]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/md/dm-raid.c
dm raid: streamline rs_get_progress() and its raid_status() caller side
[linux.git] / drivers / md / dm-raid.c
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "md-bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20 #define MAX_RAID_DEVICES        253 /* md-raid kernel limit */
21
22 /*
23  * Minimum sectors of free reshape space per raid device
24  */
25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27 /*
28  * Minimum journal space 4 MiB in sectors.
29  */
30 #define MIN_RAID456_JOURNAL_SPACE (4*2048)
31
32 static bool devices_handle_discard_safely = false;
33
34 /*
35  * The following flags are used by dm-raid.c to set up the array state.
36  * They must be cleared before md_run is called.
37  */
38 #define FirstUse 10             /* rdev flag */
39
40 struct raid_dev {
41         /*
42          * Two DM devices, one to hold metadata and one to hold the
43          * actual data/parity.  The reason for this is to not confuse
44          * ti->len and give more flexibility in altering size and
45          * characteristics.
46          *
47          * While it is possible for this device to be associated
48          * with a different physical device than the data_dev, it
49          * is intended for it to be the same.
50          *    |--------- Physical Device ---------|
51          *    |- meta_dev -|------ data_dev ------|
52          */
53         struct dm_dev *meta_dev;
54         struct dm_dev *data_dev;
55         struct md_rdev rdev;
56 };
57
58 /*
59  * Bits for establishing rs->ctr_flags
60  *
61  * 1 = no flag value
62  * 2 = flag with value
63  */
64 #define __CTR_FLAG_SYNC                 0  /* 1 */ /* Not with raid0! */
65 #define __CTR_FLAG_NOSYNC               1  /* 1 */ /* Not with raid0! */
66 #define __CTR_FLAG_REBUILD              2  /* 2 */ /* Not with raid0! */
67 #define __CTR_FLAG_DAEMON_SLEEP         3  /* 2 */ /* Not with raid0! */
68 #define __CTR_FLAG_MIN_RECOVERY_RATE    4  /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_MAX_RECOVERY_RATE    5  /* 2 */ /* Not with raid0! */
70 #define __CTR_FLAG_MAX_WRITE_BEHIND     6  /* 2 */ /* Only with raid1! */
71 #define __CTR_FLAG_WRITE_MOSTLY         7  /* 2 */ /* Only with raid1! */
72 #define __CTR_FLAG_STRIPE_CACHE         8  /* 2 */ /* Only with raid4/5/6! */
73 #define __CTR_FLAG_REGION_SIZE          9  /* 2 */ /* Not with raid0! */
74 #define __CTR_FLAG_RAID10_COPIES        10 /* 2 */ /* Only with raid10 */
75 #define __CTR_FLAG_RAID10_FORMAT        11 /* 2 */ /* Only with raid10 */
76 /* New for v1.9.0 */
77 #define __CTR_FLAG_DELTA_DISKS          12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
78 #define __CTR_FLAG_DATA_OFFSET          13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
79 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
80
81 /* New for v1.10.0 */
82 #define __CTR_FLAG_JOURNAL_DEV          15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
83
84 /* New for v1.11.1 */
85 #define __CTR_FLAG_JOURNAL_MODE         16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
86
87 /*
88  * Flags for rs->ctr_flags field.
89  */
90 #define CTR_FLAG_SYNC                   (1 << __CTR_FLAG_SYNC)
91 #define CTR_FLAG_NOSYNC                 (1 << __CTR_FLAG_NOSYNC)
92 #define CTR_FLAG_REBUILD                (1 << __CTR_FLAG_REBUILD)
93 #define CTR_FLAG_DAEMON_SLEEP           (1 << __CTR_FLAG_DAEMON_SLEEP)
94 #define CTR_FLAG_MIN_RECOVERY_RATE      (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
95 #define CTR_FLAG_MAX_RECOVERY_RATE      (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
96 #define CTR_FLAG_MAX_WRITE_BEHIND       (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
97 #define CTR_FLAG_WRITE_MOSTLY           (1 << __CTR_FLAG_WRITE_MOSTLY)
98 #define CTR_FLAG_STRIPE_CACHE           (1 << __CTR_FLAG_STRIPE_CACHE)
99 #define CTR_FLAG_REGION_SIZE            (1 << __CTR_FLAG_REGION_SIZE)
100 #define CTR_FLAG_RAID10_COPIES          (1 << __CTR_FLAG_RAID10_COPIES)
101 #define CTR_FLAG_RAID10_FORMAT          (1 << __CTR_FLAG_RAID10_FORMAT)
102 #define CTR_FLAG_DELTA_DISKS            (1 << __CTR_FLAG_DELTA_DISKS)
103 #define CTR_FLAG_DATA_OFFSET            (1 << __CTR_FLAG_DATA_OFFSET)
104 #define CTR_FLAG_RAID10_USE_NEAR_SETS   (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
105 #define CTR_FLAG_JOURNAL_DEV            (1 << __CTR_FLAG_JOURNAL_DEV)
106 #define CTR_FLAG_JOURNAL_MODE           (1 << __CTR_FLAG_JOURNAL_MODE)
107
108 /*
109  * Definitions of various constructor flags to
110  * be used in checks of valid / invalid flags
111  * per raid level.
112  */
113 /* Define all any sync flags */
114 #define CTR_FLAGS_ANY_SYNC              (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
115
116 /* Define flags for options without argument (e.g. 'nosync') */
117 #define CTR_FLAG_OPTIONS_NO_ARGS        (CTR_FLAGS_ANY_SYNC | \
118                                          CTR_FLAG_RAID10_USE_NEAR_SETS)
119
120 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
121 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
122                                   CTR_FLAG_WRITE_MOSTLY | \
123                                   CTR_FLAG_DAEMON_SLEEP | \
124                                   CTR_FLAG_MIN_RECOVERY_RATE | \
125                                   CTR_FLAG_MAX_RECOVERY_RATE | \
126                                   CTR_FLAG_MAX_WRITE_BEHIND | \
127                                   CTR_FLAG_STRIPE_CACHE | \
128                                   CTR_FLAG_REGION_SIZE | \
129                                   CTR_FLAG_RAID10_COPIES | \
130                                   CTR_FLAG_RAID10_FORMAT | \
131                                   CTR_FLAG_DELTA_DISKS | \
132                                   CTR_FLAG_DATA_OFFSET)
133
134 /* Valid options definitions per raid level... */
135
136 /* "raid0" does only accept data offset */
137 #define RAID0_VALID_FLAGS       (CTR_FLAG_DATA_OFFSET)
138
139 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
140 #define RAID1_VALID_FLAGS       (CTR_FLAGS_ANY_SYNC | \
141                                  CTR_FLAG_REBUILD | \
142                                  CTR_FLAG_WRITE_MOSTLY | \
143                                  CTR_FLAG_DAEMON_SLEEP | \
144                                  CTR_FLAG_MIN_RECOVERY_RATE | \
145                                  CTR_FLAG_MAX_RECOVERY_RATE | \
146                                  CTR_FLAG_MAX_WRITE_BEHIND | \
147                                  CTR_FLAG_REGION_SIZE | \
148                                  CTR_FLAG_DELTA_DISKS | \
149                                  CTR_FLAG_DATA_OFFSET)
150
151 /* "raid10" does not accept any raid1 or stripe cache options */
152 #define RAID10_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
153                                  CTR_FLAG_REBUILD | \
154                                  CTR_FLAG_DAEMON_SLEEP | \
155                                  CTR_FLAG_MIN_RECOVERY_RATE | \
156                                  CTR_FLAG_MAX_RECOVERY_RATE | \
157                                  CTR_FLAG_REGION_SIZE | \
158                                  CTR_FLAG_RAID10_COPIES | \
159                                  CTR_FLAG_RAID10_FORMAT | \
160                                  CTR_FLAG_DELTA_DISKS | \
161                                  CTR_FLAG_DATA_OFFSET | \
162                                  CTR_FLAG_RAID10_USE_NEAR_SETS)
163
164 /*
165  * "raid4/5/6" do not accept any raid1 or raid10 specific options
166  *
167  * "raid6" does not accept "nosync", because it is not guaranteed
168  * that both parity and q-syndrome are being written properly with
169  * any writes
170  */
171 #define RAID45_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
172                                  CTR_FLAG_REBUILD | \
173                                  CTR_FLAG_DAEMON_SLEEP | \
174                                  CTR_FLAG_MIN_RECOVERY_RATE | \
175                                  CTR_FLAG_MAX_RECOVERY_RATE | \
176                                  CTR_FLAG_STRIPE_CACHE | \
177                                  CTR_FLAG_REGION_SIZE | \
178                                  CTR_FLAG_DELTA_DISKS | \
179                                  CTR_FLAG_DATA_OFFSET | \
180                                  CTR_FLAG_JOURNAL_DEV | \
181                                  CTR_FLAG_JOURNAL_MODE)
182
183 #define RAID6_VALID_FLAGS       (CTR_FLAG_SYNC | \
184                                  CTR_FLAG_REBUILD | \
185                                  CTR_FLAG_DAEMON_SLEEP | \
186                                  CTR_FLAG_MIN_RECOVERY_RATE | \
187                                  CTR_FLAG_MAX_RECOVERY_RATE | \
188                                  CTR_FLAG_STRIPE_CACHE | \
189                                  CTR_FLAG_REGION_SIZE | \
190                                  CTR_FLAG_DELTA_DISKS | \
191                                  CTR_FLAG_DATA_OFFSET | \
192                                  CTR_FLAG_JOURNAL_DEV | \
193                                  CTR_FLAG_JOURNAL_MODE)
194 /* ...valid options definitions per raid level */
195
196 /*
197  * Flags for rs->runtime_flags field
198  * (RT_FLAG prefix meaning "runtime flag")
199  *
200  * These are all internal and used to define runtime state,
201  * e.g. to prevent another resume from preresume processing
202  * the raid set all over again.
203  */
204 #define RT_FLAG_RS_PRERESUMED           0
205 #define RT_FLAG_RS_RESUMED              1
206 #define RT_FLAG_RS_BITMAP_LOADED        2
207 #define RT_FLAG_UPDATE_SBS              3
208 #define RT_FLAG_RESHAPE_RS              4
209 #define RT_FLAG_RS_SUSPENDED            5
210 #define RT_FLAG_RS_IN_SYNC              6
211 #define RT_FLAG_RS_RESYNCING            7
212 #define RT_FLAG_RS_GROW                 8
213
214 /* Array elements of 64 bit needed for rebuild/failed disk bits */
215 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
216
217 /*
218  * raid set level, layout and chunk sectors backup/restore
219  */
220 struct rs_layout {
221         int new_level;
222         int new_layout;
223         int new_chunk_sectors;
224 };
225
226 struct raid_set {
227         struct dm_target *ti;
228
229         uint32_t stripe_cache_entries;
230         unsigned long ctr_flags;
231         unsigned long runtime_flags;
232
233         uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
234
235         int raid_disks;
236         int delta_disks;
237         int data_offset;
238         int raid10_copies;
239         int requested_bitmap_chunk_sectors;
240
241         struct mddev md;
242         struct raid_type *raid_type;
243         struct dm_target_callbacks callbacks;
244
245         sector_t array_sectors;
246         sector_t dev_sectors;
247
248         /* Optional raid4/5/6 journal device */
249         struct journal_dev {
250                 struct dm_dev *dev;
251                 struct md_rdev rdev;
252                 int mode;
253         } journal_dev;
254
255         struct raid_dev dev[0];
256 };
257
258 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
259 {
260         struct mddev *mddev = &rs->md;
261
262         l->new_level = mddev->new_level;
263         l->new_layout = mddev->new_layout;
264         l->new_chunk_sectors = mddev->new_chunk_sectors;
265 }
266
267 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
268 {
269         struct mddev *mddev = &rs->md;
270
271         mddev->new_level = l->new_level;
272         mddev->new_layout = l->new_layout;
273         mddev->new_chunk_sectors = l->new_chunk_sectors;
274 }
275
276 /* raid10 algorithms (i.e. formats) */
277 #define ALGORITHM_RAID10_DEFAULT        0
278 #define ALGORITHM_RAID10_NEAR           1
279 #define ALGORITHM_RAID10_OFFSET         2
280 #define ALGORITHM_RAID10_FAR            3
281
282 /* Supported raid types and properties. */
283 static struct raid_type {
284         const char *name;               /* RAID algorithm. */
285         const char *descr;              /* Descriptor text for logging. */
286         const unsigned int parity_devs; /* # of parity devices. */
287         const unsigned int minimal_devs;/* minimal # of devices in set. */
288         const unsigned int level;       /* RAID level. */
289         const unsigned int algorithm;   /* RAID algorithm. */
290 } raid_types[] = {
291         {"raid0",         "raid0 (striping)",                       0, 2, 0,  0 /* NONE */},
292         {"raid1",         "raid1 (mirroring)",                      0, 2, 1,  0 /* NONE */},
293         {"raid10_far",    "raid10 far (striped mirrors)",           0, 2, 10, ALGORITHM_RAID10_FAR},
294         {"raid10_offset", "raid10 offset (striped mirrors)",        0, 2, 10, ALGORITHM_RAID10_OFFSET},
295         {"raid10_near",   "raid10 near (striped mirrors)",          0, 2, 10, ALGORITHM_RAID10_NEAR},
296         {"raid10",        "raid10 (striped mirrors)",               0, 2, 10, ALGORITHM_RAID10_DEFAULT},
297         {"raid4",         "raid4 (dedicated first parity disk)",    1, 2, 5,  ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
298         {"raid5_n",       "raid5 (dedicated last parity disk)",     1, 2, 5,  ALGORITHM_PARITY_N},
299         {"raid5_ls",      "raid5 (left symmetric)",                 1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
300         {"raid5_rs",      "raid5 (right symmetric)",                1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
301         {"raid5_la",      "raid5 (left asymmetric)",                1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
302         {"raid5_ra",      "raid5 (right asymmetric)",               1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
303         {"raid6_zr",      "raid6 (zero restart)",                   2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
304         {"raid6_nr",      "raid6 (N restart)",                      2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
305         {"raid6_nc",      "raid6 (N continue)",                     2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
306         {"raid6_n_6",     "raid6 (dedicated parity/Q n/6)",         2, 4, 6,  ALGORITHM_PARITY_N_6},
307         {"raid6_ls_6",    "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
308         {"raid6_rs_6",    "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
309         {"raid6_la_6",    "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
310         {"raid6_ra_6",    "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
311 };
312
313 /* True, if @v is in inclusive range [@min, @max] */
314 static bool __within_range(long v, long min, long max)
315 {
316         return v >= min && v <= max;
317 }
318
319 /* All table line arguments are defined here */
320 static struct arg_name_flag {
321         const unsigned long flag;
322         const char *name;
323 } __arg_name_flags[] = {
324         { CTR_FLAG_SYNC, "sync"},
325         { CTR_FLAG_NOSYNC, "nosync"},
326         { CTR_FLAG_REBUILD, "rebuild"},
327         { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
328         { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
329         { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
330         { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
331         { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
332         { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
333         { CTR_FLAG_REGION_SIZE, "region_size"},
334         { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
335         { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
336         { CTR_FLAG_DATA_OFFSET, "data_offset"},
337         { CTR_FLAG_DELTA_DISKS, "delta_disks"},
338         { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
339         { CTR_FLAG_JOURNAL_DEV, "journal_dev" },
340         { CTR_FLAG_JOURNAL_MODE, "journal_mode" },
341 };
342
343 /* Return argument name string for given @flag */
344 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
345 {
346         if (hweight32(flag) == 1) {
347                 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
348
349                 while (anf-- > __arg_name_flags)
350                         if (flag & anf->flag)
351                                 return anf->name;
352
353         } else
354                 DMERR("%s called with more than one flag!", __func__);
355
356         return NULL;
357 }
358
359 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
360 static struct {
361         const int mode;
362         const char *param;
363 } _raid456_journal_mode[] = {
364         { R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" },
365         { R5C_JOURNAL_MODE_WRITE_BACK    , "writeback" }
366 };
367
368 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */
369 static int dm_raid_journal_mode_to_md(const char *mode)
370 {
371         int m = ARRAY_SIZE(_raid456_journal_mode);
372
373         while (m--)
374                 if (!strcasecmp(mode, _raid456_journal_mode[m].param))
375                         return _raid456_journal_mode[m].mode;
376
377         return -EINVAL;
378 }
379
380 /* Return dm-raid raid4/5/6 journal mode string for @mode */
381 static const char *md_journal_mode_to_dm_raid(const int mode)
382 {
383         int m = ARRAY_SIZE(_raid456_journal_mode);
384
385         while (m--)
386                 if (mode == _raid456_journal_mode[m].mode)
387                         return _raid456_journal_mode[m].param;
388
389         return "unknown";
390 }
391
392 /*
393  * Bool helpers to test for various raid levels of a raid set.
