? 512 : 256;
3095         ret = -ENOMEM;
3096         ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3097         if (!ctxt_tbls)
3098                 goto out_unmap;
3099
3100         for (bus = 0; bus < 256; bus++) {
3101                 ret = copy_context_table(iommu, &old_rt[bus],
3102                                          ctxt_tbls, bus, ext);
3103                 if (ret) {
3104                         pr_err("%s: Failed to copy context table for bus %d\n",
3105                                 iommu->name, bus);
3106                         continue;
3107                 }
3108         }
3109
3110         spin_lock_irqsave(&iommu->lock, flags);
3111
3112         /* Context tables are copied, now write them to the root_entry table */
3113         for (bus = 0; bus < 256; bus++) {
3114                 int idx = ext ? bus * 2 : bus;
3115                 u64 val;
3116
3117                 if (ctxt_tbls[idx]) {
3118                         val = virt_to_phys(ctxt_tbls[idx]) | 1;
3119                         iommu->root_entry[bus].lo = val;
3120                 }
3121
3122                 if (!ext || !ctxt_tbls[idx + 1])
3123                         continue;
3124
3125                 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3126                 iommu->root_entry[bus].hi = val;
3127         }
3128
3129         spin_unlock_irqrestore(&iommu->lock, flags);
3130
3131         kfree(ctxt_tbls);
3132
3133         __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3134
3135         ret = 0;
3136
3137 out_unmap:
3138         memunmap(old_rt);
3139
3140         return ret;
3141 }
3142
3143 static int __init init_dmars(void)
3144 {
3145         struct dmar_drhd_unit *drhd;
3146         struct intel_iommu *iommu;
3147         int ret;
3148
3149         /*
3150          * for each drhd
3151          *    allocate root
3152          *    initialize and program root entry to not present
3153          * endfor
3154          */
3155         for_each_drhd_unit(drhd) {
3156                 /*
3157                  * lock not needed as this is only incremented in the single
3158                  * threaded kernel __init code path all other access are read
3159                  * only
3160                  */
3161                 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3162                         g_num_of_iommus++;
3163                         continue;
3164                 }
3165                 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3166         }
3167
3168         /* Preallocate enough resources for IOMMU hot-addition */
3169         if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3170                 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3171
3172         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3173                         GFP_KERNEL);
3174         if (!g_iommus) {
3175                 pr_err("Allocating global iommu array failed\n");
3176                 ret = -ENOMEM;
3177                 goto error;
3178         }
3179
3180         for_each_iommu(iommu, drhd) {
3181                 if (drhd->ignored) {
3182                         iommu_disable_translation(iommu);
3183                         continue;
3184                 }
3185
3186                 /*
3187                  * Find the max pasid size of all IOMMU's in the system.
3188                  * We need to ensure the system pasid table is no bigger
3189                  * than the smallest supported.
3190                  */
3191                 if (pasid_supported(iommu)) {
3192                         u32 temp = 2 << ecap_pss(iommu->ecap);
3193
3194                         intel_pasid_max_id = min_t(u32, temp,
3195                                                    intel_pasid_max_id);
3196                 }
3197
3198                 g_iommus[iommu->seq_id] = iommu;
3199
3200                 intel_iommu_init_qi(iommu);
3201
3202                 ret = iommu_init_domains(iommu);
3203                 if (ret)
3204                         goto free_iommu;
3205
3206                 init_translation_status(iommu);
3207
3208                 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3209                         iommu_disable_translation(iommu);
3210                         clear_translation_pre_enabled(iommu);
3211                         pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3212                                 iommu->name);
3213                 }
3214
3215                 /*
3216                  * TBD:
3217                  * we could share the same root & context tables
3218                  * among all IOMMU's. Need to Split it later.
3219                  */
3220                 ret = iommu_alloc_root_entry(iommu);
3221                 if (ret)
3222                         goto free_iommu;
3223
3224                 if (translation_pre_enabled(iommu)) {
3225                         pr_info("Translation already enabled - trying to copy translation structures\n");
3226
3227                         ret = copy_translation_tables(iommu);
3228                         if (ret) {
3229                                 /*
3230                                  * We found the IOMMU with translation
3231                                  * enabled - but failed to copy over the
3232                                  * old root-entry table. Try to proceed
3233                                  * by disabling translation now and
3234                                  * allocating a clean root-entry table.
3235                                  * This might cause DMAR faults, but
3236                                  * probably the dump will still succeed.
3237                                  */
3238                                 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3239                                        iommu->name);
3240                                 iommu_disable_translation(iommu);
3241                                 clear_translation_pre_enabled(iommu);
3242                         } else {
3243                                 pr_info("Copied translation tables from previous kernel for %s\n",
3244                                         iommu->name);
3245                         }
3246                 }
3247
3248                 if (!ecap_pass_through(iommu->ecap))
3249                         hw_pass_through = 0;
3250 #ifdef CONFIG_INTEL_IOMMU_SVM
3251                 if (pasid_supported(iommu))
3252                         intel_svm_init(iommu);
3253 #endif
3254         }
3255
3256         /*
3257          * Now that qi is enabled on all iommus, set the root entry and flush
3258          * caches. This is required on some Intel X58 chipsets, otherwise the
3259          * flush_context function will loop forever and the boot hangs.
3260          */
3261         for_each_active_iommu(iommu, drhd) {
3262                 iommu_flush_write_buffer(iommu);
3263                 iommu_set_root_entry(iommu);
3264                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3265                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3266         }
3267
3268         if (iommu_pass_through)
3269                 iommu_identity_mapping |= IDENTMAP_ALL;
3270
3271 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3272         dmar_map_gfx = 0;
3273 #endif
3274
3275         if (!dmar_map_gfx)
3276                 iommu_identity_mapping |= IDENTMAP_GFX;
3277
3278         check_tylersburg_isoch();
3279
3280         ret = si_domain_init(hw_pass_through);
3281         if (ret)
3282                 goto free_iommu;
3283
3284         /*
3285          * for each drhd
3286          *   enable fault log
3287          *   global invalidate context cache
3288          *   global invalidate iotlb
3289          *   enable translation
3290          */
3291         for_each_iommu(iommu, drhd) {
3292                 if (drhd->ignored) {
3293                         /*
3294                          * we always have to disable PMRs or DMA may fail on
3295                          * this device
3296                          */
3297                         if (force_on)
3298                                 iommu_disable_protect_mem_regions(iommu);
3299                         continue;
3300                 }
3301
3302                 iommu_flush_write_buffer(iommu);
3303
3304 #ifdef CONFIG_INTEL_IOMMU_SVM
3305                 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3306                         /*
3307                          * Call dmar_alloc_hwirq() with dmar_global_lock held,
3308                          * could cause possible lock race condition.
3309                          */
3310                         up_write(&dmar_global_lock);
3311                         ret = intel_svm_enable_prq(iommu);
3312                         down_write(&dmar_global_lock);
3313                         if (ret)
3314                                 goto free_iommu;
3315                 }
3316 #endif
3317                 ret = dmar_set_interrupt(iommu);
3318                 if (ret)
3319                         goto free_iommu;
3320         }
3321
3322         return 0;
3323
3324 free_iommu:
3325         for_each_active_iommu(iommu, drhd) {
3326                 disable_dmar_iommu(iommu);
3327                 free_dmar_iommu(iommu);
3328         }
3329
3330         kfree(g_iommus);
3331
3332 error:
3333         return ret;
3334 }
3335
3336 /* This takes a number of _MM_ pages, not VTD pages */
3337 static unsigned long intel_alloc_iova(struct device *dev,
3338                                      struct dmar_domain *domain,
3339                                      unsigned long nrpages, uint64_t dma_mask)
3340 {
3341         unsigned long iova_pfn;
3342
3343         /* Restrict dma_mask to the width that the iommu can handle */
3344         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3345         /* Ensure we reserve the whole size-aligned region */
3346         nrpages = __roundup_pow_of_two(nrpages);
3347
3348         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3349                 /*
3350                  * First try to allocate an io virtual address in
3351                  * DMA_BIT_MASK(32) and if that fails then try allocating
3352                  * from higher range
3353                  */
3354                 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3355                                            IOVA_PFN(DMA_BIT_MASK(32)), false);
3356                 if (iova_pfn)
3357                         return iova_pfn;
3358         }
3359         iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3360                                    IOVA_PFN(dma_mask), true);
3361         if (unlikely(!iova_pfn)) {
3362                 dev_err(dev, "Allocating %ld-page iova failed", nrpages);
3363                 return 0;
3364         }
3365
3366         return iova_pfn;
3367 }
3368
3369 static struct dmar_domain *get_private_domain_for_dev(struct device *dev)
3370 {
3371         struct dmar_domain *domain, *tmp;
3372         struct dmar_rmrr_unit *rmrr;
3373         struct device *i_dev;
3374         int i, ret;
3375
3376         /* Device shouldn't be attached by any domains. */
3377         domain = find_domain(dev);
3378         if (domain)
3379                 return NULL;
3380
3381         domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3382         if (!domain)
3383                 goto out;
3384
3385         /* We have a new domain - setup possible RMRRs for the device */
3386         rcu_read_lock();
3387         for_each_rmrr_units(rmrr) {
3388                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3389                                           i, i_dev) {
3390                         if (i_dev != dev)
3391                                 continue;
3392
3393                         ret = domain_prepare_identity_map(dev, domain,
3394                                                           rmrr->base_address,
3395                                                           rmrr->end_address);
3396                         if (ret)
3397                                 dev_err(dev, "Mapping reserved region failed\n");
3398                 }
3399         }
3400         rcu_read_unlock();
3401
3402         tmp = set_domain_for_dev(dev, domain);
3403         if (!tmp || domain != tmp) {
3404                 domain_exit(domain);
3405                 domain = tmp;
3406         }
3407
3408 out:
3409         if (!domain)
3410                 dev_err(dev, "Allocating domain failed\n");
3411         else
3412                 domain->domain.type = IOMMU_DOMAIN_DMA;
3413
3414         return domain;
3415 }
3416
3417 /* Check if the dev needs to go through non-identity map and unmap process.*/
3418 static bool iommu_need_mapping(struct device *dev)
3419 {
3420         int ret;
3421
3422         if (iommu_dummy(dev))
3423                 return false;
3424
3425         ret = identity_mapping(dev);
3426         if (ret) {
3427                 u64 dma_mask = *dev->dma_mask;
3428
3429                 if (dev->coherent_dma_mask && dev->coherent_dma_mask < dma_mask)
3430                         dma_mask = dev->coherent_dma_mask;
3431
3432                 if (dma_mask >= dma_get_required_mask(dev))
3433                         return false;
3434
3435                 /*
3436                  * 32 bit DMA is removed from si_domain and fall back to
3437                  * non-identity mapping.
