]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/iommu/ipmmu-vmsa.c
iommu/ipmmu-vmsa: Add suspend/resume support
[linux.git] / drivers / iommu / ipmmu-vmsa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for Renesas VMSA-compatible IPMMU
4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * Copyright (C) 2014 Renesas Electronics Corporation
7  */
8
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-iommu.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sizes.h>
26 #include <linux/slab.h>
27 #include <linux/sys_soc.h>
28
29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
30 #include <asm/dma-iommu.h>
31 #include <asm/pgalloc.h>
32 #else
33 #define arm_iommu_create_mapping(...)   NULL
34 #define arm_iommu_attach_device(...)    -ENODEV
35 #define arm_iommu_release_mapping(...)  do {} while (0)
36 #define arm_iommu_detach_device(...)    do {} while (0)
37 #endif
38
39 #define IPMMU_CTX_MAX           8U
40 #define IPMMU_CTX_INVALID       -1
41
42 #define IPMMU_UTLB_MAX          48U
43
44 struct ipmmu_features {
45         bool use_ns_alias_offset;
46         bool has_cache_leaf_nodes;
47         unsigned int number_of_contexts;
48         unsigned int num_utlbs;
49         bool setup_imbuscr;
50         bool twobit_imttbcr_sl0;
51         bool reserved_context;
52 };
53
54 struct ipmmu_vmsa_device {
55         struct device *dev;
56         void __iomem *base;
57         struct iommu_device iommu;
58         struct ipmmu_vmsa_device *root;
59         const struct ipmmu_features *features;
60         unsigned int num_ctx;
61         spinlock_t lock;                        /* Protects ctx and domains[] */
62         DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
63         struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
64         s8 utlb_ctx[IPMMU_UTLB_MAX];
65
66         struct iommu_group *group;
67         struct dma_iommu_mapping *mapping;
68 };
69
70 struct ipmmu_vmsa_domain {
71         struct ipmmu_vmsa_device *mmu;
72         struct iommu_domain io_domain;
73
74         struct io_pgtable_cfg cfg;
75         struct io_pgtable_ops *iop;
76
77         unsigned int context_id;
78         struct mutex mutex;                     /* Protects mappings */
79 };
80
81 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
82 {
83         return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
84 }
85
86 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
87 {
88         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
89
90         return fwspec ? fwspec->iommu_priv : NULL;
91 }
92
93 #define TLB_LOOP_TIMEOUT                100     /* 100us */
94
95 /* -----------------------------------------------------------------------------
96  * Registers Definition
97  */
98
99 #define IM_NS_ALIAS_OFFSET              0x800
100
101 #define IM_CTX_SIZE                     0x40
102
103 #define IMCTR                           0x0000
104 #define IMCTR_TRE                       (1 << 17)
105 #define IMCTR_AFE                       (1 << 16)
106 #define IMCTR_RTSEL_MASK                (3 << 4)
107 #define IMCTR_RTSEL_SHIFT               4
108 #define IMCTR_TREN                      (1 << 3)
109 #define IMCTR_INTEN                     (1 << 2)
110 #define IMCTR_FLUSH                     (1 << 1)
111 #define IMCTR_MMUEN                     (1 << 0)
112
113 #define IMCAAR                          0x0004
114
115 #define IMTTBCR                         0x0008
116 #define IMTTBCR_EAE                     (1 << 31)
117 #define IMTTBCR_PMB                     (1 << 30)
118 #define IMTTBCR_SH1_NON_SHAREABLE       (0 << 28)
119 #define IMTTBCR_SH1_OUTER_SHAREABLE     (2 << 28)
120 #define IMTTBCR_SH1_INNER_SHAREABLE     (3 << 28)
121 #define IMTTBCR_SH1_MASK                (3 << 28)
122 #define IMTTBCR_ORGN1_NC                (0 << 26)
123 #define IMTTBCR_ORGN1_WB_WA             (1 << 26)
124 #define IMTTBCR_ORGN1_WT                (2 << 26)
125 #define IMTTBCR_ORGN1_WB                (3 << 26)
126 #define IMTTBCR_ORGN1_MASK              (3 << 26)
127 #define IMTTBCR_IRGN1_NC                (0 << 24)
128 #define IMTTBCR_IRGN1_WB_WA             (1 << 24)
129 #define IMTTBCR_IRGN1_WT                (2 << 24)
130 #define IMTTBCR_IRGN1_WB                (3 << 24)
131 #define IMTTBCR_IRGN1_MASK              (3 << 24)
132 #define IMTTBCR_TSZ1_MASK               (7 << 16)
133 #define IMTTBCR_TSZ1_SHIFT              16
134 #define IMTTBCR_SH0_NON_SHAREABLE       (0 << 12)
135 #define IMTTBCR_SH0_OUTER_SHAREABLE     (2 << 12)
136 #define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)
137 #define IMTTBCR_SH0_MASK                (3 << 12)
138 #define IMTTBCR_ORGN0_NC                (0 << 10)
139 #define IMTTBCR_ORGN0_WB_WA             (1 << 10)
140 #define IMTTBCR_ORGN0_WT                (2 << 10)
141 #define IMTTBCR_ORGN0_WB                (3 << 10)
142 #define IMTTBCR_ORGN0_MASK              (3 << 10)
143 #define IMTTBCR_IRGN0_NC                (0 << 8)
144 #define IMTTBCR_IRGN0_WB_WA             (1 << 8)
145 #define IMTTBCR_IRGN0_WT                (2 << 8)
146 #define IMTTBCR_IRGN0_WB                (3 << 8)
