]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/isdn/hardware/mISDN/hfcsusb.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux.git] / drivers / isdn / hardware / mISDN / hfcsusb.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* hfcsusb.c
3  * mISDN driver for Colognechip HFC-S USB chip
4  *
5  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
6  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
7  *
8  * module params
9  *   debug=<n>, default=0, with n=0xHHHHGGGG
10  *      H - l1 driver flags described in hfcsusb.h
11  *      G - common mISDN debug flags described at mISDNhw.h
12  *
13  *   poll=<n>, default 128
14  *     n : burst size of PH_DATA_IND at transparent rx data
15  *
16  * Revision: 0.3.3 (socket), 2008-11-05
17  */
18
19 #include <linux/module.h>
20 #include <linux/delay.h>
21 #include <linux/usb.h>
22 #include <linux/mISDNhw.h>
23 #include <linux/slab.h>
24 #include "hfcsusb.h"
25
26 static unsigned int debug;
27 static int poll = DEFAULT_TRANSP_BURST_SZ;
28
29 static LIST_HEAD(HFClist);
30 static DEFINE_RWLOCK(HFClock);
31
32
33 MODULE_AUTHOR("Martin Bachem");
34 MODULE_LICENSE("GPL");
35 module_param(debug, uint, S_IRUGO | S_IWUSR);
36 module_param(poll, int, 0);
37
38 static int hfcsusb_cnt;
39
40 /* some function prototypes */
41 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
42 static void release_hw(struct hfcsusb *hw);
43 static void reset_hfcsusb(struct hfcsusb *hw);
44 static void setPortMode(struct hfcsusb *hw);
45 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
46 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
47 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
48 static void deactivate_bchannel(struct bchannel *bch);
49 static void hfcsusb_ph_info(struct hfcsusb *hw);
50
51 /* start next background transfer for control channel */
52 static void
53 ctrl_start_transfer(struct hfcsusb *hw)
54 {
55         if (debug & DBG_HFC_CALL_TRACE)
56                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
57
58         if (hw->ctrl_cnt) {
59                 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
60                 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
61                 hw->ctrl_urb->transfer_buffer = NULL;
62                 hw->ctrl_urb->transfer_buffer_length = 0;
63                 hw->ctrl_write.wIndex =
64                         cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
65                 hw->ctrl_write.wValue =
66                         cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
67
68                 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
69         }
70 }
71
72 /*
73  * queue a control transfer request to write HFC-S USB
74  * chip register using CTRL resuest queue
75  */
76 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
77 {
78         struct ctrl_buf *buf;
79
80         if (debug & DBG_HFC_CALL_TRACE)
81                 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
82                        hw->name, __func__, reg, val);
83
84         spin_lock(&hw->ctrl_lock);
85         if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
86                 spin_unlock(&hw->ctrl_lock);
87                 return 1;
88         }
89         buf = &hw->ctrl_buff[hw->ctrl_in_idx];
90         buf->hfcs_reg = reg;
91         buf->reg_val = val;
92         if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
93                 hw->ctrl_in_idx = 0;
94         if (++hw->ctrl_cnt == 1)
95                 ctrl_start_transfer(hw);
96         spin_unlock(&hw->ctrl_lock);
97
98         return 0;
99 }
100
101 /* control completion routine handling background control cmds */
102 static void
103 ctrl_complete(struct urb *urb)
104 {
105         struct hfcsusb *hw = (struct hfcsusb *) urb->context;
106
107         if (debug & DBG_HFC_CALL_TRACE)
108                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
109
110         urb->dev = hw->dev;
111         if (hw->ctrl_cnt) {
112                 hw->ctrl_cnt--; /* decrement actual count */
113                 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
114                         hw->ctrl_out_idx = 0;   /* pointer wrap */
115
116                 ctrl_start_transfer(hw); /* start next transfer */
117         }
118 }
119
120 /* handle LED bits   */
121 static void
122 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
123 {
124         if (set_on) {
125                 if (led_bits < 0)
126                         hw->led_state &= ~abs(led_bits);
127                 else
128                         hw->led_state |= led_bits;
129         } else {
130                 if (led_bits < 0)
131                         hw->led_state |= abs(led_bits);
132                 else
133                         hw->led_state &= ~led_bits;
134         }
135 }
136
137 /* handle LED requests  */
138 static void
139 handle_led(struct hfcsusb *hw, int event)
140 {
141         struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
142                 hfcsusb_idtab[hw->vend_idx].driver_info;
143         __u8 tmpled;
144
145         if (driver_info->led_scheme == LED_OFF)
146                 return;
147         tmpled = hw->led_state;
148
149         switch (event) {
150         case LED_POWER_ON:
151                 set_led_bit(hw, driver_info->led_bits[0], 1);
152                 set_led_bit(hw, driver_info->led_bits[1], 0);
153                 set_led_bit(hw, driver_info->led_bits[2], 0);
154                 set_led_bit(hw, driver_info->led_bits[3], 0);
155                 break;
156         case LED_POWER_OFF:
157                 set_led_bit(hw, driver_info->led_bits[0], 0);
158                 set_led_bit(hw, driver_info->led_bits[1], 0);
159                 set_led_bit(hw, driver_info->led_bits[2], 0);
160                 set_led_bit(hw, driver_info->led_bits[3], 0);
161                 break;
162         case LED_S0_ON:
163                 set_led_bit(hw, driver_info->led_bits[1], 1);
164                 break;
165         case LED_S0_OFF:
166                 set_led_bit(hw, driver_info->led_bits[1], 0);
167                 break;
168         case LED_B1_ON:
169                 set_led_bit(hw, driver_info->led_bits[2], 1);
170                 break;
171         case LED_B1_OFF:
172                 set_led_bit(hw, driver_info->led_bits[2], 0);
173                 break;
174         case LED_B2_ON:
175                 set_led_bit(hw, driver_info->led_bits[3], 1);
176                 break;
177         case LED_B2_OFF:
178                 set_led_bit(hw, driver_info->led_bits[3], 0);
179                 break;
180         }
181
182         if (hw->led_state != tmpled) {
183                 if (debug & DBG_HFC_CALL_TRACE)
184                         printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
185                                hw->name, __func__,
186                                HFCUSB_P_DATA, hw->led_state);
187
188                 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
189         }
190 }
191
192 /*
193  * Layer2 -> Layer 1 Bchannel data
194  */
195 static int
196 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
197 {
198         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
199         struct hfcsusb          *hw = bch->hw;
200         int                     ret = -EINVAL;
201         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
202         u_long                  flags;
203
204         if (debug & DBG_HFC_CALL_TRACE)
205                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
206
207         switch (hh->prim) {
208         case PH_DATA_REQ:
209                 spin_lock_irqsave(&hw->lock, flags);
210                 ret = bchannel_senddata(bch, skb);
211                 spin_unlock_irqrestore(&hw->lock, flags);
212                 if (debug & DBG_HFC_CALL_TRACE)
213                         printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
214                                hw->name, __func__, ret);
215                 if (ret > 0)
216                         ret = 0;
217                 return ret;
218         case PH_ACTIVATE_REQ:
219                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
220                         hfcsusb_start_endpoint(hw, bch->nr - 1);
221                         ret = hfcsusb_setup_bch(bch, ch->protocol);
222                 } else
223                         ret = 0;
224                 if (!ret)
225                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
226                                     0, NULL, GFP_KERNEL);
227                 break;
228         case PH_DEACTIVATE_REQ:
229                 deactivate_bchannel(bch);
230                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
231                             0, NULL, GFP_KERNEL);
232                 ret = 0;
233                 break;
234         }
235         if (!ret)
236                 dev_kfree_skb(skb);
237         return ret;
238 }
239
240 /*
241  * send full D/B channel status information
242  * as MPH_INFORMATION_IND
243  */
244 static void
245 hfcsusb_ph_info(struct hfcsusb *hw)
246 {
247         struct ph_info *phi;
248         struct dchannel *dch = &hw->dch;
249         int i;
250
251         phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
252         if (!phi)
253                 return;
254
255         phi->dch.ch.protocol = hw->protocol;
256         phi->dch.ch.Flags = dch->Flags;
257         phi->dch.state = dch->state;
258         phi->dch.num_bch = dch->dev.nrbchan;
259         for (i = 0; i < dch->dev.nrbchan; i++) {
260                 phi->bch[i].protocol = hw->bch[i].ch.protocol;
261                 phi->bch[i].Flags = hw->bch[i].Flags;
262         }
263         _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
264                     sizeof(struct ph_info_dch) + dch->dev.nrbchan *
265                     sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
266         kfree(phi);
267 }
268
269 /*
270  * Layer2 -> Layer 1 Dchannel data
271  */
272 static int
273 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
274 {
275         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
276         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
277         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
278         struct hfcsusb          *hw = dch->hw;
279         int                     ret = -EINVAL;
280         u_long                  flags;
281
282         switch (hh->prim) {
283         case PH_DATA_REQ:
284                 if (debug & DBG_HFC_CALL_TRACE)
285                         printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
