]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/md/dm-thin.c
Merge tag 'nfsd-5.5' of git://linux-nfs.org/~bfields/linux
[linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in various modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203
204         /*
205          * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206          */
207         PM_OUT_OF_METADATA_SPACE,
208         PM_READ_ONLY,           /* metadata may not be changed */
209
210         PM_FAIL,                /* all I/O fails */
211 };
212
213 struct pool_features {
214         enum pool_mode mode;
215
216         bool zero_new_blocks:1;
217         bool discard_enabled:1;
218         bool discard_passdown:1;
219         bool error_if_no_space:1;
220 };
221
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226
227 #define CELL_SORT_ARRAY_SIZE 8192
228
229 struct pool {
230         struct list_head list;
231         struct dm_target *ti;   /* Only set if a pool target is bound */
232
233         struct mapped_device *pool_md;
234         struct block_device *md_dev;
235         struct dm_pool_metadata *pmd;
236
237         dm_block_t low_water_blocks;
238         uint32_t sectors_per_block;
239         int sectors_per_block_shift;
240
241         struct pool_features pf;
242         bool low_water_triggered:1;     /* A dm event has been sent */
243         bool suspended:1;
244         bool out_of_data_space:1;
245
246         struct dm_bio_prison *prison;
247         struct dm_kcopyd_client *copier;
248
249         struct work_struct worker;
250         struct workqueue_struct *wq;
251         struct throttle throttle;
252         struct delayed_work waker;
253         struct delayed_work no_space_timeout;
254
255         unsigned long last_commit_jiffies;
256         unsigned ref_count;
257
258         spinlock_t lock;
259         struct bio_list deferred_flush_bios;
260         struct bio_list deferred_flush_completions;
261         struct list_head prepared_mappings;
262         struct list_head prepared_discards;
263         struct list_head prepared_discards_pt2;
264         struct list_head active_thins;
265
266         struct dm_deferred_set *shared_read_ds;
267         struct dm_deferred_set *all_io_ds;
268
269         struct dm_thin_new_mapping *next_mapping;
270
271         process_bio_fn process_bio;
272         process_bio_fn process_discard;
273
274         process_cell_fn process_cell;
275         process_cell_fn process_discard_cell;
276
277         process_mapping_fn process_prepared_mapping;
278         process_mapping_fn process_prepared_discard;
279         process_mapping_fn process_prepared_discard_pt2;
280
281         struct dm_bio_prison_cell **cell_sort_array;
282
283         mempool_t mapping_pool;
284 };
285
286 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
287
288 static enum pool_mode get_pool_mode(struct pool *pool)
289 {
290         return pool->pf.mode;
291 }
292
293 static void notify_of_pool_mode_change(struct pool *pool)
294 {
295         const char *descs[] = {
296                 "write",
297                 "out-of-data-space",
298                 "read-only",
299                 "read-only",
300                 "fail"
301         };
302         const char *extra_desc = NULL;
303         enum pool_mode mode = get_pool_mode(pool);
304
305         if (mode == PM_OUT_OF_DATA_SPACE) {
306                 if (!pool->pf.error_if_no_space)
307                         extra_desc = " (queue IO)";
308                 else
309                         extra_desc = " (error IO)";
310         }
311
312         dm_table_event(pool->ti->table);
313         DMINFO("%s: switching pool to %s%s mode",
314                dm_device_name(pool->pool_md),
315                descs[(int)mode], extra_desc ? : "");
316 }
317
318 /*
319  * Target context for a pool.
320  */
321 struct pool_c {
322         struct dm_target *ti;
323         struct pool *pool;
324         struct dm_dev *data_dev;
325         struct dm_dev *metadata_dev;
326         struct dm_target_callbacks callbacks;
327
328         dm_block_t low_water_blocks;
329         struct pool_features requested_pf; /* Features requested during table load */
330         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
331 };
332
333 /*
334  * Target context for a thin.
335  */
336 struct thin_c {
337         struct list_head list;
338         struct dm_dev *pool_dev;
339         struct dm_dev *origin_dev;
340         sector_t origin_size;
341         dm_thin_id dev_id;
342
343         struct pool *pool;
344         struct dm_thin_device *td;
345         struct mapped_device *thin_md;
346
347         bool requeue_mode:1;
348         spinlock_t lock;
349         struct list_head deferred_cells;
350         struct bio_list deferred_bio_list;
351         struct bio_list retry_on_resume_list;
352         struct rb_root sort_bio_list; /* sorted list of deferred bios */
353
354         /*
355          * Ensures the thin is not destroyed until the worker has finished
356          * iterating the active_thins list.
357          */
358         refcount_t refcount;
359         struct completion can_destroy;
360 };
361
362 /*----------------------------------------------------------------*/
363
364 static bool block_size_is_power_of_two(struct pool *pool)
365 {
366         return pool->sectors_per_block_shift >= 0;
367 }
368
369 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
370 {
371         return block_size_is_power_of_two(pool) ?
372                 (b << pool->sectors_per_block_shift) :
373                 (b * pool->sectors_per_block);
374 }
375
376 /*----------------------------------------------------------------*/
377
378 struct discard_op {
379         struct thin_c *tc;
380         struct blk_plug plug;
381         struct bio *parent_bio;
382         struct bio *bio;
383 };
384
385 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
386 {
387         BUG_ON(!parent);
388
389         op->tc = tc;
390         blk_start_plug(&op->plug);
391         op->parent_bio = parent;
392         op->bio = NULL;
393 }
394
395 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
396 {
397         struct thin_c *tc = op->tc;
398         sector_t s = block_to_sectors(tc->pool, data_b);
399         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
400
401         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
402                                       GFP_NOWAIT, 0, &op->bio);
403 }
404
405 static void end_discard(struct discard_op *op, int r)
406 {
407         if (op->bio) {
408                 /*
409                  * Even if one of the calls to issue_discard failed, we
410                  * need to wait for the chain to complete.
411                  */
412                 bio_chain(op->bio, op->parent_bio);
413                 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
414                 submit_bio(op->bio);
415         }
416
417         blk_finish_plug(&op->plug);
418
419         /*
420          * Even if r is set, there could be sub discards in flight that we
421          * need to wait for.
422          */
423         if (r && !op->parent_bio->bi_status)
424                 op->parent_bio->bi_status = errno_to_blk_status(r);
425         bio_endio(op->parent_bio);
426 }
427
428 /*----------------------------------------------------------------*/
429
430 /*
431  * wake_worker() is used when new work is queued and when pool_resume is
432  * ready to continue deferred IO processing.
433  */
434 static void wake_worker(struct pool *pool)
435 {
436         queue_work(pool->wq, &pool->worker);
437 }
438
439 /*----------------------------------------------------------------*/
440
441 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
442                       struct dm_bio_prison_cell **cell_result)
443 {
444         int r;
445         struct dm_bio_prison_cell *cell_prealloc;
446
447         /*
448          * Allocate a cell from the prison's mempool.
449          * This might block but it can't fail.
450          */
451         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
452
453         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
454         if (r)
455                 /*
456                  * We reused an old cell; we can get rid of
457                  * the new one.
458                  */
459                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
460
461         return r;
462 }
463
464 static void cell_release(struct pool *pool,
465                          struct dm_bio_prison_cell *cell,
466                          struct bio_list *bios)
467 {
468         dm_cell_release(pool->prison, cell, bios);
469         dm_bio_prison_free_cell(pool->prison, cell);
470 }
471
472 static void cell_visit_release(struct pool *pool,
473                                void (*fn)(void *, struct dm_bio_prison_cell *),
474                                void *context,
475                                struct dm_bio_prison_cell *cell)
476 {
477         dm_cell_visit_release(pool->prison, fn, context, cell);
478         dm_bio_prison_free_cell(pool->prison, cell);
479 }
480
481 static void cell_release_no_holder(struct pool *pool,
482                                    struct dm_bio_prison_cell *cell,
483                                    struct bio_list *bios)
484 {
485         dm_cell_release_no_holder(pool->prison, cell, bios);
486         dm_bio_prison_free_cell(pool->prison, cell);
487 }
488
489 static void cell_error_with_code(struct pool *pool,
490                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
491 {
492         dm_cell_error(pool->prison, cell, error_code);
493         dm_bio_prison_free_cell(pool->prison, cell);
494 }
495
496 static blk_status_t get_pool_io_error_code(struct pool *pool)
497 {
498         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
499 }
500
501 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
502 {
503         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
504 }
505
506 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
507 {
508         cell_error_with_code(pool, cell, 0);
509 }
510
511 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
512 {
513         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
514 }
515
516 /*----------------------------------------------------------------*/
517
518 /*
519  * A global list of pools that uses a struct mapped_device as a key.
520  */
521 static struct dm_thin_pool_table {
522         struct mutex mutex;
523         struct list_head pools;
524 } dm_thin_pool_table;
525
526 static void pool_table_init(void)
527 {
528         mutex_init(&dm_thin_pool_table.mutex);
529         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
530 }
531
532 static void pool_table_exit(void)
533 {
534         mutex_destroy(&dm_thin_pool_table.mutex);
535 }
536
537 static void __pool_table_insert(struct pool *pool)
538 {
539         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
540         list_add(&pool->list, &dm_thin_pool_table.pools);
541 }
542
543 static void __pool_table_remove(struct pool *pool)
544 {
545         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
546         list_del(&pool->list);
547 }
548
549 static struct pool *__pool_table_lookup(struct mapped_device *md)
550 {
551         struct pool *pool = NULL, *tmp;
552
553         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
554
555         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
556                 if (tmp->pool_md == md) {
557                         pool = tmp;
558                         break;
559                 }
560         }
561
562         return pool;
563 }
564
565 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
566 {
567         struct pool *pool = NULL, *tmp;
568
569         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
570
571         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
572                 if (tmp->md_dev == md_dev) {
573                         pool = tmp;
574                         break;
575                 }
576         }
577
578         return pool;
579 }
580
581 /*----------------------------------------------------------------*/
582
583 struct dm_thin_endio_hook {
584         struct thin_c *tc;
585         struct dm_deferred_entry *shared_read_entry;
586         struct dm_deferred_entry *all_io_entry;
587         struct dm_thin_new_mapping *overwrite_mapping;
588         struct rb_node rb_node;
589         struct dm_bio_prison_cell *cell;
590 };
591
592 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
593 {
594         bio_list_merge(bios, master);
595         bio_list_init(master);
596 }
597
598 static void error_bio_list(struct bio_list *bios, blk_status_t error)
599 {
600         struct bio *bio;
601
602         while ((bio = bio_list_pop(bios))) {
603                 bio->bi_status = error;
604                 bio_endio(bio);
605         }
606 }
607
608 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
609                 blk_status_t error)
610 {
611         struct bio_list bios;
612
613         bio_list_init(&bios);
614
615         spin_lock_irq(&tc->lock);
616         __merge_bio_list(&bios, master);
617         spin_unlock_irq(&tc->lock);
618
619         error_bio_list(&bios, error);
620 }
621
622 static void requeue_deferred_cells(struct thin_c *tc)
623 {
624         struct pool *pool = tc->pool;
625         struct list_head cells;
626         struct dm_bio_prison_cell *cell, *tmp;
627
628         INIT_LIST_HEAD(&cells);
629
630         spin_lock_irq(&tc->lock);
631         list_splice_init(&tc->deferred_cells, &cells);
632         spin_unlock_irq(&tc->lock);
633
634         list_for_each_entry_safe(cell, tmp, &cells, user_list)
635                 cell_requeue(pool, cell);
636 }
637
638 static void requeue_io(struct thin_c *tc)
639 {
640         struct bio_list bios;
641
642         bio_list_init(&bios);
643
644         spin_lock_irq(&tc->lock);
645         __merge_bio_list(&bios, &tc->deferred_bio_list);
646         __merge_bio_list(&bios, &tc->retry_on_resume_list);
647         spin_unlock_irq(&tc->lock);
648
649         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
650         requeue_deferred_cells(tc);
651 }
652
653 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
654 {
655         struct thin_c *tc;
656
657         rcu_read_lock();
658         list_for_each_entry_rcu(tc, &pool->active_thins, list)
659                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
660         rcu_read_unlock();
661 }
662
663 static void error_retry_list(struct pool *pool)
664 {
665         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
666 }
667
668 /*
669  * This section of code contains the logic for processing a thin device's IO.
670  * Much of the code depends on pool object resources (lists, workqueues, etc)
671  * but most is exclusively called from the thin target rather than the thin-pool
672  * target.
673  */
674
675 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
676 {
677         struct pool *pool = tc->pool;
678         sector_t block_nr = bio->bi_iter.bi_sector;
679
680         if (block_size_is_power_of_two(pool))
681                 block_nr >>= pool->sectors_per_block_shift;
682         else
683                 (void) sector_div(block_nr, pool->sectors_per_block);
684
685         return block_nr;
686 }
687
688 /*
689  * Returns the _complete_ blocks that this bio covers.
690  */
691 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
692                                 dm_block_t *begin, dm_block_t *end)
693 {
694         struct pool *pool = tc->pool;
695         sector_t b = bio->bi_iter.bi_sector;
696         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
697
698         b += pool->sectors_per_block - 1ull; /* so we round up */
699
700         if (block_size_is_power_of_two(pool)) {
701                 b >>= pool->sectors_per_block_shift;
702                 e >>= pool->sectors_per_block_shift;
703         } else {
704                 (void) sector_div(b, pool->sectors_per_block);
705                 (void) sector_div(e, pool->sectors_per_block);
706         }
707
708         if (e < b)
709                 /* Can happen if the bio is within a single block. */
710                 e = b;
711
712         *begin = b;
713         *end = e;
714 }
715
716 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
717 {
718         struct pool *pool = tc->pool;
719         sector_t bi_sector = bio->bi_iter.bi_sector;
720
721         bio_set_dev(bio, tc->pool_dev->bdev);
722         if (block_size_is_power_of_two(pool))
723                 bio->bi_iter.bi_sector =
724                         (block << pool->sectors_per_block_shift) |
725                         (bi_sector & (pool->sectors_per_block - 1));
726         else
727                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
728                                  sector_div(bi_sector, pool->sectors_per_block);
729 }
730
731 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
732 {
733         bio_set_dev(bio, tc->origin_dev->bdev);
734 }
735
736 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
737 {
738         return op_is_flush(bio->bi_opf) &&
739                 dm_thin_changed_this_transaction(tc->td);
740 }
741
742 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
743 {
744         struct dm_thin_endio_hook *h;
745
746         if (bio_op(bio) == REQ_OP_DISCARD)
747                 return;
748
749         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
750         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
751 }
752
753 static void issue(struct thin_c *tc, struct bio *bio)
754 {
755         struct pool *pool = tc->pool;
756
757         if (!bio_triggers_commit(tc, bio)) {
758                 generic_make_request(bio);
759                 return;
760         }
761
762         /*
763          * Complete bio with an error if earlier I/O caused changes to
764          * the metadata that can't be committed e.g, due to I/O errors
765          * on the metadata device.
766          */
767         if (dm_thin_aborted_changes(tc->td)) {
768                 bio_io_error(bio);
769                 return;
770         }
771
772         /*
773          * Batch together any bios that trigger commits and then issue a
774          * single commit for them in process_deferred_bios().