394  * It's level as reported by the superblock rather than
395  * the requested raid_type passed to the constructor.
396  */
397 /* Return true, if raid set in @rs is raid0 */
398 static bool rs_is_raid0(struct raid_set *rs)
399 {
400         return !rs->md.level;
401 }
402
403 /* Return true, if raid set in @rs is raid1 */
404 static bool rs_is_raid1(struct raid_set *rs)
405 {
406         return rs->md.level == 1;
407 }
408
409 /* Return true, if raid set in @rs is raid10 */
410 static bool rs_is_raid10(struct raid_set *rs)
411 {
412         return rs->md.level == 10;
413 }
414
415 /* Return true, if raid set in @rs is level 6 */
416 static bool rs_is_raid6(struct raid_set *rs)
417 {
418         return rs->md.level == 6;
419 }
420
421 /* Return true, if raid set in @rs is level 4, 5 or 6 */
422 static bool rs_is_raid456(struct raid_set *rs)
423 {
424         return __within_range(rs->md.level, 4, 6);
425 }
426
427 /* Return true, if raid set in @rs is reshapable */
428 static bool __is_raid10_far(int layout);
429 static bool rs_is_reshapable(struct raid_set *rs)
430 {
431         return rs_is_raid456(rs) ||
432                (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
433 }
434
435 /* Return true, if raid set in @rs is recovering */
436 static bool rs_is_recovering(struct raid_set *rs)
437 {
438         return rs->md.recovery_cp < rs->md.dev_sectors;
439 }
440
441 /* Return true, if raid set in @rs is reshaping */
442 static bool rs_is_reshaping(struct raid_set *rs)
443 {
444         return rs->md.reshape_position != MaxSector;
445 }
446
447 /*
448  * bool helpers to test for various raid levels of a raid type @rt
449  */
450
451 /* Return true, if raid type in @rt is raid0 */
452 static bool rt_is_raid0(struct raid_type *rt)
453 {
454         return !rt->level;
455 }
456
457 /* Return true, if raid type in @rt is raid1 */
458 static bool rt_is_raid1(struct raid_type *rt)
459 {
460         return rt->level == 1;
461 }
462
463 /* Return true, if raid type in @rt is raid10 */
464 static bool rt_is_raid10(struct raid_type *rt)
465 {
466         return rt->level == 10;
467 }
468
469 /* Return true, if raid type in @rt is raid4/5 */
470 static bool rt_is_raid45(struct raid_type *rt)
471 {
472         return __within_range(rt->level, 4, 5);
473 }
474
475 /* Return true, if raid type in @rt is raid6 */
476 static bool rt_is_raid6(struct raid_type *rt)
477 {
478         return rt->level == 6;
479 }
480
481 /* Return true, if raid type in @rt is raid4/5/6 */
482 static bool rt_is_raid456(struct raid_type *rt)
483 {
484         return __within_range(rt->level, 4, 6);
485 }
486 /* END: raid level bools */
487
488 /* Return valid ctr flags for the raid level of @rs */
489 static unsigned long __valid_flags(struct raid_set *rs)
490 {
491         if (rt_is_raid0(rs->raid_type))
492                 return RAID0_VALID_FLAGS;
493         else if (rt_is_raid1(rs->raid_type))
494                 return RAID1_VALID_FLAGS;
495         else if (rt_is_raid10(rs->raid_type))
496                 return RAID10_VALID_FLAGS;
497         else if (rt_is_raid45(rs->raid_type))
498                 return RAID45_VALID_FLAGS;
499         else if (rt_is_raid6(rs->raid_type))
500                 return RAID6_VALID_FLAGS;
501
502         return 0;
503 }
504
505 /*
506  * Check for valid flags set on @rs
507  *
508  * Has to be called after parsing of the ctr flags!
509  */
510 static int rs_check_for_valid_flags(struct raid_set *rs)
511 {
512         if (rs->ctr_flags & ~__valid_flags(rs)) {
513                 rs->ti->error = "Invalid flags combination";
514                 return -EINVAL;
515         }
516
517         return 0;
518 }
519
520 /* MD raid10 bit definitions and helpers */
521 #define RAID10_OFFSET                   (1 << 16) /* stripes with data copies area adjacent on devices */
522 #define RAID10_BROCKEN_USE_FAR_SETS     (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
523 #define RAID10_USE_FAR_SETS             (1 << 18) /* Use sets instead of whole stripe rotation */
524 #define RAID10_FAR_COPIES_SHIFT         8         /* raid10 # far copies shift (2nd byte of layout) */
525
526 /* Return md raid10 near copies for @layout */
527 static unsigned int __raid10_near_copies(int layout)
528 {
529         return layout & 0xFF;
530 }
531
532 /* Return md raid10 far copies for @layout */
533 static unsigned int __raid10_far_copies(int layout)
534 {
535         return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
536 }
537
538 /* Return true if md raid10 offset for @layout */
539 static bool __is_raid10_offset(int layout)
540 {
541         return !!(layout & RAID10_OFFSET);
542 }
543
544 /* Return true if md raid10 near for @layout */
545 static bool __is_raid10_near(int layout)
546 {
547         return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
548 }
549
550 /* Return true if md raid10 far for @layout */
551 static bool __is_raid10_far(int layout)
552 {
553         return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
554 }
555
556 /* Return md raid10 layout string for @layout */
557 static const char *raid10_md_layout_to_format(int layout)
558 {
559         /*
560          * Bit 16 stands for "offset"
561          * (i.e. adjacent stripes hold copies)
562          *
563          * Refer to MD's raid10.c for details
564          */
565         if (__is_raid10_offset(layout))
566                 return "offset";
567
568         if (__raid10_near_copies(layout) > 1)
569                 return "near";
570
571         if (__raid10_far_copies(layout) > 1)
572                 return "far";
573
574         return "unknown";
575 }
576
577 /* Return md raid10 algorithm for @name */
578 static int raid10_name_to_format(const char *name)
579 {
580         if (!strcasecmp(name, "near"))
581                 return ALGORITHM_RAID10_NEAR;
582         else if (!strcasecmp(name, "offset"))
583                 return ALGORITHM_RAID10_OFFSET;
584         else if (!strcasecmp(name, "far"))
585                 return ALGORITHM_RAID10_FAR;
586
587         return -EINVAL;
588 }
589
590 /* Return md raid10 copies for @layout */
591 static unsigned int raid10_md_layout_to_copies(int layout)
592 {
593         return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
594 }
595
596 /* Return md raid10 format id for @format string */
597 static int raid10_format_to_md_layout(struct raid_set *rs,
598                                       unsigned int algorithm,
599                                       unsigned int copies)
600 {
601         unsigned int n = 1, f = 1, r = 0;
602
603         /*
604          * MD resilienece flaw:
605          *
606          * enabling use_far_sets for far/offset formats causes copies
607          * to be colocated on the same devs together with their origins!
608          *
609          * -> disable it for now in the definition above
610          */
611         if (algorithm == ALGORITHM_RAID10_DEFAULT ||
612             algorithm == ALGORITHM_RAID10_NEAR)
613                 n = copies;
614
615         else if (algorithm == ALGORITHM_RAID10_OFFSET) {
616                 f = copies;
617                 r = RAID10_OFFSET;
618                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
619                         r |= RAID10_USE_FAR_SETS;
620
621         } else if (algorithm == ALGORITHM_RAID10_FAR) {
622                 f = copies;
623                 r = !RAID10_OFFSET;
624                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
625                         r |= RAID10_USE_FAR_SETS;
626
627         } else
628                 return -EINVAL;
629
630         return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
631 }
632 /* END: MD raid10 bit definitions and helpers */
633
634 /* Check for any of the raid10 algorithms */
635 static bool __got_raid10(struct raid_type *rtp, const int layout)
636 {
637         if (rtp->level == 10) {
638                 switch (rtp->algorithm) {
639                 case ALGORITHM_RAID10_DEFAULT:
640                 case ALGORITHM_RAID10_NEAR:
641                         return __is_raid10_near(layout);
642                 case ALGORITHM_RAID10_OFFSET:
643                         return __is_raid10_offset(layout);
644                 case ALGORITHM_RAID10_FAR:
645                         return __is_raid10_far(layout);
646                 default:
647                         break;
648                 }
649         }
650
651         return false;
652 }
653
654 /* Return raid_type for @name */
655 static struct raid_type *get_raid_type(const char *name)
656 {
657         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
658
659         while (rtp-- > raid_types)
660                 if (!strcasecmp(rtp->name, name))
661                         return rtp;
662
663         return NULL;
664 }
665
666 /* Return raid_type for @name based derived from @level and @layout */
667 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
668 {
669         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
670
671         while (rtp-- > raid_types) {
672                 /* RAID10 special checks based on @layout flags/properties */
673                 if (rtp->level == level &&
674                     (__got_raid10(rtp, layout) || rtp->algorithm == layout))
675                         return rtp;
676         }
677
678         return NULL;
679 }
680
681 /* Adjust rdev sectors */
682 static void rs_set_rdev_sectors(struct raid_set *rs)
683 {
684         struct mddev *mddev = &rs->md;
685         struct md_rdev *rdev;
686
687         /*
688          * raid10 sets rdev->sector to the device size, which
689          * is unintended in case of out-of-place reshaping
690          */
691         rdev_for_each(rdev, mddev)
692                 if (!test_bit(Journal, &rdev->flags))
693                         rdev->sectors = mddev->dev_sectors;
694 }
695
696 /*
697  * Change bdev capacity of @rs in case of a disk add/remove reshape
698  */
699 static void rs_set_capacity(struct raid_set *rs)
700 {
701         struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
702
703         set_capacity(gendisk, rs->md.array_sectors);
704         revalidate_disk(gendisk);
705 }
706
707 /*
708  * Set the mddev properties in @rs to the current
709  * ones retrieved from the freshest superblock
710  */
711 static void rs_set_cur(struct raid_set *rs)
712 {
713         struct mddev *mddev = &rs->md;
714
715         mddev->new_level = mddev->level;
716         mddev->new_layout = mddev->layout;
717         mddev->new_chunk_sectors = mddev->chunk_sectors;
718 }
719
720 /*
721  * Set the mddev properties in @rs to the new
722  * ones requested by the ctr
723  */
724 static void rs_set_new(struct raid_set *rs)
725 {
726         struct mddev *mddev = &rs->md;
727
728         mddev->level = mddev->new_level;
729         mddev->layout = mddev->new_layout;
730         mddev->chunk_sectors = mddev->new_chunk_sectors;
731         mddev->raid_disks = rs->raid_disks;
732         mddev->delta_disks = 0;
733 }
734
735 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
736                                        unsigned int raid_devs)
737 {
738         unsigned int i;
739         struct raid_set *rs;
740
741         if (raid_devs <= raid_type->parity_devs) {
742                 ti->error = "Insufficient number of devices";
743                 return ERR_PTR(-EINVAL);
744         }
745
746         rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
747         if (!rs) {
748                 ti->error = "Cannot allocate raid context";
749                 return ERR_PTR(-ENOMEM);
750         }
751
752         mddev_init(&rs->md);
753
754         rs->raid_disks = raid_devs;
755         rs->delta_disks = 0;
756
757         rs->ti = ti;
758         rs->raid_type = raid_type;
759         rs->stripe_cache_entries = 256;
760         rs->md.raid_disks = raid_devs;
761         rs->md.level = raid_type->level;
762         rs->md.new_level = rs->md.level;
763         rs->md.layout = raid_type->algorithm;
764         rs->md.new_layout = rs->md.layout;
765         rs->md.delta_disks = 0;
766         rs->md.recovery_cp = MaxSector;
767
768         for (i = 0; i < raid_devs; i++)
769                 md_rdev_init(&rs->dev[i].rdev);
770
771         /*
772          * Remaining items to be initialized by further RAID params:
773          *  rs->md.persistent
774          *  rs->md.external
775          *  rs->md.chunk_sectors
776          *  rs->md.new_chunk_sectors
777          *  rs->md.dev_sectors
778          */
779
780         return rs;
781 }
782
783 /* Free all @rs allocations */
784 static void raid_set_free(struct raid_set *rs)
785 {
786         int i;
787
788         if (rs->journal_dev.dev) {
789                 md_rdev_clear(&rs->journal_dev.rdev);
790                 dm_put_device(rs->ti, rs->journal_dev.dev);
791         }
792
793         for (i = 0; i < rs->raid_disks; i++) {
794                 if (rs->dev[i].meta_dev)
795                         dm_put_device(rs->ti, rs->dev[i].meta_dev);
796                 md_rdev_clear(&rs->dev[i].rdev);
797                 if (rs->dev[i].data_dev)
798                         dm_put_device(rs->ti, rs->dev[i].data_dev);
799         }
800
801         kfree(rs);
802 }
803
804 /*
805  * For every device we have two words
806  *  <meta_dev>: meta device name or '-' if missing
807  *  <data_dev>: data device name or '-' if missing
808  *
809  * The following are permitted:
810  *    - -
811  *    - <data_dev>
812  *    <meta_dev> <data_dev>
813  *
814  * The following is not allowed:
815  *    <meta_dev> -
816  *
817  * This code parses those words.  If there is a failure,
818  * the caller must use raid_set_free() to unwind the operations.
819  */
820 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
821 {
822         int i;
823         int rebuild = 0;
824         int metadata_available = 0;
825         int r = 0;
826         const char *arg;
827
828         /* Put off the number of raid devices argument to get to dev pairs */
829         arg = dm_shift_arg(as);
830         if (!arg)
831                 return -EINVAL;
832
833         for (i = 0; i < rs->raid_disks; i++) {
834                 rs->dev[i].rdev.raid_disk = i;
835
836                 rs->dev[i].meta_dev = NULL;
837                 rs->dev[i].data_dev = NULL;
838
839                 /*
840                  * There are no offsets initially.
841                  * Out of place reshape will set them accordingly.
842                  */
843                 rs->dev[i].rdev.data_offset = 0;
844                 rs->dev[i].rdev.new_data_offset = 0;
845                 rs->dev[i].rdev.mddev = &rs->md;
846
847                 arg = dm_shift_arg(as);
848                 if (!arg)
849                         return -EINVAL;
850
851                 if (strcmp(arg, "-")) {
852                         r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
853                                           &rs->dev[i].meta_dev);
854                         if (r) {
855                                 rs->ti->error = "RAID metadata device lookup failure";
856                                 return r;
857                         }
858
859                         rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
860                         if (!rs->dev[i].rdev.sb_page) {
861                                 rs->ti->error = "Failed to allocate superblock page";
862                                 return -ENOMEM;
863                         }
864                 }
865
866                 arg = dm_shift_arg(as);
867                 if (!arg)
868                         return -EINVAL;
869
870                 if (!strcmp(arg, "-")) {
871                         if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
872                             (!rs->dev[i].rdev.recovery_offset)) {
873                                 rs->ti->error = "Drive designated for rebuild not specified";
874                                 return -EINVAL;
875                         }
876
877                         if (rs->dev[i].meta_dev) {
878                                 rs->ti->error = "No data device supplied with metadata device";
879                                 return -EINVAL;
880                         }
881
882                         continue;
883                 }
884
885                 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
886                                   &rs->dev[i].data_dev);
887                 if (r) {
888                         rs->ti->error = "RAID device lookup failure";
889                         return r;
890                 }
891
892                 if (rs->dev[i].meta_dev) {
893                         metadata_available = 1;
894                         rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
895                 }
896                 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
897                 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
898                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
899                         rebuild++;
900         }
901
902         if (rs->journal_dev.dev)
903                 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
904
905         if (metadata_available) {
906                 rs->md.external = 0;
907                 rs->md.persistent = 1;
908                 rs->md.major_version = 2;
909         } else if (rebuild && !rs->md.recovery_cp) {
910                 /*
911                  * Without metadata, we will not be able to tell if the array
912                  * is in-sync or not - we must assume it is not.  Therefore,
913                  * it is impossible to rebuild a drive.
914                  *
915                  * Even if there is metadata, the on-disk information may
916                  * indicate that the array is not in-sync and it will then
917                  * fail at that time.
