]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/irqchip/irq-gic-v3-its.c
Linux 5.6-rc7
[linux.git] / drivers / irqchip / irq-gic-v3-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/irqdomain.h>
18 #include <linux/list.h>
19 #include <linux/log2.h>
20 #include <linux/memblock.h>
21 #include <linux/mm.h>
22 #include <linux/msi.h>
23 #include <linux/of.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_pci.h>
27 #include <linux/of_platform.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/syscore_ops.h>
31
32 #include <linux/irqchip.h>
33 #include <linux/irqchip/arm-gic-v3.h>
34 #include <linux/irqchip/arm-gic-v4.h>
35
36 #include <asm/cputype.h>
37 #include <asm/exception.h>
38
39 #include "irq-gic-common.h"
40
41 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
42 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
44 #define ITS_FLAGS_SAVE_SUSPEND_STATE            (1ULL << 3)
45
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING     (1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED      (1 << 1)
48
49 static u32 lpi_id_bits;
50
51 /*
52  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
53  * deal with (one configuration byte per interrupt). PENDBASE has to
54  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
55  */
56 #define LPI_NRBITS              lpi_id_bits
57 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
58 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
59
60 #define LPI_PROP_DEFAULT_PRIO   GICD_INT_DEF_PRI
61
62 /*
63  * Collection structure - just an ID, and a redistributor address to
64  * ping. We use one per CPU as a bag of interrupts assigned to this
65  * CPU.
66  */
67 struct its_collection {
68         u64                     target_address;
69         u16                     col_id;
70 };
71
72 /*
73  * The ITS_BASER structure - contains memory information, cached
74  * value of BASER register configuration and ITS page size.
75  */
76 struct its_baser {
77         void            *base;
78         u64             val;
79         u32             order;
80         u32             psz;
81 };
82
83 struct its_device;
84
85 /*
86  * The ITS structure - contains most of the infrastructure, with the
87  * top-level MSI domain, the command queue, the collections, and the
88  * list of devices writing to it.
89  *
90  * dev_alloc_lock has to be taken for device allocations, while the
91  * spinlock must be taken to parse data structures such as the device
92  * list.
93  */
94 struct its_node {
95         raw_spinlock_t          lock;
96         struct mutex            dev_alloc_lock;
97         struct list_head        entry;
98         void __iomem            *base;
99         phys_addr_t             phys_base;
100         struct its_cmd_block    *cmd_base;
101         struct its_cmd_block    *cmd_write;
102         struct its_baser        tables[GITS_BASER_NR_REGS];
103         struct its_collection   *collections;
104         struct fwnode_handle    *fwnode_handle;
105         u64                     (*get_msi_base)(struct its_device *its_dev);
106         u64                     typer;
107         u64                     cbaser_save;
108         u32                     ctlr_save;
109         u32                     mpidr;
110         struct list_head        its_device_list;
111         u64                     flags;
112         unsigned long           list_nr;
113         int                     numa_node;
114         unsigned int            msi_domain_flags;
115         u32                     pre_its_base; /* for Socionext Synquacer */
116         int                     vlpi_redist_offset;
117 };
118
119 #define is_v4(its)              (!!((its)->typer & GITS_TYPER_VLPIS))
120 #define is_v4_1(its)            (!!((its)->typer & GITS_TYPER_VMAPP))
121 #define device_ids(its)         (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
122
123 #define ITS_ITT_ALIGN           SZ_256
124
125 /* The maximum number of VPEID bits supported by VLPI commands */
126 #define ITS_MAX_VPEID_BITS                                              \
127         ({                                                              \
128                 int nvpeid = 16;                                        \
129                 if (gic_rdists->has_rvpeid &&                           \
130                     gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)          \
131                         nvpeid = 1 + (gic_rdists->gicd_typer2 &         \
132                                       GICD_TYPER2_VID);                 \
133                                                                         \
134                 nvpeid;                                                 \
135         })
136 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
137
138 /* Convert page order to size in bytes */
139 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
140
141 struct event_lpi_map {
142         unsigned long           *lpi_map;
143         u16                     *col_map;
144         irq_hw_number_t         lpi_base;
145         int                     nr_lpis;
146         raw_spinlock_t          vlpi_lock;
147         struct its_vm           *vm;
148         struct its_vlpi_map     *vlpi_maps;
149         int                     nr_vlpis;
150 };
151
152 /*
153  * The ITS view of a device - belongs to an ITS, owns an interrupt
154  * translation table, and a list of interrupts.  If it some of its
155  * LPIs are injected into a guest (GICv4), the event_map.vm field
156  * indicates which one.
157  */
158 struct its_device {
159         struct list_head        entry;
160         struct its_node         *its;
161         struct event_lpi_map    event_map;
162         void                    *itt;
163         u32                     nr_ites;
164         u32                     device_id;
165         bool                    shared;
166 };
167
168 static struct {
169         raw_spinlock_t          lock;
170         struct its_device       *dev;
171         struct its_vpe          **vpes;
172         int                     next_victim;
173 } vpe_proxy;
174
175 static LIST_HEAD(its_nodes);
176 static DEFINE_RAW_SPINLOCK(its_lock);
177 static struct rdists *gic_rdists;
178 static struct irq_domain *its_parent;
179
180 static unsigned long its_list_map;
181 static u16 vmovp_seq_num;
182 static DEFINE_RAW_SPINLOCK(vmovp_lock);
183
184 static DEFINE_IDA(its_vpeid_ida);
185
186 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
187 #define gic_data_rdist_cpu(cpu)         (per_cpu_ptr(gic_rdists->rdist, cpu))
188 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
189 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
190
191 static u16 get_its_list(struct its_vm *vm)
192 {
193         struct its_node *its;
194         unsigned long its_list = 0;
195
196         list_for_each_entry(its, &its_nodes, entry) {
197                 if (!is_v4(its))
198                         continue;
199
200                 if (vm->vlpi_count[its->list_nr])
201                         __set_bit(its->list_nr, &its_list);
202         }
203
204         return (u16)its_list;
205 }
206
207 static inline u32 its_get_event_id(struct irq_data *d)
208 {
209         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
210         return d->hwirq - its_dev->event_map.lpi_base;
211 }
212
213 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
214                                                u32 event)
215 {
216         struct its_node *its = its_dev->its;
217
218         return its->collections + its_dev->event_map.col_map[event];
219 }
220
221 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
222                                                u32 event)
223 {
224         if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
225                 return NULL;
226
227         return &its_dev->event_map.vlpi_maps[event];
228 }
229
230 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
231 {
232         if (irqd_is_forwarded_to_vcpu(d)) {
233                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
234                 u32 event = its_get_event_id(d);
235
236                 return dev_event_to_vlpi_map(its_dev, event);
237         }
238
239         return NULL;
240 }
241
242 static int irq_to_cpuid(struct irq_data *d)
243 {
244         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
245         struct its_vlpi_map *map = get_vlpi_map(d);
246
247         if (map)
248                 return map->vpe->col_idx;
249
250         return its_dev->event_map.col_map[its_get_event_id(d)];
251 }
252
253 static struct its_collection *valid_col(struct its_collection *col)
254 {
255         if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
256                 return NULL;
257
258         return col;
259 }
260
261 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
262 {
263         if (valid_col(its->collections + vpe->col_idx))
264                 return vpe;
265
266         return NULL;
267 }
268
269 /*
270  * ITS command descriptors - parameters to be encoded in a command
271  * block.
272  */
273 struct its_cmd_desc {
274         union {
275                 struct {
276                         struct its_device *dev;
277                         u32 event_id;
278                 } its_inv_cmd;
279
280                 struct {
281                         struct its_device *dev;
282                         u32 event_id;
283                 } its_clear_cmd;
284
285                 struct {
286                         struct its_device *dev;
287                         u32 event_id;
288                 } its_int_cmd;
289
290                 struct {
291                         struct its_device *dev;
292                         int valid;
293                 } its_mapd_cmd;
294
295                 struct {
296                         struct its_collection *col;
297                         int valid;
298                 } its_mapc_cmd;
299
300                 struct {
301                         struct its_device *dev;
302                         u32 phys_id;
303                         u32 event_id;
304                 } its_mapti_cmd;
305
306                 struct {
307                         struct its_device *dev;
308                         struct its_collection *col;
309                         u32 event_id;
310                 } its_movi_cmd;
311
312                 struct {
313                         struct its_device *dev;
314                         u32 event_id;
315                 } its_discard_cmd;
316
317                 struct {
318                         struct its_collection *col;
319                 } its_invall_cmd;
320
321                 struct {
322                         struct its_vpe *vpe;
323                 } its_vinvall_cmd;
324
325                 struct {
326                         struct its_vpe *vpe;
327                         struct its_collection *col;
328                         bool valid;
329                 } its_vmapp_cmd;
330
331                 struct {
332                         struct its_vpe *vpe;
333                         struct its_device *dev;
334                         u32 virt_id;
335                         u32 event_id;
336                         bool db_enabled;
337                 } its_vmapti_cmd;
338
339                 struct {
340                         struct its_vpe *vpe;
341                         struct its_device *dev;
342                         u32 event_id;
343                         bool db_enabled;
344                 } its_vmovi_cmd;
345
346                 struct {
347                         struct its_vpe *vpe;
348                         struct its_collection *col;
349                         u16 seq_num;
350                         u16 its_list;
351                 } its_vmovp_cmd;
352
353                 struct {
354                         struct its_vpe *vpe;
355                 } its_invdb_cmd;
356         };
357 };
358
359 /*
360  * The ITS command block, which is what the ITS actually parses.
361  */
362 struct its_cmd_block {
363         union {
364                 u64     raw_cmd[4];
365                 __le64  raw_cmd_le[4];
366         };
367 };
368
369 #define ITS_CMD_QUEUE_SZ                SZ_64K
370 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
371
372 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
373                                                     struct its_cmd_block *,
374                                                     struct its_cmd_desc *);
375
376 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
377                                               struct its_cmd_block *,
378                                               struct its_cmd_desc *);
379
380 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
381 {
382         u64 mask = GENMASK_ULL(h, l);
383         *raw_cmd &= ~mask;
384         *raw_cmd |= (val << l) & mask;
385 }
386
387 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
388 {
389         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
390 }
391
392 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
393 {
394         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
395 }
396
397 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
398 {
399         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
400 }
401
402 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
403 {
404         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
405 }
406
407 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
408 {
409         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
410 }
411
412 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
413 {
414         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
415 }
416
417 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
418 {
419         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
420 }
421
422 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
423 {
424         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
425 }
426
427 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
428 {
429         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
430 }
431
432 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
433 {
434         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
435 }
436
437 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
438 {
439         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
440 }
441
442 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
443 {
444         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
445 }
446
447 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
448 {
449         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
450 }
451
452 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
453 {
454         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
455 }
456
457 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
458 {
459         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
460 }
461
462 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
463 {
464         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
465 }
466
467 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
468 {
469         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
470 }
471
472 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
473 {
474         its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
475 }
476
477 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
478 {
479         its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
480 }
481
482 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
483 {
484         its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
485 }
486
487 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
488                                         u32 vpe_db_lpi)
489 {
490         its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
491 }
492
493 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
494                                         u32 vpe_db_lpi)
495 {
496         its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
497 }
498
499 static void its_encode_db(struct its_cmd_block *cmd, bool db)
500 {
501         its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
502 }
503
504 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
505 {
506         /* Let's fixup BE commands */
507         cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
508         cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
509         cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
510         cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
511 }
512
513 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
514                                                  struct its_cmd_block *cmd,
515                                                  struct its_cmd_desc *desc)
516 {
517         unsigned long itt_addr;
518         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
519
520         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
521         itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
522
523         its_encode_cmd(cmd, GITS_CMD_MAPD);
524         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
525         its_encode_size(cmd, size - 1);
526         its_encode_itt(cmd, itt_addr);
527         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
528
529         its_fixup_cmd(cmd);
530
531         return NULL;
532 }
533
534 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
535                                                  struct its_cmd_block *cmd,
536                                                  struct its_cmd_desc *desc)
537 {
538         its_encode_cmd(cmd, GITS_CMD_MAPC);
539         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
540         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
541         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
542
543         its_fixup_cmd(cmd);
544
545         return desc->its_mapc_cmd.col;
546 }
547
548 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
549                                                   struct its_cmd_block *cmd,
550                                                   struct its_cmd_desc *desc)
551 {
552         struct its_collection *col;
553
554         col = dev_event_to_col(desc->its_mapti_cmd.dev,
555                                desc->its_mapti_cmd.event_id);
556
557         its_encode_cmd(cmd, GITS_CMD_MAPTI);
558         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
559         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
560         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
561         its_encode_collection(cmd, col->col_id);
562
563         its_fixup_cmd(cmd);
564
565         return valid_col(col);
566 }
567
568 static struct its_collection *its_build_movi_cmd(struct its_node *its,
569                                                  struct its_cmd_block *cmd,
570                                                  struct its_cmd_desc *desc)
571 {
572         struct its_collection *col;
573
574         col = dev_event_to_col(desc->its_movi_cmd.dev,
575                                desc->its_movi_cmd.event_id);
576
577         its_encode_cmd(cmd, GITS_CMD_MOVI);
578         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
579         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
580         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
581
582         its_fixup_cmd(cmd);
583
584         return valid_col(col);
585 }
586
587 static struct its_collection *its_build_discard_cmd(struct its_node *its,
588                                                     struct its_cmd_block *cmd,
589                                                     struct its_cmd_desc *desc)
590 {
591         struct its_collection *col;
592
593         col = dev_event_to_col(desc->its_discard_cmd.dev,
594                                desc->its_discard_cmd.event_id);
595
596         its_encode_cmd(cmd, GITS_CMD_DISCARD);
597         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
598         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
599
600         its_fixup_cmd(cmd);
601
602         return valid_col(col);
603 }
604
605 static struct its_collection *its_build_inv_cmd(struct its_node *its,
606                                                 struct its_cmd_block *cmd,
607                                                 struct its_cmd_desc *desc)
608 {
609         struct its_collection *col;
610
611         col = dev_event_to_col(desc->its_inv_cmd.dev,
612                                desc->its_inv_cmd.event_id);
613
614         its_encode_cmd(cmd, GITS_CMD_INV);
615         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
616         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
617
618         its_fixup_cmd(cmd);
619
620         return valid_col(col);
621 }
622
623 static struct its_collection *its_build_int_cmd(struct its_node *its,
624                                                 struct its_cmd_block *cmd,
625                                                 struct its_cmd_desc *desc)
626 {
627         struct its_collection *col;
628
629         col = dev_event_to_col(desc->its_int_cmd.dev,
630                                desc->its_int_cmd.event_id);
631
632         its_encode_cmd(cmd, GITS_CMD_INT);
633         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
634         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
635
636         its_fixup_cmd(cmd);
637
638         return valid_col(col);
639 }
640
641 static struct its_collection *its_build_clear_cmd(struct its_node *its,
642                                                   struct its_cmd_block *cmd,
643                                                   struct its_cmd_desc *desc)
644 {
645         struct its_collection *col;
646
647         col = dev_event_to_col(desc->its_clear_cmd.dev,
648                                desc->its_clear_cmd.event_id);
649
650         its_encode_cmd(cmd, GITS_CMD_CLEAR);
651         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
652         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
653
654         its_fixup_cmd(cmd);
655
656         return valid_col(col);
657 }
658
659 static struct its_collection *its_build_invall_cmd(struct its_node *its,
660                                                    struct its_cmd_block *cmd,
661                                                    struct its_cmd_desc *desc)
662 {
663         its_encode_cmd(cmd, GITS_CMD_INVALL);
664         its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
665
666         its_fixup_cmd(cmd);
667
668         return NULL;
669 }
670
671 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
672                                              struct its_cmd_block *cmd,
673                                              struct its_cmd_desc *desc)
674 {
675         its_encode_cmd(cmd, GITS_CMD_VINVALL);
676         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
677
678         its_fixup_cmd(cmd);
679
680         return valid_vpe(its, desc->its_vinvall_cmd.vpe);
681 }
682