286                                hw->name, __func__);
287
288                 spin_lock_irqsave(&hw->lock, flags);
289                 ret = dchannel_senddata(dch, skb);
290                 spin_unlock_irqrestore(&hw->lock, flags);
291                 if (ret > 0) {
292                         ret = 0;
293                         queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
294                 }
295                 break;
296
297         case PH_ACTIVATE_REQ:
298                 if (debug & DBG_HFC_CALL_TRACE)
299                         printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
300                                hw->name, __func__,
301                                (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
302
303                 if (hw->protocol == ISDN_P_NT_S0) {
304                         ret = 0;
305                         if (test_bit(FLG_ACTIVE, &dch->Flags)) {
306                                 _queue_data(&dch->dev.D,
307                                             PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
308                                             NULL, GFP_ATOMIC);
309                         } else {
310                                 hfcsusb_ph_command(hw,
311                                                    HFC_L1_ACTIVATE_NT);
312                                 test_and_set_bit(FLG_L2_ACTIVATED,
313                                                  &dch->Flags);
314                         }
315                 } else {
316                         hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
317                         ret = l1_event(dch->l1, hh->prim);
318                 }
319                 break;
320
321         case PH_DEACTIVATE_REQ:
322                 if (debug & DBG_HFC_CALL_TRACE)
323                         printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
324                                hw->name, __func__);
325                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
326
327                 if (hw->protocol == ISDN_P_NT_S0) {
328                         hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
329                         spin_lock_irqsave(&hw->lock, flags);
330                         skb_queue_purge(&dch->squeue);
331                         if (dch->tx_skb) {
332                                 dev_kfree_skb(dch->tx_skb);
333                                 dch->tx_skb = NULL;
334                         }
335                         dch->tx_idx = 0;
336                         if (dch->rx_skb) {
337                                 dev_kfree_skb(dch->rx_skb);
338                                 dch->rx_skb = NULL;
339                         }
340                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
341                         spin_unlock_irqrestore(&hw->lock, flags);
342 #ifdef FIXME
343                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
344                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
345 #endif
346                         ret = 0;
347                 } else
348                         ret = l1_event(dch->l1, hh->prim);
349                 break;
350         case MPH_INFORMATION_REQ:
351                 hfcsusb_ph_info(hw);
352                 ret = 0;
353                 break;
354         }
355
356         return ret;
357 }
358
359 /*
360  * Layer 1 callback function
361  */
362 static int
363 hfc_l1callback(struct dchannel *dch, u_int cmd)
364 {
365         struct hfcsusb *hw = dch->hw;
366
367         if (debug & DBG_HFC_CALL_TRACE)
368                 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
369                        hw->name, __func__, cmd);
370
371         switch (cmd) {
372         case INFO3_P8:
373         case INFO3_P10:
374         case HW_RESET_REQ:
375         case HW_POWERUP_REQ:
376                 break;
377
378         case HW_DEACT_REQ:
379                 skb_queue_purge(&dch->squeue);
380                 if (dch->tx_skb) {
381                         dev_kfree_skb(dch->tx_skb);
382                         dch->tx_skb = NULL;
383                 }
384                 dch->tx_idx = 0;
385                 if (dch->rx_skb) {
386                         dev_kfree_skb(dch->rx_skb);
387                         dch->rx_skb = NULL;
388                 }
389                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
390                 break;
391         case PH_ACTIVATE_IND:
392                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
393                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
394                             GFP_ATOMIC);
395                 break;
396         case PH_DEACTIVATE_IND:
397                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
398                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
399                             GFP_ATOMIC);
400                 break;
401         default:
402                 if (dch->debug & DEBUG_HW)
403                         printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
404                                hw->name, __func__, cmd);
405                 return -1;
406         }
407         hfcsusb_ph_info(hw);
408         return 0;
409 }
410
411 static int
412 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
413               struct channel_req *rq)
414 {
415         int err = 0;
416
417         if (debug & DEBUG_HW_OPEN)
418                 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
419                        hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
420                        __builtin_return_address(0));
421         if (rq->protocol == ISDN_P_NONE)
422                 return -EINVAL;
423
424         test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
425         test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
426         hfcsusb_start_endpoint(hw, HFC_CHAN_D);
427
428         /* E-Channel logging */
429         if (rq->adr.channel == 1) {
430                 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
431                         hfcsusb_start_endpoint(hw, HFC_CHAN_E);
432                         set_bit(FLG_ACTIVE, &hw->ech.Flags);
433                         _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
434                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
435                 } else
436                         return -EINVAL;
437         }
438
439         if (!hw->initdone) {
440                 hw->protocol = rq->protocol;
441                 if (rq->protocol == ISDN_P_TE_S0) {
442                         err = create_l1(&hw->dch, hfc_l1callback);
443                         if (err)
444                                 return err;
445                 }
446                 setPortMode(hw);
447                 ch->protocol = rq->protocol;
448                 hw->initdone = 1;
449         } else {
450                 if (rq->protocol != ch->protocol)
451                         return -EPROTONOSUPPORT;
452         }
453
454         if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
455             ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
456                 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
457                             0, NULL, GFP_KERNEL);
458         rq->ch = ch;
459         if (!try_module_get(THIS_MODULE))
460                 printk(KERN_WARNING "%s: %s: cannot get module\n",
461                        hw->name, __func__);
462         return 0;
463 }
464
465 static int
466 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
467 {
468         struct bchannel         *bch;
469
470         if (rq->adr.channel == 0 || rq->adr.channel > 2)
471                 return -EINVAL;
472         if (rq->protocol == ISDN_P_NONE)
473                 return -EINVAL;
474
475         if (debug & DBG_HFC_CALL_TRACE)
476                 printk(KERN_DEBUG "%s: %s B%i\n",
477                        hw->name, __func__, rq->adr.channel);
478
479         bch = &hw->bch[rq->adr.channel - 1];
480         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
481                 return -EBUSY; /* b-channel can be only open once */
482         bch->ch.protocol = rq->protocol;
483         rq->ch = &bch->ch;
484
485         if (!try_module_get(THIS_MODULE))
486                 printk(KERN_WARNING "%s: %s:cannot get module\n",
487                        hw->name, __func__);
488         return 0;
489 }
490
491 static int
492 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
493 {
494         int ret = 0;
495
496         if (debug & DBG_HFC_CALL_TRACE)
497                 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
498                        hw->name, __func__, (cq->op), (cq->channel));
499
500         switch (cq->op) {
501         case MISDN_CTRL_GETOP:
502                 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
503                         MISDN_CTRL_DISCONNECT;
504                 break;
505         default:
506                 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
507                        hw->name, __func__, cq->op);
508                 ret = -EINVAL;
509                 break;
510         }
511         return ret;
512 }
513
514 /*
515  * device control function
516  */
517 static int
518 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
519 {
520         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
521         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
522         struct hfcsusb          *hw = dch->hw;
523         struct channel_req      *rq;
524         int                     err = 0;
525
526         if (dch->debug & DEBUG_HW)
527                 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
528                        hw->name, __func__, cmd, arg);
529         switch (cmd) {
530         case OPEN_CHANNEL:
531                 rq = arg;
532                 if ((rq->protocol == ISDN_P_TE_S0) ||
533                     (rq->protocol == ISDN_P_NT_S0))
534                         err = open_dchannel(hw, ch, rq);
535                 else
536                         err = open_bchannel(hw, rq);
537                 if (!err)
538                         hw->open++;
539                 break;
540         case CLOSE_CHANNEL:
541                 hw->open--;
542                 if (debug & DEBUG_HW_OPEN)
543                         printk(KERN_DEBUG
544                                "%s: %s: dev(%d) close from %p (open %d)\n",
545                                hw->name, __func__, hw->dch.dev.id,