918                  *
919                  * User could specify 'nosync' option if desperate.
920                  */
921                 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
922                 return -EINVAL;
923         }
924
925         return 0;
926 }
927
928 /*
929  * validate_region_size
930  * @rs
931  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
932  *
933  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
934  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
935  *
936  * Returns: 0 on success, -EINVAL on failure.
937  */
938 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
939 {
940         unsigned long min_region_size = rs->ti->len / (1 << 21);
941
942         if (rs_is_raid0(rs))
943                 return 0;
944
945         if (!region_size) {
946                 /*
947                  * Choose a reasonable default.  All figures in sectors.
948                  */
949                 if (min_region_size > (1 << 13)) {
950                         /* If not a power of 2, make it the next power of 2 */
951                         region_size = roundup_pow_of_two(min_region_size);
952                         DMINFO("Choosing default region size of %lu sectors",
953                                region_size);
954                 } else {
955                         DMINFO("Choosing default region size of 4MiB");
956                         region_size = 1 << 13; /* sectors */
957                 }
958         } else {
959                 /*
960                  * Validate user-supplied value.
961                  */
962                 if (region_size > rs->ti->len) {
963                         rs->ti->error = "Supplied region size is too large";
964                         return -EINVAL;
965                 }
966
967                 if (region_size < min_region_size) {
968                         DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
969                               region_size, min_region_size);
970                         rs->ti->error = "Supplied region size is too small";
971                         return -EINVAL;
972                 }
973
974                 if (!is_power_of_2(region_size)) {
975                         rs->ti->error = "Region size is not a power of 2";
976                         return -EINVAL;
977                 }
978
979                 if (region_size < rs->md.chunk_sectors) {
980                         rs->ti->error = "Region size is smaller than the chunk size";
981                         return -EINVAL;
982                 }
983         }
984
985         /*
986          * Convert sectors to bytes.
987          */
988         rs->md.bitmap_info.chunksize = to_bytes(region_size);
989
990         return 0;
991 }
992
993 /*
994  * validate_raid_redundancy
995  * @rs
996  *
997  * Determine if there are enough devices in the array that haven't
998  * failed (or are being rebuilt) to form a usable array.
999  *
1000  * Returns: 0 on success, -EINVAL on failure.
1001  */
1002 static int validate_raid_redundancy(struct raid_set *rs)
1003 {
1004         unsigned int i, rebuild_cnt = 0;
1005         unsigned int rebuilds_per_group = 0, copies;
1006         unsigned int group_size, last_group_start;
1007
1008         for (i = 0; i < rs->md.raid_disks; i++)
1009                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1010                     !rs->dev[i].rdev.sb_page)
1011                         rebuild_cnt++;
1012
1013         switch (rs->md.level) {
1014         case 0:
1015                 break;
1016         case 1:
1017                 if (rebuild_cnt >= rs->md.raid_disks)
1018                         goto too_many;
1019                 break;
1020         case 4:
1021         case 5:
1022         case 6:
1023                 if (rebuild_cnt > rs->raid_type->parity_devs)
1024                         goto too_many;
1025                 break;
1026         case 10:
1027                 copies = raid10_md_layout_to_copies(rs->md.new_layout);
1028                 if (copies < 2) {
1029                         DMERR("Bogus raid10 data copies < 2!");
1030                         return -EINVAL;
1031                 }
1032
1033                 if (rebuild_cnt < copies)
1034                         break;
1035
1036                 /*
1037                  * It is possible to have a higher rebuild count for RAID10,
1038                  * as long as the failed devices occur in different mirror
1039                  * groups (i.e. different stripes).
1040                  *
1041                  * When checking "near" format, make sure no adjacent devices
1042                  * have failed beyond what can be handled.  In addition to the
1043                  * simple case where the number of devices is a multiple of the
1044                  * number of copies, we must also handle cases where the number
1045                  * of devices is not a multiple of the number of copies.
1046                  * E.g.    dev1 dev2 dev3 dev4 dev5
1047                  *          A    A    B    B    C
1048                  *          C    D    D    E    E
1049                  */
1050                 if (__is_raid10_near(rs->md.new_layout)) {
1051                         for (i = 0; i < rs->md.raid_disks; i++) {
1052                                 if (!(i % copies))
1053                                         rebuilds_per_group = 0;
1054                                 if ((!rs->dev[i].rdev.sb_page ||
1055                                     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1056                                     (++rebuilds_per_group >= copies))
1057                                         goto too_many;
1058                         }
1059                         break;
1060                 }
1061
1062                 /*
1063                  * When checking "far" and "offset" formats, we need to ensure
1064                  * that the device that holds its copy is not also dead or
1065                  * being rebuilt.  (Note that "far" and "offset" formats only
1066                  * support two copies right now.  These formats also only ever
1067                  * use the 'use_far_sets' variant.)
1068                  *
1069                  * This check is somewhat complicated by the need to account
1070                  * for arrays that are not a multiple of (far) copies.  This
1071                  * results in the need to treat the last (potentially larger)
1072                  * set differently.
1073                  */
1074                 group_size = (rs->md.raid_disks / copies);
1075                 last_group_start = (rs->md.raid_disks / group_size) - 1;
1076                 last_group_start *= group_size;
1077                 for (i = 0; i < rs->md.raid_disks; i++) {
1078                         if (!(i % copies) && !(i > last_group_start))
1079                                 rebuilds_per_group = 0;
1080                         if ((!rs->dev[i].rdev.sb_page ||
1081                              !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1082                             (++rebuilds_per_group >= copies))
1083                                         goto too_many;
1084                 }
1085                 break;
1086         default:
1087                 if (rebuild_cnt)
1088                         return -EINVAL;
1089         }
1090
1091         return 0;
1092
1093 too_many:
1094         return -EINVAL;
1095 }
1096
1097 /*
1098  * Possible arguments are...
1099  *      <chunk_size> [optional_args]
1100  *
1101  * Argument definitions
1102  *    <chunk_size>                      The number of sectors per disk that
1103  *                                      will form the "stripe"
1104  *    [[no]sync]                        Force or prevent recovery of the
1105  *                                      entire array
1106  *    [rebuild <idx>]                   Rebuild the drive indicated by the index
1107  *    [daemon_sleep <ms>]               Time between bitmap daemon work to
1108  *                                      clear bits
1109  *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1110  *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1111  *    [write_mostly <idx>]              Indicate a write mostly drive via index
1112  *    [max_write_behind <sectors>]      See '-write-behind=' (man mdadm)
1113  *    [stripe_cache <sectors>]          Stripe cache size for higher RAIDs
1114  *    [region_size <sectors>]           Defines granularity of bitmap
1115  *    [journal_dev <dev>]               raid4/5/6 journaling deviice
1116  *                                      (i.e. write hole closing log)
1117  *
1118  * RAID10-only options:
1119  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
1120  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1121  */
1122 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1123                              unsigned int num_raid_params)
1124 {
1125         int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1126         unsigned int raid10_copies = 2;
1127         unsigned int i, write_mostly = 0;
1128         unsigned int region_size = 0;
1129         sector_t max_io_len;
1130         const char *arg, *key;
1131         struct raid_dev *rd;
1132         struct raid_type *rt = rs->raid_type;
1133
1134         arg = dm_shift_arg(as);
1135         num_raid_params--; /* Account for chunk_size argument */
1136
1137         if (kstrtoint(arg, 10, &value) < 0) {
1138                 rs->ti->error = "Bad numerical argument given for chunk_size";
1139                 return -EINVAL;
1140         }
1141
1142         /*
1143          * First, parse the in-order required arguments
1144          * "chunk_size" is the only argument of this type.
1145          */
1146         if (rt_is_raid1(rt)) {
1147                 if (value)
1148                         DMERR("Ignoring chunk size parameter for RAID 1");
1149                 value = 0;
1150         } else if (!is_power_of_2(value)) {
1151                 rs->ti->error = "Chunk size must be a power of 2";
1152                 return -EINVAL;
1153         } else if (value < 8) {
1154                 rs->ti->error = "Chunk size value is too small";
1155                 return -EINVAL;
1156         }
1157
1158         rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1159
1160         /*
1161          * We set each individual device as In_sync with a completed
1162          * 'recovery_offset'.  If there has been a device failure or
1163          * replacement then one of the following cases applies:
1164          *
1165          *   1) User specifies 'rebuild'.
1166          *      - Device is reset when param is read.
1167          *   2) A new device is supplied.
1168          *      - No matching superblock found, resets device.
1169          *   3) Device failure was transient and returns on reload.
1170          *      - Failure noticed, resets device for bitmap replay.
1171          *   4) Device hadn't completed recovery after previous failure.
1172          *      - Superblock is read and overrides recovery_offset.
1173          *
1174          * What is found in the superblocks of the devices is always
1175          * authoritative, unless 'rebuild' or '[no]sync' was specified.
1176          */
1177         for (i = 0; i < rs->raid_disks; i++) {
1178                 set_bit(In_sync, &rs->dev[i].rdev.flags);
1179                 rs->dev[i].rdev.recovery_offset = MaxSector;
1180         }
1181
1182         /*
1183          * Second, parse the unordered optional arguments
1184          */
1185         for (i = 0; i < num_raid_params; i++) {
1186                 key = dm_shift_arg(as);
1187                 if (!key) {
1188                         rs->ti->error = "Not enough raid parameters given";
1189                         return -EINVAL;
1190                 }
1191
1192                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1193                         if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1194                                 rs->ti->error = "Only one 'nosync' argument allowed";
1195                                 return -EINVAL;
1196                         }
1197                         continue;
1198                 }
1199                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1200                         if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1201                                 rs->ti->error = "Only one 'sync' argument allowed";
1202                                 return -EINVAL;
1203                         }
1204                         continue;
1205                 }
1206                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1207                         if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1208                                 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1209                                 return -EINVAL;
1210                         }
1211                         continue;
1212                 }
1213
1214                 arg = dm_shift_arg(as);
1215                 i++; /* Account for the argument pairs */
1216                 if (!arg) {
1217                         rs->ti->error = "Wrong number of raid parameters given";
1218                         return -EINVAL;
1219                 }
1220
1221                 /*
1222                  * Parameters that take a string value are checked here.
1223                  */
1224                 /* "raid10_format {near|offset|far} */
1225                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1226                         if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1227                                 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1228                                 return -EINVAL;
1229                         }
1230                         if (!rt_is_raid10(rt)) {
1231                                 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1232                                 return -EINVAL;
1233                         }
1234                         raid10_format = raid10_name_to_format(arg);
1235                         if (raid10_format < 0) {
1236                                 rs->ti->error = "Invalid 'raid10_format' value given";
1237                                 return raid10_format;
1238                         }
1239                         continue;
1240                 }
1241
1242                 /* "journal_dev <dev>" */
1243                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1244                         int r;
1245                         struct md_rdev *jdev;
1246
1247                         if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1248                                 rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1249                                 return -EINVAL;
1250                         }
1251                         if (!rt_is_raid456(rt)) {
1252                                 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1253                                 return -EINVAL;
1254                         }
1255                         r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1256                                           &rs->journal_dev.dev);
1257                         if (r) {
1258                                 rs->ti->error = "raid4/5/6 journal device lookup failure";
1259                                 return r;
1260                         }
1261                         jdev = &rs->journal_dev.rdev;
1262                         md_rdev_init(jdev);
1263                         jdev->mddev = &rs->md;
1264                         jdev->bdev = rs->journal_dev.dev->bdev;
1265                         jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode));
1266                         if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1267                                 rs->ti->error = "No space for raid4/5/6 journal";
1268                                 return -ENOSPC;
1269                         }
1270                         rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1271                         set_bit(Journal, &jdev->flags);
1272                         continue;
1273                 }
1274
1275                 /* "journal_mode <mode>" ("journal_dev" mandatory!) */
1276                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1277                         int r;
1278
1279                         if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1280                                 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1281                                 return -EINVAL;
1282                         }
1283                         if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1284                                 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1285                                 return -EINVAL;
1286                         }
1287                         r = dm_raid_journal_mode_to_md(arg);
1288                         if (r < 0) {
1289                                 rs->ti->error = "Invalid 'journal_mode' argument";
1290                                 return r;
1291                         }
1292                         rs->journal_dev.mode = r;
1293                         continue;
1294                 }
1295
1296                 /*
1297                  * Parameters with number values from here on.
1298                  */
1299                 if (kstrtoint(arg, 10, &value) < 0) {
1300                         rs->ti->error = "Bad numerical argument given in raid params";
1301                         return -EINVAL;
1302                 }
1303
1304                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1305                         /*
1306                          * "rebuild" is being passed in by userspace to provide
1307                          * indexes of replaced devices and to set up additional
1308                          * devices on raid level takeover.