683 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
684                                            struct its_cmd_block *cmd,
685                                            struct its_cmd_desc *desc)
686 {
687         unsigned long vpt_addr, vconf_addr;
688         u64 target;
689         bool alloc;
690
691         its_encode_cmd(cmd, GITS_CMD_VMAPP);
692         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
693         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
694
695         if (!desc->its_vmapp_cmd.valid) {
696                 if (is_v4_1(its)) {
697                         alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
698                         its_encode_alloc(cmd, alloc);
699                 }
700
701                 goto out;
702         }
703
704         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
705         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
706
707         its_encode_target(cmd, target);
708         its_encode_vpt_addr(cmd, vpt_addr);
709         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
710
711         if (!is_v4_1(its))
712                 goto out;
713
714         vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
715
716         alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
717
718         its_encode_alloc(cmd, alloc);
719
720         /* We can only signal PTZ when alloc==1. Why do we have two bits? */
721         its_encode_ptz(cmd, alloc);
722         its_encode_vconf_addr(cmd, vconf_addr);
723         its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
724
725 out:
726         its_fixup_cmd(cmd);
727
728         return valid_vpe(its, desc->its_vmapp_cmd.vpe);
729 }
730
731 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
732                                             struct its_cmd_block *cmd,
733                                             struct its_cmd_desc *desc)
734 {
735         u32 db;
736
737         if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
738                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
739         else
740                 db = 1023;
741
742         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
743         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
744         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
745         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
746         its_encode_db_phys_id(cmd, db);
747         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
748
749         its_fixup_cmd(cmd);
750
751         return valid_vpe(its, desc->its_vmapti_cmd.vpe);
752 }
753
754 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
755                                            struct its_cmd_block *cmd,
756                                            struct its_cmd_desc *desc)
757 {
758         u32 db;
759
760         if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
761                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
762         else
763                 db = 1023;
764
765         its_encode_cmd(cmd, GITS_CMD_VMOVI);
766         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
767         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
768         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
769         its_encode_db_phys_id(cmd, db);
770         its_encode_db_valid(cmd, true);
771
772         its_fixup_cmd(cmd);
773
774         return valid_vpe(its, desc->its_vmovi_cmd.vpe);
775 }
776
777 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
778                                            struct its_cmd_block *cmd,
779                                            struct its_cmd_desc *desc)
780 {
781         u64 target;
782
783         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
784         its_encode_cmd(cmd, GITS_CMD_VMOVP);
785         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
786         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
787         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
788         its_encode_target(cmd, target);
789
790         if (is_v4_1(its)) {
791                 its_encode_db(cmd, true);
792                 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
793         }
794
795         its_fixup_cmd(cmd);
796
797         return valid_vpe(its, desc->its_vmovp_cmd.vpe);
798 }
799
800 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
801                                           struct its_cmd_block *cmd,
802                                           struct its_cmd_desc *desc)
803 {
804         struct its_vlpi_map *map;
805
806         map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
807                                     desc->its_inv_cmd.event_id);
808
809         its_encode_cmd(cmd, GITS_CMD_INV);
810         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
811         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
812
813         its_fixup_cmd(cmd);
814
815         return valid_vpe(its, map->vpe);
816 }
817
818 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
819                                           struct its_cmd_block *cmd,
820                                           struct its_cmd_desc *desc)
821 {
822         struct its_vlpi_map *map;
823
824         map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
825                                     desc->its_int_cmd.event_id);
826
827         its_encode_cmd(cmd, GITS_CMD_INT);
828         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
829         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
830
831         its_fixup_cmd(cmd);
832
833         return valid_vpe(its, map->vpe);
834 }
835
836 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
837                                             struct its_cmd_block *cmd,
838                                             struct its_cmd_desc *desc)
839 {
840         struct its_vlpi_map *map;
841
842         map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
843                                     desc->its_clear_cmd.event_id);
844
845         its_encode_cmd(cmd, GITS_CMD_CLEAR);
846         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
847         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
848
849         its_fixup_cmd(cmd);
850
851         return valid_vpe(its, map->vpe);
852 }
853
854 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
855                                            struct its_cmd_block *cmd,
856                                            struct its_cmd_desc *desc)
857 {
858         if (WARN_ON(!is_v4_1(its)))
859                 return NULL;
860
861         its_encode_cmd(cmd, GITS_CMD_INVDB);
862         its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
863
864         its_fixup_cmd(cmd);
865
866         return valid_vpe(its, desc->its_invdb_cmd.vpe);
867 }
868
869 static u64 its_cmd_ptr_to_offset(struct its_node *its,
870                                  struct its_cmd_block *ptr)
871 {
872         return (ptr - its->cmd_base) * sizeof(*ptr);
873 }
874
875 static int its_queue_full(struct its_node *its)
876 {
877         int widx;
878         int ridx;
879
880         widx = its->cmd_write - its->cmd_base;
881         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
882
883         /* This is incredibly unlikely to happen, unless the ITS locks up. */
884         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
885                 return 1;
886
887         return 0;
888 }
889
890 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
891 {
892         struct its_cmd_block *cmd;
893         u32 count = 1000000;    /* 1s! */
894
895         while (its_queue_full(its)) {
896                 count--;
897                 if (!count) {
898                         pr_err_ratelimited("ITS queue not draining\n");
899                         return NULL;
900                 }
901                 cpu_relax();
902                 udelay(1);
903         }
904
905         cmd = its->cmd_write++;
906
907         /* Handle queue wrapping */
908         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
909                 its->cmd_write = its->cmd_base;
910
911         /* Clear command  */
912         cmd->raw_cmd[0] = 0;
913         cmd->raw_cmd[1] = 0;
914         cmd->raw_cmd[2] = 0;
915         cmd->raw_cmd[3] = 0;
916
917         return cmd;
918 }
919
920 static struct its_cmd_block *its_post_commands(struct its_node *its)
921 {
922         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
923
924         writel_relaxed(wr, its->base + GITS_CWRITER);
925
926         return its->cmd_write;
927 }
928
929 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
930 {
931         /*
932          * Make sure the commands written to memory are observable by
933          * the ITS.
934          */
935         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
936                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
937         else
938                 dsb(ishst);
939 }
940
941 static int its_wait_for_range_completion(struct its_node *its,
942                                          u64    prev_idx,
943                                          struct its_cmd_block *to)
944 {
945         u64 rd_idx, to_idx, linear_idx;
946         u32 count = 1000000;    /* 1s! */
947
948         /* Linearize to_idx if the command set has wrapped around */
949         to_idx = its_cmd_ptr_to_offset(its, to);
950         if (to_idx < prev_idx)
951                 to_idx += ITS_CMD_QUEUE_SZ;
952
953         linear_idx = prev_idx;
954
955         while (1) {
956                 s64 delta;
957
958                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
959
960                 /*
961                  * Compute the read pointer progress, taking the
962                  * potential wrap-around into account.
963                  */
964                 delta = rd_idx - prev_idx;
965                 if (rd_idx < prev_idx)
966                         delta += ITS_CMD_QUEUE_SZ;
967
968                 linear_idx += delta;
969                 if (linear_idx >= to_idx)
970                         break;
971
972                 count--;
973                 if (!count) {
974                         pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
975                                            to_idx, linear_idx);
976                         return -1;
977                 }
978                 prev_idx = rd_idx;
979                 cpu_relax();
980                 udelay(1);
981         }
982
983         return 0;
984 }
985
986 /* Warning, macro hell follows */
987 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
988 void name(struct its_node *its,                                         \
989           buildtype builder,                                            \
990           struct its_cmd_desc *desc)                                    \
991 {                                                                       \
992         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
993         synctype *sync_obj;                                             \
994         unsigned long flags;                                            \
995         u64 rd_idx;                                                     \
996                                                                         \
997         raw_spin_lock_irqsave(&its->lock, flags);                       \
998                                                                         \
999         cmd = its_allocate_entry(its);                                  \
1000         if (!cmd) {             /* We're soooooo screewed... */         \
1001                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
1002                 return;                                                 \
1003         }                                                               \
1004         sync_obj = builder(its, cmd, desc);                             \
1005         its_flush_cmd(its, cmd);                                        \
1006                                                                         \
1007         if (sync_obj) {                                                 \
1008                 sync_cmd = its_allocate_entry(its);                     \
1009                 if (!sync_cmd)                                          \
1010                         goto post;                                      \
1011                                                                         \
1012                 buildfn(its, sync_cmd, sync_obj);                       \
1013                 its_flush_cmd(its, sync_cmd);                           \
1014         }                                                               \
1015                                                                         \
1016 post:                                                                   \
1017         rd_idx = readl_relaxed(its->base + GITS_CREADR);                \
1018         next_cmd = its_post_commands(its);                              \
1019         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
1020                                                                         \
1021         if (its_wait_for_range_completion(its, rd_idx, next_cmd))       \
1022                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
1023 }
1024
1025 static void its_build_sync_cmd(struct its_node *its,
1026                                struct its_cmd_block *sync_cmd,
1027                                struct its_collection *sync_col)
1028 {
1029         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1030         its_encode_target(sync_cmd, sync_col->target_address);
1031
1032         its_fixup_cmd(sync_cmd);
1033 }
1034
1035 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1036                              struct its_collection, its_build_sync_cmd)
1037
1038 static void its_build_vsync_cmd(struct its_node *its,
1039                                 struct its_cmd_block *sync_cmd,
1040                                 struct its_vpe *sync_vpe)
1041 {
1042         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1043         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1044
1045         its_fixup_cmd(sync_cmd);
1046 }
1047
1048 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1049                              struct its_vpe, its_build_vsync_cmd)
1050
1051 static void its_send_int(struct its_device *dev, u32 event_id)
1052 {
1053         struct its_cmd_desc desc;
1054
1055         desc.its_int_cmd.dev = dev;
1056         desc.its_int_cmd.event_id = event_id;
1057
1058         its_send_single_command(dev->its, its_build_int_cmd, &desc);
1059 }
1060
1061 static void its_send_clear(struct its_device *dev, u32 event_id)
1062 {
1063         struct its_cmd_desc desc;
1064
1065         desc.its_clear_cmd.dev = dev;
1066         desc.its_clear_cmd.event_id = event_id;
1067
1068         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1069 }
1070
1071 static void its_send_inv(struct its_device *dev, u32 event_id)
1072 {
1073         struct its_cmd_desc desc;
1074
1075         desc.its_inv_cmd.dev = dev;
1076         desc.its_inv_cmd.event_id = event_id;
1077
1078         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1079 }
1080
1081 static void its_send_mapd(struct its_device *dev, int valid)
1082 {
1083         struct its_cmd_desc desc;
1084
1085         desc.its_mapd_cmd.dev = dev;
1086         desc.its_mapd_cmd.valid = !!valid;
1087
1088         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1089 }
1090
1091 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1092                           int valid)
1093 {
1094         struct its_cmd_desc desc;
1095
1096         desc.its_mapc_cmd.col = col;
1097         desc.its_mapc_cmd.valid = !!valid;
1098
1099         its_send_single_command(its, its_build_mapc_cmd, &desc);
1100 }
1101
1102 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1103 {
1104         struct its_cmd_desc desc;
1105
1106         desc.its_mapti_cmd.dev = dev;
1107         desc.its_mapti_cmd.phys_id = irq_id;
1108         desc.its_mapti_cmd.event_id = id;
1109
1110         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1111 }
1112
1113 static void its_send_movi(struct its_device *dev,
1114                           struct its_collection *col, u32 id)
1115 {
1116         struct its_cmd_desc desc;
1117
1118         desc.its_movi_cmd.dev = dev;
1119         desc.its_movi_cmd.col = col;
1120         desc.its_movi_cmd.event_id = id;
1121
1122         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1123 }
1124
1125 static void its_send_discard(struct its_device *dev, u32 id)
1126 {
1127         struct its_cmd_desc desc;
1128
1129         desc.its_discard_cmd.dev = dev;
1130         desc.its_discard_cmd.event_id = id;
1131
1132         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1133 }
1134
1135 static void its_send_invall(struct its_node *its, struct its_collection *col)
1136 {
1137         struct its_cmd_desc desc;
1138
1139         desc.its_invall_cmd.col = col;
1140
1141         its_send_single_command(its, its_build_invall_cmd, &desc);
1142 }
1143
1144 static void its_send_vmapti(struct its_device *dev, u32 id)
1145 {
1146         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1147         struct its_cmd_desc desc;
1148
1149         desc.its_vmapti_cmd.vpe = map->vpe;
1150         desc.its_vmapti_cmd.dev = dev;
1151         desc.its_vmapti_cmd.virt_id = map->vintid;
1152         desc.its_vmapti_cmd.event_id = id;
1153         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1154
1155         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1156 }
1157
1158 static void its_send_vmovi(struct its_device *dev, u32 id)
1159 {
1160         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1161         struct its_cmd_desc desc;
1162
1163         desc.its_vmovi_cmd.vpe = map->vpe;
1164         desc.its_vmovi_cmd.dev = dev;
1165         desc.its_vmovi_cmd.event_id = id;
1166         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1167
1168         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1169 }
1170
1171 static void its_send_vmapp(struct its_node *its,
1172                            struct its_vpe *vpe, bool valid)
1173 {
1174         struct its_cmd_desc desc;
1175
1176         desc.its_vmapp_cmd.vpe = vpe;
1177         desc.its_vmapp_cmd.valid = valid;
1178         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1179
1180         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1181 }
1182
1183 static void its_send_vmovp(struct its_vpe *vpe)
1184 {
1185         struct its_cmd_desc desc = {};
1186         struct its_node *its;
1187         unsigned long flags;
1188         int col_id = vpe->col_idx;
1189
1190         desc.its_vmovp_cmd.vpe = vpe;
1191
1192         if (!its_list_map) {
1193                 its = list_first_entry(&its_nodes, struct its_node, entry);
1194                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1195                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1196                 return;
1197         }
1198
1199         /*
1200          * Yet another marvel of the architecture. If using the
1201          * its_list "feature", we need to make sure that all ITSs
1202          * receive all VMOVP commands in the same order. The only way
1203          * to guarantee this is to make vmovp a serialization point.
1204          *
1205          * Wall <-- Head.
1206          */
1207         raw_spin_lock_irqsave(&vmovp_lock, flags);
1208
1209         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1210         desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1211
1212         /* Emit VMOVPs */
1213         list_for_each_entry(its, &its_nodes, entry) {
1214                 if (!is_v4(its))
1215                         continue;
1216
1217                 if (!vpe->its_vm->vlpi_count[its->list_nr])
1218                         continue;
1219
1220                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1221                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1222         }
1223
1224         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1225 }
1226
1227 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1228 {
1229         struct its_cmd_desc desc;
1230
1231         desc.its_vinvall_cmd.vpe = vpe;
1232         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1233 }
1234
1235 static void its_send_vinv(struct its_device *dev, u32 event_id)
1236 {
1237         struct its_cmd_desc desc;
1238
1239         /*
1240          * There is no real VINV command. This is just a normal INV,
1241          * with a VSYNC instead of a SYNC.
1242          */
1243         desc.its_inv_cmd.dev = dev;
1244         desc.its_inv_cmd.event_id = event_id;
1245
1246         its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1247 }
1248
1249 static void its_send_vint(struct its_device *dev, u32 event_id)
1250 {
1251         struct its_cmd_desc desc;
1252
1253         /*
1254          * There is no real VINT command. This is just a normal INT,
1255          * with a VSYNC instead of a SYNC.
1256          */
1257         desc.its_int_cmd.dev = dev;
1258         desc.its_int_cmd.event_id = event_id;
1259
1260         its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1261 }
1262
1263 static void its_send_vclear(struct its_device *dev, u32 event_id)
1264 {
1265         struct its_cmd_desc desc;
1266
1267         /*
1268          * There is no real VCLEAR command. This is just a normal CLEAR,
1269          * with a VSYNC instead of a SYNC.
1270          */
1271         desc.its_clear_cmd.dev = dev;
1272         desc.its_clear_cmd.event_id = event_id;
1273
1274         its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1275 }
1276
1277 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1278 {
1279         struct its_cmd_desc desc;
1280
1281         desc.its_invdb_cmd.vpe = vpe;
1282         its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1283 }
1284
1285 /*
1286  * irqchip functions - assumes MSI, mostly.
1287  */
1288 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1289 {
1290         struct its_vlpi_map *map = get_vlpi_map(d);
1291         irq_hw_number_t hwirq;
1292         void *va;
1293         u8 *cfg;
1294
1295         if (map) {
1296                 va = page_address(map->vm->vprop_page);
1297                 hwirq = map->vintid;
1298
1299                 /* Remember the updated property */
1300                 map->properties &= ~clr;
1301                 map->properties |= set | LPI_PROP_GROUP1;
1302         } else {
1303                 va = gic_rdists->prop_table_va;
1304                 hwirq = d->hwirq;
1305         }
1306
1307         cfg = va + hwirq - 8192;
1308         *cfg &= ~clr;
1309         *cfg |= set | LPI_PROP_GROUP1;
1310
1311         /*
1312          * Make the above write visible to the redistributors.
1313          * And yes, we're flushing exactly: One. Single. Byte.
1314          * Humpf...