546                                __builtin_return_address(0), hw->open);
547                 if (!hw->open) {
548                         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
549                         if (hw->fifos[HFCUSB_PCM_RX].pipe)
550                                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
551                         handle_led(hw, LED_POWER_ON);
552                 }
553                 module_put(THIS_MODULE);
554                 break;
555         case CONTROL_CHANNEL:
556                 err = channel_ctrl(hw, arg);
557                 break;
558         default:
559                 if (dch->debug & DEBUG_HW)
560                         printk(KERN_DEBUG "%s: %s: unknown command %x\n",
561                                hw->name, __func__, cmd);
562                 return -EINVAL;
563         }
564         return err;
565 }
566
567 /*
568  * S0 TE state change event handler
569  */
570 static void
571 ph_state_te(struct dchannel *dch)
572 {
573         struct hfcsusb *hw = dch->hw;
574
575         if (debug & DEBUG_HW) {
576                 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
577                         printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
578                                HFC_TE_LAYER1_STATES[dch->state]);
579                 else
580                         printk(KERN_DEBUG "%s: %s: TE F%d\n",
581                                hw->name, __func__, dch->state);
582         }
583
584         switch (dch->state) {
585         case 0:
586                 l1_event(dch->l1, HW_RESET_IND);
587                 break;
588         case 3:
589                 l1_event(dch->l1, HW_DEACT_IND);
590                 break;
591         case 5:
592         case 8:
593                 l1_event(dch->l1, ANYSIGNAL);
594                 break;
595         case 6:
596                 l1_event(dch->l1, INFO2);
597                 break;
598         case 7:
599                 l1_event(dch->l1, INFO4_P8);
600                 break;
601         }
602         if (dch->state == 7)
603                 handle_led(hw, LED_S0_ON);
604         else
605                 handle_led(hw, LED_S0_OFF);
606 }
607
608 /*
609  * S0 NT state change event handler
610  */
611 static void
612 ph_state_nt(struct dchannel *dch)
613 {
614         struct hfcsusb *hw = dch->hw;
615
616         if (debug & DEBUG_HW) {
617                 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
618                         printk(KERN_DEBUG "%s: %s: %s\n",
619                                hw->name, __func__,
620                                HFC_NT_LAYER1_STATES[dch->state]);
621
622                 else
623                         printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
624                                hw->name, __func__, dch->state);
625         }
626
627         switch (dch->state) {
628         case (1):
629                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
630                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
631                 hw->nt_timer = 0;
632                 hw->timers &= ~NT_ACTIVATION_TIMER;
633                 handle_led(hw, LED_S0_OFF);
634                 break;
635
636         case (2):
637                 if (hw->nt_timer < 0) {
638                         hw->nt_timer = 0;
639                         hw->timers &= ~NT_ACTIVATION_TIMER;
640                         hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
641                 } else {
642                         hw->timers |= NT_ACTIVATION_TIMER;
643                         hw->nt_timer = NT_T1_COUNT;
644                         /* allow G2 -> G3 transition */
645                         write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
646                 }
647                 break;
648         case (3):
649                 hw->nt_timer = 0;
650                 hw->timers &= ~NT_ACTIVATION_TIMER;
651                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
652                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
653                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
654                 handle_led(hw, LED_S0_ON);
655                 break;
656         case (4):
657                 hw->nt_timer = 0;
658                 hw->timers &= ~NT_ACTIVATION_TIMER;
659                 break;
660         default:
661                 break;
662         }
663         hfcsusb_ph_info(hw);
664 }
665
666 static void
667 ph_state(struct dchannel *dch)
668 {
669         struct hfcsusb *hw = dch->hw;
670
671         if (hw->protocol == ISDN_P_NT_S0)
672                 ph_state_nt(dch);
673         else if (hw->protocol == ISDN_P_TE_S0)
674                 ph_state_te(dch);
675 }
676
677 /*
678  * disable/enable BChannel for desired protocoll
679  */
680 static int
681 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
682 {
683         struct hfcsusb *hw = bch->hw;
684         __u8 conhdlc, sctrl, sctrl_r;
685
686         if (debug & DEBUG_HW)
687                 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
688                        hw->name, __func__, bch->state, protocol,
689                        bch->nr);
690
691         /* setup val for CON_HDLC */
692         conhdlc = 0;
693         if (protocol > ISDN_P_NONE)
694                 conhdlc = 8;    /* enable FIFO */
695
696         switch (protocol) {
697         case (-1):      /* used for init */
698                 bch->state = -1;
699                 /* fall through */
700         case (ISDN_P_NONE):
701                 if (bch->state == ISDN_P_NONE)
702                         return 0; /* already in idle state */
703                 bch->state = ISDN_P_NONE;
704                 clear_bit(FLG_HDLC, &bch->Flags);
705                 clear_bit(FLG_TRANSPARENT, &bch->Flags);
706                 break;
707         case (ISDN_P_B_RAW):
708                 conhdlc |= 2;
709                 bch->state = protocol;
710                 set_bit(FLG_TRANSPARENT, &bch->Flags);
711                 break;
712         case (ISDN_P_B_HDLC):
713                 bch->state = protocol;
714                 set_bit(FLG_HDLC, &bch->Flags);
715                 break;
716         default:
717                 if (debug & DEBUG_HW)
718                         printk(KERN_DEBUG "%s: %s: prot not known %x\n",
719                                hw->name, __func__, protocol);
720                 return -ENOPROTOOPT;
721         }
722
723         if (protocol >= ISDN_P_NONE) {
724                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
725                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
726                 write_reg(hw, HFCUSB_INC_RES_F, 2);
727                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
728                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
729                 write_reg(hw, HFCUSB_INC_RES_F, 2);
730
731                 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
732                 sctrl_r = 0x0;
733                 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
734                         sctrl |= 1;
735                         sctrl_r |= 1;
736                 }
737                 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
738                         sctrl |= 2;
739                         sctrl_r |= 2;
740                 }
741                 write_reg(hw, HFCUSB_SCTRL, sctrl);
742                 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
743
744                 if (protocol > ISDN_P_NONE)
745                         handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
746                 else
747                         handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
748                                    LED_B2_OFF);
749         }
750         hfcsusb_ph_info(hw);
751         return 0;
752 }
753
754 static void
755 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
756 {
757         if (debug & DEBUG_HW)
758                 printk(KERN_DEBUG "%s: %s: %x\n",
759                        hw->name, __func__, command);
760
761         switch (command) {
762         case HFC_L1_ACTIVATE_TE:
763                 /* force sending sending INFO1 */
764                 write_reg(hw, HFCUSB_STATES, 0x14);
765                 /* start l1 activation */
766                 write_reg(hw, HFCUSB_STATES, 0x04);
767                 break;
768
769         case HFC_L1_FORCE_DEACTIVATE_TE:
770                 write_reg(hw, HFCUSB_STATES, 0x10);
771                 write_reg(hw, HFCUSB_STATES, 0x03);
772                 break;
773
774         case HFC_L1_ACTIVATE_NT:
775                 if (hw->dch.state == 3)
776                         _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
777                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
778                 else
779                         write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
780                                   HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
781                 break;
782
783         case HFC_L1_DEACTIVATE_NT:
784                 write_reg(hw, HFCUSB_STATES,
785                           HFCUSB_DO_ACTION);
786                 break;
787         }
788 }
789
790 /*
791  * Layer 1 B-channel hardware access
792  */
793 static int
794 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
795 {
796         return mISDN_ctrl_bchannel(bch, cq);
797 }
798
799 /* collect data from incoming interrupt or isochron USB data */
800 static void
801 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
802                  int finish)
803 {
804         struct hfcsusb  *hw = fifo->hw;
805         struct sk_buff  *rx_skb = NULL;
806         int             maxlen = 0;
807         int             fifon = fifo->fifonum;
808         int             i;
809         int             hdlc = 0;
810         unsigned long   flags;
811
812         if (debug & DBG_HFC_CALL_TRACE)
813                 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
814                        "dch(%p) bch(%p) ech(%p)\n",
815                        hw->name, __func__, fifon, len,
816                        fifo->dch, fifo->bch, fifo->ech);
817
818         if (!len)
819                 return;
820
821         if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
822                 printk(KERN_DEBUG "%s: %s: undefined channel\n",
823                        hw->name, __func__);
824                 return;
825         }
826
827         spin_lock_irqsave(&hw->lock, flags);
828         if (fifo->dch) {