775          */
776         spin_lock_irq(&pool->lock);
777         bio_list_add(&pool->deferred_flush_bios, bio);
778         spin_unlock_irq(&pool->lock);
779 }
780
781 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
782 {
783         remap_to_origin(tc, bio);
784         issue(tc, bio);
785 }
786
787 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
788                             dm_block_t block)
789 {
790         remap(tc, bio, block);
791         issue(tc, bio);
792 }
793
794 /*----------------------------------------------------------------*/
795
796 /*
797  * Bio endio functions.
798  */
799 struct dm_thin_new_mapping {
800         struct list_head list;
801
802         bool pass_discard:1;
803         bool maybe_shared:1;
804
805         /*
806          * Track quiescing, copying and zeroing preparation actions.  When this
807          * counter hits zero the block is prepared and can be inserted into the
808          * btree.
809          */
810         atomic_t prepare_actions;
811
812         blk_status_t status;
813         struct thin_c *tc;
814         dm_block_t virt_begin, virt_end;
815         dm_block_t data_block;
816         struct dm_bio_prison_cell *cell;
817
818         /*
819          * If the bio covers the whole area of a block then we can avoid
820          * zeroing or copying.  Instead this bio is hooked.  The bio will
821          * still be in the cell, so care has to be taken to avoid issuing
822          * the bio twice.
823          */
824         struct bio *bio;
825         bio_end_io_t *saved_bi_end_io;
826 };
827
828 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
829 {
830         struct pool *pool = m->tc->pool;
831
832         if (atomic_dec_and_test(&m->prepare_actions)) {
833                 list_add_tail(&m->list, &pool->prepared_mappings);
834                 wake_worker(pool);
835         }
836 }
837
838 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
839 {
840         unsigned long flags;
841         struct pool *pool = m->tc->pool;
842
843         spin_lock_irqsave(&pool->lock, flags);
844         __complete_mapping_preparation(m);
845         spin_unlock_irqrestore(&pool->lock, flags);
846 }
847
848 static void copy_complete(int read_err, unsigned long write_err, void *context)
849 {
850         struct dm_thin_new_mapping *m = context;
851
852         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
853         complete_mapping_preparation(m);
854 }
855
856 static void overwrite_endio(struct bio *bio)
857 {
858         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
859         struct dm_thin_new_mapping *m = h->overwrite_mapping;
860
861         bio->bi_end_io = m->saved_bi_end_io;
862
863         m->status = bio->bi_status;
864         complete_mapping_preparation(m);
865 }
866
867 /*----------------------------------------------------------------*/
868
869 /*
870  * Workqueue.
871  */
872
873 /*
874  * Prepared mapping jobs.
875  */
876
877 /*
878  * This sends the bios in the cell, except the original holder, back
879  * to the deferred_bios list.
880  */
881 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
882 {
883         struct pool *pool = tc->pool;
884         unsigned long flags;
885         int has_work;
886
887         spin_lock_irqsave(&tc->lock, flags);
888         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
889         has_work = !bio_list_empty(&tc->deferred_bio_list);
890         spin_unlock_irqrestore(&tc->lock, flags);
891
892         if (has_work)
893                 wake_worker(pool);
894 }
895
896 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
897
898 struct remap_info {
899         struct thin_c *tc;
900         struct bio_list defer_bios;
901         struct bio_list issue_bios;
902 };
903
904 static void __inc_remap_and_issue_cell(void *context,
905                                        struct dm_bio_prison_cell *cell)
906 {
907         struct remap_info *info = context;
908         struct bio *bio;
909
910         while ((bio = bio_list_pop(&cell->bios))) {
911                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
912                         bio_list_add(&info->defer_bios, bio);
913                 else {
914                         inc_all_io_entry(info->tc->pool, bio);
915
916                         /*
917                          * We can't issue the bios with the bio prison lock
918                          * held, so we add them to a list to issue on
919                          * return from this function.
920                          */
921                         bio_list_add(&info->issue_bios, bio);
922                 }
923         }
924 }
925
926 static void inc_remap_and_issue_cell(struct thin_c *tc,
927                                      struct dm_bio_prison_cell *cell,
928                                      dm_block_t block)
929 {
930         struct bio *bio;
931         struct remap_info info;
932
933         info.tc = tc;
934         bio_list_init(&info.defer_bios);
935         bio_list_init(&info.issue_bios);
936
937         /*
938          * We have to be careful to inc any bios we're about to issue
939          * before the cell is released, and avoid a race with new bios
940          * being added to the cell.
941          */
942         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
943                            &info, cell);
944
945         while ((bio = bio_list_pop(&info.defer_bios)))
946                 thin_defer_bio(tc, bio);
947
948         while ((bio = bio_list_pop(&info.issue_bios)))
949                 remap_and_issue(info.tc, bio, block);
950 }
951
952 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
953 {
954         cell_error(m->tc->pool, m->cell);
955         list_del(&m->list);
956         mempool_free(m, &m->tc->pool->mapping_pool);
957 }
958
959 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
960 {
961         struct pool *pool = tc->pool;
962
963         /*
964          * If the bio has the REQ_FUA flag set we must commit the metadata
965          * before signaling its completion.
966          */
967         if (!bio_triggers_commit(tc, bio)) {
968                 bio_endio(bio);
969                 return;
970         }
971
972         /*
973          * Complete bio with an error if earlier I/O caused changes to the
974          * metadata that can't be committed, e.g, due to I/O errors on the
975          * metadata device.
976          */
977         if (dm_thin_aborted_changes(tc->td)) {
978                 bio_io_error(bio);
979                 return;
980         }
981
982         /*
983          * Batch together any bios that trigger commits and then issue a
984          * single commit for them in process_deferred_bios().
985          */
986         spin_lock_irq(&pool->lock);
987         bio_list_add(&pool->deferred_flush_completions, bio);
988         spin_unlock_irq(&pool->lock);
989 }
990
991 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
992 {
993         struct thin_c *tc = m->tc;
994         struct pool *pool = tc->pool;
995         struct bio *bio = m->bio;
996         int r;
997
998         if (m->status) {
999                 cell_error(pool, m->cell);
1000                 goto out;
1001         }
1002
1003         /*
1004          * Commit the prepared block into the mapping btree.
1005          * Any I/O for this block arriving after this point will get
1006          * remapped to it directly.
1007          */
1008         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1009         if (r) {
1010                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1011                 cell_error(pool, m->cell);
1012                 goto out;
1013         }
1014
1015         /*
1016          * Release any bios held while the block was being provisioned.
1017          * If we are processing a write bio that completely covers the block,
1018          * we already processed it so can ignore it now when processing
1019          * the bios in the cell.
1020          */
1021         if (bio) {
1022                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1023                 complete_overwrite_bio(tc, bio);
1024         } else {
1025                 inc_all_io_entry(tc->pool, m->cell->holder);
1026                 remap_and_issue(tc, m->cell->holder, m->data_block);
1027                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1028         }
1029
1030 out:
1031         list_del(&m->list);
1032         mempool_free(m, &pool->mapping_pool);
1033 }
1034
1035 /*----------------------------------------------------------------*/
1036
1037 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1038 {
1039         struct thin_c *tc = m->tc;
1040         if (m->cell)
1041                 cell_defer_no_holder(tc, m->cell);
1042         mempool_free(m, &tc->pool->mapping_pool);
1043 }
1044
1045 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1046 {
1047         bio_io_error(m->bio);
1048         free_discard_mapping(m);
1049 }
1050
1051 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1052 {
1053         bio_endio(m->bio);
1054         free_discard_mapping(m);
1055 }
1056
1057 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1058 {
1059         int r;
1060         struct thin_c *tc = m->tc;
1061
1062         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1063         if (r) {
1064                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1065                 bio_io_error(m->bio);
1066         } else
1067                 bio_endio(m->bio);
1068
1069         cell_defer_no_holder(tc, m->cell);
1070         mempool_free(m, &tc->pool->mapping_pool);
1071 }
1072
1073 /*----------------------------------------------------------------*/
1074
1075 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1076                                                    struct bio *discard_parent)
1077 {
1078         /*
1079          * We've already unmapped this range of blocks, but before we
1080          * passdown we have to check that these blocks are now unused.
1081          */
1082         int r = 0;
1083         bool shared = true;
1084         struct thin_c *tc = m->tc;
1085         struct pool *pool = tc->pool;
1086         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1087         struct discard_op op;
1088
1089         begin_discard(&op, tc, discard_parent);
1090         while (b != end) {
1091                 /* find start of unmapped run */
1092                 for (; b < end; b++) {
1093                         r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1094                         if (r)
1095                                 goto out;
1096
1097                         if (!shared)
1098                                 break;
1099                 }
1100
1101                 if (b == end)
1102                         break;
1103
1104                 /* find end of run */
1105                 for (e = b + 1; e != end; e++) {
1106                         r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1107                         if (r)
1108                                 goto out;
1109
1110                         if (shared)
1111                                 break;
1112                 }
1113
1114                 r = issue_discard(&op, b, e);
1115                 if (r)
1116                         goto out;
1117
1118                 b = e;
1119         }
1120 out:
1121         end_discard(&op, r);
1122 }
1123
1124 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1125 {
1126         unsigned long flags;
1127         struct pool *pool = m->tc->pool;
1128
1129         spin_lock_irqsave(&pool->lock, flags);
1130         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1131         spin_unlock_irqrestore(&pool->lock, flags);
1132         wake_worker(pool);
1133 }
1134
1135 static void passdown_endio(struct bio *bio)
1136 {
1137         /*
1138          * It doesn't matter if the passdown discard failed, we still want
1139          * to unmap (we ignore err).
1140          */
1141         queue_passdown_pt2(bio->bi_private);
1142         bio_put(bio);
1143 }
1144
1145 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1146 {
1147         int r;
1148         struct thin_c *tc = m->tc;
1149         struct pool *pool = tc->pool;
1150         struct bio *discard_parent;
1151         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1152
1153         /*
1154          * Only this thread allocates blocks, so we can be sure that the
1155          * newly unmapped blocks will not be allocated before the end of
1156          * the function.
1157          */
1158         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1159         if (r) {
1160                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1161                 bio_io_error(m->bio);
1162                 cell_defer_no_holder(tc, m->cell);
1163                 mempool_free(m, &pool->mapping_pool);
1164                 return;
1165         }
1166
1167         /*
1168          * Increment the unmapped blocks.  This prevents a race between the
1169          * passdown io and reallocation of freed blocks.
1170          */
1171         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1172         if (r) {
1173                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1174                 bio_io_error(m->bio);
1175                 cell_defer_no_holder(tc, m->cell);
1176                 mempool_free(m, &pool->mapping_pool);
1177                 return;
1178         }
1179
1180         discard_parent = bio_alloc(GFP_NOIO, 1);
1181         if (!discard_parent) {
1182                 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1183                        dm_device_name(tc->pool->pool_md));
1184                 queue_passdown_pt2(m);
1185
1186         } else {
1187                 discard_parent->bi_end_io = passdown_endio;
1188                 discard_parent->bi_private = m;
1189
1190                 if (m->maybe_shared)
1191                         passdown_double_checking_shared_status(m, discard_parent);
1192                 else {
1193                         struct discard_op op;
1194
1195                         begin_discard(&op, tc, discard_parent);
1196                         r = issue_discard(&op, m->data_block, data_end);
1197                         end_discard(&op, r);
1198                 }
1199         }
1200 }
1201
1202 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1203 {
1204         int r;
1205         struct thin_c *tc = m->tc;
1206         struct pool *pool = tc->pool;
1207
1208         /*
1209          * The passdown has completed, so now we can decrement all those
1210          * unmapped blocks.
1211          */
1212         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1213                                    m->data_block + (m->virt_end - m->virt_begin));
1214         if (r) {
1215                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1216                 bio_io_error(m->bio);
1217         } else
1218                 bio_endio(m->bio);
1219
1220         cell_defer_no_holder(tc, m->cell);
1221         mempool_free(m, &pool->mapping_pool);
1222 }
1223
1224 static void process_prepared(struct pool *pool, struct list_head *head,
1225                              process_mapping_fn *fn)
1226 {
1227         struct list_head maps;
1228         struct dm_thin_new_mapping *m, *tmp;
1229
1230         INIT_LIST_HEAD(&maps);
1231         spin_lock_irq(&pool->lock);
1232         list_splice_init(head, &maps);
1233         spin_unlock_irq(&pool->lock);
1234
1235         list_for_each_entry_safe(m, tmp, &maps, list)
1236                 (*fn)(m);
1237 }
1238
1239 /*
1240  * Deferred bio jobs.
1241  */
1242 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1243 {
1244         return bio->bi_iter.bi_size ==
1245                 (pool->sectors_per_block << SECTOR_SHIFT);
1246 }
1247
1248 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1249 {
1250         return (bio_data_dir(bio) == WRITE) &&
1251                 io_overlaps_block(pool, bio);
1252 }
1253
1254 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1255                                bio_end_io_t *fn)
1256 {
1257         *save = bio->bi_end_io;
1258         bio->bi_end_io = fn;
1259 }
1260
1261 static int ensure_next_mapping(struct pool *pool)
1262 {
1263         if (pool->next_mapping)
1264                 return 0;
1265
1266         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1267
1268         return pool->next_mapping ? 0 : -ENOMEM;
1269 }
1270
1271 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1272 {
1273         struct dm_thin_new_mapping *m = pool->next_mapping;
1274
1275         BUG_ON(!pool->next_mapping);
1276
1277         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1278         INIT_LIST_HEAD(&m->list);
1279         m->bio = NULL;
1280
1281         pool->next_mapping = NULL;
1282
1283         return m;
1284 }
1285
1286 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1287                     sector_t begin, sector_t end)
1288 {
1289         struct dm_io_region to;
1290
1291         to.bdev = tc->pool_dev->bdev;
1292         to.sector = begin;
1293         to.count = end - begin;
1294
1295         dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1296 }
1297
1298 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1299                                       dm_block_t data_begin,
1300                                       struct dm_thin_new_mapping *m)
1301 {
1302         struct pool *pool = tc->pool;
1303         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1304
1305         h->overwrite_mapping = m;
1306         m->bio = bio;
1307         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1308         inc_all_io_entry(pool, bio);
1309         remap_and_issue(tc, bio, data_begin);
1310 }
1311
1312 /*
1313  * A partial copy also needs to zero the uncopied region.
1314  */
1315 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1316                           struct dm_dev *origin, dm_block_t data_origin,
1317                           dm_block_t data_dest,
1318                           struct dm_bio_prison_cell *cell, struct bio *bio,
1319                           sector_t len)
1320 {
1321         struct pool *pool = tc->pool;
1322         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1323
1324         m->tc = tc;
1325         m->virt_begin = virt_block;
1326         m->virt_end = virt_block + 1u;
1327         m->data_block = data_dest;
1328         m->cell = cell;
1329
1330         /*
1331          * quiesce action + copy action + an extra reference held for the
1332          * duration of this function (we may need to inc later for a
1333          * partial zero).
1334          */
1335         atomic_set(&m->prepare_actions, 3);
1336
1337         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1338                 complete_mapping_preparation(m); /* already quiesced */
1339
1340         /*
1341          * IO to pool_dev remaps to the pool target's data_dev.
1342          *
1343          * If the whole block of data is being overwritten, we can issue the
1344          * bio immediately. Otherwise we use kcopyd to clone the data first.