147 #define IMTTBCR_IRGN0_MASK              (3 << 8)
148 #define IMTTBCR_SL0_LVL_2               (0 << 4)
149 #define IMTTBCR_SL0_LVL_1               (1 << 4)
150 #define IMTTBCR_TSZ0_MASK               (7 << 0)
151 #define IMTTBCR_TSZ0_SHIFT              O
152
153 #define IMTTBCR_SL0_TWOBIT_LVL_3        (0 << 6)
154 #define IMTTBCR_SL0_TWOBIT_LVL_2        (1 << 6)
155 #define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)
156
157 #define IMBUSCR                         0x000c
158 #define IMBUSCR_DVM                     (1 << 2)
159 #define IMBUSCR_BUSSEL_SYS              (0 << 0)
160 #define IMBUSCR_BUSSEL_CCI              (1 << 0)
161 #define IMBUSCR_BUSSEL_IMCAAR           (2 << 0)
162 #define IMBUSCR_BUSSEL_CCI_IMCAAR       (3 << 0)
163 #define IMBUSCR_BUSSEL_MASK             (3 << 0)
164
165 #define IMTTLBR0                        0x0010
166 #define IMTTUBR0                        0x0014
167 #define IMTTLBR1                        0x0018
168 #define IMTTUBR1                        0x001c
169
170 #define IMSTR                           0x0020
171 #define IMSTR_ERRLVL_MASK               (3 << 12)
172 #define IMSTR_ERRLVL_SHIFT              12
173 #define IMSTR_ERRCODE_TLB_FORMAT        (1 << 8)
174 #define IMSTR_ERRCODE_ACCESS_PERM       (4 << 8)
175 #define IMSTR_ERRCODE_SECURE_ACCESS     (5 << 8)
176 #define IMSTR_ERRCODE_MASK              (7 << 8)
177 #define IMSTR_MHIT                      (1 << 4)
178 #define IMSTR_ABORT                     (1 << 2)
179 #define IMSTR_PF                        (1 << 1)
180 #define IMSTR_TF                        (1 << 0)
181
182 #define IMMAIR0                         0x0028
183 #define IMMAIR1                         0x002c
184 #define IMMAIR_ATTR_MASK                0xff
185 #define IMMAIR_ATTR_DEVICE              0x04
186 #define IMMAIR_ATTR_NC                  0x44
187 #define IMMAIR_ATTR_WBRWA               0xff
188 #define IMMAIR_ATTR_SHIFT(n)            ((n) << 3)
189 #define IMMAIR_ATTR_IDX_NC              0
190 #define IMMAIR_ATTR_IDX_WBRWA           1
191 #define IMMAIR_ATTR_IDX_DEV             2
192
193 #define IMELAR                          0x0030  /* IMEAR on R-Car Gen2 */
194 #define IMEUAR                          0x0034  /* R-Car Gen3 only */
195
196 #define IMPCTR                          0x0200
197 #define IMPSTR                          0x0208
198 #define IMPEAR                          0x020c
199 #define IMPMBA(n)                       (0x0280 + ((n) * 4))
200 #define IMPMBD(n)                       (0x02c0 + ((n) * 4))
201
202 #define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
203 #define IMUCTR0(n)                      (0x0300 + ((n) * 16))
204 #define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))
205 #define IMUCTR_FIXADDEN                 (1 << 31)
206 #define IMUCTR_FIXADD_MASK              (0xff << 16)
207 #define IMUCTR_FIXADD_SHIFT             16
208 #define IMUCTR_TTSEL_MMU(n)             ((n) << 4)
209 #define IMUCTR_TTSEL_PMB                (8 << 4)
210 #define IMUCTR_TTSEL_MASK               (15 << 4)
211 #define IMUCTR_FLUSH                    (1 << 1)
212 #define IMUCTR_MMUEN                    (1 << 0)
213
214 #define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
215 #define IMUASID0(n)                     (0x0308 + ((n) * 16))
216 #define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))
217 #define IMUASID_ASID8_MASK              (0xff << 8)
218 #define IMUASID_ASID8_SHIFT             8
219 #define IMUASID_ASID0_MASK              (0xff << 0)
220 #define IMUASID_ASID0_SHIFT             0
221
222 /* -----------------------------------------------------------------------------
223  * Root device handling
224  */
225
226 static struct platform_driver ipmmu_driver;
227
228 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
229 {
230         return mmu->root == mmu;
231 }
232
233 static int __ipmmu_check_device(struct device *dev, void *data)
234 {
235         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
236         struct ipmmu_vmsa_device **rootp = data;
237
238         if (ipmmu_is_root(mmu))
239                 *rootp = mmu;
240
241         return 0;
242 }
243
244 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
245 {
246         struct ipmmu_vmsa_device *root = NULL;
247
248         return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
249                                       __ipmmu_check_device) == 0 ? root : NULL;
250 }
251
252 /* -----------------------------------------------------------------------------
253  * Read/Write Access
254  */
255
256 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
257 {
258         return ioread32(mmu->base + offset);
259 }
260
261 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
262                         u32 data)
263 {
264         iowrite32(data, mmu->base + offset);
265 }
266
267 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
268                                unsigned int reg)
269 {
270         return ipmmu_read(domain->mmu->root,
271                           domain->context_id * IM_CTX_SIZE + reg);