829                 rx_skb = fifo->dch->rx_skb;
830                 maxlen = fifo->dch->maxlen;
831                 hdlc = 1;
832         }
833         if (fifo->bch) {
834                 if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
835                         fifo->bch->dropcnt += len;
836                         spin_unlock_irqrestore(&hw->lock, flags);
837                         return;
838                 }
839                 maxlen = bchannel_get_rxbuf(fifo->bch, len);
840                 rx_skb = fifo->bch->rx_skb;
841                 if (maxlen < 0) {
842                         if (rx_skb)
843                                 skb_trim(rx_skb, 0);
844                         pr_warning("%s.B%d: No bufferspace for %d bytes\n",
845                                    hw->name, fifo->bch->nr, len);
846                         spin_unlock_irqrestore(&hw->lock, flags);
847                         return;
848                 }
849                 maxlen = fifo->bch->maxlen;
850                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
851         }
852         if (fifo->ech) {
853                 rx_skb = fifo->ech->rx_skb;
854                 maxlen = fifo->ech->maxlen;
855                 hdlc = 1;
856         }
857
858         if (fifo->dch || fifo->ech) {
859                 if (!rx_skb) {
860                         rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
861                         if (rx_skb) {
862                                 if (fifo->dch)
863                                         fifo->dch->rx_skb = rx_skb;
864                                 if (fifo->ech)
865                                         fifo->ech->rx_skb = rx_skb;
866                                 skb_trim(rx_skb, 0);
867                         } else {
868                                 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
869                                        hw->name, __func__);
870                                 spin_unlock_irqrestore(&hw->lock, flags);
871                                 return;
872                         }
873                 }
874                 /* D/E-Channel SKB range check */
875                 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
876                         printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
877                                "for fifo(%d) HFCUSB_D_RX\n",
878                                hw->name, __func__, fifon);
879                         skb_trim(rx_skb, 0);
880                         spin_unlock_irqrestore(&hw->lock, flags);
881                         return;
882                 }
883         }
884
885         skb_put_data(rx_skb, data, len);
886
887         if (hdlc) {
888                 /* we have a complete hdlc packet */
889                 if (finish) {
890                         if ((rx_skb->len > 3) &&
891                             (!(rx_skb->data[rx_skb->len - 1]))) {
892                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
893                                         printk(KERN_DEBUG "%s: %s: fifon(%i)"
894                                                " new RX len(%i): ",
895                                                hw->name, __func__, fifon,
896                                                rx_skb->len);
897                                         i = 0;
898                                         while (i < rx_skb->len)
899                                                 printk("%02x ",
900                                                        rx_skb->data[i++]);
901                                         printk("\n");
902                                 }
903
904                                 /* remove CRC & status */
905                                 skb_trim(rx_skb, rx_skb->len - 3);
906
907                                 if (fifo->dch)
908                                         recv_Dchannel(fifo->dch);
909                                 if (fifo->bch)
910                                         recv_Bchannel(fifo->bch, MISDN_ID_ANY,
911                                                       0);
912                                 if (fifo->ech)
913                                         recv_Echannel(fifo->ech,
914                                                       &hw->dch);
915                         } else {
916                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
917                                         printk(KERN_DEBUG
918                                                "%s: CRC or minlen ERROR fifon(%i) "
919                                                "RX len(%i): ",
920                                                hw->name, fifon, rx_skb->len);
921                                         i = 0;
922                                         while (i < rx_skb->len)
923                                                 printk("%02x ",
924                                                        rx_skb->data[i++]);
925                                         printk("\n");
926                                 }
927                                 skb_trim(rx_skb, 0);
928                         }
929                 }
930         } else {
931                 /* deliver transparent data to layer2 */
932                 recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
933         }
934         spin_unlock_irqrestore(&hw->lock, flags);
935 }
936
937 static void
938 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
939               void *buf, int num_packets, int packet_size, int interval,
940               usb_complete_t complete, void *context)
941 {
942         int k;
943
944         usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
945                           complete, context);
946
947         urb->number_of_packets = num_packets;
948         urb->transfer_flags = URB_ISO_ASAP;
949         urb->actual_length = 0;
950         urb->interval = interval;
951
952         for (k = 0; k < num_packets; k++) {
953                 urb->iso_frame_desc[k].offset = packet_size * k;
954                 urb->iso_frame_desc[k].length = packet_size;
955                 urb->iso_frame_desc[k].actual_length = 0;
956         }
957 }
958
959 /* receive completion routine for all ISO tx fifos   */
960 static void
961 rx_iso_complete(struct urb *urb)
962 {
963         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
964         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
965         struct hfcsusb *hw = fifo->hw;
966         int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
967                 status, iso_status, i;
968         __u8 *buf;
969         static __u8 eof[8];
970         __u8 s0_state;
971         unsigned long flags;
972
973         fifon = fifo->fifonum;
974         status = urb->status;
975
976         spin_lock_irqsave(&hw->lock, flags);
977         if (fifo->stop_gracefull) {
978                 fifo->stop_gracefull = 0;
979                 fifo->active = 0;
980                 spin_unlock_irqrestore(&hw->lock, flags);
981                 return;
982         }
983         spin_unlock_irqrestore(&hw->lock, flags);
984
985         /*
986          * ISO transfer only partially completed,
987          * look at individual frame status for details
988          */
989         if (status == -EXDEV) {
990                 if (debug & DEBUG_HW)
991                         printk(KERN_DEBUG "%s: %s: with -EXDEV "
992                                "urb->status %d, fifonum %d\n",
993                                hw->name, __func__,  status, fifon);
994
995                 /* clear status, so go on with ISO transfers */
996                 status = 0;
997         }
998
999         s0_state = 0;
1000         if (fifo->active && !status) {
1001                 num_isoc_packets = iso_packets[fifon];
1002                 maxlen = fifo->usb_packet_maxlen;
1003
1004                 for (k = 0; k < num_isoc_packets; ++k) {
1005                         len = urb->iso_frame_desc[k].actual_length;
1006                         offset = urb->iso_frame_desc[k].offset;
1007                         buf = context_iso_urb->buffer + offset;
1008                         iso_status = urb->iso_frame_desc[k].status;
1009
1010                         if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1011                                 printk(KERN_DEBUG "%s: %s: "
1012                                        "ISO packet %i, status: %i\n",
1013                                        hw->name, __func__, k, iso_status);
1014                         }
1015
1016                         /* USB data log for every D ISO in */
1017                         if ((fifon == HFCUSB_D_RX) &&
1018                             (debug & DBG_HFC_USB_VERBOSE)) {
1019                                 printk(KERN_DEBUG
1020                                        "%s: %s: %d (%d/%d) len(%d) ",
1021                                        hw->name, __func__, urb->start_frame,
1022                                        k, num_isoc_packets - 1,
1023                                        len);
1024                                 for (i = 0; i < len; i++)
1025                                         printk("%x ", buf[i]);
1026                                 printk("\n");
1027                         }
1028
1029                         if (!iso_status) {
1030                                 if (fifo->last_urblen != maxlen) {
1031                                         /*
1032                                          * save fifo fill-level threshold bits
1033                                          * to use them later in TX ISO URB
1034                                          * completions
1035                                          */
1036                                         hw->threshold_mask = buf[1];
1037
1038                                         if (fifon == HFCUSB_D_RX)
1039                                                 s0_state = (buf[0] >> 4);
1040
1041                                         eof[fifon] = buf[0] & 1;
1042                                         if (len > 2)
1043                                                 hfcsusb_rx_frame(fifo, buf + 2,
1044                                                                  len - 2, (len < maxlen)
1045                                                                  ? eof[fifon] : 0);
1046                                 } else
1047                                         hfcsusb_rx_frame(fifo, buf, len,
1048                                                          (len < maxlen) ?