1345          */
1346         if (io_overwrites_block(pool, bio))
1347                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1348         else {
1349                 struct dm_io_region from, to;
1350
1351                 from.bdev = origin->bdev;
1352                 from.sector = data_origin * pool->sectors_per_block;
1353                 from.count = len;
1354
1355                 to.bdev = tc->pool_dev->bdev;
1356                 to.sector = data_dest * pool->sectors_per_block;
1357                 to.count = len;
1358
1359                 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1360                                0, copy_complete, m);
1361
1362                 /*
1363                  * Do we need to zero a tail region?
1364                  */
1365                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1366                         atomic_inc(&m->prepare_actions);
1367                         ll_zero(tc, m,
1368                                 data_dest * pool->sectors_per_block + len,
1369                                 (data_dest + 1) * pool->sectors_per_block);
1370                 }
1371         }
1372
1373         complete_mapping_preparation(m); /* drop our ref */
1374 }
1375
1376 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1377                                    dm_block_t data_origin, dm_block_t data_dest,
1378                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1379 {
1380         schedule_copy(tc, virt_block, tc->pool_dev,
1381                       data_origin, data_dest, cell, bio,
1382                       tc->pool->sectors_per_block);
1383 }
1384
1385 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1386                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1387                           struct bio *bio)
1388 {
1389         struct pool *pool = tc->pool;
1390         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1391
1392         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1393         m->tc = tc;
1394         m->virt_begin = virt_block;
1395         m->virt_end = virt_block + 1u;
1396         m->data_block = data_block;
1397         m->cell = cell;
1398
1399         /*
1400          * If the whole block of data is being overwritten or we are not
1401          * zeroing pre-existing data, we can issue the bio immediately.
1402          * Otherwise we use kcopyd to zero the data first.
1403          */
1404         if (pool->pf.zero_new_blocks) {
1405                 if (io_overwrites_block(pool, bio))
1406                         remap_and_issue_overwrite(tc, bio, data_block, m);
1407                 else
1408                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1409                                 (data_block + 1) * pool->sectors_per_block);
1410         } else
1411                 process_prepared_mapping(m);
1412 }
1413
1414 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1415                                    dm_block_t data_dest,
1416                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1417 {
1418         struct pool *pool = tc->pool;
1419         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1420         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1421
1422         if (virt_block_end <= tc->origin_size)
1423                 schedule_copy(tc, virt_block, tc->origin_dev,
1424                               virt_block, data_dest, cell, bio,
1425                               pool->sectors_per_block);
1426
1427         else if (virt_block_begin < tc->origin_size)
1428                 schedule_copy(tc, virt_block, tc->origin_dev,
1429                               virt_block, data_dest, cell, bio,
1430                               tc->origin_size - virt_block_begin);
1431
1432         else
1433                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1434 }
1435
1436 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1437
1438 static void requeue_bios(struct pool *pool);
1439
1440 static bool is_read_only_pool_mode(enum pool_mode mode)
1441 {
1442         return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1443 }
1444
1445 static bool is_read_only(struct pool *pool)
1446 {
1447         return is_read_only_pool_mode(get_pool_mode(pool));
1448 }
1449
1450 static void check_for_metadata_space(struct pool *pool)
1451 {
1452         int r;
1453         const char *ooms_reason = NULL;
1454         dm_block_t nr_free;
1455
1456         r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1457         if (r)
1458                 ooms_reason = "Could not get free metadata blocks";
1459         else if (!nr_free)
1460                 ooms_reason = "No free metadata blocks";
1461
1462         if (ooms_reason && !is_read_only(pool)) {
1463                 DMERR("%s", ooms_reason);
1464                 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1465         }
1466 }
1467
1468 static void check_for_data_space(struct pool *pool)
1469 {
1470         int r;
1471         dm_block_t nr_free;
1472
1473         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1474                 return;
1475
1476         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1477         if (r)
1478                 return;
1479
1480         if (nr_free) {
1481                 set_pool_mode(pool, PM_WRITE);
1482                 requeue_bios(pool);
1483         }
1484 }
1485
1486 /*
1487  * A non-zero return indicates read_only or fail_io mode.
1488  * Many callers don't care about the return value.
1489  */
1490 static int commit(struct pool *pool)
1491 {
1492         int r;
1493
1494         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1495                 return -EINVAL;
1496
1497         r = dm_pool_commit_metadata(pool->pmd);
1498         if (r)
1499                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1500         else {
1501                 check_for_metadata_space(pool);
1502                 check_for_data_space(pool);
1503         }
1504
1505         return r;
1506 }
1507
1508 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1509 {
1510         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1511                 DMWARN("%s: reached low water mark for data device: sending event.",
1512                        dm_device_name(pool->pool_md));
1513                 spin_lock_irq(&pool->lock);
1514                 pool->low_water_triggered = true;
1515                 spin_unlock_irq(&pool->lock);
1516                 dm_table_event(pool->ti->table);
1517         }
1518 }
1519
1520 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1521 {
1522         int r;
1523         dm_block_t free_blocks;
1524         struct pool *pool = tc->pool;
1525
1526         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1527                 return -EINVAL;
1528
1529         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1530         if (r) {
1531                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1532                 return r;
1533         }
1534
1535         check_low_water_mark(pool, free_blocks);
1536
1537         if (!free_blocks) {
1538                 /*
1539                  * Try to commit to see if that will free up some
1540                  * more space.
1541                  */
1542                 r = commit(pool);
1543                 if (r)
1544                         return r;
1545
1546                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1547                 if (r) {
1548                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1549                         return r;
1550                 }
1551
1552                 if (!free_blocks) {
1553                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1554                         return -ENOSPC;
1555                 }
1556         }
1557
1558         r = dm_pool_alloc_data_block(pool->pmd, result);
1559         if (r) {
1560                 if (r == -ENOSPC)
1561                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1562                 else
1563                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1564                 return r;
1565         }
1566
1567         r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1568         if (r) {
1569                 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1570                 return r;
1571         }
1572
1573         if (!free_blocks) {
1574                 /* Let's commit before we use up the metadata reserve. */
1575                 r = commit(pool);
1576                 if (r)
1577                         return r;
1578         }
1579
1580         return 0;
1581 }
1582
1583 /*
1584  * If we have run out of space, queue bios until the device is
1585  * resumed, presumably after having been reloaded with more space.
1586  */
1587 static void retry_on_resume(struct bio *bio)
1588 {
1589         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1590         struct thin_c *tc = h->tc;
1591
1592         spin_lock_irq(&tc->lock);
1593         bio_list_add(&tc->retry_on_resume_list, bio);
1594         spin_unlock_irq(&tc->lock);
1595 }
1596
1597 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1598 {
1599         enum pool_mode m = get_pool_mode(pool);
1600
1601         switch (m) {
1602         case PM_WRITE:
1603                 /* Shouldn't get here */
1604                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1605                 return BLK_STS_IOERR;
1606
1607         case PM_OUT_OF_DATA_SPACE:
1608                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1609
1610         case PM_OUT_OF_METADATA_SPACE:
1611         case PM_READ_ONLY:
1612         case PM_FAIL:
1613                 return BLK_STS_IOERR;
1614         default:
1615                 /* Shouldn't get here */
1616                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1617                 return BLK_STS_IOERR;
1618         }
1619 }
1620
1621 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1622 {
1623         blk_status_t error = should_error_unserviceable_bio(pool);
1624
1625         if (error) {
1626                 bio->bi_status = error;
1627                 bio_endio(bio);
1628         } else
1629                 retry_on_resume(bio);
1630 }
1631
1632 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1633 {
1634         struct bio *bio;
1635         struct bio_list bios;
1636         blk_status_t error;
1637
1638         error = should_error_unserviceable_bio(pool);
1639         if (error) {
1640                 cell_error_with_code(pool, cell, error);
1641                 return;
1642         }
1643
1644         bio_list_init(&bios);
1645         cell_release(pool, cell, &bios);
1646
1647         while ((bio = bio_list_pop(&bios)))
1648                 retry_on_resume(bio);
1649 }
1650
1651 static void process_discard_cell_no_passdown(struct thin_c *tc,
1652                                              struct dm_bio_prison_cell *virt_cell)
1653 {
1654         struct pool *pool = tc->pool;
1655         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1656
1657         /*
1658          * We don't need to lock the data blocks, since there's no
1659          * passdown.  We only lock data blocks for allocation and breaking sharing.
1660          */
1661         m->tc = tc;
1662         m->virt_begin = virt_cell->key.block_begin;
1663         m->virt_end = virt_cell->key.block_end;
1664         m->cell = virt_cell;
1665         m->bio = virt_cell->holder;
1666
1667         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1668                 pool->process_prepared_discard(m);
1669 }
1670
1671 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1672                                  struct bio *bio)
1673 {
1674         struct pool *pool = tc->pool;
1675
1676         int r;
1677         bool maybe_shared;
1678         struct dm_cell_key data_key;
1679         struct dm_bio_prison_cell *data_cell;
1680         struct dm_thin_new_mapping *m;
1681         dm_block_t virt_begin, virt_end, data_begin;
1682
1683         while (begin != end) {
1684                 r = ensure_next_mapping(pool);
1685                 if (r)
1686                         /* we did our best */
1687                         return;
1688
1689                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1690                                               &data_begin, &maybe_shared);
1691                 if (r)
1692                         /*
1693                          * Silently fail, letting any mappings we've
1694                          * created complete.
1695                          */
1696                         break;
1697
1698                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1699                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1700                         /* contention, we'll give up with this range */
1701                         begin = virt_end;
1702                         continue;
1703                 }
1704
1705                 /*
1706                  * IO may still be going to the destination block.  We must
1707                  * quiesce before we can do the removal.
1708                  */
1709                 m = get_next_mapping(pool);
1710                 m->tc = tc;
1711                 m->maybe_shared = maybe_shared;
1712                 m->virt_begin = virt_begin;
1713                 m->virt_end = virt_end;
1714                 m->data_block = data_begin;
1715                 m->cell = data_cell;
1716                 m->bio = bio;
1717
1718                 /*
1719                  * The parent bio must not complete before sub discard bios are
1720                  * chained to it (see end_discard's bio_chain)!
1721                  *
1722                  * This per-mapping bi_remaining increment is paired with
1723                  * the implicit decrement that occurs via bio_endio() in
1724                  * end_discard().
1725                  */
1726                 bio_inc_remaining(bio);
1727                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1728                         pool->process_prepared_discard(m);
1729
1730                 begin = virt_end;
1731         }
1732 }
1733
1734 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1735 {
1736         struct bio *bio = virt_cell->holder;
1737         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1738
1739         /*
1740          * The virt_cell will only get freed once the origin bio completes.
1741          * This means it will remain locked while all the individual
1742          * passdown bios are in flight.
1743          */
1744         h->cell = virt_cell;
1745         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1746
1747         /*
1748          * We complete the bio now, knowing that the bi_remaining field
1749          * will prevent completion until the sub range discards have
1750          * completed.
1751          */
1752         bio_endio(bio);
1753 }
1754
1755 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1756 {
1757         dm_block_t begin, end;
1758         struct dm_cell_key virt_key;
1759         struct dm_bio_prison_cell *virt_cell;
1760
1761         get_bio_block_range(tc, bio, &begin, &end);
1762         if (begin == end) {
1763                 /*
1764                  * The discard covers less than a block.
1765                  */
1766                 bio_endio(bio);
1767                 return;
1768         }
1769
1770         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1771         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1772                 /*
1773                  * Potential starvation issue: We're relying on the
1774                  * fs/application being well behaved, and not trying to
1775                  * send IO to a region at the same time as discarding it.
1776                  * If they do this persistently then it's possible this
1777                  * cell will never be granted.
1778                  */
1779                 return;
1780
1781         tc->pool->process_discard_cell(tc, virt_cell);
1782 }
1783
1784 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1785                           struct dm_cell_key *key,
1786                           struct dm_thin_lookup_result *lookup_result,
1787                           struct dm_bio_prison_cell *cell)
1788 {
1789         int r;
1790         dm_block_t data_block;
1791         struct pool *pool = tc->pool;
1792
1793         r = alloc_data_block(tc, &data_block);
1794         switch (r) {
1795         case 0:
1796                 schedule_internal_copy(tc, block, lookup_result->block,
1797                                        data_block, cell, bio);
1798                 break;
1799
1800         case -ENOSPC:
1801                 retry_bios_on_resume(pool, cell);
1802                 break;
1803
1804         default:
1805                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1806                             __func__, r);
1807                 cell_error(pool, cell);
1808                 break;
1809         }
1810 }
1811
1812 static void __remap_and_issue_shared_cell(void *context,
1813                                           struct dm_bio_prison_cell *cell)
1814 {
1815         struct remap_info *info = context;
1816         struct bio *bio;
1817
1818         while ((bio = bio_list_pop(&cell->bios))) {
1819                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1820                     bio_op(bio) == REQ_OP_DISCARD)
1821                         bio_list_add(&info->defer_bios, bio);
1822                 else {
1823                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1824
1825                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1826                         inc_all_io_entry(info->tc->pool, bio);
1827                         bio_list_add(&info->issue_bios, bio);
1828                 }
1829         }
1830 }
1831
1832 static void remap_and_issue_shared_cell(struct thin_c *tc,
1833                                         struct dm_bio_prison_cell *cell,
1834                                         dm_block_t block)
1835 {
1836         struct bio *bio;
1837         struct remap_info info;
1838
1839         info.tc = tc;
1840         bio_list_init(&info.defer_bios);
1841         bio_list_init(&info.issue_bios);
1842
1843         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1844                            &info, cell);
1845
1846         while ((bio = bio_list_pop(&info.defer_bios)))
1847                 thin_defer_bio(tc, bio);
1848
1849         while ((bio = bio_list_pop(&info.issue_bios)))
1850                 remap_and_issue(tc, bio, block);
1851 }
1852
1853 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1854                                dm_block_t block,
1855                                struct dm_thin_lookup_result *lookup_result,
1856                                struct dm_bio_prison_cell *virt_cell)
1857 {
1858         struct dm_bio_prison_cell *data_cell;
1859         struct pool *pool = tc->pool;
1860         struct dm_cell_key key;
1861
1862         /*
1863          * If cell is already occupied, then sharing is already in the process
1864          * of being broken so we have nothing further to do here.
1865          */
1866         build_data_key(tc->td, lookup_result->block, &key);
1867         if (bio_detain(pool, &key, bio, &data_cell)) {
1868                 cell_defer_no_holder(tc, virt_cell);
1869                 return;
1870         }
1871
1872         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1873                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1874                 cell_defer_no_holder(tc, virt_cell);
1875         } else {
1876                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1877
1878                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1879                 inc_all_io_entry(pool, bio);
1880                 remap_and_issue(tc, bio, lookup_result->block);
1881
1882                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1883                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1884         }
1885 }
1886
1887 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1888                             struct dm_bio_prison_cell *cell)
1889 {
1890         int r;
1891         dm_block_t data_block;
1892         struct pool *pool = tc->pool;
1893
1894         /*
1895          * Remap empty bios (flushes) immediately, without provisioning.
1896          */
1897         if (!bio->bi_iter.bi_size) {
1898                 inc_all_io_entry(pool, bio);
1899                 cell_defer_no_holder(tc, cell);
1900
1901                 remap_and_issue(tc, bio, 0);
1902                 return;
1903         }
1904
1905         /*
1906          * Fill read bios with zeroes and complete them immediately.