3438                  */
3439                 dmar_remove_one_dev_info(dev);
3440                 ret = iommu_request_dma_domain_for_dev(dev);
3441                 if (ret) {
3442                         struct iommu_domain *domain;
3443                         struct dmar_domain *dmar_domain;
3444
3445                         domain = iommu_get_domain_for_dev(dev);
3446                         if (domain) {
3447                                 dmar_domain = to_dmar_domain(domain);
3448                                 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
3449                         }
3450                         get_private_domain_for_dev(dev);
3451                 }
3452
3453                 dev_info(dev, "32bit DMA uses non-identity mapping\n");
3454         }
3455
3456         return true;
3457 }
3458
3459 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3460                                      size_t size, int dir, u64 dma_mask)
3461 {
3462         struct dmar_domain *domain;
3463         phys_addr_t start_paddr;
3464         unsigned long iova_pfn;
3465         int prot = 0;
3466         int ret;
3467         struct intel_iommu *iommu;
3468         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3469
3470         BUG_ON(dir == DMA_NONE);
3471
3472         domain = find_domain(dev);
3473         if (!domain)
3474                 return DMA_MAPPING_ERROR;
3475
3476         iommu = domain_get_iommu(domain);
3477         size = aligned_nrpages(paddr, size);
3478
3479         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3480         if (!iova_pfn)
3481                 goto error;
3482
3483         /*
3484          * Check if DMAR supports zero-length reads on write only
3485          * mappings..
3486          */
3487         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3488                         !cap_zlr(iommu->cap))
3489                 prot |= DMA_PTE_READ;
3490         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3491                 prot |= DMA_PTE_WRITE;
3492         /*
3493          * paddr - (paddr + size) might be partial page, we should map the whole
3494          * page.  Note: if two part of one page are separately mapped, we
3495          * might have two guest_addr mapping to the same host paddr, but this
3496          * is not a big problem
3497          */
3498         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3499                                  mm_to_dma_pfn(paddr_pfn), size, prot);
3500         if (ret)
3501                 goto error;
3502
3503         start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3504         start_paddr += paddr & ~PAGE_MASK;
3505         return start_paddr;
3506
3507 error:
3508         if (iova_pfn)
3509                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3510         dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
3511                 size, (unsigned long long)paddr, dir);
3512         return DMA_MAPPING_ERROR;
3513 }
3514
3515 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3516                                  unsigned long offset, size_t size,
3517                                  enum dma_data_direction dir,
3518                                  unsigned long attrs)
3519 {
3520         if (iommu_need_mapping(dev))
3521                 return __intel_map_single(dev, page_to_phys(page) + offset,
3522                                 size, dir, *dev->dma_mask);
3523         return dma_direct_map_page(dev, page, offset, size, dir, attrs);
3524 }
3525
3526 static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
3527                                      size_t size, enum dma_data_direction dir,
3528                                      unsigned long attrs)
3529 {
3530         if (iommu_need_mapping(dev))
3531                 return __intel_map_single(dev, phys_addr, size, dir,
3532                                 *dev->dma_mask);
3533         return dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
3534 }
3535
3536 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3537 {
3538         struct dmar_domain *domain;
3539         unsigned long start_pfn, last_pfn;
3540         unsigned long nrpages;
3541         unsigned long iova_pfn;
3542         struct intel_iommu *iommu;
3543         struct page *freelist;
3544         struct pci_dev *pdev = NULL;
3545
3546         domain = find_domain(dev);
3547         BUG_ON(!domain);
3548
3549         iommu = domain_get_iommu(domain);
3550
3551         iova_pfn = IOVA_PFN(dev_addr);
3552
3553         nrpages = aligned_nrpages(dev_addr, size);
3554         start_pfn = mm_to_dma_pfn(iova_pfn);
3555         last_pfn = start_pfn + nrpages - 1;
3556
3557         if (dev_is_pci(dev))
3558                 pdev = to_pci_dev(dev);
3559
3560         dev_dbg(dev, "Device unmapping: pfn %lx-%lx\n", start_pfn, last_pfn);
3561
3562         freelist = domain_unmap(domain, start_pfn, last_pfn);
3563
3564         if (intel_iommu_strict || (pdev && pdev->untrusted) ||
3565                         !has_iova_flush_queue(&domain->iovad)) {
3566                 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3567                                       nrpages, !freelist, 0);
3568                 /* free iova */
3569                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3570                 dma_free_pagelist(freelist);
3571         } else {
3572                 queue_iova(&domain->iovad, iova_pfn, nrpages,
3573                            (unsigned long)freelist);
3574                 /*
3575                  * queue up the release of the unmap to save the 1/6th of the
3576                  * cpu used up by the iotlb flush operation...
3577                  */
3578         }
3579 }
3580
3581 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3582                              size_t size, enum dma_data_direction dir,
3583                              unsigned long attrs)
3584 {
3585         if (iommu_need_mapping(dev))
3586                 intel_unmap(dev, dev_addr, size);
3587         else
3588                 dma_direct_unmap_page(dev, dev_addr, size, dir, attrs);
3589 }
3590
3591 static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
3592                 size_t size, enum dma_data_direction dir, unsigned long attrs)
3593 {
3594         if (iommu_need_mapping(dev))
3595                 intel_unmap(dev, dev_addr, size);
3596 }
3597
3598 static void *intel_alloc_coherent(struct device *dev, size_t size,
3599                                   dma_addr_t *dma_handle, gfp_t flags,
3600                                   unsigned long attrs)
3601 {
3602         struct page *page = NULL;
3603         int order;
3604
3605         if (!iommu_need_mapping(dev))
3606                 return dma_direct_alloc(dev, size, dma_handle, flags, attrs);
3607
3608         size = PAGE_ALIGN(size);
3609         order = get_order(size);
3610
3611         if (gfpflags_allow_blocking(flags)) {
3612                 unsigned int count = size >> PAGE_SHIFT;
3613
3614                 page = dma_alloc_from_contiguous(dev, count, order,
3615                                                  flags & __GFP_NOWARN);
3616         }
3617
3618         if (!page)
3619                 page = alloc_pages(flags, order);
3620         if (!page)
3621                 return NULL;
3622         memset(page_address(page), 0, size);
3623
3624         *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3625                                          DMA_BIDIRECTIONAL,
3626                                          dev->coherent_dma_mask);
3627         if (*dma_handle != DMA_MAPPING_ERROR)
3628                 return page_address(page);
3629         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3630                 __free_pages(page, order);
3631
3632         return NULL;
3633 }
3634
3635 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3636                                 dma_addr_t dma_handle, unsigned long attrs)
3637 {
3638         int order;
3639         struct page *page = virt_to_page(vaddr);
3640
3641         if (!iommu_need_mapping(dev))
3642                 return dma_direct_free(dev, size, vaddr, dma_handle, attrs);
3643
3644         size = PAGE_ALIGN(size);
3645         order = get_order(size);
3646
3647         intel_unmap(dev, dma_handle, size);
3648         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3649                 __free_pages(page, order);
3650 }
3651
3652 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3653                            int nelems, enum dma_data_direction dir,
3654                            unsigned long attrs)
3655 {
3656         dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3657         unsigned long nrpages = 0;
3658         struct scatterlist *sg;
3659         int i;
3660
3661         if (!iommu_need_mapping(dev))
3662                 return dma_direct_unmap_sg(dev, sglist, nelems, dir, attrs);
3663
3664         for_each_sg(sglist, sg, nelems, i) {
3665                 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3666         }
3667
3668         intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3669 }
3670
3671 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3672                         enum dma_data_direction dir, unsigned long attrs)
3673 {
3674         int i;
3675         struct dmar_domain *domain;
3676         size_t size = 0;
3677         int prot = 0;
3678         unsigned long iova_pfn;
3679         int ret;
3680         struct scatterlist *sg;
3681         unsigned long start_vpfn;
3682         struct intel_iommu *iommu;
3683
3684         BUG_ON(dir == DMA_NONE);
3685         if (!iommu_need_mapping(dev))
3686                 return dma_direct_map_sg(dev, sglist, nelems, dir, attrs);
3687
3688         domain = find_domain(dev);
3689         if (!domain)
3690                 return 0;
3691
3692         iommu = domain_get_iommu(domain);
3693
3694         for_each_sg(sglist, sg, nelems, i)
3695                 size += aligned_nrpages(sg->offset, sg->length);
3696
3697         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3698                                 *dev->dma_mask);
3699         if (!iova_pfn) {
3700                 sglist->dma_length = 0;
3701                 return 0;
3702         }
3703
3704         /*
3705          * Check if DMAR supports zero-length reads on write only
3706          * mappings..