1049                                                          eof[fifon] : 0);
1050                                 fifo->last_urblen = len;
1051                         }
1052                 }
1053
1054                 /* signal S0 layer1 state change */
1055                 if ((s0_state) && (hw->initdone) &&
1056                     (s0_state != hw->dch.state)) {
1057                         hw->dch.state = s0_state;
1058                         schedule_event(&hw->dch, FLG_PHCHANGE);
1059                 }
1060
1061                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1062                               context_iso_urb->buffer, num_isoc_packets,
1063                               fifo->usb_packet_maxlen, fifo->intervall,
1064                               (usb_complete_t)rx_iso_complete, urb->context);
1065                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1066                 if (errcode < 0) {
1067                         if (debug & DEBUG_HW)
1068                                 printk(KERN_DEBUG "%s: %s: error submitting "
1069                                        "ISO URB: %d\n",
1070                                        hw->name, __func__, errcode);
1071                 }
1072         } else {
1073                 if (status && (debug & DBG_HFC_URB_INFO))
1074                         printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1075                                "urb->status %d, fifonum %d\n",
1076                                hw->name, __func__, status, fifon);
1077         }
1078 }
1079
1080 /* receive completion routine for all interrupt rx fifos */
1081 static void
1082 rx_int_complete(struct urb *urb)
1083 {
1084         int len, status, i;
1085         __u8 *buf, maxlen, fifon;
1086         struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1087         struct hfcsusb *hw = fifo->hw;
1088         static __u8 eof[8];
1089         unsigned long flags;
1090
1091         spin_lock_irqsave(&hw->lock, flags);
1092         if (fifo->stop_gracefull) {
1093                 fifo->stop_gracefull = 0;
1094                 fifo->active = 0;
1095                 spin_unlock_irqrestore(&hw->lock, flags);
1096                 return;
1097         }
1098         spin_unlock_irqrestore(&hw->lock, flags);
1099
1100         fifon = fifo->fifonum;
1101         if ((!fifo->active) || (urb->status)) {
1102                 if (debug & DBG_HFC_URB_ERROR)
1103                         printk(KERN_DEBUG
1104                                "%s: %s: RX-Fifo %i is going down (%i)\n",
1105                                hw->name, __func__, fifon, urb->status);
1106
1107                 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1108                 return;
1109         }
1110         len = urb->actual_length;
1111         buf = fifo->buffer;
1112         maxlen = fifo->usb_packet_maxlen;
1113
1114         /* USB data log for every D INT in */
1115         if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1116                 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1117                        hw->name, __func__, len);
1118                 for (i = 0; i < len; i++)
1119                         printk("%02x ", buf[i]);
1120                 printk("\n");
1121         }
1122
1123         if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1124                 /* the threshold mask is in the 2nd status byte */
1125                 hw->threshold_mask = buf[1];
1126
1127                 /* signal S0 layer1 state change */
1128                 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1129                         hw->dch.state = (buf[0] >> 4);
1130                         schedule_event(&hw->dch, FLG_PHCHANGE);
1131                 }
1132
1133                 eof[fifon] = buf[0] & 1;
1134                 /* if we have more than the 2 status bytes -> collect data */
1135                 if (len > 2)
1136                         hfcsusb_rx_frame(fifo, buf + 2,
1137                                          urb->actual_length - 2,
1138                                          (len < maxlen) ? eof[fifon] : 0);
1139         } else {
1140                 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1141                                  (len < maxlen) ? eof[fifon] : 0);
1142         }
1143         fifo->last_urblen = urb->actual_length;
1144
1145         status = usb_submit_urb(urb, GFP_ATOMIC);
1146         if (status) {
1147                 if (debug & DEBUG_HW)
1148                         printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1149                                hw->name, __func__);
1150         }
1151 }
1152
1153 /* transmit completion routine for all ISO tx fifos */
1154 static void
1155 tx_iso_complete(struct urb *urb)
1156 {
1157         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1158         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1159         struct hfcsusb *hw = fifo->hw;
1160         struct sk_buff *tx_skb;
1161         int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1162                 errcode, hdlc, i;
1163         int *tx_idx;
1164         int frame_complete, fifon, status, fillempty = 0;
1165         __u8 threshbit, *p;
1166         unsigned long flags;
1167
1168         spin_lock_irqsave(&hw->lock, flags);
1169         if (fifo->stop_gracefull) {
1170                 fifo->stop_gracefull = 0;
1171                 fifo->active = 0;
1172                 spin_unlock_irqrestore(&hw->lock, flags);
1173                 return;
1174         }
1175
1176         if (fifo->dch) {
1177                 tx_skb = fifo->dch->tx_skb;
1178                 tx_idx = &fifo->dch->tx_idx;
1179                 hdlc = 1;
1180         } else if (fifo->bch) {
1181                 tx_skb = fifo->bch->tx_skb;
1182                 tx_idx = &fifo->bch->tx_idx;
1183                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1184                 if (!tx_skb && !hdlc &&
1185                     test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1186                         fillempty = 1;
1187         } else {
1188                 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1189                        hw->name, __func__);
1190                 spin_unlock_irqrestore(&hw->lock, flags);
1191                 return;
1192         }
1193
1194         fifon = fifo->fifonum;
1195         status = urb->status;
1196
1197         tx_offset = 0;
1198
1199         /*
1200          * ISO transfer only partially completed,
1201          * look at individual frame status for details
1202          */
1203         if (status == -EXDEV) {
1204                 if (debug & DBG_HFC_URB_ERROR)
1205                         printk(KERN_DEBUG "%s: %s: "
1206                                "-EXDEV (%i) fifon (%d)\n",
1207                                hw->name, __func__, status, fifon);
1208
1209                 /* clear status, so go on with ISO transfers */
1210                 status = 0;
1211         }
1212
1213         if (fifo->active && !status) {
1214                 /* is FifoFull-threshold set for our channel? */
1215                 threshbit = (hw->threshold_mask & (1 << fifon));
1216                 num_isoc_packets = iso_packets[fifon];
1217
1218                 /* predict dataflow to avoid fifo overflow */
1219                 if (fifon >= HFCUSB_D_TX)
1220                         sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1221                 else
1222                         sink = (threshbit) ? SINK_MIN : SINK_MAX;
1223                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1224                               context_iso_urb->buffer, num_isoc_packets,
1225                               fifo->usb_packet_maxlen, fifo->intervall,
1226                               (usb_complete_t)tx_iso_complete, urb->context);
1227                 memset(context_iso_urb->buffer, 0,
1228                        sizeof(context_iso_urb->buffer));
1229                 frame_complete = 0;
1230
1231                 for (k = 0; k < num_isoc_packets; ++k) {
1232                         /* analyze tx success of previous ISO packets */
1233                         if (debug & DBG_HFC_URB_ERROR) {
1234                                 errcode = urb->iso_frame_desc[k].status;
1235                                 if (errcode) {
1236                                         printk(KERN_DEBUG "%s: %s: "
1237                                                "ISO packet %i, status: %i\n",
1238                                                hw->name, __func__, k, errcode);
1239                                 }
1240                         }
1241
1242                         /* Generate next ISO Packets */
1243                         if (tx_skb)
1244                                 remain = tx_skb->len - *tx_idx;
1245                         else if (fillempty)
1246                                 remain = 15; /* > not complete */
1247                         else
1248                                 remain = 0;
1249
1250                         if (remain > 0) {
1251                                 fifo->bit_line -= sink;
1252                                 current_len = (0 - fifo->bit_line) / 8;
1253                                 if (current_len > 14)
1254                                         current_len = 14;
1255                                 if (current_len < 0)
1256                                         current_len = 0;
1257                                 if (remain < current_len)
1258                                         current_len = remain;
1259
1260                                 /* how much bit do we put on the line? */
1261                                 fifo->bit_line += current_len * 8;
1262
1263                                 context_iso_urb->buffer[tx_offset] = 0;
1264                                 if (current_len == remain) {
1265                                         if (hdlc) {
1266                                                 /* signal frame completion */
1267                                                 context_iso_urb->
1268                                                         buffer[tx_offset] = 1;
1269                                                 /* add 2 byte flags and 16bit
1270                                                  * CRC at end of ISDN frame */
1271                                                 fifo->bit_line += 32;
1272                                         }
1273                                         frame_complete = 1;
1274                                 }
1275
1276                                 /* copy tx data to iso-urb buffer */
1277                                 p = context_iso_urb->buffer + tx_offset + 1;
1278                                 if (fillempty) {
1279                                         memset(p, fifo->bch->fill[0],
1280                                                current_len);
1281                                 } else {
1282                                         memcpy(p, (tx_skb->data + *tx_idx),
1283                                                current_len);
1284                                         *tx_idx += current_len;
1285                                 }
1286                                 urb->iso_frame_desc[k].offset = tx_offset;
1287                                 urb->iso_frame_desc[k].length = current_len + 1;
1288
1289                                 /* USB data log for every D ISO out */
1290                                 if ((fifon == HFCUSB_D_RX) && !fillempty &&
1291                                     (debug & DBG_HFC_USB_VERBOSE)) {
1292                                         printk(KERN_DEBUG
1293                                                "%s: %s (%d/%d) offs(%d) len(%d) ",
1294                                                hw->name, __func__,
1295                                                k, num_isoc_packets - 1,
1296                                                urb->iso_frame_desc[k].offset,
1297                                                urb->iso_frame_desc[k].length);
1298
1299                                         for (i = urb->iso_frame_desc[k].offset;