272 }
273
274 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
275                                  unsigned int reg, u32 data)
276 {
277         ipmmu_write(domain->mmu->root,
278                     domain->context_id * IM_CTX_SIZE + reg, data);
279 }
280
281 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
282                                 unsigned int reg, u32 data)
283 {
284         if (domain->mmu != domain->mmu->root)
285                 ipmmu_write(domain->mmu,
286                             domain->context_id * IM_CTX_SIZE + reg, data);
287
288         ipmmu_write(domain->mmu->root,
289                     domain->context_id * IM_CTX_SIZE + reg, data);
290 }
291
292 /* -----------------------------------------------------------------------------
293  * TLB and microTLB Management
294  */
295
296 /* Wait for any pending TLB invalidations to complete */
297 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
298 {
299         unsigned int count = 0;
300
301         while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
302                 cpu_relax();
303                 if (++count == TLB_LOOP_TIMEOUT) {
304                         dev_err_ratelimited(domain->mmu->dev,
305                         "TLB sync timed out -- MMU may be deadlocked\n");
306                         return;
307                 }
308                 udelay(1);
309         }
310 }
311
312 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
313 {
314         u32 reg;
315
316         reg = ipmmu_ctx_read_root(domain, IMCTR);
317         reg |= IMCTR_FLUSH;
318         ipmmu_ctx_write_all(domain, IMCTR, reg);
319
320         ipmmu_tlb_sync(domain);
321 }
322
323 /*
324  * Enable MMU translation for the microTLB.
325  */
326 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
327                               unsigned int utlb)
328 {
329         struct ipmmu_vmsa_device *mmu = domain->mmu;
330
331         /*
332          * TODO: Reference-count the microTLB as several bus masters can be
333          * connected to the same microTLB.
334          */
335
336         /* TODO: What should we set the ASID to ? */
337         ipmmu_write(mmu, IMUASID(utlb), 0);
338         /* TODO: Do we need to flush the microTLB ? */
339         ipmmu_write(mmu, IMUCTR(utlb),
340                     IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
341                     IMUCTR_MMUEN);
342         mmu->utlb_ctx[utlb] = domain->context_id;
343 }
344
345 /*
346  * Disable MMU translation for the microTLB.
347  */
348 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
349                                unsigned int utlb)
350 {
351         struct ipmmu_vmsa_device *mmu = domain->mmu;
352
353         ipmmu_write(mmu, IMUCTR(utlb), 0);
354         mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
355 }
356
357 static void ipmmu_tlb_flush_all(void *cookie)
358 {
359         struct ipmmu_vmsa_domain *domain = cookie;
360
361         ipmmu_tlb_invalidate(domain);
362 }
363
364 static void ipmmu_tlb_add_flush(unsigned long iova, size_t size,
365                                 size_t granule, bool leaf, void *cookie)
366 {
367         /* The hardware doesn't support selective TLB flush. */
368 }
369
370 static const struct iommu_gather_ops ipmmu_gather_ops = {
371         .tlb_flush_all = ipmmu_tlb_flush_all,
372         .tlb_add_flush = ipmmu_tlb_add_flush,
373         .tlb_sync = ipmmu_tlb_flush_all,
374 };
375
376 /* -----------------------------------------------------------------------------
377  * Domain/Context Management
378  */
379
380 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
381                                          struct ipmmu_vmsa_domain *domain)
382 {
383         unsigned long flags;
384         int ret;
385
386         spin_lock_irqsave(&mmu->lock, flags);
387
388         ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
389         if (ret != mmu->num_ctx) {
390                 mmu->domains[ret] = domain;
391                 set_bit(ret, mmu->ctx);
392         } else
393                 ret = -EBUSY;
394
395         spin_unlock_irqrestore(&mmu->lock, flags);
396
397         return ret;
398 }
399
400 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
401                                       unsigned int context_id)
402 {
403         unsigned long flags;
404
405         spin_lock_irqsave(&mmu->lock, flags);
406
407         clear_bit(context_id, mmu->ctx);
408         mmu->domains[context_id] = NULL;
409
410         spin_unlock_irqrestore(&mmu->lock, flags);
411 }
412
413 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
414 {
415         u64 ttbr;
416         u32 tmp;
417
418         /* TTBR0 */
419         ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
420         ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
421         ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
422
423         /*
424          * TTBCR
425          * We use long descriptors with inner-shareable WBWA tables and allocate
426          * the whole 32-bit VA space to TTBR0.