1315          */
1316         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1317                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1318         else
1319                 dsb(ishst);
1320 }
1321
1322 static void wait_for_syncr(void __iomem *rdbase)
1323 {
1324         while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
1325                 cpu_relax();
1326 }
1327
1328 static void direct_lpi_inv(struct irq_data *d)
1329 {
1330         struct its_vlpi_map *map = get_vlpi_map(d);
1331         void __iomem *rdbase;
1332         u64 val;
1333
1334         if (map) {
1335                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1336
1337                 WARN_ON(!is_v4_1(its_dev->its));
1338
1339                 val  = GICR_INVLPIR_V;
1340                 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1341                 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1342         } else {
1343                 val = d->hwirq;
1344         }
1345
1346         /* Target the redistributor this LPI is currently routed to */
1347         rdbase = per_cpu_ptr(gic_rdists->rdist, irq_to_cpuid(d))->rd_base;
1348         gic_write_lpir(val, rdbase + GICR_INVLPIR);
1349
1350         wait_for_syncr(rdbase);
1351 }
1352
1353 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1354 {
1355         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1356
1357         lpi_write_config(d, clr, set);
1358         if (gic_rdists->has_direct_lpi &&
1359             (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1360                 direct_lpi_inv(d);
1361         else if (!irqd_is_forwarded_to_vcpu(d))
1362                 its_send_inv(its_dev, its_get_event_id(d));
1363         else
1364                 its_send_vinv(its_dev, its_get_event_id(d));
1365 }
1366
1367 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1368 {
1369         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1370         u32 event = its_get_event_id(d);
1371         struct its_vlpi_map *map;
1372
1373         /*
1374          * GICv4.1 does away with the per-LPI nonsense, nothing to do
1375          * here.
1376          */
1377         if (is_v4_1(its_dev->its))
1378                 return;
1379
1380         map = dev_event_to_vlpi_map(its_dev, event);
1381
1382         if (map->db_enabled == enable)
1383                 return;
1384
1385         map->db_enabled = enable;
1386
1387         /*
1388          * More fun with the architecture:
1389          *
1390          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1391          * value or to 1023, depending on the enable bit. But that
1392          * would be issueing a mapping for an /existing/ DevID+EventID
1393          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1394          * to the /same/ vPE, using this opportunity to adjust the
1395          * doorbell. Mouahahahaha. We loves it, Precious.
1396          */
1397         its_send_vmovi(its_dev, event);
1398 }
1399
1400 static void its_mask_irq(struct irq_data *d)
1401 {
1402         if (irqd_is_forwarded_to_vcpu(d))
1403                 its_vlpi_set_doorbell(d, false);
1404
1405         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1406 }
1407
1408 static void its_unmask_irq(struct irq_data *d)
1409 {
1410         if (irqd_is_forwarded_to_vcpu(d))
1411                 its_vlpi_set_doorbell(d, true);
1412
1413         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1414 }
1415
1416 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1417                             bool force)
1418 {
1419         unsigned int cpu;
1420         const struct cpumask *cpu_mask = cpu_online_mask;
1421         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1422         struct its_collection *target_col;
1423         u32 id = its_get_event_id(d);
1424
1425         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1426         if (irqd_is_forwarded_to_vcpu(d))
1427                 return -EINVAL;
1428
1429        /* lpi cannot be routed to a redistributor that is on a foreign node */
1430         if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1431                 if (its_dev->its->numa_node >= 0) {
1432                         cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1433                         if (!cpumask_intersects(mask_val, cpu_mask))
1434                                 return -EINVAL;
1435                 }
1436         }
1437
1438         cpu = cpumask_any_and(mask_val, cpu_mask);
1439
1440         if (cpu >= nr_cpu_ids)
1441                 return -EINVAL;
1442
1443         /* don't set the affinity when the target cpu is same as current one */
1444         if (cpu != its_dev->event_map.col_map[id]) {
1445                 target_col = &its_dev->its->collections[cpu];
1446                 its_send_movi(its_dev, target_col, id);
1447                 its_dev->event_map.col_map[id] = cpu;
1448                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1449         }
1450
1451         return IRQ_SET_MASK_OK_DONE;
1452 }
1453
1454 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1455 {
1456         struct its_node *its = its_dev->its;
1457
1458         return its->phys_base + GITS_TRANSLATER;
1459 }
1460
1461 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1462 {
1463         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1464         struct its_node *its;
1465         u64 addr;
1466
1467         its = its_dev->its;
1468         addr = its->get_msi_base(its_dev);
1469
1470         msg->address_lo         = lower_32_bits(addr);
1471         msg->address_hi         = upper_32_bits(addr);
1472         msg->data               = its_get_event_id(d);
1473
1474         iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1475 }
1476
1477 static int its_irq_set_irqchip_state(struct irq_data *d,
1478                                      enum irqchip_irq_state which,
1479                                      bool state)
1480 {
1481         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1482         u32 event = its_get_event_id(d);
1483
1484         if (which != IRQCHIP_STATE_PENDING)
1485                 return -EINVAL;
1486
1487         if (irqd_is_forwarded_to_vcpu(d)) {
1488                 if (state)
1489                         its_send_vint(its_dev, event);
1490                 else
1491                         its_send_vclear(its_dev, event);
1492         } else {
1493                 if (state)
1494                         its_send_int(its_dev, event);
1495                 else
1496                         its_send_clear(its_dev, event);
1497         }
1498
1499         return 0;
1500 }
1501
1502 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1503 {
1504         unsigned long flags;
1505
1506         /* Not using the ITS list? Everything is always mapped. */
1507         if (!its_list_map)
1508                 return;
1509
1510         raw_spin_lock_irqsave(&vmovp_lock, flags);
1511
1512         /*
1513          * If the VM wasn't mapped yet, iterate over the vpes and get
1514          * them mapped now.
1515          */
1516         vm->vlpi_count[its->list_nr]++;
1517
1518         if (vm->vlpi_count[its->list_nr] == 1) {
1519                 int i;
1520
1521                 for (i = 0; i < vm->nr_vpes; i++) {
1522                         struct its_vpe *vpe = vm->vpes[i];
1523                         struct irq_data *d = irq_get_irq_data(vpe->irq);
1524
1525                         /* Map the VPE to the first possible CPU */
1526                         vpe->col_idx = cpumask_first(cpu_online_mask);
1527                         its_send_vmapp(its, vpe, true);
1528                         its_send_vinvall(its, vpe);
1529                         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1530                 }
1531         }
1532
1533         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1534 }
1535
1536 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1537 {
1538         unsigned long flags;
1539
1540         /* Not using the ITS list? Everything is always mapped. */
1541         if (!its_list_map)
1542                 return;
1543
1544         raw_spin_lock_irqsave(&vmovp_lock, flags);
1545
1546         if (!--vm->vlpi_count[its->list_nr]) {
1547                 int i;
1548
1549                 for (i = 0; i < vm->nr_vpes; i++)
1550                         its_send_vmapp(its, vm->vpes[i], false);
1551         }
1552
1553         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1554 }
1555
1556 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1557 {
1558         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1559         u32 event = its_get_event_id(d);
1560         int ret = 0;
1561
1562         if (!info->map)
1563                 return -EINVAL;
1564
1565         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1566
1567         if (!its_dev->event_map.vm) {
1568                 struct its_vlpi_map *maps;
1569
1570                 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1571                                GFP_ATOMIC);
1572                 if (!maps) {
1573                         ret = -ENOMEM;
1574                         goto out;
1575                 }
1576
1577                 its_dev->event_map.vm = info->map->vm;
1578                 its_dev->event_map.vlpi_maps = maps;
1579         } else if (its_dev->event_map.vm != info->map->vm) {
1580                 ret = -EINVAL;
1581                 goto out;
1582         }
1583
1584         /* Get our private copy of the mapping information */
1585         its_dev->event_map.vlpi_maps[event] = *info->map;
1586
1587         if (irqd_is_forwarded_to_vcpu(d)) {
1588                 /* Already mapped, move it around */
1589                 its_send_vmovi(its_dev, event);
1590         } else {
1591                 /* Ensure all the VPEs are mapped on this ITS */
1592                 its_map_vm(its_dev->its, info->map->vm);
1593
1594                 /*
1595                  * Flag the interrupt as forwarded so that we can
1596                  * start poking the virtual property table.
1597                  */
1598                 irqd_set_forwarded_to_vcpu(d);
1599
1600                 /* Write out the property to the prop table */
1601                 lpi_write_config(d, 0xff, info->map->properties);
1602
1603                 /* Drop the physical mapping */
1604                 its_send_discard(its_dev, event);
1605
1606                 /* and install the virtual one */
1607                 its_send_vmapti(its_dev, event);
1608
1609                 /* Increment the number of VLPIs */
1610                 its_dev->event_map.nr_vlpis++;
1611         }
1612
1613 out:
1614         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1615         return ret;
1616 }
1617
1618 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1619 {
1620         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1621         struct its_vlpi_map *map;
1622         int ret = 0;
1623
1624         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1625
1626         map = get_vlpi_map(d);
1627
1628         if (!its_dev->event_map.vm || !map) {
1629                 ret = -EINVAL;
1630                 goto out;
1631         }
1632
1633         /* Copy our mapping information to the incoming request */
1634         *info->map = *map;
1635
1636 out:
1637         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1638         return ret;
1639 }
1640
1641 static int its_vlpi_unmap(struct irq_data *d)
1642 {
1643         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1644         u32 event = its_get_event_id(d);
1645         int ret = 0;
1646
1647         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1648
1649         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1650                 ret = -EINVAL;
1651                 goto out;
1652         }
1653
1654         /* Drop the virtual mapping */
1655         its_send_discard(its_dev, event);
1656
1657         /* and restore the physical one */
1658         irqd_clr_forwarded_to_vcpu(d);
1659         its_send_mapti(its_dev, d->hwirq, event);
1660         lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1661                                     LPI_PROP_ENABLED |
1662                                     LPI_PROP_GROUP1));
1663
1664         /* Potentially unmap the VM from this ITS */
1665         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1666
1667         /*
1668          * Drop the refcount and make the device available again if
1669          * this was the last VLPI.
1670          */
1671         if (!--its_dev->event_map.nr_vlpis) {
1672                 its_dev->event_map.vm = NULL;
1673                 kfree(its_dev->event_map.vlpi_maps);
1674         }
1675
1676 out:
1677         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1678         return ret;
1679 }
1680
1681 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1682 {
1683         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1684
1685         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1686                 return -EINVAL;
1687
1688         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1689                 lpi_update_config(d, 0xff, info->config);
1690         else
1691                 lpi_write_config(d, 0xff, info->config);
1692         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1693
1694         return 0;
1695 }
1696
1697 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1698 {
1699         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1700         struct its_cmd_info *info = vcpu_info;
1701
1702         /* Need a v4 ITS */
1703         if (!is_v4(its_dev->its))
1704                 return -EINVAL;
1705
1706         /* Unmap request? */
1707         if (!info)
1708                 return its_vlpi_unmap(d);
1709
1710         switch (info->cmd_type) {
1711         case MAP_VLPI:
1712                 return its_vlpi_map(d, info);
1713
1714         case GET_VLPI:
1715                 return its_vlpi_get(d, info);
1716
1717         case PROP_UPDATE_VLPI:
1718         case PROP_UPDATE_AND_INV_VLPI:
1719                 return its_vlpi_prop_update(d, info);
1720
1721         default:
1722                 return -EINVAL;
1723         }
1724 }
1725
1726 static struct irq_chip its_irq_chip = {
1727         .name                   = "ITS",
1728         .irq_mask               = its_mask_irq,
1729         .irq_unmask             = its_unmask_irq,
1730         .irq_eoi                = irq_chip_eoi_parent,
1731         .irq_set_affinity       = its_set_affinity,
1732         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
1733         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
1734         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
1735 };
1736
1737
1738 /*
1739  * How we allocate LPIs:
1740  *
1741  * lpi_range_list contains ranges of LPIs that are to available to
1742  * allocate from. To allocate LPIs, just pick the first range that
1743  * fits the required allocation, and reduce it by the required
1744  * amount. Once empty, remove the range from the list.
1745  *
1746  * To free a range of LPIs, add a free range to the list, sort it and
1747  * merge the result if the new range happens to be adjacent to an
1748  * already free block.
1749  *
1750  * The consequence of the above is that allocation is cost is low, but
1751  * freeing is expensive. We assumes that freeing rarely occurs.
1752  */
1753 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
1754
1755 static DEFINE_MUTEX(lpi_range_lock);
1756 static LIST_HEAD(lpi_range_list);
1757
1758 struct lpi_range {
1759         struct list_head        entry;
1760         u32                     base_id;
1761         u32                     span;
1762 };
1763
1764 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1765 {
1766         struct lpi_range *range;
1767
1768         range = kmalloc(sizeof(*range), GFP_KERNEL);
1769         if (range) {
1770                 range->base_id = base;
1771                 range->span = span;
1772         }
1773
1774         return range;
1775 }
1776
1777 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1778 {
1779         struct lpi_range *range, *tmp;
1780         int err = -ENOSPC;
1781
1782         mutex_lock(&lpi_range_lock);
1783
1784         list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1785                 if (range->span >= nr_lpis) {
1786                         *base = range->base_id;
1787                         range->base_id += nr_lpis;
1788                         range->span -= nr_lpis;
1789
1790                         if (range->span == 0) {
1791                                 list_del(&range->entry);
1792                                 kfree(range);
1793                         }
1794
1795                         err = 0;
1796                         break;
1797                 }
1798         }
1799
1800         mutex_unlock(&lpi_range_lock);
1801
1802         pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1803         return err;
1804 }
1805
1806 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
1807 {
1808         if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
1809                 return;
1810         if (a->base_id + a->span != b->base_id)
1811                 return;
1812         b->base_id = a->base_id;
1813         b->span += a->span;
1814         list_del(&a->entry);
1815         kfree(a);
1816 }
1817
1818 static int free_lpi_range(u32 base, u32 nr_lpis)
1819 {
1820         struct lpi_range *new, *old;
1821
1822         new = mk_lpi_range(base, nr_lpis);
1823         if (!new)
1824                 return -ENOMEM;
1825
1826         mutex_lock(&lpi_range_lock);
1827
1828         list_for_each_entry_reverse(old, &lpi_range_list, entry) {
1829                 if (old->base_id < base)
1830                         break;
1831         }
1832         /*
1833          * old is the last element with ->base_id smaller than base,
1834          * so new goes right after it. If there are no elements with
1835          * ->base_id smaller than base, &old->entry ends up pointing
1836          * at the head of the list, and inserting new it the start of
1837          * the list is the right thing to do in that case as well.
1838          */
1839         list_add(&new->entry, &old->entry);
1840         /*
1841          * Now check if we can merge with the preceding and/or
1842          * following ranges.
1843          */
1844         merge_lpi_ranges(old, new);
1845         merge_lpi_ranges(new, list_next_entry(new, entry));
1846
1847         mutex_unlock(&lpi_range_lock);
1848         return 0;
1849 }
1850
1851 static int __init its_lpi_init(u32 id_bits)
1852 {
1853         u32 lpis = (1UL << id_bits) - 8192;
1854         u32 numlpis;
1855         int err;
1856
1857         numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1858
1859         if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1860                 lpis = numlpis;
1861                 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1862                         lpis);
1863         }
1864
1865         /*
1866          * Initializing the allocator is just the same as freeing the
1867          * full range of LPIs.
1868          */
1869         err = free_lpi_range(8192, lpis);
1870         pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1871         return err;
1872 }
1873
1874 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1875 {
1876         unsigned long *bitmap = NULL;
1877         int err = 0;
1878
1879         do {
1880                 err = alloc_lpi_range(nr_irqs, base);
1881                 if (!err)
1882                         break;
1883
1884                 nr_irqs /= 2;
1885         } while (nr_irqs > 0);
1886
1887         if (!nr_irqs)
1888                 err = -ENOSPC;
1889
1890         if (err)
1891                 goto out;
1892
1893         bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1894         if (!bitmap)
1895                 goto out;
1896
1897         *nr_ids = nr_irqs;
1898
1899 out:
1900         if (!bitmap)
1901                 *base = *nr_ids = 0;
1902
1903         return bitmap;
1904 }
1905
1906 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1907 {
1908         WARN_ON(free_lpi_range(base, nr_ids));
1909         kfree(bitmap);
1910 }
1911
1912 static void gic_reset_prop_table(void *va)
1913 {
1914         /* Priority 0xa0, Group-1, disabled */
1915         memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
1916
1917         /* Make sure the GIC will observe the written configuration */
1918         gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
1919 }
1920
1921 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1922 {
1923         struct page *prop_page;
1924
1925         prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1926         if (!prop_page)
1927                 return NULL;
1928
1929         gic_reset_prop_table(page_address(prop_page));
1930
1931         return prop_page;
1932 }
1933
1934 static void its_free_prop_table(struct page *prop_page)
1935 {
1936         free_pages((unsigned long)page_address(prop_page),
1937                    get_order(LPI_PROPBASE_SZ));
1938 }
1939
1940 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
1941 {
1942         phys_addr_t start, end, addr_end;
1943         u64 i;
1944
1945         /*
1946          * We don't bother checking for a kdump kernel as by
1947          * construction, the LPI tables are out of this kernel's
1948          * memory map.