1300                                              i < (urb->iso_frame_desc[k].offset
1301                                                   + urb->iso_frame_desc[k].length);
1302                                              i++)
1303                                                 printk("%x ",
1304                                                        context_iso_urb->buffer[i]);
1305
1306                                         printk(" skb->len(%i) tx-idx(%d)\n",
1307                                                tx_skb->len, *tx_idx);
1308                                 }
1309
1310                                 tx_offset += (current_len + 1);
1311                         } else {
1312                                 urb->iso_frame_desc[k].offset = tx_offset++;
1313                                 urb->iso_frame_desc[k].length = 1;
1314                                 /* we lower data margin every msec */
1315                                 fifo->bit_line -= sink;
1316                                 if (fifo->bit_line < BITLINE_INF)
1317                                         fifo->bit_line = BITLINE_INF;
1318                         }
1319
1320                         if (frame_complete) {
1321                                 frame_complete = 0;
1322
1323                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
1324                                         printk(KERN_DEBUG  "%s: %s: "
1325                                                "fifon(%i) new TX len(%i): ",
1326                                                hw->name, __func__,
1327                                                fifon, tx_skb->len);
1328                                         i = 0;
1329                                         while (i < tx_skb->len)
1330                                                 printk("%02x ",
1331                                                        tx_skb->data[i++]);
1332                                         printk("\n");
1333                                 }
1334
1335                                 dev_kfree_skb(tx_skb);
1336                                 tx_skb = NULL;
1337                                 if (fifo->dch && get_next_dframe(fifo->dch))
1338                                         tx_skb = fifo->dch->tx_skb;
1339                                 else if (fifo->bch &&
1340                                          get_next_bframe(fifo->bch))
1341                                         tx_skb = fifo->bch->tx_skb;
1342                         }
1343                 }
1344                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1345                 if (errcode < 0) {
1346                         if (debug & DEBUG_HW)
1347                                 printk(KERN_DEBUG
1348                                        "%s: %s: error submitting ISO URB: %d \n",
1349                                        hw->name, __func__, errcode);
1350                 }
1351
1352                 /*
1353                  * abuse DChannel tx iso completion to trigger NT mode state
1354                  * changes tx_iso_complete is assumed to be called every
1355                  * fifo->intervall (ms)
1356                  */
1357                 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1358                     && (hw->timers & NT_ACTIVATION_TIMER)) {
1359                         if ((--hw->nt_timer) < 0)
1360                                 schedule_event(&hw->dch, FLG_PHCHANGE);
1361                 }
1362
1363         } else {
1364                 if (status && (debug & DBG_HFC_URB_ERROR))
1365                         printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1366                                "fifonum=%d\n",
1367                                hw->name, __func__,
1368                                symbolic(urb_errlist, status), status, fifon);
1369         }
1370         spin_unlock_irqrestore(&hw->lock, flags);
1371 }
1372
1373 /*
1374  * allocs urbs and start isoc transfer with two pending urbs to avoid
1375  * gaps in the transfer chain
1376  */
1377 static int
1378 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1379                  usb_complete_t complete, int packet_size)
1380 {
1381         struct hfcsusb *hw = fifo->hw;
1382         int i, k, errcode;
1383
1384         if (debug)
1385                 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1386                        hw->name, __func__, fifo->fifonum);
1387
1388         /* allocate Memory for Iso out Urbs */
1389         for (i = 0; i < 2; i++) {
1390                 if (!(fifo->iso[i].urb)) {
1391                         fifo->iso[i].urb =
1392                                 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1393                         if (!(fifo->iso[i].urb)) {
1394                                 printk(KERN_DEBUG
1395                                        "%s: %s: alloc urb for fifo %i failed",
1396                                        hw->name, __func__, fifo->fifonum);
1397                         }
1398                         fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1399                         fifo->iso[i].indx = i;
1400
1401                         /* Init the first iso */
1402                         if (ISO_BUFFER_SIZE >=
1403                             (fifo->usb_packet_maxlen *
1404                              num_packets_per_urb)) {
1405                                 fill_isoc_urb(fifo->iso[i].urb,
1406                                               fifo->hw->dev, fifo->pipe,
1407                                               fifo->iso[i].buffer,
1408                                               num_packets_per_urb,
1409                                               fifo->usb_packet_maxlen,
1410                                               fifo->intervall, complete,
1411                                               &fifo->iso[i]);
1412                                 memset(fifo->iso[i].buffer, 0,
1413                                        sizeof(fifo->iso[i].buffer));
1414
1415                                 for (k = 0; k < num_packets_per_urb; k++) {
1416                                         fifo->iso[i].urb->
1417                                                 iso_frame_desc[k].offset =
1418                                                 k * packet_size;
1419                                         fifo->iso[i].urb->
1420                                                 iso_frame_desc[k].length =
1421                                                 packet_size;
1422                                 }
1423                         } else {
1424                                 printk(KERN_DEBUG
1425                                        "%s: %s: ISO Buffer size to small!\n",
1426                                        hw->name, __func__);
1427                         }
1428                 }
1429                 fifo->bit_line = BITLINE_INF;
1430
1431                 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1432                 fifo->active = (errcode >= 0) ? 1 : 0;
1433                 fifo->stop_gracefull = 0;
1434                 if (errcode < 0) {
1435                         printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1436                                hw->name, __func__,
1437                                symbolic(urb_errlist, errcode), i);
1438                 }
1439         }
1440         return fifo->active;
1441 }
1442
1443 static void
1444 stop_iso_gracefull(struct usb_fifo *fifo)
1445 {
1446         struct hfcsusb *hw = fifo->hw;
1447         int i, timeout;
1448         u_long flags;
1449
1450         for (i = 0; i < 2; i++) {
1451                 spin_lock_irqsave(&hw->lock, flags);
1452                 if (debug)
1453                         printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1454                                hw->name, __func__, fifo->fifonum, i);
1455                 fifo->stop_gracefull = 1;
1456                 spin_unlock_irqrestore(&hw->lock, flags);
1457         }
1458
1459         for (i = 0; i < 2; i++) {
1460                 timeout = 3;
1461                 while (fifo->stop_gracefull && timeout--)
1462                         schedule_timeout_interruptible((HZ / 1000) * 16);
1463                 if (debug && fifo->stop_gracefull)
1464                         printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1465                                hw->name, __func__, fifo->fifonum, i);
1466         }
1467 }
1468
1469 static void
1470 stop_int_gracefull(struct usb_fifo *fifo)
1471 {
1472         struct hfcsusb *hw = fifo->hw;
1473         int timeout;
1474         u_long flags;
1475
1476         spin_lock_irqsave(&hw->lock, flags);
1477         if (debug)
1478                 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1479                        hw->name, __func__, fifo->fifonum);
1480         fifo->stop_gracefull = 1;
1481         spin_unlock_irqrestore(&hw->lock, flags);
1482
1483         timeout = 3;
1484         while (fifo->stop_gracefull && timeout--)
1485                 schedule_timeout_interruptible((HZ / 1000) * 3);
1486         if (debug && fifo->stop_gracefull)
1487                 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1488                        hw->name, __func__, fifo->fifonum);
1489 }
1490
1491 /* start the interrupt transfer for the given fifo */
1492 static void
1493 start_int_fifo(struct usb_fifo *fifo)
1494 {
1495         struct hfcsusb *hw = fifo->hw;
1496         int errcode;
1497
1498         if (debug)
1499                 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1500                        hw->name, __func__, fifo->fifonum);
1501
1502         if (!fifo->urb) {
1503                 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1504                 if (!fifo->urb)
1505                         return;
1506         }
1507         usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1508                          fifo->buffer, fifo->usb_packet_maxlen,
1509                          (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1510         fifo->active = 1;
1511         fifo->stop_gracefull = 0;
1512         errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1513         if (errcode) {
1514                 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1515                        hw->name, __func__, errcode);
1516                 fifo->active = 0;
1517         }
1518 }
1519
1520 static void
1521 setPortMode(struct hfcsusb *hw)
1522 {
1523         if (debug & DEBUG_HW)
1524                 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1525                        (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1526
1527         if (hw->protocol == ISDN_P_TE_S0) {
1528                 write_reg(hw, HFCUSB_SCTRL, 0x40);
1529                 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1530                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1531                 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1532                 write_reg(hw, HFCUSB_STATES, 3);
1533         } else {
1534                 write_reg(hw, HFCUSB_SCTRL, 0x44);
1535                 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1536                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1537                 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1538                 write_reg(hw, HFCUSB_STATES, 1);
1539         }
1540 }
1541
1542 static void
1543 reset_hfcsusb(struct hfcsusb *hw)
1544 {
1545         struct usb_fifo *fifo;
1546         int i;
1547
1548         if (debug & DEBUG_HW)
1549                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1550
1551         /* do Chip reset */
1552         write_reg(hw, HFCUSB_CIRM, 8);
1553
1554         /* aux = output, reset off */
1555         write_reg(hw, HFCUSB_CIRM, 0x10);
1556
1557         /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1558         write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1559                   ((hw->packet_size / 8) << 4));
1560