427          */
428         if (domain->mmu->features->twobit_imttbcr_sl0)
429                 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
430         else
431                 tmp = IMTTBCR_SL0_LVL_1;
432
433         ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE |
434                              IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
435                              IMTTBCR_IRGN0_WB_WA | tmp);
436
437         /* MAIR0 */
438         ipmmu_ctx_write_root(domain, IMMAIR0,
439                              domain->cfg.arm_lpae_s1_cfg.mair[0]);
440
441         /* IMBUSCR */
442         if (domain->mmu->features->setup_imbuscr)
443                 ipmmu_ctx_write_root(domain, IMBUSCR,
444                                      ipmmu_ctx_read_root(domain, IMBUSCR) &
445                                      ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
446
447         /*
448          * IMSTR
449          * Clear all interrupt flags.
450          */
451         ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
452
453         /*
454          * IMCTR
455          * Enable the MMU and interrupt generation. The long-descriptor
456          * translation table format doesn't use TEX remapping. Don't enable AF
457          * software management as we have no use for it. Flush the TLB as
458          * required when modifying the context registers.
459          */
460         ipmmu_ctx_write_all(domain, IMCTR,
461                             IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
462 }
463
464 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
465 {
466         int ret;
467
468         /*
469          * Allocate the page table operations.
470          *
471          * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
472          * access, Long-descriptor format" that the NStable bit being set in a
473          * table descriptor will result in the NStable and NS bits of all child
474          * entries being ignored and considered as being set. The IPMMU seems
475          * not to comply with this, as it generates a secure access page fault
476          * if any of the NStable and NS bits isn't set when running in
477          * non-secure mode.
478          */
479         domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
480         domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
481         domain->cfg.ias = 32;
482         domain->cfg.oas = 40;
483         domain->cfg.tlb = &ipmmu_gather_ops;
484         domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
485         domain->io_domain.geometry.force_aperture = true;
486         /*
487          * TODO: Add support for coherent walk through CCI with DVM and remove
488          * cache handling. For now, delegate it to the io-pgtable code.
489          */
490         domain->cfg.iommu_dev = domain->mmu->root->dev;
491
492         /*
493          * Find an unused context.
494          */
495         ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
496         if (ret < 0)
497                 return ret;
498
499         domain->context_id = ret;
500
501         domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
502                                            domain);
503         if (!domain->iop) {
504                 ipmmu_domain_free_context(domain->mmu->root,
505                                           domain->context_id);
506                 return -EINVAL;
507         }
508
509         ipmmu_domain_setup_context(domain);
510         return 0;
511 }
512
513 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
514 {
515         if (!domain->mmu)
516                 return;
517
518         /*
519          * Disable the context. Flush the TLB as required when modifying the
520          * context registers.
521          *
522          * TODO: Is TLB flush really needed ?
523          */
524         ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
525         ipmmu_tlb_sync(domain);
526         ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
527 }
528
529 /* -----------------------------------------------------------------------------
530  * Fault Handling
531  */
532
533 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
534 {
535         const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
536         struct ipmmu_vmsa_device *mmu = domain->mmu;
537         unsigned long iova;
538         u32 status;
539
540         status = ipmmu_ctx_read_root(domain, IMSTR);
541         if (!(status & err_mask))
542                 return IRQ_NONE;
543
544         iova = ipmmu_ctx_read_root(domain, IMELAR);
545         if (IS_ENABLED(CONFIG_64BIT))
546                 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
547
548         /*
549          * Clear the error status flags. Unlike traditional interrupt flag
550          * registers that must be cleared by writing 1, this status register
551          * seems to require 0. The error address register must be read before,
552          * otherwise its value will be 0.
553          */
554         ipmmu_ctx_write_root(domain, IMSTR, 0);
555
556         /* Log fatal errors. */
557         if (status & IMSTR_MHIT)
558                 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
559                                     iova);
560         if (status & IMSTR_ABORT)
561                 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
562                                     iova);
563
564         if (!(status & (IMSTR_PF | IMSTR_TF)))
565                 return IRQ_NONE;
566
567         /*
568          * Try to handle page faults and translation faults.
569          *
570          * TODO: We need to look up the faulty device based on the I/O VA. Use
571          * the IOMMU device for now.