3707          */
3708         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3709                         !cap_zlr(iommu->cap))
3710                 prot |= DMA_PTE_READ;
3711         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3712                 prot |= DMA_PTE_WRITE;
3713
3714         start_vpfn = mm_to_dma_pfn(iova_pfn);
3715
3716         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3717         if (unlikely(ret)) {
3718                 dma_pte_free_pagetable(domain, start_vpfn,
3719                                        start_vpfn + size - 1,
3720                                        agaw_to_level(domain->agaw) + 1);
3721                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3722                 return 0;
3723         }
3724
3725         return nelems;
3726 }
3727
3728 static const struct dma_map_ops intel_dma_ops = {
3729         .alloc = intel_alloc_coherent,
3730         .free = intel_free_coherent,
3731         .map_sg = intel_map_sg,
3732         .unmap_sg = intel_unmap_sg,
3733         .map_page = intel_map_page,
3734         .unmap_page = intel_unmap_page,
3735         .map_resource = intel_map_resource,
3736         .unmap_resource = intel_unmap_resource,
3737         .dma_supported = dma_direct_supported,
3738 };
3739
3740 static inline int iommu_domain_cache_init(void)
3741 {
3742         int ret = 0;
3743
3744         iommu_domain_cache = kmem_cache_create("iommu_domain",
3745                                          sizeof(struct dmar_domain),
3746                                          0,
3747                                          SLAB_HWCACHE_ALIGN,
3748
3749                                          NULL);
3750         if (!iommu_domain_cache) {
3751                 pr_err("Couldn't create iommu_domain cache\n");
3752                 ret = -ENOMEM;
3753         }
3754
3755         return ret;
3756 }
3757
3758 static inline int iommu_devinfo_cache_init(void)
3759 {
3760         int ret = 0;
3761
3762         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3763                                          sizeof(struct device_domain_info),
3764                                          0,
3765                                          SLAB_HWCACHE_ALIGN,
3766                                          NULL);
3767         if (!iommu_devinfo_cache) {
3768                 pr_err("Couldn't create devinfo cache\n");
3769                 ret = -ENOMEM;
3770         }
3771
3772         return ret;
3773 }
3774
3775 static int __init iommu_init_mempool(void)
3776 {
3777         int ret;
3778         ret = iova_cache_get();
3779         if (ret)
3780                 return ret;
3781
3782         ret = iommu_domain_cache_init();
3783         if (ret)
3784                 goto domain_error;
3785
3786         ret = iommu_devinfo_cache_init();
3787         if (!ret)
3788                 return ret;
3789
3790         kmem_cache_destroy(iommu_domain_cache);
3791 domain_error:
3792         iova_cache_put();
3793
3794         return -ENOMEM;
3795 }
3796
3797 static void __init iommu_exit_mempool(void)
3798 {
3799         kmem_cache_destroy(iommu_devinfo_cache);
3800         kmem_cache_destroy(iommu_domain_cache);
3801         iova_cache_put();
3802 }
3803
3804 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3805 {
3806         struct dmar_drhd_unit *drhd;
3807         u32 vtbar;
3808         int rc;
3809
3810         /* We know that this device on this chipset has its own IOMMU.
3811          * If we find it under a different IOMMU, then the BIOS is lying
3812          * to us. Hope that the IOMMU for this device is actually
3813          * disabled, and it needs no translation...
3814          */
3815         rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3816         if (rc) {
3817                 /* "can't" happen */
3818                 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3819                 return;
3820         }
3821         vtbar &= 0xffff0000;
3822
3823         /* we know that the this iommu should be at offset 0xa000 from vtbar */
3824         drhd = dmar_find_matched_drhd_unit(pdev);
3825         if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3826                             TAINT_FIRMWARE_WORKAROUND,
3827                             "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3828                 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3829 }
3830 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3831
3832 static void __init init_no_remapping_devices(void)
3833 {
3834         struct dmar_drhd_unit *drhd;
3835         struct device *dev;
3836         int i;
3837
3838         for_each_drhd_unit(drhd) {
3839                 if (!drhd->include_all) {
3840                         for_each_active_dev_scope(drhd->devices,
3841                                                   drhd->devices_cnt, i, dev)
3842                                 break;
3843                         /* ignore DMAR unit if no devices exist */
3844                         if (i == drhd->devices_cnt)
3845                                 drhd->ignored = 1;
3846                 }
3847         }
3848
3849         for_each_active_drhd_unit(drhd) {
3850                 if (drhd->include_all)
3851                         continue;
3852
3853                 for_each_active_dev_scope(drhd->devices,
3854                                           drhd->devices_cnt, i, dev)
3855                         if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3856                                 break;
3857                 if (i < drhd->devices_cnt)
3858                         continue;
3859
3860                 /* This IOMMU has *only* gfx devices. Either bypass it or
3861                    set the gfx_mapped flag, as appropriate */
3862                 if (!dmar_map_gfx) {
3863                         drhd->ignored = 1;
3864                         for_each_active_dev_scope(drhd->devices,
3865                                                   drhd->devices_cnt, i, dev)
3866                                 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3867                 }
3868         }
3869 }
3870
3871 #ifdef CONFIG_SUSPEND
3872 static int init_iommu_hw(void)
3873 {
3874         struct dmar_drhd_unit *drhd;
3875         struct intel_iommu *iommu = NULL;
3876
3877         for_each_active_iommu(iommu, drhd)
3878                 if (iommu->qi)
3879                         dmar_reenable_qi(iommu);
3880
3881         for_each_iommu(iommu, drhd) {
3882                 if (drhd->ignored) {
3883                         /*
3884                          * we always have to disable PMRs or DMA may fail on
3885                          * this device
3886                          */
3887                         if (force_on)
3888                                 iommu_disable_protect_mem_regions(iommu);
3889                         continue;
3890                 }
3891
3892                 iommu_flush_write_buffer(iommu);
3893
3894                 iommu_set_root_entry(iommu);
3895
3896                 iommu->flush.flush_context(iommu, 0, 0, 0,
3897                                            DMA_CCMD_GLOBAL_INVL);
3898                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3899                 iommu_enable_translation(iommu);
3900                 iommu_disable_protect_mem_regions(iommu);
3901         }
3902
3903         return 0;
3904 }
3905
3906 static void iommu_flush_all(void)
3907 {
3908         struct dmar_drhd_unit *drhd;
3909         struct intel_iommu *iommu;
3910
3911         for_each_active_iommu(iommu, drhd) {
3912                 iommu->flush.flush_context(iommu, 0, 0, 0,
3913                                            DMA_CCMD_GLOBAL_INVL);
3914                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3915                                          DMA_TLB_GLOBAL_FLUSH);
3916         }
3917 }
3918
3919 static int iommu_suspend(void)
3920 {
3921         struct dmar_drhd_unit *drhd;
3922         struct intel_iommu *iommu = NULL;
3923         unsigned long flag;
3924
3925         for_each_active_iommu(iommu, drhd) {
3926                 iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
3927                                                  GFP_ATOMIC);
3928                 if (!iommu->iommu_state)
3929                         goto nomem;
3930         }
3931
3932         iommu_flush_all();
3933
3934         for_each_active_iommu(iommu, drhd) {
3935                 iommu_disable_translation(iommu);
3936
3937                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3938
3939                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3940                         readl(iommu->reg + DMAR_FECTL_REG);
3941                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3942                         readl(iommu->reg + DMAR_FEDATA_REG);
3943                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3944                         readl(iommu->reg + DMAR_FEADDR_REG);
3945                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3946                         readl(iommu->reg + DMAR_FEUADDR_REG);
3947
3948                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3949         }
3950         return 0;
3951
3952 nomem:
3953         for_each_active_iommu(iommu, drhd)
3954                 kfree(iommu->iommu_state);
3955
3956         return -ENOMEM;
3957 }
3958
3959 static void iommu_resume(void)
3960 {
3961         struct dmar_drhd_unit *drhd;
3962         struct intel_iommu *iommu = NULL;
3963         unsigned long flag;
3964
3965         if (init_iommu_hw()) {
3966                 if (force_on)
3967                         panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3968                 else
3969                         WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3970                 return;
3971         }
3972
3973         for_each_active_iommu(iommu, drhd) {
3974
3975                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3976
3977                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3978                         iommu->reg + DMAR_FECTL_REG);
3979                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3980                         iommu->reg + DMAR_FEDATA_REG);
3981                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3982                         iommu->reg + DMAR_FEADDR_REG);
3983                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3984                         iommu->reg + DMAR_FEUADDR_REG);
3985
3986                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3987         }
3988
3989         for_each_active_iommu(iommu, drhd)
3990                 kfree(iommu->iommu_state);
3991 }
3992
3993 static struct syscore_ops iommu_syscore_ops = {
3994         .resume         = iommu_resume,
3995         .suspend        = iommu_suspend,
3996 };
3997
3998 static void __init init_iommu_pm_ops(void)
3999 {
4000         register_syscore_ops(&iommu_syscore_ops);
4001 }
4002
4003 #else
4004 static inline void init_iommu_pm_ops(void) {}
4005 #endif  /* CONFIG_PM */
4006
4007 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4008 {
4009         struct acpi_dmar_reserved_memory *rmrr;
4010         struct dmar_rmrr_unit *rmrru;
4011
4012         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4013         if (!rmrru)
4014                 goto out;
4015
4016         rmrru->hdr = header;
4017         rmrr = (struct acpi_dmar_reserved_memory *)header;
4018         rmrru->base_address = rmrr->base_address;
4019         rmrru->end_address = rmrr->end_address;
4020
4021         rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4022                                 ((void *)rmrr) + rmrr->header.length,
4023                                 &rmrru->devices_cnt);
4024         if (rmrru->devices_cnt && rmrru->devices == NULL)
4025                 goto free_rmrru;
4026
4027         list_add(&rmrru->list, &dmar_rmrr_units);
4028
4029         return 0;
4030 free_rmrru:
4031         kfree(rmrru);
4032 out:
4033         return -ENOMEM;
4034 }
4035
4036 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4037 {
4038         struct dmar_atsr_unit *atsru;
4039         struct acpi_dmar_atsr *tmp;
4040
4041         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4042                 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4043                 if (atsr->segment != tmp->segment)
4044                         continue;
4045                 if (atsr->header.length != tmp->header.length)
4046                         continue;
4047                 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4048                         return atsru;
4049         }
4050
4051         return NULL;
4052 }
4053
4054 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4055 {
4056         struct acpi_dmar_atsr *atsr;
4057         struct dmar_atsr_unit *atsru;
4058
4059         if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4060                 return 0;
4061
4062         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4063         atsru = dmar_find_atsr(atsr);
4064         if (atsru)
4065                 return 0;
4066
4067         atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4068         if (!atsru)
4069                 return -ENOMEM;
4070
4071         /*
4072          * If memory is allocated from slab by ACPI _DSM method, we need to
4073          * copy the memory content because the memory buffer will be freed
4074          * on return.