1907          */
1908         if (bio_data_dir(bio) == READ) {
1909                 zero_fill_bio(bio);
1910                 cell_defer_no_holder(tc, cell);
1911                 bio_endio(bio);
1912                 return;
1913         }
1914
1915         r = alloc_data_block(tc, &data_block);
1916         switch (r) {
1917         case 0:
1918                 if (tc->origin_dev)
1919                         schedule_external_copy(tc, block, data_block, cell, bio);
1920                 else
1921                         schedule_zero(tc, block, data_block, cell, bio);
1922                 break;
1923
1924         case -ENOSPC:
1925                 retry_bios_on_resume(pool, cell);
1926                 break;
1927
1928         default:
1929                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1930                             __func__, r);
1931                 cell_error(pool, cell);
1932                 break;
1933         }
1934 }
1935
1936 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1937 {
1938         int r;
1939         struct pool *pool = tc->pool;
1940         struct bio *bio = cell->holder;
1941         dm_block_t block = get_bio_block(tc, bio);
1942         struct dm_thin_lookup_result lookup_result;
1943
1944         if (tc->requeue_mode) {
1945                 cell_requeue(pool, cell);
1946                 return;
1947         }
1948
1949         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1950         switch (r) {
1951         case 0:
1952                 if (lookup_result.shared)
1953                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1954                 else {
1955                         inc_all_io_entry(pool, bio);
1956                         remap_and_issue(tc, bio, lookup_result.block);
1957                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1958                 }
1959                 break;
1960
1961         case -ENODATA:
1962                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1963                         inc_all_io_entry(pool, bio);
1964                         cell_defer_no_holder(tc, cell);
1965
1966                         if (bio_end_sector(bio) <= tc->origin_size)
1967                                 remap_to_origin_and_issue(tc, bio);
1968
1969                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1970                                 zero_fill_bio(bio);
1971                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1972                                 remap_to_origin_and_issue(tc, bio);
1973
1974                         } else {
1975                                 zero_fill_bio(bio);
1976                                 bio_endio(bio);
1977                         }
1978                 } else
1979                         provision_block(tc, bio, block, cell);
1980                 break;
1981
1982         default:
1983                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1984                             __func__, r);
1985                 cell_defer_no_holder(tc, cell);
1986                 bio_io_error(bio);
1987                 break;
1988         }
1989 }
1990
1991 static void process_bio(struct thin_c *tc, struct bio *bio)
1992 {
1993         struct pool *pool = tc->pool;
1994         dm_block_t block = get_bio_block(tc, bio);
1995         struct dm_bio_prison_cell *cell;
1996         struct dm_cell_key key;
1997
1998         /*
1999          * If cell is already occupied, then the block is already
2000          * being provisioned so we have nothing further to do here.
2001          */
2002         build_virtual_key(tc->td, block, &key);
2003         if (bio_detain(pool, &key, bio, &cell))
2004                 return;
2005
2006         process_cell(tc, cell);
2007 }
2008
2009 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2010                                     struct dm_bio_prison_cell *cell)
2011 {
2012         int r;
2013         int rw = bio_data_dir(bio);
2014         dm_block_t block = get_bio_block(tc, bio);
2015         struct dm_thin_lookup_result lookup_result;
2016
2017         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2018         switch (r) {
2019         case 0:
2020                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2021                         handle_unserviceable_bio(tc->pool, bio);
2022                         if (cell)
2023                                 cell_defer_no_holder(tc, cell);
2024                 } else {
2025                         inc_all_io_entry(tc->pool, bio);
2026                         remap_and_issue(tc, bio, lookup_result.block);
2027                         if (cell)
2028                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2029                 }
2030                 break;
2031
2032         case -ENODATA:
2033                 if (cell)
2034                         cell_defer_no_holder(tc, cell);
2035                 if (rw != READ) {
2036                         handle_unserviceable_bio(tc->pool, bio);
2037                         break;
2038                 }
2039
2040                 if (tc->origin_dev) {
2041                         inc_all_io_entry(tc->pool, bio);
2042                         remap_to_origin_and_issue(tc, bio);
2043                         break;
2044                 }
2045
2046                 zero_fill_bio(bio);
2047                 bio_endio(bio);
2048                 break;
2049
2050         default:
2051                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2052                             __func__, r);
2053                 if (cell)
2054                         cell_defer_no_holder(tc, cell);
2055                 bio_io_error(bio);
2056                 break;
2057         }
2058 }
2059
2060 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2061 {
2062         __process_bio_read_only(tc, bio, NULL);
2063 }
2064
2065 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2066 {
2067         __process_bio_read_only(tc, cell->holder, cell);
2068 }
2069
2070 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2071 {
2072         bio_endio(bio);
2073 }
2074
2075 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2076 {
2077         bio_io_error(bio);
2078 }
2079
2080 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2081 {
2082         cell_success(tc->pool, cell);
2083 }
2084
2085 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2086 {
2087         cell_error(tc->pool, cell);
2088 }
2089
2090 /*
2091  * FIXME: should we also commit due to size of transaction, measured in
2092  * metadata blocks?
2093  */
2094 static int need_commit_due_to_time(struct pool *pool)
2095 {
2096         return !time_in_range(jiffies, pool->last_commit_jiffies,
2097                               pool->last_commit_jiffies + COMMIT_PERIOD);
2098 }
2099
2100 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2101 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2102
2103 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2104 {
2105         struct rb_node **rbp, *parent;
2106         struct dm_thin_endio_hook *pbd;
2107         sector_t bi_sector = bio->bi_iter.bi_sector;
2108
2109         rbp = &tc->sort_bio_list.rb_node;
2110         parent = NULL;
2111         while (*rbp) {
2112                 parent = *rbp;
2113                 pbd = thin_pbd(parent);
2114
2115                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2116                         rbp = &(*rbp)->rb_left;
2117                 else
2118                         rbp = &(*rbp)->rb_right;
2119         }
2120
2121         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2122         rb_link_node(&pbd->rb_node, parent, rbp);
2123         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2124 }
2125
2126 static void __extract_sorted_bios(struct thin_c *tc)
2127 {
2128         struct rb_node *node;
2129         struct dm_thin_endio_hook *pbd;
2130         struct bio *bio;
2131
2132         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2133                 pbd = thin_pbd(node);
2134                 bio = thin_bio(pbd);
2135
2136                 bio_list_add(&tc->deferred_bio_list, bio);
2137                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2138         }
2139
2140         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2141 }
2142
2143 static void __sort_thin_deferred_bios(struct thin_c *tc)
2144 {
2145         struct bio *bio;
2146         struct bio_list bios;
2147
2148         bio_list_init(&bios);
2149         bio_list_merge(&bios, &tc->deferred_bio_list);
2150         bio_list_init(&tc->deferred_bio_list);
2151
2152         /* Sort deferred_bio_list using rb-tree */
2153         while ((bio = bio_list_pop(&bios)))
2154                 __thin_bio_rb_add(tc, bio);
2155
2156         /*
2157          * Transfer the sorted bios in sort_bio_list back to
2158          * deferred_bio_list to allow lockless submission of
2159          * all bios.
2160          */
2161         __extract_sorted_bios(tc);
2162 }
2163
2164 static void process_thin_deferred_bios(struct thin_c *tc)
2165 {
2166         struct pool *pool = tc->pool;
2167         struct bio *bio;
2168         struct bio_list bios;
2169         struct blk_plug plug;
2170         unsigned count = 0;
2171
2172         if (tc->requeue_mode) {
2173                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2174                                 BLK_STS_DM_REQUEUE);
2175                 return;
2176         }
2177
2178         bio_list_init(&bios);
2179
2180         spin_lock_irq(&tc->lock);
2181
2182         if (bio_list_empty(&tc->deferred_bio_list)) {
2183                 spin_unlock_irq(&tc->lock);
2184                 return;
2185         }
2186
2187         __sort_thin_deferred_bios(tc);
2188
2189         bio_list_merge(&bios, &tc->deferred_bio_list);
2190         bio_list_init(&tc->deferred_bio_list);
2191
2192         spin_unlock_irq(&tc->lock);
2193
2194         blk_start_plug(&plug);
2195         while ((bio = bio_list_pop(&bios))) {
2196                 /*
2197                  * If we've got no free new_mapping structs, and processing
2198                  * this bio might require one, we pause until there are some
2199                  * prepared mappings to process.
2200                  */
2201                 if (ensure_next_mapping(pool)) {
2202                         spin_lock_irq(&tc->lock);
2203                         bio_list_add(&tc->deferred_bio_list, bio);
2204                         bio_list_merge(&tc->deferred_bio_list, &bios);
2205                         spin_unlock_irq(&tc->lock);
2206                         break;
2207                 }
2208
2209                 if (bio_op(bio) == REQ_OP_DISCARD)
2210                         pool->process_discard(tc, bio);
2211                 else
2212                         pool->process_bio(tc, bio);
2213
2214                 if ((count++ & 127) == 0) {
2215                         throttle_work_update(&pool->throttle);
2216                         dm_pool_issue_prefetches(pool->pmd);
2217                 }
2218         }
2219         blk_finish_plug(&plug);
2220 }
2221
2222 static int cmp_cells(const void *lhs, const void *rhs)
2223 {
2224         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2225         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2226
2227         BUG_ON(!lhs_cell->holder);
2228         BUG_ON(!rhs_cell->holder);
2229
2230         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2231                 return -1;
2232
2233         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2234                 return 1;
2235
2236         return 0;
2237 }
2238
2239 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2240 {
2241         unsigned count = 0;
2242         struct dm_bio_prison_cell *cell, *tmp;
2243
2244         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2245                 if (count >= CELL_SORT_ARRAY_SIZE)
2246                         break;
2247
2248                 pool->cell_sort_array[count++] = cell;
2249                 list_del(&cell->user_list);
2250         }
2251
2252         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2253
2254         return count;
2255 }
2256
2257 static void process_thin_deferred_cells(struct thin_c *tc)
2258 {
2259         struct pool *pool = tc->pool;
2260         struct list_head cells;
2261         struct dm_bio_prison_cell *cell;
2262         unsigned i, j, count;
2263
2264         INIT_LIST_HEAD(&cells);
2265
2266         spin_lock_irq(&tc->lock);
2267         list_splice_init(&tc->deferred_cells, &cells);
2268         spin_unlock_irq(&tc->lock);
2269
2270         if (list_empty(&cells))
2271                 return;
2272
2273         do {
2274                 count = sort_cells(tc->pool, &cells);
2275
2276                 for (i = 0; i < count; i++) {
2277                         cell = pool->cell_sort_array[i];
2278                         BUG_ON(!cell->holder);
2279
2280                         /*
2281                          * If we've got no free new_mapping structs, and processing
2282                          * this bio might require one, we pause until there are some
2283                          * prepared mappings to process.
2284                          */
2285                         if (ensure_next_mapping(pool)) {
2286                                 for (j = i; j < count; j++)
2287                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2288
2289                                 spin_lock_irq(&tc->lock);
2290                                 list_splice(&cells, &tc->deferred_cells);
2291                                 spin_unlock_irq(&tc->lock);
2292                                 return;
2293                         }
2294
2295                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2296                                 pool->process_discard_cell(tc, cell);
2297                         else
2298                                 pool->process_cell(tc, cell);
2299                 }
2300         } while (!list_empty(&cells));
2301 }
2302
2303 static void thin_get(struct thin_c *tc);
2304 static void thin_put(struct thin_c *tc);
2305
2306 /*
2307  * We can't hold rcu_read_lock() around code that can block.  So we
2308  * find a thin with the rcu lock held; bump a refcount; then drop
2309  * the lock.
2310  */
2311 static struct thin_c *get_first_thin(struct pool *pool)
2312 {
2313         struct thin_c *tc = NULL;
2314
2315         rcu_read_lock();
2316         if (!list_empty(&pool->active_thins)) {
2317                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2318                 thin_get(tc);
2319         }
2320         rcu_read_unlock();
2321
2322         return tc;
2323 }
2324
2325 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2326 {
2327         struct thin_c *old_tc = tc;
2328
2329         rcu_read_lock();
2330         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2331                 thin_get(tc);
2332                 thin_put(old_tc);
2333                 rcu_read_unlock();
2334                 return tc;
2335         }
2336         thin_put(old_tc);
2337         rcu_read_unlock();
2338
2339         return NULL;
2340 }
2341
2342 static void process_deferred_bios(struct pool *pool)
2343 {
2344         struct bio *bio;
2345         struct bio_list bios, bio_completions;
2346         struct thin_c *tc;
2347
2348         tc = get_first_thin(pool);
2349         while (tc) {
2350                 process_thin_deferred_cells(tc);
2351                 process_thin_deferred_bios(tc);
2352                 tc = get_next_thin(pool, tc);
2353         }
2354
2355         /*
2356          * If there are any deferred flush bios, we must commit the metadata
2357          * before issuing them or signaling their completion.
2358          */
2359         bio_list_init(&bios);
2360         bio_list_init(&bio_completions);
2361
2362         spin_lock_irq(&pool->lock);
2363         bio_list_merge(&bios, &pool->deferred_flush_bios);
2364         bio_list_init(&pool->deferred_flush_bios);
2365
2366         bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2367         bio_list_init(&pool->deferred_flush_completions);
2368         spin_unlock_irq(&pool->lock);
2369
2370         if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2371             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2372                 return;
2373
2374         if (commit(pool)) {
2375                 bio_list_merge(&bios, &bio_completions);
2376
2377                 while ((bio = bio_list_pop(&bios)))
2378                         bio_io_error(bio);
2379                 return;
2380         }
2381         pool->last_commit_jiffies = jiffies;
2382
2383         while ((bio = bio_list_pop(&bio_completions)))
2384                 bio_endio(bio);
2385
2386         while ((bio = bio_list_pop(&bios)))
2387                 generic_make_request(bio);
2388 }
2389
2390 static void do_worker(struct work_struct *ws)
2391 {
2392         struct pool *pool = container_of(ws, struct pool, worker);
2393
2394         throttle_work_start(&pool->throttle);
2395         dm_pool_issue_prefetches(pool->pmd);
2396         throttle_work_update(&pool->throttle);
2397         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2398         throttle_work_update(&pool->throttle);
2399         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2400         throttle_work_update(&pool->throttle);
2401         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2402         throttle_work_update(&pool->throttle);
2403         process_deferred_bios(pool);
2404         throttle_work_complete(&pool->throttle);
2405 }
2406
2407 /*
2408  * We want to commit periodically so that not too much
2409  * unwritten data builds up.