572          */
573         if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
574                 return IRQ_HANDLED;
575
576         dev_err_ratelimited(mmu->dev,
577                             "Unhandled fault: status 0x%08x iova 0x%lx\n",
578                             status, iova);
579
580         return IRQ_HANDLED;
581 }
582
583 static irqreturn_t ipmmu_irq(int irq, void *dev)
584 {
585         struct ipmmu_vmsa_device *mmu = dev;
586         irqreturn_t status = IRQ_NONE;
587         unsigned int i;
588         unsigned long flags;
589
590         spin_lock_irqsave(&mmu->lock, flags);
591
592         /*
593          * Check interrupts for all active contexts.
594          */
595         for (i = 0; i < mmu->num_ctx; i++) {
596                 if (!mmu->domains[i])
597                         continue;
598                 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
599                         status = IRQ_HANDLED;
600         }
601
602         spin_unlock_irqrestore(&mmu->lock, flags);
603
604         return status;
605 }
606
607 /* -----------------------------------------------------------------------------
608  * IOMMU Operations
609  */
610
611 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
612 {
613         struct ipmmu_vmsa_domain *domain;
614
615         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
616         if (!domain)
617                 return NULL;
618
619         mutex_init(&domain->mutex);
620
621         return &domain->io_domain;
622 }
623
624 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
625 {
626         struct iommu_domain *io_domain = NULL;
627
628         switch (type) {
629         case IOMMU_DOMAIN_UNMANAGED:
630                 io_domain = __ipmmu_domain_alloc(type);
631                 break;
632
633         case IOMMU_DOMAIN_DMA:
634                 io_domain = __ipmmu_domain_alloc(type);
635                 if (io_domain && iommu_get_dma_cookie(io_domain)) {
636                         kfree(io_domain);
637                         io_domain = NULL;
638                 }
639                 break;
640         }
641
642         return io_domain;
643 }
644
645 static void ipmmu_domain_free(struct iommu_domain *io_domain)
646 {
647         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
648
649         /*
650          * Free the domain resources. We assume that all devices have already
651          * been detached.
652          */
653         iommu_put_dma_cookie(io_domain);
654         ipmmu_domain_destroy_context(domain);
655         free_io_pgtable_ops(domain->iop);
656         kfree(domain);
657 }
658
659 static int ipmmu_attach_device(struct iommu_domain *io_domain,
660                                struct device *dev)
661 {
662         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
663         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
664         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
665         unsigned int i;
666         int ret = 0;
667
668         if (!mmu) {
669                 dev_err(dev, "Cannot attach to IPMMU\n");
670                 return -ENXIO;
671         }
672
673         mutex_lock(&domain->mutex);
674
675         if (!domain->mmu) {
676                 /* The domain hasn't been used yet, initialize it. */
677                 domain->mmu = mmu;
678                 ret = ipmmu_domain_init_context(domain);
679                 if (ret < 0) {
680                         dev_err(dev, "Unable to initialize IPMMU context\n");
681                         domain->mmu = NULL;
682                 } else {
683                         dev_info(dev, "Using IPMMU context %u\n",
684                                  domain->context_id);
685                 }
686         } else if (domain->mmu != mmu) {
687                 /*
688                  * Something is wrong, we can't attach two devices using
689                  * different IOMMUs to the same domain.
690                  */
691                 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
692                         dev_name(mmu->dev), dev_name(domain->mmu->dev));
693                 ret = -EINVAL;
694         } else
695                 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
696
697         mutex_unlock(&domain->mutex);
698
699         if (ret < 0)
700                 return ret;
701
702         for (i = 0; i < fwspec->num_ids; ++i)
703                 ipmmu_utlb_enable(domain, fwspec->ids[i]);
704
705         return 0;
706 }
707
708 static void ipmmu_detach_device(struct iommu_domain *io_domain,
709                                 struct device *dev)
710 {
711         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
712         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
713         unsigned int i;
714
715         for (i = 0; i < fwspec->num_ids; ++i)
716                 ipmmu_utlb_disable(domain, fwspec->ids[i]);
717
718         /*
719          * TODO: Optimize by disabling the context when no device is attached.