4075          */
4076         atsru->hdr = (void *)(atsru + 1);
4077         memcpy(atsru->hdr, hdr, hdr->length);
4078         atsru->include_all = atsr->flags & 0x1;
4079         if (!atsru->include_all) {
4080                 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4081                                 (void *)atsr + atsr->header.length,
4082                                 &atsru->devices_cnt);
4083                 if (atsru->devices_cnt && atsru->devices == NULL) {
4084                         kfree(atsru);
4085                         return -ENOMEM;
4086                 }
4087         }
4088
4089         list_add_rcu(&atsru->list, &dmar_atsr_units);
4090
4091         return 0;
4092 }
4093
4094 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4095 {
4096         dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4097         kfree(atsru);
4098 }
4099
4100 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4101 {
4102         struct acpi_dmar_atsr *atsr;
4103         struct dmar_atsr_unit *atsru;
4104
4105         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4106         atsru = dmar_find_atsr(atsr);
4107         if (atsru) {
4108                 list_del_rcu(&atsru->list);
4109                 synchronize_rcu();
4110                 intel_iommu_free_atsr(atsru);
4111         }
4112
4113         return 0;
4114 }
4115
4116 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4117 {
4118         int i;
4119         struct device *dev;
4120         struct acpi_dmar_atsr *atsr;
4121         struct dmar_atsr_unit *atsru;
4122
4123         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4124         atsru = dmar_find_atsr(atsr);
4125         if (!atsru)
4126                 return 0;
4127
4128         if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4129                 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4130                                           i, dev)
4131                         return -EBUSY;
4132         }
4133
4134         return 0;
4135 }
4136
4137 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4138 {
4139         int sp, ret;
4140         struct intel_iommu *iommu = dmaru->iommu;
4141
4142         if (g_iommus[iommu->seq_id])
4143                 return 0;
4144
4145         if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4146                 pr_warn("%s: Doesn't support hardware pass through.\n",
4147                         iommu->name);
4148                 return -ENXIO;
4149         }
4150         if (!ecap_sc_support(iommu->ecap) &&
4151             domain_update_iommu_snooping(iommu)) {
4152                 pr_warn("%s: Doesn't support snooping.\n",
4153                         iommu->name);
4154                 return -ENXIO;
4155         }
4156         sp = domain_update_iommu_superpage(iommu) - 1;
4157         if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4158                 pr_warn("%s: Doesn't support large page.\n",
4159                         iommu->name);
4160                 return -ENXIO;
4161         }
4162
4163         /*
4164          * Disable translation if already enabled prior to OS handover.
4165          */
4166         if (iommu->gcmd & DMA_GCMD_TE)
4167                 iommu_disable_translation(iommu);
4168
4169         g_iommus[iommu->seq_id] = iommu;
4170         ret = iommu_init_domains(iommu);
4171         if (ret == 0)
4172                 ret = iommu_alloc_root_entry(iommu);
4173         if (ret)
4174                 goto out;
4175
4176 #ifdef CONFIG_INTEL_IOMMU_SVM
4177         if (pasid_supported(iommu))
4178                 intel_svm_init(iommu);
4179 #endif
4180
4181         if (dmaru->ignored) {
4182                 /*
4183                  * we always have to disable PMRs or DMA may fail on this device
4184                  */
4185                 if (force_on)
4186                         iommu_disable_protect_mem_regions(iommu);
4187                 return 0;
4188         }
4189
4190         intel_iommu_init_qi(iommu);
4191         iommu_flush_write_buffer(iommu);
4192
4193 #ifdef CONFIG_INTEL_IOMMU_SVM
4194         if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4195                 ret = intel_svm_enable_prq(iommu);
4196                 if (ret)
4197                         goto disable_iommu;
4198         }
4199 #endif
4200         ret = dmar_set_interrupt(iommu);
4201         if (ret)
4202                 goto disable_iommu;
4203
4204         iommu_set_root_entry(iommu);
4205         iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4206         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4207         iommu_enable_translation(iommu);
4208
4209         iommu_disable_protect_mem_regions(iommu);
4210         return 0;
4211
4212 disable_iommu:
4213         disable_dmar_iommu(iommu);
4214 out:
4215         free_dmar_iommu(iommu);
4216         return ret;
4217 }
4218
4219 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4220 {
4221         int ret = 0;
4222         struct intel_iommu *iommu = dmaru->iommu;
4223
4224         if (!intel_iommu_enabled)
4225                 return 0;
4226         if (iommu == NULL)
4227                 return -EINVAL;
4228
4229         if (insert) {
4230                 ret = intel_iommu_add(dmaru);
4231         } else {
4232                 disable_dmar_iommu(iommu);
4233                 free_dmar_iommu(iommu);
4234         }
4235
4236         return ret;
4237 }
4238
4239 static void intel_iommu_free_dmars(void)
4240 {
4241         struct dmar_rmrr_unit *rmrru, *rmrr_n;
4242         struct dmar_atsr_unit *atsru, *atsr_n;
4243
4244         list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4245                 list_del(&rmrru->list);
4246                 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4247                 kfree(rmrru);
4248         }
4249
4250         list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4251                 list_del(&atsru->list);
4252                 intel_iommu_free_atsr(atsru);
4253         }
4254 }
4255
4256 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4257 {
4258         int i, ret = 1;
4259         struct pci_bus *bus;
4260         struct pci_dev *bridge = NULL;
4261         struct device *tmp;
4262         struct acpi_dmar_atsr *atsr;
4263         struct dmar_atsr_unit *atsru;
4264
4265         dev = pci_physfn(dev);
4266         for (bus = dev->bus; bus; bus = bus->parent) {
4267                 bridge = bus->self;
4268                 /* If it's an integrated device, allow ATS */
4269                 if (!bridge)
4270                         return 1;
4271                 /* Connected via non-PCIe: no ATS */
4272                 if (!pci_is_pcie(bridge) ||
4273                     pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4274                         return 0;
4275                 /* If we found the root port, look it up in the ATSR */
4276                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4277                         break;
4278         }
4279
4280         rcu_read_lock();
4281         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4282                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4283                 if (atsr->segment != pci_domain_nr(dev->bus))
4284                         continue;
4285
4286                 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4287                         if (tmp == &bridge->dev)
4288                                 goto out;
4289
4290                 if (atsru->include_all)
4291                         goto out;
4292         }
4293         ret = 0;
4294 out:
4295         rcu_read_unlock();
4296
4297         return ret;
4298 }
4299
4300 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4301 {
4302         int ret;
4303         struct dmar_rmrr_unit *rmrru;
4304         struct dmar_atsr_unit *atsru;
4305         struct acpi_dmar_atsr *atsr;
4306         struct acpi_dmar_reserved_memory *rmrr;
4307
4308         if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4309                 return 0;
4310
4311         list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4312                 rmrr = container_of(rmrru->hdr,
4313                                     struct acpi_dmar_reserved_memory, header);
4314                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4315                         ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4316                                 ((void *)rmrr) + rmrr->header.length,
4317                                 rmrr->segment, rmrru->devices,
4318                                 rmrru->devices_cnt);
4319                         if (ret < 0)
4320                                 return ret;
4321                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4322                         dmar_remove_dev_scope(info, rmrr->segment,
4323                                 rmrru->devices, rmrru->devices_cnt);
4324                 }
4325         }
4326
4327         list_for_each_entry(atsru, &dmar_atsr_units, list) {
4328                 if (atsru->include_all)
4329                         continue;
4330
4331                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4332                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4333                         ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4334                                         (void *)atsr + atsr->header.length,
4335                                         atsr->segment, atsru->devices,
4336                                         atsru->devices_cnt);
4337                         if (ret > 0)
4338                                 break;
4339                         else if (ret < 0)
4340                                 return ret;
4341                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4342                         if (dmar_remove_dev_scope(info, atsr->segment,
4343                                         atsru->devices, atsru->devices_cnt))
4344                                 break;
4345                 }
4346         }
4347
4348         return 0;
4349 }
4350
4351 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4352                                        unsigned long val, void *v)
4353 {
4354         struct memory_notify *mhp = v;
4355         unsigned long long start, end;
4356         unsigned long start_vpfn, last_vpfn;
4357
4358         switch (val) {
4359         case MEM_GOING_ONLINE:
4360                 start = mhp->start_pfn << PAGE_SHIFT;
4361                 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4362                 if (iommu_domain_identity_map(si_domain, start, end)) {
4363                         pr_warn("Failed to build identity map for [%llx-%llx]\n",
4364                                 start, end);
4365                         return NOTIFY_BAD;
4366                 }
4367                 break;
4368
4369         case MEM_OFFLINE:
4370         case MEM_CANCEL_ONLINE:
4371                 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4372                 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4373                 while (start_vpfn <= last_vpfn) {
4374                         struct iova *iova;
4375                         struct dmar_drhd_unit *drhd;
4376                         struct intel_iommu *iommu;
4377                         struct page *freelist;
4378
4379                         iova = find_iova(&si_domain->iovad, start_vpfn);
4380                         if (iova == NULL) {
4381                                 pr_debug("Failed get IOVA for PFN %lx\n",
4382                                          start_vpfn);
4383                                 break;
4384                         }
4385
4386                         iova = split_and_remove_iova(&si_domain->iovad, iova,