1949          */
1950         if (is_kdump_kernel())
1951                 return true;
1952
1953         addr_end = addr + size - 1;
1954
1955         for_each_reserved_mem_region(i, &start, &end) {
1956                 if (addr >= start && addr_end <= end)
1957                         return true;
1958         }
1959
1960         /* Not found, not a good sign... */
1961         pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
1962                 &addr, &addr_end);
1963         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
1964         return false;
1965 }
1966
1967 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
1968 {
1969         if (efi_enabled(EFI_CONFIG_TABLES))
1970                 return efi_mem_reserve_persistent(addr, size);
1971
1972         return 0;
1973 }
1974
1975 static int __init its_setup_lpi_prop_table(void)
1976 {
1977         if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
1978                 u64 val;
1979
1980                 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
1981                 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1982
1983                 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
1984                 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
1985                                                      LPI_PROPBASE_SZ,
1986                                                      MEMREMAP_WB);
1987                 gic_reset_prop_table(gic_rdists->prop_table_va);
1988         } else {
1989                 struct page *page;
1990
1991                 lpi_id_bits = min_t(u32,
1992                                     GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1993                                     ITS_MAX_LPI_NRBITS);
1994                 page = its_allocate_prop_table(GFP_NOWAIT);
1995                 if (!page) {
1996                         pr_err("Failed to allocate PROPBASE\n");
1997                         return -ENOMEM;
1998                 }
1999
2000                 gic_rdists->prop_table_pa = page_to_phys(page);
2001                 gic_rdists->prop_table_va = page_address(page);
2002                 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2003                                           LPI_PROPBASE_SZ));
2004         }
2005
2006         pr_info("GICv3: using LPI property table @%pa\n",
2007                 &gic_rdists->prop_table_pa);
2008
2009         return its_lpi_init(lpi_id_bits);
2010 }
2011
2012 static const char *its_base_type_string[] = {
2013         [GITS_BASER_TYPE_DEVICE]        = "Devices",
2014         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
2015         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
2016         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
2017         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
2018         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
2019         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
2020 };
2021
2022 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2023 {
2024         u32 idx = baser - its->tables;
2025
2026         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2027 }
2028
2029 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2030                             u64 val)
2031 {
2032         u32 idx = baser - its->tables;
2033
2034         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2035         baser->val = its_read_baser(its, baser);
2036 }
2037
2038 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2039                            u64 cache, u64 shr, u32 psz, u32 order,
2040                            bool indirect)
2041 {
2042         u64 val = its_read_baser(its, baser);
2043         u64 esz = GITS_BASER_ENTRY_SIZE(val);
2044         u64 type = GITS_BASER_TYPE(val);
2045         u64 baser_phys, tmp;
2046         u32 alloc_pages;
2047         struct page *page;
2048         void *base;
2049
2050 retry_alloc_baser:
2051         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2052         if (alloc_pages > GITS_BASER_PAGES_MAX) {
2053                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2054                         &its->phys_base, its_base_type_string[type],
2055                         alloc_pages, GITS_BASER_PAGES_MAX);
2056                 alloc_pages = GITS_BASER_PAGES_MAX;
2057                 order = get_order(GITS_BASER_PAGES_MAX * psz);
2058         }
2059
2060         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2061         if (!page)
2062                 return -ENOMEM;
2063
2064         base = (void *)page_address(page);
2065         baser_phys = virt_to_phys(base);
2066
2067         /* Check if the physical address of the memory is above 48bits */
2068         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2069
2070                 /* 52bit PA is supported only when PageSize=64K */
2071                 if (psz != SZ_64K) {
2072                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2073                         free_pages((unsigned long)base, order);
2074                         return -ENXIO;
2075                 }
2076
2077                 /* Convert 52bit PA to 48bit field */
2078                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2079         }
2080
2081 retry_baser:
2082         val = (baser_phys                                        |
2083                 (type << GITS_BASER_TYPE_SHIFT)                  |
2084                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
2085                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
2086                 cache                                            |
2087                 shr                                              |
2088                 GITS_BASER_VALID);
2089
2090         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
2091
2092         switch (psz) {
2093         case SZ_4K:
2094                 val |= GITS_BASER_PAGE_SIZE_4K;
2095                 break;
2096         case SZ_16K:
2097                 val |= GITS_BASER_PAGE_SIZE_16K;
2098                 break;
2099         case SZ_64K:
2100                 val |= GITS_BASER_PAGE_SIZE_64K;
2101                 break;
2102         }
2103
2104         its_write_baser(its, baser, val);
2105         tmp = baser->val;
2106
2107         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2108                 /*
2109                  * Shareability didn't stick. Just use
2110                  * whatever the read reported, which is likely
2111                  * to be the only thing this redistributor
2112                  * supports. If that's zero, make it
2113                  * non-cacheable as well.
2114                  */
2115                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2116                 if (!shr) {
2117                         cache = GITS_BASER_nC;
2118                         gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2119                 }
2120                 goto retry_baser;
2121         }
2122
2123         if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
2124                 /*
2125                  * Page size didn't stick. Let's try a smaller
2126                  * size and retry. If we reach 4K, then
2127                  * something is horribly wrong...
2128                  */
2129                 free_pages((unsigned long)base, order);
2130                 baser->base = NULL;
2131
2132                 switch (psz) {
2133                 case SZ_16K:
2134                         psz = SZ_4K;
2135                         goto retry_alloc_baser;
2136                 case SZ_64K:
2137                         psz = SZ_16K;
2138                         goto retry_alloc_baser;
2139                 }
2140         }
2141
2142         if (val != tmp) {
2143                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2144                        &its->phys_base, its_base_type_string[type],
2145                        val, tmp);
2146                 free_pages((unsigned long)base, order);
2147                 return -ENXIO;
2148         }
2149
2150         baser->order = order;
2151         baser->base = base;
2152         baser->psz = psz;
2153         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2154
2155         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2156                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2157                 its_base_type_string[type],
2158                 (unsigned long)virt_to_phys(base),
2159                 indirect ? "indirect" : "flat", (int)esz,
2160                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2161
2162         return 0;
2163 }
2164
2165 static bool its_parse_indirect_baser(struct its_node *its,
2166                                      struct its_baser *baser,
2167                                      u32 psz, u32 *order, u32 ids)
2168 {
2169         u64 tmp = its_read_baser(its, baser);
2170         u64 type = GITS_BASER_TYPE(tmp);
2171         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2172         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2173         u32 new_order = *order;
2174         bool indirect = false;
2175
2176         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2177         if ((esz << ids) > (psz * 2)) {
2178                 /*
2179                  * Find out whether hw supports a single or two-level table by
2180                  * table by reading bit at offset '62' after writing '1' to it.
2181                  */
2182                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2183                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2184
2185                 if (indirect) {
2186                         /*
2187                          * The size of the lvl2 table is equal to ITS page size
2188                          * which is 'psz'. For computing lvl1 table size,
2189                          * subtract ID bits that sparse lvl2 table from 'ids'
2190                          * which is reported by ITS hardware times lvl1 table
2191                          * entry size.
2192                          */
2193                         ids -= ilog2(psz / (int)esz);
2194                         esz = GITS_LVL1_ENTRY_SIZE;
2195                 }
2196         }
2197
2198         /*
2199          * Allocate as many entries as required to fit the
2200          * range of device IDs that the ITS can grok... The ID
2201          * space being incredibly sparse, this results in a
2202          * massive waste of memory if two-level device table
2203          * feature is not supported by hardware.
2204          */
2205         new_order = max_t(u32, get_order(esz << ids), new_order);
2206         if (new_order >= MAX_ORDER) {
2207                 new_order = MAX_ORDER - 1;
2208                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2209                 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2210                         &its->phys_base, its_base_type_string[type],
2211                         device_ids(its), ids);
2212         }
2213
2214         *order = new_order;
2215
2216         return indirect;
2217 }
2218
2219 static u32 compute_common_aff(u64 val)
2220 {
2221         u32 aff, clpiaff;
2222
2223         aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2224         clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2225
2226         return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2227 }
2228
2229 static u32 compute_its_aff(struct its_node *its)
2230 {
2231         u64 val;
2232         u32 svpet;
2233
2234         /*
2235          * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2236          * the resulting affinity. We then use that to see if this match
2237          * our own affinity.
2238          */
2239         svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2240         val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2241         val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2242         return compute_common_aff(val);
2243 }
2244
2245 static struct its_node *find_sibling_its(struct its_node *cur_its)
2246 {
2247         struct its_node *its;
2248         u32 aff;
2249
2250         if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2251                 return NULL;
2252
2253         aff = compute_its_aff(cur_its);
2254
2255         list_for_each_entry(its, &its_nodes, entry) {
2256                 u64 baser;
2257
2258                 if (!is_v4_1(its) || its == cur_its)
2259                         continue;
2260
2261                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2262                         continue;
2263
2264                 if (aff != compute_its_aff(its))
2265                         continue;
2266
2267                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2268                 baser = its->tables[2].val;
2269                 if (!(baser & GITS_BASER_VALID))
2270                         continue;
2271
2272                 return its;
2273         }
2274
2275         return NULL;
2276 }
2277
2278 static void its_free_tables(struct its_node *its)
2279 {
2280         int i;
2281
2282         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2283                 if (its->tables[i].base) {
2284                         free_pages((unsigned long)its->tables[i].base,
2285                                    its->tables[i].order);
2286                         its->tables[i].base = NULL;
2287                 }
2288         }
2289 }
2290
2291 static int its_alloc_tables(struct its_node *its)
2292 {
2293         u64 shr = GITS_BASER_InnerShareable;
2294         u64 cache = GITS_BASER_RaWaWb;
2295         u32 psz = SZ_64K;
2296         int err, i;
2297
2298         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2299                 /* erratum 24313: ignore memory access type */
2300                 cache = GITS_BASER_nCnB;
2301
2302         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2303                 struct its_baser *baser = its->tables + i;
2304                 u64 val = its_read_baser(its, baser);
2305                 u64 type = GITS_BASER_TYPE(val);
2306                 u32 order = get_order(psz);
2307                 bool indirect = false;
2308
2309                 switch (type) {
2310                 case GITS_BASER_TYPE_NONE:
2311                         continue;
2312
2313                 case GITS_BASER_TYPE_DEVICE:
2314                         indirect = its_parse_indirect_baser(its, baser,
2315                                                             psz, &order,
2316                                                             device_ids(its));
2317                         break;
2318
2319                 case GITS_BASER_TYPE_VCPU:
2320                         if (is_v4_1(its)) {
2321                                 struct its_node *sibling;
2322
2323                                 WARN_ON(i != 2);
2324                                 if ((sibling = find_sibling_its(its))) {
2325                                         *baser = sibling->tables[2];
2326                                         its_write_baser(its, baser, baser->val);
2327                                         continue;
2328                                 }
2329                         }
2330
2331                         indirect = its_parse_indirect_baser(its, baser,
2332                                                             psz, &order,
2333                                                             ITS_MAX_VPEID_BITS);
2334                         break;
2335                 }
2336
2337                 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
2338                 if (err < 0) {
2339                         its_free_tables(its);
2340                         return err;
2341                 }
2342
2343                 /* Update settings which will be used for next BASERn */
2344                 psz = baser->psz;
2345                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2346                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2347         }
2348
2349         return 0;
2350 }
2351
2352 static u64 inherit_vpe_l1_table_from_its(void)
2353 {
2354         struct its_node *its;
2355         u64 val;
2356         u32 aff;
2357
2358         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2359         aff = compute_common_aff(val);
2360
2361         list_for_each_entry(its, &its_nodes, entry) {
2362                 u64 baser, addr;
2363
2364                 if (!is_v4_1(its))
2365                         continue;
2366
2367                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2368                         continue;
2369
2370                 if (aff != compute_its_aff(its))
2371                         continue;
2372
2373                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2374                 baser = its->tables[2].val;
2375                 if (!(baser & GITS_BASER_VALID))
2376                         continue;
2377
2378                 /* We have a winner! */
2379                 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2380
2381                 val  = GICR_VPROPBASER_4_1_VALID;
2382                 if (baser & GITS_BASER_INDIRECT)
2383                         val |= GICR_VPROPBASER_4_1_INDIRECT;
2384                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2385                                   FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2386                 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2387                 case GIC_PAGE_SIZE_64K:
2388                         addr = GITS_BASER_ADDR_48_to_52(baser);
2389                         break;
2390                 default:
2391                         addr = baser & GENMASK_ULL(47, 12);
2392                         break;
2393                 }
2394                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2395                 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2396                                   FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2397                 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2398                                   FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2399                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2400
2401                 return val;
2402         }
2403
2404         return 0;
2405 }
2406
2407 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2408 {
2409         u32 aff;
2410         u64 val;
2411         int cpu;
2412
2413         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2414         aff = compute_common_aff(val);
2415
2416         for_each_possible_cpu(cpu) {
2417                 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2418
2419                 if (!base || cpu == smp_processor_id())
2420                         continue;
2421
2422                 val = gic_read_typer(base + GICR_TYPER);
2423                 if (aff != compute_common_aff(val))
2424                         continue;
2425
2426                 /*
2427                  * At this point, we have a victim. This particular CPU
2428                  * has already booted, and has an affinity that matches
2429                  * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2430                  * Make sure we don't write the Z bit in that case.
2431                  */
2432                 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2433                 val &= ~GICR_VPROPBASER_4_1_Z;
2434
2435                 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2436                 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2437
2438                 return val;
2439         }
2440
2441         return 0;
2442 }
2443
2444 static bool allocate_vpe_l2_table(int cpu, u32 id)
2445 {
2446         void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2447         unsigned int psz, esz, idx, npg, gpsz;
2448         u64 val;
2449         struct page *page;
2450         __le64 *table;
2451
2452         if (!gic_rdists->has_rvpeid)
2453                 return true;
2454
2455         val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2456
2457         esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2458         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2459         npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2460
2461         switch (gpsz) {
2462         default:
2463                 WARN_ON(1);
2464                 /* fall through */
2465         case GIC_PAGE_SIZE_4K:
2466                 psz = SZ_4K;
2467                 break;
2468         case GIC_PAGE_SIZE_16K:
2469                 psz = SZ_16K;
2470                 break;
2471         case GIC_PAGE_SIZE_64K:
2472                 psz = SZ_64K;
2473                 break;
2474         }
2475
2476         /* Don't allow vpe_id that exceeds single, flat table limit */
2477         if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2478                 return (id < (npg * psz / (esz * SZ_8)));
2479
2480         /* Compute 1st level table index & check if that exceeds table limit */
2481         idx = id >> ilog2(psz / (esz * SZ_8));
2482         if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2483                 return false;
2484
2485         table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2486
2487         /* Allocate memory for 2nd level table */
2488         if (!table[idx]) {
2489                 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2490                 if (!page)
2491                         return false;
2492
2493                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2494                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2495                         gic_flush_dcache_to_poc(page_address(page), psz);
2496
2497                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2498
2499                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2500                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2501                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2502
2503                 /* Ensure updated table contents are visible to RD hardware */
2504                 dsb(sy);
2505         }
2506
2507         return true;
2508 }
2509
2510 static int allocate_vpe_l1_table(void)
2511 {
2512         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2513         u64 val, gpsz, npg, pa;
2514         unsigned int psz = SZ_64K;
2515         unsigned int np, epp, esz;
2516         struct page *page;
2517
2518         if (!gic_rdists->has_rvpeid)
2519                 return 0;
2520
2521         /*
2522          * if VPENDBASER.Valid is set, disable any previously programmed
2523          * VPE by setting PendingLast while clearing Valid. This has the
2524          * effect of making sure no doorbell will be generated and we can
2525          * then safely clear VPROPBASER.Valid.
2526          */
2527         if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2528                 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2529                                       vlpi_base + GICR_VPENDBASER);
2530
2531         /*
2532          * If we can inherit the configuration from another RD, let's do
2533          * so. Otherwise, we have to go through the allocation process. We
2534          * assume that all RDs have the exact same requirements, as
2535          * nothing will work otherwise.