1309                          */
1310                         if (!__within_range(value, 0, rs->raid_disks - 1)) {
1311                                 rs->ti->error = "Invalid rebuild index given";
1312                                 return -EINVAL;
1313                         }
1314
1315                         if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1316                                 rs->ti->error = "rebuild for this index already given";
1317                                 return -EINVAL;
1318                         }
1319
1320                         rd = rs->dev + value;
1321                         clear_bit(In_sync, &rd->rdev.flags);
1322                         clear_bit(Faulty, &rd->rdev.flags);
1323                         rd->rdev.recovery_offset = 0;
1324                         set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1325                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1326                         if (!rt_is_raid1(rt)) {
1327                                 rs->ti->error = "write_mostly option is only valid for RAID1";
1328                                 return -EINVAL;
1329                         }
1330
1331                         if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1332                                 rs->ti->error = "Invalid write_mostly index given";
1333                                 return -EINVAL;
1334                         }
1335
1336                         write_mostly++;
1337                         set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1338                         set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1339                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1340                         if (!rt_is_raid1(rt)) {
1341                                 rs->ti->error = "max_write_behind option is only valid for RAID1";
1342                                 return -EINVAL;
1343                         }
1344
1345                         if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1346                                 rs->ti->error = "Only one max_write_behind argument pair allowed";
1347                                 return -EINVAL;
1348                         }
1349
1350                         /*
1351                          * In device-mapper, we specify things in sectors, but
1352                          * MD records this value in kB
1353                          */
1354                         if (value < 0 || value / 2 > COUNTER_MAX) {
1355                                 rs->ti->error = "Max write-behind limit out of range";
1356                                 return -EINVAL;
1357                         }
1358
1359                         rs->md.bitmap_info.max_write_behind = value / 2;
1360                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1361                         if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1362                                 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1363                                 return -EINVAL;
1364                         }
1365                         if (value < 0) {
1366                                 rs->ti->error = "daemon sleep period out of range";
1367                                 return -EINVAL;
1368                         }
1369                         rs->md.bitmap_info.daemon_sleep = value;
1370                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1371                         /* Userspace passes new data_offset after having extended the the data image LV */
1372                         if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1373                                 rs->ti->error = "Only one data_offset argument pair allowed";
1374                                 return -EINVAL;
1375                         }
1376                         /* Ensure sensible data offset */
1377                         if (value < 0 ||
1378                             (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1379                                 rs->ti->error = "Bogus data_offset value";
1380                                 return -EINVAL;
1381                         }
1382                         rs->data_offset = value;
1383                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1384                         /* Define the +/-# of disks to add to/remove from the given raid set */
1385                         if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1386                                 rs->ti->error = "Only one delta_disks argument pair allowed";
1387                                 return -EINVAL;
1388                         }
1389                         /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1390                         if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1391                                 rs->ti->error = "Too many delta_disk requested";
1392                                 return -EINVAL;
1393                         }
1394
1395                         rs->delta_disks = value;
1396                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1397                         if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1398                                 rs->ti->error = "Only one stripe_cache argument pair allowed";
1399                                 return -EINVAL;
1400                         }
1401
1402                         if (!rt_is_raid456(rt)) {
1403                                 rs->ti->error = "Inappropriate argument: stripe_cache";
1404                                 return -EINVAL;
1405                         }
1406
1407                         if (value < 0) {
1408                                 rs->ti->error = "Bogus stripe cache entries value";
1409                                 return -EINVAL;
1410                         }
1411                         rs->stripe_cache_entries = value;
1412                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1413                         if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1414                                 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1415                                 return -EINVAL;
1416                         }
1417
1418                         if (value < 0) {
1419                                 rs->ti->error = "min_recovery_rate out of range";
1420                                 return -EINVAL;
1421                         }
1422                         rs->md.sync_speed_min = value;
1423                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1424                         if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1425                                 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1426                                 return -EINVAL;
1427                         }
1428
1429                         if (value < 0) {
1430                                 rs->ti->error = "max_recovery_rate out of range";
1431                                 return -EINVAL;
1432                         }
1433                         rs->md.sync_speed_max = value;
1434                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1435                         if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1436                                 rs->ti->error = "Only one region_size argument pair allowed";
1437                                 return -EINVAL;
1438                         }
1439
1440                         region_size = value;
1441                         rs->requested_bitmap_chunk_sectors = value;
1442                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1443                         if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1444                                 rs->ti->error = "Only one raid10_copies argument pair allowed";
1445                                 return -EINVAL;
1446                         }
1447
1448                         if (!__within_range(value, 2, rs->md.raid_disks)) {
1449                                 rs->ti->error = "Bad value for 'raid10_copies'";
1450                                 return -EINVAL;
1451                         }
1452
1453                         raid10_copies = value;
1454                 } else {
1455                         DMERR("Unable to parse RAID parameter: %s", key);
1456                         rs->ti->error = "Unable to parse RAID parameter";
1457                         return -EINVAL;
1458                 }
1459         }
1460
1461         if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1462             test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1463                 rs->ti->error = "sync and nosync are mutually exclusive";
1464                 return -EINVAL;
1465         }
1466
1467         if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1468             (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1469              test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1470                 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1471                 return -EINVAL;
1472         }
1473
1474         if (write_mostly >= rs->md.raid_disks) {
1475                 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1476                 return -EINVAL;
1477         }
1478
1479         if (rs->md.sync_speed_max &&
1480             rs->md.sync_speed_min > rs->md.sync_speed_max) {
1481                 rs->ti->error = "Bogus recovery rates";
1482                 return -EINVAL;
1483         }
1484
1485         if (validate_region_size(rs, region_size))
1486                 return -EINVAL;
1487
1488         if (rs->md.chunk_sectors)
1489                 max_io_len = rs->md.chunk_sectors;
1490         else
1491                 max_io_len = region_size;
1492
1493         if (dm_set_target_max_io_len(rs->ti, max_io_len))
1494                 return -EINVAL;
1495
1496         if (rt_is_raid10(rt)) {
1497                 if (raid10_copies > rs->md.raid_disks) {
1498                         rs->ti->error = "Not enough devices to satisfy specification";
1499                         return -EINVAL;
1500                 }
1501
1502                 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1503                 if (rs->md.new_layout < 0) {
1504                         rs->ti->error = "Error getting raid10 format";
1505                         return rs->md.new_layout;
1506                 }
1507
1508                 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1509                 if (!rt) {
1510                         rs->ti->error = "Failed to recognize new raid10 layout";
1511                         return -EINVAL;
1512                 }
1513
1514                 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1515                      rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1516                     test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1517                         rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1518                         return -EINVAL;
1519                 }
1520         }
1521
1522         rs->raid10_copies = raid10_copies;
1523
1524         /* Assume there are no metadata devices until the drives are parsed */
1525         rs->md.persistent = 0;
1526         rs->md.external = 1;
1527
1528         /* Check, if any invalid ctr arguments have been passed in for the raid level */
1529         return rs_check_for_valid_flags(rs);
1530 }
1531
1532 /* Set raid4/5/6 cache size */
1533 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1534 {
1535         int r;
1536         struct r5conf *conf;
1537         struct mddev *mddev = &rs->md;
1538         uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1539         uint32_t nr_stripes = rs->stripe_cache_entries;
1540
1541         if (!rt_is_raid456(rs->raid_type)) {
1542                 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1543                 return -EINVAL;
1544         }
1545
1546         if (nr_stripes < min_stripes) {
1547                 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1548                        nr_stripes, min_stripes);
1549                 nr_stripes = min_stripes;
1550         }
1551
1552         conf = mddev->private;
1553         if (!conf) {
1554                 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1555                 return -EINVAL;
1556         }
1557
1558         /* Try setting number of stripes in raid456 stripe cache */
1559         if (conf->min_nr_stripes != nr_stripes) {
1560                 r = raid5_set_cache_size(mddev, nr_stripes);
1561                 if (r) {
1562                         rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1563                         return r;
1564                 }
1565
1566                 DMINFO("%u stripe cache entries", nr_stripes);
1567         }
1568
1569         return 0;
1570 }
1571
1572 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1573 static unsigned int mddev_data_stripes(struct raid_set *rs)
1574 {
1575         return rs->md.raid_disks - rs->raid_type->parity_devs;
1576 }
1577
1578 /* Return # of data stripes of @rs (i.e. as of ctr) */
1579 static unsigned int rs_data_stripes(struct raid_set *rs)
1580 {
1581         return rs->raid_disks - rs->raid_type->parity_devs;
1582 }
1583
1584 /*
1585  * Retrieve rdev->sectors from any valid raid device of @rs
1586  * to allow userpace to pass in arbitray "- -" device tupples.
1587  */
1588 static sector_t __rdev_sectors(struct raid_set *rs)
1589 {
1590         int i;
1591
1592         for (i = 0; i < rs->md.raid_disks; i++) {
1593                 struct md_rdev *rdev = &rs->dev[i].rdev;
1594
1595                 if (!test_bit(Journal, &rdev->flags) &&
1596                     rdev->bdev && rdev->sectors)
1597                         return rdev->sectors;
1598         }
1599
1600         return 0;
1601 }
1602
1603 /* Check that calculated dev_sectors fits all component devices. */
1604 static int _check_data_dev_sectors(struct raid_set *rs)
1605 {
1606         sector_t ds = ~0;
1607         struct md_rdev *rdev;
1608
1609         rdev_for_each(rdev, &rs->md)
1610                 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1611                         ds = min(ds, to_sector(i_size_read(rdev->bdev->bd_inode)));
1612                         if (ds < rs->md.dev_sectors) {
1613                                 rs->ti->error = "Component device(s) too small";
1614                                 return -EINVAL;
1615                         }
1616                 }
1617
1618         return 0;
1619 }
1620
1621 /* Calculate the sectors per device and per array used for @rs */
1622 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev)
1623 {
1624         int delta_disks;
1625         unsigned int data_stripes;
1626         sector_t array_sectors = sectors, dev_sectors = sectors;
1627         struct mddev *mddev = &rs->md;
1628
1629         if (use_mddev) {
1630                 delta_disks = mddev->delta_disks;
1631                 data_stripes = mddev_data_stripes(rs);
1632         } else {
1633                 delta_disks = rs->delta_disks;
1634                 data_stripes = rs_data_stripes(rs);
1635         }
1636
1637         /* Special raid1 case w/o delta_disks support (yet) */
1638         if (rt_is_raid1(rs->raid_type))
1639                 ;
1640         else if (rt_is_raid10(rs->raid_type)) {
1641                 if (rs->raid10_copies < 2 ||
1642                     delta_disks < 0) {
1643                         rs->ti->error = "Bogus raid10 data copies or delta disks";
1644                         return -EINVAL;
1645                 }
1646
1647                 dev_sectors *= rs->raid10_copies;
1648                 if (sector_div(dev_sectors, data_stripes))
1649                         goto bad;
1650
1651                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1652                 if (sector_div(array_sectors, rs->raid10_copies))
1653                         goto bad;
1654
1655         } else if (sector_div(dev_sectors, data_stripes))
1656                 goto bad;
1657
1658         else
1659                 /* Striped layouts */
1660                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1661
1662         mddev->array_sectors = array_sectors;
1663         mddev->dev_sectors = dev_sectors;
1664         rs_set_rdev_sectors(rs);
1665
1666         return _check_data_dev_sectors(rs);
1667 bad:
1668         rs->ti->error = "Target length not divisible by number of data devices";
1669         return -EINVAL;
1670 }
1671
1672 /* Setup recovery on @rs */
1673 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1674 {
1675         /* raid0 does not recover */
1676         if (rs_is_raid0(rs))
1677                 rs->md.recovery_cp = MaxSector;
1678         /*
1679          * A raid6 set has to be recovered either
1680          * completely or for the grown part to
1681          * ensure proper parity and Q-Syndrome
1682          */
1683         else if (rs_is_raid6(rs))
1684                 rs->md.recovery_cp = dev_sectors;
1685         /*
1686          * Other raid set types may skip recovery
1687          * depending on the 'nosync' flag.
1688          */
1689         else
1690                 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1691                                      ? MaxSector : dev_sectors;
1692 }
1693
1694 static void do_table_event(struct work_struct *ws)
1695 {
1696         struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1697
1698         smp_rmb(); /* Make sure we access most actual mddev properties */
1699         if (!rs_is_reshaping(rs)) {
1700                 if (rs_is_raid10(rs))
1701                         rs_set_rdev_sectors(rs);
1702                 rs_set_capacity(rs);
1703         }
1704         dm_table_event(rs->ti->table);
1705 }
1706
1707 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1708 {
1709         struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1710
1711         return mddev_congested(&rs->md, bits);
1712 }
1713
1714 /*
1715  * Make sure a valid takover (level switch) is being requested on @rs
1716  *
1717  * Conversions of raid sets from one MD personality to another
1718  * have to conform to restrictions which are enforced here.
1719  */
1720 static int rs_check_takeover(struct raid_set *rs)
1721 {
1722         struct mddev *mddev = &rs->md;
1723         unsigned int near_copies;
1724
1725         if (rs->md.degraded) {
1726                 rs->ti->error = "Can't takeover degraded raid set";
1727                 return -EPERM;
1728         }
1729
1730         if (rs_is_reshaping(rs)) {
1731                 rs->ti->error = "Can't takeover reshaping raid set";
1732                 return -EPERM;
1733         }
1734
1735         switch (mddev->level) {
1736         case 0:
1737                 /* raid0 -> raid1/5 with one disk */
1738                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1739                     mddev->raid_disks == 1)
1740                         return 0;
1741
1742                 /* raid0 -> raid10 */
1743                 if (mddev->new_level == 10 &&
1744                     !(rs->raid_disks % mddev->raid_disks))
1745                         return 0;
1746
1747                 /* raid0 with multiple disks -> raid4/5/6 */
1748                 if (__within_range(mddev->new_level, 4, 6) &&
1749                     mddev->new_layout == ALGORITHM_PARITY_N &&
1750                     mddev->raid_disks > 1)
1751                         return 0;
1752
1753                 break;
1754
1755         case 10:
1756                 /* Can't takeover raid10_offset! */
1757                 if (__is_raid10_offset(mddev->layout))
1758                         break;
1759
1760                 near_copies = __raid10_near_copies(mddev->layout);
1761
1762                 /* raid10* -> raid0 */
1763                 if (mddev->new_level == 0) {
1764                         /* Can takeover raid10_near with raid disks divisable by data copies! */
1765                         if (near_copies > 1 &&
1766                             !(mddev->raid_disks % near_copies)) {
1767                                 mddev->raid_disks /= near_copies;
1768                                 mddev->delta_disks = mddev->raid_disks;
1769                                 return 0;
1770                         }
1771
1772                         /* Can takeover raid10_far */
1773                         if (near_copies == 1 &&
1774                             __raid10_far_copies(mddev->layout) > 1)
1775                                 return 0;
1776
1777                         break;
1778                 }
1779
1780                 /* raid10_{near,far} -> raid1 */
1781                 if (mddev->new_level == 1 &&
1782                     max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1783                         return 0;
1784
1785                 /* raid10_{near,far} with 2 disks -> raid4/5 */
1786                 if (__within_range(mddev->new_level, 4, 5) &&
1787                     mddev->raid_disks == 2)
1788                         return 0;
1789                 break;
1790
1791         case 1:
1792                 /* raid1 with 2 disks -> raid4/5 */
1793                 if (__within_range(mddev->new_level, 4, 5) &&
1794                     mddev->raid_disks == 2) {
1795                         mddev->degraded = 1;
1796                         return 0;
1797                 }
1798
1799                 /* raid1 -> raid0 */
1800                 if (mddev->new_level == 0 &&
1801                     mddev->raid_disks == 1)
1802                         return 0;
1803
1804                 /* raid1 -> raid10 */
1805                 if (mddev->new_level == 10)
1806                         return 0;
1807                 break;
1808
1809         case 4:
1810                 /* raid4 -> raid0 */
1811                 if (mddev->new_level == 0)
1812                         return 0;
1813
1814                 /* raid4 -> raid1/5 with 2 disks */
1815                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1816                     mddev->raid_disks == 2)
1817                         return 0;
1818
1819                 /* raid4 -> raid5/6 with parity N */
1820                 if (__within_range(mddev->new_level, 5, 6) &&
1821                     mddev->layout == ALGORITHM_PARITY_N)
1822                         return 0;
1823                 break;
1824
1825         case 5:
1826                 /* raid5 with parity N -> raid0 */
1827                 if (mddev->new_level == 0 &&
1828                     mddev->layout == ALGORITHM_PARITY_N)
1829                         return 0;
1830
1831                 /* raid5 with parity N -> raid4 */
1832                 if (mddev->new_level == 4 &&
1833                     mddev->layout == ALGORITHM_PARITY_N)
1834                         return 0;
1835
1836                 /* raid5 with 2 disks -> raid1/4/10 */
1837                 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1838                     mddev->raid_disks == 2)
1839                         return 0;
1840
1841                 /* raid5_* ->  raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1842                 if (mddev->new_level == 6 &&
1843                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1844                       __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1845                         return 0;
1846                 break;
1847
1848         case 6:
1849                 /* raid6 with parity N -> raid0 */
1850                 if (mddev->new_level == 0 &&
1851                     mddev->layout == ALGORITHM_PARITY_N)
1852                         return 0;
1853
1854                 /* raid6 with parity N -> raid4 */
1855                 if (mddev->new_level == 4 &&
1856                     mddev->layout == ALGORITHM_PARITY_N)
1857                         return 0;
1858
1859                 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1860                 if (mddev->new_level == 5 &&
1861                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1862                      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1863                         return 0;
1864
1865         default:
1866                 break;
1867         }
1868
1869         rs->ti->error = "takeover not possible";
1870         return -EINVAL;
1871 }
1872
1873 /* True if @rs requested to be taken over */
1874 static bool rs_takeover_requested(struct raid_set *rs)
1875 {
1876         return rs->md.new_level != rs->md.level;
1877 }
1878
1879 /* True if @rs is requested to reshape by ctr */
1880 static bool rs_reshape_requested(struct raid_set *rs)
1881 {
1882         bool change;
1883         struct mddev *mddev = &rs->md;
1884
1885         if (rs_takeover_requested(rs))
1886                 return false;
1887
1888         if (rs_is_raid0(rs))
1889                 return false;
1890
1891         change = mddev->new_layout != mddev->layout ||
1892                  mddev->new_chunk_sectors != mddev->chunk_sectors ||
1893                  rs->delta_disks;
1894
1895         /* Historical case to support raid1 reshape without delta disks */
1896         if (rs_is_raid1(rs)) {
1897                 if (rs->delta_disks)
1898                         return !!rs->delta_disks;
1899
1900                 return !change &&
1901                        mddev->raid_disks != rs->raid_disks;
1902         }
1903
1904         if (rs_is_raid10(rs))
1905                 return change &&
1906                        !__is_raid10_far(mddev->new_layout) &&
1907                        rs->delta_disks >= 0;
1908
1909         return change;
1910 }
1911
1912 /*  Features */
1913 #define FEATURE_FLAG_SUPPORTS_V190      0x1 /* Supports extended superblock */
1914
1915 /* State flags for sb->flags */
1916 #define SB_FLAG_RESHAPE_ACTIVE          0x1
1917 #define SB_FLAG_RESHAPE_BACKWARDS       0x2
1918
1919 /*
1920  * This structure is never routinely used by userspace, unlike md superblocks.
1921  * Devices with this superblock should only ever be accessed via device-mapper.
1922  */
1923 #define DM_RAID_MAGIC 0x64526D44
1924 struct dm_raid_superblock {
1925         __le32 magic;           /* "DmRd" */
1926         __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1927
1928         __le32 num_devices;     /* Number of devices in this raid set. (Max 64) */
1929         __le32 array_position;  /* The position of this drive in the raid set */
1930
1931         __le64 events;          /* Incremented by md when superblock updated */
1932         __le64 failed_devices;  /* Pre 1.9.0 part of bit field of devices to */
1933                                 /* indicate failures (see extension below) */
1934
1935         /*
1936          * This offset tracks the progress of the repair or replacement of
1937          * an individual drive.