4387                                                      start_vpfn, last_vpfn);
4388                         if (iova == NULL) {
4389                                 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4390                                         start_vpfn, last_vpfn);
4391                                 return NOTIFY_BAD;
4392                         }
4393
4394                         freelist = domain_unmap(si_domain, iova->pfn_lo,
4395                                                iova->pfn_hi);
4396
4397                         rcu_read_lock();
4398                         for_each_active_iommu(iommu, drhd)
4399                                 iommu_flush_iotlb_psi(iommu, si_domain,
4400                                         iova->pfn_lo, iova_size(iova),
4401                                         !freelist, 0);
4402                         rcu_read_unlock();
4403                         dma_free_pagelist(freelist);
4404
4405                         start_vpfn = iova->pfn_hi + 1;
4406                         free_iova_mem(iova);
4407                 }
4408                 break;
4409         }
4410
4411         return NOTIFY_OK;
4412 }
4413
4414 static struct notifier_block intel_iommu_memory_nb = {
4415         .notifier_call = intel_iommu_memory_notifier,
4416         .priority = 0
4417 };
4418
4419 static void free_all_cpu_cached_iovas(unsigned int cpu)
4420 {
4421         int i;
4422
4423         for (i = 0; i < g_num_of_iommus; i++) {
4424                 struct intel_iommu *iommu = g_iommus[i];
4425                 struct dmar_domain *domain;
4426                 int did;
4427
4428                 if (!iommu)
4429                         continue;
4430
4431                 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4432                         domain = get_iommu_domain(iommu, (u16)did);
4433
4434                         if (!domain)
4435                                 continue;
4436                         free_cpu_cached_iovas(cpu, &domain->iovad);
4437                 }
4438         }
4439 }
4440
4441 static int intel_iommu_cpu_dead(unsigned int cpu)
4442 {
4443         free_all_cpu_cached_iovas(cpu);
4444         return 0;
4445 }
4446
4447 static void intel_disable_iommus(void)
4448 {
4449         struct intel_iommu *iommu = NULL;
4450         struct dmar_drhd_unit *drhd;
4451
4452         for_each_iommu(iommu, drhd)
4453                 iommu_disable_translation(iommu);
4454 }
4455
4456 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4457 {
4458         struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
4459
4460         return container_of(iommu_dev, struct intel_iommu, iommu);
4461 }
4462
4463 static ssize_t intel_iommu_show_version(struct device *dev,
4464                                         struct device_attribute *attr,
4465                                         char *buf)
4466 {
4467         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4468         u32 ver = readl(iommu->reg + DMAR_VER_REG);
4469         return sprintf(buf, "%d:%d\n",
4470                        DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4471 }
4472 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4473
4474 static ssize_t intel_iommu_show_address(struct device *dev,
4475                                         struct device_attribute *attr,
4476                                         char *buf)
4477 {
4478         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4479         return sprintf(buf, "%llx\n", iommu->reg_phys);
4480 }
4481 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4482
4483 static ssize_t intel_iommu_show_cap(struct device *dev,
4484                                     struct device_attribute *attr,
4485                                     char *buf)
4486 {
4487         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4488         return sprintf(buf, "%llx\n", iommu->cap);
4489 }
4490 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4491
4492 static ssize_t intel_iommu_show_ecap(struct device *dev,
4493                                     struct device_attribute *attr,
4494                                     char *buf)
4495 {
4496         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4497         return sprintf(buf, "%llx\n", iommu->ecap);
4498 }
4499 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4500
4501 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4502                                       struct device_attribute *attr,
4503                                       char *buf)
4504 {
4505         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4506         return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4507 }
4508 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4509
4510 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4511                                            struct device_attribute *attr,
4512                                            char *buf)
4513 {
4514         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4515         return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4516                                                   cap_ndoms(iommu->cap)));
4517 }
4518 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4519
4520 static struct attribute *intel_iommu_attrs[] = {
4521         &dev_attr_version.attr,
4522         &dev_attr_address.attr,
4523         &dev_attr_cap.attr,
4524         &dev_attr_ecap.attr,
4525         &dev_attr_domains_supported.attr,
4526         &dev_attr_domains_used.attr,
4527         NULL,
4528 };
4529
4530 static struct attribute_group intel_iommu_group = {
4531         .name = "intel-iommu",
4532         .attrs = intel_iommu_attrs,
4533 };
4534
4535 const struct attribute_group *intel_iommu_groups[] = {
4536         &intel_iommu_group,
4537         NULL,
4538 };
4539
4540 static int __init platform_optin_force_iommu(void)
4541 {
4542         struct pci_dev *pdev = NULL;
4543         bool has_untrusted_dev = false;
4544
4545         if (!dmar_platform_optin() || no_platform_optin)
4546                 return 0;
4547
4548         for_each_pci_dev(pdev) {
4549                 if (pdev->untrusted) {
4550                         has_untrusted_dev = true;
4551                         break;
4552                 }
4553         }
4554
4555         if (!has_untrusted_dev)
4556                 return 0;
4557
4558         if (no_iommu || dmar_disabled)
4559                 pr_info("Intel-IOMMU force enabled due to platform opt in\n");
4560
4561         /*
4562          * If Intel-IOMMU is disabled by default, we will apply identity
4563          * map for all devices except those marked as being untrusted.
4564          */
4565         if (dmar_disabled)
4566                 iommu_identity_mapping |= IDENTMAP_ALL;
4567
4568         dmar_disabled = 0;
4569 #if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4570         swiotlb = 0;
4571 #endif
4572         no_iommu = 0;
4573
4574         return 1;
4575 }
4576
4577 static int __init probe_acpi_namespace_devices(void)
4578 {
4579         struct dmar_drhd_unit *drhd;
4580         /* To avoid a -Wunused-but-set-variable warning. */
4581         struct intel_iommu *iommu __maybe_unused;
4582         struct device *dev;
4583         int i, ret = 0;
4584
4585         for_each_active_iommu(iommu, drhd) {
4586                 for_each_active_dev_scope(drhd->devices,
4587                                           drhd->devices_cnt, i, dev) {
4588                         struct acpi_device_physical_node *pn;
4589                         struct iommu_group *group;
4590                         struct acpi_device *adev;
4591
4592                         if (dev->bus != &acpi_bus_type)
4593                                 continue;
4594
4595                         adev = to_acpi_device(dev);
4596                         mutex_lock(&adev->physical_node_lock);
4597                         list_for_each_entry(pn,
4598                                             &adev->physical_node_list, node) {
4599                                 group = iommu_group_get(pn->dev);
4600                                 if (group) {
4601                                         iommu_group_put(group);
4602                                         continue;
4603                                 }
4604
4605                                 pn->dev->bus->iommu_ops = &intel_iommu_ops;
4606                                 ret = iommu_probe_device(pn->dev);
4607                                 if (ret)
4608                                         break;
4609                         }
4610                         mutex_unlock(&adev->physical_node_lock);
4611
4612                         if (ret)
4613                                 return ret;
4614                 }
4615         }
4616
4617         return 0;
4618 }
4619
4620 int __init intel_iommu_init(void)
4621 {
4622         int ret = -ENODEV;
4623         struct dmar_drhd_unit *drhd;
4624         struct intel_iommu *iommu;
4625
4626         /*
4627          * Intel IOMMU is required for a TXT/tboot launch or platform
4628          * opt in, so enforce that.
4629          */
4630         force_on = tboot_force_iommu() || platform_optin_force_iommu();
4631
4632         if (iommu_init_mempool()) {
4633                 if (force_on)
4634                         panic("tboot: Failed to initialize iommu memory\n");
4635                 return -ENOMEM;
4636         }
4637
4638         down_write(&dmar_global_lock);
4639         if (dmar_table_init()) {
4640                 if (force_on)
4641                         panic("tboot: Failed to initialize DMAR table\n");
4642                 goto out_free_dmar;
4643         }
4644
4645         if (dmar_dev_scope_init() < 0) {
4646                 if (force_on)
4647                         panic("tboot: Failed to initialize DMAR device scope\n");
4648                 goto out_free_dmar;
4649         }
4650
4651         up_write(&dmar_global_lock);
4652
4653         /*
4654          * The bus notifier takes the dmar_global_lock, so lockdep will
4655          * complain later when we register it under the lock.
4656          */
4657         dmar_register_bus_notifier();
4658
4659         down_write(&dmar_global_lock);
4660
4661         if (no_iommu || dmar_disabled) {
4662                 /*
4663                  * We exit the function here to ensure IOMMU's remapping and
4664                  * mempool aren't setup, which means that the IOMMU's PMRs
4665                  * won't be disabled via the call to init_dmars(). So disable
4666                  * it explicitly here. The PMRs were setup by tboot prior to
4667                  * calling SENTER, but the kernel is expected to reset/tear
4668                  * down the PMRs.
4669                  */
4670                 if (intel_iommu_tboot_noforce) {
4671                         for_each_iommu(iommu, drhd)
4672                                 iommu_disable_protect_mem_regions(iommu);
4673                 }
4674
4675                 /*
4676                  * Make sure the IOMMUs are switched off, even when we
4677                  * boot into a kexec kernel and the previous kernel left
4678                  * them enabled
4679                  */
4680                 intel_disable_iommus();
4681                 goto out_free_dmar;
4682         }
4683
4684         if (list_empty(&dmar_rmrr_units))
4685                 pr_info("No RMRR found\n");
4686
4687         if (list_empty(&dmar_atsr_units))
4688                 pr_info("No ATSR found\n");
4689
4690         if (dmar_init_reserved_ranges()) {
4691                 if (force_on)
4692                         panic("tboot: Failed to reserve iommu ranges\n");
4693                 goto out_free_reserved_range;
4694         }
4695
4696         if (dmar_map_gfx)
4697                 intel_iommu_gfx_mapped = 1;
4698