2536          */
2537         val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2538         if (val & GICR_VPROPBASER_4_1_VALID)
2539                 goto out;
2540
2541         gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_KERNEL);
2542         if (!gic_data_rdist()->vpe_table_mask)
2543                 return -ENOMEM;
2544
2545         val = inherit_vpe_l1_table_from_its();
2546         if (val & GICR_VPROPBASER_4_1_VALID)
2547                 goto out;
2548
2549         /* First probe the page size */
2550         val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2551         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2552         val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2553         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2554         esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2555
2556         switch (gpsz) {
2557         default:
2558                 gpsz = GIC_PAGE_SIZE_4K;
2559                 /* fall through */
2560         case GIC_PAGE_SIZE_4K:
2561                 psz = SZ_4K;
2562                 break;
2563         case GIC_PAGE_SIZE_16K:
2564                 psz = SZ_16K;
2565                 break;
2566         case GIC_PAGE_SIZE_64K:
2567                 psz = SZ_64K;
2568                 break;
2569         }
2570
2571         /*
2572          * Start populating the register from scratch, including RO fields
2573          * (which we want to print in debug cases...)
2574          */
2575         val = 0;
2576         val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2577         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2578
2579         /* How many entries per GIC page? */
2580         esz++;
2581         epp = psz / (esz * SZ_8);
2582
2583         /*
2584          * If we need more than just a single L1 page, flag the table
2585          * as indirect and compute the number of required L1 pages.
2586          */
2587         if (epp < ITS_MAX_VPEID) {
2588                 int nl2;
2589
2590                 val |= GICR_VPROPBASER_4_1_INDIRECT;
2591
2592                 /* Number of L2 pages required to cover the VPEID space */
2593                 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2594
2595                 /* Number of L1 pages to point to the L2 pages */
2596                 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2597         } else {
2598                 npg = 1;
2599         }
2600
2601         val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2602
2603         /* Right, that's the number of CPU pages we need for L1 */
2604         np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2605
2606         pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2607                  np, npg, psz, epp, esz);
2608         page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(np * PAGE_SIZE));
2609         if (!page)
2610                 return -ENOMEM;
2611
2612         gic_data_rdist()->vpe_l1_base = page_address(page);
2613         pa = virt_to_phys(page_address(page));
2614         WARN_ON(!IS_ALIGNED(pa, psz));
2615
2616         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2617         val |= GICR_VPROPBASER_RaWb;
2618         val |= GICR_VPROPBASER_InnerShareable;
2619         val |= GICR_VPROPBASER_4_1_Z;
2620         val |= GICR_VPROPBASER_4_1_VALID;
2621
2622 out:
2623         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2624         cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2625
2626         pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2627                  smp_processor_id(), val,
2628                  cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2629
2630         return 0;
2631 }
2632
2633 static int its_alloc_collections(struct its_node *its)
2634 {
2635         int i;
2636
2637         its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2638                                    GFP_KERNEL);
2639         if (!its->collections)
2640                 return -ENOMEM;
2641
2642         for (i = 0; i < nr_cpu_ids; i++)
2643                 its->collections[i].target_address = ~0ULL;
2644
2645         return 0;
2646 }
2647
2648 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2649 {
2650         struct page *pend_page;
2651
2652         pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2653                                 get_order(LPI_PENDBASE_SZ));
2654         if (!pend_page)
2655                 return NULL;
2656
2657         /* Make sure the GIC will observe the zero-ed page */
2658         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2659
2660         return pend_page;
2661 }
2662
2663 static void its_free_pending_table(struct page *pt)
2664 {
2665         free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2666 }
2667
2668 /*
2669  * Booting with kdump and LPIs enabled is generally fine. Any other
2670  * case is wrong in the absence of firmware/EFI support.
2671  */
2672 static bool enabled_lpis_allowed(void)
2673 {
2674         phys_addr_t addr;
2675         u64 val;
2676
2677         /* Check whether the property table is in a reserved region */
2678         val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2679         addr = val & GENMASK_ULL(51, 12);
2680
2681         return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2682 }
2683
2684 static int __init allocate_lpi_tables(void)
2685 {
2686         u64 val;
2687         int err, cpu;
2688
2689         /*
2690          * If LPIs are enabled while we run this from the boot CPU,
2691          * flag the RD tables as pre-allocated if the stars do align.
2692          */
2693         val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2694         if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2695                 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2696                                       RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2697                 pr_info("GICv3: Using preallocated redistributor tables\n");
2698         }
2699
2700         err = its_setup_lpi_prop_table();
2701         if (err)
2702                 return err;
2703
2704         /*
2705          * We allocate all the pending tables anyway, as we may have a
2706          * mix of RDs that have had LPIs enabled, and some that
2707          * don't. We'll free the unused ones as each CPU comes online.
2708          */
2709         for_each_possible_cpu(cpu) {
2710                 struct page *pend_page;
2711
2712                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
2713                 if (!pend_page) {
2714                         pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2715                         return -ENOMEM;
2716                 }
2717
2718                 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2719         }
2720
2721         return 0;
2722 }
2723
2724 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
2725 {
2726         u32 count = 1000000;    /* 1s! */
2727         bool clean;
2728         u64 val;
2729
2730         val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2731         val &= ~GICR_VPENDBASER_Valid;
2732         val &= ~clr;
2733         val |= set;
2734         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2735
2736         do {
2737                 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2738                 clean = !(val & GICR_VPENDBASER_Dirty);
2739                 if (!clean) {
2740                         count--;
2741                         cpu_relax();
2742                         udelay(1);
2743                 }
2744         } while (!clean && count);
2745
2746         if (unlikely(val & GICR_VPENDBASER_Dirty)) {
2747                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2748                 val |= GICR_VPENDBASER_PendingLast;
2749         }
2750
2751         return val;
2752 }
2753
2754 static void its_cpu_init_lpis(void)
2755 {
2756         void __iomem *rbase = gic_data_rdist_rd_base();
2757         struct page *pend_page;
2758         phys_addr_t paddr;
2759         u64 val, tmp;
2760
2761         if (gic_data_rdist()->lpi_enabled)
2762                 return;
2763
2764         val = readl_relaxed(rbase + GICR_CTLR);
2765         if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
2766             (val & GICR_CTLR_ENABLE_LPIS)) {
2767                 /*
2768                  * Check that we get the same property table on all
2769                  * RDs. If we don't, this is hopeless.
2770                  */
2771                 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
2772                 paddr &= GENMASK_ULL(51, 12);
2773                 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
2774                         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2775
2776                 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2777                 paddr &= GENMASK_ULL(51, 16);
2778
2779                 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
2780                 its_free_pending_table(gic_data_rdist()->pend_page);
2781                 gic_data_rdist()->pend_page = NULL;
2782
2783                 goto out;
2784         }
2785
2786         pend_page = gic_data_rdist()->pend_page;
2787         paddr = page_to_phys(pend_page);
2788         WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
2789
2790         /* set PROPBASE */
2791         val = (gic_rdists->prop_table_pa |
2792                GICR_PROPBASER_InnerShareable |
2793                GICR_PROPBASER_RaWaWb |
2794                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2795
2796         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2797         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2798
2799         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2800                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2801                         /*
2802                          * The HW reports non-shareable, we must
2803                          * remove the cacheability attributes as
2804                          * well.
2805                          */
2806                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2807                                  GICR_PROPBASER_CACHEABILITY_MASK);
2808                         val |= GICR_PROPBASER_nC;
2809                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2810                 }
2811                 pr_info_once("GIC: using cache flushing for LPI property table\n");
2812                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2813         }
2814
2815         /* set PENDBASE */
2816         val = (page_to_phys(pend_page) |
2817                GICR_PENDBASER_InnerShareable |
2818                GICR_PENDBASER_RaWaWb);
2819
2820         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2821         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2822
2823         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2824                 /*
2825                  * The HW reports non-shareable, we must remove the
2826                  * cacheability attributes as well.
2827                  */
2828                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2829                          GICR_PENDBASER_CACHEABILITY_MASK);
2830                 val |= GICR_PENDBASER_nC;
2831                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2832         }
2833
2834         /* Enable LPIs */
2835         val = readl_relaxed(rbase + GICR_CTLR);
2836         val |= GICR_CTLR_ENABLE_LPIS;
2837         writel_relaxed(val, rbase + GICR_CTLR);
2838
2839         if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
2840                 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2841
2842                 /*
2843                  * It's possible for CPU to receive VLPIs before it is
2844                  * sheduled as a vPE, especially for the first CPU, and the
2845                  * VLPI with INTID larger than 2^(IDbits+1) will be considered
2846                  * as out of range and dropped by GIC.
2847                  * So we initialize IDbits to known value to avoid VLPI drop.
2848                  */
2849                 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2850                 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
2851                         smp_processor_id(), val);
2852                 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2853
2854                 /*
2855                  * Also clear Valid bit of GICR_VPENDBASER, in case some
2856                  * ancient programming gets left in and has possibility of
2857                  * corrupting memory.
2858                  */
2859                 val = its_clear_vpend_valid(vlpi_base, 0, 0);
2860         }
2861
2862         if (allocate_vpe_l1_table()) {
2863                 /*
2864                  * If the allocation has failed, we're in massive trouble.
2865                  * Disable direct injection, and pray that no VM was
2866                  * already running...
2867                  */
2868                 gic_rdists->has_rvpeid = false;
2869                 gic_rdists->has_vlpis = false;
2870         }
2871
2872         /* Make sure the GIC has seen the above */
2873         dsb(sy);
2874 out:
2875         gic_data_rdist()->lpi_enabled = true;
2876         pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
2877                 smp_processor_id(),
2878                 gic_data_rdist()->pend_page ? "allocated" : "reserved",
2879                 &paddr);
2880 }
2881
2882 static void its_cpu_init_collection(struct its_node *its)
2883 {
2884         int cpu = smp_processor_id();
2885         u64 target;
2886
2887         /* avoid cross node collections and its mapping */
2888         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2889                 struct device_node *cpu_node;
2890
2891                 cpu_node = of_get_cpu_node(cpu, NULL);
2892                 if (its->numa_node != NUMA_NO_NODE &&
2893                         its->numa_node != of_node_to_nid(cpu_node))
2894                         return;
2895         }
2896
2897         /*
2898          * We now have to bind each collection to its target
2899          * redistributor.
2900          */
2901         if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2902                 /*
2903                  * This ITS wants the physical address of the
2904                  * redistributor.
2905                  */
2906                 target = gic_data_rdist()->phys_base;
2907         } else {
2908                 /* This ITS wants a linear CPU number. */
2909                 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2910                 target = GICR_TYPER_CPU_NUMBER(target) << 16;
2911         }
2912
2913         /* Perform collection mapping */
2914         its->collections[cpu].target_address = target;
2915         its->collections[cpu].col_id = cpu;
2916
2917         its_send_mapc(its, &its->collections[cpu], 1);
2918         its_send_invall(its, &its->collections[cpu]);
2919 }
2920
2921 static void its_cpu_init_collections(void)
2922 {
2923         struct its_node *its;
2924
2925         raw_spin_lock(&its_lock);
2926
2927         list_for_each_entry(its, &its_nodes, entry)
2928                 its_cpu_init_collection(its);
2929
2930         raw_spin_unlock(&its_lock);
2931 }
2932
2933 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2934 {
2935         struct its_device *its_dev = NULL, *tmp;
2936         unsigned long flags;
2937
2938         raw_spin_lock_irqsave(&its->lock, flags);
2939
2940         list_for_each_entry(tmp, &its->its_device_list, entry) {
2941                 if (tmp->device_id == dev_id) {
2942                         its_dev = tmp;
2943                         break;
2944                 }
2945         }
2946
2947         raw_spin_unlock_irqrestore(&its->lock, flags);
2948
2949         return its_dev;
2950 }
2951
2952 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2953 {
2954         int i;
2955
2956         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2957                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
2958                         return &its->tables[i];
2959         }
2960
2961         return NULL;
2962 }
2963
2964 static bool its_alloc_table_entry(struct its_node *its,
2965                                   struct its_baser *baser, u32 id)
2966 {
2967         struct page *page;
2968         u32 esz, idx;
2969         __le64 *table;
2970
2971         /* Don't allow device id that exceeds single, flat table limit */
2972         esz = GITS_BASER_ENTRY_SIZE(baser->val);
2973         if (!(baser->val & GITS_BASER_INDIRECT))
2974                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2975
2976         /* Compute 1st level table index & check if that exceeds table limit */
2977         idx = id >> ilog2(baser->psz / esz);
2978         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2979                 return false;
2980
2981         table = baser->base;
2982
2983         /* Allocate memory for 2nd level table */
2984         if (!table[idx]) {
2985                 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
2986                                         get_order(baser->psz));
2987                 if (!page)
2988                         return false;
2989
2990                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2991                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2992                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
2993
2994                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2995
2996                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2997                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2998                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2999
3000                 /* Ensure updated table contents are visible to ITS hardware */
3001                 dsb(sy);
3002         }
3003
3004         return true;
3005 }
3006
3007 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3008 {
3009         struct its_baser *baser;
3010
3011         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3012
3013         /* Don't allow device id that exceeds ITS hardware limit */
3014         if (!baser)
3015                 return (ilog2(dev_id) < device_ids(its));
3016
3017         return its_alloc_table_entry(its, baser, dev_id);
3018 }
3019
3020 static bool its_alloc_vpe_table(u32 vpe_id)
3021 {
3022         struct its_node *its;
3023         int cpu;
3024
3025         /*
3026          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3027          * could try and only do it on ITSs corresponding to devices
3028          * that have interrupts targeted at this VPE, but the
3029          * complexity becomes crazy (and you have tons of memory
3030          * anyway, right?).
3031          */
3032         list_for_each_entry(its, &its_nodes, entry) {
3033                 struct its_baser *baser;
3034
3035                 if (!is_v4(its))
3036                         continue;
3037
3038                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3039                 if (!baser)
3040                         return false;
3041
3042                 if (!its_alloc_table_entry(its, baser, vpe_id))
3043                         return false;
3044         }
3045
3046         /* Non v4.1? No need to iterate RDs and go back early. */
3047         if (!gic_rdists->has_rvpeid)
3048                 return true;
3049
3050         /*
3051          * Make sure the L2 tables are allocated for all copies of
3052          * the L1 table on *all* v4.1 RDs.
3053          */
3054         for_each_possible_cpu(cpu) {
3055                 if (!allocate_vpe_l2_table(cpu, vpe_id))
3056                         return false;
3057         }
3058
3059         return true;
3060 }
3061
3062 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3063                                             int nvecs, bool alloc_lpis)
3064 {
3065         struct its_device *dev;
3066         unsigned long *lpi_map = NULL;
3067         unsigned long flags;
3068         u16 *col_map = NULL;
3069         void *itt;
3070         int lpi_base;
3071         int nr_lpis;
3072         int nr_ites;
3073         int sz;
3074
3075         if (!its_alloc_device_table(its, dev_id))
3076                 return NULL;
3077
3078         if (WARN_ON(!is_power_of_2(nvecs)))
3079                 nvecs = roundup_pow_of_two(nvecs);
3080
3081         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3082         /*
3083          * Even if the device wants a single LPI, the ITT must be
3084          * sized as a power of two (and you need at least one bit...).
3085          */
3086         nr_ites = max(2, nvecs);
3087         sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3088         sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3089         itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3090         if (alloc_lpis) {
3091                 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3092                 if (lpi_map)
3093                         col_map = kcalloc(nr_lpis, sizeof(*col_map),
3094                                           GFP_KERNEL);
3095         } else {
3096                 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3097                 nr_lpis = 0;
3098                 lpi_base = 0;
3099         }
3100
3101         if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3102                 kfree(dev);
3103                 kfree(itt);
3104                 kfree(lpi_map);
3105                 kfree(col_map);
3106                 return NULL;
3107         }
3108
3109         gic_flush_dcache_to_poc(itt, sz);
3110
3111         dev->its = its;
3112         dev->itt = itt;
3113         dev->nr_ites = nr_ites;
3114         dev->event_map.lpi_map = lpi_map;
3115         dev->event_map.col_map = col_map;
3116         dev->event_map.lpi_base = lpi_base;
3117         dev->event_map.nr_lpis = nr_lpis;
3118         raw_spin_lock_init(&dev->event_map.vlpi_lock);
3119         dev->device_id = dev_id;
3120         INIT_LIST_HEAD(&dev->entry);
3121
3122         raw_spin_lock_irqsave(&its->lock, flags);
3123         list_add(&dev->entry, &its->its_device_list);
3124         raw_spin_unlock_irqrestore(&its->lock, flags);
3125
3126         /* Map device to its ITT */
3127         its_send_mapd(dev, 1);
3128
3129         return dev;
3130 }
3131
3132 static void its_free_device(struct its_device *its_dev)
3133 {
3134         unsigned long flags;
3135
3136         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3137         list_del(&its_dev->entry);
3138         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3139         kfree(its_dev->event_map.col_map);
3140         kfree(its_dev->itt);
3141         kfree(its_dev);
3142 }
3143
3144 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3145 {
3146         int idx;
3147
3148         /* Find a free LPI region in lpi_map and allocate them. */
3149         idx = bitmap_find_free_region(dev->event_map.lpi_map,
3150                                       dev->event_map.nr_lpis,
3151                                       get_count_order(nvecs));
3152         if (idx < 0)
3153                 return -ENOSPC;
3154
3155         *hwirq = dev->event_map.lpi_base + idx;
3156
3157         return 0;
3158 }
3159
3160 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3161                            int nvec, msi_alloc_info_t *info)
3162 {
3163         struct its_node *its;
3164         struct its_device *its_dev;
3165         struct msi_domain_info *msi_info;
3166         u32 dev_id;
3167         int err = 0;
3168
3169         /*
3170          * We ignore "dev" entirely, and rely on the dev_id that has
3171          * been passed via the scratchpad. This limits this domain's
3172          * usefulness to upper layers that definitely know that they
3173          * are built on top of the ITS.