1938          */
1939         __le64 disk_recovery_offset;
1940
1941         /*
1942          * This offset tracks the progress of the initial raid set
1943          * synchronisation/parity calculation.
1944          */
1945         __le64 array_resync_offset;
1946
1947         /*
1948          * raid characteristics
1949          */
1950         __le32 level;
1951         __le32 layout;
1952         __le32 stripe_sectors;
1953
1954         /********************************************************************
1955          * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1956          *
1957          * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1958          */
1959
1960         __le32 flags; /* Flags defining array states for reshaping */
1961
1962         /*
1963          * This offset tracks the progress of a raid
1964          * set reshape in order to be able to restart it
1965          */
1966         __le64 reshape_position;
1967
1968         /*
1969          * These define the properties of the array in case of an interrupted reshape
1970          */
1971         __le32 new_level;
1972         __le32 new_layout;
1973         __le32 new_stripe_sectors;
1974         __le32 delta_disks;
1975
1976         __le64 array_sectors; /* Array size in sectors */
1977
1978         /*
1979          * Sector offsets to data on devices (reshaping).
1980          * Needed to support out of place reshaping, thus
1981          * not writing over any stripes whilst converting
1982          * them from old to new layout
1983          */
1984         __le64 data_offset;
1985         __le64 new_data_offset;
1986
1987         __le64 sectors; /* Used device size in sectors */
1988
1989         /*
1990          * Additonal Bit field of devices indicating failures to support
1991          * up to 256 devices with the 1.9.0 on-disk metadata format
1992          */
1993         __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1994
1995         __le32 incompat_features;       /* Used to indicate any incompatible features */
1996
1997         /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1998 } __packed;
1999
2000 /*
2001  * Check for reshape constraints on raid set @rs:
2002  *
2003  * - reshape function non-existent
2004  * - degraded set
2005  * - ongoing recovery
2006  * - ongoing reshape
2007  *
2008  * Returns 0 if none or -EPERM if given constraint
2009  * and error message reference in @errmsg
2010  */
2011 static int rs_check_reshape(struct raid_set *rs)
2012 {
2013         struct mddev *mddev = &rs->md;
2014
2015         if (!mddev->pers || !mddev->pers->check_reshape)
2016                 rs->ti->error = "Reshape not supported";
2017         else if (mddev->degraded)
2018                 rs->ti->error = "Can't reshape degraded raid set";
2019         else if (rs_is_recovering(rs))
2020                 rs->ti->error = "Convert request on recovering raid set prohibited";
2021         else if (rs_is_reshaping(rs))
2022                 rs->ti->error = "raid set already reshaping!";
2023         else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2024                 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2025         else
2026                 return 0;
2027
2028         return -EPERM;
2029 }
2030
2031 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2032 {
2033         BUG_ON(!rdev->sb_page);
2034
2035         if (rdev->sb_loaded && !force_reload)
2036                 return 0;
2037
2038         rdev->sb_loaded = 0;
2039
2040         if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
2041                 DMERR("Failed to read superblock of device at position %d",
2042                       rdev->raid_disk);
2043                 md_error(rdev->mddev, rdev);
2044                 set_bit(Faulty, &rdev->flags);
2045                 return -EIO;
2046         }
2047
2048         rdev->sb_loaded = 1;
2049
2050         return 0;
2051 }
2052
2053 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2054 {
2055         failed_devices[0] = le64_to_cpu(sb->failed_devices);
2056         memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2057
2058         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2059                 int i = ARRAY_SIZE(sb->extended_failed_devices);
2060
2061                 while (i--)
2062                         failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2063         }
2064 }
2065
2066 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2067 {
2068         int i = ARRAY_SIZE(sb->extended_failed_devices);
2069
2070         sb->failed_devices = cpu_to_le64(failed_devices[0]);
2071         while (i--)
2072                 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2073 }
2074
2075 /*
2076  * Synchronize the superblock members with the raid set properties
2077  *
2078  * All superblock data is little endian.
2079  */
2080 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2081 {
2082         bool update_failed_devices = false;
2083         unsigned int i;
2084         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2085         struct dm_raid_superblock *sb;
2086         struct raid_set *rs = container_of(mddev, struct raid_set, md);
2087
2088         /* No metadata device, no superblock */
2089         if (!rdev->meta_bdev)
2090                 return;
2091
2092         BUG_ON(!rdev->sb_page);
2093
2094         sb = page_address(rdev->sb_page);
2095
2096         sb_retrieve_failed_devices(sb, failed_devices);
2097
2098         for (i = 0; i < rs->raid_disks; i++)
2099                 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2100                         update_failed_devices = true;
2101                         set_bit(i, (void *) failed_devices);
2102                 }
2103
2104         if (update_failed_devices)
2105                 sb_update_failed_devices(sb, failed_devices);
2106
2107         sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2108         sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2109
2110         sb->num_devices = cpu_to_le32(mddev->raid_disks);
2111         sb->array_position = cpu_to_le32(rdev->raid_disk);
2112
2113         sb->events = cpu_to_le64(mddev->events);
2114
2115         sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2116         sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2117
2118         sb->level = cpu_to_le32(mddev->level);
2119         sb->layout = cpu_to_le32(mddev->layout);
2120         sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2121
2122         /********************************************************************
2123          * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2124          *
2125          * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2126          */
2127         sb->new_level = cpu_to_le32(mddev->new_level);
2128         sb->new_layout = cpu_to_le32(mddev->new_layout);
2129         sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2130
2131         sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2132
2133         smp_rmb(); /* Make sure we access most recent reshape position */
2134         sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2135         if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2136                 /* Flag ongoing reshape */
2137                 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2138
2139                 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2140                         sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2141         } else {
2142                 /* Clear reshape flags */
2143                 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2144         }
2145
2146         sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2147         sb->data_offset = cpu_to_le64(rdev->data_offset);
2148         sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2149         sb->sectors = cpu_to_le64(rdev->sectors);
2150         sb->incompat_features = cpu_to_le32(0);
2151
2152         /* Zero out the rest of the payload after the size of the superblock */
2153         memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2154 }
2155
2156 /*
2157  * super_load
2158  *
2159  * This function creates a superblock if one is not found on the device
2160  * and will decide which superblock to use if there's a choice.
2161  *
2162  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2163  */
2164 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2165 {
2166         int r;
2167         struct dm_raid_superblock *sb;
2168         struct dm_raid_superblock *refsb;
2169         uint64_t events_sb, events_refsb;
2170
2171         r = read_disk_sb(rdev, rdev->sb_size, false);
2172         if (r)
2173                 return r;
2174
2175         sb = page_address(rdev->sb_page);
2176
2177         /*
2178          * Two cases that we want to write new superblocks and rebuild:
2179          * 1) New device (no matching magic number)
2180          * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2181          */
2182         if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2183             (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2184                 super_sync(rdev->mddev, rdev);
2185
2186                 set_bit(FirstUse, &rdev->flags);
2187                 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2188
2189                 /* Force writing of superblocks to disk */
2190                 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2191
2192                 /* Any superblock is better than none, choose that if given */
2193                 return refdev ? 0 : 1;
2194         }
2195
2196         if (!refdev)
2197                 return 1;
2198
2199         events_sb = le64_to_cpu(sb->events);
2200
2201         refsb = page_address(refdev->sb_page);
2202         events_refsb = le64_to_cpu(refsb->events);
2203
2204         return (events_sb > events_refsb) ? 1 : 0;
2205 }
2206
2207 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2208 {
2209         int role;
2210         unsigned int d;
2211         struct mddev *mddev = &rs->md;
2212         uint64_t events_sb;
2213         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2214         struct dm_raid_superblock *sb;
2215         uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2216         struct md_rdev *r;
2217         struct dm_raid_superblock *sb2;
2218
2219         sb = page_address(rdev->sb_page);
2220         events_sb = le64_to_cpu(sb->events);
2221
2222         /*
2223          * Initialise to 1 if this is a new superblock.
2224          */
2225         mddev->events = events_sb ? : 1;
2226
2227         mddev->reshape_position = MaxSector;
2228
2229         mddev->raid_disks = le32_to_cpu(sb->num_devices);
2230         mddev->level = le32_to_cpu(sb->level);
2231         mddev->layout = le32_to_cpu(sb->layout);
2232         mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2233
2234         /*
2235          * Reshaping is supported, e.g. reshape_position is valid
2236          * in superblock and superblock content is authoritative.
2237          */
2238         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2239                 /* Superblock is authoritative wrt given raid set layout! */
2240                 mddev->new_level = le32_to_cpu(sb->new_level);
2241                 mddev->new_layout = le32_to_cpu(sb->new_layout);
2242                 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2243                 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2244                 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2245
2246                 /* raid was reshaping and got interrupted */
2247                 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2248                         if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2249                                 DMERR("Reshape requested but raid set is still reshaping");
2250                                 return -EINVAL;
2251                         }
2252
2253                         if (mddev->delta_disks < 0 ||
2254                             (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2255                                 mddev->reshape_backwards = 1;
2256                         else
2257                                 mddev->reshape_backwards = 0;
2258
2259                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2260                         rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2261                 }
2262
2263         } else {
2264                 /*
2265                  * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2266                  */
2267                 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2268                 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2269
2270                 if (rs_takeover_requested(rs)) {
2271                         if (rt_cur && rt_new)
2272                                 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2273                                       rt_cur->name, rt_new->name);
2274                         else
2275                                 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2276                         return -EINVAL;
2277                 } else if (rs_reshape_requested(rs)) {
2278                         DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2279                         if (mddev->layout != mddev->new_layout) {
2280                                 if (rt_cur && rt_new)
2281                                         DMERR("  current layout %s vs new layout %s",
2282                                               rt_cur->name, rt_new->name);
2283                                 else
2284                                         DMERR("  current layout 0x%X vs new layout 0x%X",
2285                                               le32_to_cpu(sb->layout), mddev->new_layout);
2286                         }
2287                         if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2288                                 DMERR("  current stripe sectors %u vs new stripe sectors %u",
2289                                       mddev->chunk_sectors, mddev->new_chunk_sectors);
2290                         if (rs->delta_disks)
2291                                 DMERR("  current %u disks vs new %u disks",
2292                                       mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2293                         if (rs_is_raid10(rs)) {
2294                                 DMERR("  Old layout: %s w/ %u copies",
2295                                       raid10_md_layout_to_format(mddev->layout),
2296                                       raid10_md_layout_to_copies(mddev->layout));
2297                                 DMERR("  New layout: %s w/ %u copies",
2298                                       raid10_md_layout_to_format(mddev->new_layout),
2299                                       raid10_md_layout_to_copies(mddev->new_layout));
2300                         }
2301                         return -EINVAL;
2302                 }
2303
2304                 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2305         }
2306
2307         if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2308                 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2309
2310         /*
2311          * During load, we set FirstUse if a new superblock was written.
2312          * There are two reasons we might not have a superblock:
2313          * 1) The raid set is brand new - in which case, all of the
2314          *    devices must have their In_sync bit set.  Also,
2315          *    recovery_cp must be 0, unless forced.
2316          * 2) This is a new device being added to an old raid set
2317          *    and the new device needs to be rebuilt - in which
2318          *    case the In_sync bit will /not/ be set and
2319          *    recovery_cp must be MaxSector.
2320          * 3) This is/are a new device(s) being added to an old
2321          *    raid set during takeover to a higher raid level
2322          *    to provide capacity for redundancy or during reshape
2323          *    to add capacity to grow the raid set.
2324          */
2325         d = 0;
2326         rdev_for_each(r, mddev) {
2327                 if (test_bit(Journal, &rdev->flags))
2328                         continue;
2329
2330                 if (test_bit(FirstUse, &r->flags))
2331                         new_devs++;
2332
2333                 if (!test_bit(In_sync, &r->flags)) {
2334                         DMINFO("Device %d specified for rebuild; clearing superblock",
2335                                 r->raid_disk);
2336                         rebuilds++;
2337
2338                         if (test_bit(FirstUse, &r->flags))
2339                                 rebuild_and_new++;
2340                 }
2341
2342                 d++;
2343         }
2344
2345         if (new_devs == rs->raid_disks || !rebuilds) {
2346                 /* Replace a broken device */
2347                 if (new_devs == 1 && !rs->delta_disks)
2348                         ;
2349                 if (new_devs == rs->raid_disks) {
2350                         DMINFO("Superblocks created for new raid set");
2351                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2352                 } else if (new_devs != rebuilds &&
2353                            new_devs != rs->delta_disks) {
2354                         DMERR("New device injected into existing raid set without "
2355                               "'delta_disks' or 'rebuild' parameter specified");
2356                         return -EINVAL;
2357                 }
2358         } else if (new_devs && new_devs != rebuilds) {
2359                 DMERR("%u 'rebuild' devices cannot be injected into"
2360                       " a raid set with %u other first-time devices",
2361                       rebuilds, new_devs);
2362                 return -EINVAL;
2363         } else if (rebuilds) {
2364                 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2365                         DMERR("new device%s provided without 'rebuild'",
2366                               new_devs > 1 ? "s" : "");
2367                         return -EINVAL;
2368                 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2369                         DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2370                               (unsigned long long) mddev->recovery_cp);
2371                         return -EINVAL;
2372                 } else if (rs_is_reshaping(rs)) {
2373                         DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2374                               (unsigned long long) mddev->reshape_position);
2375                         return -EINVAL;
2376                 }
2377         }
2378
2379         /*
2380          * Now we set the Faulty bit for those devices that are
2381          * recorded in the superblock as failed.
2382          */
2383         sb_retrieve_failed_devices(sb, failed_devices);
2384         rdev_for_each(r, mddev) {
2385                 if (test_bit(Journal, &rdev->flags) ||
2386                     !r->sb_page)
2387                         continue;
2388                 sb2 = page_address(r->sb_page);
2389                 sb2->failed_devices = 0;
2390                 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2391
2392                 /*
2393                  * Check for any device re-ordering.
2394                  */
2395                 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2396                         role = le32_to_cpu(sb2->array_position);
2397                         if (role < 0)
2398                                 continue;
2399
2400                         if (role != r->raid_disk) {
2401                                 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2402                                         if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2403                                             rs->raid_disks % rs->raid10_copies) {
2404                                                 rs->ti->error =
2405                                                         "Cannot change raid10 near set to odd # of devices!";
2406                                                 return -EINVAL;
2407                                         }
2408
2409                                         sb2->array_position = cpu_to_le32(r->raid_disk);
2410
2411                                 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2412                                            !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2413                                            !rt_is_raid1(rs->raid_type)) {
2414                                         rs->ti->error = "Cannot change device positions in raid set";
2415                                         return -EINVAL;
2416                                 }
2417
2418                                 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2419                         }
2420
2421                         /*
2422                          * Partial recovery is performed on
2423                          * returning failed devices.
2424                          */
2425                         if (test_bit(role, (void *) failed_devices))
2426                                 set_bit(Faulty, &r->flags);
2427                 }
2428         }
2429
2430         return 0;
2431 }
2432
2433 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2434 {
2435         struct mddev *mddev = &rs->md;
2436         struct dm_raid_superblock *sb;
2437
2438         if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2439                 return 0;
2440
2441         sb = page_address(rdev->sb_page);
2442
2443         /*
2444          * If mddev->events is not set, we know we have not yet initialized
2445          * the array.
2446          */
2447         if (!mddev->events && super_init_validation(rs, rdev))
2448                 return -EINVAL;
2449
2450         if (le32_to_cpu(sb->compat_features) &&
2451             le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2452                 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2453                 return -EINVAL;
2454         }
2455
2456         if (sb->incompat_features) {
2457                 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2458                 return -EINVAL;
2459         }
2460
2461         /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */
2462         mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
2463         mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2464
2465         if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2466                 /*
2467                  * Retrieve rdev size stored in superblock to be prepared for shrink.
2468                  * Check extended superblock members are present otherwise the size
2469                  * will not be set!
2470                  */
2471                 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2472                         rdev->sectors = le64_to_cpu(sb->sectors);
2473
2474                 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2475                 if (rdev->recovery_offset == MaxSector)
2476                         set_bit(In_sync, &rdev->flags);
2477                 /*
2478                  * If no reshape in progress -> we're recovering single
2479                  * disk(s) and have to set the device(s) to out-of-sync
2480                  */
2481                 else if (!rs_is_reshaping(rs))
2482                         clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2483         }
2484
2485         /*
2486          * If a device comes back, set it as not In_sync and no longer faulty.