4699         init_no_remapping_devices();
4700
4701         ret = init_dmars();
4702         if (ret) {
4703                 if (force_on)
4704                         panic("tboot: Failed to initialize DMARs\n");
4705                 pr_err("Initialization failed\n");
4706                 goto out_free_reserved_range;
4707         }
4708         up_write(&dmar_global_lock);
4709
4710 #if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4711         swiotlb = 0;
4712 #endif
4713         dma_ops = &intel_dma_ops;
4714
4715         init_iommu_pm_ops();
4716
4717         for_each_active_iommu(iommu, drhd) {
4718                 iommu_device_sysfs_add(&iommu->iommu, NULL,
4719                                        intel_iommu_groups,
4720                                        "%s", iommu->name);
4721                 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
4722                 iommu_device_register(&iommu->iommu);
4723         }
4724
4725         bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4726         if (si_domain && !hw_pass_through)
4727                 register_memory_notifier(&intel_iommu_memory_nb);
4728         cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4729                           intel_iommu_cpu_dead);
4730
4731         down_read(&dmar_global_lock);
4732         if (probe_acpi_namespace_devices())
4733                 pr_warn("ACPI name space devices didn't probe correctly\n");
4734         up_read(&dmar_global_lock);
4735
4736         /* Finally, we enable the DMA remapping hardware. */
4737         for_each_iommu(iommu, drhd) {
4738                 if (!drhd->ignored && !translation_pre_enabled(iommu))
4739                         iommu_enable_translation(iommu);
4740
4741                 iommu_disable_protect_mem_regions(iommu);
4742         }
4743         pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4744
4745         intel_iommu_enabled = 1;
4746         intel_iommu_debugfs_init();
4747
4748         return 0;
4749
4750 out_free_reserved_range:
4751         put_iova_domain(&reserved_iova_list);
4752 out_free_dmar:
4753         intel_iommu_free_dmars();
4754         up_write(&dmar_global_lock);
4755         iommu_exit_mempool();
4756         return ret;
4757 }
4758
4759 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4760 {
4761         struct dmar_domain *domain;
4762         struct intel_iommu *iommu;
4763         unsigned long flags;
4764
4765         assert_spin_locked(&device_domain_lock);
4766
4767         if (WARN_ON(!info))
4768                 return;
4769
4770         iommu = info->iommu;
4771         domain = info->domain;
4772
4773         if (info->dev) {
4774                 if (dev_is_pci(info->dev) && sm_supported(iommu))
4775                         intel_pasid_tear_down_entry(iommu, info->dev,
4776                                         PASID_RID2PASID);
4777
4778                 iommu_disable_dev_iotlb(info);
4779                 domain_context_clear_one(iommu, info->bus, info->devfn);
4780                 intel_pasid_free_table(info->dev);
4781         }
4782
4783         unlink_domain_info(info);
4784
4785         spin_lock_irqsave(&iommu->lock, flags);
4786         domain_detach_iommu(domain, iommu);
4787         spin_unlock_irqrestore(&iommu->lock, flags);
4788
4789         /* free the private domain */
4790         if (domain->flags & DOMAIN_FLAG_LOSE_CHILDREN &&
4791             !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY))
4792                 domain_exit(info->domain);
4793
4794         free_devinfo_mem(info);
4795 }
4796
4797 static void dmar_remove_one_dev_info(struct device *dev)
4798 {
4799         struct device_domain_info *info;
4800         unsigned long flags;
4801
4802         spin_lock_irqsave(&device_domain_lock, flags);
4803         info = dev->archdata.iommu;
4804         __dmar_remove_one_dev_info(info);
4805         spin_unlock_irqrestore(&device_domain_lock, flags);
4806 }
4807
4808 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4809 {
4810         int adjust_width;
4811
4812         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
4813         domain_reserve_special_ranges(domain);
4814
4815         /* calculate AGAW */
4816         domain->gaw = guest_width;
4817         adjust_width = guestwidth_to_adjustwidth(guest_width);
4818         domain->agaw = width_to_agaw(adjust_width);
4819
4820         domain->iommu_coherency = 0;
4821         domain->iommu_snooping = 0;
4822         domain->iommu_superpage = 0;
4823         domain->max_addr = 0;
4824
4825         /* always allocate the top pgd */
4826         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4827         if (!domain->pgd)
4828                 return -ENOMEM;
4829         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4830         return 0;
4831 }
4832
4833 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4834 {
4835         struct dmar_domain *dmar_domain;
4836         struct iommu_domain *domain;
4837
4838         switch (type) {
4839         case IOMMU_DOMAIN_DMA:
4840         /* fallthrough */
4841         case IOMMU_DOMAIN_UNMANAGED:
4842                 dmar_domain = alloc_domain(0);
4843                 if (!dmar_domain) {
4844                         pr_err("Can't allocate dmar_domain\n");
4845                         return NULL;
4846                 }
4847                 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4848                         pr_err("Domain initialization failed\n");
4849                         domain_exit(dmar_domain);
4850                         return NULL;
4851                 }
4852
4853                 if (type == IOMMU_DOMAIN_DMA &&
4854                     init_iova_flush_queue(&dmar_domain->iovad,
4855                                           iommu_flush_iova, iova_entry_free)) {
4856                         pr_warn("iova flush queue initialization failed\n");
4857                         intel_iommu_strict = 1;
4858                 }
4859
4860                 domain_update_iommu_cap(dmar_domain);
4861
4862                 domain = &dmar_domain->domain;
4863                 domain->geometry.aperture_start = 0;
4864                 domain->geometry.aperture_end   =
4865                                 __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4866                 domain->geometry.force_aperture = true;
4867
4868                 return domain;
4869         case IOMMU_DOMAIN_IDENTITY:
4870                 return &si_domain->domain;
4871         default:
4872                 return NULL;
4873         }
4874
4875         return NULL;
4876 }
4877
4878 static void intel_iommu_domain_free(struct iommu_domain *domain)
4879 {
4880         if (domain != &si_domain->domain)
4881                 domain_exit(to_dmar_domain(domain));
4882 }
4883
4884 /*
4885  * Check whether a @domain could be attached to the @dev through the
4886  * aux-domain attach/detach APIs.
4887  */
4888 static inline bool
4889 is_aux_domain(struct device *dev, struct iommu_domain *domain)
4890 {
4891         struct device_domain_info *info = dev->archdata.iommu;
4892
4893         return info && info->auxd_enabled &&
4894                         domain->type == IOMMU_DOMAIN_UNMANAGED;
4895 }
4896
4897 static void auxiliary_link_device(struct dmar_domain *domain,
4898                                   struct device *dev)
4899 {
4900         struct device_domain_info *info = dev->archdata.iommu;
4901
4902         assert_spin_locked(&device_domain_lock);
4903         if (WARN_ON(!info))
4904                 return;
4905
4906         domain->auxd_refcnt++;
4907         list_add(&domain->auxd, &info->auxiliary_domains);
4908 }
4909
4910 static void auxiliary_unlink_device(struct dmar_domain *domain,
4911                                     struct device *dev)
4912 {
4913         struct device_domain_info *info = dev->archdata.iommu;
4914
4915         assert_spin_locked(&device_domain_lock);
4916         if (WARN_ON(!info))
4917                 return;
4918
4919         list_del(&domain->auxd);
4920         domain->auxd_refcnt--;
4921
4922         if (!domain->auxd_refcnt && domain->default_pasid > 0)
4923                 intel_pasid_free_id(domain->default_pasid);
4924 }
4925
4926 static int aux_domain_add_dev(struct dmar_domain *domain,
4927                               struct device *dev)
4928 {
4929         int ret;
4930         u8 bus, devfn;
4931         unsigned long flags;
4932         struct intel_iommu *iommu;
4933
4934         iommu = device_to_iommu(dev, &bus, &devfn);
4935         if (!iommu)
4936                 return -ENODEV;
4937
4938         if (domain->default_pasid <= 0) {
4939                 int pasid;
4940
4941                 pasid = intel_pasid_alloc_id(domain, PASID_MIN,
4942                                              pci_max_pasids(to_pci_dev(dev)),
4943                                              GFP_KERNEL);
4944                 if (pasid <= 0) {
4945                         pr_err("Can't allocate default pasid\n");
4946                         return -ENODEV;
4947                 }
4948                 domain->default_pasid = pasid;
4949         }
4950
4951         spin_lock_irqsave(&device_domain_lock, flags);
4952         /*
4953          * iommu->lock must be held to attach domain to iommu and setup the
4954          * pasid entry for second level translation.
4955          */
4956         spin_lock(&iommu->lock);
4957         ret = domain_attach_iommu(domain, iommu);
4958         if (ret)
4959                 goto attach_failed;
4960
4961         /* Setup the PASID entry for mediated devices: */
4962         ret = intel_pasid_setup_second_level(iommu, domain, dev,
4963                                              domain->default_pasid);
4964         if (ret)
4965                 goto table_failed;
4966         spin_unlock(&iommu->lock);
4967
4968         auxiliary_link_device(domain, dev);
4969
4970         spin_unlock_irqrestore(&device_domain_lock, flags);
4971
4972         return 0;
4973
4974 table_failed:
4975         domain_detach_iommu(domain, iommu);
4976 attach_failed:
4977         spin_unlock(&iommu->lock);
4978         spin_unlock_irqrestore(&device_domain_lock, flags);
4979         if (!domain->auxd_refcnt && domain->default_pasid > 0)
4980                 intel_pasid_free_id(domain->default_pasid);
4981
4982         return ret;
4983 }
4984
4985 static void aux_domain_remove_dev(struct dmar_domain *domain,
4986                                   struct device *dev)
4987 {
4988         struct device_domain_info *info;
4989         struct intel_iommu *iommu;
4990         unsigned long flags;
4991
4992         if (!is_aux_domain(dev, &domain->domain))
4993                 return;
4994
4995         spin_lock_irqsave(&device_domain_lock, flags);
4996         info = dev->archdata.iommu;
4997         iommu = info->iommu;
4998
4999         auxiliary_unlink_device(domain, dev);
5000
5001         spin_lock(&iommu->lock);
5002         intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid);
5003         domain_detach_iommu(domain, iommu);
5004         spin_unlock(&iommu->lock);
5005
5006         spin_unlock_irqrestore(&device_domain_lock, flags);
5007 }
5008
5009 static int prepare_domain_attach_device(struct iommu_domain *domain,
5010                                         struct device *dev)
5011 {
5012         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5013         struct intel_iommu *iommu;
5014         int addr_width;
5015         u8 bus, devfn;
5016
5017         iommu = device_to_iommu(dev, &bus, &devfn);
5018         if (!iommu)
5019                 return -ENODEV;
5020
5021         /* check if this iommu agaw is sufficient for max mapped address */
5022         addr_width = agaw_to_width(iommu->agaw);
5023         if (addr_width > cap_mgaw(iommu->cap))
5024                 addr_width = cap_mgaw(iommu->cap);