2410  */
2411 static void do_waker(struct work_struct *ws)
2412 {
2413         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2414         wake_worker(pool);
2415         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2416 }
2417
2418 /*
2419  * We're holding onto IO to allow userland time to react.  After the
2420  * timeout either the pool will have been resized (and thus back in
2421  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2422  */
2423 static void do_no_space_timeout(struct work_struct *ws)
2424 {
2425         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2426                                          no_space_timeout);
2427
2428         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2429                 pool->pf.error_if_no_space = true;
2430                 notify_of_pool_mode_change(pool);
2431                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2432         }
2433 }
2434
2435 /*----------------------------------------------------------------*/
2436
2437 struct pool_work {
2438         struct work_struct worker;
2439         struct completion complete;
2440 };
2441
2442 static struct pool_work *to_pool_work(struct work_struct *ws)
2443 {
2444         return container_of(ws, struct pool_work, worker);
2445 }
2446
2447 static void pool_work_complete(struct pool_work *pw)
2448 {
2449         complete(&pw->complete);
2450 }
2451
2452 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2453                            void (*fn)(struct work_struct *))
2454 {
2455         INIT_WORK_ONSTACK(&pw->worker, fn);
2456         init_completion(&pw->complete);
2457         queue_work(pool->wq, &pw->worker);
2458         wait_for_completion(&pw->complete);
2459 }
2460
2461 /*----------------------------------------------------------------*/
2462
2463 struct noflush_work {
2464         struct pool_work pw;
2465         struct thin_c *tc;
2466 };
2467
2468 static struct noflush_work *to_noflush(struct work_struct *ws)
2469 {
2470         return container_of(to_pool_work(ws), struct noflush_work, pw);
2471 }
2472
2473 static void do_noflush_start(struct work_struct *ws)
2474 {
2475         struct noflush_work *w = to_noflush(ws);
2476         w->tc->requeue_mode = true;
2477         requeue_io(w->tc);
2478         pool_work_complete(&w->pw);
2479 }
2480
2481 static void do_noflush_stop(struct work_struct *ws)
2482 {
2483         struct noflush_work *w = to_noflush(ws);
2484         w->tc->requeue_mode = false;
2485         pool_work_complete(&w->pw);
2486 }
2487
2488 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2489 {
2490         struct noflush_work w;
2491
2492         w.tc = tc;
2493         pool_work_wait(&w.pw, tc->pool, fn);
2494 }
2495
2496 /*----------------------------------------------------------------*/
2497
2498 static bool passdown_enabled(struct pool_c *pt)
2499 {
2500         return pt->adjusted_pf.discard_passdown;
2501 }
2502
2503 static void set_discard_callbacks(struct pool *pool)
2504 {
2505         struct pool_c *pt = pool->ti->private;
2506
2507         if (passdown_enabled(pt)) {
2508                 pool->process_discard_cell = process_discard_cell_passdown;
2509                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2510                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2511         } else {
2512                 pool->process_discard_cell = process_discard_cell_no_passdown;
2513                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2514         }
2515 }
2516
2517 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2518 {
2519         struct pool_c *pt = pool->ti->private;
2520         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2521         enum pool_mode old_mode = get_pool_mode(pool);
2522         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2523
2524         /*
2525          * Never allow the pool to transition to PM_WRITE mode if user
2526          * intervention is required to verify metadata and data consistency.
2527          */
2528         if (new_mode == PM_WRITE && needs_check) {
2529                 DMERR("%s: unable to switch pool to write mode until repaired.",
2530                       dm_device_name(pool->pool_md));
2531                 if (old_mode != new_mode)
2532                         new_mode = old_mode;
2533                 else
2534                         new_mode = PM_READ_ONLY;
2535         }
2536         /*
2537          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2538          * not going to recover without a thin_repair.  So we never let the
2539          * pool move out of the old mode.
2540          */
2541         if (old_mode == PM_FAIL)
2542                 new_mode = old_mode;
2543
2544         switch (new_mode) {
2545         case PM_FAIL:
2546                 dm_pool_metadata_read_only(pool->pmd);
2547                 pool->process_bio = process_bio_fail;
2548                 pool->process_discard = process_bio_fail;
2549                 pool->process_cell = process_cell_fail;
2550                 pool->process_discard_cell = process_cell_fail;
2551                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2552                 pool->process_prepared_discard = process_prepared_discard_fail;
2553
2554                 error_retry_list(pool);
2555                 break;
2556
2557         case PM_OUT_OF_METADATA_SPACE:
2558         case PM_READ_ONLY:
2559                 dm_pool_metadata_read_only(pool->pmd);
2560                 pool->process_bio = process_bio_read_only;
2561                 pool->process_discard = process_bio_success;
2562                 pool->process_cell = process_cell_read_only;
2563                 pool->process_discard_cell = process_cell_success;
2564                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2565                 pool->process_prepared_discard = process_prepared_discard_success;
2566
2567                 error_retry_list(pool);
2568                 break;
2569
2570         case PM_OUT_OF_DATA_SPACE:
2571                 /*
2572                  * Ideally we'd never hit this state; the low water mark
2573                  * would trigger userland to extend the pool before we
2574                  * completely run out of data space.  However, many small
2575                  * IOs to unprovisioned space can consume data space at an
2576                  * alarming rate.  Adjust your low water mark if you're
2577                  * frequently seeing this mode.
2578                  */
2579                 pool->out_of_data_space = true;
2580                 pool->process_bio = process_bio_read_only;
2581                 pool->process_discard = process_discard_bio;
2582                 pool->process_cell = process_cell_read_only;
2583                 pool->process_prepared_mapping = process_prepared_mapping;
2584                 set_discard_callbacks(pool);
2585
2586                 if (!pool->pf.error_if_no_space && no_space_timeout)
2587                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2588                 break;
2589
2590         case PM_WRITE:
2591                 if (old_mode == PM_OUT_OF_DATA_SPACE)
2592                         cancel_delayed_work_sync(&pool->no_space_timeout);
2593                 pool->out_of_data_space = false;
2594                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2595                 dm_pool_metadata_read_write(pool->pmd);
2596                 pool->process_bio = process_bio;
2597                 pool->process_discard = process_discard_bio;
2598                 pool->process_cell = process_cell;
2599                 pool->process_prepared_mapping = process_prepared_mapping;
2600                 set_discard_callbacks(pool);
2601                 break;
2602         }
2603
2604         pool->pf.mode = new_mode;
2605         /*
2606          * The pool mode may have changed, sync it so bind_control_target()
2607          * doesn't cause an unexpected mode transition on resume.
2608          */
2609         pt->adjusted_pf.mode = new_mode;
2610
2611         if (old_mode != new_mode)
2612                 notify_of_pool_mode_change(pool);
2613 }
2614
2615 static void abort_transaction(struct pool *pool)
2616 {
2617         const char *dev_name = dm_device_name(pool->pool_md);
2618
2619         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2620         if (dm_pool_abort_metadata(pool->pmd)) {
2621                 DMERR("%s: failed to abort metadata transaction", dev_name);
2622                 set_pool_mode(pool, PM_FAIL);
2623         }
2624
2625         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2626                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2627                 set_pool_mode(pool, PM_FAIL);
2628         }
2629 }
2630
2631 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2632 {
2633         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2634                     dm_device_name(pool->pool_md), op, r);
2635
2636         abort_transaction(pool);
2637         set_pool_mode(pool, PM_READ_ONLY);
2638 }
2639
2640 /*----------------------------------------------------------------*/
2641
2642 /*
2643  * Mapping functions.
2644  */
2645
2646 /*
2647  * Called only while mapping a thin bio to hand it over to the workqueue.
2648  */
2649 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2650 {
2651         struct pool *pool = tc->pool;
2652
2653         spin_lock_irq(&tc->lock);
2654         bio_list_add(&tc->deferred_bio_list, bio);
2655         spin_unlock_irq(&tc->lock);
2656
2657         wake_worker(pool);
2658 }
2659
2660 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2661 {
2662         struct pool *pool = tc->pool;
2663
2664         throttle_lock(&pool->throttle);
2665         thin_defer_bio(tc, bio);
2666         throttle_unlock(&pool->throttle);
2667 }
2668
2669 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2670 {
2671         struct pool *pool = tc->pool;
2672
2673         throttle_lock(&pool->throttle);
2674         spin_lock_irq(&tc->lock);
2675         list_add_tail(&cell->user_list, &tc->deferred_cells);
2676         spin_unlock_irq(&tc->lock);
2677         throttle_unlock(&pool->throttle);
2678
2679         wake_worker(pool);
2680 }
2681
2682 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2683 {
2684         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2685
2686         h->tc = tc;
2687         h->shared_read_entry = NULL;
2688         h->all_io_entry = NULL;
2689         h->overwrite_mapping = NULL;
2690         h->cell = NULL;
2691 }
2692
2693 /*
2694  * Non-blocking function called from the thin target's map function.
2695  */
2696 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2697 {
2698         int r;
2699         struct thin_c *tc = ti->private;
2700         dm_block_t block = get_bio_block(tc, bio);
2701         struct dm_thin_device *td = tc->td;
2702         struct dm_thin_lookup_result result;
2703         struct dm_bio_prison_cell *virt_cell, *data_cell;
2704         struct dm_cell_key key;
2705
2706         thin_hook_bio(tc, bio);
2707
2708         if (tc->requeue_mode) {
2709                 bio->bi_status = BLK_STS_DM_REQUEUE;
2710                 bio_endio(bio);
2711                 return DM_MAPIO_SUBMITTED;
2712         }
2713
2714         if (get_pool_mode(tc->pool) == PM_FAIL) {
2715                 bio_io_error(bio);
2716                 return DM_MAPIO_SUBMITTED;
2717         }
2718
2719         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2720                 thin_defer_bio_with_throttle(tc, bio);
2721                 return DM_MAPIO_SUBMITTED;
2722         }
2723
2724         /*
2725          * We must hold the virtual cell before doing the lookup, otherwise
2726          * there's a race with discard.
2727          */
2728         build_virtual_key(tc->td, block, &key);
2729         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2730                 return DM_MAPIO_SUBMITTED;
2731
2732         r = dm_thin_find_block(td, block, 0, &result);
2733
2734         /*
2735          * Note that we defer readahead too.
2736          */
2737         switch (r) {
2738         case 0:
2739                 if (unlikely(result.shared)) {
2740                         /*
2741                          * We have a race condition here between the
2742                          * result.shared value returned by the lookup and
2743                          * snapshot creation, which may cause new
2744                          * sharing.
2745                          *
2746                          * To avoid this always quiesce the origin before
2747                          * taking the snap.  You want to do this anyway to
2748                          * ensure a consistent application view
2749                          * (i.e. lockfs).
2750                          *
2751                          * More distant ancestors are irrelevant. The
2752                          * shared flag will be set in their case.
2753                          */
2754                         thin_defer_cell(tc, virt_cell);
2755                         return DM_MAPIO_SUBMITTED;
2756                 }
2757
2758                 build_data_key(tc->td, result.block, &key);
2759                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2760                         cell_defer_no_holder(tc, virt_cell);
2761                         return DM_MAPIO_SUBMITTED;
2762                 }
2763
2764                 inc_all_io_entry(tc->pool, bio);
2765                 cell_defer_no_holder(tc, data_cell);
2766                 cell_defer_no_holder(tc, virt_cell);
2767
2768                 remap(tc, bio, result.block);
2769                 return DM_MAPIO_REMAPPED;
2770
2771         case -ENODATA:
2772         case -EWOULDBLOCK:
2773                 thin_defer_cell(tc, virt_cell);
2774                 return DM_MAPIO_SUBMITTED;
2775
2776         default:
2777                 /*
2778                  * Must always call bio_io_error on failure.
2779                  * dm_thin_find_block can fail with -EINVAL if the
2780                  * pool is switched to fail-io mode.
2781                  */
2782                 bio_io_error(bio);
2783                 cell_defer_no_holder(tc, virt_cell);
2784                 return DM_MAPIO_SUBMITTED;
2785         }
2786 }
2787
2788 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2789 {
2790         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2791         struct request_queue *q;
2792
2793         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2794                 return 1;
2795
2796         q = bdev_get_queue(pt->data_dev->bdev);
2797         return bdi_congested(q->backing_dev_info, bdi_bits);
2798 }
2799
2800 static void requeue_bios(struct pool *pool)
2801 {
2802         struct thin_c *tc;
2803
2804         rcu_read_lock();
2805         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2806                 spin_lock_irq(&tc->lock);
2807                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2808                 bio_list_init(&tc->retry_on_resume_list);
2809                 spin_unlock_irq(&tc->lock);
2810         }
2811         rcu_read_unlock();
2812 }
2813
2814 /*----------------------------------------------------------------
2815  * Binding of control targets to a pool object
2816  *--------------------------------------------------------------*/
2817 static bool data_dev_supports_discard(struct pool_c *pt)
2818 {
2819         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2820
2821         return q && blk_queue_discard(q);
2822 }
2823
2824 static bool is_factor(sector_t block_size, uint32_t n)
2825 {
2826         return !sector_div(block_size, n);
2827 }
2828
2829 /*
2830  * If discard_passdown was enabled verify that the data device
2831  * supports discards.  Disable discard_passdown if not.
2832  */
2833 static void disable_passdown_if_not_supported(struct pool_c *pt)
2834 {
2835         struct pool *pool = pt->pool;
2836         struct block_device *data_bdev = pt->data_dev->bdev;
2837         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2838         const char *reason = NULL;
2839         char buf[BDEVNAME_SIZE];
2840
2841         if (!pt->adjusted_pf.discard_passdown)
2842                 return;
2843
2844         if (!data_dev_supports_discard(pt))
2845                 reason = "discard unsupported";
2846
2847         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2848                 reason = "max discard sectors smaller than a block";
2849
2850         if (reason) {
2851                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2852                 pt->adjusted_pf.discard_passdown = false;
2853         }
2854 }
2855
2856 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2857 {
2858         struct pool_c *pt = ti->private;
2859
2860         /*
2861          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2862          */
2863         enum pool_mode old_mode = get_pool_mode(pool);
2864         enum pool_mode new_mode = pt->adjusted_pf.mode;
2865
2866         /*
2867          * Don't change the pool's mode until set_pool_mode() below.
2868          * Otherwise the pool's process_* function pointers may
2869          * not match the desired pool mode.