2487          */
2488         if (test_and_clear_bit(Faulty, &rdev->flags)) {
2489                 rdev->recovery_offset = 0;
2490                 clear_bit(In_sync, &rdev->flags);
2491                 rdev->saved_raid_disk = rdev->raid_disk;
2492         }
2493
2494         /* Reshape support -> restore repective data offsets */
2495         rdev->data_offset = le64_to_cpu(sb->data_offset);
2496         rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2497
2498         return 0;
2499 }
2500
2501 /*
2502  * Analyse superblocks and select the freshest.
2503  */
2504 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2505 {
2506         int r;
2507         struct md_rdev *rdev, *freshest;
2508         struct mddev *mddev = &rs->md;
2509
2510         freshest = NULL;
2511         rdev_for_each(rdev, mddev) {
2512                 if (test_bit(Journal, &rdev->flags))
2513                         continue;
2514
2515                 if (!rdev->meta_bdev)
2516                         continue;
2517
2518                 /* Set superblock offset/size for metadata device. */
2519                 rdev->sb_start = 0;
2520                 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2521                 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2522                         DMERR("superblock size of a logical block is no longer valid");
2523                         return -EINVAL;
2524                 }
2525
2526                 /*
2527                  * Skipping super_load due to CTR_FLAG_SYNC will cause
2528                  * the array to undergo initialization again as
2529                  * though it were new.  This is the intended effect
2530                  * of the "sync" directive.
2531                  *
2532                  * With reshaping capability added, we must ensure that
2533                  * that the "sync" directive is disallowed during the reshape.
2534                  */
2535                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2536                         continue;
2537
2538                 r = super_load(rdev, freshest);
2539
2540                 switch (r) {
2541                 case 1:
2542                         freshest = rdev;
2543                         break;
2544                 case 0:
2545                         break;
2546                 default:
2547                         /* This is a failure to read the superblock from the metadata device. */
2548                         /*
2549                          * We have to keep any raid0 data/metadata device pairs or
2550                          * the MD raid0 personality will fail to start the array.
2551                          */
2552                         if (rs_is_raid0(rs))
2553                                 continue;
2554
2555                         /*
2556                          * We keep the dm_devs to be able to emit the device tuple
2557                          * properly on the table line in raid_status() (rather than
2558                          * mistakenly acting as if '- -' got passed into the constructor).
2559                          *
2560                          * The rdev has to stay on the same_set list to allow for
2561                          * the attempt to restore faulty devices on second resume.
2562                          */
2563                         rdev->raid_disk = rdev->saved_raid_disk = -1;
2564                         break;
2565                 }
2566         }
2567
2568         if (!freshest)
2569                 return 0;
2570
2571         /*
2572          * Validation of the freshest device provides the source of
2573          * validation for the remaining devices.
2574          */
2575         rs->ti->error = "Unable to assemble array: Invalid superblocks";
2576         if (super_validate(rs, freshest))
2577                 return -EINVAL;
2578
2579         if (validate_raid_redundancy(rs)) {
2580                 rs->ti->error = "Insufficient redundancy to activate array";
2581                 return -EINVAL;
2582         }
2583
2584         rdev_for_each(rdev, mddev)
2585                 if (!test_bit(Journal, &rdev->flags) &&
2586                     rdev != freshest &&
2587                     super_validate(rs, rdev))
2588                         return -EINVAL;
2589         return 0;
2590 }
2591
2592 /*
2593  * Adjust data_offset and new_data_offset on all disk members of @rs
2594  * for out of place reshaping if requested by contructor
2595  *
2596  * We need free space at the beginning of each raid disk for forward
2597  * and at the end for backward reshapes which userspace has to provide
2598  * via remapping/reordering of space.
2599  */
2600 static int rs_adjust_data_offsets(struct raid_set *rs)
2601 {
2602         sector_t data_offset = 0, new_data_offset = 0;
2603         struct md_rdev *rdev;
2604
2605         /* Constructor did not request data offset change */
2606         if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2607                 if (!rs_is_reshapable(rs))
2608                         goto out;
2609
2610                 return 0;
2611         }
2612
2613         /* HM FIXME: get In_Sync raid_dev? */
2614         rdev = &rs->dev[0].rdev;
2615
2616         if (rs->delta_disks < 0) {
2617                 /*
2618                  * Removing disks (reshaping backwards):
2619                  *
2620                  * - before reshape: data is at offset 0 and free space
2621                  *                   is at end of each component LV
2622                  *
2623                  * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2624                  */
2625                 data_offset = 0;
2626                 new_data_offset = rs->data_offset;
2627
2628         } else if (rs->delta_disks > 0) {
2629                 /*
2630                  * Adding disks (reshaping forwards):
2631                  *
2632                  * - before reshape: data is at offset rs->data_offset != 0 and
2633                  *                   free space is at begin of each component LV
2634                  *
2635                  * - after reshape: data is at offset 0 on each component LV
2636                  */
2637                 data_offset = rs->data_offset;
2638                 new_data_offset = 0;
2639
2640         } else {
2641                 /*
2642                  * User space passes in 0 for data offset after having removed reshape space
2643                  *
2644                  * - or - (data offset != 0)
2645                  *
2646                  * Changing RAID layout or chunk size -> toggle offsets
2647                  *
2648                  * - before reshape: data is at offset rs->data_offset 0 and
2649                  *                   free space is at end of each component LV
2650                  *                   -or-
2651                  *                   data is at offset rs->data_offset != 0 and
2652                  *                   free space is at begin of each component LV
2653                  *
2654                  * - after reshape: data is at offset 0 if it was at offset != 0
2655                  *                  or at offset != 0 if it was at offset 0
2656                  *                  on each component LV
2657                  *
2658                  */
2659                 data_offset = rs->data_offset ? rdev->data_offset : 0;
2660                 new_data_offset = data_offset ? 0 : rs->data_offset;
2661                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2662         }
2663
2664         /*
2665          * Make sure we got a minimum amount of free sectors per device
2666          */
2667         if (rs->data_offset &&
2668             to_sector(i_size_read(rdev->bdev->bd_inode)) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2669                 rs->ti->error = data_offset ? "No space for forward reshape" :
2670                                               "No space for backward reshape";
2671                 return -ENOSPC;
2672         }
2673 out:
2674         /*
2675          * Raise recovery_cp in case data_offset != 0 to
2676          * avoid false recovery positives in the constructor.
2677          */
2678         if (rs->md.recovery_cp < rs->md.dev_sectors)
2679                 rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2680
2681         /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2682         rdev_for_each(rdev, &rs->md) {
2683                 if (!test_bit(Journal, &rdev->flags)) {
2684                         rdev->data_offset = data_offset;
2685                         rdev->new_data_offset = new_data_offset;
2686                 }
2687         }
2688
2689         return 0;
2690 }
2691
2692 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2693 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2694 {
2695         int i = 0;
2696         struct md_rdev *rdev;
2697
2698         rdev_for_each(rdev, &rs->md) {
2699                 if (!test_bit(Journal, &rdev->flags)) {
2700                         rdev->raid_disk = i++;
2701                         rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2702                 }
2703         }
2704 }
2705
2706 /*
2707  * Setup @rs for takeover by a different raid level
2708  */
2709 static int rs_setup_takeover(struct raid_set *rs)
2710 {
2711         struct mddev *mddev = &rs->md;
2712         struct md_rdev *rdev;
2713         unsigned int d = mddev->raid_disks = rs->raid_disks;
2714         sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2715
2716         if (rt_is_raid10(rs->raid_type)) {
2717                 if (rs_is_raid0(rs)) {
2718                         /* Userpace reordered disks -> adjust raid_disk indexes */
2719                         __reorder_raid_disk_indexes(rs);
2720
2721                         /* raid0 -> raid10_far layout */
2722                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2723                                                                    rs->raid10_copies);
2724                 } else if (rs_is_raid1(rs))
2725                         /* raid1 -> raid10_near layout */
2726                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2727                                                                    rs->raid_disks);
2728                 else
2729                         return -EINVAL;
2730
2731         }
2732
2733         clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2734         mddev->recovery_cp = MaxSector;
2735
2736         while (d--) {
2737                 rdev = &rs->dev[d].rdev;
2738
2739                 if (test_bit(d, (void *) rs->rebuild_disks)) {
2740                         clear_bit(In_sync, &rdev->flags);
2741                         clear_bit(Faulty, &rdev->flags);
2742                         mddev->recovery_cp = rdev->recovery_offset = 0;
2743                         /* Bitmap has to be created when we do an "up" takeover */
2744                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2745                 }
2746
2747                 rdev->new_data_offset = new_data_offset;
2748         }
2749
2750         return 0;
2751 }
2752
2753 /* Prepare @rs for reshape */
2754 static int rs_prepare_reshape(struct raid_set *rs)
2755 {
2756         bool reshape;
2757         struct mddev *mddev = &rs->md;
2758
2759         if (rs_is_raid10(rs)) {
2760                 if (rs->raid_disks != mddev->raid_disks &&
2761                     __is_raid10_near(mddev->layout) &&
2762                     rs->raid10_copies &&
2763                     rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2764                         /*
2765                          * raid disk have to be multiple of data copies to allow this conversion,
2766                          *
2767                          * This is actually not a reshape it is a
2768                          * rebuild of any additional mirrors per group
2769                          */
2770                         if (rs->raid_disks % rs->raid10_copies) {
2771                                 rs->ti->error = "Can't reshape raid10 mirror groups";
2772                                 return -EINVAL;
2773                         }
2774
2775                         /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2776                         __reorder_raid_disk_indexes(rs);
2777                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2778                                                                    rs->raid10_copies);
2779                         mddev->new_layout = mddev->layout;
2780                         reshape = false;
2781                 } else
2782                         reshape = true;
2783
2784         } else if (rs_is_raid456(rs))
2785                 reshape = true;
2786
2787         else if (rs_is_raid1(rs)) {
2788                 if (rs->delta_disks) {
2789                         /* Process raid1 via delta_disks */
2790                         mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2791                         reshape = true;
2792                 } else {
2793                         /* Process raid1 without delta_disks */
2794                         mddev->raid_disks = rs->raid_disks;
2795                         reshape = false;
2796                 }
2797         } else {
2798                 rs->ti->error = "Called with bogus raid type";
2799                 return -EINVAL;
2800         }
2801
2802         if (reshape) {
2803                 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2804                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2805         } else if (mddev->raid_disks < rs->raid_disks)
2806                 /* Create new superblocks and bitmaps, if any new disks */
2807                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2808
2809         return 0;
2810 }
2811
2812 /* Get reshape sectors from data_offsets or raid set */
2813 static sector_t _get_reshape_sectors(struct raid_set *rs)
2814 {
2815         struct md_rdev *rdev;
2816         sector_t reshape_sectors = 0;
2817
2818         rdev_for_each(rdev, &rs->md)
2819                 if (!test_bit(Journal, &rdev->flags)) {
2820                         reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2821                                         rdev->data_offset - rdev->new_data_offset :
2822                                         rdev->new_data_offset - rdev->data_offset;
2823                         break;
2824                 }
2825
2826         return max(reshape_sectors, (sector_t) rs->data_offset);
2827 }
2828
2829 /*
2830  *
2831  * - change raid layout
2832  * - change chunk size
2833  * - add disks
2834  * - remove disks
2835  */
2836 static int rs_setup_reshape(struct raid_set *rs)
2837 {
2838         int r = 0;
2839         unsigned int cur_raid_devs, d;
2840         sector_t reshape_sectors = _get_reshape_sectors(rs);
2841         struct mddev *mddev = &rs->md;
2842         struct md_rdev *rdev;
2843
2844         mddev->delta_disks = rs->delta_disks;
2845         cur_raid_devs = mddev->raid_disks;
2846
2847         /* Ignore impossible layout change whilst adding/removing disks */
2848         if (mddev->delta_disks &&
2849             mddev->layout != mddev->new_layout) {
2850                 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2851                 mddev->new_layout = mddev->layout;
2852         }
2853
2854         /*
2855          * Adjust array size:
2856          *
2857          * - in case of adding disk(s), array size has
2858          *   to grow after the disk adding reshape,
2859          *   which'll hapen in the event handler;
2860          *   reshape will happen forward, so space has to
2861          *   be available at the beginning of each disk
2862          *
2863          * - in case of removing disk(s), array size
2864          *   has to shrink before starting the reshape,
2865          *   which'll happen here;
2866          *   reshape will happen backward, so space has to
2867          *   be available at the end of each disk
2868          *
2869          * - data_offset and new_data_offset are
2870          *   adjusted for aforementioned out of place
2871          *   reshaping based on userspace passing in
2872          *   the "data_offset <sectors>" key/value
2873          *   pair via the constructor
2874          */
2875
2876         /* Add disk(s) */
2877         if (rs->delta_disks > 0) {
2878                 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2879                 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2880                         rdev = &rs->dev[d].rdev;
2881                         clear_bit(In_sync, &rdev->flags);
2882
2883                         /*
2884                          * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2885                          * by md, which'll store that erroneously in the superblock on reshape
2886                          */
2887                         rdev->saved_raid_disk = -1;
2888                         rdev->raid_disk = d;
2889
2890                         rdev->sectors = mddev->dev_sectors;
2891                         rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2892                 }
2893
2894                 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2895
2896         /* Remove disk(s) */
2897         } else if (rs->delta_disks < 0) {
2898                 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true);
2899                 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2900
2901         /* Change layout and/or chunk size */
2902         } else {
2903                 /*
2904                  * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2905                  *
2906                  * keeping number of disks and do layout change ->
2907                  *
2908                  * toggle reshape_backward depending on data_offset:
2909                  *
2910                  * - free space upfront -> reshape forward
2911                  *
2912                  * - free space at the end -> reshape backward
2913                  *
2914                  *
2915                  * This utilizes free reshape space avoiding the need
2916                  * for userspace to move (parts of) LV segments in
2917                  * case of layout/chunksize change  (for disk
2918                  * adding/removing reshape space has to be at
2919                  * the proper address (see above with delta_disks):
2920                  *
2921                  * add disk(s)   -> begin
2922                  * remove disk(s)-> end
2923                  */
2924                 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2925         }
2926
2927         /*
2928          * Adjust device size for forward reshape
2929          * because md_finish_reshape() reduces it.
2930          */
2931         if (!mddev->reshape_backwards)
2932                 rdev_for_each(rdev, &rs->md)
2933                         if (!test_bit(Journal, &rdev->flags))
2934                                 rdev->sectors += reshape_sectors;
2935
2936         return r;
2937 }
2938
2939 /*
2940  * Enable/disable discard support on RAID set depending on
2941  * RAID level and discard properties of underlying RAID members.
2942  */
2943 static void configure_discard_support(struct raid_set *rs)
2944 {
2945         int i;
2946         bool raid456;
2947         struct dm_target *ti = rs->ti;
2948
2949         /*
2950          * XXX: RAID level 4,5,6 require zeroing for safety.
2951          */
2952         raid456 = rs_is_raid456(rs);
2953
2954         for (i = 0; i < rs->raid_disks; i++) {
2955                 struct request_queue *q;
2956
2957                 if (!rs->dev[i].rdev.bdev)
2958                         continue;
2959
2960                 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2961                 if (!q || !blk_queue_discard(q))
2962                         return;
2963
2964                 if (raid456) {
2965                         if (!devices_handle_discard_safely) {
2966                                 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2967                                 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2968                                 return;
2969                         }
2970                 }
2971         }
2972
2973         ti->num_discard_bios = 1;
2974 }
2975
2976 /*
2977  * Construct a RAID0/1/10/4/5/6 mapping:
2978  * Args:
2979  *      <raid_type> <#raid_params> <raid_params>{0,}    \
2980  *      <#raid_devs> [<meta_dev1> <dev1>]{1,}
2981  *
2982  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
2983  * details on possible <raid_params>.
2984  *
2985  * Userspace is free to initialize the metadata devices, hence the superblocks to
2986  * enforce recreation based on the passed in table parameters.