1561         /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1562         write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1563
1564         /* enable PCM/GCI master mode */
1565         write_reg(hw, HFCUSB_MST_MODE1, 0);     /* set default values */
1566         write_reg(hw, HFCUSB_MST_MODE0, 1);     /* enable master mode */
1567
1568         /* init the fifos */
1569         write_reg(hw, HFCUSB_F_THRES,
1570                   (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1571
1572         fifo = hw->fifos;
1573         for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1574                 write_reg(hw, HFCUSB_FIFO, i);  /* select the desired fifo */
1575                 fifo[i].max_size =
1576                         (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1577                 fifo[i].last_urblen = 0;
1578
1579                 /* set 2 bit for D- & E-channel */
1580                 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1581
1582                 /* enable all fifos */
1583                 if (i == HFCUSB_D_TX)
1584                         write_reg(hw, HFCUSB_CON_HDLC,
1585                                   (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1586                 else
1587                         write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1588                 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1589         }
1590
1591         write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1592         handle_led(hw, LED_POWER_ON);
1593 }
1594
1595 /* start USB data pipes dependand on device's endpoint configuration */
1596 static void
1597 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1598 {
1599         /* quick check if endpoint already running */
1600         if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1601                 return;
1602         if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1603                 return;
1604         if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1605                 return;
1606         if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1607                 return;
1608
1609         /* start rx endpoints using USB INT IN method */
1610         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1611                 start_int_fifo(hw->fifos + channel * 2 + 1);
1612
1613         /* start rx endpoints using USB ISO IN method */
1614         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1615                 switch (channel) {
1616                 case HFC_CHAN_D:
1617                         start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1618                                          ISOC_PACKETS_D,
1619                                          (usb_complete_t)rx_iso_complete,
1620                                          16);
1621                         break;
1622                 case HFC_CHAN_E:
1623                         start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1624                                          ISOC_PACKETS_D,
1625                                          (usb_complete_t)rx_iso_complete,
1626                                          16);
1627                         break;
1628                 case HFC_CHAN_B1:
1629                         start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1630                                          ISOC_PACKETS_B,
1631                                          (usb_complete_t)rx_iso_complete,
1632                                          16);
1633                         break;
1634                 case HFC_CHAN_B2:
1635                         start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1636                                          ISOC_PACKETS_B,
1637                                          (usb_complete_t)rx_iso_complete,
1638                                          16);
1639                         break;
1640                 }
1641         }
1642
1643         /* start tx endpoints using USB ISO OUT method */
1644         switch (channel) {
1645         case HFC_CHAN_D:
1646                 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1647                                  ISOC_PACKETS_B,
1648                                  (usb_complete_t)tx_iso_complete, 1);
1649                 break;
1650         case HFC_CHAN_B1:
1651                 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1652                                  ISOC_PACKETS_D,
1653                                  (usb_complete_t)tx_iso_complete, 1);
1654                 break;
1655         case HFC_CHAN_B2:
1656                 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1657                                  ISOC_PACKETS_B,
1658                                  (usb_complete_t)tx_iso_complete, 1);
1659                 break;
1660         }
1661 }
1662
1663 /* stop USB data pipes dependand on device's endpoint configuration */
1664 static void
1665 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1666 {
1667         /* quick check if endpoint currently running */
1668         if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1669                 return;
1670         if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1671                 return;
1672         if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1673                 return;
1674         if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1675                 return;
1676
1677         /* rx endpoints using USB INT IN method */
1678         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1679                 stop_int_gracefull(hw->fifos + channel * 2 + 1);
1680
1681         /* rx endpoints using USB ISO IN method */
1682         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1683                 stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1684
1685         /* tx endpoints using USB ISO OUT method */
1686         if (channel != HFC_CHAN_E)
1687                 stop_iso_gracefull(hw->fifos + channel * 2);
1688 }
1689
1690
1691 /* Hardware Initialization */
1692 static int
1693 setup_hfcsusb(struct hfcsusb *hw)
1694 {
1695         u_char b;
1696
1697         if (debug & DBG_HFC_CALL_TRACE)
1698                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1699
1700         /* check the chip id */
1701         if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1702                 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1703                        hw->name, __func__);
1704                 return 1;
1705         }
1706         if (b != HFCUSB_CHIPID) {
1707                 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1708                        hw->name, __func__, b);
1709                 return 1;
1710         }
1711
1712         /* first set the needed config, interface and alternate */
1713         (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1714
1715         hw->led_state = 0;
1716
1717         /* init the background machinery for control requests */
1718         hw->ctrl_read.bRequestType = 0xc0;
1719         hw->ctrl_read.bRequest = 1;
1720         hw->ctrl_read.wLength = cpu_to_le16(1);
1721         hw->ctrl_write.bRequestType = 0x40;
1722         hw->ctrl_write.bRequest = 0;
1723         hw->ctrl_write.wLength = 0;
1724         usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1725                              (u_char *)&hw->ctrl_write, NULL, 0,
1726                              (usb_complete_t)ctrl_complete, hw);
1727
1728         reset_hfcsusb(hw);
1729         return 0;
1730 }
1731
1732 static void
1733 release_hw(struct hfcsusb *hw)
1734 {
1735         if (debug & DBG_HFC_CALL_TRACE)
1736                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1737
1738         /*
1739          * stop all endpoints gracefully
1740          * TODO: mISDN_core should generate CLOSE_CHANNEL
1741          *       signals after calling mISDN_unregister_device()
1742          */
1743         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1744         hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1745         hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1746         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1747                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1748         if (hw->protocol == ISDN_P_TE_S0)
1749                 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1750
1751         mISDN_unregister_device(&hw->dch.dev);
1752         mISDN_freebchannel(&hw->bch[1]);
1753         mISDN_freebchannel(&hw->bch[0]);
1754         mISDN_freedchannel(&hw->dch);
1755
1756         if (hw->ctrl_urb) {
1757                 usb_kill_urb(hw->ctrl_urb);
1758                 usb_free_urb(hw->ctrl_urb);
1759                 hw->ctrl_urb = NULL;
1760         }
1761
1762         if (hw->intf)
1763                 usb_set_intfdata(hw->intf, NULL);
1764         list_del(&hw->list);
1765         kfree(hw);
1766         hw = NULL;
1767 }
1768
1769 static void
1770 deactivate_bchannel(struct bchannel *bch)
1771 {
1772         struct hfcsusb *hw = bch->hw;
1773         u_long flags;
1774
1775         if (bch->debug & DEBUG_HW)
1776                 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1777                        hw->name, __func__, bch->nr);
1778
1779         spin_lock_irqsave(&hw->lock, flags);
1780         mISDN_clear_bchannel(bch);
1781         spin_unlock_irqrestore(&hw->lock, flags);
1782         hfcsusb_setup_bch(bch, ISDN_P_NONE);
1783         hfcsusb_stop_endpoint(hw, bch->nr - 1);
1784 }
1785
1786 /*
1787  * Layer 1 B-channel hardware access
1788  */
1789 static int
1790 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1791 {
1792         struct bchannel *bch = container_of(ch, struct bchannel, ch);
1793         int             ret = -EINVAL;
1794
1795         if (bch->debug & DEBUG_HW)
1796                 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1797
1798         switch (cmd) {
1799         case HW_TESTRX_RAW:
1800         case HW_TESTRX_HDLC:
1801         case HW_TESTRX_OFF:
1802                 ret = -EINVAL;
1803                 break;
1804
1805         case CLOSE_CHANNEL:
1806                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1807                 deactivate_bchannel(bch);
1808                 ch->protocol = ISDN_P_NONE;
1809                 ch->peer = NULL;
1810                 module_put(THIS_MODULE);
1811                 ret = 0;
1812                 break;
1813         case CONTROL_CHANNEL:
1814                 ret = channel_bctrl(bch, arg);
1815                 break;
1816         default:
1817                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1818                        __func__, cmd);
1819         }
1820         return ret;
1821 }
1822
1823 static int
1824 setup_instance(struct hfcsusb *hw, struct device *parent)
1825 {
1826         u_long  flags;
1827         int     err, i;
1828
1829         if (debug & DBG_HFC_CALL_TRACE)
1830                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1831
1832         spin_lock_init(&hw->ctrl_lock);
1833         spin_lock_init(&hw->lock);
1834
1835         mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1836         hw->dch.debug = debug & 0xFFFF;
1837         hw->dch.hw = hw;
1838         hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1839         hw->dch.dev.D.send = hfcusb_l2l1D;
1840         hw->dch.dev.D.ctrl = hfc_dctrl;
1841
1842         /* enable E-Channel logging */
1843         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1844                 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1845
1846         hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1847                 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1848         hw->dch.dev.nrbchan = 2;
1849         for (i = 0; i < 2; i++) {
1850                 hw->bch[i].nr = i + 1;
1851                 set_channelmap(i + 1, hw->dch.dev.channelmap);
1852                 hw->bch[i].debug = debug;
1853                 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1854                 hw->bch[i].hw = hw;
1855                 hw->bch[i].ch.send = hfcusb_l2l1B;