2870          */
2871         pt->adjusted_pf.mode = old_mode;
2872
2873         pool->ti = ti;
2874         pool->pf = pt->adjusted_pf;
2875         pool->low_water_blocks = pt->low_water_blocks;
2876
2877         set_pool_mode(pool, new_mode);
2878
2879         return 0;
2880 }
2881
2882 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2883 {
2884         if (pool->ti == ti)
2885                 pool->ti = NULL;
2886 }
2887
2888 /*----------------------------------------------------------------
2889  * Pool creation
2890  *--------------------------------------------------------------*/
2891 /* Initialize pool features. */
2892 static void pool_features_init(struct pool_features *pf)
2893 {
2894         pf->mode = PM_WRITE;
2895         pf->zero_new_blocks = true;
2896         pf->discard_enabled = true;
2897         pf->discard_passdown = true;
2898         pf->error_if_no_space = false;
2899 }
2900
2901 static void __pool_destroy(struct pool *pool)
2902 {
2903         __pool_table_remove(pool);
2904
2905         vfree(pool->cell_sort_array);
2906         if (dm_pool_metadata_close(pool->pmd) < 0)
2907                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2908
2909         dm_bio_prison_destroy(pool->prison);
2910         dm_kcopyd_client_destroy(pool->copier);
2911
2912         if (pool->wq)
2913                 destroy_workqueue(pool->wq);
2914
2915         if (pool->next_mapping)
2916                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2917         mempool_exit(&pool->mapping_pool);
2918         dm_deferred_set_destroy(pool->shared_read_ds);
2919         dm_deferred_set_destroy(pool->all_io_ds);
2920         kfree(pool);
2921 }
2922
2923 static struct kmem_cache *_new_mapping_cache;
2924
2925 static struct pool *pool_create(struct mapped_device *pool_md,
2926                                 struct block_device *metadata_dev,
2927                                 unsigned long block_size,
2928                                 int read_only, char **error)
2929 {
2930         int r;
2931         void *err_p;
2932         struct pool *pool;
2933         struct dm_pool_metadata *pmd;
2934         bool format_device = read_only ? false : true;
2935
2936         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2937         if (IS_ERR(pmd)) {
2938                 *error = "Error creating metadata object";
2939                 return (struct pool *)pmd;
2940         }
2941
2942         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2943         if (!pool) {
2944                 *error = "Error allocating memory for pool";
2945                 err_p = ERR_PTR(-ENOMEM);
2946                 goto bad_pool;
2947         }
2948
2949         pool->pmd = pmd;
2950         pool->sectors_per_block = block_size;
2951         if (block_size & (block_size - 1))
2952                 pool->sectors_per_block_shift = -1;
2953         else
2954                 pool->sectors_per_block_shift = __ffs(block_size);
2955         pool->low_water_blocks = 0;
2956         pool_features_init(&pool->pf);
2957         pool->prison = dm_bio_prison_create();
2958         if (!pool->prison) {
2959                 *error = "Error creating pool's bio prison";
2960                 err_p = ERR_PTR(-ENOMEM);
2961                 goto bad_prison;
2962         }
2963
2964         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2965         if (IS_ERR(pool->copier)) {
2966                 r = PTR_ERR(pool->copier);
2967                 *error = "Error creating pool's kcopyd client";
2968                 err_p = ERR_PTR(r);
2969                 goto bad_kcopyd_client;
2970         }
2971
2972         /*
2973          * Create singlethreaded workqueue that will service all devices
2974          * that use this metadata.
2975          */
2976         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2977         if (!pool->wq) {
2978                 *error = "Error creating pool's workqueue";
2979                 err_p = ERR_PTR(-ENOMEM);
2980                 goto bad_wq;
2981         }
2982
2983         throttle_init(&pool->throttle);
2984         INIT_WORK(&pool->worker, do_worker);
2985         INIT_DELAYED_WORK(&pool->waker, do_waker);
2986         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2987         spin_lock_init(&pool->lock);
2988         bio_list_init(&pool->deferred_flush_bios);
2989         bio_list_init(&pool->deferred_flush_completions);
2990         INIT_LIST_HEAD(&pool->prepared_mappings);
2991         INIT_LIST_HEAD(&pool->prepared_discards);
2992         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2993         INIT_LIST_HEAD(&pool->active_thins);
2994         pool->low_water_triggered = false;
2995         pool->suspended = true;
2996         pool->out_of_data_space = false;
2997
2998         pool->shared_read_ds = dm_deferred_set_create();
2999         if (!pool->shared_read_ds) {
3000                 *error = "Error creating pool's shared read deferred set";
3001                 err_p = ERR_PTR(-ENOMEM);
3002                 goto bad_shared_read_ds;
3003         }
3004
3005         pool->all_io_ds = dm_deferred_set_create();
3006         if (!pool->all_io_ds) {
3007                 *error = "Error creating pool's all io deferred set";
3008                 err_p = ERR_PTR(-ENOMEM);
3009                 goto bad_all_io_ds;
3010         }
3011
3012         pool->next_mapping = NULL;
3013         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3014                                    _new_mapping_cache);
3015         if (r) {
3016                 *error = "Error creating pool's mapping mempool";
3017                 err_p = ERR_PTR(r);
3018                 goto bad_mapping_pool;
3019         }
3020
3021         pool->cell_sort_array =
3022                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3023                                    sizeof(*pool->cell_sort_array)));
3024         if (!pool->cell_sort_array) {
3025                 *error = "Error allocating cell sort array";
3026                 err_p = ERR_PTR(-ENOMEM);
3027                 goto bad_sort_array;
3028         }
3029
3030         pool->ref_count = 1;
3031         pool->last_commit_jiffies = jiffies;
3032         pool->pool_md = pool_md;
3033         pool->md_dev = metadata_dev;
3034         __pool_table_insert(pool);
3035
3036         return pool;
3037
3038 bad_sort_array:
3039         mempool_exit(&pool->mapping_pool);
3040 bad_mapping_pool:
3041         dm_deferred_set_destroy(pool->all_io_ds);
3042 bad_all_io_ds:
3043         dm_deferred_set_destroy(pool->shared_read_ds);
3044 bad_shared_read_ds:
3045         destroy_workqueue(pool->wq);
3046 bad_wq:
3047         dm_kcopyd_client_destroy(pool->copier);
3048 bad_kcopyd_client:
3049         dm_bio_prison_destroy(pool->prison);
3050 bad_prison:
3051         kfree(pool);
3052 bad_pool:
3053         if (dm_pool_metadata_close(pmd))
3054                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3055
3056         return err_p;
3057 }
3058
3059 static void __pool_inc(struct pool *pool)
3060 {
3061         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3062         pool->ref_count++;
3063 }
3064
3065 static void __pool_dec(struct pool *pool)
3066 {
3067         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3068         BUG_ON(!pool->ref_count);
3069         if (!--pool->ref_count)
3070                 __pool_destroy(pool);
3071 }
3072
3073 static struct pool *__pool_find(struct mapped_device *pool_md,
3074                                 struct block_device *metadata_dev,
3075                                 unsigned long block_size, int read_only,
3076                                 char **error, int *created)
3077 {
3078         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3079
3080         if (pool) {
3081                 if (pool->pool_md != pool_md) {
3082                         *error = "metadata device already in use by a pool";
3083                         return ERR_PTR(-EBUSY);
3084                 }
3085                 __pool_inc(pool);
3086
3087         } else {
3088                 pool = __pool_table_lookup(pool_md);
3089                 if (pool) {
3090                         if (pool->md_dev != metadata_dev) {
3091                                 *error = "different pool cannot replace a pool";
3092                                 return ERR_PTR(-EINVAL);
3093                         }
3094                         __pool_inc(pool);
3095
3096                 } else {
3097                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3098                         *created = 1;
3099                 }
3100         }
3101
3102         return pool;
3103 }
3104
3105 /*----------------------------------------------------------------
3106  * Pool target methods
3107  *--------------------------------------------------------------*/
3108 static void pool_dtr(struct dm_target *ti)
3109 {
3110         struct pool_c *pt = ti->private;
3111
3112         mutex_lock(&dm_thin_pool_table.mutex);
3113
3114         unbind_control_target(pt->pool, ti);
3115         __pool_dec(pt->pool);
3116         dm_put_device(ti, pt->metadata_dev);
3117         dm_put_device(ti, pt->data_dev);
3118         kfree(pt);
3119
3120         mutex_unlock(&dm_thin_pool_table.mutex);
3121 }
3122
3123 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3124                                struct dm_target *ti)
3125 {
3126         int r;
3127         unsigned argc;
3128         const char *arg_name;
3129
3130         static const struct dm_arg _args[] = {
3131                 {0, 4, "Invalid number of pool feature arguments"},
3132         };
3133
3134         /*
3135          * No feature arguments supplied.
3136          */
3137         if (!as->argc)
3138                 return 0;
3139
3140         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3141         if (r)
3142                 return -EINVAL;
3143
3144         while (argc && !r) {
3145                 arg_name = dm_shift_arg(as);
3146                 argc--;
3147
3148                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3149                         pf->zero_new_blocks = false;
3150
3151                 else if (!strcasecmp(arg_name, "ignore_discard"))
3152                         pf->discard_enabled = false;
3153
3154                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3155                         pf->discard_passdown = false;
3156
3157                 else if (!strcasecmp(arg_name, "read_only"))
3158                         pf->mode = PM_READ_ONLY;
3159
3160                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3161                         pf->error_if_no_space = true;
3162
3163                 else {
3164                         ti->error = "Unrecognised pool feature requested";
3165                         r = -EINVAL;
3166                         break;
3167                 }
3168         }
3169
3170         return r;
3171 }
3172
3173 static void metadata_low_callback(void *context)
3174 {
3175         struct pool *pool = context;
3176
3177         DMWARN("%s: reached low water mark for metadata device: sending event.",
3178                dm_device_name(pool->pool_md));
3179
3180         dm_table_event(pool->ti->table);
3181 }
3182
3183 static sector_t get_dev_size(struct block_device *bdev)
3184 {
3185         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3186 }
3187
3188 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3189 {
3190         sector_t metadata_dev_size = get_dev_size(bdev);
3191         char buffer[BDEVNAME_SIZE];
3192
3193         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3194                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3195                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3196 }
3197
3198 static sector_t get_metadata_dev_size(struct block_device *bdev)
3199 {
3200         sector_t metadata_dev_size = get_dev_size(bdev);
3201
3202         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3203                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3204
3205         return metadata_dev_size;
3206 }
3207
3208 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3209 {
3210         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3211
3212         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3213
3214         return metadata_dev_size;
3215 }
3216
3217 /*
3218  * When a metadata threshold is crossed a dm event is triggered, and
3219  * userland should respond by growing the metadata device.  We could let
3220  * userland set the threshold, like we do with the data threshold, but I'm
3221  * not sure they know enough to do this well.
3222  */
3223 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3224 {
3225         /*
3226          * 4M is ample for all ops with the possible exception of thin
3227          * device deletion which is harmless if it fails (just retry the
3228          * delete after you've grown the device).
3229          */
3230         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3231         return min((dm_block_t)1024ULL /* 4M */, quarter);
3232 }
3233
3234 /*
3235  * thin-pool <metadata dev> <data dev>
3236  *           <data block size (sectors)>
3237  *           <low water mark (blocks)>
3238  *           [<#feature args> [<arg>]*]
3239  *
3240  * Optional feature arguments are:
3241  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3242  *           ignore_discard: disable discard
3243  *           no_discard_passdown: don't pass discards down to the data device
3244  *           read_only: Don't allow any changes to be made to the pool metadata.
3245  *           error_if_no_space: error IOs, instead of queueing, if no space.
3246  */
3247 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3248 {
3249         int r, pool_created = 0;
3250         struct pool_c *pt;
3251         struct pool *pool;
3252         struct pool_features pf;
3253         struct dm_arg_set as;
3254         struct dm_dev *data_dev;
3255         unsigned long block_size;
3256         dm_block_t low_water_blocks;
3257         struct dm_dev *metadata_dev;
3258         fmode_t metadata_mode;
3259
3260         /*
3261          * FIXME Remove validation from scope of lock.
3262          */
3263         mutex_lock(&dm_thin_pool_table.mutex);
3264
3265         if (argc < 4) {
3266                 ti->error = "Invalid argument count";
3267                 r = -EINVAL;
3268                 goto out_unlock;
3269         }
3270
3271         as.argc = argc;
3272         as.argv = argv;
3273
3274         /* make sure metadata and data are different devices */
3275         if (!strcmp(argv[0], argv[1])) {
3276                 ti->error = "Error setting metadata or data device";
3277                 r = -EINVAL;
3278                 goto out_unlock;
3279         }
3280
3281         /*
3282          * Set default pool features.
3283          */
3284         pool_features_init(&pf);
3285
3286         dm_consume_args(&as, 4);
3287         r = parse_pool_features(&as, &pf, ti);
3288         if (r)
3289                 goto out_unlock;
3290
3291         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3292         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3293         if (r) {
3294                 ti->error = "Error opening metadata block device";
3295                 goto out_unlock;
3296         }
3297         warn_if_metadata_device_too_big(metadata_dev->bdev);
3298
3299         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3300         if (r) {
3301                 ti->error = "Error getting data device";
3302                 goto out_metadata;
3303         }
3304
3305         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3306             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3307             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3308             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3309                 ti->error = "Invalid block size";
3310                 r = -EINVAL;
3311                 goto out;
3312         }
3313
3314         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3315                 ti->error = "Invalid low water mark";
3316                 r = -EINVAL;
3317                 goto out;
3318         }
3319
3320         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3321         if (!pt) {
3322                 r = -ENOMEM;
3323                 goto out;
3324         }
3325
3326         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3327                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3328         if (IS_ERR(pool)) {
3329                 r = PTR_ERR(pool);
3330                 goto out_free_pt;
3331         }
3332
3333         /*
3334          * 'pool_created' reflects whether this is the first table load.
3335          * Top level discard support is not allowed to be changed after
3336          * initial load.  This would require a pool reload to trigger thin
3337          * device changes.
3338          */
3339         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3340                 ti->error = "Discard support cannot be disabled once enabled";
3341                 r = -EINVAL;
3342                 goto out_flags_changed;
3343         }
3344
3345         pt->pool = pool;
3346         pt->ti = ti;
3347         pt->metadata_dev = metadata_dev;
3348         pt->data_dev = data_dev;
3349         pt->low_water_blocks = low_water_blocks;
3350         pt->adjusted_pf = pt->requested_pf = pf;
3351         ti->num_flush_bios = 1;
3352
3353         /*
3354          * Only need to enable discards if the pool should pass
3355          * them down to the data device.  The thin device's discard
3356          * processing will cause mappings to be removed from the btree.
3357          */
3358         if (pf.discard_enabled && pf.discard_passdown) {
3359                 ti->num_discard_bios = 1;
3360
3361                 /*
3362                  * Setting 'discards_supported' circumvents the normal
3363                  * stacking of discard limits (this keeps the pool and
3364                  * thin devices' discard limits consistent).
3365                  */
3366                 ti->discards_supported = true;
3367         }
3368         ti->private = pt;
3369
3370         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3371                                                 calc_metadata_threshold(pt),
3372                                                 metadata_low_callback,
3373                                                 pool);
3374         if (r)
3375                 goto out_flags_changed;
3376
3377         pt->callbacks.congested_fn = pool_is_congested;
3378         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3379
3380         mutex_unlock(&dm_thin_pool_table.mutex);
3381
3382         return 0;
3383
3384 out_flags_changed:
3385         __pool_dec(pool);
3386 out_free_pt:
3387         kfree(pt);
3388 out:
3389         dm_put_device(ti, data_dev);
3390 out_metadata:
3391         dm_put_device(ti, metadata_dev);
3392 out_unlock:
3393         mutex_unlock(&dm_thin_pool_table.mutex);
3394
3395         return r;
3396 }
3397
3398 static int pool_map(struct dm_target *ti, struct bio *bio)
3399 {
3400         int r;
3401         struct pool_c *pt = ti->private;
3402         struct pool *pool = pt->pool;
3403
3404         /*
3405          * As this is a singleton target, ti->begin is always zero.