720          */
721 }
722
723 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
724                      phys_addr_t paddr, size_t size, int prot)
725 {
726         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
727
728         if (!domain)
729                 return -ENODEV;
730
731         return domain->iop->map(domain->iop, iova, paddr, size, prot);
732 }
733
734 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
735                           size_t size)
736 {
737         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
738
739         return domain->iop->unmap(domain->iop, iova, size);
740 }
741
742 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain)
743 {
744         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
745
746         if (domain->mmu)
747                 ipmmu_tlb_flush_all(domain);
748 }
749
750 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
751                                       dma_addr_t iova)
752 {
753         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
754
755         /* TODO: Is locking needed ? */
756
757         return domain->iop->iova_to_phys(domain->iop, iova);
758 }
759
760 static int ipmmu_init_platform_device(struct device *dev,
761                                       struct of_phandle_args *args)
762 {
763         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
764         struct platform_device *ipmmu_pdev;
765
766         ipmmu_pdev = of_find_device_by_node(args->np);
767         if (!ipmmu_pdev)
768                 return -ENODEV;
769
770         fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
771
772         return 0;
773 }
774
775 static const struct soc_device_attribute soc_rcar_gen3[] = {
776         { .soc_id = "r8a774a1", },
777         { .soc_id = "r8a774c0", },
778         { .soc_id = "r8a7795", },
779         { .soc_id = "r8a7796", },
780         { .soc_id = "r8a77965", },
781         { .soc_id = "r8a77970", },
782         { .soc_id = "r8a77990", },
783         { .soc_id = "r8a77995", },
784         { /* sentinel */ }
785 };
786
787 static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = {
788         { .soc_id = "r8a774c0", },
789         { .soc_id = "r8a7795", .revision = "ES3.*" },
790         { .soc_id = "r8a77965", },
791         { .soc_id = "r8a77990", },
792         { .soc_id = "r8a77995", },
793         { /* sentinel */ }
794 };
795
796 static const char * const rcar_gen3_slave_whitelist[] = {
797 };
798
799 static bool ipmmu_slave_whitelist(struct device *dev)
800 {
801         unsigned int i;
802
803         /*
804          * For R-Car Gen3 use a white list to opt-in slave devices.
805          * For Other SoCs, this returns true anyway.
806          */
807         if (!soc_device_match(soc_rcar_gen3))
808                 return true;
809
810         /* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
811         if (!soc_device_match(soc_rcar_gen3_whitelist))
812                 return false;
813
814         /* Check whether this slave device can work with the IPMMU */
815         for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) {
816                 if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i]))
817                         return true;
818         }
819
820         /* Otherwise, do not allow use of IPMMU */
821         return false;
822 }
823
824 static int ipmmu_of_xlate(struct device *dev,
825                           struct of_phandle_args *spec)
826 {
827         if (!ipmmu_slave_whitelist(dev))
828                 return -ENODEV;
829
830         iommu_fwspec_add_ids(dev, spec->args, 1);
831
832         /* Initialize once - xlate() will call multiple times */
833         if (to_ipmmu(dev))
834                 return 0;
835
836         return ipmmu_init_platform_device(dev, spec);
837 }
838
839 static int ipmmu_init_arm_mapping(struct device *dev)
840 {
841         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
842         struct iommu_group *group;
843         int ret;
844
845         /* Create a device group and add the device to it. */
846         group = iommu_group_alloc();
847         if (IS_ERR(group)) {
848                 dev_err(dev, "Failed to allocate IOMMU group\n");
849                 return PTR_ERR(group);
850         }
851
852         ret = iommu_group_add_device(group, dev);
853         iommu_group_put(group);
854
855         if (ret < 0) {
856                 dev_err(dev, "Failed to add device to IPMMU group\n");
857                 return ret;
858         }
859
860         /*
861          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
862          * VAs. This will allocate a corresponding IOMMU domain.
863          *
864          * TODO:
865          * - Create one mapping per context (TLB).
866          * - Make the mapping size configurable ? We currently use a 2GB mapping
867          *   at a 1GB offset to ensure that NULL VAs will fault.
868          */
869         if (!mmu->mapping) {
870                 struct dma_iommu_mapping *mapping;
871
872                 mapping = arm_iommu_create_mapping(&platform_bus_type,
873                                                    SZ_1G, SZ_2G);
874                 if (IS_ERR(mapping)) {
875                         dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
876                         ret = PTR_ERR(mapping);
877                         goto error;
878                 }
879
880                 mmu->mapping = mapping;
881         }
882
883         /* Attach the ARM VA mapping to the device. */
884         ret = arm_iommu_attach_device(dev, mmu->mapping);
885         if (ret < 0) {
886                 dev_err(dev, "Failed to attach device to VA mapping\n");
887                 goto error;
888         }
889
890         return 0;
891
892 error:
893         iommu_group_remove_device(dev);
894         if (mmu->mapping)
895                 arm_iommu_release_mapping(mmu->mapping);
896
897         return ret;
898 }
899
900 static int ipmmu_add_device(struct device *dev)
901 {
902         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
903         struct iommu_group *group;
904         int ret;
905
906         /*
907          * Only let through devices that have been verified in xlate()