5025
5026         if (dmar_domain->max_addr > (1LL << addr_width)) {
5027                 dev_err(dev, "%s: iommu width (%d) is not "
5028                         "sufficient for the mapped address (%llx)\n",
5029                         __func__, addr_width, dmar_domain->max_addr);
5030                 return -EFAULT;
5031         }
5032         dmar_domain->gaw = addr_width;
5033
5034         /*
5035          * Knock out extra levels of page tables if necessary
5036          */
5037         while (iommu->agaw < dmar_domain->agaw) {
5038                 struct dma_pte *pte;
5039
5040                 pte = dmar_domain->pgd;
5041                 if (dma_pte_present(pte)) {
5042                         dmar_domain->pgd = (struct dma_pte *)
5043                                 phys_to_virt(dma_pte_addr(pte));
5044                         free_pgtable_page(pte);
5045                 }
5046                 dmar_domain->agaw--;
5047         }
5048
5049         return 0;
5050 }
5051
5052 static int intel_iommu_attach_device(struct iommu_domain *domain,
5053                                      struct device *dev)
5054 {
5055         int ret;
5056
5057         if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
5058             device_is_rmrr_locked(dev)) {
5059                 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
5060                 return -EPERM;
5061         }
5062
5063         if (is_aux_domain(dev, domain))
5064                 return -EPERM;
5065
5066         /* normally dev is not mapped */
5067         if (unlikely(domain_context_mapped(dev))) {
5068                 struct dmar_domain *old_domain;
5069
5070                 old_domain = find_domain(dev);
5071                 if (old_domain)
5072                         dmar_remove_one_dev_info(dev);
5073         }
5074
5075         ret = prepare_domain_attach_device(domain, dev);
5076         if (ret)
5077                 return ret;
5078
5079         return domain_add_dev_info(to_dmar_domain(domain), dev);
5080 }
5081
5082 static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
5083                                          struct device *dev)
5084 {
5085         int ret;
5086
5087         if (!is_aux_domain(dev, domain))
5088                 return -EPERM;
5089
5090         ret = prepare_domain_attach_device(domain, dev);
5091         if (ret)
5092                 return ret;
5093
5094         return aux_domain_add_dev(to_dmar_domain(domain), dev);
5095 }
5096
5097 static void intel_iommu_detach_device(struct iommu_domain *domain,
5098                                       struct device *dev)
5099 {
5100         dmar_remove_one_dev_info(dev);
5101 }
5102
5103 static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
5104                                           struct device *dev)
5105 {
5106         aux_domain_remove_dev(to_dmar_domain(domain), dev);
5107 }
5108
5109 static int intel_iommu_map(struct iommu_domain *domain,
5110                            unsigned long iova, phys_addr_t hpa,
5111                            size_t size, int iommu_prot)
5112 {
5113         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5114         u64 max_addr;
5115         int prot = 0;
5116         int ret;
5117
5118         if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5119                 return -EINVAL;
5120
5121         if (iommu_prot & IOMMU_READ)
5122                 prot |= DMA_PTE_READ;
5123         if (iommu_prot & IOMMU_WRITE)
5124                 prot |= DMA_PTE_WRITE;
5125         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5126                 prot |= DMA_PTE_SNP;
5127
5128         max_addr = iova + size;
5129         if (dmar_domain->max_addr < max_addr) {
5130                 u64 end;
5131
5132                 /* check if minimum agaw is sufficient for mapped address */
5133                 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5134                 if (end < max_addr) {
5135                         pr_err("%s: iommu width (%d) is not "
5136                                "sufficient for the mapped address (%llx)\n",
5137                                __func__, dmar_domain->gaw, max_addr);
5138                         return -EFAULT;
5139                 }
5140                 dmar_domain->max_addr = max_addr;
5141         }
5142         /* Round up size to next multiple of PAGE_SIZE, if it and
5143            the low bits of hpa would take us onto the next page */
5144         size = aligned_nrpages(hpa, size);
5145         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5146                                  hpa >> VTD_PAGE_SHIFT, size, prot);
5147         return ret;
5148 }
5149
5150 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5151                                 unsigned long iova, size_t size)
5152 {
5153         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5154         struct page *freelist = NULL;
5155         unsigned long start_pfn, last_pfn;
5156         unsigned int npages;
5157         int iommu_id, level = 0;
5158
5159         /* Cope with horrid API which requires us to unmap more than the
5160            size argument if it happens to be a large-page mapping. */
5161         BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5162         if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5163                 return 0;
5164
5165         if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5166                 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5167
5168         start_pfn = iova >> VTD_PAGE_SHIFT;
5169         last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5170
5171         freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5172
5173         npages = last_pfn - start_pfn + 1;
5174
5175         for_each_domain_iommu(iommu_id, dmar_domain)
5176                 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5177                                       start_pfn, npages, !freelist, 0);
5178
5179         dma_free_pagelist(freelist);
5180
5181         if (dmar_domain->max_addr == iova + size)
5182                 dmar_domain->max_addr = iova;
5183
5184         return size;
5185 }
5186
5187 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5188                                             dma_addr_t iova)
5189 {
5190         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5191         struct dma_pte *pte;
5192         int level = 0;
5193         u64 phys = 0;
5194
5195         if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5196                 return 0;
5197
5198         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5199         if (pte)
5200                 phys = dma_pte_addr(pte);
5201
5202         return phys;
5203 }
5204
5205 static inline bool scalable_mode_support(void)
5206 {
5207         struct dmar_drhd_unit *drhd;
5208         struct intel_iommu *iommu;
5209         bool ret = true;
5210
5211         rcu_read_lock();
5212         for_each_active_iommu(iommu, drhd) {
5213                 if (!sm_supported(iommu)) {
5214                         ret = false;
5215                         break;
5216                 }
5217         }
5218         rcu_read_unlock();
5219
5220         return ret;
5221 }
5222
5223 static inline bool iommu_pasid_support(void)
5224 {
5225         struct dmar_drhd_unit *drhd;
5226         struct intel_iommu *iommu;
5227         bool ret = true;
5228
5229         rcu_read_lock();
5230         for_each_active_iommu(iommu, drhd) {
5231                 if (!pasid_supported(iommu)) {
5232                         ret = false;
5233                         break;
5234                 }
5235         }
5236         rcu_read_unlock();
5237
5238         return ret;
5239 }
5240
5241 static bool intel_iommu_capable(enum iommu_cap cap)
5242 {
5243         if (cap == IOMMU_CAP_CACHE_COHERENCY)
5244                 return domain_update_iommu_snooping(NULL) == 1;
5245         if (cap == IOMMU_CAP_INTR_REMAP)
5246                 return irq_remapping_enabled == 1;
5247
5248         return false;
5249 }
5250
5251 static int intel_iommu_add_device(struct device *dev)
5252 {
5253         struct dmar_domain *dmar_domain;
5254         struct iommu_domain *domain;
5255         struct intel_iommu *iommu;
5256         struct iommu_group *group;
5257         u8 bus, devfn;
5258         int ret;
5259
5260         iommu = device_to_iommu(dev, &bus, &devfn);
5261         if (!iommu)
5262                 return -ENODEV;
5263
5264         iommu_device_link(&iommu->iommu, dev);
5265
5266         if (translation_pre_enabled(iommu))
5267                 dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;
5268
5269         group = iommu_group_get_for_dev(dev);
5270
5271         if (IS_ERR(group))
5272                 return PTR_ERR(group);
5273
5274         iommu_group_put(group);
5275
5276         domain = iommu_get_domain_for_dev(dev);
5277         dmar_domain = to_dmar_domain(domain);
5278         if (domain->type == IOMMU_DOMAIN_DMA) {
5279                 if (device_def_domain_type(dev) == IOMMU_DOMAIN_IDENTITY) {
5280                         ret = iommu_request_dm_for_dev(dev);
5281                         if (ret) {
5282                                 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5283                                 domain_add_dev_info(si_domain, dev);
5284                                 dev_info(dev,
5285                                          "Device uses a private identity domain.\n");
5286                         }
5287                 }
5288         } else {
5289                 if (device_def_domain_type(dev) == IOMMU_DOMAIN_DMA) {
5290                         ret = iommu_request_dma_domain_for_dev(dev);
5291                         if (ret) {
5292                                 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5293                                 if (!get_private_domain_for_dev(dev)) {
5294                                         dev_warn(dev,
5295                                                  "Failed to get a private domain.\n");
5296                                         return -ENOMEM;
5297                                 }
5298
5299                                 dev_info(dev,
5300                                          "Device uses a private dma domain.\n");
5301                         }
5302                 }
5303         }
5304
5305         return 0;
5306 }
5307
5308 static void intel_iommu_remove_device(struct device *dev)
5309 {
5310         struct intel_iommu *iommu;
5311         u8 bus, devfn;
5312
5313         iommu = device_to_iommu(dev, &bus, &devfn);
5314         if (!iommu)
5315                 return;
5316
5317         iommu_group_remove_device(dev);
5318
5319         iommu_device_unlink(&iommu->iommu, dev);
5320 }
5321
5322 static void intel_iommu_get_resv_regions(struct device *device,
5323                                          struct list_head *head)
5324 {
5325         int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5326         struct iommu_resv_region *reg;
5327         struct dmar_rmrr_unit *rmrr;
5328         struct device *i_dev;
5329         int i;
5330
5331         down_read(&dmar_global_lock);
5332         for_each_rmrr_units(rmrr) {
5333                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5334                                           i, i_dev) {
5335                         struct iommu_resv_region *resv;
5336                         enum iommu_resv_type type;
5337                         size_t length;
5338
5339                         if (i_dev != device &&
5340                             !is_downstream_to_pci_bridge(device, i_dev))
5341                                 continue;
5342
5343                         length = rmrr->end_address - rmrr->base_address + 1;
5344
5345                         type = device_rmrr_is_relaxable(device) ?