3174          */
3175         dev_id = info->scratchpad[0].ul;
3176
3177         msi_info = msi_get_domain_info(domain);
3178         its = msi_info->data;
3179
3180         if (!gic_rdists->has_direct_lpi &&
3181             vpe_proxy.dev &&
3182             vpe_proxy.dev->its == its &&
3183             dev_id == vpe_proxy.dev->device_id) {
3184                 /* Bad luck. Get yourself a better implementation */
3185                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3186                           dev_id);
3187                 return -EINVAL;
3188         }
3189
3190         mutex_lock(&its->dev_alloc_lock);
3191         its_dev = its_find_device(its, dev_id);
3192         if (its_dev) {
3193                 /*
3194                  * We already have seen this ID, probably through
3195                  * another alias (PCI bridge of some sort). No need to
3196                  * create the device.
3197                  */
3198                 its_dev->shared = true;
3199                 pr_debug("Reusing ITT for devID %x\n", dev_id);
3200                 goto out;
3201         }
3202
3203         its_dev = its_create_device(its, dev_id, nvec, true);
3204         if (!its_dev) {
3205                 err = -ENOMEM;
3206                 goto out;
3207         }
3208
3209         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3210 out:
3211         mutex_unlock(&its->dev_alloc_lock);
3212         info->scratchpad[0].ptr = its_dev;
3213         return err;
3214 }
3215
3216 static struct msi_domain_ops its_msi_domain_ops = {
3217         .msi_prepare    = its_msi_prepare,
3218 };
3219
3220 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3221                                     unsigned int virq,
3222                                     irq_hw_number_t hwirq)
3223 {
3224         struct irq_fwspec fwspec;
3225
3226         if (irq_domain_get_of_node(domain->parent)) {
3227                 fwspec.fwnode = domain->parent->fwnode;
3228                 fwspec.param_count = 3;
3229                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3230                 fwspec.param[1] = hwirq;
3231                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3232         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3233                 fwspec.fwnode = domain->parent->fwnode;
3234                 fwspec.param_count = 2;
3235                 fwspec.param[0] = hwirq;
3236                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3237         } else {
3238                 return -EINVAL;
3239         }
3240
3241         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3242 }
3243
3244 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3245                                 unsigned int nr_irqs, void *args)
3246 {
3247         msi_alloc_info_t *info = args;
3248         struct its_device *its_dev = info->scratchpad[0].ptr;
3249         struct its_node *its = its_dev->its;
3250         irq_hw_number_t hwirq;
3251         int err;
3252         int i;
3253
3254         err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3255         if (err)
3256                 return err;
3257
3258         err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3259         if (err)
3260                 return err;
3261
3262         for (i = 0; i < nr_irqs; i++) {
3263                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3264                 if (err)
3265                         return err;
3266
3267                 irq_domain_set_hwirq_and_chip(domain, virq + i,
3268                                               hwirq + i, &its_irq_chip, its_dev);
3269                 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
3270                 pr_debug("ID:%d pID:%d vID:%d\n",
3271                          (int)(hwirq + i - its_dev->event_map.lpi_base),
3272                          (int)(hwirq + i), virq + i);
3273         }
3274
3275         return 0;
3276 }
3277
3278 static int its_irq_domain_activate(struct irq_domain *domain,
3279                                    struct irq_data *d, bool reserve)
3280 {
3281         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3282         u32 event = its_get_event_id(d);
3283         const struct cpumask *cpu_mask = cpu_online_mask;
3284         int cpu;
3285
3286         /* get the cpu_mask of local node */
3287         if (its_dev->its->numa_node >= 0)
3288                 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
3289
3290         /* Bind the LPI to the first possible CPU */
3291         cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
3292         if (cpu >= nr_cpu_ids) {
3293                 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
3294                         return -EINVAL;
3295
3296                 cpu = cpumask_first(cpu_online_mask);
3297         }
3298
3299         its_dev->event_map.col_map[event] = cpu;
3300         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3301
3302         /* Map the GIC IRQ and event to the device */
3303         its_send_mapti(its_dev, d->hwirq, event);
3304         return 0;
3305 }
3306
3307 static void its_irq_domain_deactivate(struct irq_domain *domain,
3308                                       struct irq_data *d)
3309 {
3310         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3311         u32 event = its_get_event_id(d);
3312
3313         /* Stop the delivery of interrupts */
3314         its_send_discard(its_dev, event);
3315 }
3316
3317 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3318                                 unsigned int nr_irqs)
3319 {
3320         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3321         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3322         struct its_node *its = its_dev->its;
3323         int i;
3324
3325         bitmap_release_region(its_dev->event_map.lpi_map,
3326                               its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3327                               get_count_order(nr_irqs));
3328
3329         for (i = 0; i < nr_irqs; i++) {
3330                 struct irq_data *data = irq_domain_get_irq_data(domain,
3331                                                                 virq + i);
3332                 /* Nuke the entry in the domain */
3333                 irq_domain_reset_irq_data(data);
3334         }
3335
3336         mutex_lock(&its->dev_alloc_lock);
3337
3338         /*
3339          * If all interrupts have been freed, start mopping the
3340          * floor. This is conditionned on the device not being shared.
3341          */
3342         if (!its_dev->shared &&
3343             bitmap_empty(its_dev->event_map.lpi_map,
3344                          its_dev->event_map.nr_lpis)) {
3345                 its_lpi_free(its_dev->event_map.lpi_map,
3346                              its_dev->event_map.lpi_base,
3347                              its_dev->event_map.nr_lpis);
3348
3349                 /* Unmap device/itt */
3350                 its_send_mapd(its_dev, 0);
3351                 its_free_device(its_dev);
3352         }
3353
3354         mutex_unlock(&its->dev_alloc_lock);
3355
3356         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3357 }
3358
3359 static const struct irq_domain_ops its_domain_ops = {
3360         .alloc                  = its_irq_domain_alloc,
3361         .free                   = its_irq_domain_free,
3362         .activate               = its_irq_domain_activate,
3363         .deactivate             = its_irq_domain_deactivate,
3364 };
3365
3366 /*
3367  * This is insane.
3368  *
3369  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3370  * likely), the only way to perform an invalidate is to use a fake
3371  * device to issue an INV command, implying that the LPI has first
3372  * been mapped to some event on that device. Since this is not exactly
3373  * cheap, we try to keep that mapping around as long as possible, and
3374  * only issue an UNMAP if we're short on available slots.
3375  *
3376  * Broken by design(tm).
3377  *
3378  * GICv4.1, on the other hand, mandates that we're able to invalidate
3379  * by writing to a MMIO register. It doesn't implement the whole of
3380  * DirectLPI, but that's good enough. And most of the time, we don't
3381  * even have to invalidate anything, as the redistributor can be told
3382  * whether to generate a doorbell or not (we thus leave it enabled,
3383  * always).
3384  */
3385 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3386 {
3387         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3388         if (gic_rdists->has_rvpeid)
3389                 return;
3390
3391         /* Already unmapped? */
3392         if (vpe->vpe_proxy_event == -1)
3393                 return;
3394
3395         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3396         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3397
3398         /*
3399          * We don't track empty slots at all, so let's move the
3400          * next_victim pointer if we can quickly reuse that slot
3401          * instead of nuking an existing entry. Not clear that this is
3402          * always a win though, and this might just generate a ripple
3403          * effect... Let's just hope VPEs don't migrate too often.
3404          */
3405         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3406                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3407
3408         vpe->vpe_proxy_event = -1;
3409 }
3410
3411 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3412 {
3413         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3414         if (gic_rdists->has_rvpeid)
3415                 return;
3416
3417         if (!gic_rdists->has_direct_lpi) {
3418                 unsigned long flags;
3419
3420                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3421                 its_vpe_db_proxy_unmap_locked(vpe);
3422                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3423         }
3424 }
3425
3426 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3427 {
3428         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3429         if (gic_rdists->has_rvpeid)
3430                 return;
3431
3432         /* Already mapped? */
3433         if (vpe->vpe_proxy_event != -1)
3434                 return;
3435
3436         /* This slot was already allocated. Kick the other VPE out. */
3437         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3438                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3439
3440         /* Map the new VPE instead */
3441         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3442         vpe->vpe_proxy_event = vpe_proxy.next_victim;
3443         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3444
3445         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3446         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3447 }
3448
3449 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3450 {
3451         unsigned long flags;
3452         struct its_collection *target_col;
3453
3454         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3455         if (gic_rdists->has_rvpeid)
3456                 return;
3457
3458         if (gic_rdists->has_direct_lpi) {
3459                 void __iomem *rdbase;
3460
3461                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3462                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3463                 wait_for_syncr(rdbase);
3464
3465                 return;
3466         }
3467
3468         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3469
3470         its_vpe_db_proxy_map_locked(vpe);
3471
3472         target_col = &vpe_proxy.dev->its->collections[to];
3473         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3474         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3475
3476         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3477 }
3478
3479 static int its_vpe_set_affinity(struct irq_data *d,
3480                                 const struct cpumask *mask_val,
3481                                 bool force)
3482 {
3483         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3484         int from, cpu = cpumask_first(mask_val);
3485
3486         /*
3487          * Changing affinity is mega expensive, so let's be as lazy as
3488          * we can and only do it if we really have to. Also, if mapped
3489          * into the proxy device, we need to move the doorbell
3490          * interrupt to its new location.
3491          */
3492         if (vpe->col_idx == cpu)
3493                 goto out;
3494
3495         from = vpe->col_idx;
3496         vpe->col_idx = cpu;
3497
3498         /*
3499          * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3500          * is sharing its VPE table with the current one.
3501          */
3502         if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3503             cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3504                 goto out;
3505
3506         its_send_vmovp(vpe);
3507         its_vpe_db_proxy_move(vpe, from, cpu);
3508
3509 out:
3510         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3511
3512         return IRQ_SET_MASK_OK_DONE;
3513 }
3514
3515 static void its_vpe_schedule(struct its_vpe *vpe)
3516 {
3517         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3518         u64 val;
3519
3520         /* Schedule the VPE */
3521         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3522                 GENMASK_ULL(51, 12);
3523         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3524         val |= GICR_VPROPBASER_RaWb;
3525         val |= GICR_VPROPBASER_InnerShareable;
3526         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3527
3528         val  = virt_to_phys(page_address(vpe->vpt_page)) &
3529                 GENMASK_ULL(51, 16);
3530         val |= GICR_VPENDBASER_RaWaWb;
3531         val |= GICR_VPENDBASER_NonShareable;
3532         /*
3533          * There is no good way of finding out if the pending table is
3534          * empty as we can race against the doorbell interrupt very
3535          * easily. So in the end, vpe->pending_last is only an
3536          * indication that the vcpu has something pending, not one
3537          * that the pending table is empty. A good implementation
3538          * would be able to read its coarse map pretty quickly anyway,
3539          * making this a tolerable issue.
3540          */
3541         val |= GICR_VPENDBASER_PendingLast;
3542         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3543         val |= GICR_VPENDBASER_Valid;
3544         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3545 }
3546
3547 static void its_vpe_deschedule(struct its_vpe *vpe)
3548 {
3549         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3550         u64 val;
3551
3552         val = its_clear_vpend_valid(vlpi_base, 0, 0);
3553
3554         vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3555         vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3556 }
3557
3558 static void its_vpe_invall(struct its_vpe *vpe)
3559 {
3560         struct its_node *its;
3561
3562         list_for_each_entry(its, &its_nodes, entry) {
3563                 if (!is_v4(its))
3564                         continue;
3565
3566                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3567                         continue;
3568
3569                 /*
3570                  * Sending a VINVALL to a single ITS is enough, as all
3571                  * we need is to reach the redistributors.
3572                  */
3573                 its_send_vinvall(its, vpe);
3574                 return;
3575         }
3576 }
3577
3578 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3579 {
3580         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3581         struct its_cmd_info *info = vcpu_info;
3582
3583         switch (info->cmd_type) {
3584         case SCHEDULE_VPE:
3585                 its_vpe_schedule(vpe);
3586                 return 0;
3587
3588         case DESCHEDULE_VPE:
3589                 its_vpe_deschedule(vpe);
3590                 return 0;
3591
3592         case INVALL_VPE:
3593                 its_vpe_invall(vpe);
3594                 return 0;
3595
3596         default:
3597                 return -EINVAL;
3598         }
3599 }
3600
3601 static void its_vpe_send_cmd(struct its_vpe *vpe,
3602                              void (*cmd)(struct its_device *, u32))
3603 {
3604         unsigned long flags;
3605
3606         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3607
3608         its_vpe_db_proxy_map_locked(vpe);
3609         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3610
3611         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3612 }
3613
3614 static void its_vpe_send_inv(struct irq_data *d)
3615 {
3616         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3617
3618         if (gic_rdists->has_direct_lpi) {
3619                 void __iomem *rdbase;
3620
3621                 /* Target the redistributor this VPE is currently known on */
3622                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3623                 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3624                 wait_for_syncr(rdbase);
3625         } else {
3626                 its_vpe_send_cmd(vpe, its_send_inv);
3627         }
3628 }
3629
3630 static void its_vpe_mask_irq(struct irq_data *d)
3631 {
3632         /*
3633          * We need to unmask the LPI, which is described by the parent
3634          * irq_data. Instead of calling into the parent (which won't
3635          * exactly do the right thing, let's simply use the
3636          * parent_data pointer. Yes, I'm naughty.
3637          */
3638         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3639         its_vpe_send_inv(d);
3640 }
3641
3642 static void its_vpe_unmask_irq(struct irq_data *d)
3643 {
3644         /* Same hack as above... */
3645         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3646         its_vpe_send_inv(d);
3647 }
3648
3649 static int its_vpe_set_irqchip_state(struct irq_data *d,
3650                                      enum irqchip_irq_state which,
3651                                      bool state)
3652 {
3653         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3654
3655         if (which != IRQCHIP_STATE_PENDING)
3656                 return -EINVAL;
3657
3658         if (gic_rdists->has_direct_lpi) {
3659                 void __iomem *rdbase;
3660
3661                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3662                 if (state) {
3663                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3664                 } else {
3665                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3666                         wait_for_syncr(rdbase);
3667                 }
3668         } else {
3669                 if (state)
3670                         its_vpe_send_cmd(vpe, its_send_int);
3671                 else
3672                         its_vpe_send_cmd(vpe, its_send_clear);
3673         }
3674
3675         return 0;
3676 }
3677
3678 static struct irq_chip its_vpe_irq_chip = {
3679         .name                   = "GICv4-vpe",
3680         .irq_mask               = its_vpe_mask_irq,
3681         .irq_unmask             = its_vpe_unmask_irq,
3682         .irq_eoi                = irq_chip_eoi_parent,
3683         .irq_set_affinity       = its_vpe_set_affinity,
3684         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
3685         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
3686 };
3687
3688 static struct its_node *find_4_1_its(void)
3689 {
3690         static struct its_node *its = NULL;
3691
3692         if (!its) {
3693                 list_for_each_entry(its, &its_nodes, entry) {
3694                         if (is_v4_1(its))
3695                                 return its;
3696                 }
3697
3698                 /* Oops? */
3699                 its = NULL;
3700         }
3701
3702         return its;
3703 }
3704
3705 static void its_vpe_4_1_send_inv(struct irq_data *d)
3706 {
3707         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3708         struct its_node *its;
3709
3710         /*
3711          * GICv4.1 wants doorbells to be invalidated using the
3712          * INVDB command in order to be broadcast to all RDs. Send
3713          * it to the first valid ITS, and let the HW do its magic.