908          */
909         if (!mmu)
910                 return -ENODEV;
911
912         if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)) {
913                 ret = ipmmu_init_arm_mapping(dev);
914                 if (ret)
915                         return ret;
916         } else {
917                 group = iommu_group_get_for_dev(dev);
918                 if (IS_ERR(group))
919                         return PTR_ERR(group);
920
921                 iommu_group_put(group);
922         }
923
924         iommu_device_link(&mmu->iommu, dev);
925         return 0;
926 }
927
928 static void ipmmu_remove_device(struct device *dev)
929 {
930         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
931
932         iommu_device_unlink(&mmu->iommu, dev);
933         arm_iommu_detach_device(dev);
934         iommu_group_remove_device(dev);
935 }
936
937 static struct iommu_group *ipmmu_find_group(struct device *dev)
938 {
939         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
940         struct iommu_group *group;
941
942         if (mmu->group)
943                 return iommu_group_ref_get(mmu->group);
944
945         group = iommu_group_alloc();
946         if (!IS_ERR(group))
947                 mmu->group = group;
948
949         return group;
950 }
951
952 static const struct iommu_ops ipmmu_ops = {
953         .domain_alloc = ipmmu_domain_alloc,
954         .domain_free = ipmmu_domain_free,
955         .attach_dev = ipmmu_attach_device,
956         .detach_dev = ipmmu_detach_device,
957         .map = ipmmu_map,
958         .unmap = ipmmu_unmap,
959         .flush_iotlb_all = ipmmu_iotlb_sync,
960         .iotlb_sync = ipmmu_iotlb_sync,
961         .iova_to_phys = ipmmu_iova_to_phys,
962         .add_device = ipmmu_add_device,
963         .remove_device = ipmmu_remove_device,
964         .device_group = ipmmu_find_group,
965         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
966         .of_xlate = ipmmu_of_xlate,
967 };
968
969 /* -----------------------------------------------------------------------------
970  * Probe/remove and init
971  */
972
973 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
974 {
975         unsigned int i;
976
977         /* Disable all contexts. */
978         for (i = 0; i < mmu->num_ctx; ++i)
979                 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
980 }
981
982 static const struct ipmmu_features ipmmu_features_default = {
983         .use_ns_alias_offset = true,
984         .has_cache_leaf_nodes = false,
985         .number_of_contexts = 1, /* software only tested with one context */
986         .num_utlbs = 32,
987         .setup_imbuscr = true,
988         .twobit_imttbcr_sl0 = false,
989         .reserved_context = false,
990 };
991
992 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
993         .use_ns_alias_offset = false,
994         .has_cache_leaf_nodes = true,
995         .number_of_contexts = 8,
996         .num_utlbs = 48,
997         .setup_imbuscr = false,
998         .twobit_imttbcr_sl0 = true,
999         .reserved_context = true,
1000 };
1001
1002 static const struct of_device_id ipmmu_of_ids[] = {
1003         {
1004                 .compatible = "renesas,ipmmu-vmsa",
1005                 .data = &ipmmu_features_default,
1006         }, {
1007                 .compatible = "renesas,ipmmu-r8a774a1",
1008                 .data = &ipmmu_features_rcar_gen3,
1009         }, {
1010                 .compatible = "renesas,ipmmu-r8a774c0",
1011                 .data = &ipmmu_features_rcar_gen3,
1012         }, {
1013                 .compatible = "renesas,ipmmu-r8a7795",
1014                 .data = &ipmmu_features_rcar_gen3,
1015         }, {
1016                 .compatible = "renesas,ipmmu-r8a7796",
1017                 .data = &ipmmu_features_rcar_gen3,
1018         }, {
1019                 .compatible = "renesas,ipmmu-r8a77965",
1020                 .data = &ipmmu_features_rcar_gen3,
1021         }, {
1022                 .compatible = "renesas,ipmmu-r8a77970",
1023                 .data = &ipmmu_features_rcar_gen3,
1024         }, {
1025                 .compatible = "renesas,ipmmu-r8a77990",
1026                 .data = &ipmmu_features_rcar_gen3,
1027         }, {
1028                 .compatible = "renesas,ipmmu-r8a77995",
1029                 .data = &ipmmu_features_rcar_gen3,
1030         }, {
1031                 /* Terminator */
1032         },
1033 };
1034
1035 static int ipmmu_probe(struct platform_device *pdev)
1036 {
1037         struct ipmmu_vmsa_device *mmu;
1038         struct resource *res;
1039         int irq;
1040         int ret;
1041
1042         mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1043         if (!mmu) {
1044                 dev_err(&pdev->dev, "cannot allocate device data\n");
1045                 return -ENOMEM;
1046         }
1047
1048         mmu->dev = &pdev->dev;
1049         spin_lock_init(&mmu->lock);
1050         bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1051         mmu->features = of_device_get_match_data(&pdev->dev);
1052         memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1053         dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1054
1055         /* Map I/O memory and request IRQ. */
1056         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1057         mmu->base = devm_ioremap_resource(&pdev->dev, res);
1058         if (IS_ERR(mmu->base))
1059                 return PTR_ERR(mmu->base);
1060
1061         /*
1062          * The IPMMU has two register banks, for secure and non-secure modes.
1063          * The bank mapped at the beginning of the IPMMU address space
1064          * corresponds to the running mode of the CPU. When running in secure
1065          * mode the non-secure register bank is also available at an offset.
1066          *
1067          * Secure mode operation isn't clearly documented and is thus currently
1068          * not implemented in the driver. Furthermore, preliminary tests of
1069          * non-secure operation with the main register bank were not successful.
1070          * Offset the registers base unconditionally to point to the non-secure
1071          * alias space for now.