3406          */
3407         spin_lock_irq(&pool->lock);
3408         bio_set_dev(bio, pt->data_dev->bdev);
3409         r = DM_MAPIO_REMAPPED;
3410         spin_unlock_irq(&pool->lock);
3411
3412         return r;
3413 }
3414
3415 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3416 {
3417         int r;
3418         struct pool_c *pt = ti->private;
3419         struct pool *pool = pt->pool;
3420         sector_t data_size = ti->len;
3421         dm_block_t sb_data_size;
3422
3423         *need_commit = false;
3424
3425         (void) sector_div(data_size, pool->sectors_per_block);
3426
3427         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3428         if (r) {
3429                 DMERR("%s: failed to retrieve data device size",
3430                       dm_device_name(pool->pool_md));
3431                 return r;
3432         }
3433
3434         if (data_size < sb_data_size) {
3435                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3436                       dm_device_name(pool->pool_md),
3437                       (unsigned long long)data_size, sb_data_size);
3438                 return -EINVAL;
3439
3440         } else if (data_size > sb_data_size) {
3441                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3442                         DMERR("%s: unable to grow the data device until repaired.",
3443                               dm_device_name(pool->pool_md));
3444                         return 0;
3445                 }
3446
3447                 if (sb_data_size)
3448                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3449                                dm_device_name(pool->pool_md),
3450                                sb_data_size, (unsigned long long)data_size);
3451                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3452                 if (r) {
3453                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3454                         return r;
3455                 }
3456
3457                 *need_commit = true;
3458         }
3459
3460         return 0;
3461 }
3462
3463 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3464 {
3465         int r;
3466         struct pool_c *pt = ti->private;
3467         struct pool *pool = pt->pool;
3468         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3469
3470         *need_commit = false;
3471
3472         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3473
3474         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3475         if (r) {
3476                 DMERR("%s: failed to retrieve metadata device size",
3477                       dm_device_name(pool->pool_md));
3478                 return r;
3479         }
3480
3481         if (metadata_dev_size < sb_metadata_dev_size) {
3482                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3483                       dm_device_name(pool->pool_md),
3484                       metadata_dev_size, sb_metadata_dev_size);
3485                 return -EINVAL;
3486
3487         } else if (metadata_dev_size > sb_metadata_dev_size) {
3488                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3489                         DMERR("%s: unable to grow the metadata device until repaired.",
3490                               dm_device_name(pool->pool_md));
3491                         return 0;
3492                 }
3493
3494                 warn_if_metadata_device_too_big(pool->md_dev);
3495                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3496                        dm_device_name(pool->pool_md),
3497                        sb_metadata_dev_size, metadata_dev_size);
3498
3499                 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3500                         set_pool_mode(pool, PM_WRITE);
3501
3502                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3503                 if (r) {
3504                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3505                         return r;
3506                 }
3507
3508                 *need_commit = true;
3509         }
3510
3511         return 0;
3512 }
3513
3514 /*
3515  * Retrieves the number of blocks of the data device from
3516  * the superblock and compares it to the actual device size,
3517  * thus resizing the data device in case it has grown.
3518  *
3519  * This both copes with opening preallocated data devices in the ctr
3520  * being followed by a resume
3521  * -and-
3522  * calling the resume method individually after userspace has
3523  * grown the data device in reaction to a table event.
3524  */
3525 static int pool_preresume(struct dm_target *ti)
3526 {
3527         int r;
3528         bool need_commit1, need_commit2;
3529         struct pool_c *pt = ti->private;
3530         struct pool *pool = pt->pool;
3531
3532         /*
3533          * Take control of the pool object.
3534          */
3535         r = bind_control_target(pool, ti);
3536         if (r)
3537                 return r;
3538
3539         r = maybe_resize_data_dev(ti, &need_commit1);
3540         if (r)
3541                 return r;
3542
3543         r = maybe_resize_metadata_dev(ti, &need_commit2);
3544         if (r)
3545                 return r;
3546
3547         if (need_commit1 || need_commit2)
3548                 (void) commit(pool);
3549
3550         return 0;
3551 }
3552
3553 static void pool_suspend_active_thins(struct pool *pool)
3554 {
3555         struct thin_c *tc;
3556
3557         /* Suspend all active thin devices */
3558         tc = get_first_thin(pool);
3559         while (tc) {
3560                 dm_internal_suspend_noflush(tc->thin_md);
3561                 tc = get_next_thin(pool, tc);
3562         }
3563 }
3564
3565 static void pool_resume_active_thins(struct pool *pool)
3566 {
3567         struct thin_c *tc;
3568
3569         /* Resume all active thin devices */
3570         tc = get_first_thin(pool);
3571         while (tc) {
3572                 dm_internal_resume(tc->thin_md);
3573                 tc = get_next_thin(pool, tc);
3574         }
3575 }
3576
3577 static void pool_resume(struct dm_target *ti)
3578 {
3579         struct pool_c *pt = ti->private;
3580         struct pool *pool = pt->pool;
3581
3582         /*
3583          * Must requeue active_thins' bios and then resume
3584          * active_thins _before_ clearing 'suspend' flag.
3585          */
3586         requeue_bios(pool);
3587         pool_resume_active_thins(pool);
3588
3589         spin_lock_irq(&pool->lock);
3590         pool->low_water_triggered = false;
3591         pool->suspended = false;
3592         spin_unlock_irq(&pool->lock);
3593
3594         do_waker(&pool->waker.work);
3595 }
3596
3597 static void pool_presuspend(struct dm_target *ti)
3598 {
3599         struct pool_c *pt = ti->private;
3600         struct pool *pool = pt->pool;
3601
3602         spin_lock_irq(&pool->lock);
3603         pool->suspended = true;
3604         spin_unlock_irq(&pool->lock);
3605
3606         pool_suspend_active_thins(pool);
3607 }
3608
3609 static void pool_presuspend_undo(struct dm_target *ti)
3610 {
3611         struct pool_c *pt = ti->private;
3612         struct pool *pool = pt->pool;
3613
3614         pool_resume_active_thins(pool);
3615
3616         spin_lock_irq(&pool->lock);
3617         pool->suspended = false;
3618         spin_unlock_irq(&pool->lock);
3619 }
3620
3621 static void pool_postsuspend(struct dm_target *ti)
3622 {
3623         struct pool_c *pt = ti->private;
3624         struct pool *pool = pt->pool;
3625
3626         cancel_delayed_work_sync(&pool->waker);
3627         cancel_delayed_work_sync(&pool->no_space_timeout);
3628         flush_workqueue(pool->wq);
3629         (void) commit(pool);
3630 }
3631
3632 static int check_arg_count(unsigned argc, unsigned args_required)
3633 {
3634         if (argc != args_required) {
3635                 DMWARN("Message received with %u arguments instead of %u.",
3636                        argc, args_required);
3637                 return -EINVAL;
3638         }
3639
3640         return 0;
3641 }
3642
3643 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3644 {
3645         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3646             *dev_id <= MAX_DEV_ID)
3647                 return 0;
3648
3649         if (warning)
3650                 DMWARN("Message received with invalid device id: %s", arg);
3651
3652         return -EINVAL;
3653 }
3654
3655 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3656 {
3657         dm_thin_id dev_id;
3658         int r;
3659
3660         r = check_arg_count(argc, 2);
3661         if (r)
3662                 return r;
3663
3664         r = read_dev_id(argv[1], &dev_id, 1);
3665         if (r)
3666                 return r;
3667
3668         r = dm_pool_create_thin(pool->pmd, dev_id);
3669         if (r) {
3670                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3671                        argv[1]);
3672                 return r;
3673         }
3674
3675         return 0;
3676 }
3677
3678 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3679 {
3680         dm_thin_id dev_id;
3681         dm_thin_id origin_dev_id;
3682         int r;
3683
3684         r = check_arg_count(argc, 3);
3685         if (r)
3686                 return r;
3687
3688         r = read_dev_id(argv[1], &dev_id, 1);
3689         if (r)
3690                 return r;
3691
3692         r = read_dev_id(argv[2], &origin_dev_id, 1);
3693         if (r)
3694                 return r;
3695
3696         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3697         if (r) {
3698                 DMWARN("Creation of new snapshot %s of device %s failed.",
3699                        argv[1], argv[2]);
3700                 return r;
3701         }
3702
3703         return 0;
3704 }
3705
3706 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3707 {
3708         dm_thin_id dev_id;
3709         int r;
3710
3711         r = check_arg_count(argc, 2);
3712         if (r)
3713                 return r;
3714
3715         r = read_dev_id(argv[1], &dev_id, 1);
3716         if (r)
3717                 return r;
3718
3719         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3720         if (r)
3721                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3722
3723         return r;
3724 }
3725
3726 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3727 {
3728         dm_thin_id old_id, new_id;
3729         int r;
3730
3731         r = check_arg_count(argc, 3);
3732         if (r)
3733                 return r;
3734
3735         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3736                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3737                 return -EINVAL;
3738         }
3739
3740         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3741                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3742                 return -EINVAL;
3743         }
3744
3745         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3746         if (r) {
3747                 DMWARN("Failed to change transaction id from %s to %s.",
3748                        argv[1], argv[2]);
3749                 return r;
3750         }
3751
3752         return 0;
3753 }
3754
3755 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3756 {
3757         int r;
3758
3759         r = check_arg_count(argc, 1);
3760         if (r)
3761                 return r;
3762
3763         (void) commit(pool);
3764
3765         r = dm_pool_reserve_metadata_snap(pool->pmd);
3766         if (r)
3767                 DMWARN("reserve_metadata_snap message failed.");
3768
3769         return r;
3770 }
3771
3772 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3773 {
3774         int r;
3775
3776         r = check_arg_count(argc, 1);
3777         if (r)
3778                 return r;
3779
3780         r = dm_pool_release_metadata_snap(pool->pmd);
3781         if (r)
3782                 DMWARN("release_metadata_snap message failed.");
3783
3784         return r;
3785 }
3786
3787 /*
3788  * Messages supported:
3789  *   create_thin        <dev_id>
3790  *   create_snap        <dev_id> <origin_id>
3791  *   delete             <dev_id>
3792  *   set_transaction_id <current_trans_id> <new_trans_id>
3793  *   reserve_metadata_snap
3794  *   release_metadata_snap
3795  */
3796 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3797                         char *result, unsigned maxlen)
3798 {
3799         int r = -EINVAL;
3800         struct pool_c *pt = ti->private;
3801         struct pool *pool = pt->pool;
3802
3803         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3804                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3805                       dm_device_name(pool->pool_md));
3806                 return -EOPNOTSUPP;
3807         }
3808
3809         if (!strcasecmp(argv[0], "create_thin"))
3810                 r = process_create_thin_mesg(argc, argv, pool);
3811
3812         else if (!strcasecmp(argv[0], "create_snap"))
3813                 r = process_create_snap_mesg(argc, argv, pool);
3814
3815         else if (!strcasecmp(argv[0], "delete"))
3816                 r = process_delete_mesg(argc, argv, pool);
3817
3818         else if (!strcasecmp(argv[0], "set_transaction_id"))
3819                 r = process_set_transaction_id_mesg(argc, argv, pool);
3820
3821         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3822                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3823
3824         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3825                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3826
3827         else
3828                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3829
3830         if (!r)
3831                 (void) commit(pool);
3832
3833         return r;
3834 }
3835
3836 static void emit_flags(struct pool_features *pf, char *result,
3837                        unsigned sz, unsigned maxlen)
3838 {
3839         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3840                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3841                 pf->error_if_no_space;
3842         DMEMIT("%u ", count);
3843
3844         if (!pf->zero_new_blocks)
3845                 DMEMIT("skip_block_zeroing ");
3846
3847         if (!pf->discard_enabled)
3848                 DMEMIT("ignore_discard ");
3849
3850         if (!pf->discard_passdown)
3851                 DMEMIT("no_discard_passdown ");
3852
3853         if (pf->mode == PM_READ_ONLY)
3854                 DMEMIT("read_only ");
3855
3856         if (pf->error_if_no_space)
3857                 DMEMIT("error_if_no_space ");
3858 }
3859
3860 /*
3861  * Status line is:
3862  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3863  *    <used data sectors>/<total data sectors> <held metadata root>
3864  *    <pool mode> <discard config> <no space config> <needs_check>
3865  */
3866 static void pool_status(struct dm_target *ti, status_type_t type,
3867                         unsigned status_flags, char *result, unsigned maxlen)
3868 {
3869         int r;
3870         unsigned sz = 0;
3871         uint64_t transaction_id;
3872         dm_block_t nr_free_blocks_data;
3873         dm_block_t nr_free_blocks_metadata;
3874         dm_block_t nr_blocks_data;
3875         dm_block_t nr_blocks_metadata;
3876         dm_block_t held_root;
3877         enum pool_mode mode;
3878         char buf[BDEVNAME_SIZE];
3879         char buf2[BDEVNAME_SIZE];
3880         struct pool_c *pt = ti->private;
3881         struct pool *pool = pt->pool;
3882
3883         switch (type) {
3884         case STATUSTYPE_INFO:
3885                 if (get_pool_mode(pool) == PM_FAIL) {
3886                         DMEMIT("Fail");
3887                         break;
3888                 }
3889
3890                 /* Commit to ensure statistics aren't out-of-date */
3891                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3892                         (void) commit(pool);
3893
3894                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3895                 if (r) {
3896                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3897                               dm_device_name(pool->pool_md), r);
3898                         goto err;
3899                 }
3900
3901                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3902                 if (r) {
3903                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3904                               dm_device_name(pool->pool_md), r);
3905                         goto err;
3906                 }
3907
3908                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3909                 if (r) {
3910                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3911                               dm_device_name(pool->pool_md), r);
3912                         goto err;
3913                 }
3914
3915                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3916                 if (r) {
3917                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3918                               dm_device_name(pool->pool_md), r);
3919                         goto err;
3920                 }
3921
3922                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3923                 if (r) {
3924                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3925                               dm_device_name(pool->pool_md), r);
3926                         goto err;
3927                 }
3928
3929                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3930                 if (r) {
3931                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3932                               dm_device_name(pool->pool_md), r);
3933                         goto err;
3934                 }
3935
3936                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3937                        (unsigned long long)transaction_id,
3938                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3939                        (unsigned long long)nr_blocks_metadata,
3940                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3941                        (unsigned long long)nr_blocks_data);
3942
3943                 if (held_root)
3944                         DMEMIT("%llu ", held_root);
3945                 else
3946                         DMEMIT("- ");
3947
3948                 mode = get_pool_mode(pool);
3949                 if (mode == PM_OUT_OF_DATA_SPACE)
3950                         DMEMIT("out_of_data_space ");
3951                 else if (is_read_only_pool_mode(mode))
3952                         DMEMIT("ro ");
3953                 else
3954                         DMEMIT("rw ");
3955
3956                 if (!pool->pf.discard_enabled)
3957                         DMEMIT("ignore_discard ");
3958                 else if (pool->pf.discard_passdown)
3959                         DMEMIT("discard_passdown ");
3960                 else
3961                         DMEMIT("no_discard_passdown ");
3962
3963                 if (pool->pf.error_if_no_space)
3964                         DMEMIT("error_if_no_space ");
3965                 else
3966                         DMEMIT("queue_if_no_space ");
3967
3968                 if (dm_pool_metadata_needs_check(pool->pmd))
3969                         DMEMIT("needs_check ");
3970                 else
3971                         DMEMIT("- ");
3972
3973                 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3974
3975                 break;
3976
3977         case STATUSTYPE_TABLE:
3978                 DMEMIT("%s %s %lu %llu ",
3979                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3980                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3981                        (unsigned long)pool->sectors_per_block,
3982                        (unsigned long long)pt->low_water_blocks);
3983                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3984                 break;
3985         }
3986         return;
3987
3988 err:
3989         DMEMIT("Error");
3990 }
3991
3992 static int pool_iterate_devices(struct dm_target *ti,
3993                                 iterate_devices_callout_fn fn, void *data)
3994 {
3995         struct pool_c *pt = ti->private;
3996
3997         return fn(ti, pt->data_dev, 0, ti->len, data);
3998 }
3999
4000 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4001 {
4002         struct pool_c *pt = ti->private;
4003         struct pool *pool = pt->pool;
4004         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4005
4006         /*
4007          * If max_sectors is smaller than pool->sectors_per_block adjust it
4008          * to the highest possible power-of-2 factor of pool->sectors_per_block.