2987  *
2988  */
2989 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2990 {
2991         int r;
2992         bool resize = false;
2993         struct raid_type *rt;
2994         unsigned int num_raid_params, num_raid_devs;
2995         sector_t sb_array_sectors, rdev_sectors, reshape_sectors;
2996         struct raid_set *rs = NULL;
2997         const char *arg;
2998         struct rs_layout rs_layout;
2999         struct dm_arg_set as = { argc, argv }, as_nrd;
3000         struct dm_arg _args[] = {
3001                 { 0, as.argc, "Cannot understand number of raid parameters" },
3002                 { 1, 254, "Cannot understand number of raid devices parameters" }
3003         };
3004
3005         /* Must have <raid_type> */
3006         arg = dm_shift_arg(&as);
3007         if (!arg) {
3008                 ti->error = "No arguments";
3009                 return -EINVAL;
3010         }
3011
3012         rt = get_raid_type(arg);
3013         if (!rt) {
3014                 ti->error = "Unrecognised raid_type";
3015                 return -EINVAL;
3016         }
3017
3018         /* Must have <#raid_params> */
3019         if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3020                 return -EINVAL;
3021
3022         /* number of raid device tupples <meta_dev data_dev> */
3023         as_nrd = as;
3024         dm_consume_args(&as_nrd, num_raid_params);
3025         _args[1].max = (as_nrd.argc - 1) / 2;
3026         if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3027                 return -EINVAL;
3028
3029         if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3030                 ti->error = "Invalid number of supplied raid devices";
3031                 return -EINVAL;
3032         }
3033
3034         rs = raid_set_alloc(ti, rt, num_raid_devs);
3035         if (IS_ERR(rs))
3036                 return PTR_ERR(rs);
3037
3038         r = parse_raid_params(rs, &as, num_raid_params);
3039         if (r)
3040                 goto bad;
3041
3042         r = parse_dev_params(rs, &as);
3043         if (r)
3044                 goto bad;
3045
3046         rs->md.sync_super = super_sync;
3047
3048         /*
3049          * Calculate ctr requested array and device sizes to allow
3050          * for superblock analysis needing device sizes defined.
3051          *
3052          * Any existing superblock will overwrite the array and device sizes
3053          */
3054         r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3055         if (r)
3056                 goto bad;
3057
3058         /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */
3059         rs->array_sectors = rs->md.array_sectors;
3060         rs->dev_sectors = rs->md.dev_sectors;
3061
3062         /*
3063          * Backup any new raid set level, layout, ...
3064          * requested to be able to compare to superblock
3065          * members for conversion decisions.
3066          */
3067         rs_config_backup(rs, &rs_layout);
3068
3069         r = analyse_superblocks(ti, rs);
3070         if (r)
3071                 goto bad;
3072
3073         /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */
3074         sb_array_sectors = rs->md.array_sectors;
3075         rdev_sectors = __rdev_sectors(rs);
3076         if (!rdev_sectors) {
3077                 ti->error = "Invalid rdev size";
3078                 r = -EINVAL;
3079                 goto bad;
3080         }
3081
3082
3083         reshape_sectors = _get_reshape_sectors(rs);
3084         if (rs->dev_sectors != rdev_sectors) {
3085                 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors);
3086                 if (rs->dev_sectors > rdev_sectors - reshape_sectors)
3087                         set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3088         }
3089
3090         INIT_WORK(&rs->md.event_work, do_table_event);
3091         ti->private = rs;
3092         ti->num_flush_bios = 1;
3093
3094         /* Restore any requested new layout for conversion decision */
3095         rs_config_restore(rs, &rs_layout);
3096
3097         /*
3098          * Now that we have any superblock metadata available,
3099          * check for new, recovering, reshaping, to be taken over,
3100          * to be reshaped or an existing, unchanged raid set to
3101          * run in sequence.
3102          */
3103         if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3104                 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3105                 if (rs_is_raid6(rs) &&
3106                     test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3107                         ti->error = "'nosync' not allowed for new raid6 set";
3108                         r = -EINVAL;
3109                         goto bad;
3110                 }
3111                 rs_setup_recovery(rs, 0);
3112                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3113                 rs_set_new(rs);
3114         } else if (rs_is_recovering(rs)) {
3115                 /* A recovering raid set may be resized */
3116                 goto size_check;
3117         } else if (rs_is_reshaping(rs)) {
3118                 /* Have to reject size change request during reshape */
3119                 if (resize) {
3120                         ti->error = "Can't resize a reshaping raid set";
3121                         r = -EPERM;
3122                         goto bad;
3123                 }
3124                 /* skip setup rs */
3125         } else if (rs_takeover_requested(rs)) {
3126                 if (rs_is_reshaping(rs)) {
3127                         ti->error = "Can't takeover a reshaping raid set";
3128                         r = -EPERM;
3129                         goto bad;
3130                 }
3131
3132                 /* We can't takeover a journaled raid4/5/6 */
3133                 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3134                         ti->error = "Can't takeover a journaled raid4/5/6 set";
3135                         r = -EPERM;
3136                         goto bad;
3137                 }
3138
3139                 /*
3140                  * If a takeover is needed, userspace sets any additional
3141                  * devices to rebuild and we can check for a valid request here.
3142                  *
3143                  * If acceptible, set the level to the new requested
3144                  * one, prohibit requesting recovery, allow the raid
3145                  * set to run and store superblocks during resume.
3146                  */
3147                 r = rs_check_takeover(rs);
3148                 if (r)
3149                         goto bad;
3150
3151                 r = rs_setup_takeover(rs);
3152                 if (r)
3153                         goto bad;
3154
3155                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3156                 /* Takeover ain't recovery, so disable recovery */
3157                 rs_setup_recovery(rs, MaxSector);
3158                 rs_set_new(rs);
3159         } else if (rs_reshape_requested(rs)) {
3160                 /* Only request grow on raid set size extensions, not on reshapes. */
3161                 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3162
3163                 /*
3164                  * No need to check for 'ongoing' takeover here, because takeover
3165                  * is an instant operation as oposed to an ongoing reshape.
3166                  */
3167
3168                 /* We can't reshape a journaled raid4/5/6 */
3169                 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3170                         ti->error = "Can't reshape a journaled raid4/5/6 set";
3171                         r = -EPERM;
3172                         goto bad;
3173                 }
3174
3175                 /* Out-of-place space has to be available to allow for a reshape unless raid1! */
3176                 if (reshape_sectors || rs_is_raid1(rs)) {
3177                         /*
3178                           * We can only prepare for a reshape here, because the
3179                           * raid set needs to run to provide the repective reshape
3180                           * check functions via its MD personality instance.
3181                           *
3182                           * So do the reshape check after md_run() succeeded.
3183                           */
3184                         r = rs_prepare_reshape(rs);
3185                         if (r)
3186                                 goto bad;
3187
3188                         /* Reshaping ain't recovery, so disable recovery */
3189                         rs_setup_recovery(rs, MaxSector);
3190                 }
3191                 rs_set_cur(rs);
3192         } else {
3193 size_check:
3194                 /* May not set recovery when a device rebuild is requested */
3195                 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3196                         clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3197                         set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3198                         rs_setup_recovery(rs, MaxSector);
3199                 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3200                         /*
3201                          * Set raid set to current size, i.e. size as of
3202                          * superblocks to grow to larger size in preresume.
3203                          */
3204                         r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false);
3205                         if (r)
3206                                 goto bad;
3207
3208                         rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors);
3209                 } else {
3210                         /* This is no size change or it is shrinking, update size and record in superblocks */
3211                         r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3212                         if (r)
3213                                 goto bad;
3214
3215                         if (sb_array_sectors > rs->array_sectors)
3216                                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3217                 }
3218                 rs_set_cur(rs);
3219         }
3220
3221         /* If constructor requested it, change data and new_data offsets */
3222         r = rs_adjust_data_offsets(rs);
3223         if (r)
3224                 goto bad;
3225
3226         /* Start raid set read-only and assumed clean to change in raid_resume() */
3227         rs->md.ro = 1;
3228         rs->md.in_sync = 1;
3229
3230         /* Keep array frozen */
3231         set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3232
3233         /* Has to be held on running the array */
3234         mddev_lock_nointr(&rs->md);
3235         r = md_run(&rs->md);
3236         rs->md.in_sync = 0; /* Assume already marked dirty */
3237         if (r) {
3238                 ti->error = "Failed to run raid array";
3239                 mddev_unlock(&rs->md);
3240                 goto bad;
3241         }
3242
3243         r = md_start(&rs->md);
3244
3245         if (r) {
3246                 ti->error = "Failed to start raid array";
3247                 mddev_unlock(&rs->md);
3248                 goto bad_md_start;
3249         }
3250
3251         rs->callbacks.congested_fn = raid_is_congested;
3252         dm_table_add_target_callbacks(ti->table, &rs->callbacks);
3253
3254         /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
3255         if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3256                 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3257                 if (r) {
3258                         ti->error = "Failed to set raid4/5/6 journal mode";
3259                         mddev_unlock(&rs->md);
3260                         goto bad_journal_mode_set;
3261                 }
3262         }
3263
3264         mddev_suspend(&rs->md);
3265         set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3266
3267         /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3268         if (rs_is_raid456(rs)) {
3269                 r = rs_set_raid456_stripe_cache(rs);
3270                 if (r)
3271                         goto bad_stripe_cache;
3272         }
3273
3274         /* Now do an early reshape check */
3275         if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3276                 r = rs_check_reshape(rs);
3277                 if (r)
3278                         goto bad_check_reshape;
3279
3280                 /* Restore new, ctr requested layout to perform check */
3281                 rs_config_restore(rs, &rs_layout);
3282
3283                 if (rs->md.pers->start_reshape) {
3284                         r = rs->md.pers->check_reshape(&rs->md);
3285                         if (r) {
3286                                 ti->error = "Reshape check failed";
3287                                 goto bad_check_reshape;
3288                         }
3289                 }
3290         }
3291
3292         /* Disable/enable discard support on raid set. */
3293         configure_discard_support(rs);
3294
3295         mddev_unlock(&rs->md);
3296         return 0;
3297
3298 bad_md_start:
3299 bad_journal_mode_set:
3300 bad_stripe_cache:
3301 bad_check_reshape:
3302         md_stop(&rs->md);
3303 bad:
3304         raid_set_free(rs);
3305
3306         return r;
3307 }
3308
3309 static void raid_dtr(struct dm_target *ti)
3310 {
3311         struct raid_set *rs = ti->private;
3312
3313         list_del_init(&rs->callbacks.list);
3314         md_stop(&rs->md);
3315         raid_set_free(rs);
3316 }
3317
3318 static int raid_map(struct dm_target *ti, struct bio *bio)
3319 {
3320         struct raid_set *rs = ti->private;
3321         struct mddev *mddev = &rs->md;
3322
3323         /*
3324          * If we're reshaping to add disk(s)), ti->len and
3325          * mddev->array_sectors will differ during the process
3326          * (ti->len > mddev->array_sectors), so we have to requeue
3327          * bios with addresses > mddev->array_sectors here or
3328          * there will occur accesses past EOD of the component
3329          * data images thus erroring the raid set.
3330          */
3331         if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3332                 return DM_MAPIO_REQUEUE;
3333
3334         md_handle_request(mddev, bio);
3335
3336         return DM_MAPIO_SUBMITTED;
3337 }
3338
3339 /* Return sync state string for @state */
3340 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
3341 static const char *sync_str(enum sync_state state)
3342 {
3343         /* Has to be in above sync_state order! */
3344         static const char *sync_strs[] = {
3345                 "frozen",
3346                 "reshape",
3347                 "resync",
3348                 "check",
3349                 "repair",
3350                 "recover",
3351                 "idle"
3352         };
3353
3354         return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
3355 };
3356
3357 /* Return enum sync_state for @mddev derived from @recovery flags */
3358 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3359 {
3360         if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3361                 return st_frozen;
3362
3363         /* The MD sync thread can be done with io or be interrupted but still be running */
3364         if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3365             (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3366              (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3367                 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3368                         return st_reshape;
3369
3370                 if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3371                         if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3372                                 return st_resync;
3373                         if (test_bit(MD_RECOVERY_CHECK, &recovery))
3374                                 return st_check;
3375                         return st_repair;
3376                 }
3377
3378                 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3379                         return st_recover;
3380
3381                 if (mddev->reshape_position != MaxSector)
3382                         return st_reshape;
3383         }
3384
3385         return st_idle;
3386 }
3387
3388 /*
3389  * Return status string for @rdev
3390  *
3391  * Status characters:
3392  *
3393  *  'D' = Dead/Failed raid set component or raid4/5/6 journal device
3394  *  'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3395  *  'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3396  *  '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3397  */
3398 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3399 {
3400         if (!rdev->bdev)
3401                 return "-";
3402         else if (test_bit(Faulty, &rdev->flags))
3403                 return "D";
3404         else if (test_bit(Journal, &rdev->flags))
3405                 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3406         else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3407                  (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3408                   !test_bit(In_sync, &rdev->flags)))
3409                 return "a";
3410         else
3411                 return "A";
3412 }
3413
3414 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
3415 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3416                                 enum sync_state state, sector_t resync_max_sectors)
3417 {
3418         sector_t r;
3419         struct mddev *mddev = &rs->md;
3420
3421         clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3422         clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3423
3424         if (rs_is_raid0(rs)) {
3425                 r = resync_max_sectors;
3426                 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3427
3428         } else {
3429                 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
3430                         r = mddev->recovery_cp;
3431                 else
3432                         r = mddev->curr_resync_completed;
3433
3434                 if (state == st_idle && r >= resync_max_sectors) {
3435                         /*
3436                          * Sync complete.
3437                          */
3438                         /* In case we have finished recovering, the array is in sync. */
3439                         if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3440                                 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3441
3442                 } else if (state == st_recover)
3443                         /*
3444                          * In case we are recovering, the array is not in sync
3445                          * and health chars should show the recovering legs.
3446                          *
3447                          * Already retrieved recovery offset from curr_resync_completed above.
3448                          */
3449                         ;
3450
3451                 else if (state == st_resync || state == st_reshape)
3452                         /*
3453                          * If "resync/reshape" is occurring, the raid set
3454                          * is or may be out of sync hence the health
3455                          * characters shall be 'a'.
3456                          */
3457                         set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3458
3459                 else if (state == st_check || state == st_repair)
3460                         /*
3461                          * If "check" or "repair" is occurring, the raid set has
3462                          * undergone an initial sync and the health characters
3463                          * should not be 'a' anymore.
3464                          */
3465                         set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3466
3467                 else if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3468                         /*
3469                          * We are idle and recovery is needed, prevent 'A' chars race
3470                          * caused by components still set to in-sync by constructor.
3471                          */
3472                         set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3473
3474                 else {
3475                         /*
3476                          * We are idle and the raid set may be doing an initial
3477                          * sync, or it may be rebuilding individual components.
3478                          * If all the devices are In_sync, then it is the raid set
3479                          * that is being initialized.
3480                          */
3481                         struct md_rdev *rdev;
3482
3483                         set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3484                         rdev_for_each(rdev, mddev)
3485                                 if (!test_bit(Journal, &rdev->flags) &&
3486                                     !test_bit(In_sync, &rdev->flags)) {
3487                                         clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3488                                         break;
3489                                 }
3490                 }
3491         }
3492
3493         return min(r, resync_max_sectors);
3494 }
3495
3496 /* Helper to return @dev name or "-" if !@dev */
3497 static const char *__get_dev_name(struct dm_dev *dev)
3498 {
3499         return dev ? dev->name : "-";
3500 }
3501
3502 static void raid_status(struct dm_target *ti, status_type_t type,
3503                         unsigned int status_flags, char *result, unsigned int maxlen)
3504 {
3505         struct raid_set *rs = ti->private;
3506         struct mddev *mddev = &rs->md;
3507         struct r5conf *conf = mddev->private;
3508         int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3509         unsigned long recovery;
3510         unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3511         unsigned int sz = 0;
3512         unsigned int rebuild_disks;
3513         unsigned int write_mostly_params = 0;
3514         sector_t progress, resync_max_sectors, resync_mismatches;
3515         enum sync_state state;
3516         struct raid_type *rt;
3517
3518         switch (type) {
3519         case STATUSTYPE_INFO:
3520                 /* *Should* always succeed */
3521                 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3522                 if (!rt)
3523                         return;
3524
3525                 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3526
3527                 /* Access most recent mddev properties for status output */
3528                 smp_rmb();
3529                 /* Get sensible max sectors even if raid set not yet started */
3530                 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3531                                       mddev->resync_max_sectors : mddev->dev_sectors;
3532                 recovery = rs->md.recovery;
3533                 state = decipher_sync_action(mddev, recovery);
3534                 progress = rs_get_progress(rs, recovery, state, resync_max_sectors);
3535                 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3536                                     atomic64_read(&mddev->resync_mismatches) : 0;
3537
3538                 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3539                 for (i = 0; i < rs->raid_disks; i++)
3540                         DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3541
3542                 /*
3543                  * In-sync/Reshape ratio:
3544                  *  The in-sync ratio shows the progress of:
3545                  *   - Initializing the raid set
3546                  *   - Rebuilding a subset of devices of the raid set
3547                  *  The user can distinguish between the two by referring
3548                  *  to the status characters.