1072          */
1073         if (mmu->features->use_ns_alias_offset)
1074                 mmu->base += IM_NS_ALIAS_OFFSET;
1075
1076         mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1077
1078         irq = platform_get_irq(pdev, 0);
1079
1080         /*
1081          * Determine if this IPMMU instance is a root device by checking for
1082          * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1083          */
1084         if (!mmu->features->has_cache_leaf_nodes ||
1085             !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1086                 mmu->root = mmu;
1087         else
1088                 mmu->root = ipmmu_find_root();
1089
1090         /*
1091          * Wait until the root device has been registered for sure.
1092          */
1093         if (!mmu->root)
1094                 return -EPROBE_DEFER;
1095
1096         /* Root devices have mandatory IRQs */
1097         if (ipmmu_is_root(mmu)) {
1098                 if (irq < 0) {
1099                         dev_err(&pdev->dev, "no IRQ found\n");
1100                         return irq;
1101                 }
1102
1103                 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1104                                        dev_name(&pdev->dev), mmu);
1105                 if (ret < 0) {
1106                         dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1107                         return ret;
1108                 }
1109
1110                 ipmmu_device_reset(mmu);
1111
1112                 if (mmu->features->reserved_context) {
1113                         dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1114                         set_bit(0, mmu->ctx);
1115                 }
1116         }
1117
1118         /*
1119          * Register the IPMMU to the IOMMU subsystem in the following cases:
1120          * - R-Car Gen2 IPMMU (all devices registered)
1121          * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1122          */
1123         if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1124                 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1125                                              dev_name(&pdev->dev));
1126                 if (ret)
1127                         return ret;
1128
1129                 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1130                 iommu_device_set_fwnode(&mmu->iommu,
1131                                         &pdev->dev.of_node->fwnode);
1132
1133                 ret = iommu_device_register(&mmu->iommu);
1134                 if (ret)
1135                         return ret;
1136
1137 #if defined(CONFIG_IOMMU_DMA)
1138                 if (!iommu_present(&platform_bus_type))
1139                         bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1140 #endif
1141         }
1142
1143         /*
1144          * We can't create the ARM mapping here as it requires the bus to have
1145          * an IOMMU, which only happens when bus_set_iommu() is called in
1146          * ipmmu_init() after the probe function returns.
1147          */
1148
1149         platform_set_drvdata(pdev, mmu);
1150
1151         return 0;
1152 }
1153
1154 static int ipmmu_remove(struct platform_device *pdev)
1155 {
1156         struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1157
1158         iommu_device_sysfs_remove(&mmu->iommu);
1159         iommu_device_unregister(&mmu->iommu);
1160
1161         arm_iommu_release_mapping(mmu->mapping);
1162
1163         ipmmu_device_reset(mmu);
1164
1165         return 0;
1166 }
1167
1168 #ifdef CONFIG_PM_SLEEP
1169 static int ipmmu_resume_noirq(struct device *dev)
1170 {
1171         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1172         unsigned int i;
1173
1174         /* Reset root MMU and restore contexts */
1175         if (ipmmu_is_root(mmu)) {
1176                 ipmmu_device_reset(mmu);
1177
1178                 for (i = 0; i < mmu->num_ctx; i++) {
1179                         if (!mmu->domains[i])
1180                                 continue;
1181
1182                         ipmmu_domain_setup_context(mmu->domains[i]);
1183                 }
1184         }
1185
1186         /* Re-enable active micro-TLBs */
1187         for (i = 0; i < mmu->features->num_utlbs; i++) {
1188                 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1189                         continue;
1190
1191                 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1192         }
1193
1194         return 0;
1195 }
1196
1197 static const struct dev_pm_ops ipmmu_pm  = {
1198         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1199 };
1200 #define DEV_PM_OPS      &ipmmu_pm
1201 #else
1202 #define DEV_PM_OPS      NULL
1203 #endif /* CONFIG_PM_SLEEP */
1204
1205 static struct platform_driver ipmmu_driver = {
1206         .driver = {
1207                 .name = "ipmmu-vmsa",
1208                 .of_match_table = of_match_ptr(ipmmu_of_ids),
1209                 .pm = DEV_PM_OPS,
1210         },
1211         .probe = ipmmu_probe,
1212         .remove = ipmmu_remove,
1213 };
1214
1215 static int __init ipmmu_init(void)
1216 {
1217         struct device_node *np;
1218         static bool setup_done;
1219         int ret;
1220
1221         if (setup_done)
1222                 return 0;
1223
1224         np = of_find_matching_node(NULL, ipmmu_of_ids);
1225         if (!np)
1226                 return 0;
1227
1228         of_node_put(np);
1229
1230         ret = platform_driver_register(&ipmmu_driver);
1231         if (ret < 0)
1232                 return ret;
1233
1234 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1235         if (!iommu_present(&platform_bus_type))
1236                 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1237 #endif
1238
1239         setup_done = true;
1240         return 0;
1241 }
1242 subsys_initcall(ipmmu_init);