3714          */
3715         its = find_4_1_its();
3716         if (its)
3717                 its_send_invdb(its, vpe);
3718 }
3719
3720 static void its_vpe_4_1_mask_irq(struct irq_data *d)
3721 {
3722         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3723         its_vpe_4_1_send_inv(d);
3724 }
3725
3726 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
3727 {
3728         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3729         its_vpe_4_1_send_inv(d);
3730 }
3731
3732 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
3733                                  struct its_cmd_info *info)
3734 {
3735         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3736         u64 val = 0;
3737
3738         /* Schedule the VPE */
3739         val |= GICR_VPENDBASER_Valid;
3740         val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
3741         val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
3742         val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
3743
3744         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3745 }
3746
3747 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
3748                                    struct its_cmd_info *info)
3749 {
3750         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3751         u64 val;
3752
3753         if (info->req_db) {
3754                 /*
3755                  * vPE is going to block: make the vPE non-resident with
3756                  * PendingLast clear and DB set. The GIC guarantees that if
3757                  * we read-back PendingLast clear, then a doorbell will be
3758                  * delivered when an interrupt comes.
3759                  */
3760                 val = its_clear_vpend_valid(vlpi_base,
3761                                             GICR_VPENDBASER_PendingLast,
3762                                             GICR_VPENDBASER_4_1_DB);
3763                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3764         } else {
3765                 /*
3766                  * We're not blocking, so just make the vPE non-resident
3767                  * with PendingLast set, indicating that we'll be back.
3768                  */
3769                 val = its_clear_vpend_valid(vlpi_base,
3770                                             0,
3771                                             GICR_VPENDBASER_PendingLast);
3772                 vpe->pending_last = true;
3773         }
3774 }
3775
3776 static void its_vpe_4_1_invall(struct its_vpe *vpe)
3777 {
3778         void __iomem *rdbase;
3779         u64 val;
3780
3781         val  = GICR_INVALLR_V;
3782         val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
3783
3784         /* Target the redistributor this vPE is currently known on */
3785         rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3786         gic_write_lpir(val, rdbase + GICR_INVALLR);
3787 }
3788
3789 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3790 {
3791         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3792         struct its_cmd_info *info = vcpu_info;
3793
3794         switch (info->cmd_type) {
3795         case SCHEDULE_VPE:
3796                 its_vpe_4_1_schedule(vpe, info);
3797                 return 0;
3798
3799         case DESCHEDULE_VPE:
3800                 its_vpe_4_1_deschedule(vpe, info);
3801                 return 0;
3802
3803         case INVALL_VPE:
3804                 its_vpe_4_1_invall(vpe);
3805                 return 0;
3806
3807         default:
3808                 return -EINVAL;
3809         }
3810 }
3811
3812 static struct irq_chip its_vpe_4_1_irq_chip = {
3813         .name                   = "GICv4.1-vpe",
3814         .irq_mask               = its_vpe_4_1_mask_irq,
3815         .irq_unmask             = its_vpe_4_1_unmask_irq,
3816         .irq_eoi                = irq_chip_eoi_parent,
3817         .irq_set_affinity       = its_vpe_set_affinity,
3818         .irq_set_vcpu_affinity  = its_vpe_4_1_set_vcpu_affinity,
3819 };
3820
3821 static int its_vpe_id_alloc(void)
3822 {
3823         return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
3824 }
3825
3826 static void its_vpe_id_free(u16 id)
3827 {
3828         ida_simple_remove(&its_vpeid_ida, id);
3829 }
3830
3831 static int its_vpe_init(struct its_vpe *vpe)
3832 {
3833         struct page *vpt_page;
3834         int vpe_id;
3835
3836         /* Allocate vpe_id */
3837         vpe_id = its_vpe_id_alloc();
3838         if (vpe_id < 0)
3839                 return vpe_id;
3840
3841         /* Allocate VPT */
3842         vpt_page = its_allocate_pending_table(GFP_KERNEL);
3843         if (!vpt_page) {
3844                 its_vpe_id_free(vpe_id);
3845                 return -ENOMEM;
3846         }
3847
3848         if (!its_alloc_vpe_table(vpe_id)) {
3849                 its_vpe_id_free(vpe_id);
3850                 its_free_pending_table(vpt_page);
3851                 return -ENOMEM;
3852         }
3853
3854         vpe->vpe_id = vpe_id;
3855         vpe->vpt_page = vpt_page;
3856         if (gic_rdists->has_rvpeid)
3857                 atomic_set(&vpe->vmapp_count, 0);
3858         else
3859                 vpe->vpe_proxy_event = -1;
3860
3861         return 0;
3862 }
3863
3864 static void its_vpe_teardown(struct its_vpe *vpe)
3865 {
3866         its_vpe_db_proxy_unmap(vpe);
3867         its_vpe_id_free(vpe->vpe_id);
3868         its_free_pending_table(vpe->vpt_page);
3869 }
3870
3871 static void its_vpe_irq_domain_free(struct irq_domain *domain,
3872                                     unsigned int virq,
3873                                     unsigned int nr_irqs)
3874 {
3875         struct its_vm *vm = domain->host_data;
3876         int i;
3877
3878         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3879
3880         for (i = 0; i < nr_irqs; i++) {
3881                 struct irq_data *data = irq_domain_get_irq_data(domain,
3882                                                                 virq + i);
3883                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
3884
3885                 BUG_ON(vm != vpe->its_vm);
3886
3887                 clear_bit(data->hwirq, vm->db_bitmap);
3888                 its_vpe_teardown(vpe);
3889                 irq_domain_reset_irq_data(data);
3890         }
3891
3892         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
3893                 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
3894                 its_free_prop_table(vm->vprop_page);
3895         }
3896 }
3897
3898 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3899                                     unsigned int nr_irqs, void *args)
3900 {
3901         struct irq_chip *irqchip = &its_vpe_irq_chip;
3902         struct its_vm *vm = args;
3903         unsigned long *bitmap;
3904         struct page *vprop_page;
3905         int base, nr_ids, i, err = 0;
3906
3907         BUG_ON(!vm);
3908
3909         bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
3910         if (!bitmap)
3911                 return -ENOMEM;
3912
3913         if (nr_ids < nr_irqs) {
3914                 its_lpi_free(bitmap, base, nr_ids);
3915                 return -ENOMEM;
3916         }
3917
3918         vprop_page = its_allocate_prop_table(GFP_KERNEL);
3919         if (!vprop_page) {
3920                 its_lpi_free(bitmap, base, nr_ids);
3921                 return -ENOMEM;
3922         }
3923
3924         vm->db_bitmap = bitmap;
3925         vm->db_lpi_base = base;
3926         vm->nr_db_lpis = nr_ids;
3927         vm->vprop_page = vprop_page;
3928
3929         if (gic_rdists->has_rvpeid)
3930                 irqchip = &its_vpe_4_1_irq_chip;
3931
3932         for (i = 0; i < nr_irqs; i++) {
3933                 vm->vpes[i]->vpe_db_lpi = base + i;
3934                 err = its_vpe_init(vm->vpes[i]);
3935                 if (err)
3936                         break;
3937                 err = its_irq_gic_domain_alloc(domain, virq + i,
3938                                                vm->vpes[i]->vpe_db_lpi);
3939                 if (err)
3940                         break;
3941                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
3942                                               irqchip, vm->vpes[i]);
3943                 set_bit(i, bitmap);
3944         }
3945
3946         if (err) {
3947                 if (i > 0)
3948                         its_vpe_irq_domain_free(domain, virq, i - 1);
3949
3950                 its_lpi_free(bitmap, base, nr_ids);
3951                 its_free_prop_table(vprop_page);
3952         }
3953
3954         return err;
3955 }
3956
3957 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
3958                                        struct irq_data *d, bool reserve)
3959 {
3960         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3961         struct its_node *its;
3962
3963         /* If we use the list map, we issue VMAPP on demand... */
3964         if (its_list_map)
3965                 return 0;
3966
3967         /* Map the VPE to the first possible CPU */
3968         vpe->col_idx = cpumask_first(cpu_online_mask);
3969
3970         list_for_each_entry(its, &its_nodes, entry) {
3971                 if (!is_v4(its))
3972                         continue;
3973
3974                 its_send_vmapp(its, vpe, true);
3975                 its_send_vinvall(its, vpe);
3976         }
3977
3978         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
3979
3980         return 0;
3981 }
3982
3983 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
3984                                           struct irq_data *d)
3985 {
3986         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3987         struct its_node *its;
3988
3989         /*
3990          * If we use the list map, we unmap the VPE once no VLPIs are
3991          * associated with the VM.
3992          */
3993         if (its_list_map)
3994                 return;
3995
3996         list_for_each_entry(its, &its_nodes, entry) {
3997                 if (!is_v4(its))
3998                         continue;
3999
4000                 its_send_vmapp(its, vpe, false);
4001         }
4002 }
4003
4004 static const struct irq_domain_ops its_vpe_domain_ops = {
4005         .alloc                  = its_vpe_irq_domain_alloc,
4006         .free                   = its_vpe_irq_domain_free,
4007         .activate               = its_vpe_irq_domain_activate,
4008         .deactivate             = its_vpe_irq_domain_deactivate,
4009 };
4010
4011 static int its_force_quiescent(void __iomem *base)
4012 {
4013         u32 count = 1000000;    /* 1s */
4014         u32 val;
4015
4016         val = readl_relaxed(base + GITS_CTLR);
4017         /*
4018          * GIC architecture specification requires the ITS to be both
4019          * disabled and quiescent for writes to GITS_BASER<n> or
4020          * GITS_CBASER to not have UNPREDICTABLE results.
4021          */
4022         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4023                 return 0;
4024
4025         /* Disable the generation of all interrupts to this ITS */
4026         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4027         writel_relaxed(val, base + GITS_CTLR);
4028
4029         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4030         while (1) {
4031                 val = readl_relaxed(base + GITS_CTLR);
4032                 if (val & GITS_CTLR_QUIESCENT)
4033                         return 0;
4034
4035                 count--;
4036                 if (!count)
4037                         return -EBUSY;
4038
4039                 cpu_relax();
4040                 udelay(1);
4041         }
4042 }
4043
4044 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4045 {
4046         struct its_node *its = data;
4047
4048         /* erratum 22375: only alloc 8MB table size (20 bits) */
4049         its->typer &= ~GITS_TYPER_DEVBITS;
4050         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4051         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4052
4053         return true;
4054 }
4055
4056 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4057 {
4058         struct its_node *its = data;
4059
4060         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4061
4062         return true;
4063 }
4064
4065 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4066 {
4067         struct its_node *its = data;
4068
4069         /* On QDF2400, the size of the ITE is 16Bytes */
4070         its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4071         its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4072
4073         return true;
4074 }
4075
4076 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4077 {
4078         struct its_node *its = its_dev->its;
4079
4080         /*
4081          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4082          * which maps 32-bit writes targeted at a separate window of
4083          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4084          * with device ID taken from bits [device_id_bits + 1:2] of
4085          * the window offset.
4086          */
4087         return its->pre_its_base + (its_dev->device_id << 2);
4088 }
4089
4090 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4091 {
4092         struct its_node *its = data;
4093         u32 pre_its_window[2];
4094         u32 ids;
4095
4096         if (!fwnode_property_read_u32_array(its->fwnode_handle,
4097                                            "socionext,synquacer-pre-its",
4098                                            pre_its_window,
4099                                            ARRAY_SIZE(pre_its_window))) {
4100
4101                 its->pre_its_base = pre_its_window[0];
4102                 its->get_msi_base = its_irq_get_msi_base_pre_its;
4103
4104                 ids = ilog2(pre_its_window[1]) - 2;
4105                 if (device_ids(its) > ids) {
4106                         its->typer &= ~GITS_TYPER_DEVBITS;
4107                         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4108                 }
4109
4110                 /* the pre-ITS breaks isolation, so disable MSI remapping */
4111                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4112                 return true;
4113         }
4114         return false;
4115 }
4116
4117 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4118 {
4119         struct its_node *its = data;
4120
4121         /*
4122          * Hip07 insists on using the wrong address for the VLPI
4123          * page. Trick it into doing the right thing...
4124          */
4125         its->vlpi_redist_offset = SZ_128K;
4126         return true;
4127 }
4128
4129 static const struct gic_quirk its_quirks[] = {
4130 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4131         {
4132                 .desc   = "ITS: Cavium errata 22375, 24313",
4133                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4134                 .mask   = 0xffff0fff,
4135                 .init   = its_enable_quirk_cavium_22375,
4136         },
4137 #endif
4138 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4139         {
4140                 .desc   = "ITS: Cavium erratum 23144",
4141                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4142                 .mask   = 0xffff0fff,
4143                 .init   = its_enable_quirk_cavium_23144,
4144         },
4145 #endif
4146 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4147         {
4148                 .desc   = "ITS: QDF2400 erratum 0065",
4149                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
4150                 .mask   = 0xffffffff,
4151                 .init   = its_enable_quirk_qdf2400_e0065,
4152         },
4153 #endif
4154 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4155         {
4156                 /*
4157                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4158                  * implementation, but with a 'pre-ITS' added that requires
4159                  * special handling in software.
4160                  */
4161                 .desc   = "ITS: Socionext Synquacer pre-ITS",
4162                 .iidr   = 0x0001143b,
4163                 .mask   = 0xffffffff,
4164                 .init   = its_enable_quirk_socionext_synquacer,
4165         },
4166 #endif
4167 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4168         {
4169                 .desc   = "ITS: Hip07 erratum 161600802",
4170                 .iidr   = 0x00000004,
4171                 .mask   = 0xffffffff,
4172                 .init   = its_enable_quirk_hip07_161600802,
4173         },
4174 #endif
4175         {
4176         }
4177 };
4178
4179 static void its_enable_quirks(struct its_node *its)
4180 {
4181         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4182
4183         gic_enable_quirks(iidr, its_quirks, its);
4184 }
4185
4186 static int its_save_disable(void)
4187 {
4188         struct its_node *its;
4189         int err = 0;
4190
4191         raw_spin_lock(&its_lock);
4192         list_for_each_entry(its, &its_nodes, entry) {
4193                 void __iomem *base;
4194
4195                 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4196                         continue;
4197
4198                 base = its->base;
4199                 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4200                 err = its_force_quiescent(base);
4201                 if (err) {
4202                         pr_err("ITS@%pa: failed to quiesce: %d\n",
4203                                &its->phys_base, err);
4204                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4205                         goto err;
4206                 }
4207
4208                 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4209         }
4210
4211 err:
4212         if (err) {
4213                 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4214                         void __iomem *base;
4215
4216                         if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4217                                 continue;
4218
4219                         base = its->base;
4220                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4221                 }
4222         }
4223         raw_spin_unlock(&its_lock);
4224
4225         return err;
4226 }
4227
4228 static void its_restore_enable(void)
4229 {
4230         struct its_node *its;
4231         int ret;
4232
4233         raw_spin_lock(&its_lock);
4234         list_for_each_entry(its, &its_nodes, entry) {
4235                 void __iomem *base;
4236                 int i;
4237
4238                 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4239                         continue;
4240
4241                 base = its->base;
4242
4243                 /*
4244                  * Make sure that the ITS is disabled. If it fails to quiesce,
4245                  * don't restore it since writing to CBASER or BASER<n>
4246                  * registers is undefined according to the GIC v3 ITS
4247                  * Specification.
4248                  */
4249                 ret = its_force_quiescent(base);
4250                 if (ret) {
4251                         pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4252                                &its->phys_base, ret);
4253                         continue;
4254                 }
4255
4256                 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4257
4258                 /*
4259                  * Writing CBASER resets CREADR to 0, so make CWRITER and
4260                  * cmd_write line up with it.
4261                  */
4262                 its->cmd_write = its->cmd_base;
4263                 gits_write_cwriter(0, base + GITS_CWRITER);
4264
4265                 /* Restore GITS_BASER from the value cache. */
4266                 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4267                         struct its_baser *baser = &its->tables[i];
4268
4269                         if (!(baser->val & GITS_BASER_VALID))
4270                                 continue;
4271
4272                         its_write_baser(its, baser, baser->val);
4273                 }
4274                 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4275
4276                 /*
4277                  * Reinit the collection if it's stored in the ITS. This is
4278                  * indicated by the col_id being less than the HCC field.
4279                  * CID < HCC as specified in the GIC v3 Documentation.