3549                  *
3550                  *  The reshape ratio shows the progress of
3551                  *  changing the raid layout or the number of
3552                  *  disks of a raid set
3553                  */
3554                 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3555                                      (unsigned long long) resync_max_sectors);
3556
3557                 /*
3558                  * v1.5.0+:
3559                  *
3560                  * Sync action:
3561                  *   See Documentation/admin-guide/device-mapper/dm-raid.rst for
3562                  *   information on each of these states.
3563                  */
3564                 DMEMIT(" %s", sync_str(state));
3565
3566                 /*
3567                  * v1.5.0+:
3568                  *
3569                  * resync_mismatches/mismatch_cnt
3570                  *   This field shows the number of discrepancies found when
3571                  *   performing a "check" of the raid set.
3572                  */
3573                 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3574
3575                 /*
3576                  * v1.9.0+:
3577                  *
3578                  * data_offset (needed for out of space reshaping)
3579                  *   This field shows the data offset into the data
3580                  *   image LV where the first stripes data starts.
3581                  *
3582                  * We keep data_offset equal on all raid disks of the set,
3583                  * so retrieving it from the first raid disk is sufficient.
3584                  */
3585                 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3586
3587                 /*
3588                  * v1.10.0+:
3589                  */
3590                 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3591                               __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3592                 break;
3593
3594         case STATUSTYPE_TABLE:
3595                 /* Report the table line string you would use to construct this raid set */
3596
3597                 /* Calculate raid parameter count */
3598                 for (i = 0; i < rs->raid_disks; i++)
3599                         if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3600                                 write_mostly_params += 2;
3601                 rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks));
3602                 raid_param_cnt += rebuild_disks * 2 +
3603                                   write_mostly_params +
3604                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3605                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2 +
3606                                   (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 2 : 0) +
3607                                   (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags) ? 2 : 0);
3608
3609                 /* Emit table line */
3610                 /* This has to be in the documented order for userspace! */
3611                 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3612                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3613                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3614                 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3615                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3616                 if (rebuild_disks)
3617                         for (i = 0; i < rs->raid_disks; i++)
3618                                 if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks))
3619                                         DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3620                                                          rs->dev[i].rdev.raid_disk);
3621                 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3622                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3623                                           mddev->bitmap_info.daemon_sleep);
3624                 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3625                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3626                                          mddev->sync_speed_min);
3627                 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3628                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3629                                          mddev->sync_speed_max);
3630                 if (write_mostly_params)
3631                         for (i = 0; i < rs->raid_disks; i++)
3632                                 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3633                                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3634                                                rs->dev[i].rdev.raid_disk);
3635                 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3636                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3637                                           mddev->bitmap_info.max_write_behind);
3638                 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3639                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3640                                          max_nr_stripes);
3641                 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3642                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3643                                            (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3644                 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3645                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3646                                          raid10_md_layout_to_copies(mddev->layout));
3647                 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3648                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3649                                          raid10_md_layout_to_format(mddev->layout));
3650                 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3651                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3652                                          max(rs->delta_disks, mddev->delta_disks));
3653                 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3654                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3655                                            (unsigned long long) rs->data_offset);
3656                 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3657                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3658                                         __get_dev_name(rs->journal_dev.dev));
3659                 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3660                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3661                                          md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3662                 DMEMIT(" %d", rs->raid_disks);
3663                 for (i = 0; i < rs->raid_disks; i++)
3664                         DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3665                                          __get_dev_name(rs->dev[i].data_dev));
3666         }
3667 }
3668
3669 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3670                         char *result, unsigned maxlen)
3671 {
3672         struct raid_set *rs = ti->private;
3673         struct mddev *mddev = &rs->md;
3674
3675         if (!mddev->pers || !mddev->pers->sync_request)
3676                 return -EINVAL;
3677
3678         if (!strcasecmp(argv[0], "frozen"))
3679                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3680         else
3681                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3682
3683         if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3684                 if (mddev->sync_thread) {
3685                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3686                         md_reap_sync_thread(mddev);
3687                 }
3688         } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
3689                 return -EBUSY;
3690         else if (!strcasecmp(argv[0], "resync"))
3691                 ; /* MD_RECOVERY_NEEDED set below */
3692         else if (!strcasecmp(argv[0], "recover"))
3693                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3694         else {
3695                 if (!strcasecmp(argv[0], "check")) {
3696                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3697                         set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3698                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3699                 } else if (!strcasecmp(argv[0], "repair")) {
3700                         set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3701                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3702                 } else
3703                         return -EINVAL;
3704         }
3705         if (mddev->ro == 2) {
3706                 /* A write to sync_action is enough to justify
3707                  * canceling read-auto mode
3708                  */
3709                 mddev->ro = 0;
3710                 if (!mddev->suspended && mddev->sync_thread)
3711                         md_wakeup_thread(mddev->sync_thread);
3712         }
3713         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3714         if (!mddev->suspended && mddev->thread)
3715                 md_wakeup_thread(mddev->thread);
3716
3717         return 0;
3718 }
3719
3720 static int raid_iterate_devices(struct dm_target *ti,
3721                                 iterate_devices_callout_fn fn, void *data)
3722 {
3723         struct raid_set *rs = ti->private;
3724         unsigned int i;
3725         int r = 0;
3726
3727         for (i = 0; !r && i < rs->md.raid_disks; i++)
3728                 if (rs->dev[i].data_dev)
3729                         r = fn(ti,
3730                                  rs->dev[i].data_dev,
3731                                  0, /* No offset on data devs */
3732                                  rs->md.dev_sectors,
3733                                  data);
3734
3735         return r;
3736 }
3737
3738 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3739 {
3740         struct raid_set *rs = ti->private;
3741         unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
3742
3743         blk_limits_io_min(limits, chunk_size_bytes);
3744         blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs));
3745
3746         /*
3747          * RAID1 and RAID10 personalities require bio splitting,
3748          * RAID0/4/5/6 don't and process large discard bios properly.
3749          */
3750         if (rs_is_raid1(rs) || rs_is_raid10(rs)) {
3751                 limits->discard_granularity = chunk_size_bytes;
3752                 limits->max_discard_sectors = rs->md.chunk_sectors;
3753         }
3754 }
3755
3756 static void raid_postsuspend(struct dm_target *ti)
3757 {
3758         struct raid_set *rs = ti->private;
3759
3760         if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3761                 /* Writes have to be stopped before suspending to avoid deadlocks. */
3762                 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery))
3763                         md_stop_writes(&rs->md);
3764
3765                 mddev_lock_nointr(&rs->md);
3766                 mddev_suspend(&rs->md);
3767                 mddev_unlock(&rs->md);
3768         }
3769 }
3770
3771 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3772 {
3773         int i;
3774         uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3775         unsigned long flags;
3776         bool cleared = false;
3777         struct dm_raid_superblock *sb;
3778         struct mddev *mddev = &rs->md;
3779         struct md_rdev *r;
3780
3781         /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3782         if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3783                 return;
3784
3785         memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3786
3787         for (i = 0; i < mddev->raid_disks; i++) {
3788                 r = &rs->dev[i].rdev;
3789                 /* HM FIXME: enhance journal device recovery processing */
3790                 if (test_bit(Journal, &r->flags))
3791                         continue;
3792
3793                 if (test_bit(Faulty, &r->flags) &&
3794                     r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3795                         DMINFO("Faulty %s device #%d has readable super block."
3796                                "  Attempting to revive it.",
3797                                rs->raid_type->name, i);
3798
3799                         /*
3800                          * Faulty bit may be set, but sometimes the array can
3801                          * be suspended before the personalities can respond
3802                          * by removing the device from the array (i.e. calling
3803                          * 'hot_remove_disk').  If they haven't yet removed
3804                          * the failed device, its 'raid_disk' number will be
3805                          * '>= 0' - meaning we must call this function
3806                          * ourselves.
3807                          */
3808                         flags = r->flags;
3809                         clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3810                         if (r->raid_disk >= 0) {
3811                                 if (mddev->pers->hot_remove_disk(mddev, r)) {
3812                                         /* Failed to revive this device, try next */
3813                                         r->flags = flags;
3814                                         continue;
3815                                 }
3816                         } else
3817                                 r->raid_disk = r->saved_raid_disk = i;
3818
3819                         clear_bit(Faulty, &r->flags);
3820                         clear_bit(WriteErrorSeen, &r->flags);
3821
3822                         if (mddev->pers->hot_add_disk(mddev, r)) {
3823                                 /* Failed to revive this device, try next */
3824                                 r->raid_disk = r->saved_raid_disk = -1;
3825                                 r->flags = flags;
3826                         } else {
3827                                 clear_bit(In_sync, &r->flags);
3828                                 r->recovery_offset = 0;
3829                                 set_bit(i, (void *) cleared_failed_devices);
3830                                 cleared = true;
3831                         }
3832                 }
3833         }
3834
3835         /* If any failed devices could be cleared, update all sbs failed_devices bits */
3836         if (cleared) {
3837                 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3838
3839                 rdev_for_each(r, &rs->md) {
3840                         if (test_bit(Journal, &r->flags))
3841                                 continue;
3842
3843                         sb = page_address(r->sb_page);
3844                         sb_retrieve_failed_devices(sb, failed_devices);
3845
3846                         for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3847                                 failed_devices[i] &= ~cleared_failed_devices[i];
3848
3849                         sb_update_failed_devices(sb, failed_devices);
3850                 }
3851         }
3852 }
3853
3854 static int __load_dirty_region_bitmap(struct raid_set *rs)
3855 {
3856         int r = 0;
3857
3858         /* Try loading the bitmap unless "raid0", which does not have one */
3859         if (!rs_is_raid0(rs) &&
3860             !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3861                 r = md_bitmap_load(&rs->md);
3862                 if (r)
3863                         DMERR("Failed to load bitmap");
3864         }
3865
3866         return r;
3867 }
3868
3869 /* Enforce updating all superblocks */
3870 static void rs_update_sbs(struct raid_set *rs)
3871 {
3872         struct mddev *mddev = &rs->md;
3873         int ro = mddev->ro;
3874
3875         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3876         mddev->ro = 0;
3877         md_update_sb(mddev, 1);
3878         mddev->ro = ro;
3879 }
3880
3881 /*
3882  * Reshape changes raid algorithm of @rs to new one within personality
3883  * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3884  * disks from a raid set thus growing/shrinking it or resizes the set
3885  *
3886  * Call mddev_lock_nointr() before!
3887  */
3888 static int rs_start_reshape(struct raid_set *rs)
3889 {
3890         int r;
3891         struct mddev *mddev = &rs->md;
3892         struct md_personality *pers = mddev->pers;
3893
3894         /* Don't allow the sync thread to work until the table gets reloaded. */
3895         set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
3896
3897         r = rs_setup_reshape(rs);
3898         if (r)
3899                 return r;
3900
3901         /*
3902          * Check any reshape constraints enforced by the personalility
3903          *
3904          * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3905          */
3906         r = pers->check_reshape(mddev);
3907         if (r) {
3908                 rs->ti->error = "pers->check_reshape() failed";
3909                 return r;
3910         }
3911
3912         /*
3913          * Personality may not provide start reshape method in which
3914          * case check_reshape above has already covered everything
3915          */
3916         if (pers->start_reshape) {
3917                 r = pers->start_reshape(mddev);
3918                 if (r) {
3919                         rs->ti->error = "pers->start_reshape() failed";
3920                         return r;
3921                 }
3922         }
3923
3924         /*
3925          * Now reshape got set up, update superblocks to
3926          * reflect the fact so that a table reload will
3927          * access proper superblock content in the ctr.
3928          */
3929         rs_update_sbs(rs);
3930
3931         return 0;
3932 }
3933
3934 static int raid_preresume(struct dm_target *ti)
3935 {
3936         int r;
3937         struct raid_set *rs = ti->private;
3938         struct mddev *mddev = &rs->md;
3939
3940         /* This is a resume after a suspend of the set -> it's already started. */
3941         if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3942                 return 0;
3943
3944         /*
3945          * The superblocks need to be updated on disk if the
3946          * array is new or new devices got added (thus zeroed
3947          * out by userspace) or __load_dirty_region_bitmap
3948          * will overwrite them in core with old data or fail.
3949          */
3950         if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3951                 rs_update_sbs(rs);
3952
3953         /* Load the bitmap from disk unless raid0 */
3954         r = __load_dirty_region_bitmap(rs);
3955         if (r)
3956                 return r;
3957
3958         /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */
3959         if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3960                 mddev->array_sectors = rs->array_sectors;
3961                 mddev->dev_sectors = rs->dev_sectors;
3962                 rs_set_rdev_sectors(rs);
3963                 rs_set_capacity(rs);
3964         }
3965
3966         /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */
3967         if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
3968             (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) ||
3969              (rs->requested_bitmap_chunk_sectors &&
3970                mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) {
3971                 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize;
3972
3973                 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0);
3974                 if (r)
3975                         DMERR("Failed to resize bitmap");
3976         }
3977
3978         /* Check for any resize/reshape on @rs and adjust/initiate */
3979         /* Be prepared for mddev_resume() in raid_resume() */
3980         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3981         if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3982                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3983                 mddev->resync_min = mddev->recovery_cp;
3984                 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags))
3985                         mddev->resync_max_sectors = mddev->dev_sectors;
3986         }
3987
3988         /* Check for any reshape request unless new raid set */
3989         if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3990                 /* Initiate a reshape. */
3991                 rs_set_rdev_sectors(rs);
3992                 mddev_lock_nointr(mddev);
3993                 r = rs_start_reshape(rs);
3994                 mddev_unlock(mddev);
3995                 if (r)
3996                         DMWARN("Failed to check/start reshape, continuing without change");
3997                 r = 0;
3998         }
3999
4000         return r;
4001 }
4002
4003 static void raid_resume(struct dm_target *ti)
4004 {
4005         struct raid_set *rs = ti->private;
4006         struct mddev *mddev = &rs->md;
4007
4008         if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4009                 /*
4010                  * A secondary resume while the device is active.
4011                  * Take this opportunity to check whether any failed
4012                  * devices are reachable again.
4013                  */
4014                 attempt_restore_of_faulty_devices(rs);
4015         }
4016
4017         if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4018                 /* Only reduce raid set size before running a disk removing reshape. */
4019                 if (mddev->delta_disks < 0)
4020                         rs_set_capacity(rs);
4021
4022                 mddev_lock_nointr(mddev);
4023                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4024                 mddev->ro = 0;
4025                 mddev->in_sync = 0;
4026                 mddev_resume(mddev);
4027                 mddev_unlock(mddev);
4028         }
4029 }
4030
4031 static struct target_type raid_target = {
4032         .name = "raid",
4033         .version = {1, 15, 0},
4034         .module = THIS_MODULE,
4035         .ctr = raid_ctr,
4036         .dtr = raid_dtr,
4037         .map = raid_map,
4038         .status = raid_status,
4039         .message = raid_message,
4040         .iterate_devices = raid_iterate_devices,
4041         .io_hints = raid_io_hints,
4042         .postsuspend = raid_postsuspend,
4043         .preresume = raid_preresume,
4044         .resume = raid_resume,
4045 };
4046
4047 static int __init dm_raid_init(void)
4048 {
4049         DMINFO("Loading target version %u.%u.%u",
4050                raid_target.version[0],
4051                raid_target.version[1],
4052                raid_target.version[2]);
4053         return dm_register_target(&raid_target);
4054 }
4055
4056 static void __exit dm_raid_exit(void)
4057 {
4058         dm_unregister_target(&raid_target);
4059 }
4060
4061 module_init(dm_raid_init);
4062 module_exit(dm_raid_exit);
4063
4064 module_param(devices_handle_discard_safely, bool, 0644);
4065 MODULE_PARM_DESC(devices_handle_discard_safely,
4066                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4067
4068 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4069 MODULE_ALIAS("dm-raid0");
4070 MODULE_ALIAS("dm-raid1");
4071 MODULE_ALIAS("dm-raid10");
4072 MODULE_ALIAS("dm-raid4");
4073 MODULE_ALIAS("dm-raid5");
4074 MODULE_ALIAS("dm-raid6");
4075 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
4076 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
4077 MODULE_LICENSE("GPL");