1856                 hw->bch[i].ch.ctrl = hfc_bctrl;
1857                 hw->bch[i].ch.nr = i + 1;
1858                 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1859         }
1860
1861         hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1862         hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1863         hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1864         hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1865         hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1866         hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1867         hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1868         hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1869
1870         err = setup_hfcsusb(hw);
1871         if (err)
1872                 goto out;
1873
1874         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1875                  hfcsusb_cnt + 1);
1876         printk(KERN_INFO "%s: registered as '%s'\n",
1877                DRIVER_NAME, hw->name);
1878
1879         err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1880         if (err)
1881                 goto out;
1882
1883         hfcsusb_cnt++;
1884         write_lock_irqsave(&HFClock, flags);
1885         list_add_tail(&hw->list, &HFClist);
1886         write_unlock_irqrestore(&HFClock, flags);
1887         return 0;
1888
1889 out:
1890         mISDN_freebchannel(&hw->bch[1]);
1891         mISDN_freebchannel(&hw->bch[0]);
1892         mISDN_freedchannel(&hw->dch);
1893         kfree(hw);
1894         return err;
1895 }
1896
1897 static int
1898 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1899 {
1900         struct hfcsusb                  *hw;
1901         struct usb_device               *dev = interface_to_usbdev(intf);
1902         struct usb_host_interface       *iface = intf->cur_altsetting;
1903         struct usb_host_interface       *iface_used = NULL;
1904         struct usb_host_endpoint        *ep;
1905         struct hfcsusb_vdata            *driver_info;
1906         int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1907                 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1908                 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1909                 alt_used = 0;
1910
1911         vend_idx = 0xffff;
1912         for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1913                 if ((le16_to_cpu(dev->descriptor.idVendor)
1914                      == hfcsusb_idtab[i].idVendor) &&
1915                     (le16_to_cpu(dev->descriptor.idProduct)
1916                      == hfcsusb_idtab[i].idProduct)) {
1917                         vend_idx = i;
1918                         continue;
1919                 }
1920         }
1921
1922         printk(KERN_DEBUG
1923                "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1924                __func__, ifnum, iface->desc.bAlternateSetting,
1925                intf->minor, vend_idx);
1926
1927         if (vend_idx == 0xffff) {
1928                 printk(KERN_WARNING
1929                        "%s: no valid vendor found in USB descriptor\n",
1930                        __func__);
1931                 return -EIO;
1932         }
1933         /* if vendor and product ID is OK, start probing alternate settings */
1934         alt_idx = 0;
1935         small_match = -1;
1936
1937         /* default settings */
1938         iso_packet_size = 16;
1939         packet_size = 64;
1940
1941         while (alt_idx < intf->num_altsetting) {
1942                 iface = intf->altsetting + alt_idx;
1943                 probe_alt_setting = iface->desc.bAlternateSetting;
1944                 cfg_used = 0;
1945
1946                 while (validconf[cfg_used][0]) {
1947                         cfg_found = 1;
1948                         vcf = validconf[cfg_used];
1949                         ep = iface->endpoint;
1950                         memcpy(cmptbl, vcf, 16 * sizeof(int));
1951
1952                         /* check for all endpoints in this alternate setting */
1953                         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1954                                 ep_addr = ep->desc.bEndpointAddress;
1955
1956                                 /* get endpoint base */
1957                                 idx = ((ep_addr & 0x7f) - 1) * 2;
1958                                 if (ep_addr & 0x80)
1959                                         idx++;
1960                                 attr = ep->desc.bmAttributes;
1961
1962                                 if (cmptbl[idx] != EP_NOP) {
1963                                         if (cmptbl[idx] == EP_NUL)
1964                                                 cfg_found = 0;
1965                                         if (attr == USB_ENDPOINT_XFER_INT
1966                                             && cmptbl[idx] == EP_INT)
1967                                                 cmptbl[idx] = EP_NUL;
1968                                         if (attr == USB_ENDPOINT_XFER_BULK
1969                                             && cmptbl[idx] == EP_BLK)
1970                                                 cmptbl[idx] = EP_NUL;
1971                                         if (attr == USB_ENDPOINT_XFER_ISOC
1972                                             && cmptbl[idx] == EP_ISO)
1973                                                 cmptbl[idx] = EP_NUL;
1974
1975                                         if (attr == USB_ENDPOINT_XFER_INT &&
1976                                             ep->desc.bInterval < vcf[17]) {
1977                                                 cfg_found = 0;
1978                                         }
1979                                 }
1980                                 ep++;
1981                         }
1982
1983                         for (i = 0; i < 16; i++)
1984                                 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1985                                         cfg_found = 0;
1986
1987                         if (cfg_found) {
1988                                 if (small_match < cfg_used) {
1989                                         small_match = cfg_used;
1990                                         alt_used = probe_alt_setting;
1991                                         iface_used = iface;
1992                                 }
1993                         }
1994                         cfg_used++;
1995                 }
1996                 alt_idx++;
1997         }       /* (alt_idx < intf->num_altsetting) */
1998
1999         /* not found a valid USB Ta Endpoint config */
2000         if (small_match == -1)
2001                 return -EIO;
2002
2003         iface = iface_used;
2004         hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2005         if (!hw)
2006                 return -ENOMEM; /* got no mem */
2007         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2008
2009         ep = iface->endpoint;
2010         vcf = validconf[small_match];
2011
2012         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2013                 struct usb_fifo *f;
2014
2015                 ep_addr = ep->desc.bEndpointAddress;
2016                 /* get endpoint base */
2017                 idx = ((ep_addr & 0x7f) - 1) * 2;
2018                 if (ep_addr & 0x80)
2019                         idx++;
2020                 f = &hw->fifos[idx & 7];
2021
2022                 /* init Endpoints */
2023                 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2024                         ep++;
2025                         continue;
2026                 }
2027                 switch (ep->desc.bmAttributes) {
2028                 case USB_ENDPOINT_XFER_INT:
2029                         f->pipe = usb_rcvintpipe(dev,
2030                                                  ep->desc.bEndpointAddress);
2031                         f->usb_transfer_mode = USB_INT;
2032                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2033                         break;
2034                 case USB_ENDPOINT_XFER_BULK:
2035                         if (ep_addr & 0x80)
2036                                 f->pipe = usb_rcvbulkpipe(dev,
2037                                                           ep->desc.bEndpointAddress);
2038                         else
2039                                 f->pipe = usb_sndbulkpipe(dev,
2040                                                           ep->desc.bEndpointAddress);
2041                         f->usb_transfer_mode = USB_BULK;
2042                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2043                         break;
2044                 case USB_ENDPOINT_XFER_ISOC:
2045                         if (ep_addr & 0x80)
2046                                 f->pipe = usb_rcvisocpipe(dev,
2047                                                           ep->desc.bEndpointAddress);
2048                         else
2049                                 f->pipe = usb_sndisocpipe(dev,
2050                                                           ep->desc.bEndpointAddress);
2051                         f->usb_transfer_mode = USB_ISOC;
2052                         iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2053                         break;
2054                 default:
2055                         f->pipe = 0;
2056                 }
2057
2058                 if (f->pipe) {
2059                         f->fifonum = idx & 7;
2060                         f->hw = hw;
2061                         f->usb_packet_maxlen =
2062                                 le16_to_cpu(ep->desc.wMaxPacketSize);
2063                         f->intervall = ep->desc.bInterval;
2064                 }
2065                 ep++;
2066         }
2067         hw->dev = dev; /* save device */
2068         hw->if_used = ifnum; /* save used interface */
2069         hw->alt_used = alt_used; /* and alternate config */
2070         hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2071         hw->cfg_used = vcf[16]; /* store used config */
2072         hw->vend_idx = vend_idx; /* store found vendor */
2073         hw->packet_size = packet_size;
2074         hw->iso_packet_size = iso_packet_size;
2075
2076         /* create the control pipes needed for register access */
2077         hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2078         hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2079
2080         driver_info = (struct hfcsusb_vdata *)
2081                       hfcsusb_idtab[vend_idx].driver_info;
2082
2083         hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2084         if (!hw->ctrl_urb) {
2085                 pr_warn("%s: No memory for control urb\n",
2086                         driver_info->vend_name);
2087                 kfree(hw);
2088                 return -ENOMEM;
2089         }
2090
2091         pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2092                 hw->name, __func__, driver_info->vend_name,
2093                 conf_str[small_match], ifnum, alt_used);
2094
2095         if (setup_instance(hw, dev->dev.parent))
2096                 return -EIO;
2097
2098         hw->intf = intf;
2099         usb_set_intfdata(hw->intf, hw);
2100         return 0;
2101 }
2102
2103 /* function called when an active device is removed */
2104 static void
2105 hfcsusb_disconnect(struct usb_interface *intf)
2106 {
2107         struct hfcsusb *hw = usb_get_intfdata(intf);
2108         struct hfcsusb *next;
2109         int cnt = 0;
2110
2111         printk(KERN_INFO "%s: device disconnected\n", hw->name);
2112
2113         handle_led(hw, LED_POWER_OFF);
2114         release_hw(hw);
2115
2116         list_for_each_entry_safe(hw, next, &HFClist, list)
2117                 cnt++;
2118         if (!cnt)
2119                 hfcsusb_cnt = 0;
2120
2121         usb_set_intfdata(intf, NULL);
2122 }
2123
2124 static struct usb_driver hfcsusb_drv = {
2125         .name = DRIVER_NAME,
2126         .id_table = hfcsusb_idtab,
2127         .probe = hfcsusb_probe,
2128         .disconnect = hfcsusb_disconnect,
2129         .disable_hub_initiated_lpm = 1,
2130 };
2131
2132 module_usb_driver(hfcsusb_drv);