4280                  */
4281                 if (its->collections[smp_processor_id()].col_id <
4282                     GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4283                         its_cpu_init_collection(its);
4284         }
4285         raw_spin_unlock(&its_lock);
4286 }
4287
4288 static struct syscore_ops its_syscore_ops = {
4289         .suspend = its_save_disable,
4290         .resume = its_restore_enable,
4291 };
4292
4293 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4294 {
4295         struct irq_domain *inner_domain;
4296         struct msi_domain_info *info;
4297
4298         info = kzalloc(sizeof(*info), GFP_KERNEL);
4299         if (!info)
4300                 return -ENOMEM;
4301
4302         inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4303         if (!inner_domain) {
4304                 kfree(info);
4305                 return -ENOMEM;
4306         }
4307
4308         inner_domain->parent = its_parent;
4309         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4310         inner_domain->flags |= its->msi_domain_flags;
4311         info->ops = &its_msi_domain_ops;
4312         info->data = its;
4313         inner_domain->host_data = info;
4314
4315         return 0;
4316 }
4317
4318 static int its_init_vpe_domain(void)
4319 {
4320         struct its_node *its;
4321         u32 devid;
4322         int entries;
4323
4324         if (gic_rdists->has_direct_lpi) {
4325                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4326                 return 0;
4327         }
4328
4329         /* Any ITS will do, even if not v4 */
4330         its = list_first_entry(&its_nodes, struct its_node, entry);
4331
4332         entries = roundup_pow_of_two(nr_cpu_ids);
4333         vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4334                                  GFP_KERNEL);
4335         if (!vpe_proxy.vpes) {
4336                 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
4337                 return -ENOMEM;
4338         }
4339
4340         /* Use the last possible DevID */
4341         devid = GENMASK(device_ids(its) - 1, 0);
4342         vpe_proxy.dev = its_create_device(its, devid, entries, false);
4343         if (!vpe_proxy.dev) {
4344                 kfree(vpe_proxy.vpes);
4345                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4346                 return -ENOMEM;
4347         }
4348
4349         BUG_ON(entries > vpe_proxy.dev->nr_ites);
4350
4351         raw_spin_lock_init(&vpe_proxy.lock);
4352         vpe_proxy.next_victim = 0;
4353         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4354                 devid, vpe_proxy.dev->nr_ites);
4355
4356         return 0;
4357 }
4358
4359 static int __init its_compute_its_list_map(struct resource *res,
4360                                            void __iomem *its_base)
4361 {
4362         int its_number;
4363         u32 ctlr;
4364
4365         /*
4366          * This is assumed to be done early enough that we're
4367          * guaranteed to be single-threaded, hence no
4368          * locking. Should this change, we should address
4369          * this.
4370          */
4371         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4372         if (its_number >= GICv4_ITS_LIST_MAX) {
4373                 pr_err("ITS@%pa: No ITSList entry available!\n",
4374                        &res->start);
4375                 return -EINVAL;
4376         }
4377
4378         ctlr = readl_relaxed(its_base + GITS_CTLR);
4379         ctlr &= ~GITS_CTLR_ITS_NUMBER;
4380         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4381         writel_relaxed(ctlr, its_base + GITS_CTLR);
4382         ctlr = readl_relaxed(its_base + GITS_CTLR);
4383         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4384                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4385                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4386         }
4387
4388         if (test_and_set_bit(its_number, &its_list_map)) {
4389                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4390                        &res->start, its_number);
4391                 return -EINVAL;
4392         }
4393
4394         return its_number;
4395 }
4396
4397 static int __init its_probe_one(struct resource *res,
4398                                 struct fwnode_handle *handle, int numa_node)
4399 {
4400         struct its_node *its;
4401         void __iomem *its_base;
4402         u32 val, ctlr;
4403         u64 baser, tmp, typer;
4404         struct page *page;
4405         int err;
4406
4407         its_base = ioremap(res->start, resource_size(res));
4408         if (!its_base) {
4409                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4410                 return -ENOMEM;
4411         }
4412
4413         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4414         if (val != 0x30 && val != 0x40) {
4415                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4416                 err = -ENODEV;
4417                 goto out_unmap;
4418         }
4419
4420         err = its_force_quiescent(its_base);
4421         if (err) {
4422                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4423                 goto out_unmap;
4424         }
4425
4426         pr_info("ITS %pR\n", res);
4427
4428         its = kzalloc(sizeof(*its), GFP_KERNEL);
4429         if (!its) {
4430                 err = -ENOMEM;
4431                 goto out_unmap;
4432         }
4433
4434         raw_spin_lock_init(&its->lock);
4435         mutex_init(&its->dev_alloc_lock);
4436         INIT_LIST_HEAD(&its->entry);
4437         INIT_LIST_HEAD(&its->its_device_list);
4438         typer = gic_read_typer(its_base + GITS_TYPER);
4439         its->typer = typer;
4440         its->base = its_base;
4441         its->phys_base = res->start;
4442         if (is_v4(its)) {
4443                 if (!(typer & GITS_TYPER_VMOVP)) {
4444                         err = its_compute_its_list_map(res, its_base);
4445                         if (err < 0)
4446                                 goto out_free_its;
4447
4448                         its->list_nr = err;
4449
4450                         pr_info("ITS@%pa: Using ITS number %d\n",
4451                                 &res->start, err);
4452                 } else {
4453                         pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
4454                 }
4455
4456                 if (is_v4_1(its)) {
4457                         u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
4458                         its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
4459
4460                         pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
4461                                 &res->start, its->mpidr, svpet);
4462                 }
4463         }
4464
4465         its->numa_node = numa_node;
4466
4467         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
4468                                 get_order(ITS_CMD_QUEUE_SZ));
4469         if (!page) {
4470                 err = -ENOMEM;
4471                 goto out_free_its;
4472         }
4473         its->cmd_base = (void *)page_address(page);
4474         its->cmd_write = its->cmd_base;
4475         its->fwnode_handle = handle;
4476         its->get_msi_base = its_irq_get_msi_base;
4477         its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
4478
4479         its_enable_quirks(its);
4480
4481         err = its_alloc_tables(its);
4482         if (err)
4483                 goto out_free_cmd;
4484
4485         err = its_alloc_collections(its);
4486         if (err)
4487                 goto out_free_tables;
4488
4489         baser = (virt_to_phys(its->cmd_base)    |
4490                  GITS_CBASER_RaWaWb             |
4491                  GITS_CBASER_InnerShareable     |
4492                  (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
4493                  GITS_CBASER_VALID);
4494
4495         gits_write_cbaser(baser, its->base + GITS_CBASER);
4496         tmp = gits_read_cbaser(its->base + GITS_CBASER);
4497
4498         if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
4499                 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
4500                         /*
4501                          * The HW reports non-shareable, we must
4502                          * remove the cacheability attributes as
4503                          * well.
4504                          */
4505                         baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
4506                                    GITS_CBASER_CACHEABILITY_MASK);
4507                         baser |= GITS_CBASER_nC;
4508                         gits_write_cbaser(baser, its->base + GITS_CBASER);
4509                 }
4510                 pr_info("ITS: using cache flushing for cmd queue\n");
4511                 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
4512         }
4513
4514         gits_write_cwriter(0, its->base + GITS_CWRITER);
4515         ctlr = readl_relaxed(its->base + GITS_CTLR);
4516         ctlr |= GITS_CTLR_ENABLE;
4517         if (is_v4(its))
4518                 ctlr |= GITS_CTLR_ImDe;
4519         writel_relaxed(ctlr, its->base + GITS_CTLR);
4520
4521         if (GITS_TYPER_HCC(typer))
4522                 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
4523
4524         err = its_init_domain(handle, its);
4525         if (err)
4526                 goto out_free_tables;
4527
4528         raw_spin_lock(&its_lock);
4529         list_add(&its->entry, &its_nodes);
4530         raw_spin_unlock(&its_lock);
4531
4532         return 0;
4533
4534 out_free_tables:
4535         its_free_tables(its);
4536 out_free_cmd:
4537         free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
4538 out_free_its:
4539         kfree(its);
4540 out_unmap:
4541         iounmap(its_base);
4542         pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
4543         return err;
4544 }
4545
4546 static bool gic_rdists_supports_plpis(void)
4547 {
4548         return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
4549 }
4550
4551 static int redist_disable_lpis(void)
4552 {
4553         void __iomem *rbase = gic_data_rdist_rd_base();
4554         u64 timeout = USEC_PER_SEC;
4555         u64 val;
4556
4557         if (!gic_rdists_supports_plpis()) {
4558                 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
4559                 return -ENXIO;
4560         }
4561
4562         val = readl_relaxed(rbase + GICR_CTLR);
4563         if (!(val & GICR_CTLR_ENABLE_LPIS))
4564                 return 0;
4565
4566         /*
4567          * If coming via a CPU hotplug event, we don't need to disable
4568          * LPIs before trying to re-enable them. They are already
4569          * configured and all is well in the world.
4570          *
4571          * If running with preallocated tables, there is nothing to do.
4572          */
4573         if (gic_data_rdist()->lpi_enabled ||
4574             (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
4575                 return 0;
4576
4577         /*
4578          * From that point on, we only try to do some damage control.
4579          */
4580         pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
4581                 smp_processor_id());
4582         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
4583
4584         /* Disable LPIs */
4585         val &= ~GICR_CTLR_ENABLE_LPIS;
4586         writel_relaxed(val, rbase + GICR_CTLR);
4587
4588         /* Make sure any change to GICR_CTLR is observable by the GIC */
4589         dsb(sy);
4590
4591         /*
4592          * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
4593          * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
4594          * Error out if we time out waiting for RWP to clear.
4595          */
4596         while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
4597                 if (!timeout) {
4598                         pr_err("CPU%d: Timeout while disabling LPIs\n",
4599                                smp_processor_id());
4600                         return -ETIMEDOUT;
4601                 }
4602                 udelay(1);
4603                 timeout--;
4604         }
4605
4606         /*
4607          * After it has been written to 1, it is IMPLEMENTATION
4608          * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
4609          * cleared to 0. Error out if clearing the bit failed.
4610          */
4611         if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
4612                 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
4613                 return -EBUSY;
4614         }
4615
4616         return 0;
4617 }
4618
4619 int its_cpu_init(void)
4620 {
4621         if (!list_empty(&its_nodes)) {
4622                 int ret;
4623
4624                 ret = redist_disable_lpis();
4625                 if (ret)
4626                         return ret;
4627
4628                 its_cpu_init_lpis();
4629                 its_cpu_init_collections();
4630         }
4631
4632         return 0;
4633 }
4634
4635 static const struct of_device_id its_device_id[] = {
4636         {       .compatible     = "arm,gic-v3-its",     },
4637         {},
4638 };
4639
4640 static int __init its_of_probe(struct device_node *node)
4641 {
4642         struct device_node *np;
4643         struct resource res;
4644
4645         for (np = of_find_matching_node(node, its_device_id); np;
4646              np = of_find_matching_node(np, its_device_id)) {
4647                 if (!of_device_is_available(np))
4648                         continue;
4649                 if (!of_property_read_bool(np, "msi-controller")) {
4650                         pr_warn("%pOF: no msi-controller property, ITS ignored\n",
4651                                 np);
4652                         continue;
4653                 }
4654
4655                 if (of_address_to_resource(np, 0, &res)) {
4656                         pr_warn("%pOF: no regs?\n", np);
4657                         continue;
4658                 }
4659
4660                 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
4661         }
4662         return 0;
4663 }
4664
4665 #ifdef CONFIG_ACPI
4666
4667 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
4668
4669 #ifdef CONFIG_ACPI_NUMA
4670 struct its_srat_map {
4671         /* numa node id */
4672         u32     numa_node;
4673         /* GIC ITS ID */
4674         u32     its_id;
4675 };
4676
4677 static struct its_srat_map *its_srat_maps __initdata;
4678 static int its_in_srat __initdata;
4679
4680 static int __init acpi_get_its_numa_node(u32 its_id)
4681 {
4682         int i;
4683
4684         for (i = 0; i < its_in_srat; i++) {
4685                 if (its_id == its_srat_maps[i].its_id)
4686                         return its_srat_maps[i].numa_node;
4687         }
4688         return NUMA_NO_NODE;
4689 }
4690
4691 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
4692                                           const unsigned long end)
4693 {
4694         return 0;
4695 }
4696
4697 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
4698                          const unsigned long end)
4699 {
4700         int node;
4701         struct acpi_srat_gic_its_affinity *its_affinity;
4702
4703         its_affinity = (struct acpi_srat_gic_its_affinity *)header;
4704         if (!its_affinity)
4705                 return -EINVAL;
4706
4707         if (its_affinity->header.length < sizeof(*its_affinity)) {
4708                 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
4709                         its_affinity->header.length);
4710                 return -EINVAL;
4711         }
4712
4713         node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
4714
4715         if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
4716                 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
4717                 return 0;
4718         }
4719
4720         its_srat_maps[its_in_srat].numa_node = node;
4721         its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
4722         its_in_srat++;
4723         pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
4724                 its_affinity->proximity_domain, its_affinity->its_id, node);
4725
4726         return 0;
4727 }
4728
4729 static void __init acpi_table_parse_srat_its(void)
4730 {
4731         int count;
4732
4733         count = acpi_table_parse_entries(ACPI_SIG_SRAT,
4734                         sizeof(struct acpi_table_srat),
4735                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
4736                         gic_acpi_match_srat_its, 0);
4737         if (count <= 0)
4738                 return;
4739
4740         its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
4741                                       GFP_KERNEL);
4742         if (!its_srat_maps) {
4743                 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
4744                 return;
4745         }
4746
4747         acpi_table_parse_entries(ACPI_SIG_SRAT,
4748                         sizeof(struct acpi_table_srat),
4749                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
4750                         gic_acpi_parse_srat_its, 0);
4751 }
4752
4753 /* free the its_srat_maps after ITS probing */
4754 static void __init acpi_its_srat_maps_free(void)
4755 {
4756         kfree(its_srat_maps);
4757 }
4758 #else
4759 static void __init acpi_table_parse_srat_its(void)      { }
4760 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
4761 static void __init acpi_its_srat_maps_free(void) { }
4762 #endif
4763
4764 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
4765                                           const unsigned long end)
4766 {
4767         struct acpi_madt_generic_translator *its_entry;
4768         struct fwnode_handle *dom_handle;
4769         struct resource res;
4770         int err;
4771
4772         its_entry = (struct acpi_madt_generic_translator *)header;
4773         memset(&res, 0, sizeof(res));
4774         res.start = its_entry->base_address;
4775         res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
4776         res.flags = IORESOURCE_MEM;
4777
4778         dom_handle = irq_domain_alloc_fwnode(&res.start);
4779         if (!dom_handle) {
4780                 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
4781                        &res.start);
4782                 return -ENOMEM;
4783         }
4784
4785         err = iort_register_domain_token(its_entry->translation_id, res.start,
4786                                          dom_handle);
4787         if (err) {
4788                 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
4789                        &res.start, its_entry->translation_id);
4790                 goto dom_err;
4791         }
4792
4793         err = its_probe_one(&res, dom_handle,
4794                         acpi_get_its_numa_node(its_entry->translation_id));
4795         if (!err)
4796                 return 0;
4797
4798         iort_deregister_domain_token(its_entry->translation_id);
4799 dom_err:
4800         irq_domain_free_fwnode(dom_handle);
4801         return err;
4802 }
4803
4804 static void __init its_acpi_probe(void)
4805 {
4806         acpi_table_parse_srat_its();
4807         acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
4808                               gic_acpi_parse_madt_its, 0);
4809         acpi_its_srat_maps_free();
4810 }
4811 #else
4812 static void __init its_acpi_probe(void) { }
4813 #endif
4814
4815 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
4816                     struct irq_domain *parent_domain)
4817 {
4818         struct device_node *of_node;
4819         struct its_node *its;
4820         bool has_v4 = false;
4821         int err;
4822
4823         gic_rdists = rdists;
4824
4825         its_parent = parent_domain;
4826         of_node = to_of_node(handle);
4827         if (of_node)
4828                 its_of_probe(of_node);
4829         else
4830                 its_acpi_probe();
4831
4832         if (list_empty(&its_nodes)) {
4833                 pr_warn("ITS: No ITS available, not enabling LPIs\n");
4834                 return -ENXIO;
4835         }
4836
4837         err = allocate_lpi_tables();
4838         if (err)
4839                 return err;
4840
4841         list_for_each_entry(its, &its_nodes, entry)
4842                 has_v4 |= is_v4(its);
4843
4844         if (has_v4 & rdists->has_vlpis) {
4845                 if (its_init_vpe_domain() ||
4846                     its_init_v4(parent_domain, &its_vpe_domain_ops)) {
4847                         rdists->has_vlpis = false;
4848                         pr_err("ITS: Disabling GICv4 support\n");
4849                 }
4850         }
4851
4852         register_syscore_ops(&its_syscore_ops);
4853
4854         return 0;
4855 }