4009          * This is especially beneficial when the pool's data device is a RAID
4010          * device that has a full stripe width that matches pool->sectors_per_block
4011          * -- because even though partial RAID stripe-sized IOs will be issued to a
4012          *    single RAID stripe; when aggregated they will end on a full RAID stripe
4013          *    boundary.. which avoids additional partial RAID stripe writes cascading
4014          */
4015         if (limits->max_sectors < pool->sectors_per_block) {
4016                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4017                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4018                                 limits->max_sectors--;
4019                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4020                 }
4021         }
4022
4023         /*
4024          * If the system-determined stacked limits are compatible with the
4025          * pool's blocksize (io_opt is a factor) do not override them.
4026          */
4027         if (io_opt_sectors < pool->sectors_per_block ||
4028             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4029                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4030                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4031                 else
4032                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4033                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4034         }
4035
4036         /*
4037          * pt->adjusted_pf is a staging area for the actual features to use.
4038          * They get transferred to the live pool in bind_control_target()
4039          * called from pool_preresume().
4040          */
4041         if (!pt->adjusted_pf.discard_enabled) {
4042                 /*
4043                  * Must explicitly disallow stacking discard limits otherwise the
4044                  * block layer will stack them if pool's data device has support.
4045                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4046                  * user to see that, so make sure to set all discard limits to 0.
4047                  */
4048                 limits->discard_granularity = 0;
4049                 return;
4050         }
4051
4052         disable_passdown_if_not_supported(pt);
4053
4054         /*
4055          * The pool uses the same discard limits as the underlying data
4056          * device.  DM core has already set this up.
4057          */
4058 }
4059
4060 static struct target_type pool_target = {
4061         .name = "thin-pool",
4062         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4063                     DM_TARGET_IMMUTABLE,
4064         .version = {1, 21, 0},
4065         .module = THIS_MODULE,
4066         .ctr = pool_ctr,
4067         .dtr = pool_dtr,
4068         .map = pool_map,
4069         .presuspend = pool_presuspend,
4070         .presuspend_undo = pool_presuspend_undo,
4071         .postsuspend = pool_postsuspend,
4072         .preresume = pool_preresume,
4073         .resume = pool_resume,
4074         .message = pool_message,
4075         .status = pool_status,
4076         .iterate_devices = pool_iterate_devices,
4077         .io_hints = pool_io_hints,
4078 };
4079
4080 /*----------------------------------------------------------------
4081  * Thin target methods
4082  *--------------------------------------------------------------*/
4083 static void thin_get(struct thin_c *tc)
4084 {
4085         refcount_inc(&tc->refcount);
4086 }
4087
4088 static void thin_put(struct thin_c *tc)
4089 {
4090         if (refcount_dec_and_test(&tc->refcount))
4091                 complete(&tc->can_destroy);
4092 }
4093
4094 static void thin_dtr(struct dm_target *ti)
4095 {
4096         struct thin_c *tc = ti->private;
4097
4098         spin_lock_irq(&tc->pool->lock);
4099         list_del_rcu(&tc->list);
4100         spin_unlock_irq(&tc->pool->lock);
4101         synchronize_rcu();
4102
4103         thin_put(tc);
4104         wait_for_completion(&tc->can_destroy);
4105
4106         mutex_lock(&dm_thin_pool_table.mutex);
4107
4108         __pool_dec(tc->pool);
4109         dm_pool_close_thin_device(tc->td);
4110         dm_put_device(ti, tc->pool_dev);
4111         if (tc->origin_dev)
4112                 dm_put_device(ti, tc->origin_dev);
4113         kfree(tc);
4114
4115         mutex_unlock(&dm_thin_pool_table.mutex);
4116 }
4117
4118 /*
4119  * Thin target parameters:
4120  *
4121  * <pool_dev> <dev_id> [origin_dev]
4122  *
4123  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4124  * dev_id: the internal device identifier
4125  * origin_dev: a device external to the pool that should act as the origin
4126  *
4127  * If the pool device has discards disabled, they get disabled for the thin
4128  * device as well.
4129  */
4130 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4131 {
4132         int r;
4133         struct thin_c *tc;
4134         struct dm_dev *pool_dev, *origin_dev;
4135         struct mapped_device *pool_md;
4136
4137         mutex_lock(&dm_thin_pool_table.mutex);
4138
4139         if (argc != 2 && argc != 3) {
4140                 ti->error = "Invalid argument count";
4141                 r = -EINVAL;
4142                 goto out_unlock;
4143         }
4144
4145         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4146         if (!tc) {
4147                 ti->error = "Out of memory";
4148                 r = -ENOMEM;
4149                 goto out_unlock;
4150         }
4151         tc->thin_md = dm_table_get_md(ti->table);
4152         spin_lock_init(&tc->lock);
4153         INIT_LIST_HEAD(&tc->deferred_cells);
4154         bio_list_init(&tc->deferred_bio_list);
4155         bio_list_init(&tc->retry_on_resume_list);
4156         tc->sort_bio_list = RB_ROOT;
4157
4158         if (argc == 3) {
4159                 if (!strcmp(argv[0], argv[2])) {
4160                         ti->error = "Error setting origin device";
4161                         r = -EINVAL;
4162                         goto bad_origin_dev;
4163                 }
4164
4165                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4166                 if (r) {
4167                         ti->error = "Error opening origin device";
4168                         goto bad_origin_dev;
4169                 }
4170                 tc->origin_dev = origin_dev;
4171         }
4172
4173         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4174         if (r) {
4175                 ti->error = "Error opening pool device";
4176                 goto bad_pool_dev;
4177         }
4178         tc->pool_dev = pool_dev;
4179
4180         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4181                 ti->error = "Invalid device id";
4182                 r = -EINVAL;
4183                 goto bad_common;
4184         }
4185
4186         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4187         if (!pool_md) {
4188                 ti->error = "Couldn't get pool mapped device";
4189                 r = -EINVAL;
4190                 goto bad_common;
4191         }
4192
4193         tc->pool = __pool_table_lookup(pool_md);
4194         if (!tc->pool) {
4195                 ti->error = "Couldn't find pool object";
4196                 r = -EINVAL;
4197                 goto bad_pool_lookup;
4198         }
4199         __pool_inc(tc->pool);
4200
4201         if (get_pool_mode(tc->pool) == PM_FAIL) {
4202                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4203                 r = -EINVAL;
4204                 goto bad_pool;
4205         }
4206
4207         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4208         if (r) {
4209                 ti->error = "Couldn't open thin internal device";
4210                 goto bad_pool;
4211         }
4212
4213         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4214         if (r)
4215                 goto bad;
4216
4217         ti->num_flush_bios = 1;
4218         ti->flush_supported = true;
4219         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4220
4221         /* In case the pool supports discards, pass them on. */
4222         if (tc->pool->pf.discard_enabled) {
4223                 ti->discards_supported = true;
4224                 ti->num_discard_bios = 1;
4225         }
4226
4227         mutex_unlock(&dm_thin_pool_table.mutex);
4228
4229         spin_lock_irq(&tc->pool->lock);
4230         if (tc->pool->suspended) {
4231                 spin_unlock_irq(&tc->pool->lock);
4232                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4233                 ti->error = "Unable to activate thin device while pool is suspended";
4234                 r = -EINVAL;
4235                 goto bad;
4236         }
4237         refcount_set(&tc->refcount, 1);
4238         init_completion(&tc->can_destroy);
4239         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4240         spin_unlock_irq(&tc->pool->lock);
4241         /*
4242          * This synchronize_rcu() call is needed here otherwise we risk a
4243          * wake_worker() call finding no bios to process (because the newly
4244          * added tc isn't yet visible).  So this reduces latency since we
4245          * aren't then dependent on the periodic commit to wake_worker().
4246          */
4247         synchronize_rcu();
4248
4249         dm_put(pool_md);
4250
4251         return 0;
4252
4253 bad:
4254         dm_pool_close_thin_device(tc->td);
4255 bad_pool:
4256         __pool_dec(tc->pool);
4257 bad_pool_lookup:
4258         dm_put(pool_md);
4259 bad_common:
4260         dm_put_device(ti, tc->pool_dev);
4261 bad_pool_dev:
4262         if (tc->origin_dev)
4263                 dm_put_device(ti, tc->origin_dev);
4264 bad_origin_dev:
4265         kfree(tc);
4266 out_unlock:
4267         mutex_unlock(&dm_thin_pool_table.mutex);
4268
4269         return r;
4270 }
4271
4272 static int thin_map(struct dm_target *ti, struct bio *bio)
4273 {
4274         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4275
4276         return thin_bio_map(ti, bio);
4277 }
4278
4279 static int thin_endio(struct dm_target *ti, struct bio *bio,
4280                 blk_status_t *err)
4281 {
4282         unsigned long flags;
4283         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4284         struct list_head work;
4285         struct dm_thin_new_mapping *m, *tmp;
4286         struct pool *pool = h->tc->pool;
4287
4288         if (h->shared_read_entry) {
4289                 INIT_LIST_HEAD(&work);
4290                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4291
4292                 spin_lock_irqsave(&pool->lock, flags);
4293                 list_for_each_entry_safe(m, tmp, &work, list) {
4294                         list_del(&m->list);
4295                         __complete_mapping_preparation(m);
4296                 }
4297                 spin_unlock_irqrestore(&pool->lock, flags);
4298         }
4299
4300         if (h->all_io_entry) {
4301                 INIT_LIST_HEAD(&work);
4302                 dm_deferred_entry_dec(h->all_io_entry, &work);
4303                 if (!list_empty(&work)) {
4304                         spin_lock_irqsave(&pool->lock, flags);
4305                         list_for_each_entry_safe(m, tmp, &work, list)
4306                                 list_add_tail(&m->list, &pool->prepared_discards);
4307                         spin_unlock_irqrestore(&pool->lock, flags);
4308                         wake_worker(pool);
4309                 }
4310         }
4311
4312         if (h->cell)
4313                 cell_defer_no_holder(h->tc, h->cell);
4314
4315         return DM_ENDIO_DONE;
4316 }
4317
4318 static void thin_presuspend(struct dm_target *ti)
4319 {
4320         struct thin_c *tc = ti->private;
4321
4322         if (dm_noflush_suspending(ti))
4323                 noflush_work(tc, do_noflush_start);
4324 }
4325
4326 static void thin_postsuspend(struct dm_target *ti)
4327 {
4328         struct thin_c *tc = ti->private;
4329
4330         /*
4331          * The dm_noflush_suspending flag has been cleared by now, so
4332          * unfortunately we must always run this.
4333          */
4334         noflush_work(tc, do_noflush_stop);
4335 }
4336
4337 static int thin_preresume(struct dm_target *ti)
4338 {
4339         struct thin_c *tc = ti->private;
4340
4341         if (tc->origin_dev)
4342                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4343
4344         return 0;
4345 }
4346
4347 /*
4348  * <nr mapped sectors> <highest mapped sector>
4349  */
4350 static void thin_status(struct dm_target *ti, status_type_t type,
4351                         unsigned status_flags, char *result, unsigned maxlen)
4352 {
4353         int r;
4354         ssize_t sz = 0;
4355         dm_block_t mapped, highest;
4356         char buf[BDEVNAME_SIZE];
4357         struct thin_c *tc = ti->private;
4358
4359         if (get_pool_mode(tc->pool) == PM_FAIL) {
4360                 DMEMIT("Fail");
4361                 return;
4362         }
4363
4364         if (!tc->td)
4365                 DMEMIT("-");
4366         else {
4367                 switch (type) {
4368                 case STATUSTYPE_INFO:
4369                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4370                         if (r) {
4371                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4372                                 goto err;
4373                         }
4374
4375                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4376                         if (r < 0) {
4377                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4378                                 goto err;
4379                         }
4380
4381                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4382                         if (r)
4383                                 DMEMIT("%llu", ((highest + 1) *
4384                                                 tc->pool->sectors_per_block) - 1);
4385                         else
4386                                 DMEMIT("-");
4387                         break;
4388
4389                 case STATUSTYPE_TABLE:
4390                         DMEMIT("%s %lu",
4391                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4392                                (unsigned long) tc->dev_id);
4393                         if (tc->origin_dev)
4394                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4395                         break;
4396                 }
4397         }
4398
4399         return;
4400
4401 err:
4402         DMEMIT("Error");
4403 }
4404
4405 static int thin_iterate_devices(struct dm_target *ti,
4406                                 iterate_devices_callout_fn fn, void *data)
4407 {
4408         sector_t blocks;
4409         struct thin_c *tc = ti->private;
4410         struct pool *pool = tc->pool;
4411
4412         /*
4413          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4414          * we follow a more convoluted path through to the pool's target.
4415          */
4416         if (!pool->ti)
4417                 return 0;       /* nothing is bound */
4418
4419         blocks = pool->ti->len;
4420         (void) sector_div(blocks, pool->sectors_per_block);
4421         if (blocks)
4422                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4423
4424         return 0;
4425 }
4426
4427 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4428 {
4429         struct thin_c *tc = ti->private;
4430         struct pool *pool = tc->pool;
4431
4432         if (!pool->pf.discard_enabled)
4433                 return;
4434
4435         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4436         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4437 }
4438
4439 static struct target_type thin_target = {
4440         .name = "thin",
4441         .version = {1, 21, 0},
4442         .module = THIS_MODULE,
4443         .ctr = thin_ctr,
4444         .dtr = thin_dtr,
4445         .map = thin_map,
4446         .end_io = thin_endio,
4447         .preresume = thin_preresume,
4448         .presuspend = thin_presuspend,
4449         .postsuspend = thin_postsuspend,
4450         .status = thin_status,
4451         .iterate_devices = thin_iterate_devices,
4452         .io_hints = thin_io_hints,
4453 };
4454
4455 /*----------------------------------------------------------------*/
4456
4457 static int __init dm_thin_init(void)
4458 {
4459         int r = -ENOMEM;
4460
4461         pool_table_init();
4462
4463         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4464         if (!_new_mapping_cache)
4465                 return r;
4466
4467         r = dm_register_target(&thin_target);
4468         if (r)
4469                 goto bad_new_mapping_cache;
4470
4471         r = dm_register_target(&pool_target);
4472         if (r)
4473                 goto bad_thin_target;
4474
4475         return 0;
4476
4477 bad_thin_target:
4478         dm_unregister_target(&thin_target);
4479 bad_new_mapping_cache:
4480         kmem_cache_destroy(_new_mapping_cache);
4481
4482         return r;
4483 }
4484
4485 static void dm_thin_exit(void)
4486 {
4487         dm_unregister_target(&thin_target);
4488         dm_unregister_target(&pool_target);
4489
4490         kmem_cache_destroy(_new_mapping_cache);
4491
4492         pool_table_exit();
4493 }
4494
4495 module_init(dm_thin_init);
4496 module_exit(dm_thin_exit);
4497
4498 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4499 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4500
4501 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4502 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4503 MODULE_LICENSE("GPL");