5346                                 IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;
5347
5348                         resv = iommu_alloc_resv_region(rmrr->base_address,
5349                                                        length, prot, type);
5350                         if (!resv)
5351                                 break;
5352
5353                         list_add_tail(&resv->list, head);
5354                 }
5355         }
5356         up_read(&dmar_global_lock);
5357
5358 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
5359         if (dev_is_pci(device)) {
5360                 struct pci_dev *pdev = to_pci_dev(device);
5361
5362                 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5363                         reg = iommu_alloc_resv_region(0, 1UL << 24, 0,
5364                                                       IOMMU_RESV_DIRECT);
5365                         if (reg)
5366                                 list_add_tail(&reg->list, head);
5367                 }
5368         }
5369 #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */
5370
5371         reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5372                                       IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5373                                       0, IOMMU_RESV_MSI);
5374         if (!reg)
5375                 return;
5376         list_add_tail(&reg->list, head);
5377 }
5378
5379 static void intel_iommu_put_resv_regions(struct device *dev,
5380                                          struct list_head *head)
5381 {
5382         struct iommu_resv_region *entry, *next;
5383
5384         list_for_each_entry_safe(entry, next, head, list)
5385                 kfree(entry);
5386 }
5387
5388 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5389 {
5390         struct device_domain_info *info;
5391         struct context_entry *context;
5392         struct dmar_domain *domain;
5393         unsigned long flags;
5394         u64 ctx_lo;
5395         int ret;
5396
5397         domain = find_domain(dev);
5398         if (!domain)
5399                 return -EINVAL;
5400
5401         spin_lock_irqsave(&device_domain_lock, flags);
5402         spin_lock(&iommu->lock);
5403
5404         ret = -EINVAL;
5405         info = dev->archdata.iommu;
5406         if (!info || !info->pasid_supported)
5407                 goto out;
5408
5409         context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5410         if (WARN_ON(!context))
5411                 goto out;
5412
5413         ctx_lo = context[0].lo;
5414
5415         if (!(ctx_lo & CONTEXT_PASIDE)) {
5416                 ctx_lo |= CONTEXT_PASIDE;
5417                 context[0].lo = ctx_lo;
5418                 wmb();
5419                 iommu->flush.flush_context(iommu,
5420                                            domain->iommu_did[iommu->seq_id],
5421                                            PCI_DEVID(info->bus, info->devfn),
5422                                            DMA_CCMD_MASK_NOBIT,
5423                                            DMA_CCMD_DEVICE_INVL);
5424         }
5425
5426         /* Enable PASID support in the device, if it wasn't already */
5427         if (!info->pasid_enabled)
5428                 iommu_enable_dev_iotlb(info);
5429
5430         ret = 0;
5431
5432  out:
5433         spin_unlock(&iommu->lock);
5434         spin_unlock_irqrestore(&device_domain_lock, flags);
5435
5436         return ret;
5437 }
5438
5439 static void intel_iommu_apply_resv_region(struct device *dev,
5440                                           struct iommu_domain *domain,
5441                                           struct iommu_resv_region *region)
5442 {
5443         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5444         unsigned long start, end;
5445
5446         start = IOVA_PFN(region->start);
5447         end   = IOVA_PFN(region->start + region->length - 1);
5448
5449         WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
5450 }
5451
5452 #ifdef CONFIG_INTEL_IOMMU_SVM
5453 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5454 {
5455         struct intel_iommu *iommu;
5456         u8 bus, devfn;
5457
5458         if (iommu_dummy(dev)) {
5459                 dev_warn(dev,
5460                          "No IOMMU translation for device; cannot enable SVM\n");
5461                 return NULL;
5462         }
5463
5464         iommu = device_to_iommu(dev, &bus, &devfn);
5465         if ((!iommu)) {
5466                 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5467                 return NULL;
5468         }
5469
5470         return iommu;
5471 }
5472 #endif /* CONFIG_INTEL_IOMMU_SVM */
5473
5474 static int intel_iommu_enable_auxd(struct device *dev)
5475 {
5476         struct device_domain_info *info;
5477         struct intel_iommu *iommu;
5478         unsigned long flags;
5479         u8 bus, devfn;
5480         int ret;
5481
5482         iommu = device_to_iommu(dev, &bus, &devfn);
5483         if (!iommu || dmar_disabled)
5484                 return -EINVAL;
5485
5486         if (!sm_supported(iommu) || !pasid_supported(iommu))
5487                 return -EINVAL;
5488
5489         ret = intel_iommu_enable_pasid(iommu, dev);
5490         if (ret)
5491                 return -ENODEV;
5492
5493         spin_lock_irqsave(&device_domain_lock, flags);
5494         info = dev->archdata.iommu;
5495         info->auxd_enabled = 1;
5496         spin_unlock_irqrestore(&device_domain_lock, flags);
5497
5498         return 0;
5499 }
5500
5501 static int intel_iommu_disable_auxd(struct device *dev)
5502 {
5503         struct device_domain_info *info;
5504         unsigned long flags;
5505
5506         spin_lock_irqsave(&device_domain_lock, flags);
5507         info = dev->archdata.iommu;
5508         if (!WARN_ON(!info))
5509                 info->auxd_enabled = 0;
5510         spin_unlock_irqrestore(&device_domain_lock, flags);
5511
5512         return 0;
5513 }
5514
5515 /*
5516  * A PCI express designated vendor specific extended capability is defined
5517  * in the section 3.7 of Intel scalable I/O virtualization technical spec
5518  * for system software and tools to detect endpoint devices supporting the
5519  * Intel scalable IO virtualization without host driver dependency.
5520  *
5521  * Returns the address of the matching extended capability structure within
5522  * the device's PCI configuration space or 0 if the device does not support
5523  * it.
5524  */
5525 static int siov_find_pci_dvsec(struct pci_dev *pdev)
5526 {
5527         int pos;
5528         u16 vendor, id;
5529
5530         pos = pci_find_next_ext_capability(pdev, 0, 0x23);
5531         while (pos) {
5532                 pci_read_config_word(pdev, pos + 4, &vendor);
5533                 pci_read_config_word(pdev, pos + 8, &id);
5534                 if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
5535                         return pos;
5536
5537                 pos = pci_find_next_ext_capability(pdev, pos, 0x23);
5538         }
5539
5540         return 0;
5541 }
5542
5543 static bool
5544 intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
5545 {
5546         if (feat == IOMMU_DEV_FEAT_AUX) {
5547                 int ret;
5548
5549                 if (!dev_is_pci(dev) || dmar_disabled ||
5550                     !scalable_mode_support() || !iommu_pasid_support())
5551                         return false;
5552
5553                 ret = pci_pasid_features(to_pci_dev(dev));
5554                 if (ret < 0)
5555                         return false;
5556
5557                 return !!siov_find_pci_dvsec(to_pci_dev(dev));
5558         }
5559
5560         return false;
5561 }
5562
5563 static int
5564 intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
5565 {
5566         if (feat == IOMMU_DEV_FEAT_AUX)
5567                 return intel_iommu_enable_auxd(dev);
5568
5569         return -ENODEV;
5570 }
5571
5572 static int
5573 intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
5574 {
5575         if (feat == IOMMU_DEV_FEAT_AUX)
5576                 return intel_iommu_disable_auxd(dev);
5577
5578         return -ENODEV;
5579 }
5580
5581 static bool
5582 intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
5583 {
5584         struct device_domain_info *info = dev->archdata.iommu;
5585
5586         if (feat == IOMMU_DEV_FEAT_AUX)
5587                 return scalable_mode_support() && info && info->auxd_enabled;
5588
5589         return false;
5590 }
5591
5592 static int
5593 intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
5594 {
5595         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5596
5597         return dmar_domain->default_pasid > 0 ?
5598                         dmar_domain->default_pasid : -EINVAL;
5599 }
5600
5601 static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
5602                                            struct device *dev)
5603 {
5604         return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
5605 }
5606
5607 const struct iommu_ops intel_iommu_ops = {
5608         .capable                = intel_iommu_capable,
5609         .domain_alloc           = intel_iommu_domain_alloc,
5610         .domain_free            = intel_iommu_domain_free,
5611         .attach_dev             = intel_iommu_attach_device,
5612         .detach_dev             = intel_iommu_detach_device,
5613         .aux_attach_dev         = intel_iommu_aux_attach_device,
5614         .aux_detach_dev         = intel_iommu_aux_detach_device,
5615         .aux_get_pasid          = intel_iommu_aux_get_pasid,
5616         .map                    = intel_iommu_map,
5617         .unmap                  = intel_iommu_unmap,
5618         .iova_to_phys           = intel_iommu_iova_to_phys,
5619         .add_device             = intel_iommu_add_device,
5620         .remove_device          = intel_iommu_remove_device,
5621         .get_resv_regions       = intel_iommu_get_resv_regions,
5622         .put_resv_regions       = intel_iommu_put_resv_regions,
5623         .apply_resv_region      = intel_iommu_apply_resv_region,
5624         .device_group           = pci_device_group,
5625         .dev_has_feat           = intel_iommu_dev_has_feat,
5626         .dev_feat_enabled       = intel_iommu_dev_feat_enabled,
5627         .dev_enable_feat        = intel_iommu_dev_enable_feat,
5628         .dev_disable_feat       = intel_iommu_dev_disable_feat,
5629         .is_attach_deferred     = intel_iommu_is_attach_deferred,
5630         .pgsize_bitmap          = INTEL_IOMMU_PGSIZES,
5631 };
5632
5633 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5634 {
5635         /* G4x/GM45 integrated gfx dmar support is totally busted. */
5636         pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
5637         dmar_map_gfx = 0;
5638 }
5639
5640 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5641 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5642 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5643 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5644 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5645 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5646 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5647
5648 static void quirk_iommu_rwbf(struct pci_dev *dev)
5649 {
5650         /*
5651          * Mobile 4 Series Chipset neglects to set RWBF capability,
5652          * but needs it. Same seems to hold for the desktop versions.
5653          */
5654         pci_info(dev, "Forcing write-buffer flush capability\n");
5655         rwbf_quirk = 1;
5656 }
5657
5658 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5659 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5660 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5661 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5662 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5663 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5664 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5665
5666 #define GGC 0x52
5667 #define GGC_MEMORY_SIZE_MASK    (0xf << 8)
5668 #define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
5669 #define GGC_MEMORY_SIZE_1M      (0x1 << 8)
5670 #define GGC_MEMORY_SIZE_2M      (0x3 << 8)
5671 #define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
5672 #define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
5673 #define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
5674 #define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
5675
5676 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5677 {
5678         unsigned short ggc;
5679
5680         if (pci_read_config_word(dev, GGC, &ggc))
5681                 return;
5682
5683         if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5684                 pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5685                 dmar_map_gfx = 0;
5686         } else if (dmar_map_gfx) {
5687                 /* we have to ensure the gfx device is idle before we flush */
5688                 pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
5689                 intel_iommu_strict = 1;
5690        }
5691 }
5692 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5693 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5694 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5695 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5696
5697 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5698    ISOCH DMAR unit for the Azalia sound device, but not give it any
5699    TLB entries, which causes it to deadlock. Check for that.  We do
5700    this in a function called from init_dmars(), instead of in a PCI
5701    quirk, because we don't want to print the obnoxious "BIOS broken"
5702    message if VT-d is actually disabled.
5703 */
5704 static void __init check_tylersburg_isoch(void)
5705 {
5706         struct pci_dev *pdev;
5707         uint32_t vtisochctrl;
5708
5709         /* If there's no Azalia in the system anyway, forget it. */
5710         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5711         if (!pdev)
5712                 return;
5713         pci_dev_put(pdev);
5714
5715         /* System Management Registers. Might be hidden, in which case
5716            we can't do the sanity check. But that's OK, because the
5717            known-broken BIOSes _don't_ actually hide it, so far. */
5718         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5719         if (!pdev)
5720                 return;
5721
5722         if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5723                 pci_dev_put(pdev);
5724                 return;
5725         }
5726
5727         pci_dev_put(pdev);
5728
5729         /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5730         if (vtisochctrl & 1)
5731                 return;
5732
5733         /* Drop all bits other than the number of TLB entries */
5734         vtisochctrl &= 0x1c;
5735
5736         /* If we have the recommended number of TLB entries (16), fine. */
5737         if (vtisochctrl == 0x10)
5738                 return;
5739
5740         /* Zero TLB entries? You get to ride the short bus to school. */
5741         if (!vtisochctrl) {
5742                 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5743                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5744                      dmi_get_system_info(DMI_BIOS_VENDOR),
5745                      dmi_get_system_info(DMI_BIOS_VERSION),
5746                      dmi_get_system_info(DMI_PRODUCT_VERSION));
5747                 iommu_identity_mapping |= IDENTMAP_AZALIA;
5748                 return;
5749         }
5750
5751         pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5752                vtisochctrl);
5753 }